WorldWideScience

Sample records for c-met point mutations

  1. Activating mutation in MET oncogene in familial colorectal cancer

    Directory of Open Access Journals (Sweden)

    Schildkraut Joellen M

    2011-10-01

    Full Text Available Abstract Background In developed countries, the lifetime risk of developing colorectal cancer (CRC is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies. Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will

  2. c-Ha-ras BamHI RFLP in human urothelial tumors and point mutations in hot codons

    International Nuclear Information System (INIS)

    Weismanova, E; Skovraga, M.; Kaluz, S.

    1993-01-01

    High-molecular weights DNAs from 30 bladder and renal cell carcinomas (RCC) were isolated and the c-Ha-ras the c-Ha-ras gene BamHI RFLP was examined. Amplification of c-Ha-ras with normal localization with regard to the size of alleles was found only in the case. One of the normally localized c-Ha-ras allele termed RCC c-H-ras of a length of about 6.6 kbp was cloned and an oncogene-activating point mutation was identified using two restriction enzymes. After comparison of CfrI and Cfr10I cleavage maps of RCC c-Ha-ras to complete nucleotide sequences of EJ/T24 c-Ha-ras oncogene and its normal counterpart, a point mutation was identified within codon 11 or 12. The use of CfrI and Cfr10I is of value for clinical practice in identification of point mutations in c-Ha-ras PCR product in neoplasia accompanied by somatic mutation of c-Ha-ras. The correlation among c-Ha-ras allele, amplification/loss, presence of point mutation and progression of neoplasia is discussed. (author)

  3. CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Yi-Hung Carol Tan

    2010-01-01

    Full Text Available Non-small cell lung cancer (NSCLC is a heterogeneous group of disorders with a number of genetic and proteomic alterations. c-CBL is an E3 ubiquitin ligase and adaptor molecule important in normal homeostasis and cancer. We determined the genetic variations of c-CBL, relationship to receptor tyrosine kinases (EGFR and MET, and functionality in NSCLC.Using archival formalin-fixed paraffin embedded (FFPE extracted genomic DNA, we show that c-CBL mutations occur in somatic fashion for lung cancers. c-CBL mutations were not mutually exclusive of MET or EGFR mutations; however they were independent of p53 and KRAS mutations. In normal/tumor pairwise analysis, there was significant loss of heterozygosity (LOH for the c-CBL locus (22%, n = 8/37 and none of these samples revealed any mutation in the remaining copy of c-CBL. The c-CBL LOH also positively correlated with EGFR and MET mutations observed in the same samples. Using select c-CBL somatic mutations such as S80N/H94Y, Q249E and W802* (obtained from Caucasian, Taiwanese and African-American samples, respectively transfected in NSCLC cell lines, there was increased cell viability and cell motility.Taking the overall mutation rate of c-CBL to be a combination as somatic missense mutation and LOH, it is clear that c-CBL is highly mutated in lung cancers and may play an essential role in lung tumorigenesis and metastasis.

  4. MET amplification, expression, and exon 14 mutations in colorectal adenocarcinoma.

    Science.gov (United States)

    Zhang, Meng; Li, Guichao; Sun, Xiangjie; Ni, Shujuan; Tan, Cong; Xu, Midie; Huang, Dan; Ren, Fei; Li, Dawei; Wei, Ping; Du, Xiang

    2018-04-08

    MET amplification, expression, and splice mutations at exon 14 result in dysregulation of the MET signaling pathway. The aim of this study was to identify the relationship between MET amplification, protein or mRNA expression, and mutations in colorectal cancer (CRC). MET immunohistochemistry (IHC) was used for MET protein expression analysis and fluorescence in situ hybridization (FISH) was used for MET amplification detection. Both analyses were performed in tissue microarrays (TMA) containing 294 of colorectal adenocarcinoma tissue samples and 131 samples of adjacent normal epithelial tissue. MET mRNA expression was examined by real-time quantitative polymerase chain reaction (qRT-PCR) in 72 fresh colorectal adenocarcinoma tissue samples and adjacent normal colon tissue. PCR sequencing was performed to screen for MET exon 14 splice mutations in 59 fresh CRC tissue samples. Our results showed that MET protein expression was higher in colorectal tumor tissue than in adjacent normal intestinal epithelium. Positive MET protein expression was associated with significantly poorer overall survival (OS) and disease-free survival (DFS). Multivariate analysis revealed that positive MET protein expression was an independent risk factor for DFS, but not for OS. MET mRNA expression was upregulated in tumor tissues compared with the adjacent normal tissues. The incidence of MET amplification was 4.4%. None of the patients was positive for MET mutation. Collectively, MET was overexpressed in colorectal adenocarcinoma, and its positive protein expression predicted a poorer outcome in CRC patients. Furthermore, according to our results, MET amplification and 14 exon mutation are extremely rare events in colorectal adenocarcinoma. Copyright © 2018. Published by Elsevier Inc.

  5. Increased NQO1 but Not c-MET and Survivin Expression in Non-Small Cell Lung Carcinoma with KRAS Mutations

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz

    2014-09-01

    Full Text Available Cigarette smoking is one of the most significant public health issues and the most common environmental cause of preventable cancer deaths worldwide. EGFR (Epidermal Growth Factor Receptor-targeted therapy has been used in the treatment of LC (lung cancer, mainly caused by the carcinogens in cigarette smoke, with variable success. Presence of mutations in the KRAS (Kirsten rat sarcoma viral oncogene homolog driver oncogene may confer worse prognosis and resistance to treatment for reasons not fully understood. NQO1 (NAD(PH:quinone oxidoreductase, also known as DT-diaphorase, is a major regulator of oxidative stress and activator of mitomycins, compounds that have been targeted in over 600 pre-clinical trials for treatment of LC. We sequenced KRAS and investigated expression of NQO1 and five clinically relevant proteins (DNMT1, DNMT3a, ERK1/2, c-MET, and survivin in 108 patients with non-small cell lung carcinoma (NSCLC. NQO1, ERK1/2, DNMT1, and DNMT3a but not c-MET and survivin expression was significantly more frequent in patients with KRAS mutations than those without, suggesting the following: (1 oxidative stress may play an important role in the pathogenesis, worse prognosis, and resistance to treatment reported in NSCLC patients with KRAS mutations, (2 selecting patients based on their KRAS mutational status for future clinical trials may increase success rate, and (3 since oxidation of nucleotides also specifically induces transversion mutations, the high rate of KRAS transversions in lung cancer patients may partly be due to the increased oxidative stress in addition to the known carcinogens in cigarette smoke.

  6. Correlation among genetic variations of c-MET in Chinese patients with non-small cell lung cancer.

    Science.gov (United States)

    Duan, Jianchun; Yang, Xiaodan; Zhao, Jun; Zhuo, Minglei; Wang, Zhijie; An, Tongtong; Bai, Hua; Wang, Jie

    2018-01-05

    The purpose of our research was to determine the correlation of amplification, protein expression and somatic mutation of c-MET in IIIb-IV stage NSCLC (Non-small cell lung cancer). We also explored correlation of c-MET variation with clinical outcome. c-MET expression was observed in 28.6% (56/196) cases, and among those 13.8% (27/196) were shown to be FISH positive. Only 2.67% patients in this study carried the c-MET mutation. Cases with c-MET FISH positive were all IHC positive ,but in IHC positive cases, only half were FISH positive. Among patients with IHC 2+ staining, 35.5% was FISH positive, while cases with IHC 3+ staining,64% was FISH positive. Both protein expression and copy number of c-MET did not significantly correlate with clinical prognosis in these patients treated with EGFR-TKIs. IHC could be used as a preliminary screening method for c-MET copy number amplification and should be confirmed by FISH only in IHC positive case which facilitate selection of ALK or MET inhibitor therapy. c-MET gene copy number, protein expression and somatic mutation for exon 14 were detected by fluorescent- In-Situ -Hybridization (FISH), Immunohistochemistry (IHC), and Denaturing-High-Performance-Liquid-Chromatography (DHPLC), respectively, in 196 NSCLC patients. The relationship between c-MET abnormalities and clinical outcome of targeted therapy was analyzed by McNemar's test.

  7. Research progress in c-Met and hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    WANG Changqing

    2015-06-01

    Full Text Available c-Met plays a pivotal role in the development and progression of hepatocellular carcinoma (HCC, which can lead to proliferation, survival, cytoskeleton reorganization, separation and diffusion, and angiogenesis of tumor cells. Moreover, c-Met is an important prognostic factor for HCC. In HCC, c-Met acts as an activator of a series of signaling pathways, including PI3K/AKT/mTOR, ERK/MAPK, and Rac-Pak. In recent years, it has been reported that small-molecule kinase inhibitors can abolish phosphorylation at the intracellular carboxyl terminal of c-Met, and then inhibit the recruitment of signal convertors and downstream signaling pathways, which finally achieve anti-tumor activities. Based on the carcinogenic activity of c-Met in HCC, this paper points out that selective inhibitors of c-Met hold promise for targeted therapies for HCC.

  8. Clinical study of DMD gene point mutation causing Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Ji-qing CAO

    2015-07-01

    Full Text Available Background  DMD gene point mutation, mainly nonsense mutation, always cause the most severe Duchenne muscular dystrophy (DMD. However, we also observed some cases of Becker muscular dystrophy (BMD carrying DMD point mutation. This paper aims to explore the mechanism of DMD point mutation causing BMD, in order to enhance the understanding of mutation types of BMD.  Methods  Sequence analysis was performed in 11 cases of BMD confirmed by typical clinical manifestations and muscle biopsy. The exon of DMD gene was detected non-deletion or duplication by multiplex ligation-dependent probe amplification (MLPA.  Results  Eleven patients carried 10 mutation types without mutational hotspot. Six patients carried nonsense mutations [c.5002G>T, p.(Glu1668X; c.1615C > T, p.(Arg539X; c.7105G > T, p.(Glu2369X; c.5287C > T, p.(Arg1763X; c.9284T > G, p.(Leu3095X]. One patient carried missense mutation [c.5234G > A, p.(Arg1745His]. Two patients carried frameshift mutations (c.10231dupT, c.10491delC. Two patients carried splicing site mutations (c.4518 + 3A > T, c.649 + 2T > C.  Conclusions  DMD gene point mutation may result in BMD with mild clinical symptoms. When clinical manifestations suggest the possibility of BMD and MLPA reveals non?deletion or duplication mutation of DMD gene, BMD should be considered. Study on the mechanism of DMD point mutation causing BMD is very important for gene therapy of DMD. DOI: 10.3969/j.issn.1672-6731.2015.06.005

  9. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma.

    Science.gov (United States)

    Granito, Alessandro; Guidetti, Elena; Gramantieri, Laura

    2015-01-01

    c-MET is the membrane receptor for hepatocyte growth factor (HGF), also known as scatter factor or tumor cytotoxic factor, a mitogenic growth factor for hepatocytes. HGF is mainly produced by cells of mesenchymal origin and it mainly acts on neighboring epidermal and endothelial cells, regulating epithelial growth and morphogenesis. HGF/MET signaling has been identified among the drivers of tumorigenesis in human cancers. As such, c-MET is a recognized druggable target, and against it, targeted agents are currently under clinical investigation. c-MET overexpression is a common event in a wide range of human malignancies, including gastric, lung, breast, ovary, colon, kidney, thyroid, and liver carcinomas. Despite c-MET overexpression being reported by a large majority of studies, no evidence for a c-MET oncogenic addiction exists in hepatocellular carcinoma (HCC). In particular, c-MET amplification is a rare event, accounting for 4%-5% of cases while no mutation has been identified in c-MET oncogene in HCC. Thus, the selection of patient subgroups more likely to benefit from c-MET inhibition is challenging. Notwithstanding, c-MET overexpression was reported to be associated with increased metastatic potential and poor prognosis in patients with HCC, providing a rationale for its therapeutic inhibition. Here we summarize the role of activated HGF/MET signaling in HCC, its prognostic relevance, and the implications for therapeutic approaches in HCC.

  10. Upregulation of c-mesenchymal epithelial transition expression and RAS mutations are associated with late lung metastasis and poor prognosis in colorectal carcinoma.

    Science.gov (United States)

    Liu, Jianhua; Zeng, Weiqiang; Huang, Chengzhi; Wang, Junjiang; Xu, Lishu; Ma, Dong

    2018-05-01

    The present study aimed to investigate whether c-mesenchymal epithelial transition factor (C-MET) overexpression combined with RAS (including KRAS, NRAS and HRAS ) or BRAF mutations were associated with late distant metastases and the prognosis of patients with colorectal cancer (CRC). A total of 374 patients with stage III CRC were classified into 4 groups based on RAS/BRAF and C-MET status for comprehensive analysis. Mutations in RAS / BRAF were determined using Sanger sequencing and C-MET expression was examined using immunohistochemistry. The associations between RAS/BRAF mutations in combination with C-MET overexpression and clinicopathological variables including survival were evaluated. In addition, their predictive value for late distant metastases were statistically analyzed via logistic regression and receiver operating characteristic analysis. Among 374 patients, mutations in KRAS, NRAS, HRAS, BRAF and C-MET overexpression were observed in 43.9, 2.4, 0.3, 5.9 and 71.9% of cases, respectively. Considering RAS/BRAF mutations and C-MET overexpression, vascular invasion (P=0.001), high carcino-embryonic antigen level (P=0.031) and late distant metastases (PC-MET overexpression, although they were both predictive factors for adverse prognosis. Further logistic regression suggested that RAS/BRAF mutations and C-MET overexpression may predict late distant metastases. In conclusion, RAS/BRAF mutations and C-MET overexpression may serve as predictive indicators for metastatic behavior and poor prognosis of CRC.

  11. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Granito A

    2015-04-01

    Full Text Available Alessandro Granito,1 Elena Guidetti,1 Laura Gramantieri2,3 1Dipartimento di Scienze Mediche e Chirurgiche Università di Bologna, Bologna, Italy; 2Dipartimento dell'Apparato Digerente, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; 3Centro di Ricerca Biomedica Applicata (CRBA, Azienda Ospedaliero-Universitaria Policlinico S Orsola-Malpighi e Università di Bologna, Bologna, Italy Abstract: c-MET is the membrane receptor for hepatocyte growth factor (HGF, also known as scatter factor or tumor cytotoxic factor, a mitogenic growth factor for hepatocytes. HGF is mainly produced by cells of mesenchymal origin and it mainly acts on neighboring epidermal and endothelial cells, regulating epithelial growth and morphogenesis. HGF/MET signaling has been identified among the drivers of tumorigenesis in human cancers. As such, c-MET is a recognized druggable target, and against it, targeted agents are currently under clinical investigation. c-MET overexpression is a common event in a wide range of human malignancies, including gastric, lung, breast, ovary, colon, kidney, thyroid, and liver carcinomas. Despite c-MET overexpression being reported by a large majority of studies, no evidence for a c-MET oncogenic addiction exists in hepatocellular carcinoma (HCC. In particular, c-MET amplification is a rare event, accounting for 4%–5% of cases while no mutation has been identified in c-MET oncogene in HCC. Thus, the selection of patient subgroups more likely to benefit from c-MET inhibition is challenging. Notwithstanding, c-MET overexpression was reported to be associated with increased metastatic potential and poor prognosis in patients with HCC, providing a rationale for its therapeutic inhibition. Here we summarize the role of activated HGF/MET signaling in HCC, its prognostic relevance, and the implications for therapeutic approaches in HCC. Keywords: hepatocellular carcinoma, c-MET, clinical trials

  12. Role of cMET in the Development and Progression of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Ilaria Bossi

    2013-09-01

    Full Text Available Mesenchymal-epithelial transition (MET is a member of a distinct subfamily of heterodimeric receptor tyrosine kinase receptors that specifically binds the hepatocyte growth factor (HGF. Binding to HGF leads to receptor dimerization/multimerization and phosphorylation, resulting in its catalytic activation. MET activation drives the malignant progression of several tumor types, including colorectal cancer (CRC, by promoting signaling cascades that mainly result in alterations of cell motility, survival, and proliferation. MET is aberrantly activated in many human cancers through various mechanisms, including point mutations, gene amplification, transcriptional up-regulation, or ligand autocrine loops. MET promotes cell scattering, invasion, and protection from apoptosis, thereby acting as an adjuvant pro-metastatic gene for many tumor types. In CRC, MET expression confers more aggressiveness and worse clinical prognosis. With all of this rationale, inhibitors that target the HGF/MET axis with different types of response have been developed. HGF and MET are new promising targets to understand the pathogenesis of CRC and for the development of new, targeted therapies.

  13. Anomalous inhibition of c-Met by the kinesin inhibitor aurintricarboxylic acid.

    Science.gov (United States)

    Milanovic, Mina; Radtke, Simone; Peel, Nick; Howell, Michael; Carrière, Virginie; Joffre, Carine; Kermorgant, Stéphanie; Parker, Peter J

    2012-03-01

    c-Met [the hepatocyte growth factor (HGF) receptor] is a receptor tyrosine kinase playing a role in various biological events. Overexpression of the receptor has been observed in a number of cancers, correlating with increased metastatic tendency and poor prognosis. Additionally, activating mutations in c-Met kinase domain have been reported in a subset of familial cancers causing resistance to treatment. Receptor trafficking, relying on the integrity of the microtubule network, plays an important role in activation of downstream targets and initiation of signalling events. Aurintricarboxylic acid (ATA) is a triphenylmethane derivative that has been reported to inhibit microtubule motor proteins kinesins. Additional reported properties of this inhibitor include inhibition of protein tyrosine phosphatases, nucleases and members of the Jak family. Here we demonstrate that ATA prevents HGF-induced c-Met phosphorylation, internalisation, subsequent receptor trafficking and degradation. In addition, ATA prevented HGF-induced downstream signalling which also affected cellular function, as assayed by collective cell migration of A549 cells. Surprisingly, the inhibitory effect of ATA on HGF-induced phosphorylation and signalling in vivo was associated with an increase in basal c-Met kinase activity in vitro. It is concluded that the inhibitory effects of ATA on c-Met in vivo is an allosteric effect mediated through the kinase domain of the receptor. As the currently tested adenosine triphosphate competitive tyrosine kinase inhibitors (TKIs) may lead to tumor resistance (McDermott U, et al., Cancer Res 2010;70:1625-34), our findings suggest that novel anti-c-Met therapies could be developed in the future for cancer treatment. Copyright © 2011 UICC.

  14. C-MET overexpression and amplification in gliomas.

    Science.gov (United States)

    Kwak, Yoonjin; Kim, Seong-Ik; Park, Chul-Kee; Paek, Sun Ha; Lee, Soon-Tae; Park, Sung-Hye

    2015-01-01

    We investigated c-Met overexpression and MET gene amplification in gliomas to determine their incidence and prognostic significance. c-Met immunohistochemistry and MET gene fluorescence in situ hybridization were carried out on tissue microarrays from 250 patients with gliomas (137 grade IV GBMs and 113 grade II and III diffuse gliomas). Clinicopathological features of these cases were reviewed. c-Met overexpression and MET gene amplification were detected in 13.1% and 5.1% of the GBMs, respectively. All the MET-amplified cases showed c-Met overexpression, but MET amplification was not always concordant with c-Met overexpression. None of grade II and III gliomas demonstrated c-Met overexpression or MET gene amplification. Mean survival of the GBM patients with MET amplification was not significantly different from patients without MET amplification (P=0.155). However, GBM patients with c-Met overexpression survived longer than patients without c-Met overexpression (P=0.035). Although MET amplification was not related to poor GBM prognosis, it is partially associated with the aggressiveness of gliomas, as MET amplification was found only in grade IV, not in grade II and III gliomas. We suggest that MET inhibitor therapy may be beneficial in about 5% GBMs, which was the incidence of MET gene amplification found in the patients included in this study.

  15. Mitochondrial tRNALeu(UUR) C3275T, tRNAGln T4363C and tRNALys A8343G mutations may be associated with PCOS and metabolic syndrome.

    Science.gov (United States)

    Ding, Yu; Xia, Bo-Hou; Zhang, Cai-Juan; Zhuo, Guang-Chao

    2018-02-05

    Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNA Leu(UUR) , whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNA Gln , furthermore, the A8343G mutation occurred at the very conserved position of tRNA Lys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this

  16. A point mutation of valine-311 to methionine in Bacillus subtilis protoporphyrinogen oxidase does not greatly increase resistance to the diphenyl ether herbicide oxyfluorfen.

    Science.gov (United States)

    Jeong, Eunjoo; Houn, Thavrak; Kuk, Yongin; Kim, Eun-Seon; Chandru, Hema Kumar; Baik, Myunggi; Back, Kyoungwhan; Guh, Ja-Ock; Han, Oksoo

    2003-10-01

    In an effort to asses the effect of Val311Met point mutation of Bacillus subtilis protoporphyrinogen oxidase on the resistance to diphenyl ether herbicides, a Val311Met point mutant of B. subtilis protoporphyrinogen oxidase was prepared, heterologously expressed in Escherichia coli, and the purified recombinant Val311Met mutant protoporphyrinogen oxidase was kinetically characterized. The mutant protoporphyrinogen oxidase showed very similar kinetic patterns to wild type protoporphyrinogen oxidase, with slightly decreased activity dependent on pH and the concentrations of NaCl, Tween 20, and imidazole. When oxyfluorfen was used as a competitive inhibitor, the Val311Met mutant protoporphyrinogen oxidase showed an increased inhibition constant about 1.5 times that of wild type protoporphyrinogen oxidase. The marginal increase of the inhibition constant indicates that the Val311Met point mutation in B. subtilis protoporphyrinogen oxidase may not be an important determinant in the mechanism that protects protoporphyrinogen oxidase against diphenyl ether herbicides.

  17. 11C-MET PET/MRI for detection of recurrent glioma.

    Science.gov (United States)

    Deuschl, C; Kirchner, J; Poeppel, T D; Schaarschmidt, B; Kebir, S; El Hindy, N; Hense, J; Quick, H H; Glas, M; Herrmann, K; Umutlu, L; Moenninghoff, C; Radbruch, A; Forsting, M; Schlamann, M

    2018-04-01

    Radiological assessment of brain tumors is widely based on the Radiology Assessment of Neuro-Oncology (RANO) criteria that consider non-specific T1 and T2 weighted images. Limitation of the RANO criteria is that they do not include metabolic imaging techniques that have been reported to be helpful to differentiate treatment related changes from true tumor progression. In the current study, we assessed if the combined use of MRI and PET with hybrid 11 C-MET PET/MRI can improve diagnostic accuracy and diagnostic confidence of the readers to differentiate treatment related changes from true progression in recurrent glioma. Fifty consecutive patients with histopathologically proven glioma were prospectively enrolled for a hybrid 11 C-MET PET/MRI to differentiate recurrent glioma from treatment induced changes. Sole MRI data were analyzed based on RANO. Sole PET data and in a third evaluation hybrid 11 C-MET-PET/MRI data were assessed for metabolic respectively metabolic and morphologic glioma recurrence. Diagnostic performance and diagnostic confidence of the reader were calculated for the different modalities, and the McNemar test and Mann-Whitney U Test were applied for statistical analysis. Hybrid 11 C-MET PET/MRI was successfully performed in all 50 patients. Glioma recurrence was diagnosed in 35 of the 50 patients (70%). Sensitivity and specificity were calculated for MRI (86.11% and 71.43%), for 11 C-MET PET (96.77% and 73.68%), and for hybrid 11 C-MET-PET/MRI (97.14% and 93.33%). For diagnostic accuracy hybrid 11 C-MET-PET/MRI (96%) showed significantly higher values than MRI alone (82%), whereas no significant difference was found for 11C-MET PET (88%). Furthermore, by rating on a five-point Likert scale significantly higher scores were found for diagnostic confidence when comparing 11 C-MET PET/MRI (4.26 ± 0,777) to either PET alone (3.44 ± 0.705) or MRI alone (3.56 ± 0.733). This feasibility study showed that hybrid PET/MRI might strengthen

  18. Novel Point Mutations and A8027G Polymorphism in Mitochondrial-DNA-Encoded Cytochrome c Oxidase II Gene in Mexican Patients with Probable Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Verónica Loera-Castañeda

    2014-01-01

    Full Text Available Mitochondrial dysfunction has been thought to contribute to Alzheimer disease (AD pathogenesis through the accumulation of mitochondrial DNA mutations and net production of reactive oxygen species (ROS. Mitochondrial cytochrome c-oxidase plays a key role in the regulation of aerobic production of energy and is composed of 13 subunits. The 3 largest subunits (I, II, and III forming the catalytic core are encoded by mitochondrial DNA. The aim of this work was to look for mutations in mitochondrial cytochrome c-oxidase gene II (MTCO II in blood samples from probable AD Mexican patients. MTCO II gene was sequenced in 33 patients with diagnosis of probable AD. Four patients (12% harbored the A8027G polymorphism and three of them were early onset (EO AD cases with familial history of the disease. In addition, other four patients with EOAD had only one of the following point mutations: A8003C, T8082C, C8201T, or G7603A. Neither of the point mutations found in this work has been described previously for AD patients, and the A8027G polymorphism has been described previously; however, it hasn’t been related to AD. We will need further investigation to demonstrate the role of the point mutations of mitochondrial DNA in the pathogenesis of AD.

  19. The EGFR/ErbB3 Pathway Acts as a Compensatory Survival Mechanism upon c-Met Inhibition in Human c-Met+ Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Steven N Steinway

    Full Text Available c-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF, plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance.We utilized the human MHCC97-H c-Met positive (c-Met+ HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses.We have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate that

  20. {sup 11}C-MET PET/MRI for detection of recurrent glioma

    Energy Technology Data Exchange (ETDEWEB)

    Deuschl, C. [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Kirchner, J.; Schaarschmidt, B. [University Duesseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Duesseldorf (Germany); Poeppel, T.D.; Herrmann, K. [University Hospital Essen, Clinic for Nuclear Medicine, Essen (Germany); Kebir, S.; Glas, M. [University Hospital Essen, Division of Clinical Neurooncology, Department of Neurology, Essen (Germany); El Hindy, N. [University Hospital Essen, Department of Neurosurgery, Essen (Germany); Hense, J. [University Hospital Essen, Department of Medical Oncology, West German Cancer Center, Essen (Germany); Quick, H.H. [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, High Field and Hybrid MR Imaging, Essen (Germany); Umutlu, L.; Moenninghoff, C.; Radbruch, A.; Forsting, M. [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Schlamann, M. [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne (Germany)

    2018-04-15

    Radiological assessment of brain tumors is widely based on the Radiology Assessment of Neuro-Oncology (RANO) criteria that consider non-specific T1 and T2 weighted images. Limitation of the RANO criteria is that they do not include metabolic imaging techniques that have been reported to be helpful to differentiate treatment related changes from true tumor progression. In the current study, we assessed if the combined use of MRI and PET with hybrid {sup 11}C-MET PET/MRI can improve diagnostic accuracy and diagnostic confidence of the readers to differentiate treatment related changes from true progression in recurrent glioma. Fifty consecutive patients with histopathologically proven glioma were prospectively enrolled for a hybrid {sup 11}C-MET PET/MRI to differentiate recurrent glioma from treatment induced changes. Sole MRI data were analyzed based on RANO. Sole PET data and in a third evaluation hybrid {sup 11}C-MET-PET/MRI data were assessed for metabolic respectively metabolic and morphologic glioma recurrence. Diagnostic performance and diagnostic confidence of the reader were calculated for the different modalities, and the McNemar test and Mann-Whitney U Test were applied for statistical analysis. Hybrid {sup 11}C-MET PET/MRI was successfully performed in all 50 patients. Glioma recurrence was diagnosed in 35 of the 50 patients (70%). Sensitivity and specificity were calculated for MRI (86.11% and 71.43%), for {sup 11}C-MET PET (96.77% and 73.68%), and for hybrid {sup 11}C-MET-PET/MRI (97.14% and 93.33%). For diagnostic accuracy hybrid {sup 11}C-MET-PET/MRI (96%) showed significantly higher values than MRI alone (82%), whereas no significant difference was found for 11C-MET PET (88%). Furthermore, by rating on a five-point Likert scale significantly higher scores were found for diagnostic confidence when comparing {sup 11}C-MET PET/MRI (4.26 ± 0,777) to either PET alone (3.44 ± 0.705) or MRI alone (3.56 ± 0.733). This feasibility study showed that hybrid

  1. Novel germline mutation (Leu512Met) in the thyrotropin receptor gene (TSHR) leading to sporadic non-autoimmune hyperthyroidism.

    Science.gov (United States)

    Roberts, Stephanie A; Moon, Jennifer E; Dauber, Andrew; Smith, Jessica R

    2017-03-01

    Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Genomic DNA from the patient's and parents' peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient's peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. The p.Leu512Met mutation (c.1534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism.

  2. Novel germline mutation (Leu512Met) in the thyrotropin receptor gene (TSHR) leading to sporadic non-autoimmune hyperthyroidism

    Science.gov (United States)

    Roberts, Stephanie A.; Moon, Jennifer E.; Dauber, Andrew; Smith, Jessica R.

    2018-01-01

    Background Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Methods Genomic DNA from the patient’s and parents’ peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Results Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient’s peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. Conclusions The p.Leu512Met mutation (c.l534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism. PMID:28195550

  3. Krüppel-like factor 4 promotes c-Met amplification-mediated gefitinib resistance in non-small-cell lung cancer.

    Science.gov (United States)

    Feng, Wei; Xie, Qianyi; Liu, Suo; Ji, Ying; Li, Chunyun; Wang, Chunle; Jin, Longyu

    2018-06-01

    Gefitinib has been widely used in the first-line treatment of advanced EGFR-mutated non-small-cell lung cancer (NSCLC). However, many NSCLC patients will acquire resistance to gefitinib after 9-14 months of treatment. This study revealed that Krüppel-like factor 4 (KLF4) contributes to the formation of gefitinib resistance in c-Met-overexpressing NSCLC cells. We observed that KLF4 was overexpressed in c-Met-overexpressing NSCLC cells and tissues. Knockdown of KLF4 increased tumorigenic properties in gefitinib-resistant NSCLC cell lines without c-Met overexpression, but it reduced tumorigenic properties and increased gefitinib sensitivity in gefitinib-resistant NSCLC cells with c-Met overexpression, whereas overexpression of KLF4 reduced gefitinib sensitivity in gefitinib-sensitive NSCLC cells. Furthermore, Western blot analysis revealed that KLF4 contributed to the formation of gefitinib resistance in c-Met-overexpressing NSCLC cells by inhibiting the expression of apoptosis-related proteins under gefitinib treatment and activating the c-Met/Akt signaling pathway by decreasing the inhibition of β-catenin on phosphorylation of c-Met to prevent blockade by gefitinib. In summary, this study's results suggest that KLF4 is a promising candidate molecular target for both prevention and therapy of NSCLC with c-Met overexpression. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells

    International Nuclear Information System (INIS)

    Crosswell, Hal E; Dasgupta, Anindya; Alvarado, Carlos S; Watt, Tanya; Christensen, James G; De, Pradip; Durden, Donald L; Findley, Harry W

    2009-01-01

    c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-γ agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. c-Met is highly expressed in most tumors from

  5. Identification of a rare point mutation at C-terminus of merozoite surface antigen-1 gene of Plasmodium falciparum in eastern Indian isolates.

    Science.gov (United States)

    Raj, Dipak Kumar; Das, Bibhu Ranjan; Dash, A P; Supakar, Prakash C

    2004-01-01

    Merozoite surface antigen-1 (MSA-1) of Plasmodium falciparum is highly immunogenic in human. Several studies suggest that MSA-1 protein is an effective target for a protective immune response. Attempt has been made to find new point mutations by analyzing 244 bp [codon 1655(R) to 1735 (I)] relatively conserved C-terminus region of MSA-1 gene in 125 isolates. This region contains two EGF like domains, which are involved in generating protective immune response in human. Point mutations in this region are very much important in view of vaccine development. Searching of mutational hot spots in MSA-1 protein by sequencing method in a representative number of isolates is quite critical and expensive. Therefore, in this study slot blot and PCR-SSCP method have been used to find out new mutations in the individual isolates showing alterations in the mobility of DNA fragment. Sequencing of the altered bands from the SSCP gel shows a rare non-synonymous point mutation in 7 (5.6%) of the 125 isolates at amino acid position 1704 of MSA-1 gene where isoleucine is replaced by valine.

  6. A novel mutation in the albumin gene (c.1A>C) resulting in analbuminemia.

    Science.gov (United States)

    Caridi, Gianluca; Dagnino, Monica; Lugani, Francesca; Shalev, Stavit A; Campagnoli, Monica; Galliano, Monica; Spiegel, Ronen; Minchiotti, Lorenzo

    2013-01-01

    Analbuminemia (OMIM # 103600) is a rare autosomal recessive disorder manifested by the absence or severe reduction of circulating serum albumin in homozygous or compound heterozygous subjects. The trait is caused by a variety of mutations within the albumin gene. We report here the clinical and molecular characterisation of two new cases of congenital analbuminemia diagnosed in two members of the Druze population living in a Galilean village (Northern Israel) on the basis of their low level of circulating albumin. The albumin gene was screened by single-strand conformation polymorphism and heteroduplex analysis, and the mutated region was submitted to DNA sequencing. Both the analbuminemic subjects resulted homozygous for a previously unreported c.1 A>C transversion, for which we suggest the name Afula from the hospital where the two cases were investigated. This mutation causes the loss of the primary start codon ATG for Met1, which is replaced by a - then untranslated - triplet CTG for Leu. (p.Met1Leu). The use of an alternative downstream ATG codon would probably give rise to a completely aberrant polypeptide chain, leading to a misrouted intracellular transport and a premature degradation. The discovery of this new ALB mutation, probably inherited from a common ancestor, sheds light on the molecular mechanism underlying the analbuminemic trait and may serve in the development of a rapid genetic test for the identification of a-symptomatic heterozygous carriers in the Druze population in the Galilee. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.

  7. Point mutations in the post-M2 region of human alpha-ENaC regulate cation selectivity.

    Science.gov (United States)

    Ji, H L; Parker, S; Langloh, A L; Fuller, C M; Benos, D J

    2001-07-01

    We tested the hypothesis that an arginine-rich region immediately following the second transmembrane domain may constitute part of the inner mouth of the epithelial Na+ channel (ENaC) pore and, hence, influence conduction and/or selectivity properties of the channel by expressing double point mutants in Xenopus oocytes. Double point mutations of arginines in this post-M2 region of the human alpha-ENaC (alpha-hENaC) led to a decrease and increase in the macroscopic conductance of alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, respectively, but had no effect on the single-channel conductance of either double point mutant. However, the apparent equilibrium dissociation constant for Na+ was decreased for both alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, and the maximum amiloride-sensitive Na+ current was decreased for alphaR586E,R587Ebetagamma-hENaC and increased for alphaR589E,R591Ebetagamma-hENaC. The relative permeabilities of Li+ and K+ vs. Na+ were increased 11.25- to 27.57-fold for alphaR586E,R587Ebetagamma-hENaC compared with wild type. The relative ion permeability of these double mutants and wild-type ENaC was inversely related to the crystal diameter of the permeant ions. Thus the region of positive charge is important for the ion permeation properties of the channel and may form part of the pore itself.

  8. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration.

    Directory of Open Access Journals (Sweden)

    Birgit Piater

    Full Text Available The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF. Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2'-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX. CLN64 and a previously described single-stranded DNA (ssDNA aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.

  9. In vivo detection of c-Met expression in a rat C6 glioma model.

    Science.gov (United States)

    Towner, R A; Smith, N; Doblas, S; Tesiram, Y; Garteiser, P; Saunders, D; Cranford, R; Silasi-Mansat, R; Herlea, O; Ivanciu, L; Wu, D; Lupu, F

    2008-01-01

    The tyrosine kinase receptor, c-Met, and its substrate, the hepatocyte growth factor (HGF), are implicated in the malignant progression of glioblastomas. In vivo detection of c-Met expression may be helpful in the diagnosis of malignant tumours. The C6 rat glioma model is a widely used intracranial brain tumour model used to study gliomas experimentally. We used a magnetic resonance imaging (MRI) molecular targeting agent to specifically tag the cell surface receptor, c-Met, with an anti-c-Met antibody (Ab) linked to biotinylated Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-albumin in rat gliomas to detect overexpression of this antigen in vivo. The anti-c-Met probe (anti-c-Met-Gd-DTPA-albumin) was administered intravenously, and as determined by an increase in MRI signal intensity and a corresponding decrease in regional T(1) relaxation values, this probe was found to detect increased expression of c-Met protein levels in C6 gliomas. In addition, specificity for the binding of the anti-c-Met contrast agent was determined by using fluorescence microscopic imaging of the biotinylated portion of the targeting agent within neoplastic and 'normal'brain tissues following in vivo administration of the anti-c-Met probe. Controls with no Ab or with a normal rat IgG attached to the contrast agent component indicated no non-specific binding to glioma tissue. This is the first successful visualization of in vivo overexpression of c-Met in gliomas.

  10. Phenotypic diversity associated with the mitochondrial m.8313G>A point mutation.

    LENUS (Irish Health Repository)

    O'Rourke, Killian

    2012-02-01

    We report the clinical, histochemical, and molecular genetic findings in a patient with progressive mitochondrial cytopathy due to the m.8313G>A point mutation in the mitochondrial tRNA(Lys) (MTTK) gene. The clinical features in this case are severe, including short stature, myopathy, peripheral neuropathy, and osteoporosis, while extensive analysis of maternal relatives indicate that the mutation has arisen de novo and was not maternally inherited. This report of a second case, together with single muscle fiber mutation analysis that shows clear segregation of mutation load with cytochrome c oxidase deficiency, confirms that the mutation is pathologic.

  11. Laser desorption mass spectrometry for point mutation detection

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-31

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  12. Efficacy of c-Met inhibitor for advanced prostate cancer

    International Nuclear Information System (INIS)

    Tu, William H; Zhu, Chunfang; Clark, Curtis; Christensen, James G; Sun, Zijie

    2010-01-01

    Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer. We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression. We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration. The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer

  13. Laser desorption mass spectrometry for point mutation detection

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments generated by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  14. Effective implementation of novel MET pharmacodynamic assays in translational studies.

    Science.gov (United States)

    Srivastava, Apurva K; Navas, Tony; Herrick, William G; Hollingshead, Melinda G; Bottaro, Donald P; Doroshow, James H; Parchment, Ralph E

    2017-01-01

    MET tyrosine kinase (TK) dysregulation is significantly implicated in many types of cancer. Despite over 20 years of drug development to target MET in cancers, a pure anti-MET therapeutic has not yet received market approval. The failure of two recently concluded phase III trials point to a major weakness in biomarker strategies to identify patients who will benefit most from MET therapies. The capability to interrogate oncogenic mutations in MET via circulating tumor DNA (ctDNA) provides an important advancement in identification and stratification of patients for MET therapy. However, a wide range in type and frequency of these mutations suggest there is a need to carefully link these mutations to MET dysregulation, at least in proof-of-concept studies. In this review, we elaborate how we can utilize recently developed and validated pharmacodynamic biomarkers of MET not only to show target engagement, but more importantly to quantitatively measure MET dysregulation in tumor tissues. The MET assay endpoints provide evidence of both canonical and non-canonical MET signaling, can be used as "effect markers" to define biologically effective doses (BEDs) for molecularly targeted drugs, confirm mechanism-of-action in testing combination of drugs, and establish whether a diagnostic test is reporting MET dysregulation. We have established standard operating procedures for tumor biopsy collections to control pre-analytical variables that have produced valid results in proof-of-concept studies. The reagents and procedures are made available to the research community for potential implementation on multiple platforms such as ELISA, quantitative immunofluorescence assay (qIFA), and immuno-MRM assays.

  15. {sup 89}Zr-Onartuzumab PET imaging of c-MET receptor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pool, Martin; Kol, Arjan; Giesen, Danique; Vries, Elisabeth G.E. de [University of Groningen, Department of Medical Oncology, University Medical Center Groningen, Groningen (Netherlands); Terwisscha van Scheltinga, Anton G.T. [University of Groningen, Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen (Netherlands); Lub-de Hooge, Marjolijn N. [University of Groningen, Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen (Netherlands); University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands)

    2017-08-15

    c-MET and its ligand hepatocyte growth factor are often dysregulated in human cancers. Dynamic changes in c-MET expression occur and might predict drug efficacy or emergence of resistance. Noninvasive visualization of c-MET dynamics could therefore potentially guide c-MET-directed therapies. We investigated the feasibility of {sup 89}Zr-labelled one-armed c-MET antibody onartuzumab PET for detecting relevant changes in c-MET levels induced by c-MET-mediated epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib resistance or heat shock protein-90 (HSP90) inhibitor NVP-AUY-922 treatment in human non-small-cell lung cancer (NSCLC) xenografts. In vitro membrane c-MET levels were determined by flow cytometry. HCC827ErlRes, an erlotinib-resistant clone with c-MET upregulation, was generated from the exon-19 EGFR-mutant human NSCLC cell line HCC827. Mice bearing HCC827 and HCC827ErlRes tumours in opposite flanks underwent {sup 89}Zr-onartuzumab PET scans. The HCC827-xenografted mice underwent {sup 89}Zr-onartuzumab PET scans before treatment and while receiving biweekly intraperitoneal injections of 100 mg/kg NVP-AUY-922 or vehicle. Ex vivo, tumour c-MET immunohistochemistry was correlated with the imaging results. In vitro, membrane c-MET was upregulated in HCC827ErlRes tumours by 213 ± 44% in relation to the level in HCC827 tumours, while c-MET was downregulated by 69 ± 9% in HCC827 tumours following treatment with NVP-AUY-922. In vivo, {sup 89}Zr-onartuzumab uptake was 26% higher (P < 0.05) in erlotinib-resistant HCC827ErlRes than in HCC827 xenografts, while HCC827 tumour uptake was 33% lower (P < 0.001) following NVP-AUY-922 treatment. The results show that {sup 89}Zr-onartuzumab PET effectively discriminates relevant changes in c-MET levels and could potentially be used clinically to monitor c-MET status. (orig.)

  16. Higher Levels of c-Met Expression and Phosphorylation Identify Cell Lines With Increased Sensitivity to AMG-458, a Novel Selective c-Met Inhibitor With Radiosensitizing Effects

    International Nuclear Information System (INIS)

    Li Bo; Torossian, Artour; Sun, Yunguang; Du, Ruihong; Dicker, Adam P.; Lu Bo

    2012-01-01

    Purpose: c-Met is overexpressed in some non-small cell lung cancer (NSCLC) cell lines and tissues. Cell lines with higher levels of c-Met expression and phosphorylation depend on this receptor for survival. We studied the effects of AMG-458 on 2 NSCLC cell lines. Methods and Materials: 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium assays assessed the sensitivities of the cells to AMG-458. Clonogenic survival assays illustrated the radiosensitizing effects of AMG-458. Western blot for cleaved caspase 3 measured apoptosis. Immunoblotting for c-Met, phospho-Met (p-Met), Akt/p-Akt, and Erk/p-Erk was performed to observe downstream signaling. Results: AMG-458 enhanced radiosensitivity in H441 but not in A549. H441 showed constitutive phosphorylation of c-Met. A549 expressed low levels of c-Met, which were phosphorylated only in the presence of exogenous hepatocyte growth factor. The combination of radiation therapy and AMG-458 treatment was found to synergistically increase apoptosis in the H441 cell line but not in A549. Radiation therapy, AMG-458, and combination treatment were found to reduce p-Akt and p-Erk levels in H441 but not in A549. H441 became less sensitive to AMG-458 after small interfering RNA knockdown of c-Met; there was no change in A549. After overexpression of c-Met, A549 became more sensitive, while H441 became less sensitive to AMG-458. Conclusions: AMG-458 was more effective in cells that expressed higher levels of c-Met/p-Met, suggesting that higher levels of c-Met and p-Met in NSCLC tissue may classify a subset of tumors that are more sensitive to molecular therapies against this receptor.

  17. [MPLW515L point mutation in patients with myeloproliferative disease].

    Science.gov (United States)

    Xia, Jun; Xu, Wei; Zhang, Su-Jiang; Fan, Lei; Qiao, Chun; Li, Jian-Yong

    2008-12-01

    In order to investigate the frequency of MPLW515L and JAK2V617F point mutations of the patients with myeloproliferative disease (MPD) in Nanjing area, MPLW515L and JAK2V617F point mutations were simultaneously detected by alleles specific polymerase chain reaction (AS-PCR) and sequencing in 190 MPD patients. The results showed that MPLW515L point mutation was detected in 1 out of 102 essential thrombocythemia (ET) patients (1.0%) and was not detected in 32 polycythemia vera (PV) patients, 13 idiopathic myelofibrosis (IMF) patients, 43 chronic myelogenous leukemia (CML) patients. JAK2V617F point mutation was detected in 20 out of 32 PV patients (62.5%), 43 out of 102 ET patients (42.2%), 5 out of 13 IMF patients (38.5%), and was not detected in 43 CML patients. It is concluded that MPLW515L point mutation exists in ET patient, but is not found in PV, IMF and CML. JAK2V617F point mutation exists in PV, ET and IMF, but not in CML.

  18. Activated HGF-c-Met Axis in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Levi Arnold

    2017-12-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is a highly morbid disease. Recent developments including Food and Drug Administration (FDA approved molecular targeted agent’s pembrolizumab and cetuximab show promise but did not improve the five-year survival which is currently less than 40%. The hepatocyte growth factor receptor; also known as mesenchymal–epithelial transition factor (c-Met and its ligand hepatocyte growth factor (HGF are overexpressed in head and neck squamous cell carcinoma (HNSCC; and regulates tumor progression and response to therapy. The c-Met pathway has been shown to regulate many cellular processes such as cell proliferation, invasion, and angiogenesis. The c-Met pathway is involved in cross-talk, activation, and perpetuation of other signaling pathways, curbing the cogency of a blockade molecule on a single pathway. The receptor and its ligand act on several downstream effectors including phospholipase C gamma (PLCγ, cellular Src kinase (c-Src, phosphotidylinsitol-3-OH kinase (PI3K alpha serine/threonine-protein kinase (Akt, mitogen activate protein kinase (MAPK, and wingless-related integration site (Wnt pathways. They are also known to cross-talk with other receptors; namely epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR and specifically contribute to treatment resistance. Clinical trials targeting the c-Met axis in HNSCC have been undertaken because of significant preclinical work demonstrating a relationship between HGF/c-Met signaling and cancer cell survival. Here we focus on HGF/c-Met impact on cellular signaling in HNSCC to potentiate tumor growth and disrupt therapeutic efficacy. Herein we summarize the current understanding of HGF/c-Met signaling and its effects on HNSCC. The intertwining of c-Met signaling with other signaling pathways provides opportunities for more robust and specific therapies, leading to better clinical outcomes.

  19. Identification of Novel Mutations in FAH Gene and Prenatal Diagnosis of Tyrosinemia in Indian Family

    Directory of Open Access Journals (Sweden)

    Jayesh J. Sheth

    2012-01-01

    Full Text Available Carrier of tyrosinemia type I was diagnosed by sequencing FAH (fumarylacetoacetate hydrolase gene. It leads to the identification of heterozygous status for both c.648C>G (p.Ile216Met and c.1159G>A (p.Gly387Arg mutations in exons 8 and 13, respectively, in the parents. The experimental program PolyPhen, SIFT, and MT predicts former missense point mutation as “benign” that creates a potential donor splice site and later one as “probably damaging” which disrupts secondary structure of protein.

  20. Recent advances in the discovery of small molecule c-Met Kinase inhibitors.

    Science.gov (United States)

    Parikh, Palak K; Ghate, Manjunath D

    2018-01-01

    c-Met is a prototype member of a subfamily of heterodimeric receptor tyrosine kinases (RTKs) and is the receptor for hepatocyte growth factor (HGF). Binding of HGF to its receptor c-Met, initiates a wide range of cellular signalling, including those involved in proliferation, motility, migration and invasion. Importantly, dysregulated HGF/c-Met signalling is a driving factor for numerous malignancies and promotes tumour growth, invasion, dissemination and/or angiogenesis. Dysregulated HGF/c-Met signalling has also been associated with poor clinical outcomes and resistance acquisition to some approved targeted therapies. Thus, c-Met kinase has emerged as a promising target for cancer drug development. Different therapeutic approaches targeting the HGF/c-Met signalling pathway are under development for targeted cancer therapy, among which small molecule inhibitors of c-Met kinase constitute the largest effort within the pharmaceutical industry. The review is an effort to summarize recent advancements in medicinal chemistry development of small molecule c-Met kinase inhibitors as potential anti-cancer agents which would certainly help future researchers to bring further developments in the discovery of small molecule c-Met kinase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region.

    Science.gov (United States)

    Morsomme, P; Dambly, S; Maudoux, O; Boutry, M

    1998-12-25

    The Nicotiana plumbaginifolia pma2 (plasma membrane H+-ATPase) gene is capable of functionally replacing the H+-ATPase genes of the yeast Saccharomyces cerevisiae, provided that the external pH is kept above 5.0. Single point mutations within the pma2 gene were previously identified that improved H+-ATPase activity and allowed yeast growth at pH 4.0. The aim of the present study was to identify most of the PMA2 positions, the mutation of which would lead to improved growth and to determine whether all these mutations result in similar enzymatic and structural modifications. We selected additional mutants in total 42 distinct point mutations localized in 30 codons. They were distributed in 10 soluble and membrane regions of the enzyme. Most mutant PMA2 H+-ATPases were characterized by a higher specific activity, lower inhibition by ADP, and lower stimulation by lysophosphatidylcholine than wild-type PMA2. The mutants thus seem to be constitutively activated. Partial tryptic digestion and immunodetection showed that the PMA2 mutants had a conformational change making the C-terminal region more accessible. These data therefore support the hypothesis that point mutations in various H+-ATPase parts displace the inhibitory C-terminal region, resulting in enzyme activation. The high density of mutations within the first half of the C-terminal region suggests that this part is involved in the interaction between the inhibitory C-terminal region and the rest of the enzyme.

  2. MET signalling in primary colon epithelial cells leads to increased transformation irrespective of aberrant Wnt signalling

    Science.gov (United States)

    Boon, E M J; Kovarikova, M; Derksen, P W B; van der Neut, R

    2005-01-01

    It has been shown that in hereditary and most sporadic colon tumours, components of the Wnt pathway are mutated. The Wnt target MET has been implicated in the development of colon cancer. Here, we show that overexpression of wild-type or a constitutively activated form of MET in colon epithelial cells leads to increased transformation irrespective of Wnt signalling. Fetal human colon epithelial cells without aberrant Wnt signalling were transfected with wild-type or mutated MET constructs. Expression of these constructs leads to increased phosphorylation of MET and its downstream targets PKB and MAPK. Upon stimulation with HGF, the expression of E-cadherin is downregulated in wild-type MET-transfected cells, whereas cells expressing mutated MET show low E-cadherin levels independent of stimulation with ligand. This implies a higher migratory propensity of these cells. Furthermore, fetal human colon epithelial cells expressing the mutated form of MET have colony-forming capacity in soft agar, while cells expressing wild-type MET show an intermediate phenotype. Subcutaneous injection of mutated MET-transfected cells in nude mice leads to the formation of tumours within 12 days in all mice injected. At this time point, mock-transfected cells do not form tumours, while wild-type MET-transfected cells form subcutaneous tumours in one out of five mice. We thus show that MET signalling can lead to increased transformation of colon epithelial cells independent of Wnt signalling and in this way could play an essential role in the onset and progression of colorectal cancer. PMID:15785735

  3. Anti-c-MET Nanobody - a new potential drug in multiple myeloma treatment.

    Science.gov (United States)

    Slørdahl, Tobias Schmidt; Denayer, Tinneke; Moen, Siv Helen; Standal, Therese; Børset, Magne; Ververken, Cedric; Rø, Torstein Baade

    2013-11-01

    c-MET is the tyrosine kinase receptor of the hepatocyte growth factor (HGF). HGF-c-MET signaling is involved in many human malignancies, including multiple myeloma (MM). Recently, multiple agents have been developed directed to interfere at different levels in HGF-c-MET signaling pathway. Nanobodies are therapeutic proteins based on the smallest functional fragments of heavy-chain-only antibodies. In this study, we wanted to determine the anticancer effect of a novel anti-c-MET Nanobody in MM. We examined the effects of an anti-c-MET Nanobody on thymidine incorporation, migration, adhesion of MM cells, and osteoblastogenesis in vitro. Furthermore, we investigated the effects of the Nanobody on HGF-dependent c-MET signaling by Western blotting. We show that the anti-c-MET Nanobody effectively inhibited thymidine incorporation of ANBL-6 MM cells via inhibition of an HGF autocrine growth loop and thymidine incorporation in INA-6 MM cells induced by exogenous HGF. HGF-induced migration and adhesion of INA-6 were completely and specifically blocked by the Nanobody. Furthermore, the Nanobody abolished the inhibiting effect of HGF on bone morphogenetic protein-2-induced alkaline phosphatase activity and the mineralization of human mesenchymal stem cells. Finally, we show that the Nanobody reduced phosphorylation of tyrosine residues in c-MET, MAPK, and Akt. We also compared the Nanobody with anti-c-MET monoclonal antibodies and revealed the similar or better effect. The anti-c-MET Nanobody inhibited MM cell migration, thymidine incorporation, and adhesion, and blocked the HGF-mediated inhibition of osteoblastogenesis. The anti-c-MET Nanobody might represent a novel therapeutic agent in the treatment of MM and other cancers driven by HGF-c-MET signaling. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors.

    Science.gov (United States)

    Xu, Jimin; Ai, Jing; Liu, Sheng; Peng, Xia; Yu, Linqian; Geng, Meiyu; Nan, Fajun

    2014-06-14

    A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC50 values of 107 nM and 30 nM, respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.

  5. Adenylosuccinate lyase (ADSL) and infantile autism: Absence of previously reported point mutation

    Energy Technology Data Exchange (ETDEWEB)

    Fon, E.A.; Sarrazin, J.; Rouleau, G.A. [Montreal General Hospital (Canada)] [and others

    1995-12-18

    Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119 patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. 12 refs., 2 figs.

  6. MET gene exon 14 deletion created using the CRISPR/Cas9 system enhances cellular growth and sensitivity to a MET inhibitor.

    Science.gov (United States)

    Togashi, Yosuke; Mizuuchi, Hiroshi; Tomida, Shuta; Terashima, Masato; Hayashi, Hidetoshi; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-12-01

    MET splice site mutations resulting in an exon 14 deletion have been reported to be present in about 3% of all lung adenocarcinomas. Patients with lung adenocarcinoma and a MET splice site mutation who have responded to MET inhibitors have been reported. The CRISPR/Cas9 system is a recently developed genome-engineering tool that can easily and rapidly cause small insertions or deletions. We created an in vitro model for MET exon 14 deletion using the CRISPR/Cas9 system and the HEK293 cell line. The phenotype, which included MET inhibitor sensitivity, was then investigated in vitro. Additionally, MET splice site mutations were analyzed in several cancers included in The Cancer Genome Atlas (TCGA) dataset. An HEK293 cell line with a MET exon 14 deletion was easily and rapidly created; this cell line had a higher MET protein expression level, enhanced MET phosphorylation, and prolonged MET activation. In addition, a direct comparison of phenotypes using this system demonstrated enhanced cellular growth, colony formation, and MET inhibitor sensitivity. In the TCGA dataset, lung adenocarcinomas had the highest incidence of MET exon 14 deletions, while other cancers rarely carried such mutations. Approximately 10% of the lung adenocarcinoma samples without any of driver gene alterations carried the MET exon 14 deletion. These findings suggested that this system may be useful for experiments requiring the creation of specific mutations, and the present experimental findings encourage the development of MET-targeted therapy against lung cancer carrying the MET exon 14 deletion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. c-MET Overexpression in Colorectal Cancer: A Poor Prognostic Factor for Survival.

    Science.gov (United States)

    Lee, Su Jin; Lee, Jeeyun; Park, Se Hoon; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Kim, Seung Tae

    2018-03-02

    Increased mesenchymal-epithelial transition factor gene (c-MET) expression in several human malignancies is related to increased tumor progression and is a new potential drug target for several types of cancers. In the present study, we investigated the incidence of c-MET overexpression and its prognostic significance in patients with colorectal cancer (CRC). We retrospectively reviewed the data from 255 stage IV CRC patients who had results from a c-MET immunohistochemical test at Samsung Medical Center. We explored the relationships between c-MET overexpression and clinicopathological features and survival. Primary tumor sites were 67 right-sided colon, 98 left-sided colon, and 90 rectum. Forty-two patients (16.7%) had poorly differentiated or mucinous carcinoma. Among the 255 patients, 39 (15.3%) exhibited c-MET overexpression. There was no significant difference in the prevalence of c-MET overexpression according to primary site, histologic differentiation, molecular markers, or metastatic sites. In a comparison of the tumor response to first-line chemotherapy according to the level of c-MET expression, we found no significant difference in either partial response or disease control rate. In the survival analysis, patients with c-MET overexpression had significantly shorter overall survival (39 vs. 27 months; P = .018) and progression-free survival (PFS) during bevacizumab treatment (10 vs. 7 months; P = .024). c-MET overexpression, which was detected in 39 CRC patients (15.3%) irrespective of primary sites or molecular markers, indicated a poor survival prognosis and predicted shorter PFS during bevacizumab treatment in patients with CRC. Further studies are warranted to elucidate the value of c-MET-targeted therapy in CRC patients. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The applications of 11C-MET PET in brain tumor

    International Nuclear Information System (INIS)

    Hua Fengchun

    2002-01-01

    11 C-methionine (MET), an amino acid, is the most widely used radio pharmaceutics which can reflect transport metabolism of amino acid in vivo, and synthesis of protein in tumor. 11 C-MET PET can be used for evaluation of brain tumor: detection of tumor, differential diagnosis between recurrence and radiation necrosis and early evaluation of response to treatment. Especially, for the definition of tumor margin and detection of low-grade tumors, PET with 11 C-MET is better than PET with 18 F-FDG or other modalities such as CT and MRI

  9. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent.

    Science.gov (United States)

    Kim, Eun-Mi; Joung, Min-Hee; Lee, Chang-Moon; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Kim, Dong Wook

    2010-07-15

    The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the 'click-to-chelate' protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12, [(99m)Tc(CO)(3)]13, and [(99m)Tc(CO)(3)]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)(3)]12, [Re(CO)(3)]13, and [Re(CO)(3)]14, were shown to have high binding affinities (0.13 microM, 0.06 microM, and 0.16 microM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12-14) to c-Met receptor positive U87MG cells. 2010 Elsevier Ltd. All rights reserved.

  10. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis.

    Science.gov (United States)

    Bozkaya, Giray; Korhan, Peyda; Cokaklı, Murat; Erdal, Esra; Sağol, Ozgül; Karademir, Sedat; Korch, Christopher; Atabey, Neşe

    2012-09-11

    Hepatocyte growth factor (HGF) induced c-Met activation is known as the main stimulus for hepatocyte proliferation and is essential for liver development and regeneration. Activation of HGF/c-Met signaling has been correlated with aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC). MUC1 is a transmembrane mucin, whose over-expression is reported in most cancers. Many of the oncogenic effects of MUC1 are believed to occur through the interaction of MUC1 with signaling molecules. To clarify the role of MUC1 in HGF/c-Met signaling, we determined whether MUC1 and c-Met interact cooperatively and what their role(s) is in hepatocarcinogenesis. MUC1 and c-Met over-expression levels were determined in highly motile and invasive, mesenchymal-like HCC cell lines, and in serial sections of cirrhotic and HCC tissues, and these levels were compared to those in normal liver tissues. Co-expression of both c-Met and MUC1 was found to be associated with the differentiation status of HCC. We further demonstrated an interaction between c-Met and MUC1 in HCC cells. HGF-induced c-Met phosphorylation decreased this interaction, and down-regulated MUC1 expression. Inhibition of c-Met activation restored HGF-mediated MUC1 down-regulation, and decreased the migratory and invasive abilities of HCC cells via inhibition of β-catenin activation and c-Myc expression. In contrast, siRNA silencing of MUC1 increased HGF-induced c-Met activation and HGF-induced cell motility and invasion. These findings indicate that the crosstalk between MUC1 and c-Met in HCC could provide an advantage for invasion to HCC cells through the β-catenin/c-Myc pathway. Thus, MUC1 and c-Met could serve as potential therapeutic targets in HCC.

  11. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Bozkaya Giray

    2012-09-01

    Full Text Available Abstract Background Hepatocyte growth factor (HGF induced c-Met activation is known as the main stimulus for hepatocyte proliferation and is essential for liver development and regeneration. Activation of HGF/c-Met signaling has been correlated with aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC. MUC1 is a transmembrane mucin, whose over-expression is reported in most cancers. Many of the oncogenic effects of MUC1 are believed to occur through the interaction of MUC1 with signaling molecules. To clarify the role of MUC1 in HGF/c-Met signaling, we determined whether MUC1 and c-Met interact cooperatively and what their role(s is in hepatocarcinogenesis. Results MUC1 and c-Met over-expression levels were determined in highly motile and invasive, mesenchymal-like HCC cell lines, and in serial sections of cirrhotic and HCC tissues, and these levels were compared to those in normal liver tissues. Co-expression of both c-Met and MUC1 was found to be associated with the differentiation status of HCC. We further demonstrated an interaction between c-Met and MUC1 in HCC cells. HGF-induced c-Met phosphorylation decreased this interaction, and down-regulated MUC1 expression. Inhibition of c-Met activation restored HGF-mediated MUC1 down-regulation, and decreased the migratory and invasive abilities of HCC cells via inhibition of β-catenin activation and c-Myc expression. In contrast, siRNA silencing of MUC1 increased HGF-induced c-Met activation and HGF-induced cell motility and invasion. Conclusions These findings indicate that the crosstalk between MUC1 and c-Met in HCC could provide an advantage for invasion to HCC cells through the β-catenin/c-Myc pathway. Thus, MUC1 and c-Met could serve as potential therapeutic targets in HCC.

  12. Lipid ratio as a suitable tool to identify individuals with MetS risk: A case- control study.

    Science.gov (United States)

    Abbasian, Maryam; Delvarianzadeh, Mehri; Ebrahimi, Hossein; Khosravi, Farideh

    2017-11-01

    This study aimed to compare the serum lipids ratio in staff with and without metabolic syndrome (MetS) who were working in Shahroud University of Medical Sciences. This case-control study was conducted in 2015 on 499 personnel aged 30-60 years old. ATP III criteria were used to diagnose patients with MetS. The data were analyzed by using logistic regression and ROC curve. Mean lipid ratio was higher in individuals having the MetS in both sexes compared with those without. In addition, the mean levels of lipid ratios significantly increased with increasing number of MetS components in both sexes. Also it could be concluded that TG/HDL-C ratio is the best marker for the diagnosis of MetS in men and women. Moreover, the cut-off point for the TG/HDL-C was 2.86 in women and 4.03 in men. It was found that for any unit of increases in the TG/HDL-C, the risk of developing the MetS will increase by 2.12 times. TG/HDL-C ratio is found to be the best clinical marker for the diagnosis of MetS compare with other lipid ratios, therefore it is recommended to be used as a feasible tool to identify individuals with MetS risk. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  13. Efficient Generation of Orthologous Point Mutations in Pigs via CRISPR-assisted ssODN-mediated Homology-directed Repair

    Directory of Open Access Journals (Sweden)

    Kankan Wang

    2016-01-01

    Full Text Available Precise genome editing in livestock is of great value for the fundamental investigation of disease modeling. However, genetically modified pigs carrying subtle point mutations were still seldom reported despite the rapid development of programmable endonucleases. Here, we attempt to investigate single-stranded oligonucleotides (ssODN mediated knockin by introducing two orthologous pathogenic mutations, p.E693G for Alzheimer's disease and p.G2019S for Parkinson's disease, into porcine APP and LRRK2 loci, respectively. Desirable homology-directed repair (HDR efficiency was achieved in porcine fetal fibroblasts (PFFs by optimizing the dosage and length of ssODN templates. Interestingly, incomplete HDR alleles harboring partial point mutations were observed in single-cell colonies, which indicate the complex mechanism of ssODN-mediated HDR. The effect of mutation-to-cut distance on incorporation rate was further analyzed by deep sequencing. We demonstrated that a mutation-to-cut distance of 11 bp resulted in a remarkable difference in HDR efficiency between two point mutations. Finally, we successfully obtained one cloned piglet harboring the orthologous p.C313Y mutation at the MSTN locus via somatic cell nuclear transfer (SCNT. Our proof-of-concept study demonstrated efficient ssODN-mediated incorporation of pathogenic point mutations in porcine somatic cells, thus facilitating further development of disease modeling and genetic breeding in pigs.

  14. Structural Basis for Selective Small Molecule Kinase Inhibition of Activated c-Met

    Energy Technology Data Exchange (ETDEWEB)

    Rickert, Keith W.; Patel, Sangita B.; Allison, Timothy J.; Byrne, Noel J.; Darke, Paul L.; Ford, Rachael E.; Guerin, David J.; Hall, Dawn L.; Kornienko, Maria; Lu, Jun; Munshi, Sanjeev K.; Reid, John C.; Shipman, Jennifer M.; Stanton, Elizabeth F.; Wilson, Kevin J.; Young, Jonathon R.; Soisson, Stephen M.; Lumb, Kevin J. (Merck)

    2012-03-15

    The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix {alpha}C and the G loop to generate a viable active site. Helix {alpha}C adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.

  15. CLCNKB mutations causing mild Bartter syndrome profoundly alter the pH and Ca2+ dependence of ClC-Kb channels.

    Science.gov (United States)

    Andrini, Olga; Keck, Mathilde; L'Hoste, Sébastien; Briones, Rodolfo; Mansour-Hendili, Lamisse; Grand, Teddy; Sepúlveda, Francisco V; Blanchard, Anne; Lourdel, Stéphane; Vargas-Poussou, Rosa; Teulon, Jacques

    2014-09-01

    ClC-Kb, a member of the ClC family of Cl(-) channels/transporters, plays a major role in the absorption of NaCl in the distal nephron. CLCNKB mutations cause Bartter syndrome type 3, a hereditary renal salt-wasting tubulopathy. Here, we investigate the functional consequences of a Val to Met substitution at position 170 (V170M, α helix F), which was detected in eight patients displaying a mild phenotype. Conductance and surface expression were reduced by ~40-50 %. The regulation of channel activity by external H(+) and Ca(2+) is a characteristic property of ClC-Kb. Inhibition by external H(+) was dramatically altered, with pKH shifting from 7.6 to 6.0. Stimulation by external Ca(2+) on the other hand was no longer detectable at pH 7.4, but was still present at acidic pH values. Functionally, these regulatory modifications partly counterbalance the reduced surface expression by rendering V170M hyperactive. Pathogenic Met170 seems to interact with another methionine on α helix H (Met227) since diverse mutations at this site partly removed pH sensitivity alterations of V170M ClC-Kb. Exploring other disease-associated mutations, we found that a Pro to Leu substitution at position 124 (α helix D, Simon et al., Nat Genet 1997, 17:171-178) had functional consequences similar to those of V170M. In conclusion, we report here for the first time that ClC-Kb disease-causing mutations located around the selectivity filter can result in both reduced surface expression and hyperactivity in heterologous expression systems. This interplay must be considered when analyzing the mild phenotype of patients with type 3 Bartter syndrome.

  16. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target.

    Science.gov (United States)

    Ozawa, Yohei; Nakamura, Yasuhiro; Fujishima, Fumiyoshi; Felizola, Saulo J A; Takeda, Kenichiro; Okamoto, Hiroshi; Ito, Ken; Ishida, Hirotaka; Konno, Takuro; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki; Sasano, Hironobu

    2015-06-03

    c-Met is widely known as a poor prognostic factor in various human malignancies. Previous studies have suggested the involvement of c-Met and/or its ligand, hepatocyte growth factor (HGF), in esophageal squamous cell carcinoma (ESCC), but the correlation between c-Met status and clinical outcome remains unclear. Furthermore, the identification of a novel molecular therapeutic target might potentially help improve the clinical outcome of ESCC patients. The expression of c-Met and HGF was immunohistochemically assessed in 104 surgically obtained tissue specimens. The correlation between c-Met/HGF expression and patients' clinicopathological features, including survival, was evaluated. We also investigated changes in cell functions and protein expression of c-Met and its downstream signaling pathway components under treatments with HGF and/or c-Met inhibitor in ESCC cell lines. Elevated expression of c-Met was significantly correlated with tumor depth and pathological stage. Patients with high c-Met expression had significantly worse survival. In addition, multivariate analysis identified the high expression of c-Met as an independent prognostic factor. Treatment with c-Met inhibitor under HGF stimulation significantly inhibited the invasive capacity of an ESCC cell line with elevated c-Met mRNA expression. Moreover, c-Met and its downstream signaling inactivation was also detected after treatment with c-Met inhibitor. The results of our study identified c-Met expression as an independent prognostic factor in ESCC patients and demonstrated that c-Met could be a potential molecular therapeutic target for the treatment of ESCC with elevated c-Met expression.

  17. Change of point mutations in Helicobacter pylori rRNA associated with clarithromycin resistance in Italy.

    Science.gov (United States)

    De Francesco, Vincenzo; Zullo, Angelo; Giorgio, Floriana; Saracino, Ilaria; Zaccaro, Cristina; Hassan, Cesare; Ierardi, Enzo; Di Leo, Alfredo; Fiorini, Giulia; Castelli, Valentina; Lo Re, Giovanna; Vaira, Dino

    2014-03-01

    Primary clarithromycin resistance is the main factor affecting the efficacy of Helicobacter pylori therapy. This study aimed: (i) to assess the concordance between phenotypic (culture) and genotypic (real-time PCR) tests in resistant strains; (ii) to search, in the case of disagreement between the methods, for point mutations other than those reported as the most frequent in Europe; and (iii) to compare the MICs associated with the single point mutations. In order to perform real-time PCR, we retrieved biopsies from patients in whom H. pylori infection was successful diagnosed by bacterial culture and clarithromycin resistance was assessed using the Etest. Only patients who had never been previously treated, and with H. pylori strains that were either resistant exclusively to clarithromycin or without any resistance, were included. Biopsies from 82 infected patients were analysed, including 42 strains that were clarithromycin resistant and 40 that were clarithromycin susceptible on culture. On genotypic analysis, at least one of the three most frequently reported point mutations (A2142C, A2142G and A2143G) was detected in only 23 cases (54.8%), with a concordance between the two methods of 0.67. Novel point mutations (A2115G, G2141A and A2144T) were detected in a further 14 out of 19 discordant cases, increasing the resistance detection rate of PCR to 88% (Presistance; and (iii) none of the tested point mutations is associated with significantly higher MIC values than the others.

  18. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target

    International Nuclear Information System (INIS)

    Ozawa, Yohei; Nakamura, Yasuhiro; Fujishima, Fumiyoshi; Felizola, Saulo JA; Takeda, Kenichiro; Okamoto, Hiroshi; Ito, Ken; Ishida, Hirotaka; Konno, Takuro; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki; Sasano, Hironobu

    2015-01-01

    c-Met is widely known as a poor prognostic factor in various human malignancies. Previous studies have suggested the involvement of c-Met and/or its ligand, hepatocyte growth factor (HGF), in esophageal squamous cell carcinoma (ESCC), but the correlation between c-Met status and clinical outcome remains unclear. Furthermore, the identification of a novel molecular therapeutic target might potentially help improve the clinical outcome of ESCC patients. The expression of c-Met and HGF was immunohistochemically assessed in 104 surgically obtained tissue specimens. The correlation between c-Met/HGF expression and patients’ clinicopathological features, including survival, was evaluated. We also investigated changes in cell functions and protein expression of c-Met and its downstream signaling pathway components under treatments with HGF and/or c-Met inhibitor in ESCC cell lines. Elevated expression of c-Met was significantly correlated with tumor depth and pathological stage. Patients with high c-Met expression had significantly worse survival. In addition, multivariate analysis identified the high expression of c-Met as an independent prognostic factor. Treatment with c-Met inhibitor under HGF stimulation significantly inhibited the invasive capacity of an ESCC cell line with elevated c-Met mRNA expression. Moreover, c-Met and its downstream signaling inactivation was also detected after treatment with c-Met inhibitor. The results of our study identified c-Met expression as an independent prognostic factor in ESCC patients and demonstrated that c-Met could be a potential molecular therapeutic target for the treatment of ESCC with elevated c-Met expression. The online version of this article (doi:10.1186/s12885-015-1450-3) contains supplementary material, which is available to authorized users

  19. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression

    Science.gov (United States)

    Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H. N.; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K.; Appawu, Maxwell; Ohta, Nobuo; Minakawa, Noboru

    2016-01-01

    Background Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. Methodology/Principal Findings High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. Conclusions/Significance The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries

  20. Characterization of phospholipase C gamma enzymes with gain-of-function mutations.

    Science.gov (United States)

    Everett, Katy L; Bunney, Tom D; Yoon, Youngdae; Rodrigues-Lima, Fernando; Harris, Richard; Driscoll, Paul C; Abe, Koichiro; Fuchs, Helmut; de Angelis, Martin Hrabé; Yu, Philipp; Cho, Wohnwa; Katan, Matilda

    2009-08-21

    Phospholipase C gamma isozymes (PLC gamma 1 and PLC gamma 2) have a crucial role in the regulation of a variety of cellular functions. Both enzymes have also been implicated in signaling events underlying aberrant cellular responses. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we have recently identified single point mutations in murine PLC gamma 2 that lead to spontaneous inflammation and autoimmunity. Here we describe further, mechanistic characterization of two gain-of-function mutations, D993G and Y495C, designated as ALI5 and ALI14. The residue Asp-993, mutated in ALI5, is a conserved residue in the catalytic domain of PLC enzymes. Analysis of PLC gamma 1 and PLC gamma 2 with point mutations of this residue showed that removal of the negative charge enhanced PLC activity in response to EGF stimulation or activation by Rac. Measurements of PLC activity in vitro and analysis of membrane binding have suggested that ALI5-type mutations facilitate membrane interactions without compromising substrate binding and hydrolysis. The residue mutated in ALI14 (Tyr-495) is within the spPH domain. Replacement of this residue had no effect on folding of the domain and enhanced Rac activation of PLC gamma 2 without increasing Rac binding. Importantly, the activation of the ALI14-PLC gamma 2 and corresponding PLC gamma 1 variants was enhanced in response to EGF stimulation and bypassed the requirement for phosphorylation of critical tyrosine residues. ALI5- and ALI14-type mutations affected basal activity only slightly; however, their combination resulted in a constitutively active PLC. Based on these data, we suggest that each mutation could compromise auto-inhibition in the inactive PLC, facilitating the activation process; in addition, ALI5-type mutations could enhance membrane interaction in the activated state.

  1. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui-Yong [Shandong University of Technology, Zibo 255049 (China); Ji, Feng-Qin, E-mail: fengqinji@mail.hzau.edu.cn [National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070 (China)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  2. Mutations in the C-terminus of CDKL5: proceed with caution.

    Science.gov (United States)

    Diebold, Bertrand; Delépine, Chloé; Gataullina, Svetlana; Delahaye, Andrée; Nectoux, Juliette; Bienvenu, Thierry

    2014-02-01

    Mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene have been described in girls with Rett-like features and early-onset epileptic encephalopathy including infantile spasms. Milder phenotypes have been associated with sequence variations in the 3'-end of the CDKL5 gene. Identification of novel CDKL5 transcripts coding isoforms characterized by an altered C-terminal region strongly questions the eventual pathogenicity of sequence variations located in the 3'-end of the gene. We investigated a group of 30 female patients with a clinically heterogeneous phenotype ranging from nonspecific intellectual disability to a severe neonatal encephalopathy and identified two heterozygous CDKL5 missense mutations, the previously reported p.Val999Met and the novel mutation p.Pro944Thr. However, these mutations have also been detected in their healthy father. Considering our results and all data from the literature, we suggest that genetic variations beyond the codon 938 in human CDKL5115 protein may have minor or no significance. It is probable that screening of exons 19-21 of the CDKL5 gene is not useful in practical molecular diagnosis of atypical Rett syndrome.

  3. Two α1-Globin Gene Point Mutations Causing Severe Hb H Disease.

    Science.gov (United States)

    Jiang, Hua; Huang, Lv-Yin; Zhen, Li; Jiang, Fan; Li, Dong-Zhi

    Hb H disease is generally a moderate form of α-thalassemia (α-thal) that rarely requires regular blood transfusions. In this study, two Chinese families with members carrying transfusion-dependent Hb H disease were investigated for rare mutations on the α-globin genes (HBA1, HBA2). In one family, Hb Zürich-Albisrieden [α59(E8)Gly→Arg; HBA1: c.178G>C] in combination with the Southeast Asian (- - SEA ) deletion was the defect responsible for the severe phenotype. In another family, a novel hemoglobin (Hb) variant named Hb Sichuan (HBA1: c.393_394insT), causes α-thal and a severe phenotype when associated with the - - SEA deletion. As these two HBA1 mutations can present as continuous blood transfusion-dependent α-thal, it is important to take this point into account for detecting the carriers, especially in couples in which one partner is already a known α 0 -thal carrier.

  4. Phase II and Biomarker Study of the Dual MET/VEGFR2 Inhibitor Foretinib in Patients With Papillary Renal Cell Carcinoma

    Science.gov (United States)

    Choueiri, Toni K.; Vaishampayan, Ulka; Rosenberg, Jonathan E.; Logan, Theodore F.; Harzstark, Andrea L.; Bukowski, Ronald M.; Rini, Brian I.; Srinivas, Sandy; Stein, Mark N.; Adams, Laurel M.; Ottesen, Lone H.; Laubscher, Kevin H.; Sherman, Laurie; McDermott, David F.; Haas, Naomi B.; Flaherty, Keith T.; Ross, Robert; Eisenberg, Peter; Meltzer, Paul S.; Merino, Maria J.; Bottaro, Donald P.; Linehan, W. Marston; Srinivasan, Ramaprasad

    2013-01-01

    Purpose Foretinib is an oral multikinase inhibitor targeting MET, VEGF, RON, AXL, and TIE-2 receptors. Activating mutations or amplifications in MET have been described in patients with papillary renal cell carcinoma (PRCC). We aimed to evaluate the efficacy and safety of foretinib in patients with PRCC. Patients and Methods Patients were enrolled onto the study in two cohorts with different dosing schedules of foretinib: cohort A, 240 mg once per day on days 1 through 5 every 14 days (intermittent arm); cohort B, 80 mg daily (daily dosing arm). Patients were stratified on the basis of MET pathway activation (germline or somatic MET mutation, MET [7q31] amplification, or gain of chromosome 7). The primary end point was overall response rate (ORR). Results Overall, 74 patients were enrolled, with 37 in each dosing cohort. ORR by Response Evaluation Criteria in Solid Tumors (RECIST) 1.0 was 13.5%, median progression-free survival was 9.3 months, and median overall survival was not reached. The presence of a germline MET mutation was highly predictive of a response (five of 10 v five of 57 patients with and without germline MET mutations, respectively). The most frequent adverse events of any grade associated with foretinib were fatigue, hypertension, gastrointestinal toxicities, and nonfatal pulmonary emboli. Conclusion Foretinib demonstrated activity in patients with advanced PRCC with a manageable toxicity profile and a high response rate in patients with germline MET mutations. PMID:23213094

  5. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma.

    Science.gov (United States)

    Korhan, Peyda; Erdal, Esra; Kandemiş, Emine; Cokaklı, Murat; Nart, Deniz; Yılmaz, Funda; Can, Alp; Atabey, Neşe

    2014-01-01

    c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC.

  6. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Peyda Korhan

    Full Text Available c-Met, the receptor for Hepatocyte Growth Factor (HGF, overexpressed and deregulated in Hepatocellular Carcinoma (HCC. Caveolin 1 (CAV1, a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC.

  7. Familial isolated primary hyperparathyroidism/hyperparathyroidism-jaw tumour syndrome caused by germline gross deletion or point mutations of CDC73 gene in Chinese.

    Science.gov (United States)

    Kong, Jing; Wang, Ou; Nie, Min; Shi, Jie; Hu, Yingying; Jiang, Yan; Li, Mei; Xia, Weibo; Meng, Xunwu; Xing, Xiaoping

    2014-08-01

    Hyperparathyroidism-jaw tumour syndrome (HPT-JT) and familial isolated primary hyperparathyroidism (FIHP) are two subtypes of familial primary hyperparathyroidism, which are rarely reported in Chinese population. Here, we reported three FIHP families and one HPT-JT family with long-term follow-up and genetic analysis. A total of 22 patients, from four FIHP/HPT-JT families of Chinese descent, were recruited and genomic DNA was extracted from their peripheral blood lymphocytes. Direct sequencing for MEN1, CDC73, CASR gene was conducted. Reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR) were used to study the effect of splice site mutations and gross deletion mutations. Immunohistochemistry was performed to analyse parafibromin expression in parathyroid tumours. Genotype-phenotype correlations were assessed through clinical characteristics and long-term follow-up data. Genetic analysis revealed four CDC73 germline mutations that were responsible for the four kindreds, including two novel point mutation (c.157 G>T and IVS3+1 G>A), one recurrent point mutation (c.664 C>T) and one deletion mutation (c.307+?_513-?del exons 4, 5, 6). RT-PCR confirmed that IVS3+1 G>A generated an aberrant transcript with exon3 deletion. Immunohistochemical analysis demonstrated reduced nuclear parafibromin expression in tumours supporting the pathogenic effects of these mutations. This study supplies information on mutations and phenotypes of HPT-JT/FIHP syndrome in Chinese. Screening for gross deletion and point mutations of the CDC73 gene is necessary in susceptible subjects. © 2014 John Wiley & Sons Ltd.

  8. Clinical and prognostic value of the C-Met/HGF signaling pathway in cervical cancer.

    Science.gov (United States)

    Boromand, Nadia; Hasanzadeh, Malihe; ShahidSales, Soodabeh; Farazestanian, Marjaneh; Gharib, Masoumeh; Fiuji, Hamid; Behboodi, Negin; Ghobadi, Niloofar; Hassanian, Seyed Mahdi; Ferns, Gordon A; Avan, Amir

    2018-06-01

    Aberrant activation of the HGF/c-Met signalling pathway is reported to be associated with cell proliferation, progression, and metastasis features of several tumor types, including cervical cancer, suggesting that it may be of potential value as a novel therapeutic target. Furthermore, HPV-positive patients had a higher serum level of HGF or c-Met protein, compared with HPV-negative patients. c-Met or HGF overexpression in lesions of cervical cancer is reported to be related to a poorer prognosis, and hence this may be of value as a prognostic and predictive biomarker. Several approaches have been developed for targeting HGF and/or c-Met. One of these is crizotinib (a dual c-Met/ALK inhibitor). This has been approved by FDA for the treatment of lung-cancer. Further investigations are required to evaluate and optimize the use of c-Met inhibitors in cervical cancer or parallel targeting signalling pathway associated/activated via MET/HGF pathway. The main aim of current review was to give an overview of the potential of the c-Met/HGF pathway as a prognostic, or predictive biomarker in cervical cancer. © 2017 Wiley Periodicals, Inc.

  9. Prenatal and postnatal presentation of severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) due to the FGFR3 Lys650Met mutation.

    NARCIS (Netherlands)

    Zankl, A.; Elakis, G.; Susman, R.D.; Inglis, G.; Gardener, G.; Buckley, M.F.; Roscioli, T.

    2008-01-01

    We present prenatal and postnatal features of a patient with severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN). Mutation analysis confirmed the clinical diagnosis by detecting the FGFR3 Lys650Met mutation. This case, one of only six with molecular analysis reported in

  10. Identification of a point mutation in growth factor repeat C of the low density lipoprotein-receptor gene in a patient with homozygous familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Soutar, A.K.; Knight, B.L.; Patel, D.D.

    1989-01-01

    The coding region of the low density lipoprotein (LDL)-receptor gene from a patient (MM) with homozygous familial hypercholesterolemia (FH) has been sequenced from six overlapping 500-base-pair amplified fragments of the cDNA from cultured skin fibroblasts. Two separate single nucleotide base changes from the normal sequence were detected. The first involved substitution of guanine for adenine in the third position of the codon for amino acid residue Cys-27 and did not affect the protein sequence. The second mutation was substitution of thymine for cytosine in the DNA for the codon for amino acid residue 664, changing the codon from CCG (proline) to CTG (leucine) and introducing a new site for the restriction enzyme PstI. MM is a true homozygote with two identical genes, and the mutation cosegregated with clinically diagnosed FH in his family in which first cousin marriages occurred frequently. LDL receptors in MM's skin fibroblasts bind less LDL than normal and with reduced affinity. Thus this naturally occurring single point mutation affects both intracellular transport of the protein and ligand binding and occurs in growth factor-like repeat C, a region that has not previously been found to influence LDL binding

  11. Hereditary thrombophilia: identification of nonsense and missense mutations in the protein C gene

    International Nuclear Information System (INIS)

    Romeo, G.; Hassan, H.J.; Staempfli, S.

    1987-01-01

    The structure of the gene for protein C, an anticoagulant serine protease, was analyzed in 29 unrelated patients with hereditary thrombophilia and protein C deficiency. Gene deletion(s) or gross rearrangement(s) was not demonstrable by Southern blot hybridization to cDNA probes. However, two unrelated patients showed a variant restriction pattern after Pvu II or BamHi digestion, due to mutations in the last exon: analysis of their pedigrees, including three or seven heterozygotes, respectively, with ∼50% reduction of both enzymatic and antigen level, showed the abnormal restriction pattern in all heterozygous individuals, but not in normal relatives. Cloning of protein C gene and sequencing of the last exon allowed the authors to identify a nonsense and a missense mutation, respectively. In the first case, codon 306 (CGA, arginine) is mutated to an inframe stop codon, thus generating a new Pvu II recognition site. In the second case, a missense mutation in the BamHI palindrome (GGATCC → GCATCC) leads to substitution of a key amino acid (a tryptophan to cysteine substitution at position 402), invariantly conserved in eukaryotic serine proteases. These point mutations may explain the protein C-deficiency phenotype of heterozygotes in the two pedigrees

  12. Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.

    Science.gov (United States)

    Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi

    2017-12-01

    The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.

  13. A novel mitochondrial mutation m.8989G>C associated with neuropathy, ataxia, retinitis pigmentosa - the NARP syndrome

    DEFF Research Database (Denmark)

    Duno, Morten; Wibrand, Flemming; Baggesen, Kirsten

    2013-01-01

    mitochondrial point mutation, m.8989G>C, in a patient presenting with neuropathy, ataxia and retinitis pigmentosa constituting the classical NARP phenotype. This mutation alters the amino acid right next to canonical NARP mutation. We suggest that classic NARP syndrome relates to a defined dysfunction of p...

  14. The HGF Receptor c-Met Is Overexpressed in Esophageal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Luis J. Herrera

    2005-01-01

    Full Text Available The hepatocyte growth factor (HGF receptor, Met, has established oncogenic properties; however, its expression and function in esophageal adenocarcinoma (EA remain poorly understood. We aimed to determine the expression and potential alterations in Met expression in EA. Met expression was investigated in surgical specimens of EA, Barrett's esophagus (BE, and normal esophagus (NE using immunohistochemistry (IHC and quantitative reverse transcriptase polymerase chain reaction. Met expression, phosphorylation, and the effect of COX-2 inhibition on expression were examined in EA cell lines. IHC demonstrated intense Met immunoreactivity in all (100% EA and dysplastic BE specimens. In contrast, minimal immunostaining was observed in BE without dysplasia or NE specimens. Met mRNA and protein levels were increased in three EA cell lines, and Met protein was phosphorylated in the absence of serum. Sequence analysis found the kinase domain of c-met to be wild type in all three EA cell lines. HGF mRNA expression was identified in two EA cell lines. In COX-2-overexpressing cells, COX-2 inhibition decreased Met expression. Met is consistently overexpressed in EA surgical specimens and in three EA cell lines. Met dysregulation occurs early in Barrett's dysplasia to adenocarcinoma sequence. Future study of Met inhibition as a potential biologic therapy for EA is warranted.

  15. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes.

    Directory of Open Access Journals (Sweden)

    Jonàs Juan-Mateu

    Full Text Available DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements.

  16. The regulatory role of heparin on c-Met signaling in hepatocellular carcinoma cells.

    Science.gov (United States)

    İşcan, Evin; Güneş, Aysim; Korhan, Peyda; Yılmaz, Yeliz; Erdal, Esra; Atabey, Neşe

    2017-06-01

    The role of heparin as an anticoagulant is well defined; however, its role in tumorigenesis and tumor progression is not clear yet. Some studies have shown that anticoagulant treatment in cancer patients improve overall survival, however, recent clinical trials have not shown a survival benefit in cancer patients receiving heparin treatment. In our previous studies we have shown the inhibitory effects of heparin on Hepatocyte Growth Factor (HGF)-induced invasion and migration in hepatocellular carcinoma (HCC) cells. In this study, we showed the differential effects of heparin on the behaviors of HCC cells based on the presence or absence of HGF. In the absence of HGF, heparin activated HGF/c-Met signaling and promoted motility and invasion in HCC cells. Heparin treatment led to c-Met receptor dimerization and activated c-Met signaling in an HGF independent manner. Heparin-induced c-Met activation increased migration and invasion through ERK1/2, early growth response factor 1 (EGR1) and Matrix Metalloproteinases (MMP) axis. Interestingly, heparin modestly decreased the proliferation of HCC cells by inhibiting activatory phosphorylation of Akt. The inhibition of c-Met signaling reversed heparin-induced increase in motility and invasion and, proliferation inhibition. Our study provides a new perspective into the role of heparin on c-Met signaling in HCC.

  17. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    Science.gov (United States)

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  18. Pairwise contact energy statistical potentials can help to find probability of point mutations.

    Science.gov (United States)

    Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S

    2017-01-01

    To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Activation of c-MET induces a stem-like phenotype in human prostate cancer.

    Directory of Open Access Journals (Sweden)

    Geert J L H van Leenders

    Full Text Available Prostate cancer consists of secretory cells and a population of immature cells. The function of immature cells and their mutual relation with secretory cells are still poorly understood. Immature cells either have a hierarchical relation to secretory cells (stem cell model or represent an inducible population emerging upon appropriate stimulation of differentiated cells. Hepatocyte Growth Factor (HGF receptor c-MET is specifically expressed in immature prostate cells. Our objective is to determine the role of immature cells in prostate cancer by analysis of the HGF/c-MET pathway.Gene-expression profiling of DU145 prostate cancer cells stimulated with HGF revealed induction of a molecular signature associated with stem cells, characterized by up-regulation of CD49b, CD49f, CD44 and SOX9, and down-regulation of CD24 ('stem-like signature'. We confirmed the acquisition of a stem-like phenotype by quantitative PCR, FACS analysis and Western blotting. Further, HGF led to activation of the stem cell related Notch pathway by up-regulation of its ligands Jagged-1 and Delta-like 4. Small molecules SU11274 and PHA665752 targeting c-MET activity were both able to block the molecular and biologic effects of HGF. Knock-down of c-MET by shRNA infection resulted in significant reduction and delay of orthotopic tumour-formation in male NMRI mice. Immunohistochemical analysis in prostatectomies revealed significant enrichment of c-MET positive cells at the invasive front, and demonstrated co-expression of c-MET with stem-like markers CD49b and CD49f.In conclusion, activation of c-MET in prostate cancer cells induced a stem-like phenotype, indicating a dynamic relation between differentiated and stem-like cells in this malignancy. Its mediation of efficient tumour-formation in vivo and predominant receptor expression at the invasive front implicate that c-MET regulates tumour infiltration in surrounding tissues putatively by acquisition of a stem-like phenotype.

  20. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a.

    Science.gov (United States)

    Schiering, Nikolaus; Knapp, Stefan; Marconi, Marina; Flocco, Maria M; Cui, Jean; Perego, Rita; Rusconi, Luisa; Cristiani, Cinzia

    2003-10-28

    The protooncogene c-met codes for the hepatocyte growth factor receptor tyrosine kinase. Binding of its ligand, hepatocyte growth factor/scatter factor, stimulates receptor autophosphorylation, which leads to pleiotropic downstream signaling events in epithelial cells, including cell growth, motility, and invasion. These events are mediated by interaction of cytoplasmic effectors, generally through Src homology 2 (SH2) domains, with two phosphotyrosine-containing sequence motifs in the unique C-terminal tail of c-Met (supersite). There is a strong link between aberrant c-Met activity and oncogenesis, which makes this kinase an important cancer drug target. The furanosylated indolocarbazole K-252a belongs to a family of microbial alkaloids that also includes staurosporine. It was recently shown to be a potent inhibitor of c-Met. Here we report the crystal structures of an unphosphorylated c-Met kinase domain harboring a human cancer mutation and its complex with K-252a at 1.8-A resolution. The structure follows the well established architecture of protein kinases. It adopts a unique, inhibitory conformation of the activation loop, a catalytically noncompetent orientation of helix alphaC, and reveals the complete C-terminal docking site. The first SH2-binding motif (1349YVHV) adopts an extended conformation, whereas the second motif (1356YVNV), a binding site for Grb2-SH2, folds as a type II Beta-turn. The intermediate portion of the supersite (1353NATY) assumes a type I Beta-turn conformation as in an Shc-phosphotyrosine binding domain peptide complex. K-252a is bound in the adenosine pocket with an analogous binding mode to those observed in previously reported structures of protein kinases in complex with staurosporine.

  1. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, Friedhelm, E-mail: Friedhelm.Bladt@merckgroup.com; Friese-Hamim, Manja; Ihling, Christian; Wilm, Claudia; Blaukat, Andree [EMD Serono, and Merck Serono Research and Development, Merck KGaA, Darmstadt 64293 (Germany)

    2014-08-19

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling.

  2. Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer.

    Science.gov (United States)

    Kwon, Youngjoo; Godwin, Andrew K

    2017-04-01

    Binding of hepatocyte growth factor (HGF) to the c-MET receptor has mitogenic, motogenic, and morphogenic effects on cells. The versatile biological effects of HGF and c-MET interactions make them important contributors to the development of malignant tumors. We and others have demonstrated a therapeutic value in targeting the interaction of c-MET and HGF in epithelial ovarian cancer (EOC). However, both HGF and c-MET are expressed in the normal ovary as well. Therefore, it is important to understand the differences in mechanisms that control HGF signaling activation and its functional role in the normal ovary and EOC. In the normal ovary, HGF signaling may be under hormonal regulation. During ovulation, HGF-converting proteases are secreted and the subsequent activation of HGF signaling enhances the proliferation of ovarian surface epithelium in order to replenish the area damaged due to expulsion of the ovum. In contrast, EOC cells that exhibit epithelial characteristics constitutively express both c-MET and HGF-converting proteases such as urokinase-type plasminogen activator. In EOC, mechanisms to control the activation of HGF signaling are absent since HGF is provided locally from the tissue microenvironment as well as remotely throughout the body. Potential incessant HGF signaling in EOC may lead to an increase in proliferation, invasion through the stroma, and migration to other tissues of cancer cells. Therefore, targeting the interaction of c-MET and HGF would be beneficial in treating EOC.

  3. Evaluation of point mutations in dystrophin gene in Iranian ...

    Indian Academy of Sciences (India)

    5Department of Biology, Science and Research Branch, Islamic Azad ... Dystrophin protein is found ... Duchenne and Becker muscular dystrophy; neuromuscular disorder; point mutation. ..... modern diagnostic techniques to a large cohort.

  4. Ectopic expression of AID in a non-B cell line triggers A:T and G:C point mutations in non-replicating episomal vectors.

    Directory of Open Access Journals (Sweden)

    Tihana Jovanic

    Full Text Available Somatic hypermutation (SHM of immunoglobulin genes is currently viewed as a two step process initiated by the deamination of deoxycytidine (C to deoxyuridine (U, catalysed by the activation induced deaminase (AID. Phase 1 mutations arise from DNA replication across the uracil residue or the abasic site, generated by the uracil-DNA glycosylase, yielding transitions or transversions at G:C pairs. Phase 2 mutations result from the recognition of the U:G mismatch by the Msh2/Msh6 complex (MutS Homologue, followed by the excision of the mismatched nucleotide and the repair, by the low fidelity DNA polymerase eta, of the gap generated by the exonuclease I. These mutations are mainly focused at A:T pairs. Whereas in activated B cells both G:C and A:T pairs are equally targeted, ectopic expression of AID was shown to trigger only G:C mutations on a stably integrated reporter gene. Here we show that when using non-replicative episomal vectors containing a GFP gene, inactivated by the introduction of stop codons at various positions, a high level of EGFP positive cells was obtained after transient expression in Jurkat cells constitutively expressing AID. We show that mutations at G:C and A:T pairs are produced. EGFP positive cells are obtained in the absence of vector replication demonstrating that the mutations are dependent only on the mismatch repair (MMR pathway. This implies that the generation of phase 1 mutations is not a prerequisite for the expression of phase 2 mutations.

  5. Apert Syndrome With FGFR2 758 C > G Mutation: A Chinese Case Report

    Directory of Open Access Journals (Sweden)

    Yahong Li

    2018-05-01

    Full Text Available Background: Apert syndrome is considered as one of the most common craniosynostosis syndromes with a prevalence of 1 in 65,000 individuals, and has a close relationship with point mutations in FGFR2 gene.Case report: Here, we described a Apert syndrome case, who was referred to genetic consultation in our hospital with the symptom of craniosynostosis and syndactyly of the hands and feet. Craniosynostosis, midfacial retrusion, steep wide forehead, larger head circumference, marked depression of the nasal bridge, short and wide nose and proptosis could be found obviously, apart from these, ears were mildly low compared with normal children and there was no cleft lip and palate. Mutation was identified by sanger sequencing and a mutation in the exon 7 of FGFR2 gene was detected: p.Pro253Arg (P253R 758 C > G, which was not found in his parents.Conclusion: The baby had Apert syndrome caused by 758 C > G mutation in the exon 7 of FGFR2 gene, considering no this mutation in his parents, it was spontaneous.

  6. Discovery of imidazopyridine derivatives as novel c-Met kinase inhibitors: Synthesis, SAR study, and biological activity.

    Science.gov (United States)

    Yang, Yifei; Zhang, Yuan; Yang, LingYun; Zhao, Leilei; Si, Lianghui; Zhang, Huibin; Liu, Qingsong; Zhou, Jinpei

    2017-02-01

    Receptor tyrosine kinase c-Met acts as an alternative angiogenic pathway in the process and contents of cancers. A series of imidazopyridine derivatives were designed and synthesized according to the established docking studies as possible c-Met inhibitors. Most of these imidazopyridine derivatives displayed nanomolar potency against c-Met in both biochemical enzymatic screens and cellular pharmacology studies. Especially, compound 7g exhibited the most inhibitory activity against c-Met with IC 50 of 53.4nM and 253nM in enzymatic and cellular level, respectively. Following that, the compound 7g was docked into the protein of c-Met and the structure-activity relationship was analyzed in detail. These findings indicated that the novel imidazopyridine derivative compound 7g was a potential c-Met inhibitor deserving further investigation for cancer treatment. Copyright © 2016. Published by Elsevier Inc.

  7. Phenotypic similarities and differences in patients with a p.Met112Ile mutation in SOX10.

    Science.gov (United States)

    Pingault, Veronique; Pierre-Louis, Laurence; Chaoui, Asma; Verloes, Alain; Sarrazin, Elisabeth; Brandberg, Goran; Bondurand, Nadege; Uldall, Peter; Manouvrier-Hanu, Sylvie

    2014-09-01

    Waardenburg syndrome (WS) is characterized by an association of pigmentation abnormalities and sensorineural hearing loss. Four types, defined on clinical grounds, have been delineated, but this phenotypic classification correlates imperfectly with known molecular anomalies. SOX10 mutations have been found in patients with type II and type IV WS (i.e., with Hirschsprung disease), more complex syndromes, and partial forms of the disease. The phenotype induced by SOX10 mutations is highly variable and, except for the neurological forms of the disease, no genotype-phenotype correlation has been characterized to date. There is no mutation hotspot in SOX10 and most cases are sporadic, making it particularly difficult to correlate the phenotypic and genetic variability. This study reports on three independent families with SOX10 mutations predicted to result in the same missense mutation at the protein level (p.Met112Ile), offering a rare opportunity to improve our understanding of the mechanisms underlying phenotypic variability. The pigmentation defects of these patients are very similar, and the neurological symptoms showed a somewhat similar evolution over time, indicating a potential partial genotype-phenotype correlation. However, variability in gastrointestinal symptoms suggests that other genetic factors contribute to the expression of these phenotypes. No correlation between the rs2435357 polymorphism of RET and the expression of Hirschsprung disease was found. In addition, one of the patients has esophageal achalasia, which has rarely been described in WS. © 2014 Wiley Periodicals, Inc.

  8. Protein truncation test: analysis of two novel point mutations at the carboxy-terminus of the human dystrophin gene associated with mental retardation.

    Science.gov (United States)

    Tuffery, S; Lenk, U; Roberts, R G; Coubes, C; Demaille, J; Claustres, M

    1995-01-01

    Approximately one-third of the mutations responsible for Duchenne muscular dytrophy (DMD) do not involve gross rearrangements of the dystrophin gene. Methods for intensive mutation screening have recently been applied to this immense gene, which resulted in the identification of a number of point mutations in DMD patients, mostly translation-terminating mutations. A number of data raised the possibility that the C-terminal region of dystrophin might be involved in some cases of mental retardation associated with DMD. Using single-strand conformation analysis of products amplified by polymerase chain reaction (PCR-SSCA) to screen the terminal domains of the dystrophin gene (exons 60-79) of 20 unrelated patients with DMD or BMD, we detected two novel point mutations in two mentally retarded DMD patients: a 1-bp deletion in exon 70 (10334delC) and a 5' splice donor site alteration in intron 69 (10294 + 1G-->T). Both mutations should result in a premature translation termination of dystrophin. The possible effects on the reading frame were analyzed by the study of reverse transcripts amplified from peripheral blood lymphocytes mRNA and by the protein truncation test.

  9. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6.

    Science.gov (United States)

    Evans, Ben A; Smith, Olivia L; Pickerill, Ethan S; York, Mary K; Buenconsejo, Kristen J P; Chambers, Antonio E; Bernstein, Douglas A

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn 2+ -binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans . Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest.

  10. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens

    DEFF Research Database (Denmark)

    Zankari, Ea; Allesøe, Rosa Lundbye; Joensen, Katrine Grimstrup

    2017-01-01

    enterica, Escherichia coli and Campylobacter jejuni. The web-server ResFinder-2.1 was used to identify acquired antimicrobial resistance genes and two methods, the novel PointFinder (using BLAST) and an in-house method (mapping of raw WGS reads), were used to identify chromosomal point mutations. Results...... or when mapping the reads. Conclusions PointFinder proved, with high concordance between phenotypic and predicted antimicrobial susceptibility, to be a user-friendly web tool for detection of chromosomal point mutations associated with antimicrobial resistance....

  11. Targeting c-Met in Cancer by MicroRNAs: Potential Therapeutic Applications in Hepatocellular Carcinoma.

    Science.gov (United States)

    Karagonlar, Zeynep F; Korhan, Peyda; Atabey, Neşe

    2015-11-01

    Preclinical Research Cancer is one of the world's deadliest diseases, with very low survival rates and increased occurrence in the future. Successfully developed target-based therapies have significantly changed cancer treatment. However, primary and/or acquired resistance in the tumor is a major challenge in current therapies and novel combinational therapies are required. RNA interference-mediated gene inactivation, alone or in combination with other current therapies, provides novel promising therapeutics that can improve cure rate and overcome resistance mechanisms to conventional therapeutics. Hepatocyte Growth Factor/c-Met signaling is one of the most frequently dysregulated pathways in human cancers and abnormal c-Met activation is correlated with poor clinical outcomes and drug resistance in hepatocellular carcinoma (HCC). In recent years, a growing number of studies have identified several inhibitors and microRNAs (miRNAs), specifically targeting c-Met in various cancers, including HCC. In this review, we discuss current knowledge regarding miRNAs, focusing on their involvement in cancer and their potential as research tools and therapeutics. Then, we focus on the potential use of c-Met targeting miRNAs for suppressing aberrant c-Met signaling in HCC treatment. © 2015 Wiley Periodicals, Inc.

  12. Expression of the c-Met oncogene by tumor cells predicts a favorable outcome in classical Hodgkin's lymphoma.

    Science.gov (United States)

    Xu, Chuanhui; Plattel, Wouter; van den Berg, Anke; Rüther, Nele; Huang, Xin; Wang, Miao; de Jong, Debora; Vos, Hans; van Imhoff, Gustaaf; Viardot, Andreas; Möller, Peter; Poppema, Sibrand; Diepstra, Arjan; Visser, Lydia

    2012-04-01

    The c-Met signaling pathway regulates a variety of biological processes, including proliferation, survival and migration. Deregulated c-Met activation has been implicated in the pathogenesis and prognosis of many human malignancies. We studied the function and prognostic significance of c-Met and hepatocyte growth factor protein expression in patients with classical Hodgkin's lymphoma. Expression of c-Met and its ligand, hepatocyte growth factor, were determined by immunohistochemistry. Prognostic values were defined in cohorts of German and Dutch patients with classical Hodgkin's lymphoma. Functional studies were performed on Hodgkin's lymphoma cell lines. Expression of c-Met was detected in the tumor cells of 52% (80/153) of the patients and expression of its ligand, hepatocyte growth factor, in 8% (10/121) of the patients. c-Met expression correlated with a 5-year freedom from tumor progression of 94%, whereas lack of expression correlated with a 5-year freedom from tumor progression of 73% (Pfreedom from tumor progression. In functional studies activation with hepatocyte growth factor did not affect cell growth, while the c-Met inhibitor SU11274 suppressed cell growth by inducing G2/M cell cycle arrest. Although functional studies showed an oncogenic role of the hepatocyte growth factor/c-Met signaling pathway in cell cycle progression, expression of c-Met in tumor cells from patients with classical Hodgkin's lymphoma strongly correlated with a favorable prognosis in two independent cohorts.

  13. A Val85Met Mutation in Melanocortin-1 Receptor Is Associated with Reductions in Eumelanic Pigmentation and Cell Surface Expression in Domestic Rock Pigeons (Columba livia)

    Science.gov (United States)

    Guernsey, Michael W.; Ritscher, Lars; Miller, Matthew A.; Smith, Daniel A.; Schöneberg, Torsten; Shapiro, Michael D.

    2013-01-01

    Variation in the melanocortin-1 receptor (Mc1r) is associated with pigmentation diversity in wild and domesticated populations of vertebrates, including several species of birds. Among domestic bird species, pigmentation variation in the rock pigeon ( Columba livia ) is particularly diverse. To determine the potential contribution of Mc1r variants to pigment diversity in pigeons, we sequenced Mc1r in a wide range of pigeon breeds and identified several single nucleotide polymorphisms, including a variant that codes for an amino acid substitution (Val85Met). In contrast to the association between Val85Met and eumelanism in other avian species, this change was associated with pheomelanism in pigeons. In vitro cAMP accumulation and protein expression assays revealed that Val85Met leads to decreased receptor function and reduced cell surface expression of the mutant protein. The reduced in vitro function is consistent with the observed association with reduced eumelanic pigmentation. Comparative genetic and cellular studies provide important insights about the range of mechanisms underlying diversity among vertebrates, including different phenotypic associations with similar mutations in different species. PMID:23977400

  14. Base substitutions, frameshifts, and small deletions constitute ionizing radiation-induced point mutations in mammalian cells

    International Nuclear Information System (INIS)

    Grosovsky, A.J.; de Boer, J.G.; de Jong, P.J.; Drobetsky, E.A.; Glickman, B.W.

    1988-01-01

    The relative role of point mutations and large genomic rearrangements in ionizing radiation-induced mutagenesis has been an issue of long-standing interest. Recent studies using Southern blotting analysis permit the partitioning of ionizing radiation-induced mutagenesis in mammalian cells into detectable deletions and major genomic rearrangements and into point mutations. The molecular nature of these point mutations has been left unresolved; they may include base substitutions as well as small deletions, insertions, and frame-shifts below the level of resolution of Southern blotting analysis. In this investigation, we have characterized a collection of ionizing radiation-induced point mutations at the endogenous adenine phosphoribosyltransferase (aprt) locus of Chinese hamster ovary cells at the DNA sequence level. Base substitutions represented approximately equal to 2/3 of the point mutations analyzed. Although the collection of mutants is relatively small, every possible type of base substitution event has been recovered. These mutations are well distributed throughout the coding sequence with only one multiple occurrence. Small deletions represented the remainder of characterized mutants; no insertions have been observed. Sequence-directed mechanisms mediated by direct repeats could account for some of the observed deletions, while others appear to be directly attributable to radiation-induced strand breakage

  15. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    Science.gov (United States)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  16. A high proportion of ADA point mutations associated with a specific alanine-to-valine substitution.

    OpenAIRE

    Markert, M L; Norby-Slycord, C; Ward, F E

    1989-01-01

    In 15%-20% of children with severe combined immunodeficiency (SCID), the underlying defect is adenosine deaminase (ADA) deficiency. The overall goal of our research has been to identify the precise molecular defects in patients with ADA-deficient SCID. In this study, we focused on a patient whom we found to have normal sized ADA mRNA by Northern analysis and an intact ADA structural gene by Southern analysis. By cloning and sequencing this patient's ADA cDNA, we found a C-to-T point mutation ...

  17. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    Science.gov (United States)

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  18. Mutational Analysis of the Rhodopsin Gene in Sector Retinitis Pigmentosa.

    Science.gov (United States)

    Napier, Maria L; Durga, Dash; Wolsley, Clive J; Chamney, Sarah; Alexander, Sharon; Brennan, Rosie; Simpson, David A; Silvestri, Giuliana; Willoughby, Colin E

    2015-01-01

    To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland. A case series of sector RP in a tertiary ocular genetics clinic. Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent. The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced. Rhodopsin mutational status. A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO. The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.

  19. The m.3291T>C mt-tRNALeu(UUR) mutation is definitely pathogenic and causes multisystem mitochondrial disease

    Science.gov (United States)

    Yarham, John W.; Blakely, Emma L.; Alston, Charlotte L.; Roberts, Mark E.; Ealing, John; Pal, Piyali; Turnbull, Douglass M.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Mitochondrial tRNA point mutations are important causes of human disease, and have been associated with a diverse range of clinical phenotypes. Definitively proving the pathogenicity of any given mt-tRNA mutation requires combined molecular, genetic and functional studies. Subsequent evaluation of the mutation using a pathogenicity scoring system is often very helpful in concluding whether or not the mutation is causing disease. Despite several independent reports linking the m.3291T>C mutation to disease in humans, albeit in association with several different phenotypes, its pathogenicity remains controversial. A lack of conclusive functional evidence and an over-emphasis on the poor evolutionary conservation of the affected nucleotide have contributed to this controversy. Here we describe an adult patient who presented with deafness and lipomas and evidence of mitochondrial abnormalities in his muscle biopsy, who harbours the m.3291T > C mutation, providing conclusive evidence of pathogenicity through analysis of mutation segregation with cytochrome c oxidase (COX) deficiency in single muscle fibres, underlining the importance of performing functional studies when assessing pathogenicity. PMID:23273904

  20. Combination Therapy with c-Met and Src Inhibitors Induces Caspase-Dependent Apoptosis of Merlin-Deficient Schwann Cells and Suppresses Growth of Schwannoma Cells.

    Science.gov (United States)

    Fuse, Marisa A; Plati, Stephani Klingeman; Burns, Sarah S; Dinh, Christine T; Bracho, Olena; Yan, Denise; Mittal, Rahul; Shen, Rulong; Soulakova, Julia N; Copik, Alicja J; Liu, Xue Zhong; Telischi, Fred F; Chang, Long-Sheng; Franco, Maria Clara; Fernandez-Valle, Cristina

    2017-11-01

    Neurofibromatosis type 2 (NF2) is a nervous system tumor disorder caused by inactivation of the merlin tumor suppressor encoded by the NF2 gene. Bilateral vestibular schwannomas are a diagnostic hallmark of NF2. Mainstream treatment options for NF2-associated tumors have been limited to surgery and radiotherapy; however, off-label uses of targeted molecular therapies are becoming increasingly common. Here, we investigated drugs targeting two kinases activated in NF2-associated schwannomas, c-Met and Src. We demonstrated that merlin-deficient mouse Schwann cells (MD-MSC) treated with the c-Met inhibitor, cabozantinib, or the Src kinase inhibitors, dasatinib and saracatinib, underwent a G 1 cell-cycle arrest. However, when MD-MSCs were treated with a combination of cabozantinib and saracatinib, they exhibited caspase-dependent apoptosis. The combination therapy also significantly reduced growth of MD-MSCs in an orthotopic allograft mouse model by greater than 80% of vehicle. Moreover, human vestibular schwannoma cells with NF2 mutations had a 40% decrease in cell viability when treated with cabozantinib and saracatinib together compared with the vehicle control. This study demonstrates that simultaneous inhibition of c-Met and Src signaling in MD-MSCs triggers apoptosis and reveals vulnerable pathways that could be exploited to develop NF2 therapies. Mol Cancer Ther; 16(11); 2387-98. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Effect of point mutations on Herbaspirillum seropedicae NifA activity

    International Nuclear Information System (INIS)

    Aquino, B.; Stefanello, A.A.; Oliveira, M.A.S.; Pedrosa, F.O.; Souza, E.M.; Monteiro, R.A.; Chubatsu, L.S.

    2015-01-01

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain

  2. Effect of point mutations on Herbaspirillum seropedicae NifA activity

    Directory of Open Access Journals (Sweden)

    B. Aquino

    2015-08-01

    Full Text Available NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  3. Effect of point mutations on Herbaspirillum seropedicae NifA activity.

    Science.gov (United States)

    Aquino, B; Stefanello, A A; Oliveira, M A S; Pedrosa, F O; Souza, E M; Monteiro, R A; Chubatsu, L S

    2015-08-01

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  4. Effect of point mutations on Herbaspirillum seropedicae NifA activity

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, B.; Stefanello, A.A.; Oliveira, M.A.S.; Pedrosa, F.O.; Souza, E.M.; Monteiro, R.A.; Chubatsu, L.S. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2015-07-10

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  5. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G., E-mail: yara_yingling@ncsu.edu

    2012-12-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: Black-Right-Pointing-Pointer All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. Black-Right-Pointing-Pointer Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. Black-Right-Pointing-Pointer Lys and Arg mutations most dramatically destabilize collagen fibril properties. Black-Right-Pointing-Pointer Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  6. Study of expression of genes cIAP and cMET, in liver tissue with and without neoplasia of Rattus norvegicus

    International Nuclear Information System (INIS)

    Coto Valverde, Daniel Esteban

    2010-01-01

    The expression levels of cIAP genes and cMET were determined in liver tissues with and without neoplasm of the organism Rattus norvegicus, for prevention, diagnosis and treatment of hepatocellular carcinoma. The technique of reaction Polymerase Chain in real time (qPCR), is used to obtain the expression, of both genes cIAP and cMET, and this has decreased in neoplastic samples compared to samples not affected. The expression of these genes has been analyzed in samples with neoplastic formations, but treated with an anti-tumor agent. The expression has presented an increase of the cMET gene, unlike the cIAP gene, which has decreased its expression. Perform statistical analysis has been impossible because the number of samples used has been reduced. The results obtained differ with those expected theoretically. (author) [es

  7. C239S mutation in the β-tubulin of Phytophthora sojae confers resistance to zoxamide

    Directory of Open Access Journals (Sweden)

    Meng eCai

    2016-05-01

    Full Text Available Zoxamide is the sole β-tubulin inhibitor registered for the control of oomycete pathogens. The current study investigated the activity of zoxamide against Phytophthora sojae and a baseline sensitivity was established with a mean EC50 of 0.048 μg/ml. Three stable resistant mutants with a high resistance level were obtained by selection on zoxamide amended media. Although the development of resistance occurred at a low frequency, there were no apparent fitness penalty in the acquired mutants in terms of growth rate, sporulation, germination and pathogenicity. Based on the biological profiles and mutagenesis rate, the resistance risk of P. sojae to zoxamide can be estimated as low to medium. Further investigation revealed all the zoxamide-resistant mutants had a point mutation of C239S in their β-tubulin. Zoxamide also exhibited high activity against most species from the genus Pythium in which only Py. aphanidermatum was found resistant to zoxamide and harboring the natural point mutation S239 in the beta-tubulin. Back-transformation in P. sojae with the mutated allele (S239 confirmed the C239S mutation induced resistance to zoxamide, and the resistance level was positively related to the expression level of the mutated gene. In contrast, the overexpression of the wild type gene was unable to cause zoxamide resistance. It is the first report on the resistance molecular mechanism of zoxamide in oomycetes. Based on our study, C239 is supposed to be a key target site of zoxamide, which distinguishes zoxamide from benzimidazoles and accounts for its low resistance risk. The result can provide advice on the design of new β-tubulin inhibitors in future.

  8. Predictive role of the overexpression for CXCR4, C-Met, and VEGF-C among breast cancer patients: A meta-analysis.

    Science.gov (United States)

    Wang, Fang; Li, Shanshan; Zhao, Yueguang; Yang, Kunxian; Chen, Minju; Niu, Heng; Yang, Jingyu; Luo, Ying; Tang, Wenru; Sheng, Miaomiao

    2016-08-01

    The overexpression of CXCR4, C-Met and VEGF-C present widely in breast tumors, they may be markers of resistance to treatment. However, the studies are still controversial. Thus, this meta-analysis aims to research the relationship between the overexpression of CXCR4, C-Met, VEGF-C and clinical prognosis among breast cancer patients. PubMed and EMBASE databases were searched for eligible literature. The outcomes of interest were progression-free survival (PFS), relapse-free survival (RFS) and overall survival (OS). All tests of statistical significance were two sided. A total of 7830 patients from 28 eligible studies were assessed. The overexpression of the CXCR4 and C-Met both implied significantly worse PFS compared with normal expression [HR = 2.56, 95% CI = 1.34-4.91, P = 0.005; and HR = 1.63 95% CI = 1.20-2.22, P = 0.002]. Meanwhile, if patients had high expression of CXCR4, they would have worse OS [HR = 2.56 95% CI = 1.52-4.31, P = 0.000]. However, the overexpression of C-Met did not relate to OS for breast cancer patients [HR = 1.16, 95% CI = 0.69-1.95, P = 0.570]. Meanwhile, no statistically significant different was observed with respect to PFS and OS between VEGF-C overexpression and normal expression [HR = 0.99, 95% CI = 0.64-1.52, P = 0.968; and HR = 0.76, 95% CI = 0.43-1.33, P = 0.333]. Our meta-analysis showed that CXCR4 and C-Met were efficient prognostic factors for breast cancer. Nevertheless, highly expressing VEGF-C was not related to progression-free survival and overall survival. Due to the small samples and insufficient date, further studies should be conducted to clarify the association between the overexpression of CXCR4 or C-Met or VEGF-C and the prognosis about breast cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis.

    Science.gov (United States)

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2014-01-01

    by the weakening of the lower H-bond. At that point, the upper N4H⋯O6 and O6H⋯N4 H-bonds in the G·C and G*·C* base pairs, respectively, remain constant at the changes of the middle and the lower H-bonds at the beginning and at the ending of the G·C ↔ G*·C* tautomerization. Aiming to answer the question posed in the title of the article, we established that the G*·C* Löwdin's base pair satisfies all the requirements necessary to cause point mutations in DNA except its lifetime, which is much less than the period of time required for the replication machinery to forcibly dissociate a base pair into the monomers (several ns) during DNA replication. So, from the physicochemical point of view, the G*·C* Löwdin's base pair cannot be considered as a source of point mutations arising during DNA replication.

  10. De interactie van SiC met Fe, Ni en hun legeringen

    NARCIS (Netherlands)

    Schiepers, R.C.J.

    1991-01-01

    De interactie tussen SiC en metalen gebaseerd op Fe en Ni is bestudeerd in het temperatuurtraject 700-1035°C door middel van vaste-stof-diffusiekoppels. In de koppels van SiC met Fe, Ni en hun legeringen treden hevige reakties op, die de vorming van een goede verbinding verhinderen. Door het grate

  11. Mutations Phe785Leu and Thr618Met in Na+, K+-ATPase, Associated with Familial Rapid-Onset Dystonia Parkinsonism, Interfere with Na+ Interaction by Distinct Mechanisms

    DEFF Research Database (Denmark)

    Schack, Vivien Rodacker; Toustrup-Jensen, Mads Schak; Vilsen, Bente

    The Na+, K+-ATPase plays key roles in brain function. Recently, missense mutations in the Na+, K+-ATPase were found associated with familial rapid-onset dystonia parkinsonism (FRDP). Here, we have characterized the functional consequences of FRDP mutations Phe785Leu and Thr618Met. Both mutations...... lead to functionally altered, but active, Na+, K+-pumps that display reduced apparent affinity for cytoplasmic Na+, but the underlying mechanism differs between the mutants. In Phe785Leu, the interaction of the E1 form with Na+ is defective, and the E1-E2 equilibrium is not displaced. In Thr618Met......, the Na+ affinity is reduced because of displacement of the conformational equilibrium in favor of the K+-occluded E2(K2) form. In both mutants, K+ interaction at the external activating sites of the E2P phosphoenzyme is normal. The change of cellular Na+ homeostasis is likely a major factor contributing...

  12. Mutations Phe785Leu and Thr618Met in Na+, K+-ATPase, Associated with Familial Rapid-Onset Dystonia Parkinsonism, Interfere with Na+ Interaction by Distinct Mechanisms

    DEFF Research Database (Denmark)

    Schack, Vivien Rodacker; Toustrup-Jensen, Mads Schak; Vilsen, Bente

    The Na+, K+-ATPase plays key roles in brain function. Recently, missense mutations in the Na+, K+-ATPase were found associated with familial rapid-onset dystonia parkinsonism (FRDP). We have characterized the functional consequences of FRDP mutations Phe785Leu and Thr618Met. Both mutations lead...... to functionally altered, but active, Na+, K+-pumps that display reduced apparent affinity for cytoplasmic Na+, but the underlying mechanism differs between the mutants. In Phe785Leu, the interaction of the E1 form with Na+ is defective, and the E1-E2 equilibrium is not displaced. In Thr618Met, the Na+ affinity...... is reduced because of displacement of the conformational equilibrium in favor of the K+-occluded E2(K2) form. In both mutants, K+ interaction at the external activating sites of the E2P phosphoenzyme is normal. The change of cellular Na+ homeostasis is likely a major factor contributing to the development...

  13. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.

    Science.gov (United States)

    Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore

    2007-02-01

    Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.

  14. In vivo detection of c-MET expression in a rat hepatocarcinogenesis model using molecularly targeted magnetic resonance imaging.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya; Tesiram, Yasvir A; Abbott, Andrew; Saunders, Debbie; Blindauer, Rebecca; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2007-01-01

    The multifunctional growth factor scatter factor/hepatocyte growth factor and its tyrosine kinase receptor, c-MET, have been implicated in the genesis and malignant progression of numerous human malignancies, including hepatocellular carcinomas. The incidence of hepatocellular carcinomas in the United States has increased noticeably over the past two decades and is listed as the fifth major cancer in men worldwide. In this study, we used a choline-deficient l-amino acid (CDAA)-defined rat hepatocarcinogenesis model to visualize increased in vivo expression of the c-MET antigen in neoplastic lesion formation with the use of a super paramagnetic iron oxide (SPIO)-anti-c-MET molecularly targeted magnetic resonance imaging (MRI) contrast agent. SPIO-anti-c-MET was used for the first time to detect overexpression of c-MET in neoplastic nodules and tumors within the livers of CDAA-treated rats, as determined by a decrease in MRI signal intensity and a decrease in regional T(2) values. Specificity for the binding of the molecularly targeted anti-c-MET contrast agent was determined using rat hepatoma (H4-II-E-C3) cell cultures and immunofluorescence microscopic imaging of the targeting agents within neoplastic liver tissue 1 to 2 hours following intravenous administration of SPIO-anti-c-MET and MRI investigation. This method has the ability to visualize in vivo the overexpression of c-MET at early developmental stages of tumor formation.

  15. Effects of the umuC36 mutation on ultraviolet-radiation-induced base-change and frameshift mutations in Escherichia coli

    International Nuclear Information System (INIS)

    Kato, T.; Nakano, E.

    1981-01-01

    The effects of the umuC36 mutation on the induction of base-change and frameshift mutations were studied. An active umuC gene was necessary in either the uvr + or uvr - strains of Escherichia coli K12 for UV- and X-ray-induced mutations to His + , ColE and Spc, which are presumably base-change mutations, but it was not essential for ethyl methanesulphonate or N-methyl-N'-nitro-N-nitrosoguanidine-induced His + mutations. In contrast, only 1 out of 13 trp - frameshift mutations examined was UV reversible, and the process of mutagenesis was umuC + -dependent, whereas a potent frameshift mutagen, ICR191, effectively induced Trp + mutations in most of the strains regardless of the umu + or umuC genetic background. These results suggest that base substitutions are a major mutational type derived from the umuC + -dependent pathway of error-prone repair. (orig.)

  16. MetHumi - Humidity Device for Mars MetNet Lander

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Harri, Ari-Matti; Schmidt, Walter; Leinonen, Jussi; Mäkinen, Teemu; Haukka, Harri

    2010-05-01

    MetNet Mars Mission focused for Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetHumi is the humidity sensor of MetNet Lander designed to work on Martian surface. It is based on Humicap® technology developed by Vaisala, Inc. MetHumi is a capacitive type of sensing device where an active polymer film changes capacitance as function of relative humidity. One MetHumi device package consists of one humidity transducer including three Humicap® sensor heads, an accurate temperature sensor head (Thermocap® by Vaisala, Inc.) and constant reference channels. MetHumi is very small, lightweighed and has low power consumption. It weighs only about 15 g without wires, and consumes 15 mW of power. MetHumi can make meaningful relative humidity measurements in range of 0 - 100%RH down to -70°C ambient temperature, but it survives even -135°C ambient temperature.

  17. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis.

    Science.gov (United States)

    Bank-Wolf, Barbara Regina; Stallkamp, Iris; Wiese, Svenja; Moritz, Andreas; Tekes, Gergely; Thiel, Heinz-Jürgen

    2014-10-10

    The genes encoding accessory proteins 3a, 3b, 3c, 7a and 7b, the S2 domain of the spike (S) protein gene and the membrane (M) protein gene of feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) samples were amplified, cloned and sequenced. For this faeces and/or ascites samples from 19 cats suffering from feline infectious peritonitis (FIP) as well as from 20 FECV-infected healthy cats were used. Sequence comparisons revealed that 3c genes of animals with FIP were heavily affected by nucleotide deletions and point mutations compared to animals infected with FECV; these alterations resulted either in early termination or destruction of the translation initiation codon. Two ascites-derived samples of cats with FIP which displayed no alterations of ORF3c harboured mutations in the S2 domain of the S protein gene which resulted in amino acid exchanges or deletions. Moreover, changes in 3c were often accompanied by mutations in S2. In contrast, in samples obtained from faeces of healthy cats, the ORF3c was never affected by such mutations. Similarly ORF3c from faecal samples of the cats with FIP was mostly intact and showed only in a few cases the same mutations found in the respective ascites samples. The genes encoding 3a, 3b, 7a and 7b displayed no mutations linked to the feline coronavirus (FCoV) biotype. The M protein gene was found to be conserved between FECV and FIPV samples. Our findings suggest that mutations of 3c and spike protein genes correlate with the occurrence of FIP. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Presence of c.3956delC mutation in familial adenomatous polyposis patients from Brazil.

    Science.gov (United States)

    Moreira-Nunes, Caroline Aquino; Alcântara, Diego di Felipe Ávila; Lima-Júnior, Sérgio Figueiredo; Cavalléro, Sandro Roberto de Araújo; Rey, Juan Antonio; Pinto, Giovanny Rebouças; de Assumpção, Paulo Pimentel; Burbano, Rommel Rodriguez

    2015-08-21

    To characterize APC gene mutations and correlate them with patient phenotypes in individuals diagnosed with familial adenomatous polyposis (FAP) in northern Brazil. A total of 15 individuals diagnosed with FAP from 5 different families from the north of Brazil were analyzed in this study. In addition to patients with histopathological diagnosis of FAP, family members who had not developed the disease were also tested in order to identify mutations and for possible genetic counseling. All analyzed patients or their guardians signed a consent form approved by the Research Ethics Committee of the João de Barros Barreto University Hospital (Belem, Brazil). DNA extracted from the peripheral blood of a member of each of the affected families was subjected to direct sequencing. The proband of each family was sequenced to identify germline mutations using the Ion Torrent platform. To validate the detected mutations, Sanger sequencing was also performed. The samples from all patients were also tested for the identification of mutations by real-time quantitative polymerase chain reaction using the amplification refractory mutation system. Through interviews with relatives and a search of medical records, it was possible to construct genograms for three of the five families included in the study. All 15 patients from the five families with FAP exhibited mutations in the APC gene, and all mutations were detected in exon 15 of the APC gene. In addition to the patients with a histological diagnosis of FAP, family members without disease symptoms showed the mutation in the APC gene. In the present study, we detected two of the three most frequent germline mutations in the literature: the mutation at codon 1309 and the mutation at codon 1061. The presence of c.3956delC mutation was found in all families from this study, and suggests that this mutation was introduced in the population of the State of Pará through ancestor immigration (i.e., a de novo mutation that arose in one

  19. Expression of hepatocyte growth factor and the proto-oncogenic receptor c-Met in canine osteosarcoma

    NARCIS (Netherlands)

    Fieten, H; Spee, B; Ijzer, J; Kik, M J; Penning, L C; Kirpensteijn, J

    Hepatocyte growth factor (HGF) and the proto-oncogenic receptor c-Met are implicated in growth, invasion, and metastasis in human cancer. Little information is available on the expression and role of both gene products in canine osteosarcoma. We hypothesized that the expression of c-Met is

  20. In Vivo Detection of c-MET Expression in a Rat Hepatocarcinogenesis Model Using Molecularly Targeted Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Rheal A. Towner

    2007-01-01

    Full Text Available The multifunctional growth factor scatter factor/hepatocyte growth factor and its tyrosine kinase receptor, c-MET, have been implicated in the genesis and malignant progression of numerous human malignancies, including hepatocellular carcinomas. The incidence of hepatocellular carcinomas in the United States has increased noticeably over the past two decades and is listed as the fifth major cancer in men worldwide. In this study, we used a choline-deficient l-amino acid (CDAA-defined rat hepatocarcinogenesis model to visualize increased in vivo expression of the c-MET antigen in neoplastic lesion formation with the use of a super paramagnetic iron oxide (SPIO–anti-c-MET molecularly targeted magnetic resonance imaging (MRI contrast agent. SPIO–anti-c-MET was used for the first time to detect overexpression of c-MET in neoplastic nodules and tumors within the livers of CDAA-treated rats, as determined by a decrease in MRI signal intensity and a decrease in regional T2 values. Specificity for the binding of the molecularly targeted anti-c-MET contrast agent was determined using rat hepatoma (H4-II-E-C3 cell cultures and immunofluorescence microscopic imaging of the targeting agents within neoplastic liver tissue 1 to 2 hours following intravenous administration of SPIO–anti-c-MET and MRI investigation. This method has the ability to visualize in vivo the overexpression of c-MET at early developmental stages of tumor formation.

  1. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar.

    Science.gov (United States)

    Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru

    2014-01-01

    Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti.

  2. Co-occurrence of Point Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Aedes aegypti Populations in Myanmar

    Science.gov (United States)

    Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru

    2014-01-01

    Background Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. Methodology/Principal Findings We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Conclusions/Significance Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti. PMID:25077956

  3. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  4. Transcriptional regulation of the MET receptor tyrosine kinase gene by MeCP2 and sex-specific expression in autism and Rett syndrome.

    Science.gov (United States)

    Plummer, J T; Evgrafov, O V; Bergman, M Y; Friez, M; Haiman, C A; Levitt, P; Aldinger, K A

    2013-10-22

    Single nucleotide variants (SNV) in the gene encoding the MET receptor tyrosine kinase have been associated with an increased risk for autism spectrum disorders (ASD). The MET promoter SNV rs1858830 C 'low activity' allele is enriched in ASD, associated with reduced protein expression, and impacts functional and structural circuit connectivity in humans. To gain insight into the transcriptional regulation of MET on ASD-risk etiology, we examined an interaction between the methyl CpG-binding protein 2 (MeCP2) and the MET 5' promoter region. Mutations in MeCP2 cause Rett syndrome (RTT), a predominantly female neurodevelopmental disorder sharing some ASD clinical symptoms. MeCP2 binds to a region of the MET promoter containing the ASD-risk SNV, and displays rs1858830 genotype-specific binding in human neural progenitor cells derived from the olfactory neuroepithelium. MeCP2 binding enhances MET expression in the presence of the rs1858830 C allele, but MET transcription is attenuated by RTT-specific mutations in MeCP2. In the postmortem temporal cortex, a region normally enriched in MET, gene expression is reduced dramatically in females with RTT, although not due to enrichment of the rs1858830 C 'low activity' allele. We newly identified a sex-based reduction in MET expression, with male ASD cases, but not female ASD cases compared with sex-matched controls. The experimental data reveal a prominent allele-specific regulation of MET transcription by MeCP2. The mechanisms underlying the pronounced reduction of MET in ASD and RTT temporal cortex are distinct and likely related to factors unique to each disorder, including a noted sex bias.

  5. Hemochromatosis C282Y gene mutation as a potential susceptibility ...

    African Journals Online (AJOL)

    G.M. Mokhtar

    2017-08-12

    Aug 12, 2017 ... Background: Hereditary hemochromatosis is the most frequent cause of primary iron overload that is associated with HFE gene's mutation especially the C282Y mutation. The interaction between hemoglo- bin chain synthesis' disorders and the C282Y mutation may worsen the clinical picture of beta-.

  6. The clinicopathologic association of c-MET overexpression in Iranian gastric carcinomas; an immunohistochemical study of tissue microarrays.

    Science.gov (United States)

    Sotoudeh, Kambiz; Hashemi, Forough; Madjd, Zahra; Sadeghipour, Alireza; Molanaei, Saadat; Kalantary, Elham

    2012-05-28

    c-MET is an oncogene protein that plays important role in gastric carcinogenesis and has been introduced as a prognostic marker and potential therapeutic target. The aim of this study was to evaluate the frequency of c-MET overexpression and its relationship with clinicopathological variables in gastric cancer of Iranian population using tissue microarray. In a cross sectional study, representative paraffin blocks of 130 patients with gastric carcinoma treated by curative gastrectomy during a 2 years period of 2008-2009 in two university hospitals in Tehran-Iran were collected in tissue microarray and c-MET expression was studied by immunohistochemical staining. Finally 124 cases were evaluated, constituted of 99 male and 25 female with the average age of 61.5 years. In 71% (88/124) of tumors, c-MET high expression was found. c-MET high expression was more associated with intestinal than diffuse tumor type (P = 0.04), deeper tumor invasion, pT3 and pT4 versus pT1 and pT2 (P = 0.014), neural invasion (P = 0.002) and advanced TNM staging, stage 3 and 4 versus stage 1 and2 (P = 0.044). The c-MET high expression was not associated with age, sex, tumor location, differentiation grade and distant metastasis, but relative associations with lymph node metastasis (P = 0.065) and vascular invasion (P = 0.078) were observed. c-MET oncogene protein was frequently overexpressed in Iranian gastric carcinomas and it was related to clinicopathological characteristics such as tumor type, depth of invasion, neural invasion and TNM staging. It can also support the idea that c-MET is a potential marker for target therapy in Iranian gastric cancer. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9744598757151429.

  7. Comparison of poliovirus recombinants: accumulation of point mutations provides further advantages.

    Science.gov (United States)

    Savolainen-Kopra, Carita; Samoilovich, Elena; Kahelin, Heidi; Hiekka, Anna-Kaisa; Hovi, Tapani; Roivainen, Merja

    2009-08-01

    The roles of recombination and accumulation of point mutations in the origin of new poliovirus (PV) characteristics have been hypothesized, but it is not known which are essential to evolution. We studied phenotypic differences between recombinant PV strains isolated from successive stool specimens of an oral PV vaccine recipient. The studied strains included three PV2/PV1 recombinants with increasing numbers of mutations in the VP1 gene, two of the three with an amino acid change I-->T in the DE-loop of VP1, their putative PV1 parent and strains Sabin 1 and 2. Growth of these viruses was examined in three cell lines: colorectal adenocarcinoma, neuroblastoma and HeLa. The main observation was a higher growth rate between 4 and 6 h post-infection of the two recombinants with the I-->T substitution. All recombinants grew at a higher rate than parental strains in the exponential phase of the replication cycle. In a temperature sensitivity test, the I-->T-substituted recombinants replicated equally well at an elevated temperature. Complete genome sequencing of the three recombinants revealed 12 (3), 19 (3) and 27 (3) nucleotide (amino acid) differences from Sabin. Mutations were located in regions defining attenuation, temperature sensitivity, antigenicity and the cis-acting replicating element. The recombination site was in the 5' end of 3D. In a competition assay, the most mutated recombinant beat parental Sabin in all three cell lines, strongly suggesting that this virus has an advantage. Two independent intertypic recombinants, PV3/PV1 and PV3/PV2, also showed similar growth advantages, but they also contained several point mutations. Thus, our data defend the hypothesis that accumulation of certain advantageous mutations plays a key role in gaining increased fitness.

  8. A trade-off in replication in mosquito versus mammalian systems conferred by a point mutation in the NS4B protein of dengue virus type 4

    International Nuclear Information System (INIS)

    Hanley, Kathryn A.; Manlucu, Luella R.; Gilmore, Lara E.; Blaney, Joseph E.; Hanson, Christopher T.; Murphy, Brian R.; Whitehead, Stephen S.

    2003-01-01

    An acceptable live-attenuated dengue virus vaccine candidate should have low potential for transmission by mosquitoes. We have identified and characterized a mutation in dengue virus type 4 (DEN4) that decreases the ability of the virus to infect mosquitoes. A panel of 1248 mutagenized virus clones generated previously by chemical mutagenesis was screened for decreased replication in mosquito C6/36 cells but efficient replication in simian Vero cells. One virus met these criteria and contained a single coding mutation: a C-to-U mutation at nucleotide 7129 resulting in a Pro-to-Leu change in amino acid 101 of the nonstructural 4B gene (NS4B P101L). This mutation results in decreased replication in C6/36 cells relative to wild-type DEN4, decreased infectivity for mosquitoes, enhanced replication in Vero and human HuH-7 cells, and enhanced replication in SCID mice implanted with HuH-7 cells (SCID-HuH-7 mice). A recombinant DEN4 virus (rDEN4) bearing this mutation exhibited the same set of phenotypes. Addition of the NS4B P101L mutation to rDEN4 bearing a 30 nucleotide deletion (Δ30) decreased the ability of the double-mutant virus to infect mosquitoes but increased its ability to replicate in SCID-HuH-7 mice. Although the NS4B P101L mutation decreases infectivity of DEN4 for mosquitoes, its ability to enhance replication in SCID-HuH-7 mice suggests that it might not be advantageous to include this specific mutation in an rDEN4 vaccine. The opposing effects of the NS4B P101L mutation in mosquito and vertebrate systems suggest that the NS4B protein is involved in maintaining the balance between efficient replication in the mosquito vector and the human host

  9. Identification of Phytochemicals Targeting c-Met Kinase Domain using Consensus Docking and Molecular Dynamics Simulation Studies.

    Science.gov (United States)

    Aliebrahimi, Shima; Montasser Kouhsari, Shideh; Ostad, Seyed Nasser; Arab, Seyed Shahriar; Karami, Leila

    2018-06-01

    c-Met receptor tyrosine kinase is a proto-oncogene whose aberrant activation is attributed to a lower rate of survival in most cancers. Natural product-derived inhibitors known as "fourth generation inhibitors" constitute more than 60% of anticancer drugs. Furthermore, consensus docking approach has recently been introduced to augment docking accuracy and reduce false positives during a virtual screening. In order to obtain novel small-molecule Met inhibitors, consensus docking approach was performed using Autodock Vina and Autodock 4.2 to virtual screen Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database against active and inactive conformation of c-Met kinase domain structure. Two hit molecules that were in line with drug-likeness criteria, desired docking score, and binding pose were subjected to molecular dynamics simulations to elucidate intermolecular contacts in protein-ligand complexes. Analysis of molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area studies showed that ZINC08234189 is a plausible inhibitor for the active state of c-Met, whereas ZINC03871891 may be more effective toward active c-Met kinase domain compared to the inactive form due to higher binding energy. Our analysis showed that both the hit molecules formed hydrogen bonds with key residues of the hinge region (P1158, M1160) in the active form, which is a hallmark of kinase domain inhibitors. Considering the pivotal role of HGF/c-Met signaling in carcinogenesis, our results propose ZINC08234189 and ZINC03871891 as the therapeutic options to surmount Met-dependent cancers.

  10. Genetic Nrf2 Overactivation Inhibits the Deleterious Effects Induced by Hepatocyte-Specific c-met Deletion during the Progression of NASH

    Directory of Open Access Journals (Sweden)

    Pierluigi Ramadori

    2017-01-01

    Full Text Available We have recently shown that hepatocyte-specific c-met deficiency accelerates the progression of nonalcoholic steatohepatitis in experimental murine models resulting in augmented production of reactive oxygen species and accelerated development of fibrosis. The aim of this study focuses on the elucidation of the underlying cellular mechanisms driven by Nrf2 overactivation in hepatocytes lacking c-met receptor characterized by a severe unbalance between pro-oxidant and antioxidant functions. Control mice (c-metfx/fx, single c-met knockouts (c-metΔhepa, and double c-met/Keap1 knockouts (met/Keap1Δhepa were then fed a chow or a methionine-choline-deficient (MCD diet, respectively, for 4 weeks to reproduce the features of nonalcoholic steatohepatitis. Upon MCD feeding, met/Keap1Δhepa mice displayed increased liver mass albeit decreased triglyceride accumulation. The marked increase of oxidative stress observed in c-metΔhepa was restored in the double mutants as assessed by 4-HNE immunostaining and by the expression of genes responsible for the generation of free radicals. Moreover, double knockout mice presented a reduced amount of liver-infiltrating cells and the exacerbation of fibrosis progression observed in c-metΔhepa livers was significantly inhibited in met/Keap1Δhepa. Therefore, genetic activation of the antioxidant transcription factor Nrf2 improves liver damage and repair in hepatocyte-specific c-met-deficient mice mainly through restoring a balance in the cellular redox homeostasis.

  11. Hereditary neuropathy with liability to pressure palsy (HNPP): report of a family with a new point mutation in PMP22 gene.

    Science.gov (United States)

    Fusco, Carlo; Spagnoli, Carlotta; Salerno, Grazia Gabriella; Pavlidis, Elena; Frattini, Daniele; Pisani, Francesco

    2017-10-27

    Hereditary neuropathy with liability to pressure palsy (HNPP) is an autosomal dominant disorder most commonly presenting with acute-onset, non-painful focal sensory and motor mononeuropathy. Approximately 80% of patients carry a 1.5 Mb deletion of chromosome 17p11.2 involving the peripheral myelin protein 22 gene (PMP22), the same duplicated in Charcot-Marie-Tooth 1A patients. In a small proportion of patients the disease is caused by PMP22 point mutations. We report on a familial case harbouring a new point mutation in the PMP22 gene. The proband is a 4-years-old girl with acute onset of focal numbness and weakness in her right hand. Electroneurography demonstrated transient sensory and motor radial nerves involvement. In her father, reporting chronic symptoms (cramps and exercise-induced myalgia), we uncovered mild atrophy and areflexia on clinical examination and a mixed (predominantly demyelinating) polyneuropathy with sensory-motor involvement on electrophysiological study. Both carried a nucleotidic substitution c.178 + 2 T > C on intron 3 of the PMP22 gene, involving the splicing donor site, not reported on databases but predicted to be likely pathogenic. We described a previously unreported point mutation in PMP22 gene, which led to the development of a HNPP phenotype in a child and her father. In children evaluated for a sensory and motor transient episode, HNPP disorder due to PMP22 mutations should be suspected. Clinical and electrophysiological studies should be extended to all family members even in the absence of previous episodes suggestive for HNPP.

  12. Pigmentary retinopathy associated with the mitochondrial DNA 3243 point mutation.

    Science.gov (United States)

    Sue, C M; Mitchell, P; Crimmins, D S; Moshegov, C; Byrne, E; Morris, J G

    1997-10-01

    Fourteen patients from four unrelated families were studied to determine the prevalence of retinal pigmentary abnormalities associated with the MELAS A to G 3243 point mutation. Neurologic and ophthalmic examinations, retinal photography, pattern shift visual evoked potentials, and electroretinography were performed in all patients. Eight of the 14 patients had retinal pigmentary abnormalities characterized by symmetric areas of depigmentation involving predominantly the posterior pole and midperipheral retina. None of the patients had optic atrophy and only one patient with pigmentary retinal abnormalities had impaired visual acuity. None of the diabetic subjects (n = 6) had signs of diabetic retinopathy. Fluorescein angiography demonstrated mottled hyper- and hypofluorescent areas indicating multiple window defects in the retinal pigmentary epithelium. Visual evoked potentials showed delayed P100 responses in four of the eight patients with retinal pigmentary abnormalities. We conclude that there is a high prevalence of retinal pigmentary abnormalities in patients with MELAS A to G 3243 point mutation. These abnormalities are usually asymptomatic and best detected by retinal photography.

  13. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    Directory of Open Access Journals (Sweden)

    Amin Dinarvand

    2014-02-01

    Full Text Available Introduction: Association between single-nucleotide polymorphisms (SNPs in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction.  Methods: 79 opioid-dependent subjects (55 males, 24 females and 134 non-addict or control individuals (74 males, 60 females participated in the study. Genomic DNA was extracted from volunteers’ peripheral blood and exon 3 of the mu opioid receptor gene was amplified by polymerase chain reaction (PCR whose products were then sequenced.  Results: Three different heterozygote polymorphisms were observed in 3 male individuals: 759T>C and 877G>A mutations were found in 2 control volunteers and 1043G>C substitution was observed in an opioid-addicted subject. Association between genotype and opioid addiction for each mutation was not statistically significant.  Discussion: It seems that the sample size used in our study is not enough to confirm or reject any association between 759T>C, 877G>A and 1043G>C substitutions in exon 3 of the mu opioid receptor gene and opioid addiction susceptibility in Iranian population.

  14. Human Prolactin Point Mutations and Their Projected Effect on Vasoinhibin Generation and Vasoinhibin-Related Diseases

    Directory of Open Access Journals (Sweden)

    Jakob Triebel

    2017-11-01

    Full Text Available BackgroundA dysregulation of the generation of vasoinhibin hormones by proteolytic cleavage of prolactin (PRL has been brought into context with diabetic retinopathy, retinopathy of prematurity, preeclampsia, pregnancy-induced hypertension, and peripartum cardiomyopathy. Factors governing vasoinhibin generation are incompletely characterized, and the composition of vasoinhibin isoforms in human tissues or compartments, such as the circulation, is unknown. The aim of this study was to determine the possible contribution of PRL point mutations to the generation of vasoinhibins as well as to project their role in vasoinhibin-related diseases.MethodsProlactin sequences, point mutations, and substrate specificity information about the PRL cleaving enzymes cathepsin D, matrix metalloproteinases 8 and 13, and bone-morphogenetic protein 1 were retrieved from public databases. The consequences of point mutations in regard to their possible effect on vasoinhibin levels were projected on the basis of a score indicating the suitability of a particular sequence for enzymatic cleavage that result in vasoinhibin generation. The relative abundance and type of vasoinhibin isoforms were estimated by comparing the relative cleavage efficiency of vasoinhibin-generating enzymes.ResultsSix point mutations leading to amino acid substitutions in vasoinhibin-generating cleavage sites were found and projected to either facilitate or inhibit vasoinhibin generation. Four mutations affecting vasoinhibin generation in cancer tissues were found. The most likely composition of the relative abundance of vasoinhibin isoforms is projected to be 15 > 17.2 > 16.8 > 17.7 > 18 kDa vasoinhibin.ConclusionProlactin point mutations are likely to influence vasoinhibin levels by affecting the proteolysis efficiency of vasoinhibin-generating enzymes and should be monitored in patients with vasoinhibin-related diseases. Attempts to characterize vasoinhibin-related diseases

  15. Gain of chromosome 7 by chromogenic in situ hybridization (CISH) in chordomas is correlated to c-MET expression.

    Science.gov (United States)

    Walter, Beatriz A; Begnami, Maria; Valera, Vladimir A; Santi, Mariarita; Rushing, Elisabeth J; Quezado, Martha

    2011-01-01

    Chordomas are low to intermediate grade malignancies that arise from remnants of embryonic notochord. They often recur after surgery and are highly resistant to conventional adjuvant therapies. Recently, the development of effective targeted molecular therapy has been investigated in chordomas that show receptors for tyrosine kinase (RTKs) activation. Expression of specific RTKs such as Epidermal Growth Factor Receptor (EGFR) and Mesenchymal-epithelial transition factor (c-MET) in chordomas may offer valuable therapeutic options. We investigated changes in copy number of chromosome 7 and correlated it with EGFR gene status and EGFR and c-MET protein expression in 22 chordoma samples. Chromosome 7 copy number was evaluated by chromogenic in situ hybridization (CISH) and protein expression of EGFR and c-MET by immunohistochemistry. Tumors mostly showed conventional histopathologic features and were found mainly in sacral (41%) and cranial sites (54.5%). Aneusomy of chromosome 7 was seen in 73% of the samples, 62% of primary tumors and in all recurrent chordomas. EGFR and c-MET were both expressed, but only c-MET protein expression was significantly correlated with chromosome 7 aneusomy (P ≤ 0.001). c-MET overexpression may represent an early chromosome 7 alteration that could play an important role during chordoma pathogenesis. c-MET overexpression shows promise as a molecular marker of response to targeted molecular therapy in the treatment of chordomas.

  16. Electroclinical presentation and genotype-phenotype relationships in patients with Unverricht-Lundborg disease carrying compound heterozygous CSTB point and indel mutations.

    Science.gov (United States)

    Canafoglia, Laura; Gennaro, Elena; Capovilla, Giuseppe; Gobbi, Giuseppe; Boni, Antonella; Beccaria, Francesca; Viri, Maurizio; Michelucci, Roberto; Agazzi, Pamela; Assereto, Stefania; Coviello, Domenico A; Di Stefano, Maria; Rossi Sebastiano, Davide; Franceschetti, Silvana; Zara, Federico

    2012-12-01

    Unverricht-Lundborg disease (EPM1A) is frequently due to an unstable expansion of a dodecamer repeat in the CSTB gene, whereas other types of mutations are rare. EPM1A due to homozygous expansion has a rather stereotyped presentation with prominent action myoclonus. We describe eight patients with five different compound heterozygous CSTB point or indel mutations in order to highlight their particular phenotypical presentations and evaluate their genotype-phenotype relationships. We screened CSTB mutations by means of Southern blotting and the sequencing of the genomic DNA of each proband. CSTB messenger RNA (mRNA) aberrations were characterized by sequencing the complementary DNA (cDNA) of lymphoblastoid cells, and assessing the protein concentrations in the lymphoblasts. The patient evaluations included the use of a simplified myoclonus severity rating scale, multiple neurophysiologic tests, and electroencephalography (EEG)-polygraphic recordings. To highlight the particular clinical features and disease time-course in compound heterozygous patients, we compared some of their characteristics with those observed in a series of 40 patients carrying the common homozygous expansion mutation observed at the C. Besta Foundation, Milan, Italy. The eight compound heterozygous patients belong to six EPM1A families (out of 52; 11.5%) diagnosed at the Laboratory of Genetics of the Galliera Hospitals in Genoa, Italy. They segregated five different heterozygous point or indel mutations in association with the common dodecamer expansion. Four patients from three families had previously reported CSTB mutations (c.67-1G>C and c.168+1_18del); one had a novel nonsense mutation at the first exon (c.133C>T) leading to a premature stop codon predicting a short peptide; the other three patients from two families had a complex novel indel mutation involving the donor splice site of intron 2 (c.168+2_169+21delinsAA) and leading to an aberrant transcript with a partially retained intron

  17. Distinct pattern of p53 mutations in bladder cancer

    DEFF Research Database (Denmark)

    Spruck, C H; Rideout, W M; Olumi, A F

    1993-01-01

    A distinct mutational spectrum for the p53 tumor suppressor gene in bladder carcinomas was established in patients with known exposures to cigarette smoke. Single-strand conformational polymorphism analysis of exons 5 through 8 of the p53 gene showed inactivating mutations in 16 of 40 (40%) bladder...... tumors from smokers and 13 of 40 (33%) tumors from lifetime nonsmokers. Overall, 13 of the 50 (26%) total point mutations discovered in this and previous work were G:C-->C:G transversions, a relatively rare mutational type in human tumors. In six tumors, identical AGA (Arg)-->ACA (Thr) point mutations...... double mutations, four of which were tandem mutations on the same allele. No double mutations were found in tumors from nonsmoking patients. None of the mutations in smokers were G:C-->T:A transversions, which would be anticipated for exposure to the suspected cigarette smoke carcinogen 4-aminobiphenyl...

  18. Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure.

    Science.gov (United States)

    Wang, Kun; Li, Yuwen; Zhu, Tiantian; Zhang, Yongting; Li, Wenting; Lin, Wenyu; Li, Jun; Zhu, Chuanlong

    2017-07-05

    Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has emerged as a novel therapy for acute liver failure (ALF). However, the homing efficiency of BMSCs to the injured liver sites appears to be poor. In this study, we aimed to determine if overexpression of c-Met in BMSCs could promote the homing ability of BMSCs to rat livers affected by ALF. Overexpression of c-Met in BMSCs (c-Met-BMSCs) was attained by transfection of naive BMSCs with the lenti-c-Met-GFP. The impact of transplanted c-Met-BMSCs on both homing and repair of ALF was evaluated and compared with lenti-GFP empty vector transfected BMSCs (control BMSCs). After cells were transfected with the lenti-c-Met-GFP vector, the BMSCs displayed very high expression of c-Met protein as demonstrated by Western blot. In addition, in vitro transwell migration assays showed that the migration ability of c-Met-BMSCs was significantly increased in comparison with that of control BMSCs (P liver; this was accompanied by elevated survival rates and liver function in the ALF rats. Parallel pathological examination further confirmed that transplantation of c-Met-BMSCs ameliorated liver injury with reduced hepatic activity index (HAI) scores, and that the effects of c-Met-BMSCs were more profound than those of control BMSCs. Overexpression of c-Met promotes the homing of BMSCs to injured hepatic sites in a rat model of ALF, thereby improving the efficacy of BMSC therapy for ALF repair.

  19. The clinicopathologic association of c-MET overexpression in Iranian gastric carcinomas; an immunohistochemical study of tissue microarrays

    Directory of Open Access Journals (Sweden)

    Sotoudeh Kambiz

    2012-05-01

    Full Text Available Abstract Background c-MET is an oncogene protein that plays important role in gastric carcinogenesis and has been introduced as a prognostic marker and potential therapeutic target. The aim of this study was to evaluate the frequency of c-MET overexpression and its relationship with clinicopathological variables in gastric cancer of Iranian population using tissue microarray. Methods In a cross sectional study, representative paraffin blocks of 130 patients with gastric carcinoma treated by curative gastrectomy during a 2 years period of 2008–2009 in two university hospitals in Tehran-Iran were collected in tissue microarray and c-MET expression was studied by immunohistochemical staining. Results Finally 124 cases were evaluated, constituted of 99 male and 25 female with the average age of 61.5 years. In 71% (88/124 of tumors, c-MET high expression was found. c-MET high expression was more associated with intestinal than diffuse tumor type (P = 0.04, deeper tumor invasion, pT3 and pT4 versus pT1 and pT2 (P = 0.014, neural invasion (P = 0.002 and advanced TNM staging, stage 3 and 4 versus stage 1 and2 (P = 0.044. The c-MET high expression was not associated with age, sex, tumor location, differentiation grade and distant metastasis, but relative associations with lymph node metastasis (P = 0.065 and vascular invasion (P = 0.078 were observed. Conclusions c-MET oncogene protein was frequently overexpressed in Iranian gastric carcinomas and it was related to clinicopathological characteristics such as tumor type, depth of invasion, neural invasion and TNM staging. It can also support the idea that c-MET is a potential marker for target therapy in Iranian gastric cancer. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9744598757151429

  20. Novel mutations in the USH1C gene in Usher syndrome patients.

    Science.gov (United States)

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Aller, Elena; Millán, José María

    2010-12-31

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population.

  1. IFITM5 mutations and osteogenesis imperfecta.

    Science.gov (United States)

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  2. Bystander effect-induced mutagenicity in HPRT locus of CHO cells following BNCT neutron irradiation: Characteristics of point mutations by sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kinashi, Yuko [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)], E-mail: kinashi@rri.kyoto-u.ac.jp; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)

    2009-07-15

    To investigate bystander mutagenic effects induced by alpha particles during boron neutron capture therapy (BNCT), we mixed cells that were electroporated with borocaptate sodium (BSH), which led to the accumulation of {sup 10}B inside the cells, with cells that did not contain the boron compound. BSH-containing cells were irradiated with {alpha} particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction, whereas cells without boron were only affected by the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. The frequency of mutations induced in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus was examined in Chinese hamster ovary (CHO) cells irradiated with neutrons (Kyoto University Research Reactor: 5 MW). Neutron irradiation of 1:1 mixtures of cells with and without BSH resulted in a survival fraction of 0.1, and the cells that did not contain BSH made up 99.4% of the surviving cell population. Using multiplex polymerase chain reactions (PCRs), molecular structural analysis indicated that most of the mutations induced by the bystander effect were point mutations and that the frequencies of total and partial deletions induced by the bystander effect were lower than those resulting from the {alpha} particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction or the neutron beam from the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. The types of point mutations induced by the BNCT bystander effect were analyzed by cloning and sequencing methods. These mutations were comprised of 65.5% base substitutions, 27.5% deletions, and 7.0% insertions. Sequence analysis of base substitutions showed that transversions and transitions occurred in 64.7% and 35.3% of cases, respectively. G:C{yields}T:A transversion induced by 8-oxo-guanine in DNA occurred in 5.9% of base substitution mutants in the BNCT bystander group. The characteristic mutations seen in this group, induced by BNCT {alpha} particles

  3. HFE gene C282Y, H63D and S65C mutations frequency in the Transylvania region, Romania.

    Science.gov (United States)

    Trifa, Adrian P; Popp, Radu A; Militaru, Mariela S; Farcaş, Marius F; Crişan, Tania O; Gana, Ionuţ; Cucuianu, Andrei; Pop, Ioan V

    2012-06-01

    HFE-associated haemochromatosis is one of the most frequent autosomal recessive disorders in the Caucasian population. Although most of the cases are homozygous individuals for the C282Y mutation, another two mutations, H63D and S65C, have been reported to be associated with milder forms of the disease. This study was a first attempt to evaluate the distribution of these HFE gene mutations in the Transylvania region. Two-hundred and twenty-five healthy, unrelated volunteers originating from the Transylvania region, Romania, were screened for the HFE gene C282Y, H63D and S65C mutations, using molecular genetics assays (Polymerase Chain Reaction-Restriction Fragments Length Polymorphism). For the C282Y mutation, 7 heterozygotes (3.1%) were found, but no homozygous individual. In the case of the H63D mutation, 40 heterozygotes (17.8%) and 4 homozygotes (1.75%) for the mutant allele were evidenced. We found a compound heterozygous genotype (C282Y/H63D) in one individual (0.45%). Thus, the allele frequencies of the C282Y and H63D were 1.75% and 10.9%, respectively. Three individuals (1.3%) were found to harbour the S65C mutation in a heterozygous state, but none in a homozygous state: the allele frequency of the mutant allele was 0.75%. The distribution of the HFE gene C282Y, H63D and S65C mutations found in our group matches the tendencies observed in other European countries: a decreasing gradient from Northern to Southern Europe for the C282Y mutation; high frequency for the H63D mutation, and low frequency for the S65C mutation in most of the countries.

  4. Mutations in MC1R Gene Determine Black Coat Color Phenotype in Chinese Sheep

    Directory of Open Access Journals (Sweden)

    Guang-Li Yang

    2013-01-01

    Full Text Available The melanocortin receptor 1 (MC1R plays a central role in regulation of animal coat color formation. In this study, we sequenced the complete coding region and parts of the 5′- and 3′-untranslated regions of the MC1R gene in Chinese sheep with completely white (Large-tailed Han sheep, black (Minxian Black-fur sheep, and brown coat colors (Kazakh Fat-Rumped sheep. The results showed five single nucleotide polymorphisms (SNPs: two non-synonymous mutations previously associated with coat color (c.218 T>A, p.73 Met>Lys. c.361 G>A, p.121 Asp>Asn and three synonymous mutations (c.429 C>T, p.143 Tyr>Tyr; c.600 T>G, p.200 Leu>Leu. c.735 C>T, p.245 Ile>Ile. Meanwhile, all mutations were detected in Minxian Black-fur sheep. However, the two nonsynonymous mutation sites were not in all studied breeds (Large-tailed Han, Small-tailed Han, Gansu Alpine Merino, and China Merino breeds, all of which are in white coat. A single haplotype AATGT (haplotype3 was uniquely associated with black coat color in Minxian Black-fur breed (P=9.72E-72, chi-square test. The first and second A alleles in this haplotype 3 represent location at 218 and 361 positions, respectively. Our results suggest that the mutations of MC1R gene are associated with black coat color phenotype in Chinese sheep.

  5. RUNX1/AML1 point mutations take part in the pathogenesis of radiation-and therapy-related myeloid neoplasms

    International Nuclear Information System (INIS)

    Harada, Yuka; Kimura, Akiro; Harada, Hironori

    2012-01-01

    High frequency of myelodysplastic syndrome (MDS) has been reported in Hiroshima A-bomb exposed survivors, in resident around Semipalatinsk Nuclear Laboratory and in exposed people by Chernobyl Nuclear Power Station Accident. MDS/acute myeloid leukemia (AML) is thought to be caused by mutation of runt-related transcription factor 1 (RUNX1) gene after a long time post exposure to relatively low dose radiation. In this study, participation of RUNX1/AML1 point mutations was examined in pathogenesis of the title neoplasms experienced in authors' facility. Subjects were 18/417 cases in whom myeloproliferative neoplasms (MPN) had switched to MDS or AML in the follow-up period of 1-25 years, and 11/124 cases in whom t-MN (therapy-related myeloid neoplasms) had developed during the remission of acute promyelocytic leukemia (APL) in the 1-9.7 years follow up. Point mutations were analyzed by PCR-single strand conformation polymorphism (PCR-SSCP) followed by base sequencing. In the former cases above, RUNX1 point mutation was found in 5/18 cases and in the latter, 4/11. When patients with persistent decrease of blood cells post therapy of APL were followed up for mutation, their RUNX1 point mutation was detected before they were diagnosed to be morbid of MDS/AML. The point mutation was thus a biomarker of myelo-hematogenic cancer, and was thought useful for early diagnosis of MDS and AML. (T.T.)

  6. mtDNA mutation C1494T, haplogroup A, and hearing loss in Chinese

    International Nuclear Information System (INIS)

    Wang Chengye; Kong Qingpeng; Yao Yonggang; Zhang Yaping

    2006-01-01

    Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample from central China in our previous study that was aimed to reconstruct East Asian mtDNA phylogeny. All these three mtDNAs formed a subclade defined by mutation C1494T in mtDNA haplogroup A. It thus seems that mutation C1494T is a haplogroup A-associated mutation and this matrilineal background may contribute a high risk for the penetrance of mutation C1494T in Chinese with AINHL. To test this hypothesis, we first genotyped mutation C1494T in 553 unrelated individuals from three regional Chinese populations and performed an extensive search for published complete or near-complete mtDNA data sets (>3000 mtDNAs), we then screened the C1494T mutation in 111 mtDNAs with haplogroup A status that were identified from 1823 subjects across China. The search for published mtDNA data sets revealed no other mtDNA besides the above-mentioned three carrying mutation C1494T. None of the 553 randomly selected individuals and the 111 haplogroup A mtDNAs was found to bear this mutation. Therefore, our results suggest that C1494T is a very rare event. The mtDNA haplogroup A background in general is unlikely to play an active role in the penetrance of mutation C1494T in AINHL

  7. Development of antibody-based c-Met inhibitors for targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Lee D

    2015-02-01

    Full Text Available Dongheon Lee, Eun-Sil Sung, Jin-Hyung Ahn, Sungwon An, Jiwon Huh, Weon-Kyoo You Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea Abstract: Signaling pathways mediated by receptor tyrosine kinases (RTKs and their ligands play important roles in the development and progression of human cancers, which makes RTK-mediated signaling pathways promising therapeutic targets in the treatment of cancer. Compared with small-molecule compounds, antibody-based therapeutics can more specifically recognize and bind to ligands and RTKs. Several antibody inhibitors of RTK-mediated signaling pathways, such as human epidermal growth factor receptor 2, vascular endothelial growth factor, epidermal growth factor receptor or vascular endothelial growth factor receptor 2, have been developed and are widely used to treat cancer patients. However, since the therapeutic options are still limited in terms of therapeutic efficacy and types of cancers that can be treated, efforts are being made to identify and evaluate novel RTK-mediated signaling pathways as targets for more efficacious cancer treatment. The hepatocyte growth factor/c-Met signaling pathway has come into the spotlight as a promising target for development of potent cancer therapeutic agents. Multiple antibody-based therapeutics targeting hepatocyte growth factor or c-Met are currently in preclinical or clinical development. This review focuses on the development of inhibitors of the hepatocyte growth factor/c-Met signaling pathway for cancer treatment, including critical issues in clinical development and future perspectives for antibody-based therapeutics. Keywords: hepatocyte growth factor, ligands, receptor tyrosine kinase, signaling pathway, therapeutic agent

  8. Evaluation of clinial usefulness of 11C-methionine positron emission tomography (11C-MET-PET) as a tool for liver functional imaging

    International Nuclear Information System (INIS)

    Enomoto, Kazuo; Matsui, Yoshifumi; Okazumi, Shinichi

    1994-01-01

    We studied 11 C-MET-PET in 17 clinical cases, 10 patients with obstructive jaundice and 7 normal volunteers, and analyzed its efficacy for the evaluation of hepatic functional reserve in major hepatectomy candidates. Differential absorption ratio (DAR) of 11 C was compared to the hepatic protein synthesis rate (HPS), which is measured as the incorporation rate of 3 H-labeled leucine in protein fraction, using needle biopsied liver specimen obtained from each hepatic segment. In the cases of normal liver function, DAR was well correlated with HPS. Also in jaundice cases with two exceptions, low HPS segment was demonstrated as low DAR segment. Consequently, MET-PET images could clearly provide functional liver imaging. After injection of 11 C-MET, the increase in rate of radioactivity of 11 C in plasma protein fraction was higher in jaundice cases than in normal volunteers, which is in accord with the results of our former study that cholestatic liver has accelerated protein synthesis rate. In summary, since 11 C-MET-PET could demonstrate liver functional imaging, it might be a possible tool for liver function assessment in major hepatectomy candidates. (author)

  9. Synergistic role of Sprouty2 inactivation and c-Met up-regulation in mouse and human hepatocarcinogenesis.

    Science.gov (United States)

    Lee, Susie A; Ladu, Sara; Evert, Matthias; Dombrowski, Frank; De Murtas, Valentina; Chen, Xin; Calvisi, Diego F

    2010-08-01

    Sprouty2 (Spry2), a negative feedback regulator of the Ras/mitogen-activated protein kinase (MAPK) pathway, is frequently down-regulated in human hepatocellular carcinoma (HCC). We tested the hypothesis that loss of Spry2 cooperates with unconstrained activation of the c-Met protooncogene to induce hepatocarcinogenesis via in vitro and in vivo approaches. We found coordinated down-regulation of Spry2 protein expression and activation of c-Met as well as its downstream effectors extracellular signal-regulated kinase (ERK) and v-akt murine thymoma viral oncogene homolog (AKT) in a subset of human HCC samples with poor outcome. Mechanistic studies revealed that Spry2 function is disrupted in human HCC via multiple mechanisms at both transcriptional and post-transcriptional level, including promoter hypermethylation, loss of heterozygosity, and proteosomal degradation by neural precursor cell expressed, developmentally down-regulated 4 (NEDD4). In HCC cell lines, Spry2 overexpression inhibits c-Met-induced cell proliferation as well as ERK and AKT activation, whereas loss of Spry2 potentiates c-Met signaling. Most importantly, we show that blocking Spry2 activity via a dominant negative form of Spry2 cooperates with c-Met to promote hepatocarcinogenesis in the mouse liver by sustaining proliferation and angiogenesis. The tumors exhibited high levels of activated ERK and AKT, recapitulating the subgroup of human HCC with a clinically aggressive phenotype. The occurrence of frequent genetic, epigenetic, and biochemical events leading to Spry2 inactivation provides solid evidence that Spry2 functions as a tumor suppressor gene in liver cancer. Coordinated deregulation of Spry2 and c-Met signaling may be a pivotal oncogenic mechanism responsible for unrestrained activation of ERK and AKT pathways in human hepatocarcinogenesis.

  10. Signal transduction and downregulation of C-MET in HGF stimulated low and highly metastatic human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Husmann, Knut, E-mail: khusmann@research.balgrist.ch [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Ducommun, Pascal [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Division of Plastic Surgery and Hand Surgery, Department of Surgery, University Hospital Zurich, Zurich (Switzerland); Sabile, Adam A.; Pedersen, Else-Marie; Born, Walter; Fuchs, Bruno [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland)

    2015-09-04

    The poor outcome of osteosarcoma (OS), particularly in patients with metastatic disease and a five-year survival rate of only 20%, asks for more effective therapeutic strategies targeting malignancy-promoting mechanisms. Dysregulation of C-MET, its ligand hepatocyte growth factor (HGF) and the fusion oncogene product TPR-MET, first identified in human MNNG-HOS OS cells, have been described as cancer-causing factors in human cancers. Here, the expression of these molecules at the mRNA and the protein level and of HGF-stimulated signaling and downregulation of C-MET was compared in the parental low metastatic HOS and MG63 cell lines and the respective highly metastatic MNNG-HOS and 143B and the MG63-M6 and MG63-M8 sublines. Interestingly, expression of TPR-MET was only observed in MNNG-HOS cells. HGF stimulated the phosphorylation of Akt and Erk1/2 in all cell lines investigated, but phospho-Stat3 remained at basal levels. Downregulation of HGF-stimulated Akt and Erk1/2 phosphorylation was much faster in the HGF expressing MG63-M8 cells than in HOS cells. Degradation of HGF-activated C-MET occurred predominantly through the proteasomal and to a lesser extent the lysosomal pathway in the cell lines investigated. Thus, HGF-stimulated Akt and Erk1/2 signaling as well as proteasomal degradation of HGF activated C-MET are potential therapeutic targets in OS. - Highlights: • Expression of TPR-MET was only observed in MNNG-HOS cells. • HGF stimulated the phosphorylation of Akt and Erk1/2 but not of Stat3 in osteosarcoma cell lines. • Degradation of HGF-activated C-MET occurred predominantly through the proteasomal pathway.

  11. Loss of c-Met signaling sensitizes hepatocytes to lipotoxicity and induces cholestatic liver damage by aggravating oxidative stress

    International Nuclear Information System (INIS)

    Gomez-Quiroz, Luis E.; Seo, Daekwan; Lee, Yun-Han; Kitade, Mitsuteru; Gaiser, Timo; Gillen, Matthew; Lee, Seung-Bum; Gutierrez-Ruiz, Ma Concepcion; Conner, Elizabeth A.; Factor, Valentina M; Thorgeirsson, Snorri S.; Marquardt, Jens U.

    2016-01-01

    Recent studies confirmed a critical importance of c-Met signaling for liver regeneration by modulating redox balance. Here we used liver-specific conditional knockout mice (MetKO) and a nutritional model of hepatic steatosis to address the role of c-Met in cholesterol-mediated liver toxicity. Liver injury was assessed by histopathology and plasma enzymes levels. Global transcriptomic changes were examined by gene expression microarray, and key molecules involved in liver damage and lipid homeostasis were evaluated by Western blotting. Loss of c-Met signaling amplified the extent of liver injury in MetKO mice fed with high-cholesterol diet for 30 days as evidenced by upregulation of liver enzymes and increased synthesis of total bile acids, aggravated inflammatory response and enhanced intrahepatic lipid deposition. Global transcriptomic changes confirmed the enrichment of networks involved in steatosis and cholestasis. In addition, signaling pathways related to glutathione and lipid metabolism, oxidative stress and mitochondria dysfunction were significantly affected by the loss of c-Met function. Mechanistically, exacerbation of oxidative stress in MetKO livers was corroborated by increased lipid and protein oxidation. Western blot analysis further revealed suppression of Erk, NF-kB and Nrf2 survival pathways and downstream target genes (e.g. cyclin D1, SOD1, gamma-GCS), as well as up-regulation of proapoptotic signaling (e.g. p53, caspase 3). Consistent with the observed steatotic and cholestatic phenotype, nuclear receptors RAR, RXR showed increased activation while expression levels of CAR, FXR and PPAR-alpha were decreased in MetKO. Collectively, our data provide evidence for the critical involvement of c-Met signaling in cholesterol and bile acids toxicity.

  12. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    Science.gov (United States)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  13. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions

    Directory of Open Access Journals (Sweden)

    Barash Danny

    2008-04-01

    Full Text Available Abstract Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3, for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary

  14. Novel Compound Heterozygous CLCNKB Gene Mutations (c.1755A>G/ c.848_850delTCT) Cause Classic Bartter Syndrome.

    Science.gov (United States)

    Wang, Chunli; Chen, Ying; Zheng, Bixia; Zhu, Mengshu; Fan, Jia; Wang, Juejin; Jia, Zhanjun; Huang, Songming; Zhang, Aihua

    2018-02-14

    Inactivated variants in CLCNKB gene encoding the basolateral chloride channel ClC-Kb cause classic Bartter syndrome characterized by hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism. Here we identified two cBS siblings presenting hypokalemia in a Chinese family due to novel compound heterozygous CLCNKB mutations (c.848_850delTCT/c.1755A>G). Compound heterozygosity was confirmed by amplifying and sequencing the patient's genomic DNA. The synonymous mutation c.1755A>G (Thr585Thr) was located at +2bp from the 5' splice donor site in exon 15, further transcript analysis demonstrated that this single nucleotide mutation causes exclusion of exon 15 in the cDNA from the proband and his mother. Furthermore, we investigated the expression and protein trafficking change of c.848_850delTCT (TCT) and exon 15 deletion(E15)mutation in vitro. The E15 mutation markedly decreased the expression of ClC-Kb and resulted in a low-molecular-weight band (~55kD) trapping in the endoplasmic reticulum, while the TCT mutant only decreased the total and plasma membrane ClC-Kb protein expression but did not affect the subcellular localization. Finally, we studied the physiological functions of mutations by using whole-cell patch clamp and found that E15 or TCT mutation decreased the current of ClC-Kb/barttin channel. These results suggested that the compound defective mutations of CLCNKB gene are the molecular mechanism of the two cBS siblings.

  15. MiR-181a-5p is downregulated in hepatocellular carcinoma and suppresses motility, invasion and branching-morphogenesis by directly targeting c-Met.

    Science.gov (United States)

    Korhan, Peyda; Erdal, Esra; Atabey, Neşe

    2014-08-08

    c-Met receptor tyrosine kinase has been regarded as a promising therapeutic target for hepatocellular carcinoma (HCC). Recently, microRNAs (miRNAs) have been shown as a novel mechanism to control c-Met expression in cancer. In this study, we investigate the potential contribution of miR-181a-5p dysregulation to the biology of c-Met overexpression in HCC. Herein, we found an inverse expression pattern between miR-181a-5p and c-Met expression in normal, cirrhotic and HCC liver tissues. Luciferase assay confirmed that miR-181a-5p binding to the 3'-UTR of c-Met downregulated the expression of c-Met in HCC cells. Overexpression of miR-181a-5p suppressed both HGF-independent and -dependent activation of c-Met and consequently diminished branching-morphogenesis and invasion. Combined treatment with miR-181a-5p and c-Met inhibitor led to a further inhibition of c-Met-driven cellular activities. Knockdown of miR-181a-5p promoted HGF-independent/-dependent signaling of c-Met and accelerated migration, invasion and branching-morphogenesis. In conclusion, our results demonstrated for the first time that c-Met is a functional target gene of miR-181a-5p and the loss of miR-181a-5p expression led to the activation of c-Met-mediated oncogenic signaling in hepatocarcinogenesis. These findings display a novel molecular mechanism of c-Met regulation in HCC and strategies to increase miR-181a5p level might be an alternative approach for the enhancement of the inhibitory effects of c-Met inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A novel missense mutation of the DDHD1 gene associated with juvenile amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Chujun Wu

    2016-12-01

    Full Text Available Background: Juvenile amyotrophic lateral sclerosis (jALS is a rare form of ALS with an onset age of less than 25 years and is frequently thought to be genetic in origin. DDHD1 gene mutations have been reported to be associated with the SPG28 subtype of autosomal recessive HSP but have never been reported in jALS patients.Methods: Gene screens for the causative genes of ALS, HSP and CMT using next-generation sequencing (NGS technologies were performed on a jALS patient. Sanger sequencing was used to validate identified variants and perform segregation analysis.Results: We identified a novel c.1483A>G (p.Met495Val homozygous missense mutation of the DDHD1 gene in the jALS patient. All of his parents and young bother were heterozygous for this mutation. The mutation was not found in 800 Chinese control subjects or the data of dbSNP, ExAC and 1000G.Conclusion: The novel c.1483A>G (p.Met495Val missense mutation of the DDHD1 gene could be a causative mutation of autosomal recessive jALS.

  17. YKL-40/c-Met expression in rectal cancer biopsies predicts tumor regression following neoadjuvant chemoradiotherapy: a multi-institutional study.

    Science.gov (United States)

    Senetta, Rebecca; Duregon, Eleonora; Sonetto, Cristina; Spadi, Rossella; Mistrangelo, Massimiliano; Racca, Patrizia; Chiusa, Luigi; Munoz, Fernando H; Ricardi, Umberto; Arezzo, Alberto; Cassenti, Adele; Castellano, Isabella; Papotti, Mauro; Morino, Mario; Risio, Mauro; Cassoni, Paola

    2015-01-01

    Neoadjuvant chemo-radiotherapy (CRT) followed by surgical resection is the standard treatment for locally advanced rectal cancer, although complete tumor pathological regression is achieved in only up to 30% of cases. A clinicopathological and molecular predictive stratification of patients with advanced rectal cancer is still lacking. Here, c-Met and YKL-40 have been studied as putative predictors of CRT response in rectal cancer, due to their reported involvement in chemoradioresistance in various solid tumors. A multicentric study was designed to assess the role of c-Met and YKL-40 expression in predicting chemoradioresistance and to correlate clinical and pathological features with CRT response. Immunohistochemistry and fluorescent in situ hybridization for c-Met were performed on 81 rectal cancer biopsies from patients with locally advanced rectal adenocarcinoma. All patients underwent standard (50.4 gy in 28 fractions + concurrent capecitabine 825 mg/m2) neoadjuvant CRT or the XELOXART protocol. CRT response was documented on surgical resection specimens and recorded as tumor regression grade (TRG) according to the Mandard criteria. A significant correlation between c-Met and YKL-40 expression was observed (R = 0.43). The expressions of c-Met and YKL-40 were both significantly associated with a lack of complete response (86% and 87% of c-Met and YKL-40 positive cases, prectal cancer. Targeted therapy protocols could take advantage of prior evaluations of c-MET and YKL-40 expression levels to increase therapeutic efficacy.

  18. Identification of the mutation causing progressive retinal atrophy in Old Danish Pointing Dog.

    Science.gov (United States)

    Karlskov-Mortensen, P; Proschowsky, H F; Gao, F; Fredholm, M

    2018-04-06

    Progressive retinal atrophy (PRA) is a common cause of blindness in many dog breeds. It is most often inherited as a simple Mendelian trait, but great genetic heterogeneity has been demonstrated both within and between breeds. In many breeds the genetic cause of the disease is not known, and until now, the Old Danish Pointing Dog (ODP) has been one of those breeds. ODP is one of the oldest dog breeds in Europe. Seventy years ago the breed almost vanished, but today a population still exists, primarily in Denmark but with some dogs in Germany and Sweden. PRA has been diagnosed in ODP since the late 1990s. It resembles late onset PRA in other dog breeds, and it is inherited as an autosomal recessive trait. In the present study, we performed whole-genome sequencing and identified a single base insertion (c.3149_3150insC) in exon 1 of C17H2orf71. This is the same mutation previously found to cause PRA in Gordon Setters and Irish Setters, and it was later found in Tibetan Terrier, Standard Poodle and the Polski Owczarek Nizinny. The presence of the mutation in such a diverse range of breeds indicates an origin preceding creation of modern dog breeds. Hence, we screened 262 dogs from 44 different breeds plus four crossbred dogs, and can subsequently add Miniature Poodle and another polish sheepdog, the Polski Owczarek Podhalanski, to the list of affected breeds. © 2018 Stichting International Foundation for Animal Genetics.

  19. Carrier frequency of GJB2 gene mutations c.35delG, c.235delC and c.167delT among the populations of Eurasia.

    Science.gov (United States)

    Dzhemileva, Lilya U; Barashkov, Nikolay A; Posukh, Olga L; Khusainova, Rita I; Akhmetova, Vita L; Kutuev, Ildus A; Gilyazova, Irina R; Tadinova, Vera N; Fedorova, Sardana A; Khidiyatova, Irina M; Lobov, Simeon L; Khusnutdinova, Elza K

    2010-11-01

    Hearing impairment is one of the most common disorders of sensorineural function and the incidence of profound prelingual deafness is about 1 per 1000 at birth. GJB2 gene mutations make the largest contribution to hereditary hearing impairment. The spectrum and prevalence of some GJB2 mutations are known to be dependent on the ethnic origin of the population. This study presents data on the carrier frequencies of major GJB2 mutations, c.35delG, c.167delT and c.235delC, among 2308 healthy persons from 18 various populations of Eurasia: Russians, Bashkirs, Tatars, Chuvashes, Udmurts, Komi-Permyaks and Mordvins (Volga-Ural region of Russia); Belarusians and Ukrainians (East Europe); Abkhazians, Avars, Cherkessians and Ingushes (Caucasus); Kazakhs, Uighurs and Uzbeks (Central Asia); and Yakuts and Altaians (Siberia). The data on c.35delG and c.235delC mutation prevalence in the studied ethnic groups can be used to investigate the prospective founder effect in the origin and prevalence of these mutations in Eurasia and consequently in populations around the world.

  20. De novo point mutations in patients diagnosed with ataxic cerebral palsy.

    Science.gov (United States)

    Parolin Schnekenberg, Ricardo; Perkins, Emma M; Miller, Jack W; Davies, Wayne I L; D'Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O'Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis; Jackson, Mandy; Tucker, Stephen J; Németh, Andrea H

    2015-07-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  1. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization.

    Science.gov (United States)

    An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu

    2015-02-01

    Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. cMET in NSCLC: Can We Cut off the Head of the Hydra? From the Pathway to the Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Steen, Nele [Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610 (Belgium); Pauwels, Patrick [Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610 (Belgium); Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650 (Belgium); Gil-Bazo, Ignacio [Department of Oncology, Clínica Universidad de Navarra, Pamplona 31008 (Spain); Castañon, Eduardo [Department of Oncology, Clínica Universidad de Navarra, Pamplona 31008 (Spain); Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650 (Belgium); Raez, Luis [Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Pembroke Pines, FL 33024 (United States); Cappuzzo, Federico [4Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Pembroke Pines, FL 33024 (United States); Rolfo, Christian, E-mail: Christian.Rolfo@uza.be [Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610 (Belgium); Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650 (Belgium)

    2015-03-25

    In the last decade, the tyrosine kinase receptor cMET, together with its ligand hepatocyte growth factor (HGF), has become a target in non-small cell lung cancer (NSCLC). Signalization via cMET stimulates several oncological processes amongst which are cell motility, invasion and metastasis. It also confers resistance against several currently used targeted therapies, e.g., epidermal growth factor receptor (EGFR) inhibitors. In this review, we will discuss the basic structure of cMET and the most important signaling pathways. We will also look into aberrations in the signaling and the effects thereof in cancer growth, with the focus on NSCLC. Finally, we will discuss the role of cMET as resistance mechanism.

  3. Point mutation in activated c-Ha-ras gene of a chemically induced transplantable human pancreas carcinoma

    International Nuclear Information System (INIS)

    Maheshwari, K.K.; Parsa, I.

    1986-01-01

    The authors have reported a model of human pancreas carcinogenesis where repeated treatment with MNU of explants results in the development of transplantable carcinoma. This report compares the endonuclease digests of DNAs from normal human pancreas (HP) and MNU-induced transplantable tumor (HP-T1) analyzed with 32 P-labelled Ha-ras probe prepared from clone BS-9. The hybridization patterns of BamHI, BglII, EcoRI and HindIII digests of HP were significantly different from those of HP-T1. In EcoRI digests a 3.0 kb fragments of HP-T1 DNA hybridized with Ha-ras probe instead of a 4.3 kb fragments seen in HP DNA. The pattern for HindIII digests was similar to those of EcoRI. The BgIII digests of HP DNA revealed two hybridizing fragments of 8.0 and 4.3 kb whereas those of HP-T1 DNA fragments measured 8.5 and 4.0 kb. BamHI treated HP DNA showed only hybridizing fragments of 6.6 kb while the HP-T1 DNA showed to hybridizing fragments of 6.8 and 7.2 kb. The digested DNAs by HhaI, HinfI, KpnI, pstI, PvuII, SaII, SstI, TaqI and XbaI showed similar hybridization profiles. The point mutation in c-Ha-ras was examined in the HpaII and MspI double digests of both DNAs by 0.6 Kb SmaI fragments of pEJ. The hybridized fragments measured 412 and 355 bp in DNA digests from tumor and normal pancreas respectively

  4. Mechanism of c-Met and EGFR tyrosine kinase inhibitor resistance through epithelial mesenchymal transition in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Ichwaku; Rajanna, Supriya; Webb, Andrew; Chhabra, Gagan; Foster, Brad [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Illinois (United States); Webb, Brian [Thermo Fisher Scientific, Rockford, Illinois (United States); Puri, Neelu, E-mail: neelupur@uic.edu [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Illinois (United States)

    2016-09-02

    According to currently available estimates from Cancer Research UK, 14.1 million new lung cancer cases were diagnosed and a staggering 8.2 million people worldwide died from lung cancer in 2012. EGFR and c-Met are two tyrosine kinase receptors most commonly overexpressed or mutated in Non-small Cell Lung Cancer (NSCLC) resulting in increased proliferation and survival of lung cancer cells. Tyrosine kinase inhibitors (TKIs), such as erlotinib, approved by the FDA as first/second line therapy for NSCLC patients have limited clinical efficacy due to acquired resistance. In this manuscript, we investigate and discuss the role of epithelial mesenchymal transition (EMT) in the development of resistance against EGFR and c-Met TKIs in NSCLC. Our findings show that Zeb-1, a transcriptional repressor of E-Cadherin, is upregulated in TKI-resistant cells causing EMT. We observed that TKI-resistant cells have increased gene and protein expression of EMT related proteins such as Vimentin, N-Cadherin, β-Catenin and Zeb-1, while expression of E-Cadherin, an important cell adhesion molecule, was suppressed. We also confirmed that TKI-resistant cells display mesenchymal cell type morphology, and have upregulation of β-Catenin which may regulate expression of Zeb-1, a transcriptional repressor of E-Cadherin in TKI-resistant NSCLC cells. Finally, we show that down-regulating Zeb-1 by inducing miR-200a or β-Catenin siRNA can increase drug sensitivity of TKI-resistant cells. - Highlights: • Resistance to TKIs in NSCLC cells is mediated via modulation in EMT related proteins. • EMT may induce c-Met mediated TKI resistance, similar to EGFR TKI resistance. • Role of β-catenin and cadherins in TKI resistance was validated by FACS and qPCR. • Knockdown of β-catenin or Zeb-1 can increase TKI sensitivity in TKI-resistant cells. • Targeting key EMT related proteins may overcome TKI resistance in NSCLC.

  5. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    Science.gov (United States)

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  6. Functional analysis of the novel TBX5 c.1333delC mutation resulting in an extended TBX5 protein

    Directory of Open Access Journals (Sweden)

    Ekman-Joelsson Britt-Marie

    2008-10-01

    Full Text Available Abstract Background Autosomal dominant Holt-Oram syndrome (HOS is caused by mutations in the TBX5 gene and is characterized by congenital heart and preaxial radial ray upper limb defects. Most of the TBX5 mutations found in patients with HOS cause premature truncation of the primary TBX5 transcript. TBX5 missense mutations alter the three-dimensional structure of the protein and result in failed nuclear localization or reduced binding to target DNA. In this study we present our functional analyses of the novel and unusual c.1333delC mutation found in a patient with classical HOS. Methods The functional impact of this novel mutation was assessed by investigating the intracellular localization of the resulting TBX5 protein and its ability to activate the expression of its downstream target ANF. Results The deletion of the cytosine is the first TBX5 frameshift mutation predicted to result in an elongated TBX5 protein with 74 miscoding amino acids and 62 supernumerary C-terminal amino acids. The c.1333delC mutation affects neither the nuclear localization, nor its colocalization with SALL4, but severely affects the activation of the ANF promoter. Conclusion The mutation c.1333delC does not locate within functional domains, but impairs the activation of the downstream target. This suggests that misfolding of the protein prevents its biological function.

  7. Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity.

    Science.gov (United States)

    Li, Jing-Ya; Cui, Yong-Mei; Chen, Ling-Ling; Gu, Min; Li, Jia; Nan, Fa-Jun; Ye, Qi-Zhuang

    2004-05-14

    Methionine aminopeptidase (MetAP) catalyzes the removal of methionine from newly synthesized polypeptides. MetAP carries out this cleavage with high precision, and Met is the only natural amino acid residue at the N terminus that is accepted, although type I and type II MetAPs use two different sets of residues to form the hydrophobic S1 site. Characteristics of the S1 binding pocket in type I MetAP were investigated by systematic mutation of each of the seven S1 residues in Escherichia coli MetAP type I (EcMetAP1) and human MetAP type I (HsMetAP1). We found that Tyr-65 and Trp-221 in EcMetAP1, as well as the corresponding residues Phe-197 and Trp-352 in HsMetAP1, were essential for the hydrolysis of a thiopeptolide substrate, Met-S-Gly-Phe. Mutation of Phe-191 to Ala in HsMetAP1 caused inactivity in contrast to the full activity of EcMetAP1(Y62A), which may suggest a subtle difference between the two type I enzymes. The more striking finding is that mutation of Cys-70 in EcMetAP1 or Cys-202 in HsMetAP1 opens up the S1 pocket. The thiopeptolides Leu-S-Gly-Phe and Phe-S-Gly-Phe, with previously unacceptable Leu or Phe as the N-terminal residue, became efficient substrates of EcMetAP1(C70A) and HsMetAP1(C202A). The relaxed specificity shown in these S1 site mutants for the N-terminal residues was confirmed by hydrolysis of peptide substrates and inhibition by reaction products. The structural features at the enzyme active site will be useful information for designing specific MetAP inhibitors for therapeutic applications.

  8. Molecular alterations underlying the spontaneous and γ-ray-induced point mutations at the white locus of Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Aleksandrova, M.V.; Lapidus, I.L.; Aleksandrov, I.D.; Karpovskij, A.L.

    1996-01-01

    The white locus in D.Melanogaster was selected as a target gene for the study of the mutational spectra of spontaneously arising and radiation-induced gene mutations in a whole organism. Analysis of 6 spontaneous and 73 γ-ray-induced white mutations by a combination of cytological, genetic and molecular techniques revealed that on the chromosomal and genetic levels all spontaneous mutations showed themselves to be point mutants. The share of such mutants among all heritable radiation-induced gene mutations is about 40%, whereas the rest ones are due to exchange breaks (8%) as well as multilocus, single-locus or partial-locus (intragenic) deletions (52%). The DNAs from 4 spontaneous and 17 γ-ray-induced point mutants were analysed by Southern blot-hybridization. The three spontaneous and 7 radiation mutants showed an altered DNA sequence at the left (distal) half of the white gene due to insertion or DNA rearrangement. The rest (58%) of the radiation-induced point mutations did not indicate any alternations in this part of the gene as detected by this technique and probes employed. 15 refs., 3 figs., 1 tab

  9. Lamin A/C mutations with lipodystrophy, cardiac abnormalities, and muscular dystrophy

    NARCIS (Netherlands)

    van der Kooi, A. J.; Bonne, G.; Eymard, B.; Duboc, D.; Talim, B.; van der Valk, M.; Reiss, P.; Richard, P.; Demay, L.; Merlini, L.; Schwartz, K.; Busch, H. F. M.; de Visser, M.

    2002-01-01

    Mutations in the lamin A/C gene are found in Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy with cardiac conduction disturbances, dilated cardiomyopathy with conduction system disease, and familial partial lipodystrophy. Cases with lamin A/C mutations presenting with lipodystrophy

  10. Differential expression of c-Met between primary and metastatic sites in clear-cell renal cell carcinoma and its association with PD-L1 expression.

    Science.gov (United States)

    Lalani, Aly-Khan A; Gray, Kathryn P; Albiges, Laurence; Callea, Marcella; Pignon, Jean-Christophe; Pal, Soumitro; Gupta, Mamta; Bhatt, Rupal S; McDermott, David F; Atkins, Michael B; Woude, G F Vande; Harshman, Lauren C; Choueiri, Toni K; Signoretti, Sabina

    2017-11-28

    In preclinical models, c-Met promotes survival of renal cancer cells through the regulation of programmed death-ligand 1 (PD-L1). However, this relationship in human clear cell renal cell carcinoma (ccRCC) is not well characterized. We evaluated c-Met expression in ccRCC patients using paired primary and metastatic samples and assessed the association with PD-L1 expression and other clinical features. Areas with predominant and highest Fuhrman nuclear grade (FNG) were selected. c-Met expression was evaluated by IHC using an anti-Met monoclonal antibody (MET4 Ab) and calculated by a combined score (CS, 0-300): intensity of c-Met staining (0-3) x % of positive cells (0-100). PD-L1 expression in tumor cells was previously assessed by IHC and PD-L1+ was defined as PD-L1 > 0% positive cells. Our cohort consisted of 45 pairs of primary and metastatic ccRCC samples. Overall, c-Met expression was higher in metastatic sites compared to primary sites (average c-Met CS: 55 vs. 28, p = 0.0003). Higher c-Met expression was associated with higher FNG (4 vs. 3) in primary tumors (average c-Met CS: 52 vs. 20, p = 0.04). c-Met expression was numerically greater in PD-L1+ vs. PD-L1- tumors. Higher c-Met expression in metastatic sites compared to primary tumors suggests that testing for biomarkers of response to c-Met inhibitors should be conducted in metastases. While higher c-Met expression in PD-L1+ tumors requires further investigation, it supports exploring these targets in combination clinical trials.

  11. Specific regulation of point-mutated K-ras-immortalized cell proliferation by a photodynamic antisense strategy.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kato, Kiyoko; Kobori, Akio; Wake, Norio; Murakami, Akira

    2010-02-01

    It has been reported that point mutations in genes are responsible for various cancers, and the selective regulation of gene expression is an important factor in developing new types of anticancer drugs. To develop effective drugs for the regulation of point-mutated genes, we focused on photoreactive antisense oligonucleotides. Previously, we reported that photoreactive oligonucleotides containing 2'-O-psoralenylmethoxyethyl adenosine (2'-Ps-eom) showed drastic photoreactivity in a strictly sequence-specific manner. Here, we demonstrated the specific gene regulatory effects of 2'-Ps-eom on [(12)Val]K-ras mutant (GGT --> GTT). Photo-cross-linking between target mRNAs and 2'-Ps-eom was sequence-specific, and the effect was UVA irradiation-dependent. Furthermore, 2'-Ps-eom was able to inhibit K-ras-immortalized cell proliferation (K12V) but not Vco cells that have the wild-type K-ras gene. These results suggest that the 2'-Ps-eom will be a powerful nucleic acid drug to inhibit the expression of disease-causing point mutation genes, and has great therapeutic potential in the treatment of cancer.

  12. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer

    International Nuclear Information System (INIS)

    Szybka, Malgorzata; Kordek, Radzislaw; Zakrzewska, Magdalena; Rieske, Piotr; Pasz-Walczak, Grazyna; Kulczycka-Wojdala, Dominika; Zawlik, Izabela; Stawski, Robert; Jesionek-Kupnicka, Dorota; Liberski, Pawel P

    2009-01-01

    Recently published data showed discrepancies beteween P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers. To this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry. We found P53 gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations. In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation) in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis

  13. Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.

    Science.gov (United States)

    Kos, L; Aronzon, A; Takayama, H; Maina, F; Ponzetto, C; Merlino, G; Pavan, W

    1999-02-01

    The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.

  14. Galactosemia caused by a point mutation that activates cryptic donor splice site in the galactose-1-phosphate uridyltransferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Wadelius, C.; Lagerkvist, A. (Univ. Hospital, Uppsala (Sweden) Uppsala Univ. (Sweden)); Molin, A.K.; Larsson, A. (Univ. Hospital, Uppsala (Sweden)); Von Doebeln, U. (Karolinska Institute, Stockholm (Sweden))

    1993-08-01

    Galactosemia affects 1/84,000 in Sweden and is manifested in infancy when the child is exposed to galactose in the diet. If untreated there is a risk of severe early symptoms and, even with a lactose-free diet, late symptoms such as mental retardation and ovarial dysfunction may develop. In classical galactosemia, galactose-1-phosphate uridyltransferase (GALT) (EC 2.7.7.12) is defective and the normal cDNA sequence of this enzyme has been characterized. Recently eight mutations leading to galactosemia were published. Heparinized venous blood was drawn from a patient with classical galactosemia. In the cDNA from the patient examined, an insertion of 54 bp was found at position 1087. Amplification of the relevant genomic region of the patient's DNA was performed. Exon-intron boundaries and intronic sequences thus determined revealed that the 54-bp insertion was located immediately downstream of exon 10. It was further found that the patient was heterozygous for a point mutation, changing a C to a T (in 5 of 9 clones) at the second base in the intron downstream of the insertion. This alteration creates a sequence which, as well as the ordinary splice site, differs in only two positions from the consensus sequence. It was found that the mutation occurred in only one of the 20 alleles from galactosemic patients and in none of the 200 alleles from normal controls. The mutation is inherited from the mother, who also was found to express the 54-bp-long insertion at the mRNA level. Sequences from the 5[prime] end of the coding region were determined after genomic amplification, revealing a sequence identical to that reported. The mutation on the paternal allele has not been identified. 9 refs., 1 fig.

  15. Development of a Novel SPECT Tracer to Image c-Met Expression in Non-Small Cell Lung Cancer in a Human Tumor Xenograft.

    Science.gov (United States)

    Han, Zhaoguo; Xiao, Yadi; Wang, Kai; Yan, Ji; Xiao, Zunyu; Fang, Fang; Jin, Zhongnan; Liu, Yang; Sun, Xilin; Shen, Baozhong

    2018-05-18

    Rationale: Elevated expression of the c-Met receptor plays a crucial role in cancers. In non-small cell lung cancer (NSCLC), aberrant activation of c-Met signaling pathway contributes to tumorigenesis and cancer progression, and may mediate acquired resistance to epidermal growth factor receptor-targeted therapy. c-Met is therefore emerging as a promising therapeutic target for treating NSCLC, and the methods for noninvasive in vivo assessment of c-Met expression will improve NSCLC treatment and diagnosis. Methods: A new peptide-based (cMBP) radiotracer targeting c-Met, 99m Tc-hydrazine nicotinamide (HYNIC)-cMBP, was developed for single photon emission computed tomography (SPECT) imaging. Cell uptake assays were performed on two NSCLC cell lines with different c-Met expression: H1993 (high expression) and H1299 (no expression). In vivo tumor specificity was assessed by SPECT imaging in tumor-bearing mice at 0.5, 1, 2 and 4 h after injection of the probe. Blocking assays, biodistribution and autoradiography were also conducted to determine probe specificity. Results: 99m Tc-HYNIC-cMBP was prepared with high efficiency and showed higher uptake in H1993 cells than H1299 cells. Biodistribution and autoradiography also showed significantly higher accumulation of 99m Tc-HYNIC-cMBP in H1993 tumors than H1299 (H1993: 4.74±1.43 %ID/g and H1299: 1.00±0.37 %ID/g at 0.5h, pc-Met was demonstrated by competitive block with excess un-radiolabeled peptide. Conclusion: We developed a novel SPECT tracer, 99m Tc-HYNIC-cMBP, for c-Met-targeted imaging in NSCLC that specifically bound to c-Met with favorable pharmacokinetics in vitro and in vivo. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Convergent RANK- and c-Met-mediated signaling components predict survival of patients with prostate cancer: an interracial comparative study.

    Science.gov (United States)

    Hu, Peizhen; Chung, Leland W K; Berel, Dror; Frierson, Henry F; Yang, Hua; Liu, Chunyan; Wang, Ruoxiang; Li, Qinlong; Rogatko, Andre; Zhau, Haiyen E

    2013-01-01

    We reported (PLoS One 6 (12):e28670, 2011) that the activation of c-Met signaling in RANKL-overexpressing bone metastatic LNCaP cell and xenograft models increased expression of RANK, RANKL, c-Met, and phosphorylated c-Met, and mediated downstream signaling. We confirmed the significance of the RANK-mediated signaling network in castration resistant clinical human prostate cancer (PC) tissues. In this report, we used a multispectral quantum dot labeling technique to label six RANK and c-Met convergent signaling pathway mediators simultaneously in formalin fixed paraffin embedded (FFPE) tissue specimens, quantify the intensity of each expression at the sub-cellular level, and investigated their potential utility as predictors of patient survival in Caucasian-American, African-American and Chinese men. We found that RANKL and neuropilin-1 (NRP-1) expression predicts survival of Caucasian-Americans with PC. A Gleason score ≥ 8 combined with nuclear p-c-Met expression predicts survival in African-American PC patients. Neuropilin-1, p-NF-κB p65 and VEGF are predictors for the overall survival of Chinese men with PC. These results collectively support interracial differences in cell signaling networks that can predict the survival of PC patients.

  17. Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer

    International Nuclear Information System (INIS)

    Yeh, Chen-Yun; Tseng, Vincent S; Lee, Yuan-Chii G; Shen, Cheng-Huang; Chow, Nan-Haw; Liu, Hsiao-Sheng; Shin, Shin-Mei; Yeh, Hsuan-Heng; Wu, Tsung-Jung; Shin, Jyh-Wei; Chang, Tsuey-Yu; Raghavaraju, Giri; Lee, Chung-Ta; Chiang, Jung-Hsien

    2011-01-01

    A cross-talk between different receptor tyrosine kinases (RTKs) plays an important role in the pathogenesis of human cancers. Both NIH-Met5 and T24-Met3 cell lines harboring an inducible human c-Met gene were established. C-Met-related RTKs were screened by RTK microarray analysis. The cross-talk of RTKs was demonstrated by Western blotting and confirmed by small interfering RNA (siRNA) silencing, followed by elucidation of the underlying mechanism. The impact of this cross-talk on biological function was demonstrated by Trans-well migration assay. Finally, the potential clinical importance was examined in a cohort of 65 cases of locally advanced and metastatic bladder cancer patients. A positive association of Axl or platelet-derived growth factor receptor-alpha (PDGFR-α) with c-Met expression was demonstrated at translational level, and confirmed by specific siRNA knock-down. The transactivation of c-Met on Axl or PDGFR-α in vitro was through a ras- and Src-independent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. In human bladder cancer, co-expression of these RTKs was associated with poor patient survival (p < 0.05), and overexpression of c-Met/Axl/PDGFR-α or c-Met alone showed the most significant correlation with poor survival (p < 0.01). In addition to c-Met, the cross-talk with Axl and/or PDGFR-α also contributes to the progression of human bladder cancer. Evaluation of Axl and PDGFR-α expression status may identify a subset of c-Met-positive bladder cancer patients who may require co-targeting therapy

  18. Functional characterization of c-Mpl ectodomain mutations that underlie congenital amegakaryocytic thrombocytopenia.

    Science.gov (United States)

    Varghese, Leila N; Zhang, Jian-Guo; Young, Samuel N; Willson, Tracy A; Alexander, Warren S; Nicola, Nicos A; Babon, Jeffrey J; Murphy, James M

    2014-02-01

    Activation of the cell surface receptor, c-Mpl, by the cytokine, thrombopoietin (TPO), underpins megakaryocyte and platelet production in mammals. In humans, mutations in c-Mpl have been identified as the molecular basis of Congenital Amegakaryocytic Thrombocytopenia (CAMT). Here, we show that CAMT-associated mutations in c-Mpl principally lead to defective receptor presentation on the cell surface. In contrast, one CAMT mutant c-Mpl, F104S, was expressed on the cell surface, but showed defective TPO binding and receptor activation. Using mutational analyses, we examined which residues adjacent to F104 within the membrane-distal cytokine receptor homology module (CRM) of c-Mpl comprise the TPO-binding epitope, revealing residues within the predicted Domain 1 E-F and A-B loops and Domain 2 F'-G' loop as key TPO-binding determinants. These studies underscore the importance of the c-Mpl membrane-distal CRM to TPO-binding and suggest that mutations within this CRM that perturb TPO binding could give rise to CAMT.

  19. Identification and verification of a pathogenic MLH1 mutation c.1145dupA in a Lynch syndrome family

    Directory of Open Access Journals (Sweden)

    Huang Feifei

    2017-06-01

    Full Text Available Lynch syndrome (LS, an autosomal-dominant disorder with an increased risk of predominantly colorectal and endometrial cancers, is caused by germ-line mutations in mismatch repair genes. The identification of germ-line mutations that predispose to cancer is important to further our understanding of tumorigenesis, guide patient management and inform the best practice for healthcare. A 45-year-old woman with atypical endometrial hyperplasia who suffered colon cancer at the age of 30 years underwent hysterectomy and genetic counseling. Pedigree analysis revealed her family fulfilling the Amsterdam I criteria. Next-generation sequencing was offered to the patient. A mutation in the MLH1 gene, c.1145dupA, was identified and verified by Sanger sequencing. In addition, her nine family members were tested for the mutation. Two were affected (colon cancer at the age of 43 years and 45 years and one healthy relative carried the same mutation in the MLH1 gene. The mutation resulted in a frame-shift (p.Met383Aspfs*12 located in exon12, as well as a polypeptide truncation of 393 amino acids by the formation of a premature stop codon. An immunohistochemistry analysis of endometrial hyperplasia tissues revealed defects in MLH1 and PMS2 protein expression in the patient. Based on the 2015 American College of Medical Genetics and Genomics (ACMG guideline, we report this MLH1 c.1145dupA variation to be a pathogenic mutation that contributes to a strongly increased cancer risk in this LS family. Proper screening suggestions were offered to the three affected patients and the healthy carrier. To the best of our knowledge, this germ-line mutation of MLH1 was previously submitted to the Leiden Open Variation Database (LOVD database, but no comprehensive evidence or supporting observations were reported previously in the literature. The present report found a single nucleotide insertion in exon12 of the MLH1 gene, which can be considered causative of Lynch phenotype

  20. Naturally occurring mutations in large surface genes related to occult infection of hepatitis B virus genotype C.

    Directory of Open Access Journals (Sweden)

    Hong Kim

    Full Text Available Molecular mechanisms related to occult hepatitis B virus (HBV infection, particularly those based on genotype C infection, have rarely been determined thus far in the ongoing efforts to determine infection mechanisms. Therefore, we aim to elucidate the mutation patterns in the surface open reading frame (S ORF underlying occult infections of HBV genotype C in the present study. Nested PCRs were applied to 624 HBV surface antigen (HBsAg negative Korean subjects. Cloning and sequencing of the S ORF gene was applied to 41 occult cases and 40 control chronic carriers. Forty-one (6.6% of the 624 Korean adults with HBsAg-negative serostatus were found to be positive for DNA according to nested PCR tests. Mutation frequencies in the three regions labeled here as preS1, preS2, and S were significantly higher in the occult subjects compared to the carriers in all cases. A total of two types of deletions, preS1 deletions in the start codon and preS2 deletions as well as nine types of point mutations were significantly implicated in the occult infection cases. Mutations within the "a" determinant region in HBsAg were found more frequently in the occult subjects than in the carriers. Mutations leading to premature termination of S ORF were found in 16 occult subjects (39.0% but only in one subject from among the carriers (2.5%. In conclusion, our data suggest that preS deletions, the premature termination of S ORF, and "a" determinant mutations are associated with occult infections of HBV genotype C among a HBsAg-negative population. The novel mutation patterns related to occult infection introduced in the present study can help to broaden our understanding of HBV occult infections.

  1. Mutation of the S and 3c genes in genomes of feline coronaviruses.

    Science.gov (United States)

    Oguma, Keisuke; Ohno, Megumi; Yoshida, Mayuko; Sentsui, Hiroshi

    2018-05-17

    Feline coronavirus (FCoV) is classified into two biotypes based on its pathogenicity in cats: a feline enteric coronavirus of low pathogenicity and a highly virulent feline infectious peritonitis virus. It has been suspected that FCoV alters its biotype via mutations in the viral genome. The S and 3c genes of FCoV have been considered the candidates for viral pathogenicity conversion. In the present study, FCoVs were analyzed for the frequency and location of mutations in the S and 3c genes from faecal samples of cats in an animal shelter and the faeces, effusions, and tissues of cats that were referred to veterinary hospitals. Our results indicated that approximately 95% FCoVs in faeces did not carry mutations in the two genes. However, 80% FCoVs in effusion samples exhibited mutations in the S and 3c genes with remainder displaying a mutation in the S or 3c gene. It was also suggested that mutational analysis of the 3c gene could be useful for studying the horizontal transmission of FCoVs in multi-cat environments.

  2. Haplotype analysis suggest that the MLH1 c.2059C > T mutation is a Swedish founder mutation.

    Science.gov (United States)

    von Salomé, Jenny; Liu, Tao; Keihäs, Markku; Morak, Moni; Holinski-Feder, Elke; Berry, Ian R; Moilanen, Jukka S; Baert-Desurmont, Stéphanie; Lindblom, Annika; Lagerstedt-Robinson, Kristina

    2017-12-29

    Lynch syndrome (LS) predisposes to a spectrum of cancers and increases the lifetime risk of developing colorectal- or endometrial cancer to over 50%. Lynch syndrome is dominantly inherited and is caused by defects in DNA mismatch-repair genes MLH1, MSH2, MSH6 or PMS2, with the vast majority detected in MLH1 and MSH2. Recurrent LS-associated variants observed in apparently unrelated individuals, have either arisen de novo in different families due to mutation hotspots, or are inherited from a founder (a common ancestor) that lived several generations back. There are variants that recur in some populations while also acting as founders in other ethnic groups. Testing for founder mutations can facilitate molecular diagnosis of Lynch Syndrome more efficiently and more cost effective than screening for all possible mutations. Here we report a study of the missense mutation MLH1 c.2059C > T (p.Arg687Trp), a potential founder mutation identified in eight Swedish families and one Finnish family with Swedish ancestors. Haplotype analysis confirmed that the Finnish and Swedish families shared a haplotype of between 0.9 and 2.8 Mb. While MLH1 c.2059C > T exists worldwide, the Swedish haplotype was not found among mutation carriers from Germany or France, which indicates a common founder in the Swedish population. The geographic distribution of MLH1 c.2059C > T in Sweden suggests a single, ancient mutational event in the northern part of Sweden.

  3. Novel C16orf57 mutations in patients with Poikiloderma with Neutropenia: bioinformatic analysis of the protein and predicted effects of all reported mutations

    Directory of Open Access Journals (Sweden)

    Colombo Elisa A

    2012-01-01

    Full Text Available Abstract Background Poikiloderma with Neutropenia (PN is a rare autosomal recessive genodermatosis caused by C16orf57 mutations. To date 17 mutations have been identified in 31 PN patients. Results We characterize six PN patients expanding the clinical phenotype of the syndrome and the mutational repertoire of the gene. We detect the two novel C16orf57 mutations, c.232C>T and c.265+2T>G, as well as the already reported c.179delC, c.531delA and c.693+1G>T mutations. cDNA analysis evidences the presence of aberrant transcripts, and bioinformatic prediction of C16orf57 protein structure gauges the mutations effects on the folded protein chain. Computational analysis of the C16orf57 protein shows two conserved H-X-S/T-X tetrapeptide motifs marking the active site of a two-fold pseudosymmetric structure recalling the 2H phosphoesterase superfamily. Based on this model C16orf57 is likely a 2H-active site enzyme functioning in RNA processing, as a presumptive RNA ligase. According to bioinformatic prediction, all known C16orf57 mutations, including the novel mutations herein described, impair the protein structure by either removing one or both tetrapeptide motifs or by destroying the symmetry of the native folding. Finally, we analyse the geographical distribution of the recurrent mutations that depicts clusters featuring a founder effect. Conclusions In cohorts of patients clinically affected by genodermatoses with overlapping symptoms, the molecular screening of C16orf57 gene seems the proper way to address the correct diagnosis of PN, enabling the syndrome-specific oncosurveillance. The bioinformatic prediction of the C16orf57 protein structure denotes a very basic enzymatic function consistent with a housekeeping function. Detection of aberrant transcripts, also in cells from PN patients carrying early truncated mutations, suggests they might be translatable. Tissue-specific sensitivity to the lack of functionally correct protein accounts for the

  4. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    International Nuclear Information System (INIS)

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G.

    2012-01-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: ► All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. ► Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. ► Lys and Arg mutations most dramatically destabilize collagen fibril properties. ► Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  5. HGF and c-Met Interaction Promotes Migration in Human Chondrosarcoma Cells

    Science.gov (United States)

    Tsou, Hsi-Kai; Chen, Hsien-Te; Hung, Ya-Huey; Chang, Chia-Hao; Li, Te-Mao; Fong, Yi-Chin; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF) has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3′-kinase (PI3K)/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway. PMID:23320110

  6. HGF and c-Met interaction promotes migration in human chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Hsi-Kai Tsou

    Full Text Available Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3'-kinase (PI3K/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway.

  7. N1303K (c.3909C>G) Mutation and Splicing: Implication of Its c.[744-33GATT(6); 869+11C>T] Complex Allele in CFTR Exon 7 Aberrant Splicing

    Science.gov (United States)

    Farhat, Raëd; Puissesseau, Géraldine; El-Seedy, Ayman; Pasquet, Marie-Claude; Adolphe, Catherine; Corbani, Sandra; Megarbané, André; Kitzis, Alain; Ladeveze, Véronique

    2015-01-01

    Cystic Fibrosis is the most common recessive autosomal rare disease found in Caucasians. It is caused by mutations on the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) that encodes a protein located on the apical membrane of epithelial cells. c.3909C>G (p.Asn1303Lys, old nomenclature: N1303K) is one of the most common worldwide mutations. This mutation has been found at high frequencies in the Mediterranean countries with the highest frequency in the Lebanese population. Therefore, on the genetic level, we conducted a complete CFTR gene screening on c.3909C>G Lebanese patients. The complex allele c.[744-33GATT(6); 869+11C>T] was always associated with the c.3909C>G mutation in cis in the Lebanese population. In cellulo splicing studies, realized by hybrid minigene constructs, revealed no impact of the c.3909C>G mutation on the splicing process, whereas the associated complex allele induces minor exon skipping. PMID:26075213

  8. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene.

    Science.gov (United States)

    Kalmár, Lajos; Hegedüs, Tamás; Farkas, Henriette; Nagy, Melinda; Tordai, Attila

    2005-01-01

    Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers.

  9. The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability.

    Science.gov (United States)

    Smelter, Dan F; de Lange, Willem J; Cai, Wenxuan; Ge, Ying; Ralphe, J Carter

    2018-06-01

    Cardiac myosin-binding protein C (cMyBP-C) is a functional sarcomeric protein that regulates contractility in response to contractile demand, and many mutations in cMyBP-C lead to hypertrophic cardiomyopathy (HCM). To gain insight into the effects of disease-causing cMyBP-C missense mutations on contractile function, we expressed the pathogenic W792R mutation (substitution of a highly conserved tryptophan residue by an arginine residue at position 792) in mouse cardiomyocytes lacking endogenous cMyBP-C and studied the functional effects using three-dimensional engineered cardiac tissue constructs (mECTs). Based on complete conservation of tryptophan at this location in fibronectin type II (FnIII) domains, we hypothesized that the W792R mutation affects folding of the C6 FnIII domain, destabilizing the mutant protein. Adenoviral transduction of wild-type (WT) and W792R cDNA achieved equivalent mRNA transcript abundance, but not equivalent protein levels, with W792R compared with WT controls. mECTs expressing W792R demonstrated abnormal contractile kinetics compared with WT mECTs that were nearly identical to cMyBP-C-deficient mECTs. We studied whether common pathways of protein degradation were responsible for the rapid degradation of W792R cMyBP-C. Inhibition of both ubiquitin-proteasome and lysosomal degradation pathways failed to increase full-length mutant protein abundance to WT equivalence, suggesting rapid cytosolic degradation. Bacterial expression of WT and W792R protein fragments demonstrated decreased mutant stability with altered thermal denaturation and increased susceptibility to trypsin digestion. These data suggest that the W792R mutation destabilizes the C6 FnIII domain of cMyBP-C, resulting in decreased full-length protein expression. This study highlights the vulnerability of FnIII-like domains to mutations that alter domain stability and further indicates that missense mutations in cMyBP-C can cause disease through a mechanism of

  10. Design and optimization of a series of 1-sulfonylpyrazolo[4,3-b]pyridines as selective c-Met inhibitors.

    Science.gov (United States)

    Ma, Yuchi; Sun, Guangqiang; Chen, Danqi; Peng, Xia; Chen, Yue-Lei; Su, Yi; Ji, Yinchun; Liang, Jin; Wang, Xin; Chen, Lin; Ding, Jian; Xiong, Bing; Ai, Jing; Geng, Meiyu; Shen, Jingkang

    2015-03-12

    c-Met has emerged as an attractive target for targeted cancer therapy because of its abnormal activation in many cancer cells. To identify high potent and selective c-Met inhibitors, we started with profiling the potency and in vitro metabolic stability of a reported hit 7. By rational design, a novel sulfonylpyrazolo[4,3-b]pyridine 9 with improved DMPK properties was discovered. Further elaboration of π-π stacking interactions and solvent accessible polar moieties led to a series of highly potent and selective type I c-Met inhibitors. On the basis of in vitro and in vivo pharmacological and pharmacokinetics studies, compound 46 was selected as a preclinical candidate for further anticancer drug development.

  11. Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin.

    Directory of Open Access Journals (Sweden)

    Dagmara I Kisiela

    Full Text Available Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis, or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum. The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella.

  12. Convergent RANK- and c-Met-mediated signaling components predict survival of patients with prostate cancer: an interracial comparative study.

    Directory of Open Access Journals (Sweden)

    Peizhen Hu

    Full Text Available We reported (PLoS One 6 (12:e28670, 2011 that the activation of c-Met signaling in RANKL-overexpressing bone metastatic LNCaP cell and xenograft models increased expression of RANK, RANKL, c-Met, and phosphorylated c-Met, and mediated downstream signaling. We confirmed the significance of the RANK-mediated signaling network in castration resistant clinical human prostate cancer (PC tissues. In this report, we used a multispectral quantum dot labeling technique to label six RANK and c-Met convergent signaling pathway mediators simultaneously in formalin fixed paraffin embedded (FFPE tissue specimens, quantify the intensity of each expression at the sub-cellular level, and investigated their potential utility as predictors of patient survival in Caucasian-American, African-American and Chinese men. We found that RANKL and neuropilin-1 (NRP-1 expression predicts survival of Caucasian-Americans with PC. A Gleason score ≥ 8 combined with nuclear p-c-Met expression predicts survival in African-American PC patients. Neuropilin-1, p-NF-κB p65 and VEGF are predictors for the overall survival of Chinese men with PC. These results collectively support interracial differences in cell signaling networks that can predict the survival of PC patients.

  13. Molecular analysis of point mutations in a barley genome exposed to MNU and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Kurowska, Marzena, E-mail: mkurowsk@us.edu.pl [Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice (Poland); Labocha-Pawlowska, Anna; Gnizda, Dominika; Maluszynski, Miroslaw; Szarejko, Iwona [Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice (Poland)

    2012-10-15

    We present studies aimed at determining the types and frequencies of mutations induced in the barley genome after treatment with chemical (N-methyl-N-nitrosourea, MNU) and physical (gamma rays) mutagens. We created M{sub 2} populations of a doubled haploid line and used them for the analysis of mutations in targeted DNA sequences and over an entire barley genome using TILLING (Targeting Induced Local Lesions in Genomes) and AFLP (Amplified Fragment Length Polymorphism) technique, respectively. Based on the TILLING analysis of the total DNA sequence of 4,537,117 bp in the MNU population, the average mutation density was estimated as 1/504 kb. Only one nucleotide change was found after an analysis of 3,207,444 bp derived from the highest dose of gamma rays applied. MNU was clearly a more efficient mutagen than gamma rays in inducing point mutations in barley. The majority (63.6%) of the MNU-induced nucleotide changes were transitions, with a similar number of G > A and C > T substitutions. The similar share of G > A and C > T transitions indicates a lack of bias in the repair of O{sup 6}-methylguanine lesions between DNA strands. There was, however, a strong specificity of the nucleotide surrounding the O{sup 6}-meG at the -1 position. Purines formed 81% of nucleotides observed at the -1 site. Scanning the barley genome with AFLP markers revealed ca. a three times higher level of AFLP polymorphism in MNU-treated as compared to the gamma-irradiated population. In order to check whether AFLP markers can really scan the whole barley genome for mutagen-induced polymorphism, 114 different AFLP products, were cloned and sequenced. 94% of bands were heterogenic, with some bands containing up to 8 different amplicons. The polymorphic AFLP products were characterised in terms of their similarity to the records deposited in a GenBank database. The types of sequences present in the polymorphic bands reflected the organisation of the barley genome.

  14. COMT (Val158Met and BDNF (Val66Met Genes Polymorphism in Schizophrenia: A Case-Control Report

    Directory of Open Access Journals (Sweden)

    ramin saravani

    2017-10-01

    Full Text Available Objective: The effects of human brain-derived neurotropic factor (BDNF Val66Met (G>A and the human Catechol-O-methylTransferase (COMT Val158Met (G>A polymorphisms on Schizophrenia (SCZ risk were evaluated.Methods: This case control study included 92 SCZ patients and 92 healthy controls (HCs. Genotyping of both variants were conducted using Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR.Results: The findings showed that BDNF Val66Met (G>A variant increased the risk of SCZ (OR=2.008 95%CI=1.008-4.00, P=0.047, GA vs. GG, OR=3.876 95%CI=1.001-14.925, P=0.049. AA vs. GG, OR=2.272. 95%CI=1.204-4.347, P=0.011, GA+AA vs. GG, OR=2.22 95%CI=1.29-3.82. P=0.005, A vs. G. COMT Val158Met (G>A polymorphism was not associated with the risk/protective of SCZ.Conclusion: The results proposed that BDNF Val66Met (G>A polymorphism may increase the risk of SCZ development and did not support an association between COMT Val158Met (G>A variant and risk/protective of SCZ. Further studies and different ethnicities are recommended to confirm the findings.

  15. Synthesis and biological evaluation of 4-(2-fluorophenoxy)-3,3'-bipyridine derivatives as potential c-met inhibitors.

    Science.gov (United States)

    Zhao, Sijia; Zhang, Yu; Zhou, Hongyang; Xi, Shuancheng; Zou, Bin; Bao, Guanglong; Wang, Limei; Wang, Jiao; Zeng, Tianfang; Gong, Ping; Zhai, Xin

    2016-09-14

    Six series of novel 4-(2-fluorophenoxy)-3,3'-bipyridine derivatives conjugated with aza-aryl formamide/amine scaffords were designed and synthesized through a structure-based molecular hybridization approach. The target compounds were evaluated for c-Met kinase inhibitory activities and cytotoxicity against four cancer cell lines (HT-29, A549, MKN-45 and MDA-MB-231) in vitro. Most compounds exhibited moderate to excellent potency, and the most promising candidate 26c (c-Met kinase IC50 = 8.2 nM) showed a 4.7-fold increase in cytotoxicity against c-Met-addicted MKN-45 cell line in vitro (IC50 = 3 nM), superior to that of Foretinib (IC50 = 23 nM). The preliminary structure-activity relationship indicated that a 1H-benzo [e] [1,3,4]thiadiazine-3-carboxamide-4,4-dioxide moiety as linker contributed to the antitumor potency. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Identification of a mutation in the CHAT gene of Old Danish Pointing Dogs affected with congenital myasthenic syndrome

    DEFF Research Database (Denmark)

    Proschowsky, Helle Friis; Flagstad, Annette; Cirera, Susanna

    2007-01-01

    The presence of a recessive inherited muscle disease in Old Danish Pointing Dogs has been well known for years. Comparisons of this disease with myasthenic diseases of other dog breeds and humans have pointed toward a defect in the synthesis of the neurotransmitter acetylcholine possibly due...... to decreased activity of the enzyme choline acetyltransferase. We sequenced exons 5-18 of the gene encoding choline acetyltransferase (CHAT) in 2 affected and 2 unaffected dogs and identified a G to A missense mutation in exon 6. The mutation causes a valine to methionine substitution and segregates...... in agreement with the inheritance of the disease. The mutation was not detected in 50 dogs representing 25 other dog breeds. A DNA test has been developed and is now available to the breeders of Old Danish Pointing Dogs....

  17. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation.

    Science.gov (United States)

    Yagita, M; Huang, C L; Umehara, H; Matsuo, Y; Tabata, R; Miyake, M; Konaka, Y; Takatsuki, K

    2000-05-01

    We present the establishment of a natural killer (NK) leukemia cell line, designated KHYG-1, from the blood of a patient with aggressive NK leukemia, which both possessed the same p53 point mutation. The immunophenotype of the primary leukemia cells was CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16+, CD56+, CD57+ and HLA-DR+. A new cell line (KHYG-1) was established by culturing peripheral leukemia cells with 100 units of recombinant interleukin (IL)-2. The KHYG-1 cells showed LGL morphology with a large nucleus, coarse chromatin, conspicuous nucleoli, and abundant basophilic cytoplasm with many azurophilic granules. The immunophenotype of KHYG-1 cells was CD1-, CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16-, CD25-, CD33+, CD34-, CD56+, CD57-, CD122+, CD132+, and TdT-. Southern blot analysis of these cells revealed a normal germline configuration for the beta, delta, and gamma chains of the T cell receptor and the immunoglobulin heavy-chain genes. Moreover, the KHYG-1 cells displayed NK cell activity and IL-2-dependent proliferation in vitro, suggesting that they are of NK cell origin. Epstein-Barr virus (EBV) DNA was not detected in KHYG-1 cells by Southern blot analysis with a terminal repeat probe from an EBV genome. A point mutation in exon 7 of the p53 gene was detected in the KHYG-1 cells by PCR/SSCP analysis, and direct sequencing revealed the conversion of C to T at nucleotide 877 in codon 248. The primary leukemia cells also carried the same point mutation. Although the precise role of the p53 point mutation in leukemogenesis remains to be clarified, the establishment of an NK leukemia cell line with a p53 point mutation could be valuable in the study of leukemogenesis.

  18. Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål.

    Science.gov (United States)

    Zhang, Y; Yang, B; Li, J; Liu, M; Liu, Z

    2017-08-01

    Insecticide resistance frequently results from target-site insensitivity, such as point mutations in acetylcholinesterases (AChEs) for resistance to organophosphates and carbamates. From a field-originated population of Nilaparvata lugens, a major rice pest, a resistant population (R9) was obtained by nine-generation continuous selection with chlorpyrifos. From the same field population, a relatively susceptible population (S9) was also constructed through rearing without any insecticides. Compared to the susceptible strain, Sus [medium lethal dose (LC 50 ) = 0.012 mg/l], R9 had a resistance ratio (RR) of 253.08-fold, whereas the RR of S9 was only 2.25-fold. Piperonyl butoxide and triphenyl phosphate synergized chlorpyrifos in R9 less than three-fold, indicating other important mechanisms for high resistance. The target-site insensitivity was supported by the key property differences of crude AChEs between R9 and S9. Compared to S9, three mutations (G119S, F331C and I332L) were detected in NlAChE1 from individuals of the R9 and field populations, but no mutation was detected in NlAChE2. G119S and F331C could decreased insecticide sensitivities in recombinant NlAChE1, whereas I332L took effect through increasing the influence of F331C on target insensitivity. F331C might be deleterious because of its influence on the catalytic efficiency of NlAChE1, whereas I332L would decrease these adverse effects and maintain the normal functions of AChEs. © 2017 The Royal Entomological Society.

  19. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome.

    Science.gov (United States)

    Khateb, Samer; Zelinger, Lina; Mizrahi-Meissonnier, Liliana; Ayuso, Carmen; Koenekoop, Robert K; Laxer, Uri; Gross, Menachem; Banin, Eyal; Sharon, Dror

    2014-07-01

    Usher syndrome (USH) is a heterogeneous group of inherited retinitis pigmentosa (RP) and sensorineural hearing loss (SNHL) caused by mutations in at least 12 genes. Our aim is to identify additional USH-related genes. Clinical examination included visual acuity test, funduscopy and electroretinography. Genetic analysis included homozygosity mapping and whole exome sequencing (WES). A combination of homozygosity mapping and WES in a large consanguineous family of Iranian Jewish origin revealed nonsense mutations in two ciliary genes: c.3289C>T (p.Q1097*) in C2orf71 and c.3463C>T (p.R1155*) in centrosome-associated protein CEP250 (C-Nap1). The latter has not been associated with any inherited disease and the c.3463C>T mutation was absent in control chromosomes. Patients who were double homozygotes had SNHL accompanied by early-onset and severe RP, while patients who were homozygous for the CEP250 mutation and carried a single mutant C2orf71 allele had SNHL with mild retinal degeneration. No ciliary structural abnormalities in the respiratory system were evident by electron microscopy analysis. CEP250 expression analysis of the mutant allele revealed the generation of a truncated protein lacking the NEK2-phosphorylation region. A homozygous nonsense CEP250 mutation, in combination with a heterozygous C2orf71 nonsense mutation, causes an atypical form of USH, characterised by early-onset SNHL and a relatively mild RP. The severe retinal involvement in the double homozygotes indicates an additive effect caused by nonsense mutations in genes encoding ciliary proteins. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Was the C282Y mutation an Irish Gaelic mutation that the Vikings helped disseminate?

    DEFF Research Database (Denmark)

    Olsson, Karl Sigvard; Konar, Jan; Dufva, Inge Hoegh

    2011-01-01

    The HLA-related hemochromatosis mutation C282Y is thought to have originated in Ireland in a person with HLA-A3-B14 and was spread by Vikings. Irish people with two HLA-A3 alleles had a high risk of hemochromatosis. In this study, from west Sweden, we wanted to test these hypotheses.......The HLA-related hemochromatosis mutation C282Y is thought to have originated in Ireland in a person with HLA-A3-B14 and was spread by Vikings. Irish people with two HLA-A3 alleles had a high risk of hemochromatosis. In this study, from west Sweden, we wanted to test these hypotheses....

  1. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.

    Science.gov (United States)

    Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora

    2012-12-01

    Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.

  2. Comparative evaluation of 11C-MET PET-CT and MRI for GTV delineation in precision radiotherapy for gliomas%基于11C-MET PET-CT与MRI对脑胶质瘤精确放疗GTV勾画的比较研究

    Institute of Scientific and Technical Information of China (English)

    王如; 钱立庭; 汪世存; 刘伟; 罗文广; 张洪波; 李广虎; 胡智刚; 刘磊

    2014-01-01

    目的 探讨11C-MET PET-CT和MRI图像对脑胶质瘤GTV确定的差异.方法 选取6例经病理证实为胶质瘤患者的术前MRI及11C-MET PET-CT图像,分别由我科5位医师在两种图像资料上勾画GTV,比较两者差异.结果 在MRI11C-MET PET-CT上勾画的GTV体积相似(P=0.917),GTV变异系数也相似(P =0.600).勾画的GTV重合度最大为73.0%、最小为51.8%.方差分析显示不同勾画者之间在两种图像资料上勾画的GTV相似(P =0.709),但PET-CT组GTV最大差值为27.66 cm3,而MRI组的为40.37 cm3.结论 MRI与PET-CT显示的肿瘤边界存在差异,不同勾画者勾画的GTV相似,PET-CT组的GTV最大差值较MRI组的小,11C-MET PET-CT显示GTV较为直观.%Objective To evaluate the difference between MRI and 11C-MET PET-CT for gross tumor volume (GTV) delineation in the precision radiotherapy for gliomas.Methods Six patients with a pathologically confirmed diagnosis of gliomas were selected for target delineation.Five physicians in our department were called to delineate the GTV based on the preoperative MRI and 11C-MET PET-CT images of these patients.The GTVs based on the two methods were compared.Results There was no significant difference between the GTVs based on MRI and 11C-MET PET-CT (P =0.917),and their coefficients of variation were also similar (P =0.600).The coincidences of GTVs were different among the patients,with a maximum value of 73.0% and a minimum value of 51.8%.GTV showed no significant difference when defined by different physicians on MRI and PET-CT (P =0.709) ; the biggest difference was 27.66 cm3 on PET-CT and 40.37 cm3 on MRI.Conclusions The boundaries of gliomas defined on MRI and PET-CT are different.The GTVs delineated by different physicians on MRI and PET-CT are similar,and the biggest difference on PET-CT is smaller than that on MRI,which suggests that 11C-MET PET-CT is a more direct way for displaying GTV.

  3. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing; Feng, Hao; Li, Yan [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Dai, Xianning; Zhou, Huihui [Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, Zhejiang (China); Dong, Xujie [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Liu, Xiao-Ling, E-mail: lxl@mail.eye.ac.cn [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Guan, Min-Xin, E-mail: min-xin.guan@cchmc.org [Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, Zhejiang (China); Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310012 (China); Division of Human Genetics, Cincinnati Children' s Hospital Medical Center, OH 45229 (United States)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We report the characterization of a four-generation large Chinese family with ADOA. Black-Right-Pointing-Pointer We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. Black-Right-Pointing-Pointer We do not find any mitochondrial DNA mutations associated with optic atrophy. Black-Right-Pointing-Pointer Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressive visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.

  4. Targeting MET Amplification as a New Oncogenic Driver

    International Nuclear Information System (INIS)

    Kawakami, Hisato; Okamoto, Isamu; Okamoto, Wataru; Tanizaki, Junko; Nakagawa, Kazuhiko; Nishio, Kazuto

    2014-01-01

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy

  5. Targeting MET Amplification as a New Oncogenic Driver

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  6. An intronic mutation c.6430-3C>G in the F8 gene causes splicing efficiency and premature termination in hemophilia A.

    Science.gov (United States)

    Xia, Zunjing; Lin, Jie; Lu, Lingping; Kim, Chol; Yu, Ping; Qi, Ming

    2018-06-01

    : Hemophilia A is a bleeding disorder caused by coagulation factor VIII protein deficiency or dysfunction, which is classified into severe, moderate, and mild according to factor clotting activity. An overwhelming majority of missense and nonsense mutations occur in exons of F8 gene, whereas mutations in introns can also be pathogenic. This study aimed to investigate the effect of an intronic mutation, c.6430-3C>G (IVS22-3C>G), on pre-mRNA splicing of the F8 gene. We applied DNA and cDNA sequencing in a Chinese boy with hemophilia A to search if any pathogenic mutation in the F8 gene. Functional analysis was performed to investigate the effect of an intronic mutation at the transcriptional level. Human Splicing Finder and PyMol were also used to predict its effect. We found the mutation c.6430-3C>G (IVS22-3C>G) in the F8 gene in the affected boy, with his mother being a carrier. cDNA from the mother and pSPL3 splicing assay showed that the mutation IVS22-3C>G results in a two-nucleotide AG inclusion at the 3' end of intron 22 and leads to a truncated coagulation factor VIII protein, with partial loss of the C1 domain and complete loss of the C2 domain. The in-silico tool predicted that the mutation induces altered pre-mRNA splicing by using a cryptic acceptor site in intron 22. The IVS22-3C>G mutation was confirmed to affect pre-mRNA splicing and produce a truncated protein, which reduces the stability of binding between the F8 protein and von Willebrand factor carrier protein due to the loss of an interaction domain.

  7. Low frequency of c-MPL gene mutations in Iranian patients with Philadelphia-negative myeloproliferative disorders.

    Science.gov (United States)

    Ghotaslou, A; Nadali, F; Chahardouli, B; Alizad Ghandforosh, N; Rostami, S H; Alimoghaddam, K; Ghavamzadeh, A

    2015-01-01

    Myeloproliferative disorders are a group of diseases characterized by increased proliferation of myeloid lineage. In addition to JAK2V617F mutation, several mutations in the c-MPL gene have been reported in patients with philadelphia-negative chronic myeloproliferative disorders that could be important in the pathogenesis of diseases. The aim of the present study was to investigate the frequency of c-MPL and JAK2V617F mutations in Iranian patients with Philadelphia-negativemyeloproliferative disorders. Peripheral blood samples were collected from 60 patients with Philadelphia-negative MPD) Subgroups ET and PMF) and 25 healthy subjects as control group. The mutation status of c-MPL and Jak2V617F were investigated by using Amplification-refractory mutation system (ARMS) and Allele-Specific PCR (AS-PCR), respectively. The results were confirmed by sequencing. Among 60 patients, 34 (56.6%) and 1(1.7%) had Jak2V617F and c-MPL mutation, respectively. Patients with Jak2V617F mutation had higher WBC counts and hemoglobin concentration than those without the mutation (p= 0.005, p=0.003). In addition, for all healthy subjects in control group, mutations were negative. The present study revealed that the c-MPL mutations unlike the Jak2V617F mutations are rare in Iranian patients with Ph-negative MPNs and the low mutation rate should be considered in the design of screening strategies of MPD patients.

  8. Sema4D, the ligand for Plexin B1, suppresses c-Met activation and migration and promotes melanocyte survival and growth.

    Science.gov (United States)

    Soong, Joanne; Chen, Yulin; Shustef, Elina M; Scott, Glynis A

    2012-04-01

    Semaphorins are secreted and membrane-bound proteins involved in neural pathfinding, organogenesis, and tumor progression, through Plexin and neuropilin receptors. We recently reported that Plexin B1, the Semaphorin 4D (Sema4D) receptor, is a tumor-suppressor protein for melanoma, which functions, in part, through inhibition of the oncogenic c-Met tyrosine kinase receptor. In this report, we show that Sema4D is a protective paracrine factor for normal human melanocyte survival in response to UV irradiation, and that it stimulates proliferation and regulates the activity of the c-Met receptor. c-Met receptor signaling stimulates melanocyte migration, partly through downregulation of the cell adhesion molecule E-cadherin. Sema4D suppressed activation of c-Met in response to its ligand, hepatocyte growth factor (HGF), and partially blocked the suppressive effects of HGF on E-cadherin expression in melanocytes and HGF-dependent migration. These data demonstrate a role for Plexin B1 in maintenance of melanocyte survival and proliferation in the skin, and suggest that Sema4D and Plexin B1 act cooperatively with HGF and c-Met to regulate c-Met-dependent effects in human melanocytes. Because our data show that Plexin B1 is profoundly downregulated by UVB in melanocytes, loss of Plexin B1 may accentuate HGF-dependent effects on melanocytes, including melanocyte migration.

  9. BRCA Genetic Screening in Middle Eastern and North African: Mutational Spectrum and Founder BRCA1 Mutation (c.798_799delTT in North African

    Directory of Open Access Journals (Sweden)

    Abdelilah Laraqui

    2015-01-01

    Full Text Available Background. The contribution of BRCA1 mutations to both hereditary and sporadic breast and ovarian cancer (HBOC has not yet been thoroughly investigated in MENA. Methods. To establish the knowledge about BRCA1 mutations and their correlation with the clinical aspect in diagnosed cases of HBOC in MENA populations. A systematic review of studies examining BRCA1 in BC women in Cyprus, Jordan, Egypt, Lebanon, Morocco, Algeria, and Tunisia was conducted. Results. Thirteen relevant references were identified, including ten studies which performed DNA sequencing of all BRCA1 exons. For the latter, 31 mutations were detected in 57 of the 547 patients ascertained. Familial history of BC was present in 388 (71% patients, of whom 50 were mutation carriers. c.798_799delTT was identified in 11 North African families, accounting for 22% of total identified BRCA1 mutations, suggesting a founder allele. A broad spectrum of other mutations including c.68_69delAG, c.181T>G, c.5095C>T, and c.5266dupC, as well as sequence of unclassified variants and polymorphisms, was also detected. Conclusion. The knowledge of genetic structure of BRCA1 in MENA should contribute to the assessment of the necessity of preventive programs for mutation carriers and clinical management. The high prevalence of BC and the presence of frequent mutations of the BRCA1 gene emphasize the need for improving screening programs and individual testing/counseling.

  10. Glucokinase gene mutations (MODY 2) in Asian Indians.

    Science.gov (United States)

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  11. Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer

    Directory of Open Access Journals (Sweden)

    Tseng Vincent S

    2011-04-01

    Full Text Available Abstract Background A cross-talk between different receptor tyrosine kinases (RTKs plays an important role in the pathogenesis of human cancers. Methods Both NIH-Met5 and T24-Met3 cell lines harboring an inducible human c-Met gene were established. C-Met-related RTKs were screened by RTK microarray analysis. The cross-talk of RTKs was demonstrated by Western blotting and confirmed by small interfering RNA (siRNA silencing, followed by elucidation of the underlying mechanism. The impact of this cross-talk on biological function was demonstrated by Trans-well migration assay. Finally, the potential clinical importance was examined in a cohort of 65 cases of locally advanced and metastatic bladder cancer patients. Results A positive association of Axl or platelet-derived growth factor receptor-alpha (PDGFR-α with c-Met expression was demonstrated at translational level, and confirmed by specific siRNA knock-down. The transactivation of c-Met on Axl or PDGFR-α in vitro was through a ras- and Src-independent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK pathway. In human bladder cancer, co-expression of these RTKs was associated with poor patient survival (p p Conclusions In addition to c-Met, the cross-talk with Axl and/or PDGFR-α also contributes to the progression of human bladder cancer. Evaluation of Axl and PDGFR-α expression status may identify a subset of c-Met-positive bladder cancer patients who may require co-targeting therapy.

  12. Identification of a c.544C>T mutation in WDR34 as a deleterious recessive allele of short rib-polydactyly syndrome

    Directory of Open Access Journals (Sweden)

    Shu-Han You

    2017-12-01

    Conclusion: This study was the first to identify c.544C > T [p.Arg182Trp] mutation in WDR34 in a patient with SRPS. According to the database, the homozygous mutation of c.544C > T in WDR34 was deleterious and the prevalence of heterozygous mutation was relatively higher in Asian population. More studies of this mutation in patients with SRPS are required.

  13. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    Science.gov (United States)

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  14. Two Mutations in Surfactant Protein C Gene Associated with Neonatal Respiratory Distress

    Directory of Open Access Journals (Sweden)

    Anna Tarocco

    2015-01-01

    Full Text Available Multiple mutations of surfactant genes causing surfactant dysfunction have been described. Surfactant protein C (SP-C deficiency is associated with variable clinical manifestations ranging from neonatal respiratory distress syndrome to lethal lung disease. We present an extremely low birth weight male infant with an unusual course of respiratory distress syndrome associated with two mutations in the SFTPC gene: C43-7G>A and 12T>A. He required mechanical ventilation for 26 days and was treated with 5 subsequent doses of surfactant with temporary and short-term efficacy. He was discharged at 37 weeks of postconceptional age without any respiratory support. During the first 16 months of life he developed five respiratory infections that did not require hospitalization. Conclusion. This mild course in our patient with two mutations is peculiar because the outcome in patients with a single SFTPC mutation is usually poor.

  15. Compound Heterozygosity for Hb Alperton (HBB: c.407C>T) and IVS-I-5 (G>C) (HBB: c.92+5G>C) Mutations Presenting as a Moderate Anemia in an Indian Family.

    Science.gov (United States)

    Godbole, Koumudi G; Ramachandran, Angelina; Karkamkar, Ashwini S; Dalal, Ashwin B

    2018-04-13

    While knowledge of HBB gene mutations is necessary for offering prenatal diagnosis (PND) of β-thalassemia (β-thal), a genotype-phenotype correlation may not always be available for rare variants. We present for the first time, genotype-phenotype correlation for a compound heterozygous status with IVS-I-5 (G>C) (HBB: c.92+5G>C) and HBB: c.407C>T (Hb Alperton) mutations on the HBB gene in an Indian family. Hb Alperton is a very rare hemoglobin (Hb) variant with scant published information about its clinical presentation, especially when accompanied with another HBB gene mutation. Here we provide biochemical as well as clinical details of this variant.

  16. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta.

    Science.gov (United States)

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S; Reid, Bryan M; Lin, Brent P; Wang, Susan J; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2014-04-15

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.

  17. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome.

    Science.gov (United States)

    Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette

    2009-06-01

    Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.

  18. Hepatic Radiofrequency Ablation–induced Stimulation of Distant Tumor Growth Is Suppressed by c-Met Inhibition

    Science.gov (United States)

    Kumar, Gaurav; Moussa, Marwan; Wang, Yuanguo; Rozenblum, Nir; Galun, Eithan; Goldberg, S. Nahum

    2016-01-01

    Purpose To elucidate how hepatic radiofrequency (RF) ablation affects distant extrahepatic tumor growth by means of two key molecular pathways. Materials and Methods Rats were used in this institutional animal care and use committee–approved study. First, the effect of hepatic RF ablation on distant subcutaneous in situ R3230 and MATBIII breast tumors was evaluated. Animals were randomly assigned to standardized RF ablation, sham procedure, or no treatment. Tumor growth rate was measured for 3½ to 7 days. Then, tissue was harvested for Ki-67 proliferative indexes and CD34 microvascular density. Second, hepatic RF ablation was performed for hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and c-Met receptor expression measurement in periablational rim, serum, and distant tumor 24 hours to 7 days after ablation. Third, hepatic RF ablation was combined with either a c-Met inhibitor (PHA-665752) or VEGF receptor inhibitor (semaxanib) and compared with sham or drug alone arms to assess distant tumor growth and growth factor levels. Finally, hepatic RF ablation was performed in rats with c-Met–negative R3230 tumors for comparison with the native c-Met–positive line. Tumor size and immunohistochemical quantification at day 0 and at sacrifice were compared with analysis of variance and the two-tailed Student t test. Tumor growth curves before and after treatment were analyzed with linear regression analysis to determine mean slopes of pre- and posttreatment growth curves on a per-tumor basis and were compared with analysis of variance and paired two-tailed t tests. Results After RF ablation of normal liver, distant R3230 tumors were substantially larger at 7 days compared with tumors treated with the sham procedure and untreated tumors, with higher growth rates and tumor cell proliferation. Similar findings were observed in MATBIII tumors. Hepatic RF ablation predominantly increased periablational and serum HGF and downstream distant tumor

  19. Phenotype of Usher syndrome type II assosiated with compound missense mutations of c.721 C>T and c.1969 C>T in MYO7A in a Chinese Usher syndrome family.

    Science.gov (United States)

    Zhai, Wei; Jin, Xin; Gong, Yan; Qu, Ling-Hui; Zhao, Chen; Li, Zhao-Hui

    2015-01-01

    To identify the pathogenic mutations in a Chinese pedigree affected with Usher syndrome type II (USH2). The ophthalmic examinations and audiometric tests were performed to ascertain the phenotype of the family. To detect the genetic defect, exons of 103 known RDs -associated genes including 12 Usher syndrome (USH) genes of the proband were captured and sequencing analysis was performed to exclude known genetic defects and find potential pathogenic mutations. Subsequently, candidate mutations were validated in his pedigree and 100 normal controls using polymerase chain reaction (PCR) and Sanger sequencing. The patient in the family occurred hearing loss (HL) and retinitis pigmentosa (RP) without vestibular dysfunction, which were consistent with standards of classification for USH2. He carried the compound heterozygous mutations, c.721 C>T and c.1969 C>T, in the MYO7A gene and the unaffected members carried only one of the two mutations. The mutations were not present in the 100 normal controls. We suggested that the compound heterozygous mutations of the MYO7A could lead to USH2, which had revealed distinguished clinical phenotypes associated with MYO7A and expanded the spectrum of clinical phenotypes of the MYO7A mutations.

  20. Identification of a novel BRCA1 nucleotide 4803delCC/c.4684delCC mutation and a nucleotide 249T>A/c.130T>A (p.Cys44Ser) mutation in two Greenlandic Inuit families

    DEFF Research Database (Denmark)

    Hansen, Thomas van Overeem; Jønson, Lars; Albrechtsen, Anders

    2010-01-01

    Germ-line mutations in the tumour suppressor proteins BRCA1 and BRCA2 predispose to breast and ovarian cancer. We have recently identified a Greenlandic Inuit BRCA1 nucleotide 234T>G/c.115T>G (p.Cys39Gly) founder mutation, which at that time was the only disease-causing BRCA1/BRCA2 mutation...... identified in this population. Here, we describe the identification of a novel disease-causing BRCA1 nucleotide 4803delCC/c.4684delCC mutation in a Greenlandic Inuit with ovarian cancer. The mutation introduces a frameshift and a premature stop at codon 1572. We have also identified a BRCA1 nucleotide 249T......>A/c.130T>A (p.Cys44Ser) mutation in another Greenlandic individual with ovarian cancer. This patient share a 1-2 Mb genomic fragment, containing the BRCA1 gene, with four Danish families harbouring the same mutation, suggesting that the 249T>A/c.130T>A (p.Cys44Ser) mutation originates from a Danish...

  1. Leber's hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation

    International Nuclear Information System (INIS)

    Liang, Min; Guan, Minqiang; Zhao, Fuxing; Zhou, Xiangtian; Yuan, Meixia; Tong, Yi; Yang, Li; Wei, Qi-Ping; Sun, Yan-Hong; Lu, Fan; Qu, Jia

    2009-01-01

    We report here the clinical, genetic and molecular characterization of four Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age-of-onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T3394C (Y30H) mutation, which localized at a highly conserved tyrosine at position 30 of ND1, and distinct sets of mtDNA polymorphisms belonging to haplogroups D4b and M9a. The occurrence of T3394C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. However, there was the absence of functionally significant mtDNA mutations in these four Chinese pedigrees carrying the T3394C mutation. Therefore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic expression of the LHON-associated T3394C mutation.

  2. Lack of integrase inhibitors associated resistance mutations among HIV-1C isolates.

    Science.gov (United States)

    Mulu, Andargachew; Maier, Melanie; Liebert, Uwe Gerd

    2015-12-01

    Although biochemical analysis of HIV-1 integrase enzyme suggested the use of integrase inhibitors (INIs) against HIV-1C, different viral subtypes may favor different mutational pathways potentially leading to varying levels of drug resistance. Thus, the aim of this study was to search for the occurrence and natural evolution of integrase polymorphisms and/or resistance mutations in HIV-1C Ethiopian clinical isolates prior to the introduction of INIs. Plasma samples from chronically infected drug naïve patients (N = 45), of whom the PR and RT sequence was determined previously, were used to generate population based sequences of HIV-1 integrase. HIV-1 subtype was determined using the REGA HIV-1 subtyping tool. Resistance mutations were interpreted according to the Stanford HIV drug resistance database ( http://hivdb.stanford.edu ) and the updated International Antiviral Society (IAS)-USA mutation lists. Moreover, rates of polymorphisms in the current isolates were compared with South African and global HIV-1C isolates. All subjects were infected with HIV-1C concordant to the protease (PR) and reverse transcriptase (RT) regions. Neither major resistance-associated IN mutations (T66I/A/K, E92Q/G, T97A, Y143HCR, S147G, Q148H/R/K, and N155H) nor silent mutations known to change the genetic barrier were observed. Moreover, the DDE-catalytic motif (D64G/D116G/E152 K) and signature HHCC zinc-binding motifs at codon 12, 16, 40 and 43 were found to be highly conserved. However, compared to other South African subtype C isolates, the rate of polymorphism was variable at various positions. Although the sample size is small, the findings suggest that this drug class could be effective in Ethiopia and other southern African countries where HIV-1C is predominantly circulating. The data will contribute to define the importance of integrase polymorphism and to improve resistance interpretation algorithms in HIV-1C isolates.

  3. CBS mutations and MTFHR SNPs causative of hyperhomocysteinemia in Pakistani children.

    Science.gov (United States)

    Ibrahim, Shahnaz; Maqbool, Saadia; Azam, Maleeha; Iqbal, Mohammad Perwaiz; Qamar, Raheel

    2018-03-29

    Three index patients with hyperhomocysteinemia and ocular anomalies were screened for cystathionine beta synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Genotyping of hyperhomocysteinemia associated MTHFR polymorphisms C677T (rs1801133) and A1298C (rs1801131) was done by PCR-restriction fragment length polymorphism. Sanger sequencing was performed for CBS exonic sequences along with consensus splice sites. In the case of MTHFR polymorphisms, all the patients were heterozygous CT for the single nucleotide polymorphism (SNP) C677T and were therefore carriers of the risk allele (T), while the patients were homozygous CC for the risk genotype of the SNP A1298C. CBS sequencing resulted in the identification of two novel mutations, a missense change (c.467T>C; p.Leu156Pro) in exon 7 and an in-frame deletion (c.808_810del; p.Glu270del) in exon 10. In addition, a recurrent missense mutation (c.770C>T; p.Thr257Met) in exon 10 of the gene was also identified. The mutations were present homozygously in the patients and were inherited from the carrier parents. This is the first report from Pakistan where novel as well as recurrent CBS mutations causing hyperhomocysteinemia and lens dislocation in three patients from different families are being reported with the predicted effect of the risk allele of the MTHFR SNP in causing hyperhomocysteinemia.

  4. Effects of Point Mutations in the Major Capsid Protein of Beet Western Yellows Virus on Capsid Formation, Virus Accumulation, and Aphid Transmission

    Science.gov (United States)

    Brault, V.; Bergdoll, M.; Mutterer, J.; Prasad, V.; Pfeffer, S.; Erdinger, M.; Richards, K. E.; Ziegler-Graff, V.

    2003-01-01

    Point mutations were introduced into the major capsid protein (P3) of cloned infectious cDNA of the polerovirus beet western yellows virus (BWYV) by manipulation of cloned infectious cDNA. Seven mutations targeted sites on the S domain predicted to lie on the capsid surface. An eighth mutation eliminated two arginine residues in the R domain, which is thought to extend into the capsid interior. The effects of the mutations on virus capsid formation, virus accumulation in protoplasts and plants, and aphid transmission were tested. All of the mutants replicated in protoplasts. The S-domain mutant W166R failed to protect viral RNA from RNase attack, suggesting that this particular mutation interfered with stable capsid formation. The R-domain mutant R7A/R8A protected ∼90% of the viral RNA strand from RNase, suggesting that lower positive-charge density in the mutant capsid interior interfered with stable packaging of the complete strand into virions. Neither of these mutants systemically infected plants. The six remaining mutants properly packaged viral RNA and could invade Nicotiana clevelandii systemically following agroinfection. Mutant Q121E/N122D was poorly transmitted by aphids, implicating one or both targeted residues in virus-vector interactions. Successful transmission of mutant D172N was accompanied either by reversion to the wild type or by appearance of a second-site mutation, N137D. This finding indicates that D172 is also important for transmission but that the D172N transmission defect can be compensated for by a “reverse” substitution at another site. The results have been used to evaluate possible structural models for the BWYV capsid. PMID:12584348

  5. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.

    Science.gov (United States)

    Prykhozhij, Sergey V; Fuller, Charlotte; Steele, Shelby L; Veinotte, Chansey J; Razaghi, Babak; Robitaille, Johane M; McMaster, Christopher R; Shlien, Adam; Malkin, David; Berman, Jason N

    2018-06-14

    We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.

  6. Phenotype of Usher syndrome type II assosiated with compound missense mutations of c.721 C>T and c.1969 C>T in MYO7A in a Chinese Usher syndrome family

    Directory of Open Access Journals (Sweden)

    Wei Zhai

    2015-08-01

    Full Text Available AIM:To identify the pathogenic mutations in a Chinese pedigree affected with Usher syndrome type II (USH2.METHODS:The ophthalmic examinations and audiometric tests were performed to ascertain the phenotype of the family. To detect the genetic defect, exons of 103 known RDs -associated genes including 12 Usher syndrome (USH genes of the proband were captured and sequencing analysis was performed to exclude known genetic defects and find potential pathogenic mutations. Subsequently, candidate mutations were validated in his pedigree and 100 normal controls using polymerase chain reaction (PCR and Sanger sequencing.RESULTS:The patient in the family occurred hearing loss (HL and retinitis pigmentosa (RP without vestibular dysfunction, which were consistent with standards of classification for USH2. He carried the compound heterozygous mutations, c.721 C>T and c.1969 C>T, in the MYO7A gene and the unaffected members carried only one of the two mutations. The mutations were not present in the 100 normal controls.CONCLUSION:We suggested that the compound heterozygous mutations of the MYO7A could lead to USH2, which had revealed distinguished clinical phenotypes associated with MYO7A and expanded the spectrum of clinical phenotypes of the MYO7A mutations.

  7. Complex phenotype linked to a mutation in exon 11 of the lamin A/C gene: Hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes.

    Science.gov (United States)

    Francisco, Ana Rita G; Santos Gonçalves, Inês; Veiga, Fátima; Mendes Pedro, Mónica; Pinto, Fausto J; Brito, Dulce

    2017-09-01

    The lamin A/C (LMNA) gene encodes lamins A and C, which have an important role in nuclear cohesion and chromatin organization. Mutations in this gene usually lead to the so-called laminopathies, the primary cardiac manifestations of which are dilated cardiomyopathy and intracardiac conduction defects. Some mutations, associated with lipodystrophy but not cardiomyopathy, have been linked to metabolic abnormalities such as diabetes and severe dyslipidemia. Herein we describe a new phenotype associated with a mutation in exon 11 of the LMNA gene: hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes. A 64-year-old woman with hypertrophic cardiomyopathy and a point mutation in exon 11 of the LMNA gene (c.1718C>T, Ser573Leu) presented with severe symptomatic ventricular hypertrophy and left ventricular outflow tract obstruction. She underwent septal alcohol ablation, followed by Morrow myectomy. The patient was also diagnosed with severe dyslipidemia, diabetes and obesity, and fulfilled diagnostic criteria for metabolic syndrome. No other characteristics of LMNA mutation-related phenotypes were identified. The development of type III atrioventricular block with no apparent cause, and mildly depressed systolic function, prompted referral for cardiac resynchronization therapy. In conclusion, the association between LMNA mutations and different phenotypes is complex and not fully understood, and can present with a broad spectrum of severity. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Comparative evaluation of 11C-MET PET-CT and MRI for GTV delineation in precision radiotherapy for gliomas

    International Nuclear Information System (INIS)

    Wang Ru; Qian Liting; Wang Shicun; Liu Wei; Luo Wenguang; Zhang Hongbo; Li Guanghu; Hu Zhigang; Liu Lei

    2014-01-01

    Objective: To evaluate the difference between MRI and 11 C-MET PET-CT for gross tumor volume (GTV) delineation in the precision radiotherapy for gliomas. Methods: Six patients with a pathologically confirmed diagnosis of gliomas were selected for target delineation. Five physicians in our department were called to delineate the GTV based on the preoperative MRI and 11 C-MET PET-CT images of these patients. The GTVs based on the two methods were compared. Results: There was no significant difference between the GTVs based on MRI and 11 C-MET PET-CT (P=0.917), and their coefficients of variation were also similar (P=0.600). The coincidences of GTVs were different among the patients, with a maximum value of 73.0% and a minimum value of 51.8%. GTV showed no significant difference when defined by different physicians on MRI and PET-CT (P=0.709); the biggest difference was 27.66 cm 3 on PET-CT and 40.37 cm 3 on MRI. Conclusions: The boundaries of gliomas defined on MRI and PET-CT are different. The GTVs delineated by different physicians on MRI and PET-CT are similar, and the biggest difference on PET-CT is smaller than that on MRI, which suggests that 11 C-MET PET-CT is a more direct way for displaying GTV. (authors)

  9. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye

    Science.gov (United States)

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-09-01

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.

  10. Association of a novel point mutation in MSH2 gene with familial multiple primary cancers

    Directory of Open Access Journals (Sweden)

    Hai Hu

    2017-10-01

    Full Text Available Abstract Background Multiple primary cancers (MPC have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. Methods We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. Results We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Conclusion Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.

  11. Population Size vs. Mutation Strength for the (1+λ) EA on OneMax

    DEFF Research Database (Denmark)

    Gießen, Christian; Witt, Carsten

    2015-01-01

    The (1+1) EA with mutation probability c/n, where c>0 is an arbitrary constant, is studied for the classical OneMax function. Its expected optimization time is analyzed exactly (up to lower order terms) as a function of c and λ. It turns out that 1/n is the only optimal mutation probability if λ......=o(ln n ln ln n/ln ln ln n), which is the cut-off point for linear mnspeed-up. However, if λ is above this cut-off point then the standard mutation probability 1/n is no longer the only optimal choice. Instead, the expected number of generations is (up to lower order terms) independent of c...

  12. The Number of Point Mutations in Induced Pluripotent Stem Cells and Nuclear Transfer Embryonic Stem Cells Depends on the Method and Somatic Cell Type Used for Their Generation.

    Science.gov (United States)

    Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi

    2017-05-01

    Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.

  13. Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus.

    Science.gov (United States)

    Ishibashi, Mihoko; Kurokawa, Kenji; Nishida, Satoshi; Ueno, Kohji; Matsuo, Miki; Sekimizu, Kazuhisa

    2007-09-01

    Enzymes in the bacterial peptidoglycan biosynthesis pathway are important targets for novel antibiotics. Of 750 temperature-sensitive (TS) mutants of Gram-positive Staphylococcus aureus, six were complemented by the murC gene, which encodes the UDP-N-acetylmuramic acid:l-alanine ligase. Each mutation resulted in a single amino acid substitution and, in all cases, the TS phenotype was suppressed by high osmotic stress. In mutant strains with the G222E substitution, a decrease in the viable cell number immediately after shift to the restrictive temperature was observed. These results suggest that S. aureus MurC protein is essential for cell growth. The MurC H343Y mutation is located in the putative alanine recognition pocket. Consistent with this, allele-specific suppression was observed of the H343Y mutation by multiple copies of the aapA gene, which encodes an alanine transporter. The results suggest an in vivo role for the H343 residue of S. aureus MurC protein in high-affinity binding to L-alanine.

  14. Mutational spectrum analysis of umuC-independent and umuC-dependent γ-radiation mutagenesis in Escherichia coli

    International Nuclear Information System (INIS)

    Sargentini, N.J.; Smith, K.C.

    1989-01-01

    γ-radiation mutagenesis Escherichia coli K-12. Mutagenesis (argE3(OC) A rg + ) was blocked in a δ(recA-srlR)306 strain at the same doses that induced mutations in umuC122::Tn5 and wild-type strains, indicating that both umuC-independent and umuC-dependent mechanisms function within recA-dependent misrepair. Analyses of various suppressor and back mutations that result in argE3 and hisG4 ochre reversion and an analysis of trpE9777 reversion were performed on umuC and wild-type cells irradiated in the presence and absence of oxygen. While the umuC strain showed the γ-radiation induction of base substitution and frameshifts when irradiated in the absence of oxygen, the umuC mutation blocked all oxygen-dependent base-substitution mutagenesis, but non all oxygen-dependent frameshift mutagenesis. For anoxically irradiated cells, the yields of GC T and AT GC transitions were essentially umuC independent, while the yields of (AT or GC) TA transversions were heavily umuC dependent. These data suggest new concepts about the nature of the DNA lesions and the mutagenic mechanisms that lead to γ-radiation mutagenesis. (author). 48 refs.; 1 tab.; 6 refs

  15. ADAM10/17-Dependent Release of Soluble c-Met Correlates with Hepatocellular Damage

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Karel; Kanchev, Ivan; Žbodáková, Olga; Buryová, Halka; Jiroušková, Markéta; Kořínek, Vladimír; Gregor, Martin; Sedláček, Radislav

    2013-01-01

    Roč. 59, č. 2 (2013), s. 76-78 ISSN 0015-5500 R&D Projects: GA ČR GAP305/10/2143; GA ČR GAP303/10/2044; GA AV ČR IAA500520812 Institutional support: RVO:68378050 Keywords : c-Met * HGF * shedding * ADAM metalloproteinase * liver Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.778, year: 2013

  16. Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases.

    Science.gov (United States)

    He, Xin; Chen, Zhigang; Jiang, Yangyan; Qiu, Xi; Zhao, Xiaoying

    2013-01-25

    The human c-mpl gene (MPL) plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of haematopoietic stem cells. However, numerous MPL mutations have been identified in haematopoietic diseases. These mutations alter the normal regulatory mechanisms and lead to autonomous activation or signalling deficiencies. In this review, we summarise 59 different MPL mutations and classify these mutations into four different groups according to the associated diseases and mutation rates. Using this classification, we clearly distinguish four diverse types of MPL mutations and obtain a deep understand of their clinical significance. This will prove to be useful for both disease diagnosis and the design of individual therapy regimens based on the type of MPL mutations.

  17. Novel Mutations in the PC Gene in Patients with Type B Pyruvate Carboxylase Deficiency

    DEFF Research Database (Denmark)

    Ostergaard, Elsebet; Duno, Morten; Møller, Lisbeth Birk

    2013-01-01

    We have investigated seven patients with the type B form of pyruvate carboxylase (PC) deficiency. Mutation analysis revealed eight mutations, all novel. In a patient with exon skipping on cDNA analysis, we identified a homozygous mutation located in a potential branch point sequence, the first...... possible branch point mutation in PC. Two patients were homozygous for missense mutations (with normal protein amounts on western blot analysis), and two patients were homozygous for nonsense mutations. In addition, a duplication of one base pair was found in a patient who also harboured a splice site...... mutation. Another splice site mutation led to the activation of a cryptic splice site, shown by cDNA analysis.All patients reported until now with at least one missense mutation have had the milder type A form of PC deficiency. We thus report for the first time two patients with homozygous missense...

  18. R54C Mutation of NOTCH3 Gene in the First Rungus Family with CADASIL.

    Directory of Open Access Journals (Sweden)

    Kheng-Seang Lim

    Full Text Available Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL is a rare hereditary stroke caused by mutations in NOTCH3 gene. We report the first case of CADASIL in an indigenous Rungus (Kadazan-Dusun family in Kudat, Sabah, Malaysia confirmed by a R54C (c.160C>T, p.Arg54Cys mutation in the NOTCH3. This mutation was previously reported in a Caucasian and two Korean cases of CADASIL. We recruited two generations of the affected Rungus family (n = 9 and found a missense mutation (c.160C>T in exon 2 of NOTCH3 in three siblings. Two of the three siblings had severe white matter abnormalities in their brain MRI (Scheltens score 33 and 50 respectively, one of whom had a young stroke at the age of 38. The remaining sibling, however, did not show any clinical features of CADASIL and had only minimal changes in her brain MRI (Scheltens score 17. This further emphasized the phenotype variability among family members with the same mutation in CADASIL. This is the first reported family with CADASIL in Rungus subtribe of Kadazan-Dusun ethnicity with a known mutation at exon 2 of NOTCH3. The penetrance of this mutation was not complete during the course of this study.

  19. Common Β- Thalassaemia Mutations in

    Directory of Open Access Journals (Sweden)

    P Azarfam

    2005-01-01

    Full Text Available Introduction: β –Thalassaemia was first explained by Thomas Cooly as Cooly’s anaemia in 1925. The β- thalassaemias are hereditary autosomal disorders with decreased or absent β-globin chain synthesis. The most common genetic defects in β-thalassaemias are caused by point mutations, micro deletions or insertions within the β-globin gene. Material and Methods: In this research , 142 blood samples (64 from childrens hospital of Tabriz , 15 samples from Shahid Gazi hospital of Tabriz , 18 from Urumia and 45 samples from Aliasghar hospital of Ardebil were taken from thalassaemic patients (who were previously diagnosed .Then 117 non-familial samples were selected . The DNA of the lymphocytes of blood samples was extracted by boiling and Proteinase K- SDS procedure, and mutations were detected by ARMS-PCR methods. Results: From the results obtained, eleven most common mutations,most of which were Mediterranean mutations were detected as follows; IVS-I-110(G-A, IVS-I-1(G-A ،IVS-I-5(G-C ,Frameshift Codon 44 (-C,( codon5(-CT,IVS-1-6(T-C, IVS-I-25(-25bp del ,Frameshift 8.9 (+G ,IVS-II-1(G-A ,Codon 39(C-T, Codon 30(G-C the mutations of the samples were defined. The results showed that Frameshift 8.9 (+G, IVS-I-110 (G-A ,IVS-II-I(G-A, IVS-I-5(G-C, IVS-I-1(G-A , Frameshift Codon 44(-C , codon5(-CT , IVS-1-6(T-C , IVS-I-25(-25bp del with a frequency of 29.9%, 25.47%,17.83%, 7.00%, 6.36% , 6.63% , 3.8% , 2.5% , 0.63% represented the most common mutations in North - west Iran. No mutations in Codon 39(C-T and Codon 30(G-C were detected. Cunclusion: The frequency of the same mutations in patients from North - West of Iran seems to be different as compared to other regions like Turkey, Pakistan, Lebanon and Fars province of Iran. The pattern of mutations in this region is more or less the same as in the Mediterranean region, but different from South west Asia and East Asia.

  20. EGFR and KRAS mutation coexistence in lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Vitor Manuel Leitão de Sousa

    2015-04-01

    Full Text Available Lung cancer is one of the most common causes of cancer deaths. The development of EGFR targeted therapies, including monoclonal antibodies and tyrosine kinase inhibitors have generated an interest in the molecular characterization of these tumours. KRAS mutations are associated with resistance to EGFR TKIs. EGFR and KRAS mutations have been considered as mutually exclusive. This paper presents three bronchial-pulmonary carcinomas, two adenocarcinomas and one pleomorphic sarcomatoid carcinoma, harboring EGFR and KRAS mutations. Case 1 corresponded to an adenocarcinoma with EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; case 2, a  mucinous adenocarcinoma expressed coexistence of EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; and case 3 a sarcomatoid carcinoma with EGFR exon 19 deletion – del 9bp and KRAS codon 12 point mutation (G12C - cysteine. Based on our experience and on the literature, we conclude that EGFR and KRAS mutations can indeed coexist in the same bronchial-pulmonary carcinoma, either in the same histological type or in different patterns. The biological implications of this coexistence are still poorly understood mainly because these cases are not frequent or currently searched. It is therefore necessary to study larger series of cases with the two mutations to better understand the biological, clinical and therapeutic implications.

  1. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway

    Directory of Open Access Journals (Sweden)

    Xia-li Tang

    2017-09-01

    Full Text Available Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP and the reversal mechanism of salvianolic acid A (SAA, a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1 up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway.

  2. Pasarela metálica sobre la C. N. III, Madrid-Valencia

    Directory of Open Access Journals (Sweden)

    Rodríguez-Borlado Olavarrieta, Ramiro

    1967-03-01

    Full Text Available The footbridge over the C. N. Ill , Madrid-Valencia road, near Madrid, enables pedestrians to cross the motor road where the latter runs between Moratalaz and Vallecas, without impeding the road traffic. The adoption of an elevated pass is convenient, since at this section the road runs along a deep trench. The structure of the footpath is a continuous metallic box girder, resting on five rectangular metal supports, and two end concrete abutments. The total length of the bridge is 100 m, and the width of the platform is 2.40 m. The project took one month to complete.La pasarela sobre la C. N. III, Madrid-Valencia, en la autopista de acceso a Madrid, permite el paso de peatones entre los barrios de Moratalaz y Vallecas sin interferir el tráfico rodado. La solución de paso superior resulta conveniente, ya que la autopista discurre en trinchera en el lugar de ubicación de esta obra. La estructura está formada por una viga metálica continua de sección en cajón, apoyada sobre cinco soportes rectangulares metálicos y dos estribos de hormigón armado. La obra tiene una longitud total de aproximadamente 100 m y el ancho de la plataforma es de 2,40 metros. El plazo de realización de la obra ha sido de un mes aproximadamente.

  3. NDP gene mutations in 14 French families with Norrie disease.

    Science.gov (United States)

    Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul

    2003-12-01

    Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.

  4. Molecular analysis of congenital goitres with hypothyroidism caused by defective thyroglobulin synthesis. Identification of a novel c.7006C>T [p.R2317X] mutation and expression of minigenes containing nonsense mutations in exon 7.

    Science.gov (United States)

    Machiavelli, Gloria A; Caputo, Mariela; Rivolta, Carina M; Olcese, María C; Gruñeiro-Papendieck, Laura; Chiesa, Ana; González-Sarmiento, Rogelio; Targovnik, Héctor M

    2010-01-01

    Thyroglobulin (TG) deficiency is an autosomal-recessive disorder that results in thyroid dyshormonogenesis. A number of distinct mutations have been identified as causing human hypothyroid goitre. The purpose of this study was to identify and characterize new mutations in the TG gene in an attempt to increase the understanding of the genetic mechanism responsible for this disorder. A total of six patients from four nonconsanguineous families with marked impairment of TG synthesis were studied. Single-strand conformation polymorphism (SSCP) analysis, sequencing of DNA, genotyping, expression of chimeric minigenes and bioinformatic analysis were performed. Four different inactivating TG mutations were identified: one novel mutation (c.7006C>T [p.R2317X]) and three previously reported (c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.6725G>A [p.R2223H]). Consequently, one patient carried a compound heterozygous for p.R2223H/p.R2317X mutations; two brothers showed a homozygous p.A2215D substitution and the remaining three patients, from two families with typical phenotype, had a single p.R277X mutated allele. We also showed functional evidences that premature stop codons inserted at different positions in exon 7, which disrupt exonic splicing enhancer (ESE) sequences, do not interfere with exon definition and processing. In this study, we have identified a novel nonsense mutation p.R2317X in the acetylcholinesterase homology domain of TG. We have also observed that nonsense mutations do not interfere with the pre-mRNA splicing of exon 7. The results are in accordance with previous observations confirming the genetic heterogeneity of TG defects.

  5. Deletion map of CYC1 mutants and its correspondence to mutationally altered iso-1-cytochromes c of yeast

    International Nuclear Information System (INIS)

    Sherman, F.; Jackson, M.; Liebman, S.W.; Schweingruber, A.M.; Stewart, J.W.

    1975-01-01

    Mutants arising spontaneously from sporulated cultures of certain strains of yeast, Saccharomyces cerevisiae, contained deletions of the CYC1 gene which controls the primary structure of iso-1-cytochrome c. At least 60 different kinds of deletions were uncovered among the 104 deletions examined and these ranged in length from those encompassing only two adjacent point mutants to those encompassing at least the entire CYC1 gene. X-ray-induced recombination rates of crosses involving these deletions and cyc1 point mutants resulted in the assignment of 211 point mutants to 47 mutational sites and made it possible to unambiguously order 40 of these 47 sites. Except for one mutant, cyc1-15, there was a strict colinear relationship between the deletion map and the positions of 13 sites that were previously determined by amino acid alterations in iso-1-cytochromes c from intragenic revertants

  6. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect

    International Nuclear Information System (INIS)

    Wang Hu; Wang Jizheng; Zheng Weiyue; Wang Xiaojian; Wang Shuxia; Song Lei; Zou Yubao; Yao Yan; Hui Rutai

    2006-01-01

    Dilated cardiomyopathy is a form of heart muscle disease characterized by impaired systolic function and ventricular dilation. The mutations in lamin A/C gene have been linked to dilated cardiomyopathy. We screened genetic mutations in a large Chinese family of 50 members including members with dilated cardiomyopathy and found a Glu82Lys substitution mutation in the rod domain of the lamin A/C protein in eight family members, three of them have been diagnosed as dilated cardiomyopathy, one presented with heart dilation. The pathogenic mechanism of lamin A/C gene defect is poorly understood. Glu82Lys mutated lamin A/C and wild type protein was transfected into HEK293 cells. The mutated protein was not properly localized at the inner nuclear membrane and the emerin protein, which interacts with lamin A/C, was also aberrantly distributed. The nuclear membrane structure was disrupted and heterochromatin was aggregated aberrantly in the nucleus of the HEK293 cells stably transfected with mutated lamin A/C gene as determined by transmission electron microscopy

  7. Identification of a breast cancer family double heterozygote for RAD51C and BRCA2 gene mutations

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Steffensen, Ane Y; Jønson, Lars

    2015-01-01

    for mutations in the RAD51C and BRCA2 genes. The RAD51C missense mutation p.Arg258His has previously been identified in a homozygous state in a patient with Fanconi anemia. This mutation is known to affect the DNA repair function of the RAD51C protein. The BRCA2 p.Leu3216Leu synonymous mutation has not been...

  8. Phase I Trial of Anti-MET Monoclonal Antibody in MET-Overexpressed Refractory Cancer.

    Science.gov (United States)

    Lee, Jeeyun; Kim, Seung Tae; Park, Sungju; Lee, Sujin; Park, Se Hoon; Park, Joon Oh; Lim, Ho Yeong; Ahn, Hongmo; Bok, Haesook; Kim, Kyoung-Mee; Ahn, Myung Ju; Kang, Won Ki; Park, Young Suk

    2018-06-01

    Samsung Advance Institute of Technology-301 (SAIT301) is a human immunoglobulin G2 antibody that can specifically target mesenchymal epithelial transition factor (c-MET). This novel antibody has higher priority over hepatocyte growth factors when binding to the Sema domain of c-MET and accelerates the internalization and degradation of c-MET, proving its powerful antitumor activities in intra- as well as extracellular areas. SAIT301 was administered intravenously once every 3 weeks in c-MET overexpressed solid tumor patients, focusing on metastatic colorectal cancer (CRC) according to common clinical phase I criteria. Dose escalation was performed according to a modified Fibonacci design, following the conventional 3+3 design. The purpose of this phase I study was to assess the safety profile, to establish the recommended dose for clinical phase II studies and to assess potential anticancer activity of the compound. Sixteen patients with a median age of 56 (range, 39-69) years were enrolled in the study. The most common adverse events were decreased appetite (50.0%), hypophosphatemia, fatigue and dizziness (25.0%, respectively), and diarrhea, blood alkaline phosphatase increased and dyspnea (18.8%, respectively). For tumor response, no patients achieved complete response. One (9.1%) CRC patient had a partial response in the 1.23 mg/kg group, 4 (36.4%) patients achieved stable disease (2 in the 0.41 mg/kg group, 2 in the 1.23 mg/kg group, 0 in the 3.69 mg/kg group, and 1 in the 8.61 mg/kg group). Because of the increase in dose-limiting toxicities (DLTs) at 8.61 mg/kg, the 3.69 mg/kg dose was considered the maximum tolerated dose and selected for further assessment in phase II. We successfully completed a phase I trial with MET antibody in a MET-overexpressed patient population focusing on CRC, and found that the DLTs were alkaline phosphatase elevation or hypophosphatemia. The recommended dose of SAIT301 for phase II is the dose of 3.69 mg/kg. Copyright © 2018

  9. Attenuation and efficacy of human parainfluenza virus type 1 (HPIV1 vaccine candidates containing stabilized mutations in the P/C and L genes

    Directory of Open Access Journals (Sweden)

    Skiadopoulos Mario H

    2007-07-01

    Full Text Available Abstract Background Two recombinant, live attenuated human parainfluenza virus type 1 (rHPIV1 mutant viruses have been developed, using a reverse genetics system, for evaluation as potential intranasal vaccine candidates. These rHPIV1 vaccine candidates have two non-temperature sensitive (non-ts attenuating (att mutations primarily in the P/C gene, namely CR84GHNT553A (two point mutations used together as a set and CΔ170 (a short deletion mutation, and two ts att mutations in the L gene, namely LY942A (a point mutation, and LΔ1710–11 (a short deletion, the last of which has not been previously described. The latter three mutations were specifically designed for increased genetic and phenotypic stability. These mutations were evaluated on the HPIV1 backbone, both individually and in combination, for attenuation, immunogenicity, and protective efficacy in African green monkeys (AGMs. Results The rHPIV1 mutant bearing the novel LΔ1710–11 mutation was highly ts and attenuated in AGMs and was immunogenic and efficacious against HPIV1 wt challenge. The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates were highly ts, with shut-off temperatures of 38°C and 35°C, respectively, and were highly attenuated in AGMs. Immunization with rHPIV1-CR84G/Δ170HNT553ALY942A protected against HPIV1 wt challenge in both the upper and lower respiratory tracts. In contrast, rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 was not protective in AGMs due to over-attenuation, but it is expected to replicate more efficiently and be more immunogenic in the natural human host. Conclusion The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates are clearly highly attenuated in AGMs and clinical trials are planned to address safety and immunogenicity in humans.

  10. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Qing-lin [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Xu, Jia [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Zhang, Zeng [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); He, Jin-wei [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Lu, Lian-song [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Fu, Wen-zhen [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Zhang, Zhen-lin, E-mail: zzl2002@medmail.com.cn [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  11. Olive phenolics as c-Met inhibitors: (--Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Mohamed R Akl

    Full Text Available Dysregulation of the Hepatocyte growth factor (HGF/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT, angiogenesis, invasion, and metastasis. (--Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory activity against different cancer cell lines. The aim of this study was to characterize the intracellular mechanisms involved in mediating the anticancer effects of (--oleocanthal treatment and the potential involvement of c-Met receptor signaling components in breast cancer. Results showed that (--oleocanthal inhibits the growth of human breast cancer cell lines MDA-MB-231, MCF-7 and BT-474 while similar treatment doses were found to have no effect on normal human MCF10A cell growth. In addition, (--oleocanthal treatment caused a dose-dependent inhibition of HGF-induced cell migration, invasion and G1/S cell cycle progression in breast cancer cell lines. Moreover, (--oleocanthal treatment effects were found to be mediated via inhibition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways. This growth inhibitory effect is associated with blockade of EMT and reduction in cellular motility. Further results from in vivo studies showed that (--oleocanthal treatment suppressed tumor cell growth in an orthotopic model of breast cancer in athymic nude mice. Collectively, the findings of this study suggest that (--oleocanthal is a promising dietary supplement lead with potential for therapeutic use to control malignancies with aberrant c-Met activity.

  12. Novel and recurrent MYO7A mutations in Usher syndrome type 1 and type 2.

    Science.gov (United States)

    Rong, Weining; Chen, Xue; Zhao, Kanxing; Liu, Yani; Liu, Xiaoxing; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Sheng, Xunlun; Zhao, Chen

    2014-01-01

    Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease.

  13. Novel and recurrent MYO7A mutations in Usher syndrome type 1 and type 2.

    Directory of Open Access Journals (Sweden)

    Weining Rong

    Full Text Available Usher syndrome (USH is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease.

  14. Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study.

    Science.gov (United States)

    Deuschl, Cornelius; Moenninghoff, Christoph; Goericke, Sophia; Kirchner, Julian; Köppen, Susanne; Binse, Ina; Poeppel, Thorsten D; Quick, Harald H; Forsting, Michael; Umutlu, Lale; Herrmann, Ken; Hense, Joerg; Schlamann, Marc

    2017-08-01

    The objective of this study was to evaluate the potential of integrated 11C-MET PET/MR for response assessment of relapsed glioblastoma (GBM) receiving bevacizumab treatment. Eleven consecutive patients with relapsed GBM were enrolled for an integrated 11C-MET PET/MRI at baseline and at follow-up. Treatment response for MRI was evaluated according to Response Assessment in Neuro-oncology (RANO) criteria and integrated 11C-MET PET was assessed by the T/N ratio. MRI showed no patient with complete response (CR), six of 11 patients with PR, four of 11 patients with SD, and one of 11 patients with progressive disease (PD). PET revealed metabolic response in five of the six patients with partial response (PR) and in two of the four patients with stable disease (SD), whereas metabolic non-response was detected in one of the six patients with PR, in two of the four patients with SD, and in the one patient with PD. Morphological imaging was predictive for PFS and OS when response was defined as CR, PR, SD, and non-response as PD. Metabolic imaging was predictive when using T/N ratio reduction of >25 as discriminator. Based on the morphologic and metabolic findings of this study a proposal for applying integrated PET/MRI for treatment response in relapsed GBM was developed, which was significantly predictive for PFS and OS (P = 0.010 respectively 0,029, log). This study demonstrates the potential of integrated 11C-MET-PET/MRI for response assessment of GBM and the utility of combined assessment of morphologic and metabolic information with the proposal for assessing relapsed GBM.

  15. Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Deuschl, Cornelius [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Duisburg (Germany); Moenninghoff, Christoph; Goericke, Sophia; Forsting, Michael; Umutlu, Lale [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Kirchner, Julian [University Hospital Duesseldorf, Institute of Diagnostic and Interventional Radiology, Duesseldorf (Germany); Koeppen, Susanne [University Hospital Essen, Department of Neurology, Essen (Germany); Binse, Ina; Poeppel, Thorsten D.; Herrmann, Ken [University Hospital Essen, Department of Nuclear Medicine, Essen (Germany); Quick, Harald H. [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Duisburg (Germany); University Hospital Essen, High Field and Hybrid MR Imaging, Essen (Germany); Hense, Joerg [University Hospital Essen, Department of Medical Oncology, West German Cancer Center, Essen (Germany); Schlamann, Marc [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University Hospital Giessen, Department of Neuroradiology, Essen (Germany)

    2017-08-15

    The objective of this study was to evaluate the potential of integrated 11C-MET PET/MR for response assessment of relapsed glioblastoma (GBM) receiving bevacizumab treatment. Eleven consecutive patients with relapsed GBM were enrolled for an integrated 11C-MET PET/MRI at baseline and at follow-up. Treatment response for MRI was evaluated according to Response Assessment in Neuro-oncology (RANO) criteria and integrated 11C-MET PET was assessed by the T/N ratio. MRI showed no patient with complete response (CR), six of 11 patients with PR, four of 11 patients with SD, and one of 11 patients with progressive disease (PD). PET revealed metabolic response in five of the six patients with partial response (PR) and in two of the four patients with stable disease (SD), whereas metabolic non-response was detected in one of the six patients with PR, in two of the four patients with SD, and in the one patient with PD. Morphological imaging was predictive for PFS and OS when response was defined as CR, PR, SD, and non-response as PD. Metabolic imaging was predictive when using T/N ratio reduction of >25 as discriminator. Based on the morphologic and metabolic findings of this study a proposal for applying integrated PET/MRI for treatment response in relapsed GBM was developed, which was significantly predictive for PFS and OS (P = 0.010 respectively 0,029, log). This study demonstrates the potential of integrated 11C-MET-PET/MRI for response assessment of GBM and the utility of combined assessment of morphologic and metabolic information with the proposal for assessing relapsed GBM. (orig.)

  16. Mitochondrial G8292A and C8794T mutations in patients with Niemann-Pick disease type C.

    Science.gov (United States)

    Masserrat, Abbas; Sharifpanah, Fatemeh; Akbari, Leila; Tonekaboni, Seyed Hasan; Karimzadeh, Parvaneh; Asharafi, Mahmood Reza; Mazouei, Safoura; Sauer, Heinrich; Houshmand, Massoud

    2018-07-01

    Niemann-Pick disease type C (NP-C) is a neurovisceral lipid storage disorder. At the cellular level, the disorder is characterized by accumulation of unesterified cholesterol and glycolipids in the lysosomal/late endosomal system. NP-C is transmitted in an autosomal recessive manner and is caused by mutations in either the NPC1 (95% of families) or NPC2 gene. The estimated disease incidence is 1 in 120,000 live births, but this likely represents an underestimate, as the disease may be under-diagnosed due to its highly heterogeneous presentation. Variants of adenosine triphosphatase (ATPase) subunit 6 and ATPase subunit 8 ( ATPase6/8 ) in mitochondrial DNA (mtDNA) have been reported in different types of genetic diseases including NP-C. In the present study, the blood samples of 22 Iranian patients with NP-C and 150 healthy subjects as a control group were analyzed. The DNA of the blood samples was extracted by the salting out method and analyzed for ATPase6/8 mutations using polymerase chain reaction sequencing. Sequence variations in mitochondrial genome samples were determined via the Mitomap database. Analysis of sequencing data confirmed the existence of 11 different single nucleotide polymorphisms (SNPs) in patients with NP-C1. One of the most prevalent polymorphisms was the A8860G variant, which was observed in both affected and non-affected groups and determined to have no significant association with NP-C incidence. Amongst the 11 polymorphisms, only one was identified in the ATPase8 gene, while 9 including A8860G were observed in the ATPase6 gene. Furthermore, two SNPs, G8292A and C8792A, located in the non-coding region of mtDNA and the ATPase6 gene, respectively, exhibited significantly higher prevalence rates in NP-C1 patients compared with the control group (PC disease. In addition, the mitochondrial SNPs identified maybe pathogenic mutations involved in the development and prevalence of NP-C. Furthermore, these results suggest a higher occurrence of

  17. Founder effect of the RET C611Y mutation in multiple endocrine neoplasia 2A in Denmark

    DEFF Research Database (Denmark)

    Mathiesen, Jes Sloth; Kroustrup, Jens Peter; Vestergaard, Peter

    2017-01-01

    BACKGROUND: Multiple endocrine neoplasia (MEN) 2A and 2B are caused by REarranged during Transfection (RET) germline mutations. In a recent nationwide study we reported of an unusually high prevalence (33%) of families with the C611Y mutation and hypothesized that this might be due to a founder...... effect. We conducted the first nationwide study of haplotypes in MEN2A families aiming to investigate the relatedness and occurrence of de novo mutations among Danish families carrying similar mutations. METHODS: The study included 21 apparently unrelated MEN2A families identified from a nationwide...... Danish RET cohort from 1994 to 2014. Twelve, two, two, three and two families carried the C611Y, C618F, C618Y, C620R and C634R mutation, respectively. Single nucleotide polymorphism chip data and identity by descent analysis were used to assess relatedness. RESULTS: A common founder mutation was found...

  18. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway.

    Science.gov (United States)

    Tang, Xia-Li; Yan, Li; Zhu, Ling; Jiao, De-Min; Chen, Jun; Chen, Qing-Yong

    2017-09-01

    Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC) treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1) up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Mutation in CPT1C Associated With Pure Autosomal Dominant Spastic Paraplegia.

    Science.gov (United States)

    Rinaldi, Carlo; Schmidt, Thomas; Situ, Alan J; Johnson, Janel O; Lee, Philip R; Chen, Ke-Lian; Bott, Laura C; Fadó, Rut; Harmison, George H; Parodi, Sara; Grunseich, Christopher; Renvoisé, Benoît; Biesecker, Leslie G; De Michele, Giuseppe; Santorelli, Filippo M; Filla, Alessandro; Stevanin, Giovanni; Dürr, Alexandra; Brice, Alexis; Casals, Núria; Traynor, Bryan J; Blackstone, Craig; Ulmer, Tobias S; Fischbeck, Kenneth H

    2015-05-01

    The family of genes implicated in hereditary spastic paraplegias (HSPs) is quickly expanding, mostly owing to the widespread availability of next-generation DNA sequencing methods. Nevertheless, a genetic diagnosis remains unavailable for many patients. To identify the genetic cause for a novel form of pure autosomal dominant HSP. We examined and followed up with a family presenting to a tertiary referral center for evaluation of HSP for a decade until August 2014. Whole-exome sequencing was performed in 4 patients from the same family and was integrated with linkage analysis. Sanger sequencing was used to confirm the presence of the candidate variant in the remaining affected and unaffected members of the family and screen the additional patients with HSP. Five affected and 6 unaffected participants from a 3-generation family with pure adult-onset autosomal dominant HSP of unknown genetic origin were included. Additionally, 163 unrelated participants with pure HSP of unknown genetic cause were screened. Mutation in the neuronal isoform of carnitine palmitoyl-transferase (CPT1C) gene. We identified the nucleotide substitution c.109C>T in exon 3 of CPT1C, which determined the base substitution of an evolutionarily conserved Cys residue for an Arg in the gene product. This variant strictly cosegregated with the disease phenotype and was absent in online single-nucleotide polymorphism databases and in 712 additional exomes of control participants. We showed that CPT1C, which localizes to the endoplasmic reticulum, is expressed in motor neurons and interacts with atlastin-1, an endoplasmic reticulum protein encoded by the ATL1 gene known to be mutated in pure HSPs. The mutation, as indicated by nuclear magnetic resonance spectroscopy studies, alters the protein conformation and reduces the mean (SD) number (213.0 [46.99] vs 81.9 [14.2]; P lipid droplets on overexpression in cells. We also observed a reduction of mean (SD) lipid droplets in primary cortical neurons

  20. Involvement of c-Met- and phosphatidylinositol 3-kinase dependent pathways in arsenite-induced downregulation of catalase in hepatoma cells.

    Science.gov (United States)

    Kim, Soohee; Lee, Seung Heon; Kang, Sukmo; Lee, Lyon; Park, Jung-Duck; Ryu, Doug-Young

    2011-01-01

    Catalase protects cells from reactive oxygen species-induced damage by catalyzing the breakdown of hydrogen peroxide to oxygen and water. Arsenite decreases catalase activity; it activates phosphatidylinositol 3-kinase (PI3K) and its key downstream effector Akt in a variety of cells. The PI3K pathway is known to inhibit catalase expression. c-Met, an upstream regulator of PI3K and Akt, is also involved in the regulation of catalase expression. To examine the involvement of c-Met and PI3K pathways in the arsenite-induced downregulation of catalase, catalase mRNA and protein expression were analyzed in the human hepatoma cell line HepG2 treated with arsenite and either an inhibitor of c-Met (PHA665752 (PHA)) or of PI3K (LY294002 (LY)). Arsenite treatment markedly activated Akt and decreased the levels of both catalase mRNA and protein. Both PHA and LY attenuated arsenite-induced activation of Akt. PHA and LY treatment also prevented the inhibitory effect of arsenite on catalase protein expression but did not affect the level of catalase mRNA. These findings suggest that arsenite-induced inhibition of catalase expression is regulated at the mRNA and post-transcriptional levels in HepG2 cells, and that the post-transcriptional regulation is mediated via c-Met- and PI3K-dependent mechanisms.

  1. Fetal-juvenile origins of point mutations in the adult human tracheal-bronchial epithelium: Absence of detectable effects of age, gender or smoking status

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Hiroko [Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139 (United States); Toray Industries, Inc., New Frontiers Research Laboratories 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555 (Japan); Li-Sucholeiki, Xiao-Cheng [Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139 (United States); Agencourt Bioscience Corp., 500 Cummings Center, Suite 2450, Beverly, MA 01915 (United States); Marcelino, Luisa A. [Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139 (United States); Biomedical Engineering Department, Northwestern University, 633 Clark Street, Evanston, IL 60208 (United States); Gruhl, Amanda N. [Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139 (United States); Herrero-Jimenez, Pablo [Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139 (United States); SLC Ontario, 690 Dorval Drive, Suite 200, Oakville, Ontario L6K 3W7 Canada (Canada); Zarbl, Helmut [UMDNJ-Robert Wood Johnson Medical School, Environmental and Occupational Health Sciences Institute, 170 Freylinghuysen Road, Room 426, Piscataway, NJ 08854 (United States); Willey, James C. [Medical College of Ohio, 3120 Glendale Avenue, Room 12, Toledo, OH 43614 (United States); Furth, Emma E. [University of Pennsylvania Medical Center, Department of Pathology, 3400 Spruce Street, 6 Founders Building, Philadelphia, PA 19104 (United States); Morgenthaler, Stephan [Institute of Applied Mathematics, Swiss Federal Institute of Technology (EPFL), SB/IMA, 1015 Lausanne (Switzerland)] (and others)

    2008-11-10

    Allele-specific mismatch amplification mutation assays (MAMA) of anatomically distinct sectors of the upper bronchial tracts of nine nonsmokers revealed many numerically dispersed clusters of the point mutations C742T, G746T, G747T of the TP53 gene, G35T of the KRAS gene and G508A of the HPRT1 gene. Assays of these five mutations in six smokers have yielded quantitatively similar results. One hundred and eighty four micro-anatomical sectors of 0.5-6 x 10{sup 6} tracheal-bronchial epithelial cells represented en toto the equivalent of approximately 1.7 human smokers' bronchial trees to the fifth bifurcation. Statistically significant mutant copy numbers above the 95% upper confidence limits of historical background controls were found in 198 of 425 sector assays. No significant differences (P = 0.1) for negative sector fractions, mutant fractions, distributions of mutant cluster size or anatomical positions were observed for smoking status, gender or age (38-76 year). Based on the modal cluster size of mitochondrial point mutants, the size of the adult bronchial epithelial maintenance turnover unit was estimated to be about 32 cells. When data from all 15 lungs were combined the log 2 of nuclear mutant cluster size plotted against log 2 of the number of clusters of a given cluster size displayed a slope of {approx}1.1 over a range of cluster sizes from {approx}2{sup 6} to 2{sup 15} mutant copies. A parsimonious interpretation of these nuclear and previously reported data for lung epithelial mitochondrial point mutant clusters is that they arose from mutations in stem cells at a high but constant rate per stem cell doubling during at least ten stem cell doublings of the later fetal-juvenile period. The upper and lower decile range of summed point mutant fractions among lungs was about 7.5-fold, suggesting an important source of stratification in the population with regard to risk of tumor initiation.

  2. Risk prediction of ventricular arrhythmias and myocardial function in Lamin A/C mutation positive subjects

    DEFF Research Database (Denmark)

    Hasselberg, Nina E; Edvardsen, Thor; Petri, Helle

    2014-01-01

    Mutations in the Lamin A/C gene may cause atrioventricular block, supraventricular arrhythmias, ventricular arrhythmias (VA), and dilated cardiomyopathy. We aimed to explore the predictors and the mechanisms of VA in Lamin A/C mutation-positive subjects.METHODS AND RESULTS: We included 41 Lamin A/C...

  3. Posterior microphthalmia and nanophthalmia in Tunisia caused by a founder c.1059_1066insC mutation of the PRSS56 gene.

    Science.gov (United States)

    Said, Mariem Ben; Chouchène, Ebtissem; Salem, Salma Ben; Daoud, Kods; Largueche, Leila; Bouassida, Walid; Benzina, Zeineb; Ayadi, Hammadi; Söderkvist, Peter; Matri, Leila; Hmani-Aifa, Mounira

    2013-10-10

    Congenital microphthalmia (CMIC) is a common developmental ocular disorder characterized by a small, and sometimes malformed, eye. Posterior microphthalmia (PM) and nanophthalmia are two rare subtypes of isolated CMIC characterized by extreme hyperopia due to short axial length and elevated lens/eye volume ratio. While nanophthalmia is associated with a reduced size in both anterior and posterior segments, PM involves a normal-size anterior chamber but a small posterior segment. Several genes encoding transcription and non-transcription regulators have been identified in different forms of CMIC. MFRP gene mutations have, for instance, been associated with nanophthalmia, and mutations in the recently identified PRSS56 gene have been linked to PM. So far, these two forms of CMIC have been associated with 9 mutations in PRSS56. Of particular interest, a c.1059_1066insC mutation has recently been reported in four Tunisian families with isolated PM and one Tunisian family with nanophthalmia. Here, we performed a genome-wide scan using a high density single nucleotide polymorphism (SNP) array 50 K in a large consanguineous Tunisian family (PM7) affected with PM and identified the same causative disease mutation. A total of 24 polymorphic markers spanning the PRSS56 gene in 6 families originating from different regions of Tunisia were analyzed to investigate the origin of the c.1059_1066insC mutation and to determine whether it arose in a common ancestor. A highly significant disease-associated haplotype, spanning across the 146 kb of the 2q37.1 chromosome, was conserved in those families, suggesting that c.1059_1066insC arose from a common founder. The age of the mutation in this haplotype was estimated to be around 1,850 years. The identification of such 'founder effects' may greatly simplify diagnostic genetic screening and lead to better prognostic counseling. © 2013 Elsevier B.V. All rights reserved.

  4. Negative control of the HGF/c-MET pathway by TGF-β: a new look at the regulation of stemness in glioblastoma.

    Science.gov (United States)

    Papa, Eleanna; Weller, Michael; Weiss, Tobias; Ventura, Elisa; Burghardt, Isabel; Szabó, Emese

    2017-12-13

    Multiple target inhibition has gained considerable interest in combating drug resistance in glioblastoma, however, understanding the molecular mechanisms of crosstalk between signaling pathways and predicting responses of cancer cells to targeted interventions has remained challenging. Despite the significant role attributed to transforming growth factor (TGF)-β family and hepatocyte growth factor (HGF)/c-MET signaling in glioblastoma pathogenesis, their functional interactions have not been well characterized. Using genetic and pharmacological approaches to stimulate or antagonize the TGF-β pathway in human glioma-initiating cells (GIC), we observed that TGF-β exerts an inhibitory effect on c-MET phosphorylation. Inhibition of either mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway attenuated this effect. A comparison of c-MET-driven and c-MET independent GIC models revealed that TGF-β inhibits stemness in GIC at least in part via its negative regulation of c-MET activity, suggesting that stem cell (SC) maintenance may be controlled by the balance between these two oncogenic pathways. Importantly, immunohistochemical analyses of human glioblastoma and ex vivo single-cell gene expression profiling of TGF-β and HGF confirm the negative interaction between both pathways. These novel insights into the crosstalk of two major pathogenic pathways in glioblastoma may explain some of the disappointing results when targeting either pathway alone in human glioblastoma patients and inform on potential future designs on targeted pharmacological or genetic intervention.

  5. C-point and V-point singularity lattice formation and index sign conversion methods

    Science.gov (United States)

    Kumar Pal, Sushanta; Ruchi; Senthilkumaran, P.

    2017-06-01

    The generic singularities in an ellipse field are C-points namely stars, lemons and monstars in a polarization distribution with C-point indices (-1/2), (+1/2) and (+1/2) respectively. Similar to C-point singularities, there are V-point singularities that occur in a vector field and are characterized by Poincare-Hopf index of integer values. In this paper we show that the superposition of three homogenously polarized beams in different linear states leads to the formation of polarization singularity lattice. Three point sources at the focal plane of the lens are used to create three interfering plane waves. A radial/azimuthal polarization converter (S-wave plate) placed near the focal plane modulates the polarization states of the three beams. The interference pattern is found to host C-points and V-points in a hexagonal lattice. The C-points occur at intensity maxima and V-points occur at intensity minima. Modulating the state of polarization (SOP) of three plane waves from radial to azimuthal does not essentially change the nature of polarization singularity lattice as the Poincare-Hopf index for both radial and azimuthal polarization distributions is (+1). Hence a transformation from a star to a lemon is not trivial, as such a transformation requires not a single SOP change, but a change in whole spatial SOP distribution. Further there is no change in the lattice structure and the C- and V-points appear at locations where they were present earlier. Hence to convert an interlacing star and V-point lattice into an interlacing lemon and V-point lattice, the interferometer requires modification. We show for the first time a method to change the polarity of C-point and V-point indices. This means that lemons can be converted into stars and stars can be converted into lemons. Similarly the positive V-point can be converted to negative V-point and vice versa. The intensity distribution in all these lattices is invariant as the SOPs of the three beams are changed in an

  6. Effects of strong electron correlations in Ti8C12 Met-Car

    International Nuclear Information System (INIS)

    Varganov, Sergey A.; Gordon, Mark S.

    2006-01-01

    The results of multireference configuration interaction (MRCI) with single and double excitations and single reference coupled cluster (CCSD(T)) calculations on Ti 8 C 12 metallocarbohedryne (Met-Car) are reported. The distortions of the T d structure to D 2d and C 3v structures due to the Jahn-Teller effect are studied. It is shown that the Ti 8 C 12 wave function has significant multireference character. The choice of the active space for multireference self-consistent field (MCSCF) calculations is discussed. The failure of multireference perturbation theory with a small active space is attributed to multiple intruder states. A new, novel type of MCSCF calculation, ORMAS (occupation restricted multiple active spaces) with a large active space are carried out for several electronic states of Ti 8 C 12 . The Jahn-Teller distorted D 2d 1 A 1 (nearly T d ) structure is predicted to be the Ti 8 C 12 ground state. Predictions of the Ti 8 C 12 ionization potential with different ab initio methods are presented

  7. The degree of attenuation of tick-borne encephalitis virus depends on the cumulative effects of point mutations.

    Science.gov (United States)

    Gritsun, T S; Desai, A; Gould, E A

    2001-07-01

    An infectious clone (pGGVs) of the tick-borne encephalitis complex virus Vasilchenko (Vs) was constructed previously. Virus recovered from pGGVs produced slightly smaller plaques than the Vs parental virus. Sequence analysis demonstrated five nucleotide differences between the original Vs virus and pGGVs; four of these mutations resulted in amino acid substitutions, while the fifth mutation was located in the 3' untranslated region (3'UTR). Two mutations were located in conserved regions and three mutations were located in variable regions of the virus genome. Reverse substitutions from the conserved regions of the genome, R(496)-->H in the envelope (E) gene and C(10884)-->T in the 3'UTR, were introduced both separately and together into the infectious clone and their biological effect on virus phenotype was evaluated. The engineered viruses with R(496) in the E protein produced plaques of smaller size than viruses with H(496) at this position. This mutation also affected the growth and neuroinvasiveness of the virus. In contrast, the consequence of a T(10884)-->C substitution within the 3'UTR was noticeable only in cytotoxicity and neuroinvasiveness tests. However, all virus mutants engineered by modification of the infectious clone, including one with two wild-type mutations, H(496) and T(10884), showed reduced neuroinvasiveness in comparison with the Vs parental virus. Therefore, although the H(496)-->R and T(10884)-->C substitutions clearly reduce virus virulence, the other mutations within the variable regions of the capsid (I(45)-->F) and the NS5 (T(2688)-->A and M(3385)-->I) genes also contribute to the process of attenuation. In terms of developing flavivirus vaccines, the impact of accumulating apparently minor mutations should be assessed in detail.

  8. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway.

    Science.gov (United States)

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2017-05-11

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.

  9. Methylenetetrahydrofolate reductase C677T mutation and risk of retinal vein thrombosis.

    Science.gov (United States)

    Soltanpour, Mohammad Soleiman; Soheili, Zahra; Shakerizadeh, Ali; Pourfathollah, Ali Akbar; Samiei, Shahram; Meshkani, Reza; Shahjahani, Mohammad; Karimi, Abbas

    2013-06-01

    Elevated plasma homocysteine (Hcy) level has been established as a significant risk factor for venous thrombosis and cardiovascular disease. Homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T mutation has been associated with elevated plasma Hcy concentration and may contribute to retinal vein thrombosis (RVT) development. The aim of the present study was to investigate whether the hyperhomocysteinemia and/or homozygosity for the MTHFR C677T mutation are associated with an increased risk for RVT. Our study population consisted of 73 consecutive patients (50-78 years old) with RVT and 73 control subjects (51-80 years old), matched for age and sex. Genotyping for the MTHFR C677T mutation was performed by polymerase chain reaction-restriction fragment length polymorphism technique and Hcy level was determined by an enzyme immunoassay kit. The prevalence of 677TT genotype was higher in patients than control subjects, but the difference in frequency didn't reach a significant value (P = 0.07). The frequency of the 677T allele was 26% and 21.2% in patients and controls, respectively and did not differ significantly between the two groups (odds ratio = 1.3, 95% confidence interval (0.75-2.24), P = 0.33). Fasting plasma total Hcy level was significantly higher in patients than controls (P = 0.001). Our study demonstrated that hyperhomocysteinemia, but not the MTHFR C677T mutation, is associated with RVT.

  10. Preliminary studies on DNA retardation by MutS applied to the detection of point mutations in clinical samples

    International Nuclear Information System (INIS)

    Stanislawska-Sachadyn, Anna; Paszko, Zygmunt; Kluska, Anna; Skasko, Elzibieta; Sromek, Maria; Balabas, Aneta; Janiec-Jankowska, Aneta; Wisniewska, Alicja; Kur, Jozef; Sachadyn, Pawel

    2005-01-01

    MutS ability to bind DNA mismatches was applied to the detection of point mutations in PCR products. MutS recognized mismatches from single up to five nucleotides and retarded the electrophoretic migration of mismatched DNA. The electrophoretic detection of insertions/deletions above three nucleotides is also possible without MutS, thanks to the DNA mobility shift caused by the presence of large insertion/deletion loops in the heteroduplex DNA. Thus, the method enables the search for a broad range of mutations: from single up to several nucleotides. The mobility shift assays were carried out in polyacrylamide gels stained with SYBR-Gold. One assay required 50-200 ng of PCR product and 1-3 μg of Thermus thermophilus his 6 -MutS protein. The advantages of this approach are: the small amounts of DNA required for the examination, simple and fast staining, no demand for PCR product purification, no labelling and radioisotopes required. The method was tested in the detection of cancer predisposing mutations in RET, hMSH2, hMLH1, BRCA1, BRCA2 and NBS1 genes. The approach appears to be promising in screening for unknown point mutations

  11. Efficient Knock-in of a Point Mutation in Porcine Fibroblasts Using the CRISPR/Cas9-GMNN Fusion Gene.

    Science.gov (United States)

    Gerlach, Max; Kraft, Theresia; Brenner, Bernhard; Petersen, Björn; Niemann, Heiner; Montag, Judith

    2018-06-13

    During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7 -gene in porcine fetal fibroblasts. We added a small molecule inhibitor of NHEJ, SCR7 (5,6-bis((E)-benzylideneamino)-2-mercaptopyrimidin-4-ol), during genome editing and screened cell cultures for the point mutation. However, this approach did not yield increased knock-in rates. In an alternative approach, we fused humanized Cas9 (hCas9) to the N-terminal peptide of the Geminin gene ( GMNN ). The fusion protein is degraded in NHEJ-dominated cell cycle phases, which should increase HDR-rates. Using hCas9- GMNN and point mutation-specific real time PCR screening, we found a two-fold increase in genome edited cell cultures. This increase of HDR by hCas9- GMNN provides a promising way to enrich specific knock-in in porcine fibroblast cultures for somatic cloning approaches.

  12. Novel Founder Mutation in FANCA Gene (c.3446_3449dupCCCT) Among Romani Patients from the Balkan Region.

    Science.gov (United States)

    Dimishkovska, Marija; Kotori, Vjosa Mulliqi; Gucev, Zoran; Kocheva, Svetlana; Polenakovic, Momir; Plaseska-Karanfilska, Dijana

    2018-01-20

    Fanconi anemia is a rare autosomal recessive or X-linked disorder characterised by clinical and genetic heterogeneity. Most fanconi anemia patients harbour homozygous or double heterozygous mutations in the FANCA (60-65%), FANCC (10-15%), FANCG (~10%) or FANCD2 (3-6%) genes. We have already reported the FANCA variant c.190-256_283+1680del2040dupC as a founder mutation among Macedonian fanconi anemia patients of Gypsy-like ethnic origin. Here, we present a novel FANCA mutation in two patients from Macedonia and Kosovo. The novel FANCA mutation c.3446_3449dupCCCT was identified in two fanconi anemia patients with Romany ethnicity; a 2-year-old girl from Macedonia who is a compound heterozygote for a previously reported FANCA c.190-256_283+1680del2040dupC and the novel mutation and a 10-year-old girl from Kosovo who is a homozygote for the novel FANCA c.3446_3449dupCCCT mutation. The novel mutation is located in exon 35 in the FAAP20-binding domain which plays a crucial role in the FANCA -FAAP20 interaction and is required for integrity of the fanconi anemia pathway. The finding of the FANCA c.3446_3449dupCCCT mutation in two unrelated FA patients with Romani ethnicity from Macedonia and Kosovo suggests it is a founder mutation in the Romani population living in the Balkan region.

  13. Spectrum of mutations in CRM-positive and CRM-reduced hemophilia A

    Energy Technology Data Exchange (ETDEWEB)

    McGinniss, M.J.; Kazazian, H.H. Jr.; Bi, L.; Antonarakis, S.E. (John Hopkins Univ., Baltimore, MD (United States)); Hoyer, L.W. (American Red Cross Blood Services, Rockville, MD (United States)); Inaba, H. (Tokyo Medical College (Japan))

    1993-02-01

    Hemophilia A is due to the functional deficiency of factor VIII (FVIII, gene locus F8C). Although half the patients have no detectable FVIII protein in their plasma, the more rare patients ([approximately]5%) have normal levels of a dysfunctional FVIII and are termed cross-reacting material (CRM)-positive. More commonly ([approximately]45%), patients have plasma FVIII protein reduced to an extent roughly comparable to the level of FVIII activity and are designated CRM-reduced. We used denaturing gradient gel electrophoresis to screen for mutations within the F8C gene of 11 patients (6CRM-positive, 5 CRM-reduced) and identified 9 different mutations in 9 patients after analyses of all 26 exons, the promoter region, and the polyadenylation site. Six mutations have not been described previously. Five weree missense (Ser289Leu, Ser558Phe, Val634Ala, Val634Met, Asn1441Lys), and the sixth was a 3-bp deletion ([Delta]Phe652). A review of the literature and the assay of FVIII antigen in 5 hemophilia A patients with previously identified missense mutations from this laboratory yielded a total of 20 other unique CRM-reduced and CRM-positive mutations. Almost all CRM-positive/reduced mutations (24/26) were missense, and many (12/26) occurred at CpG dinucleotides. We examined 19 missense mutation for evolutionary conservation using the portions of the porcine and murine F8C sequences that are known, and 18/19 amino acid residue altered by mutation in these patients wer conserved. Almost 50% of mutations (11/26) clustered in the A2 domain, suggesting that this region is critical for the function of FVIII. The results indicate a nonrandom distribution of mutations and suggest that mutations in a limited number of FVIII regions may cause CRM-positive and CRM-reduced heomphilia A. 48 refs., 1 fig., 1 tab.

  14. Phase I dose-escalation study of the c-Met tyrosine kinase inhibitor SAR125844 in Asian patients with advanced solid tumors, including patients with MET-amplified gastric cancer

    OpenAIRE

    Shitara, Kohei; Kim, Tae Min; Yokota, Tomoya; Goto, Masahiro; Satoh, Taroh; Ahn, Jin-Hee; Kim, Hyo Song; Assadourian, Sylvie; Gomez, Corinne; Harnois, Marzia; Hamauchi, Satoshi; Kudo, Toshihiro; Doi, Toshihido; Bang, Yung-Jue

    2017-01-01

    SAR125844 is a potent and selective inhibitor of the c-Met kinase receptor. This was an open-label, phase I, multicenter, dose-escalation, and dose-expansion trial of SAR125844 in Asian patients with solid tumors, a subgroup of whom had gastric cancer and MET amplification (NCT01657214). SAR125844 was administered by intravenous infusion (260–570 mg/m2) on days 1, 8, 15, and 22 of each 28-day cycle. Objectives were to determine the maximum tolerated dose (MTD) and to evaluate SAR125844 safety...

  15. The Norwegian PMS2 founder mutation c.989-1G > T shows high penetrance of microsatellite instable cancers with normal immunohistochemistry.

    Science.gov (United States)

    Grindedal, Eli Marie; Aarset, Harald; Bjørnevoll, Inga; Røyset, Elin; Mæhle, Lovise; Stormorken, Astrid; Heramb, Cecilie; Medvik, Heidi; Møller, Pål; Sjursen, Wenche

    2014-01-01

    Using immunohistochemistry (IHC) to select cases for mismatch repair (MMR) genetic testing, we failed to identify a large kindred with the deleterious PMS2 mutation c.989-1G > T. The purpose of the study was to examine the sensitivity of IHC and microsatellite instability-analysis (MSI) to identify carriers of the mutation, and to estimate its penetrance and expressions. All carriers and obligate carriers of the mutation were identified. All cancer diagnoses were confirmed. IHC and MSI-analysis were performed on available tumours. Penetrances of cancers included in the Amsterdam and the Bethesda Criteria, for MSI-high tumours and MSI-high and low tumours were calculated by the Kaplan-Meier algorithm. Probability for co-segregation of the mutation and cancers by chance was 0.000004. Fifty-six carriers or obligate carriers were identified. There was normal staining for PMS2 in 15/18 (83.3%) of tumours included in the AMS1/AMS2/Bethesda criteria. MSI-analysis showed that 15/21 (71.4%) of tumours were MSI-high and 4/21 (19.0%) were MSI-low. Penetrance at 70 years was 30.6% for AMS1 cancers (colorectal cancers), 42.8% for AMS2 cancers, 47.2% for Bethesda cancers, 55.6% for MSI-high and MSI-low cancers and 52.2% for MSI-high cancers. The mutation met class 5 criteria for pathogenicity. IHC was insensitive in detecting tumours caused by the mutation. Penetrance of cancers that displayed MSI was 56% at 70 years. Besides colorectal cancers, the most frequent expressions were carcinoma of the endometrium and breast in females and stomach and prostate in males.

  16. Analysis of point mutations in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese xeroderma pigmentosum patients in complementation groups A and F

    International Nuclear Information System (INIS)

    Yagi, T.; Tatsumi-Miyajima, J.; Sato, M.; Kraemer, K.H.; Takebe, H.

    1991-01-01

    To assess the contribution to mutagenesis by human DNA repair defects, a UV-treated shuttle vector plasmid, pZ189, was passed through fibroblasts derived from Japanese xeroderma pigmentosum (XP) patients in two different DNA repair complementation groups (A and F). Patients with XP have clinical and cellular UV hypersensitivity, increased frequency of skin cancer, and defects in DNA repair. The XP DNA repair defects represented by complementation groups A (XP-A) and F (XP-F) are more common in Japan than in Europe or the United States. In comparison to results with DNA repair-proficient human cells (W138-VA13), UV-treated pZ189 passed through the XP-A [XP2OS(SV)] or XP-F [XP2YO(SV)] cells showed fewer surviving plasmids (XP-A less than XP-F) and a higher frequency of mutated plasmids (XP-A greater than XP-F). Base sequence analysis of more than 200 mutated plasmids showed the major type of base substitution mutation to be the G:C----A:T transition with all three cell lines. The XP-A and XP-F cells revealed a higher frequency of G:C----A:T transitions and a lower frequency of transversions among plasmids with single or tandem mutations and a lower frequency of plasmids with multiple point mutations compared to the normal line. The spectrum of mutations in pZ189 with the XP-A cells was similar to that with the XP-F cells. Seventy-six to 91% of the single base substitution mutations occurred at G:C base pairs in which the 5'-neighboring base of the cytosine was thymine or cytosine. These studies indicate that the DNA repair defects in Japanese XP patients in complementation groups A and F result in different frequencies of plasmid survival and mutagenesis but in similar types of mutagenic abnormalities despite marked differences in clinical features

  17. Double-target Antisense U1snRNAs Correct Mis-splicing Due to c.639+861C>T and c.639+919G>A GLA Deep Intronic Mutations

    Directory of Open Access Journals (Sweden)

    Lorenzo Ferri

    2016-01-01

    Full Text Available Fabry disease is a rare X-linked lysosomal storage disorder caused by deficiency of the α-galactosidase A (α-Gal A enzyme, which is encoded by the GLA gene. GLA transcription in humans produces a major mRNA encoding α-Gal A and a minor mRNA of unknown function, which retains a 57-nucleotide-long cryptic exon between exons 4 and 5, bearing a premature termination codon. NM_000169.2:c.639+861C>T and NM_000169.2:c.639+919G>A GLA deep intronic mutations have been described to cause Fabry disease by inducing overexpression of the alternatively spliced mRNA, along with a dramatic decrease in the major one. Here, we built a wild-type GLA minigene and two minigenes that carry mutations c.639+861C>T and c.639+919G>A. Once transfected into cells, the minigenes recapitulate the molecular patterns observed in patients, at the mRNA, protein, and enzymatic level. We constructed a set of specific double-target U1asRNAs to correct c.639+861C>T and c.639+919G>A GLA mutations. Efficacy of U1asRNAs in inducing the skipping of the cryptic exon was evaluated upon their transient co-transfection with the minigenes in COS-1 cells, by real-time polymerase chain reaction (PCR, western blot analysis, and α-Gal A enzyme assay. We identified a set of U1asRNAs that efficiently restored α-Gal A enzyme activity and the correct splicing pathways in reporter minigenes. We also identified a unique U1asRNA correcting both mutations as efficently as the mutation-specific U1asRNAs. Our study proves that an exon skipping-based approach recovering α-Gal A activity in the c.639+861C>T and c.639+919G>A GLA mutations is active.

  18. Leber's hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Min [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Guan, Minqiang [Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhao, Fuxing; Zhou, Xiangtian [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Yuan, Meixia [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Tong, Yi [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005 (China); Yang, Li [Division of Human Genetics, Cincinnati Children' s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States); Wei, Qi-Ping; Sun, Yan-Hong [Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine and Pharmacology, Beijing 100078 (China); Lu, Fan [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Qu, Jia, E-mail: jqu@wzmc.net [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); and others

    2009-06-05

    We report here the clinical, genetic and molecular characterization of four Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age-of-onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T3394C (Y30H) mutation, which localized at a highly conserved tyrosine at position 30 of ND1, and distinct sets of mtDNA polymorphisms belonging to haplogroups D4b and M9a. The occurrence of T3394C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. However, there was the absence of functionally significant mtDNA mutations in these four Chinese pedigrees carrying the T3394C mutation. Therefore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic expression of the LHON-associated T3394C mutation.

  19. Amino-terminal extension present in the methionine aminopeptidase type 1c of Mycobacterium tuberculosis is indispensible for its activity

    Directory of Open Access Journals (Sweden)

    Kumaran Sangaralingam

    2011-07-01

    Full Text Available Abstract Background Methionine aminopeptidase (MetAP is a ubiquitous enzyme in both prokaryotes and eukaryotes, which catalyzes co-translational removal of N-terminal methionine from elongating polypeptide chains during protein synthesis. It specifically removes the terminal methionine in all organisms, if the penultimate residue is non-bulky and uncharged. The MetAP action for exclusion of N-terminal methionine is mandatory in 50-70% of nascent proteins. Such an activity is required for proper sub cellular localization, additional processing and eventually for the degradation of proteins. Results We cloned genes encoding two such metalloproteases (MtMetAP1a and MtMetAP1c present in Mycobacterium tuberculosis and expressed them as histidine-tagged proteins in Escherichia coli. Although they have different substrate preferences, for Met-Ala-Ser, we found, MtMetAP1c had significantly high enzyme turnover rate as opposed to MtMetAP1a. Circular dichroism spectroscopic studies as well as monitoring of enzyme activity indicated high temperature stability (up to 50°C of MtMetAP1a compared to that of the MtMetAP1c. Modelling of MtMetAP1a based on MtMetAP1c crystal structure revealed the distinct spatial arrangements of identical active site amino acid residues and their mutations affected the enzymatic activities of both the proteins. Strikingly, we observed that 40 amino acid long N-terminal extension of MtMetAP1c, compared to its other family members, contributes towards the activity and stability of this enzyme, which has never been reported for any methionine aminopeptidase. Furthermore, mutational analysis revealed that Val-18 and Pro-19 of MtMetAP1c are crucial for its enzymatic activity. Consistent with this observation, molecular dynamic simulation studies of wild-type and these variants strongly suggest their involvement in maintaining active site conformation of MtMetAP1c. Conclusion Our findings unequivocally emphasized that N

  20. Canine and human gastrointestinal stromal tumors display similar mutations in c-KIT exon 11

    International Nuclear Information System (INIS)

    Gregory-Bryson, Emmalena; Bartlett, Elizabeth; Kiupel, Matti; Hayes, Schantel; Yuzbasiyan-Gurkan, Vilma

    2010-01-01

    Gastrointestinal stromal tumors (GISTs) are common mesenchymal neoplasms in the gastrointestinal tract of humans and dogs. Little is known about the pathogenesis of these tumors. This study evaluated the role of c-KIT in canine GISTs; specifically, we investigated activating mutations in exons 8, 9, 11, 13, and 17 of c-KIT and exons 12, 14, and 18 of platelet-derived growth factor receptor, alpha polypeptide (PDGFRA), all of which have been implicated in human GISTs. Seventeen canine GISTs all confirmed to be positive for KIT immunostaining were studied. Exons 8, 9, 11, 13 and 17 of c-KIT and exons 12, 14, and 18 of PDGFRA, were amplified from DNA isolated from formalin-fixed paraffin-embedded samples. Of these seventeen cases, six amplicons of exon 11 of c-KIT showed aberrant bands on gel electrophoresis. Sequencing of these amplicons revealed heterozygous in-frame deletions in six cases. The mutations include two different but overlapping six base pair deletions. Exons 8, 9, 13, and 17 of c-KIT and exons 12, 14, and 18 of PDGFRA had no abnormalities detected by electrophoresis and sequencing did not reveal any mutations, other than synonymous single nucleotide polymorphisms (SNPs) found in exon 11 of c-KIT and exons 12 and 14 of PDGFRA. The deletion mutations detected in canine GISTs are similar to those previously found in the juxtamembrane domain of c-KIT in canine cutaneous mast cell tumors in our laboratory as well as to those reported in human GISTs. Interestingly, none of the other c-KIT or PDGFRA exons showed any abnormalities in our cases. This finding underlines the critical importance of c-KIT in the pathophysiology of canine GISTs. The expression of KIT and the identification of these activating mutations in c-KIT implicate KIT in the pathogenesis of these tumors. Our results indicate that mutations in c-KIT may be of prognostic significance and that targeting KIT may be a rational approach to treatment of these malignant tumors. This study further

  1. Leber's hereditary optic neuropathy is associated with mitochondrial ND6 T14502C mutation

    International Nuclear Information System (INIS)

    Zhao, Fuxin; Guan, Minqiang; Zhou, Xiangtian; Yuan, Meixia; Liang, Ming; Liu, Qi; Liu, Yan; Zhang, Yongmei; Yang, Li; Tong, Yi; Wei, Qi-Ping; Sun, Yan-Hong; Qu, Jia

    2009-01-01

    We report here the clinical, genetic, and molecular characterization of three Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age of onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T14502C (I58V) mutation, which localized at a highly conserved isoleucine at position 58 of ND6, and distinct sets of mtDNA polymorphisms belonging to haplogroups M10a, F1a1, and H2. The occurrence of T14502C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. Here, mtDNA variants I187T in the ND1, A122V in CO1, S99A in the A6, and V254I in CO3 exhibited an evolutionary conservation, indicating a potential modifying role in the development of visual impairment associated with T14502C mutation in those families. Furthermore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic manifestation of the LHON-associated T14502C mutation in these Chinese families.

  2. Comparison of Detection Rate and Mutational Pattern of Drug-Resistant Mutations Between a Large Cohort of Genotype B and Genotype C Hepatitis B Virus-Infected Patients in North China.

    Science.gov (United States)

    Li, Xiaodong; Liu, Yan; Xin, Shaojie; Ji, Dong; You, Shaoli; Hu, Jinhua; Zhao, Jun; Wu, Jingjing; Liao, Hao; Zhang, Xin-Xin; Xu, Dongping

    2017-06-01

    The study aimed to investigate the association of prevalent genotypes in China (HBV/C and HBV/B) with HBV drug-resistant mutations. A total of 13,847 nucleos(t)ide analogue (NA)-treated patients with chronic HBV infection from North China were enrolled. HBV genotypes and resistant mutations were determined by direct sequencing and confirmed by clonal sequencing if necessary. HBV/B, HBV/C, and HBV/D occupied 14.3%, 84.9%, and 0.8% across the study population, respectively. NA usage had no significant difference between HBV/B- and HBV/C-infected patients. Lamivudine-resistant mutations were more frequently detected in HBV/C-infected patients, compared with HBV/B-infected patients (31.67% vs. 25.26%, p M250 V/I/L substitution (0.67% vs. 1.46%, p < 0.01). Multidrug-resistant mutations (defined as coexistence of mutation to nucleoside and nucleotide analogues) were detected in 104 patients. HBV/C-infected patients had a higher detection rate of multidrug-resistant mutation than HBV/B-infected patients (0.83% vs. 0.35%, p < 0.05). The study for the first time clarified that HBV/C-infected patients had a higher risk to develop multidrug-resistant mutations, compared with HBV/B-infected patients; and HBV/C- and HBV/B-infected patients had different inclinations in the ETV-resistant mutational pattern.

  3. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jae-Ha [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Seo-Yoen; Kim, Jeong-Yul [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Cho, Eun-Wie [Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2014-11-21

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation.

  4. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Kim, In-Gyu; Lee, Jae-Ha; Kim, Seo-Yoen; Kim, Jeong-Yul; Cho, Eun-Wie

    2014-01-01

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation

  5. MERRF/MELAS overlap syndrome due to the m.3291T>C mutation.

    Science.gov (United States)

    Liu, Kaiming; Zhao, Hui; Ji, Kunqian; Yan, Chuanzhu

    2014-03-01

    We report the case of a 19-year-old Chinese female harboring the m.3291T>C mutation in the MT-TL1 gene encoding the mitochondrial transfer RNA for leucine. She presented with a complex phenotype characterized by progressive cerebellar ataxia, frequent myoclonus seizures, recurrent stroke-like episodes, migraine-like headaches with nausea and vomiting, and elevated resting lactate blood level. It is known that the myoclonus epilepsy with ragged-red fibers (MERRF) is characterized by cerebellar ataxia and myoclonus epilepsy, while that the mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is characterized by recurrent stroke-like episodes, migraine-like headaches, and elevated resting lactate blood level. So the patient's clinical manifestations suggest the presence of a MERRF/MELAS overlap syndrome. Muscle biopsy of the patient showed the presence of numerous scattered ragged-red fibers, some cytochrome c oxidase-deficient fibers, and several strongly succinate dehygrogenase-reactive vessels, suggestive of a mitochondrial disorder. Direct sequencing of the complete mitochondrial genome of the proband revealed no mutations other than the T-to-C transition at nucleotide position 3291. Restriction fragment length polymorphism analysis of the proband and her family revealed maternal inheritance of the mutation in a heteroplasmic manner. The analysis of aerobic respiration and glycolysis demonstrated that the fibroblasts from the patient had mitochondrial dysfunction. Our results suggest that the m.3291T>C is pathogenic. This study is the first to describe the m.3291T>C mutation in association with the MERRF/MELAS overlap syndrome.

  6. Hepatocyte Growth Factor-c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing.

    Science.gov (United States)

    Shibata, Shumei; Miwa, Toru; Wu, Hsiao-Huei; Levitt, Pat; Ohyama, Takahiro

    2016-08-03

    The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness via melanocyte deficiencies. We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may underlie human deafness DFNB39 and DFNB97. Our findings reveal an additional example of context-dependent c-MET signaling diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related organogenesis. Copyright © 2016 the authors 0270-6474/16/368200-10$15.00/0.

  7. Hepatocyte Growth Factor–c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing

    Science.gov (United States)

    Shibata, Shumei; Miwa, Toru; Wu, Hsiao-Huei; Levitt, Pat

    2016-01-01

    The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness via melanocyte deficiencies. SIGNIFICANCE STATEMENT We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may underlie human deafness DFNB39 and DFNB97. Our findings reveal an additional example of context-dependent c-MET signaling diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related organogenesis. PMID:27488639

  8. Inactivation of protein translocation by cold-sensitive mutations in the yajC-secDF operon

    NARCIS (Netherlands)

    Nouwen, N; Driessen, AJM

    2005-01-01

    Most mutations in the yajC-secDF operon identified via genetic screens confer a cold-sensitive growth phenotype. Here we report that two of these mutations confer this cold-sensitive phenotype by inactivating the SecDF-YajC complex in protein translocation.

  9. Novel Founder Mutation in FANCA Gene (c.3446_3449dupCCCT Among Romani Patients from the Balkan Region

    Directory of Open Access Journals (Sweden)

    Marija Dimishkovska

    2018-02-01

    Full Text Available Background: Fanconi anemia is a rare autosomal recessive or X-linked disorder characterised by clinical and genetic heterogeneity. Most fanconi anemia patients harbour homozygous or double heterozygous mutations in the FANCA (60-65%, FANCC (10-15%, FANCG (~10% or FANCD2 (3-6% genes. We have already reported the FANCA variant c.190–256_283+1680del2040dupC as a founder mutation among Macedonian fanconi anemia patients of Gypsy-like ethnic origin. Here, we present a novel FANCA mutation in two patients from Macedonia and Kosovo. Case Report: The novel FANCA mutation c.3446_3449dupCCCT was identified in two fanconi anemia patients with Romany ethnicity; a 2-year-old girl from Macedonia who is a compound heterozygote for a previously reported FANCA c.190-256_283+1680del2040dupC and the novel mutation and a 10-year-old girl from Kosovo who is a homozygote for the novel FANCA c.3446_3449dupCCCT mutation. The novel mutation is located in exon 35 in the FAAP20-binding domain which plays a crucial role in the FANCA-FAAP20 interaction and is required for integrity of the fanconi anemia pathway. Conclusion: The finding of the FANCA c.3446_3449dupCCCT mutation in two unrelated FA patients with Romani ethnicity from Macedonia and Kosovo suggests it is a founder mutation in the Romani population living in the Balkan region

  10. Methylenetetrahydrofolate reductase C677T mutation and risk of retinal vein thrombosis

    Directory of Open Access Journals (Sweden)

    Mohammad Soleiman Soltanpour

    2013-01-01

    Full Text Available Background: Elevated plasma homocysteine (Hcy level has been established as a significant risk factor for venous thrombosis and cardiovascular disease. Homozygosity for the methylenetetrahydrofolate reductase (MTHFR C677T mutation has been associated with elevated plasma Hcy concentration and may contribute to retinal vein thrombosis (RVT development. The aim of the present study was to investigate whether the hyperhomocysteinemia and/or homozygosity for the MTHFR C677T mutation are associated with an increased risk for RVT. Materials and Methods: Our study population consisted of 73 consecutive patients (50-78 years old with RVT and 73 control subjects (51-80 years old, matched for age and sex. Genotyping for the MTHFR C677T mutation was performed by polymerase chain reaction-restriction fragment length polymorphism technique and Hcy level was determined by an enzyme immunoassay kit. Results: The prevalence of 677TT genotype was higher in patients than control subjects, but the difference in frequency didn′t reach a significant value (P = 0.07. The frequency of the 677T allele was 26% and 21.2% in patients and controls, respectively and did not differ significantly between the two groups (odds ratio = 1.3, 95% confidence interval (0.75-2.24, P = 0.33. Fasting plasma total Hcy level was significantly higher in patients than controls (P = 0.001. Conclusion: Our study demonstrated that hyperhomocysteinemia, but not the MTHFR C677T mutation, is associated with RVT.

  11. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase-2 and -7 and E-cadherin.

    Science.gov (United States)

    Miyata, Yasuyoshi; Sagara, Yuji; Kanda, Shigeru; Hayashi, Tomayoshi; Kanetake, Hiroshi

    2009-04-01

    Hepatocyte growth factor receptor/c-Met is associated with malignant aggressiveness and survival in various cancers including bladder cancer. Although phosphorylation of hepatocyte growth factor receptor/c-Met is essential for its function, the pathologic significance of phosphorylated hepatocyte growth factor receptor/c-Met in bladder cancer remains elusive. We investigated the clinical significance of its expression, and its correlation with cancer cell progression-related molecules. The expression levels of 2 tyrosine residues of hepatocyte growth factor receptor/c-Met (pY1234/1235 and pY1349) were examined immunohistochemically in 133 specimens with nonmetastatic bladder cancer. We also investigated their correlation with matrix metalloproteinase-1, -2, -7, and -14; urokinase-type plasminogen activator; E-cadherin; CD44 standard, variant 3, and variant 6; and vascular endothelial growth factor. Expression of phosphorylated hepatocyte growth factor receptor/c-Met was detected in cancer cells, but was rare in normal urothelial cells. Although hepatocyte growth factor receptor/c-Met, pY1234/1235 hepatocyte growth factor receptor/c-Met, and pY1349 hepatocyte growth factor receptor/c-Met were associated with pT stage, multivariate analysis identified pY1349 hepatocyte growth factor receptor/c-met expression only as a significant factor for high pT stage. Expression of pY1349 hepatocyte growth factor receptor/c-Met was a marker of metastasis and (P = .001) and cause-specific survival (P = .003). Expressions of matrix metalloproteinase-2, matrix metalloproteinase-7, and E-cadherin correlated with pY1349 hepatocyte growth factor receptor/c-Met expression. Our results demonstrated that pY1349 hepatocyte growth factor receptor/c-Met plays an important role in tumor development, and its expression is a significant predictor of metastasis and survival of patients with bladder cancer. The results suggest that these activities are mediated, at least in part, by matrix

  12. Heart tissue of harlequin (hq)/Big Blue mice has elevated reactive oxygen species without significant impact on the frequency and nature of point mutations in nuclear DNA

    Energy Technology Data Exchange (ETDEWEB)

    Crabbe, Rory A. [Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Hill, Kathleen A., E-mail: khill22@uwo.ca [Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 (Canada)

    2010-09-10

    Age is a major risk factor for heart disease, and cardiac aging is characterized by elevated mitochondrial reactive oxygen species (ROS) with compromised mitochondrial and nuclear DNA integrity. To assess links between increased ROS levels and mutations, we examined in situ levels of ROS and cII mutation frequency, pattern and spectrum in the heart of harlequin (hq)/Big Blue mice. The hq mouse is a model of premature aging with mitochondrial dysfunction and increased risk of oxidative stress-induced heart disease with the means for in vivo mutation detection. The hq mutation produces a significant downregulation in the X-linked apoptosis-inducing factor gene (Aif) impairing both the antioxidant and oxidative phosphorylation functions of AIF. Brain and skin of hq disease mice have elevated frequencies of point mutations in nuclear DNA and histopathology characterized by cell loss. Reports of associated elevations in ROS in brain and skin have mixed results. Herein, heart in situ ROS levels were elevated in hq disease compared to AIF-proficient mice (p < 0.0001) yet, mutation frequency and pattern were similar in hq disease, hq carrier and AIF-proficient mice. Heart cII mutations were also assessed 15 days following an acute exposure to an exogenous ROS inducer (10 mg paraquat/kg). Acute paraquat exposure with a short mutant manifestation period was insufficient to elevate mutation frequency or alter mutation pattern in the post-mitotic heart tissue of AIF-proficient mice. Paraquat induction of ROS requires mitochondrial complex I and thus is likely compromised in hq mice. Results of this preliminary survey and the context of recent literature suggest that determining causal links between AIF deficiency and the premature aging phenotypes of specific tissues is better addressed with assay of mitochondrial ROS and large-scale changes in mitochondrial DNA in specific cell types.

  13. Heart tissue of harlequin (hq)/Big Blue mice has elevated reactive oxygen species without significant impact on the frequency and nature of point mutations in nuclear DNA

    International Nuclear Information System (INIS)

    Crabbe, Rory A.; Hill, Kathleen A.

    2010-01-01

    Age is a major risk factor for heart disease, and cardiac aging is characterized by elevated mitochondrial reactive oxygen species (ROS) with compromised mitochondrial and nuclear DNA integrity. To assess links between increased ROS levels and mutations, we examined in situ levels of ROS and cII mutation frequency, pattern and spectrum in the heart of harlequin (hq)/Big Blue mice. The hq mouse is a model of premature aging with mitochondrial dysfunction and increased risk of oxidative stress-induced heart disease with the means for in vivo mutation detection. The hq mutation produces a significant downregulation in the X-linked apoptosis-inducing factor gene (Aif) impairing both the antioxidant and oxidative phosphorylation functions of AIF. Brain and skin of hq disease mice have elevated frequencies of point mutations in nuclear DNA and histopathology characterized by cell loss. Reports of associated elevations in ROS in brain and skin have mixed results. Herein, heart in situ ROS levels were elevated in hq disease compared to AIF-proficient mice (p < 0.0001) yet, mutation frequency and pattern were similar in hq disease, hq carrier and AIF-proficient mice. Heart cII mutations were also assessed 15 days following an acute exposure to an exogenous ROS inducer (10 mg paraquat/kg). Acute paraquat exposure with a short mutant manifestation period was insufficient to elevate mutation frequency or alter mutation pattern in the post-mitotic heart tissue of AIF-proficient mice. Paraquat induction of ROS requires mitochondrial complex I and thus is likely compromised in hq mice. Results of this preliminary survey and the context of recent literature suggest that determining causal links between AIF deficiency and the premature aging phenotypes of specific tissues is better addressed with assay of mitochondrial ROS and large-scale changes in mitochondrial DNA in specific cell types.

  14. Mutation induction by ion beams in plants

    International Nuclear Information System (INIS)

    Tanaka, Atsushi

    2001-01-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  15. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  16. The somatic FAH C.1061C>A change counteracts the frequent FAH c.1062+5G>A mutation and permits U1snRNA-based splicing correction.

    Science.gov (United States)

    Scalet, Daniela; Sacchetto, Claudia; Bernardi, Francesco; Pinotti, Mirko; van de Graaf, Stan F J; Balestra, Dario

    2018-05-01

    In tyrosinaemia type 1(HT1), a mosaic pattern of fumarylacetoacetase (FAH) immunopositive or immunonegative nodules in liver tissue has been reported in many patients. This aspect is generally explained by a spontaneous reversion of the mutation into a normal genotype. In one HT1 patient carrying the frequent FAH c.1062+5G>A mutation, a second somatic change (c.1061C>A) has been reported in the same allele, and found in immunopositive nodules. Here, we demonstrated that the c.1062+5G>A prevents usage of the exon 12 5' splice site (ss), even when forced by an engineered U1snRNA specifically designed on the FAH 5'ss to strengthen its recognition. Noticeably the new somatic c.1061C>A change, in linkage with the c.1062+5G>A mutation, partially rescues the defective 5'ss and is associated to trace level (~5%) of correct transcripts. Interestingly, this combined genetic condition strongly favored the rescue by the engineered U1snRNA, with correct transcripts reaching up to 60%. Altogether, these findings elucidate the molecular basis of HT1 caused by the frequent FAH c.1062+5G>A mutation, and demonstrate the compensatory effect of the c.1061C>A change in promoting exon definition, thus unraveling a rare mechanism leading to FAH immune-reactive mosaicism.

  17. A Costa Rican family affected with Charcot-Marie-Tooth disease due to the myelin protein zero (MPZ p.Thr124Met mutation shares the Belgian haplotype

    Directory of Open Access Journals (Sweden)

    Alejandro Leal

    2014-12-01

    Full Text Available The p.Thr124Met mutation in the myelin protein zero (MPZ causes the Charcot-Marie-Tooth disease type 2J, a peripheral neuropathy with additional symptoms as pupillary alterations and deafness. It was observed in several families around the world originating e. g. from Germany, Belgium, Japan, Italy and North America. Here we report Central American patients originating from a family in Costa Rica carrying this mutation. Clinical, electrophysiological and molecular analysis of patients and controls were performed, including gene and linked markers´ sequencing. Carriers share almost the entire haplotype with two non related Belgian CMT patients. As a result of the haplotype analysis, based on ten markers (seven SNPs, two microsatellites and an intronic polyA stretch, the founder effect hypothesis for this allele migration is suggestive. Rev. Biol. Trop. 62 (4: 1285-1293. Epub 2014 December 01.

  18. Frequency of the hemochromatosis HFE mutations C282Y, H63D, and S65C in blood donors in the Faroe Islands

    DEFF Research Database (Denmark)

    Milman, Nils; á Steig, Torkil; Koefoed, Pernille

    2004-01-01

    on the HFE gene was assessed by genotyping using the polymerase chain reaction (PCR) technique and calculated from direct allele counting. We found no C282Y homozygous subjects; 28 (14.0%) subjects were C282Y heterozygous and four subjects were C282Y/H63D compound heterozygous (2.0%). The C282Y allele......The aim of the study was to assess the frequencies of the hereditary hemochromatosis HFE mutations C282Y, H63D, and S65C in the population in the Faroe Islands. The series comprised 200 randomly selected blood donors of Faroese heritage. The frequency of the C282Y, H63D, and S65C mutations.......6%. Screening of larger groups of the Faroese population for HFE mutations especially C282Y should be considered in order to establish the penetrance....

  19. Mutation Spectrum of GNE Myopathy in the Indian Sub-Continent.

    Science.gov (United States)

    Bhattacharya, Sudha; Khadilkar, Satish V; Nalini, Atchayaram; Ganapathy, Aparna; Mannan, Ashraf U; Majumder, Partha P; Bhattacharya, Alok

    GNE myopathy is an adult onset recessive genetic disorder that affects distal muscles sparing the quadriceps. GNE gene mutations have been identified in GNE myopathy patients all over the world. Homozygosity is a common feature in GNE myopathy patients worldwide. The major objective of this study was to investigate the mutation spectrum of GNE myopathy in India in relation to the population diversity in the country. We have collated GNE mutation data of Indian GNE myopathy patients from published literature and from recently identified patients. We also used data of people of Indian subcontinent from 1000 genomes database, South Asian Genome database and Strand Life Science database to determine frequency of GNE mutations in the general population. A total of 67 GNE myopathy patients were studied, of whom 21% were homozygous for GNE variants, while the rest were compound heterozygous. Thirty-five different mutations in the GNE gene were recorded, of which 5 have not been reported earlier. The most frequent mutation was p.Val727Met (65%) found mainly in the heterozygous form. Another mutation, p.Ile618Thr was also common (16%) but was found mainly in patients from Rajasthan, while p.Val727Met was more widely distributed. The latter was also seen at a high frequency in general population of Indian subcontinent in all the databases. It was also present in Thailand but was absent in general population elsewhere in the world. p.Val727Met is likely to be a founder mutation of Indian subcontinent.

  20. The first family with Tay-Sachs disease in Cyprus: Genetic analysis reveals a nonsense (c.78G>A) and a silent (c.1305C>T) mutation and allows preimplantation genetic diagnosis.

    Science.gov (United States)

    Georgiou, Theodoros; Christopoulos, George; Anastasiadou, Violetta; Hadjiloizou, Stavros; Cregeen, David; Jackson, Marie; Mavrikiou, Gavriella; Kleanthous, Marina; Drousiotou, Anthi

    2014-12-01

    Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder caused by mutations in the HEXA gene resulting in β-hexosaminidase A (HEX A) deficiency and neuronal accumulation of GM2 ganglioside. We describe the first patient with Tay-Sachs disease in the Cypriot population, a juvenile case which presented with developmental regression at the age of five. The diagnosis was confirmed by measurement of HEXA activity in plasma, peripheral leucocytes and fibroblasts. Sequencing the HEXA gene resulted in the identification of two previously described mutations: the nonsense mutation c.78G>A (p.Trp26X) and the silent mutation c.1305C>T (p.=). The silent mutation was reported once before in a juvenile TSD patient of West Indian origin with an unusually mild phenotype. The presence of this mutation in another juvenile TSD patient provides further evidence that it is a disease-causing mutation. Successful preimplantation genetic diagnosis (PGD) and prenatal follow-up were provided to the couple.

  1. Structural, Dynamical, and Energetical Consequences of Rett Syndrome Mutation R133C in MeCP2

    Directory of Open Access Journals (Sweden)

    Tugba G. Kucukkal

    2015-01-01

    Full Text Available Rett Syndrome (RTT is a progressive neurodevelopmental disease affecting females. RTT is caused by mutations in the MECP2 gene and various amino acid substitutions have been identified clinically in different domains of the multifunctional MeCP2 protein encoded by this gene. The R133C variant in the methylated-CpG-binding domain (MBD of MeCP2 is the second most common disease-causing mutation in the MBD. Comparative molecular dynamics simulations of R133C mutant and wild-type MBD have been performed to understand the impact of the mutation on structure, dynamics, and interactions of the protein and subsequently understand the disease mechanism. Two salt bridges within the protein and two critical hydrogen bonds between the protein and DNA are lost upon the R133C mutation. The mutation was found to weaken the interaction with DNA and also cause loss of helicity within the 141-144 region. The structural, dynamical, and energetical consequences of R133C mutation were investigated in detail at the atomic resolution. Several important implications of this have been shown regarding protein stability and hydration dynamics as well as its interaction with DNA. The results are in agreement with previous experimental studies and further provide atomic level understanding of the molecular origin of RTT associated with R133C variant.

  2. Hydrogen storage capacity of titanium met-cars

    International Nuclear Information System (INIS)

    Akman, N; Durgun, E; Yildirim, T; Ciraci, S

    2006-01-01

    The adsorption of hydrogen molecules on the titanium metallocarbohedryne (met-car) cluster has been investigated by using the first-principles plane wave method. We have found that, while a single Ti atom at the corner can bind up to three hydrogen molecules, a single Ti atom on the surface of the cluster can bind only one hydrogen molecule. Accordingly, a Ti 8 C 12 met-car can bind up to 16 H 2 molecules and hence can be considered as a high-capacity hydrogen storage medium. Strong interaction between two met-car clusters leading to the dimer formation can affect H 2 storage capacity slightly. Increasing the storage capacity by directly inserting H 2 into the met-car or by functionalizing it with an Na atom have been explored. It is found that the insertion of neither an H 2 molecule nor an Na atom could further promote the H 2 storage capacity of a Ti 8 C 12 cluster. We have also tested the stability of the H 2 -adsorbed Ti 8 C 12 met-car with ab initio molecular dynamics calculations which have been carried out at room temperature

  3. Serial MRI in early Creutzfeldt-Jacob disease with a point mutation of prion protein at codon 180

    International Nuclear Information System (INIS)

    Ishida, S.; Sugino, M.; Shinoda, K.; Ohsawa, N.; Koizumi, N.; Ohta, T.; Kitamoto, T.; Tateishi, J.

    1995-01-01

    We report a 66-year-old woman with histologically diagnosed Creutzfeld-Jacob disease (CJD), followed with MRI from an early clinical stage. MRI demonstrated expansion of the high cortical signal on T2-weighted images, which differs from previous MRI reports of CJD. This patient followed an atypical clinical course: 16 months had passed before she developed akinetic mutism, and periodic sharp waves had not been detected on EEG after 2 years in spite of her akinetic mutism. Brain biopsy showed primary spongiform changes in the grey matter, and a point mutation of the prion protein gene at codon 180 was discovered using polymerase chain reaction direct sequencing and Tth 111 I cutting. This is the first case with the point mutation of the codon 180 variant with an atypical clinical course and characteristic MRI findings. (orig.)

  4. [Determination of drug resistance mutations of NS3 inhibitors in chronic hepatitis C patients infected with genotype 1].

    Science.gov (United States)

    Şanlıdağ, Tamer; Sayan, Murat; Akçalı, Sinem; Kasap, Elmas; Buran, Tahir; Arıkan, Ayşe

    2017-04-01

    Direct-acting antiviral agents (DAA) such as NS3 protease inhibitors is the first class of drugs used for chronic hepatitis C (CHC) treatment. NS3 inhibitors (PI) with low genetic barrier have been approved to be used in the CHC genotype 1 infections, and in the treatment of compensated liver disease including cirrhosis together with pegile interferon and ribavirin. Consequently, the development of drug resistance during DAA treatment of CHC is a major problem. NS3 resistant variants can be detected before treatment as they can occurnaturally. The aim of this study was to investigate new and old generation NS3 inhibitors resistance mutations before DAA treatment in hepatitis C virus (HCV) that were isolated from CHC. The present study was conducted in 2015 and included 97 naive DAA patients infected with HCV genotype 1, who were diagnosed in Manisa and Kocaeli cities of Turkey. Magnetic particle based HCV RNA extraction and than RNA detection and quantification were performed using commercial real-time PCR assay QIASypmhony + Rotorgene Q/ArtusHCV QS-RGQ and COBAS Ampliprep/COBAS TaqMan HCV Tests. HCV NS3 viral protease genome region was amplified with PCR and mutation analysis was performed by Sanger dideoxy sequencing technique of NS3 protease codons (codon 32-185). HCV NS3 protease inhibitors; asunaprevir, boceprevir, faldaprevir, grazoprevir, pariteprevir, simeprevir and telaprevir were analysed for resistant mutations by Geno2pheno-HCV resistance tool. HCV was genotyped in all patients and 88 patients (n= 88/97, 91%) had genotype 1. Eight (n= 8/97, 8.2%) and 80 (n= 80/97, 82.4%) HCC patients were subgenotyped as 1a and 1b, respectively. Many aminoacid substitutions and resistance mutations were determined in 39/88 (44%) patients in the study group. Q80L, S122C/N, S138W were defined as potential substitutions (6/88 patients; 7%); R109K, R117C, S122G, I132V, I170V, N174S were described as potential resistance (34/88 patients; 39%); V36L, T54S, V55A, Q80H were

  5. Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations.

    Science.gov (United States)

    Hadzsiev, Kinga; Polgar, Noemi; Bene, Judit; Komlosi, Katalin; Karteszi, Judit; Hollody, Katalin; Kosztolanyi, Gyorgy; Renieri, Alessandra; Melegh, Bela

    2011-03-01

    Rett syndrome (RTT) is characterized by a relatively specific clinical phenotype. We screened 152 individuals with RTT phenotype. A total of 22 different known MECP2 mutations were identified in 42 subjects (27.6%). Of the 22 mutations, we identified 7 (31.8%) frameshift-causing deletions, 4 (18.2%) nonsense, 10 (45.5%) missense mutations and one insertion (4.5%). The most frequent pathologic changes were: p.Thr158Met (14.2%) and p.Arg133Cys (11.9%) missense, and p.Arg255Stop (9.5%) and p.Arg294Stop (9.5%) nonsense mutations. We also detected the c.925C >T (p.Arg309Trp) mutation in an affected patient, whose role in RTT pathogenesis is still unknown. Patients without detectable MECP2 defects were screened for mutations of cyclin-dependent kinase-like 5 (CDKL5) gene, responsible for the early-onset variant of RTT. We discovered two novel mutations: c.607G >T resulting in a termination codon at aa203, disrupting the catalytic domain, and c.1708G >T leading to a stop at aa570 of the C terminus. Both patients with CDKL5 mutation presented therapy-resistant epilepsy and a phenotype fitting with the diagnosis of early-onset variant of RTT. No FOXG1 mutation was detected in any of the remaining patients. A total of 110 (72.5%) patients remained without molecular genetic diagnosis that necessitates further search for novel gene mutations in this phenotype. Our results also suggest the need of screening for CDKL5 mutations in patients with Rett phenotype tested negative for MECP2 mutations.

  6. Prevalence of C282Y, H63D, and S65C mutations in hereditary HFE-hemochromatosis gene in Lithuanian population.

    Science.gov (United States)

    Kucinskas, Laimutis; Juzenas, Simonas; Sventoraityte, Jurgita; Cedaviciute, Ruta; Vitkauskiene, Astra; Kalibatas, Vytenis; Kondrackiene, Jurate; Kupcinskas, Limas

    2012-04-01

    HFE-hemochromatosis is a common autosomal recessive disease caused by HFE gene mutations and characterized as iron overload and failure of different organs. The aim of this study was to determine the prevalence of C282Y (c.845 G>A), H63D (c.187 C>G), and S65C (c.193A>T) alleles of HFE gene in the Lithuanian population. One thousand and eleven healthy blood donors of Lithuanian nationality were examined in four different ethnic Lithuanian regions to determine HFE gene alleles and genotype frequencies. The samples of DNA were analyzed for the presence of restriction fragment length polymorphism and validated by DNA sequencing. Among 1,011 blood donors tested, the frequency of C282Y, H63D, and S65C alleles were 2.6%, 15.9%, and 1.9%, respectively. One third of the tested subjects (n = 336) had at least one of the C282Y or H63D HFE gene mutations. The screening of Lithuanian blood donors has detected 13 (1.3%) subjects with a genotype C282Y/C282Y or C282Y/H63D responsible for the development of HFE-hemochromatosis. The prevalence of C282Y mutation was significantly higher among the inhabitants of Zemaitija (Somogitia) at the Baltic Sea area (5.9%) in comparison to the regions of continental part of Lithuania (2.4% in Dzukija, 2.3% in Aukstaitija, and 2% in Suvalkija, p HFE gene mutations in ethnic Lithuanians showed that the frequencies of H63D, C282Y, and S65C of HFE gene alleles are similar to the other North-Eastern Europeans, especially in the Baltic region (Estonia, Latvia), Poland, and part of Russia (Moscow region).

  7. The Frequency of c.550delA Mutation of the CANP3 Gene in the Polish LGMD2A Population.

    Science.gov (United States)

    Dorobek, Małgorzata; Ryniewicz, Barbara; Kabzińska, Dagmara; Fidziańska, Anna; Styczyńska, Maria; Hausmanowa-Petrusewicz, Irena

    2015-11-01

    Limb girdle muscular dystrophy 2A (LGMD2A) is the most frequent LGMD variant in the European population, representing about 40% of LGMD. The c.550delA mutation in the CANP3 (calcium activated neutral protease 3) gene is the most commonly reported mutation in LGMD2A. Prevalence of this mutation in the Polish population has not been previously investigated. The aim of this study was to identify and estimate the frequency of the c.550delA mutation in Polish LGMD2A patients. Polymerase chain reaction-sequencing analysis, restriction fragment length polymorphism polymerase chain reaction method. We analyzed 76 families affected with LGMD and identified 62 probands with mutations in the CANP3 gene. C.550delA was the most common mutation identified, being found in 78% of the LGMD2A families. The remaining mutations observed multiple times were as follows: c.598-612del15ntd; c.2242C>T; c.418dupC; c.1356insT, listed in terms of decreasing frequency. Two novel variants in the CANP3 gene, that is, c.700G>A Gly234Arg and c.661G>A Gly221Ser were also characterized. Overall, mutations in the LGMD2A gene were estimated to be present in 81% of patients with the LGMD phenotype who were without sarcoglycans and dysferlin deficiency on immunocytochemical analysis. The frequency of the heterozygous c.550delA mutation in the healthy Polish population was estimated at 1/124. The c.550delA is the most frequent CANP3 mutation in the Polish population, thus sequencing of exon 4 of this gene could identify the majority of LGMD2A patients in Poland.

  8. A survey of new temperature-sensitive, embryonic-lethal mutations in C. elegans: 24 alleles of thirteen genes.

    Directory of Open Access Journals (Sweden)

    Sean M O'Rourke

    2011-03-01

    Full Text Available To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci.

  9. One adenosine deaminase allele in a patient with severe combined immunodeficiency contains a point mutation abolishing enzyme activity.

    OpenAIRE

    Valerio, D; Dekker, B M; Duyvesteyn, M G; van der Voorn, L; Berkvens, T M; van Ormondt, H; van der Eb, A J

    1986-01-01

    We have cloned and sequenced an adenosine deaminase (ADA) gene from a patient with severe combined immunodeficiency (SCID) caused by inherited ADA deficiency. Two point mutations were found, resulting in amino acid substitutions at positions 80 (Lys to Arg) and 304 (Leu to Arg) of the protein. Hybridization experiments with synthetic oligonucleotide probes showed that the determined mutations are present in both DNA and RNA from the ADA-SCID patient. In addition, wild-type sequences could be ...

  10. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione.

    Science.gov (United States)

    Dean, Melissa A; Olsen, Randall J; Long, S Wesley; Rosato, Adriana E; Musser, James M

    2014-04-01

    Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice.

  11. The identification of point mutations in Duchenne muscular dystrophy patients by using reverse-transcription PCR and the protein truncation test

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, R.J.; Bobrow, M.; Roberts, R.G. [St. Thomas`s Hospitals, London (United Kingdom)

    1995-08-01

    The protein truncation test (PTT) is a mutation-detection method that monitors the integrity of the open reading frame (ORF). More than 60% of cases of Duchenne muscular dystrophy (DMD) result from gross frameshifting deletions in the dystrophin gene that are detectable by multiplex PCR system. It has become apparent that virtually all of the remaining DMD mutations also disrupt the translational reading frame, making the PTT a logical next step toward a comprehensive strategy for the identification of all DMD mutations. We report here a pilot study involving 22 patients and describe the mutations characterized. These constitute 12 point mutations or small insertions/deletions and 4 gross rearrangements. We also have a remaining five patients in whom there does not appear to be mutation in the ORF. We believe that reverse-transcription-PCR/PTT is an efficient method by which to screen for small mutations in DMD patients with no deletion. 29 refs., 2 figs., 3 tabs.

  12. Dental phenotype in Jalili syndrome due to a c.1312 dupC homozygous mutation in the CNNM4 gene.

    Directory of Open Access Journals (Sweden)

    Hans U Luder

    Full Text Available Jalili syndrome denotes a recessively inherited combination of an eye disease (cone-rod dystrophy and a dental disorder (amelogenesis imperfecta, which is caused by mutations in the CNNM4 gene. Whereas the ophthalmic consequences of these mutations have been studied comprehensively, the dental phenotype has obtained less attention. A defective transport of magnesium ions by the photoreceptors of the retina is assumed to account for the progressive visual impairment. Since magnesium is also incorporated in the mineral of dental hard tissues, we hypothesized that magnesium concentrations in defective enamel resulting from mutations in CNNM4 would be abnormal, if a similar deficiency of magnesium transport also accounted for the amelogenesis imperfecta. Thus, a detailed analysis of the dental hard tissues was performed in two boys of Kosovan origin affected by Jalili syndrome. Retinal dystrophy of the patients was diagnosed by a comprehensive eye examination and full-field electroretinography. A mutational analysis revealed a c.1312 dupC homozygous mutation in CNNM4, a genetic defect which had already been identified in other Kosovan families and putatively results in loss-of-function of the protein. The evaluation of six primary teeth using light and scanning electron microscopy as well as energy-dispersive X-ray spectroscopy showed that dental enamel was thin and deficient in mineral, suggesting a hypoplastic/hypomineralized type of amelogenesis imperfecta. The reduced mineral density of enamel was accompanied by decreased amounts of calcium, but significantly elevated levels of magnesium. In dentin, however, a similar mineral deficiency was associated with reduced magnesium and normal calcium levels. It is concluded that the c.1312 dupC mutation of CNNM4 results in mineralization defects of both enamel and dentin, which are associated with significantly abnormal magnesium concentrations. Thus, we could not disprove the hypothesis that a

  13. A novel STXBP1 mutation causes typical Rett syndrome in a Japanese girl.

    Science.gov (United States)

    Yuge, Kotaro; Iwama, Kazuhiro; Yonee, Chihiro; Matsufuji, Mayumi; Sano, Nozomi; Saikusa, Tomoko; Yae, Yukako; Yamashita, Yushiro; Mizuguchi, Takeshi; Matsumoto, Naomichi; Matsuishi, Toyojiro

    2018-06-01

    Rett syndrome (RTT) is a neurodevelopmental disorder mostly caused by mutations in Methyl-CpG-binding protein 2 (MECP2); however, mutations in various other genes may lead to RTT-like phenotypes. Here, we report the first case of a Japanese girl with RTT caused by a novel syntaxin-binding protein 1 (STXBP1) frameshift mutation (c.60delG, p.Lys21Argfs*16). She showed epilepsy at one year of age, regression of acquired psychomotor abilities thereafter, and exhibited stereotypic hand and limb movements at 3 years of age. Her epilepsy onset was earlier than is typical for RTT patients. However, she fully met the 2010 diagnostic criteria of typical RTT. STXBP1 mutations cause early infantile epileptic encephalopathy (EIEE), various intractable epilepsies, and neurodevelopmental disorders. However, the case described here presented a unique clinical presentation of typical RTT without EIEE and a novel STXBP1 mutation. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. Mutations in HAMP and HJV genes and their impact on expression of clinical hemochromatosis in a cohort of 100 Spanish patients homozygous for the C282Y mutation of HFE gene.

    Science.gov (United States)

    Altès, Albert; Bach, Vanessa; Ruiz, Angels; Esteve, Anna; Felez, Jordi; Remacha, Angel F; Sardà, M Pilar; Baiget, Montserrat

    2009-10-01

    Most hereditary hemochromatosis (HH) patients are homozygous for the C282Y mutation of the HFE gene. Nevertheless, penetrance of the disease is very variable. In some patients, penetrance can be mediated by concomitant mutations in other iron master genes. We evaluated the clinical impact of hepcidin (HAMP) and hemojuvelin mutations in a cohort of 100 Spanish patients homozygous for the C282Y mutation of the HFE gene. HAMP and hemojuvelin mutations were evaluated in all patients by bidirectional direct cycle sequencing. Phenotype-genotype interactions were evaluated. A heterozygous mutation of the HAMP gene (G71D) was found in only one out of 100 cases. Following, we performed a study of several members of that family, and we observed several members had a digenic inheritance of the C282Y mutation of the HFE gene and the G71D mutation of the HAMP gene. This mutation in the HAMP gene did not modify the phenotype of the individuals who were homozygous for the C282Y mutation. One other patient presented a new polymorphism in the hemojuvelin gene, without consequences in iron load or clinical course of the disease. In conclusion, HAMP and hemojuvelin mutations are rare among Spanish HH patients, and their impact in this population is not significant.

  15. Mutations in the human adenosine deaminase gene that affect protein structure and RNA splicing

    International Nuclear Information System (INIS)

    Akeson, A.L.; Wiginton, D.A.; States, C.J.; Perme, C.M.; Dusing, M.R.; Hutton, J.J.

    1987-01-01

    Adenosine deaminase deficiency is one cause of the genetic disease severe combined immunodeficiency. To identify mutations responsible for ADA deficiency, the authors synthesized cDNAs to ADA mRNAs from two cell lines, GM2756 and GM2825A, derived from ADA-deficient immunodeficient patients. Sequence analysis of GM2756 cDNA clones revealed a different point mutation in each allele that causes amino acid changes of alanine to valine and arginine to histidine. One allele of GM2825A also has a point mutation that causes an alanine to valine substitution. The other allele of GM2825A was found to produce an mRNA in which exon 4 had been spliced out but had no other detrimental mutations. S1 nuclease mapping of GM2825A mRNA showed equal abundance of the full-length ADA mRNA and the ADA mRNA that was missing exon 4. Several of the ADA cDNA clones extended 5' of the major initiation start site, indicating multiple start sites for ADA transcription. The point mutations in GM2756 and GM2825A and the absence of exon 4 in GM2825A appear to be directly responsible for the ADA deficiency. Comparison of a number of normal and mutant ADA cDNA sequences showed a number of changes in the third base of codons. These change do not affect the amino acid sequence. Analyses of ADA cDNAs from different cell lines detected aberrant RNA species that either included intron 7 or excluded exon 7. Their presence is a result of aberrant splicing of pre-mRNAs and is not related to mutations that cause ADA deficiency

  16. Is the c.3G>C mutation in the succinate dehydrogenase subunit D (SDHD) gene due to a founder effect in Chinese head and neck paraganglioma patients?

    Science.gov (United States)

    Zha, Yang; Chen, Xing-ming; Lam, Ching-wan; Lee, Soo-chin; Tong, Sui-fan; Gao, Zhi-qiang

    2011-08-01

    Three Chinese patients with head and neck paragangliomas have been reported to carry the c.3G>C mutation in the succinate dehydrogenase subunit D (SDHD) gene. In addition, in our hospital, two further patients were identified who have the same mutation. It is unclear whether the c.3G>C mutation in Chinese patients is a recurrent mutation or if it is due to a founder effect. We conducted haplotype analysis on these patients to answer this question. Individual case-control study. Germ-line mutations were confirmed in the patients and their families examined in this study using direct sequencing. We also constructed and analyzed haplotypes in four Chinese families. Genotype frequencies were compared to the control group. Three of four families shared the same haplotype, which rarely occurred in the control group. The last family shared a very short area on the physical map with the other three families. There is a founder effect in Chinese head and neck paraganglioma patients carrying the SDHD c.3G>C mutation. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  17. Vers bloed voor spinazie (interview met C. Kik)

    NARCIS (Netherlands)

    Nijland, R.; Kik, C.

    2011-01-01

    Chris Kik van het Centrum voor Genetische Bronnen Nederland (CGN) keerde afgelopen weekend terug van een eenmansexpeditie door Azerbeidzjan, Georgië en Armenië. Resultaat van de reis: een koffer volgepropt met 53 witte linnen zakjes zaad van wilde en lokaal geteelde spinazie. Dat materiaal gaat

  18. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer

    Directory of Open Access Journals (Sweden)

    Demin Jiao

    2016-01-01

    Full Text Available The epithelial-mesenchymal transition (EMT and angiogenesis have emerged as two pivotal events in cancer progression. Curcumin has been extensively studied in preclinical models and clinical trials of cancer prevention due to its favorable toxicity profile. However, the possible involvement of curcumin in the EMT and angiogenesis in lung cancer remains unclear. This study found that curcumin inhibited hepatocyte growth factor (HGF-induced migration and EMT-related morphological changes in A549 and PC-9 cells. Moreover, pretreatment with curcumin blocked HGF-induced c-Met phosphorylation and downstream activation of Akt, mTOR, and S6. These effects mimicked that of c-Met inhibitor SU11274 or PI3 kinase inhibitor LY294002 or mTOR inhibitor rapamycin treatment. c-Met gene overexpression analysis further demonstrated that curcumin suppressed lung cancer cell EMT by inhibiting c-Met/Akt/mTOR signaling pathways. In human umbilical vein endothelial cells (HUVECs, we found that curcumin also significantly inhibited PI3K/Akt/mTOR signaling and induced apoptosis and reduced migration and tube formation of HGF-treated HUVEC. Finally, in the experimental mouse model, we showed that curcumin inhibited HGF-stimulated tumor growth and induced an increase in E-cadherin expression and a decrease in vimentin, CD34, and vascular endothelial growth factor (VEGF expression. Collectively, these findings indicated that curcumin could inhibit HGF-promoted EMT and angiogenesis by targeting c-Met and blocking PI3K/Akt/mTOR pathways.

  19. Somatic point mutations in mtDNA control region are influenced by genetic background and associated with healthy aging: a GEHA study

    DEFF Research Database (Denmark)

    Rose, Giuseppina; Romeo, Giuseppe; Dato, Serena

    2010-01-01

    and of mortality risk in the elderly. Our study provides new evidence on the relevance of mtDNA somatic mutations in aging and longevity and confirms that the occurrence of specific point mutations in the mtDNA control region may represent a strategy for the age-related remodelling of organismal functions....

  20. Detection of mutations using microarrays of poly(C)10-poly(T)10 modified DNA probes immobilized on agarose films

    DEFF Research Database (Denmark)

    Dufva, Hans Martin; Petersen, Jesper; Stoltenborg, M.

    2006-01-01

    Allele-specific hybridization to a DNA microarray call be a useful method for genotyping patient DNA. In this article, we demonstrate that 13- to 17-base oligonucleotides tagged with a poly(T)10-poly(C)10 tail (TC tag), but otherwise unmodified, can be crosslinked by UV light irradiation to an ag......Allele-specific hybridization to a DNA microarray call be a useful method for genotyping patient DNA. In this article, we demonstrate that 13- to 17-base oligonucleotides tagged with a poly(T)10-poly(C)10 tail (TC tag), but otherwise unmodified, can be crosslinked by UV light irradiation...... to an agarose film grafted onto unmodified glass. Microarrays of TC-tagged probes immobilized on the agarose film can be used to diagnose Mutations in the human P-globin gene, which encodes the beta-chains in hemoglobin. Although the probes differed widely regarding inciting point temperature (similar to 20...... degrees C), a single stringency wash still gave sufficiently high discrimination signals between perfect match and mismatch probes to allow robust mutation detection. In all, 270 genotypings were performed on patient materials, and no genotype was incorrectly classified. Quality control experiments...

  1. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    Directory of Open Access Journals (Sweden)

    Eun Hyun Ahn

    Full Text Available Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS methods have high error rates. We have established a new method termed Duplex Sequencing (DS, which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  2. RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes.

    Science.gov (United States)

    Reijnders, Margot R F; Ansor, Nurhuda M; Kousi, Maria; Yue, Wyatt W; Tan, Perciliz L; Clarkson, Katie; Clayton-Smith, Jill; Corning, Ken; Jones, Julie R; Lam, Wayne W K; Mancini, Grazia M S; Marcelis, Carlo; Mohammed, Shehla; Pfundt, Rolph; Roifman, Maian; Cohn, Ronald; Chitayat, David; Millard, Tom H; Katsanis, Nicholas; Brunner, Han G; Banka, Siddharth

    2017-09-07

    RAC1 is a widely studied Rho GTPase, a class of molecules that modulate numerous cellular functions essential for normal development. RAC1 is highly conserved across species and is under strict mutational constraint. We report seven individuals with distinct de novo missense RAC1 mutations and varying degrees of developmental delay, brain malformations, and additional phenotypes. Four individuals, each harboring one of c.53G>A (p.Cys18Tyr), c.116A>G (p.Asn39Ser), c.218C>T (p.Pro73Leu), and c.470G>A (p.Cys157Tyr) variants, were microcephalic, with head circumferences between -2.5 to -5 SD. In contrast, two individuals with c.151G>A (p.Val51Met) and c.151G>C (p.Val51Leu) alleles were macrocephalic with head circumferences of +4.16 and +4.5 SD. One individual harboring a c.190T>G (p.Tyr64Asp) allele had head circumference in the normal range. Collectively, we observed an extraordinary spread of ∼10 SD of head circumferences orchestrated by distinct mutations in the same gene. In silico modeling, mouse fibroblasts spreading assays, and in vivo overexpression assays using zebrafish as a surrogate model demonstrated that the p.Cys18Tyr and p.Asn39Ser RAC1 variants function as dominant-negative alleles and result in microcephaly, reduced neuronal proliferation, and cerebellar abnormalities in vivo. Conversely, the p.Tyr64Asp substitution is constitutively active. The remaining mutations are probably weakly dominant negative or their effects are context dependent. These findings highlight the importance of RAC1 in neuronal development. Along with TRIO and HACE1, a sub-category of rare developmental disorders is emerging with RAC1 as the central player. We show that ultra-rare disorders caused by private, non-recurrent missense mutations that result in varying phenotypes are challenging to dissect, but can be delineated through focused international collaboration. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

    Science.gov (United States)

    Dormeyer, Miriam; Lübke, Anastasia L; Müller, Peter; Lentes, Sabine; Reuß, Daniel R; Thürmer, Andrea; Stülke, Jörg; Daniel, Rolf; Brantl, Sabine; Commichau, Fabian M

    2017-06-01

    Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. A novel germ-line point mutation in RET exon 8 (Gly(533)Cys) in a large kindred with familial medullary thyroid carcinoma

    OpenAIRE

    Silva, Adriana Madeira Alvares da [UNIFESP; Maciel, Rui Monteiro de Barros [UNIFESP; Dias-da-Silva, Magnus Régios [UNIFESP; Toledo, Silvia Regina Caminada de [UNIFESP; De Carvalho, Marcos B.; Cerutti, Janete Maria [UNIFESP

    2003-01-01

    Familial medullary thyroid carcinoma is related to germ-line mutations in the RET oncogene, mainly in cysteine codon 10 or 11, whereas noncysteine mutations in codons 13 - 15 are rare. We now report a new missense point mutation in exon 8 of the RET gene (1597G-->T) corresponding to a Gly(533)Cys substitution in the cystein-rich domain of RET protein in 76 patients from a 6-generation Brazilian family with 229 subjects, with ascendants from Spain. It is likely that the mutation causes familia...

  5. A point mutation of human p53, which was not detected as a mutation by a yeast functional assay, led to apoptosis but not p21Waf1/Cip1/Sdi1 expression in response to ionizing radiation in a human osteosarcoma cell line, Saos-2

    International Nuclear Information System (INIS)

    Okaichi, Kumio; Wang Lihong; Sasaki, Ji-ichiro; Saya, Hideyuki; Tada, Mitsuhiro; Okumura, Yutaka

    1999-01-01

    Purpose: The 123A point mutation of p53 showed increased radiosensitivity, whereas other mutations (143A, 175H, and 273H) were not affected. To determine the reason for increased radiosensitivity of the 123A mutation, the response of the transformant of 123A mutation to ionizing radiation (IR) was examined and compared to those of transformants with the wild type p53 or other point mutations (143A, 175H, and 273H). Methods and Materials: Stable transformants with a mutant or wild type p53 made by introducing cDNA into the human osteosarcoma cell line, Saos-2, which lacks an endogenous p53 were used. The transcriptional activity of mutant p53 was examined using a yeast functional assay. The transformants were examined for the accumulation of p53, the induction of p21 Waf1/Cip1/Sdi1 (hereafter referred to as p21), and the other response of p53-responsive genes (MDM2, Bax, and Bcl-2) by Western blotting. Apoptosis was analyzed by detection of DNA fragmentation. Results: The 123A point mutation of p53 was detected as a wild type in the yeast functional assay. The 123A mutant accumulated p53 in response to IR. The 123A mutant did not induce p21, but normally responded to MDM2, Bax, and Bcl-2. The 123A mutant entered apoptosis earlier than the wild type p53 transformant, and induced Fas at earlier in response to IR. Conclusion: The 123A mutant led to apoptosis, but not p21 expression in response to IR. The occurrence of apoptosis, but not induction of p21, corresponded to the radiosensitivity in the transformant. The early occurrence of apoptosis in 123A transformants may depend on the early induction of Fas

  6. Cox1 mutation abrogates need for Cox23 in cytochrome c oxidase biogenesis

    Directory of Open Access Journals (Sweden)

    Richard Dela Cruz

    2016-06-01

    Full Text Available Cox23 is a known conserved assembly factor for cytochrome c oxidase, although its role in cytochrome c oxidase (CcO biogenesis remains unresolved. To gain additional insights into its role, we isolated spontaneous suppressors of the respiratory growth defect in cox23∆ yeast cells. We recovered independent colonies that propagated on glycerol/lactate medium for cox23∆ cells at 37°C. We mapped these mutations to the mitochondrial genome and specifically to COX1 yielding an I101F substitution. The I101F Cox1 allele is a gain-of-function mutation enabling yeast to respire in the absence of Cox23. CcO subunit steady-state levels were restored with the I101F Cox1 suppressor mutation and oxygen consumption and CcO activity were likewise restored. Cells harboring the mitochondrial genome encoding I101F Cox1 were used to delete genes for other CcO assembly factors to test the specificity of the Cox1 mutation as a suppressor of cox23∆ cells. The Cox1 mutant allele fails to support respiratory growth in yeast lacking Cox17, Cox19, Coa1, Coa2, Cox14 or Shy1, demonstrating its specific suppressor activity for cox23∆ cells.

  7. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    International Nuclear Information System (INIS)

    Sun, Hui-Yong; Ji, Feng-Qin

    2012-01-01

    Highlights: ► The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. ► C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. ► The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  8. Point mutation in the MITF gene causing Waardenburg syndrome type II in a three-generation Indian family.

    Science.gov (United States)

    Lalwani, A K; Attaie, A; Randolph, F T; Deshmukh, D; Wang, C; Mhatre, A; Wilcox, E

    1998-12-04

    Waardenburg syndrome (WS) is an autosomal-dominant neural crest cell disorder phenotypically characterized by hearing impairment and disturbance of pigmentation. A presence of dystopia canthorum is indicative of WS type 1, caused by loss of function mutation in the PAX3 gene. In contrast, type 2 WS (WS2) is characterized by normally placed medial canthi and is genetically heterogeneous; mutations in MITF (microphthalmia associated transcription factor) associated with WS2 have been identified in some but not all affected families. Here, we report on a three-generation Indian family with a point mutation in the MITF gene causing WS2. This mutation, initially reported in a Northern European family, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking the HLH-Zip or Zip structure necessary for normal interaction with its target DNA motif. Comparison of the phenotype between the two families demonstrates a significant difference in pigmentary disturbance of the eye. This family, with the first documented case of two unrelated WS2 families harboring identical mutations, provides additional evidence for the importance of genetic background on the clinical phenotype.

  9. A novel mutation of PAX3 in a Chinese family with Waardenburg syndrome.

    Science.gov (United States)

    Qin, Wei; Shu, Anli; Qian, Xueqing; Gao, Jianjun; Xing, Qinghe; Zhang, Juan; Zheng, Yonglan; Li, Xingwang; Li, Sheng; Feng, Guoyin; He, Lin

    2006-08-28

    The molecular characterization of 34 members of a Chinese family, with 22 members in four generations, affected with Waardenburg syndrome (WS1). A detailed family history and clinical data were collected. A genome-wide scan by two-point linkage analysis using more than 400 microsatellite markers in combination with haplotype analysis was performed. Mutation screening was carried out in the candidate gene by sequencing of amplified products. A maximum two-point lod score of 6.53 at theta = 0.00 was obtained with marker D2S2248. Haplotype analysis placed the WS1 locus to a 45.74 cM region between D2S117 and D2S206, in close proximity to the PAX3 gene on chromosome 2q35. Mutation screening in PAX3 identified a 701T > C mutation which converted a highly conserved Leu to Pro. This nucleotide alteration was neither seen in unaffected members of the family nor found in 50 unrelated control subjects. The present study identified a novel 701T > C mutation in PAX3. The mutation observed in this family highlights the phenotypic heterogeneity of the disorder.

  10. Hereditary Persistence of Fetal Hemoglobin Caused by Single Nucleotide Promoter Mutations in Sickle Cell Trait and Hb SC Disease.

    Science.gov (United States)

    Akinbami, Anthony O; Campbell, Andrew D; Han, Zeqiu J; Luo, Hong-Yuan; Chui, David H K; Steinberg, Martin H

    2016-01-01

    Hereditary persistence of fetal hemoglobin (HPFH) can be caused by point mutations in the γ-globin gene promoters. We report three rare cases: a child compound heterozygous for Hb S (HBB: c.20A > T) and HPFH with a novel point mutation in the (A)γ-globin gene promoter who had 42.0% Hb S, 17.0% Hb A and 38.0% Hb F; a man with Hb SC (HBB: c.19G > A) disease and a point mutation in the (G)γ-globin gene promoter who had 54.0% Hb S, 18.0% Hb C and 25.0% Hb F; a child heterozygous for Hb S and HPFH due to mutations in both the (A)γ- and (G)γ-globin gene promoters in cis [(G)γ(A)γ(β(+)) HPFH], with 67.0% Hb A, 6.5% Hb S and 25.0% Hb F.

  11. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling.

    Directory of Open Access Journals (Sweden)

    Swati Tomar

    Full Text Available Retinoblastoma (RB is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59 while only 42.4% (25/59 of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9% of tumors screened. There were 3 cases (5.1% in which no mutations could be detected and germline mutations were detected in 19.5% (8/41 of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59 of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and

  12. Exploration of Structural and Functional Variations Owing to Point Mutations in α-NAGA.

    Science.gov (United States)

    Meshach Paul, D; Rajasekaran, R

    2018-03-01

    Schindler disease is a lysosomal storage disorder caused due to deficiency or defective activity of alpha-N-acetylgalactosaminidase (α-NAGA). Mutations in gene encoding α-NAGA cause wide range of diseases, characterized with mild to severe clinical features. Molecular effects of these mutations are yet to be explored in detail. Therefore, this study was focused on four missense mutations of α-NAGA namely, S160C, E325K, R329Q and R329W. Native and mutant structures of α-NAGA were analysed to determine geometrical deviations such as the contours of root mean square deviation, root mean square fluctuation, percentage of residues in allowed regions of Ramachandran plot and solvent accessible surface area, using conformational sampling technique. Additionally, global energy-minimized structures of native and mutants were further analysed to compute their intra-molecular interactions, hydrogen bond dilution and distribution of secondary structure. In addition, docking studies were also performed to determine variations in binding energies between native and mutants. The deleterious effects of mutants were evident due to variations in their active site residues pertaining to spatial conformation and flexibility, comparatively. Hence, variations exhibited by mutants, namely S160C, E325K, R329Q and R329W to that of native, consequently, lead to the detrimental effects causing Schindler disease. This study computationally explains the underlying reasons for the pathogenesis of the disease, thereby aiding future researchers in drug development and disease management.

  13. Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants

    International Nuclear Information System (INIS)

    Yao Youli; Kovalchuk, Igor

    2011-01-01

    In earlier studies, we showed that abiotic stresses, such as ionizing radiation, heavy metals, temperature and water, trigger an increase in homologous recombination frequency (HRF). We also demonstrated that many of these stresses led to inheritance of high-frequency homologous recombination, HRF. Although an increase in recombination frequency is an important indicator of genome rearrangements, it only represents a minor portion of possible stress-induced mutations. Here, we analyzed the influence of heat, cold, drought, flood and UVC abiotic stresses on two major types of mutations in the genome, point mutations and small deletions/insertions. We used two transgenic lines of Arabidopsis thaliana, one allowing an analysis of reversions in a stop codon-containing inactivated β-glucuronidase transgene and another one allowing an analysis of repeat stability in a microsatellite-interrupted β-glucuronidase transgene. The transgenic Arabidopsis line carrying the β-glucuronidase-based homologous recombination substrate was used as a positive control. We showed that the majority of stresses increased the frequency of point mutations, homologous recombination and microsatellite instability in somatic cells, with the frequency of homologous recombination being affected the most. The analysis of transgenerational changes showed an increase in HRF to be the most prominent effect observed in progeny. Significant changes in recombination frequency were observed upon exposure to all types of stress except drought, whereas changes in microsatellite instability were observed upon exposure to UVC, heat and cold. The frequency of point mutations in the progeny of stress-exposed plants was the least affected; an increase in mutation frequency was observed only in the progeny of plants exposed to UVC. We thus conclude that transgenerational changes in genome stability in response to stress primarily involve an increase in recombination frequency.

  14. Mitochondrial C4375T mutation might be a molecular risk factor in a maternal Chinese hypertensive family under haplotype C.

    Science.gov (United States)

    Chen, Hong; Sun, Min; Fan, Zhen; Tong, Maoqing; Chen, Guodong; Li, Danhui; Ye, Jihui; Yang, Yumin; Zhu, Yongding; Zhu, Jianhua

    2017-12-04

    Here, we reported a Han Chinese essential hypertensive pedigree based on clinical hereditary and molecular data. To know the molecular basis on this family, mitochondrial genome of one proband from the family was identified through direct sequencing analysis. The age of onset year and affected degree of patients are different in this family. And matrilineal family members carrying C4375T mutation and belong to Eastern Asian halopgroup C. Phylogenetic analysis shows 4375C is highly conservative in 17 species. It is suggested that these mutations might participate in the development of hypertension in this family. And halopgroup C might play a modifying role on the phenotype in this Chinese hypertensive family.

  15. Protein-losing enteropathy with intestinal lymphangiectasia in skeletal dysplasia with Lys650Met mutation.

    Science.gov (United States)

    Yang, Chen; Dehner, Louis P

    2016-11-01

    Protein-losing enteropathy is a primary or secondary manifestation of a group of conditions, and etiologies which are broadly divisible into those with mucosal injury on the basis of inflammatory and ulcerative conditions, mucosal injury without erosions or ulcerations, and lymphatic abnormalities. We describe the first case of protein-losing enteropathy in a pediatric patient, with severe skeletal dysplasia consistent with thanatophoric dysplasia type I and DNA analysis that revealed a c.1949A>T (p.Lys650Met) in exon 15 of the FGFR3 gene. She presented with protein-losing enteropathy in her 6th month. Post-mortem examination revealed lymphangiectasia in the small intestine. To our knowledge, this is the first report of intestinal lymphangiectasia as a complication of skeletal dysplasia resulting in severe protein-losing enteropathy. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. A novel lamin A/C mutation in a Dutch family with premature atherosclerosis.

    Science.gov (United States)

    Weterings, A A W; van Rijsingen, I A W; Plomp, A S; Zwinderman, A H; Lekanne Deprez, R H; Mannens, M M; van den Bergh Weerman, M A; van der Wal, A C; Pinto-Sietsma, S J

    2013-07-01

    We report a novel lamin A/C (LMNA) mutation, p.Glu223Lys, in a family with extensive atherosclerosis, diabetes mellitus and steatosis hepatis. Sequence analysis of LMNA (using Alamut version 2.2), co-segregation analysis, electron microscopy, extensive phenotypic evaluation of the mutation carriers and literature comparison were used to determine the loss of function of this mutation. The father of three siblings died at the age of 45 years. The three siblings and the brother and sister of the father were referred to the cardiovascular genetics department, because of the premature atherosclerosis and dysmorphic characteristics observed in the father at autopsy. The novel LMNA mutation, p.Glu223Lys, was identified in the proband and his two sons. Clinical evaluation revealed atherosclerosis, insulin resistance and hypertension in the proband and dyslipidemia and hepatic steatosis in all the patients with the mutation. Based on the facts that in silico analysis predicts a possibly pathogenic mutation, the mutation co-segregates with the disease, only fibroblasts from mutation carriers show nuclear blebbing and a similar phenotype was reported to be due to missense mutations in LMNA we conclude that we deal with a pathogenic mutation. We conclude that the phenotype is similar to Dunnigan-type familial partial lipodystrophy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Polymorphisms and resistance mutations of hepatitis C virus on sequences in the European hepatitis C virus database

    Science.gov (United States)

    Kliemann, Dimas Alexandre; Tovo, Cristiane Valle; da Veiga, Ana Beatriz Gorini; de Mattos, Angelo Alves; Wood, Charles

    2016-01-01

    AIM To evaluate the occurrence of resistant mutations in treatment-naïve hepatitis C virus (HCV) sequences deposited in the European hepatitis C virus database (euHCVdb). METHODS The sequences were downloaded from the euHCVdb (https://euhcvdb.ibcp.fr/euHCVdb/). The search was performed for full-length NS3 protease, NS5A and NS5B polymerase sequences of HCV, separated by genotypes 1a, 1b, 2a, 2b and 3a, and resulted in 798 NS3, 708 NS5A and 535 NS5B sequences from HCV genotypes 1a, 1b, 2a, 2b and 3a, after the exclusion of sequences containing errors and/or gaps or incomplete sequences, and sequences from patients previously treated with direct antiviral agents (DAA). The sequence alignment was performed with MEGA 6.06 MAC and the resulting protein sequences were then analyzed using the BioEdit 7.2.5. for mutations associated with resistance. Only positions that have been described as being associated with failure in treatment in in vivo studies, and/or as conferring a more than 2-fold change in replication in comparison to the wildtype reference strain in in vitro phenotypic assays were included in the analysis. RESULTS The Q80K variant in the NS3 gene was the most prevalent mutation, being found in 44.66% of subtype 1a and 0.25% of subtype 1b. Other frequent mutations observed in more than 2% of the NS3 sequences were: I170V (3.21%) in genotype 1a, and Y56F (15.93%), V132I (23.28%) and I170V (65.20%) in genotype 1b. For the NS5A, 2.21% of the genotype 1a sequences have the P58S mutation, 5.95% of genotype 1b sequences have the R30Q mutation, 15.79% of subtypes 2a sequences have the Q30R mutation, 23.08% of subtype 2b sequences have a L31M mutation, and in subtype 3a sequences, 23.08% have the M31L resistant variants. For the NS5B, the V321L RAV was identified in 0.60% of genotype 1a and in 0.32% of genotype 1b sequences, and the N142T variant was observed in 0.32% of subtype 1b sequences. The C316Y, S556G, D559N RAV were identified in 0.33%, 7.82% and 0.32% of

  18. Polymorphisms and resistance mutations of hepatitis C virus on sequences in the European hepatitis C virus database.

    Science.gov (United States)

    Kliemann, Dimas Alexandre; Tovo, Cristiane Valle; da Veiga, Ana Beatriz Gorini; de Mattos, Angelo Alves; Wood, Charles

    2016-10-28

    To evaluate the occurrence of resistant mutations in treatment-naïve hepatitis C virus (HCV) sequences deposited in the European hepatitis C virus database (euHCVdb). The sequences were downloaded from the euHCVdb (https://euhcvdb.ibcp.fr/euHCVdb/). The search was performed for full-length NS3 protease, NS5A and NS5B polymerase sequences of HCV, separated by genotypes 1a, 1b, 2a, 2b and 3a, and resulted in 798 NS3, 708 NS5A and 535 NS5B sequences from HCV genotypes 1a, 1b, 2a, 2b and 3a, after the exclusion of sequences containing errors and/or gaps or incomplete sequences, and sequences from patients previously treated with direct antiviral agents (DAA). The sequence alignment was performed with MEGA 6.06 MAC and the resulting protein sequences were then analyzed using the BioEdit 7.2.5. for mutations associated with resistance. Only positions that have been described as being associated with failure in treatment in in vivo studies, and/or as conferring a more than 2-fold change in replication in comparison to the wildtype reference strain in in vitro phenotypic assays were included in the analysis. The Q80K variant in the NS3 gene was the most prevalent mutation, being found in 44.66% of subtype 1a and 0.25% of subtype 1b. Other frequent mutations observed in more than 2% of the NS3 sequences were: I170V (3.21%) in genotype 1a, and Y56F (15.93%), V132I (23.28%) and I170V (65.20%) in genotype 1b. For the NS5A, 2.21% of the genotype 1a sequences have the P58S mutation, 5.95% of genotype 1b sequences have the R30Q mutation, 15.79% of subtypes 2a sequences have the Q30R mutation, 23.08% of subtype 2b sequences have a L31M mutation, and in subtype 3a sequences, 23.08% have the M31L resistant variants. For the NS5B, the V321L RAV was identified in 0.60% of genotype 1a and in 0.32% of genotype 1b sequences, and the N142T variant was observed in 0.32% of subtype 1b sequences. The C316Y, S556G, D559N RAV were identified in 0.33%, 7.82% and 0.32% of genotype 1b sequences

  19. Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase that increases the production rate of D-tagatose.

    Science.gov (United States)

    Kim, H-J; Kim, J-H; Oh, H-J; Oh, D-K

    2006-07-01

    Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase used to increase the production rate of D-tagatose. A mutated gene was obtained by an error-prone polymerase chain reaction using L-arabinose isomerase gene from G. stearothermophilus as a template and the gene was expressed in Escherichia coli. The expressed mutated L-arabinose isomerase exhibited the change of three amino acids (Met322-->Val, Ser393-->Thr, and Val408-->Ala), compared with the wild-type enzyme and was then purified to homogeneity. The mutated enzyme had a maximum galactose isomerization activity at pH 8.0, 65 degrees C, and 1.0 mM Co2+, while the wild-type enzyme had a maximum activity at pH 8.0, 60 degrees C, and 1.0-mM Mn2+. The mutated L-arabinose isomerase exhibited increases in D-galactose isomerization activity, optimum temperature, catalytic efficiency (kcat/Km) for D-galactose, and the production rate of D-tagatose from D-galactose. The mutated L-arabinose isomerase from G. stearothermophilus is valuable for the commercial production of D-tagatose. This work contributes knowledge on the characterization of a mutated L-arabinose isomerase, and allows an increased production rate for D-tagatose from D-galactose using the mutated enzyme.

  20. PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53

    DEFF Research Database (Denmark)

    Zandi, Roza; Selivanova, Galina; Christensen, Camilla Laulund

    2011-01-01

    Small cell lung cancer (SCLC) is a highly malignant disease with poor prognosis, necessitating the need to develop new and efficient treatment modalities. PRIMA-1(Met) (p53-dependent reactivation of massive apoptosis), also known as APR-246, is a small molecule, which restores tumor suppressor...... function to mutant p53 and induces cancer cell death in various cancer types. Since p53 is mutated in more than 90% of SCLC, we investigated the ability of PRIMA-1(Met) to induce apoptosis and inhibit tumor growth in SCLC with different p53 mutations....

  1. Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene.

    Science.gov (United States)

    Yamada, Tsuyoshi; Maeda, Mari; Alshahni, Mohamed Mahdi; Tanaka, Reiko; Yaguchi, Takashi; Bontems, Olympia; Salamin, Karine; Fratti, Marina; Monod, Michel

    2017-07-01

    Terbinafine is one of the allylamine antifungal agents whose target is squalene epoxidase (SQLE). This agent has been extensively used in the therapy of dermatophyte infections. The incidence of patients with tinea pedis or unguium tolerant to terbinafine treatment prompted us to screen the terbinafine resistance of all Trichophyton clinical isolates from the laboratory of the Centre Hospitalier Universitaire Vaudois collected over a 3-year period and to identify their mechanism of resistance. Among 2,056 tested isolates, 17 (≈1%) showed reduced terbinafine susceptibility, and all of these were found to harbor SQLE gene alleles with different single point mutations, leading to single amino acid substitutions at one of four positions (Leu 393 , Phe 397 , Phe 415 , and His 440 ) of the SQLE protein. Point mutations leading to the corresponding amino acid substitutions were introduced into the endogenous SQLE gene of a terbinafine-sensitive Arthroderma vanbreuseghemii (formerly Trichophyton mentagrophytes ) strain. All of the generated A. vanbreuseghemii transformants expressing mutated SQLE proteins exhibited obvious terbinafine-resistant phenotypes compared to the phenotypes of the parent strain and of transformants expressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in A. vanbreuseghemii transformants expressing mutant forms of Trichophyton rubrum SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb, the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased exposure to antifungal drugs could favor the generation of resistant strains. Copyright © 2017 American Society for Microbiology.

  2. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2

    DEFF Research Database (Denmark)

    Neilson, Derek E; Adams, Mark D; Orr, Caitlin M D

    2009-01-01

    a susceptibility locus (ANE1) in a family segregating recurrent ANE as an incompletely penetrant, autosomal-dominant trait. We now report that all affected individuals and obligate carriers in this family are heterozygous for a missense mutation (c.1880C-->T, p.Thr585Met) in the gene encoding the nuclear pore...... protein Ran Binding Protein 2 (RANBP2). To determine whether this mutation is the susceptibility allele, we screened controls and other patients with ANE who are unrelated to the index family. Patients from 9 of 15 additional kindreds with familial or recurrent ANE had the identical mutation. It arose de...... novo in two families and independently in several other families. Two other patients with familial ANE had different RANBP2 missense mutations that altered conserved residues. None of the three RANBP2 missense mutations were found in 19 patients with isolated ANE or in unaffected controls. We conclude...

  3. A missense mutation in the agouti signaling protein gene (ASIP) is associated with the no light points coat phenotype in donkeys.

    Science.gov (United States)

    Abitbol, Marie; Legrand, Romain; Tiret, Laurent

    2015-04-08

    Seven donkey breeds are recognized by the French studbook and are characterized by a black, bay or grey coat colour including light cream-to-white points (LP). Occasionally, Normand bay donkeys give birth to dark foals that lack LP and display the no light points (NLP) pattern. This pattern is more frequent and officially recognized in American miniature donkeys. The LP (or pangare) phenotype resembles that of the light bellied agouti pattern in mouse, while the NLP pattern resembles that of the mammalian recessive black phenotype; both phenotypes are associated with the agouti signaling protein gene (ASIP). We used a panel of 127 donkeys to identify a recessive missense c.349 T > C variant in ASIP that was shown to be in complete association with the NLP phenotype. This variant results in a cysteine to arginine substitution at position 117 in the ASIP protein. This cysteine is highly-conserved among vertebrate ASIP proteins and was previously shown by mutagenesis experiments to lie within a functional site. Altogether, our results strongly support that the identified mutation is causative of the NLP phenotype. Thus, we propose to name the c.[349 T > C] allele in donkeys, the a(nlp) allele, which enlarges the panel of coat colour alleles in donkeys and ASIP recessive loss-of-function alleles in animals.

  4. Leber's hereditary optic neuropathy is associated with mitochondrial ND6 T14502C mutation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fuxin [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Guan, Minqiang [Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhou, Xiangtian [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Yuan, Meixia; Liang, Ming [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Liu, Qi [Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Liu, Yan; Zhang, Yongmei [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Yang, Li [Division of Human Genetics, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH 45229 (United States); Tong, Yi [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005 (China); Wei, Qi-Ping; Sun, Yan-Hong [Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine and Pharmacology, Beijing 100078 (China); Qu, Jia, E-mail: jqu@wzmc.net [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); and others

    2009-11-20

    We report here the clinical, genetic, and molecular characterization of three Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age of onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T14502C (I58V) mutation, which localized at a highly conserved isoleucine at position 58 of ND6, and distinct sets of mtDNA polymorphisms belonging to haplogroups M10a, F1a1, and H2. The occurrence of T14502C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. Here, mtDNA variants I187T in the ND1, A122V in CO1, S99A in the A6, and V254I in CO3 exhibited an evolutionary conservation, indicating a potential modifying role in the development of visual impairment associated with T14502C mutation in those families. Furthermore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic manifestation of the LHON-associated T14502C mutation in these Chinese families.

  5. Prevalence of H63D, S65C and C282Y hereditary hemochromatosis gene mutations in Slovenian population by an improved high-throughput genotyping assay

    Directory of Open Access Journals (Sweden)

    Rupreht Ruth

    2007-11-01

    Full Text Available Abstract Background Hereditary hemochromatosis (HH is a common genetic disease characterized by excessive iron overload that leads to multi-organ failure. Although the most prevalent genotype in HH is homozygosity for C282Y mutation of the HFE gene, two additional mutations, H63D and S65C, appear to be associated with a milder form of HH. The aim of this study was to develop a high-throughput assay for HFE mutations screening based on TaqMan technology and to determine the frequencies of HFE mutations in the Slovenian population. Methods Altogether, 1282 randomly selected blood donors from different Slovenian regions and 21 HH patients were analyzed for the presence of HFE mutations by an in-house developed real-time PCR assay based on TaqMan technology using shorter non-interfering fluorescent single nucleotide polymorphism (SNP-specific MGB probes. The assay was validated by RFLP analysis and DNA sequencing. Results The genotyping assay of the H63D, S65C and C282Y mutations in the HFE gene, based on TaqMan technology proved to be fast, reliable, with a high-throughput capability and 100% concordant with genotypes obtained by RFLP and DNA sequencing. The observed frequency of C282Y homozygotes in the group of HH patients was only 48%, others were of the heterogeneous HFE genotype. Among 1282 blood donors tested, the observed H63D, S65C and C282Y allele frequency were 12.8% (95% confidence interval (CI 11.5 – 14.2%, 1.8% (95% CI 1.4 – 2.5% and 3.6% (95% CI 3.0 – 4.5%, respectively. Approximately 33% of the tested subjects had at least one of the three HH mutations, and 1% of them were C282Y homozygotes or compound heterozygotes C282Y/H63D or C282Y/S65C, presenting an increased risk for iron overload disease. A significant variation in H63D allele frequency was observed for one of the Slovenian regions. Conclusion The improved real-time PCR assay for H63D, S65C and C282Y mutations detection is accurate, fast, cost-efficient and ready for

  6. Role of single-point mutations and deletions on transition temperatures in ideal proteinogenic heteropolymer chains in the gas phase.

    Science.gov (United States)

    Olivares-Quiroz, L

    2016-07-01

    A coarse-grained statistical mechanics-based model for ideal heteropolymer proteinogenic chains of non-interacting residues is presented in terms of the size K of the chain and the set of helical propensities [Formula: see text] associated with each residue j along the chain. For this model, we provide an algorithm to compute the degeneracy tensor [Formula: see text] associated with energy level [Formula: see text] where [Formula: see text] is the number of residues with a native contact in a given conformation. From these results, we calculate the equilibrium partition function [Formula: see text] and characteristic temperature [Formula: see text] at which a transition from a low to a high entropy states is observed. The formalism is applied to analyze the effect on characteristic temperatures [Formula: see text] of single-point mutations and deletions of specific amino acids [Formula: see text] along the chain. Two probe systems are considered. First, we address the case of a random heteropolymer of size K and given helical propensities [Formula: see text] on a conformational phase space. Second, we focus our attention to a particular set of neuropentapeptides, [Met-5] and [Leu-5] enkephalins whose thermodynamic stability is a key feature on their coupling to [Formula: see text] and [Formula: see text] receptors and the triggering of biochemical responses.

  7. Changes in the dynamics of the cardiac troponin C molecule explain the effects of Ca2+-sensitizing mutations.

    Science.gov (United States)

    Stevens, Charles M; Rayani, Kaveh; Singh, Gurpreet; Lotfalisalmasi, Bairam; Tieleman, D Peter; Tibbits, Glen F

    2017-07-14

    Cardiac troponin C (cTnC) is the regulatory protein that initiates cardiac contraction in response to Ca 2+ TnC binding Ca 2+ initiates a cascade of protein-protein interactions that begins with the opening of the N-terminal domain of cTnC, followed by cTnC binding the troponin I switch peptide (TnI SW ). We have evaluated, through isothermal titration calorimetry and molecular-dynamics simulation, the effect of several clinically relevant mutations (A8V, L29Q, A31S, L48Q, Q50R, and C84Y) on the Ca 2+ affinity, structural dynamics, and calculated interaction strengths between cTnC and each of Ca 2+ and TnI SW Surprisingly the Ca 2+ affinity measured by isothermal titration calorimetry was only significantly affected by half of these mutations including L48Q, which had a 10-fold higher affinity than WT, and the Q50R and C84Y mutants, each of which had affinities 3-fold higher than wild type. This suggests that Ca 2+ affinity of the N-terminal domain of cTnC in isolation is insufficient to explain the pathogenicity of these mutations. Molecular-dynamics simulation was used to evaluate the effects of these mutations on Ca 2+ binding, structural dynamics, and TnI interaction independently. Many of the mutations had a pronounced effect on the balance between the open and closed conformations of the TnC molecule, which provides an indirect mechanism for their pathogenic properties. Our data demonstrate that the structural dynamics of the cTnC molecule are key in determining myofilament Ca 2+ sensitivity. Our data further suggest that modulation of the structural dynamics is the underlying molecular mechanism for many disease mutations that are far from the regulatory Ca 2+ -binding site of cTnC. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Are c.436G>A mutations less severe forms of Lafora disease? A case report

    Directory of Open Access Journals (Sweden)

    Hélène-Marie Lanoiselée

    2014-01-01

    Full Text Available Lafora disease is a form of progressive myoclonic epilepsy with autosomal recessive transmission. Two genes have been identified so far: EPM2A and NHLRC1, and a third gene, concerning a pediatric onset subform, has been recently proposed. We report the case of a 23-year-old woman of Turkish origin with an unusual disease course. Clinical onset was at the age of 19 years with tonic–clonic seizures, followed by cognitive impairment; EEG was in favor of Lafora disease, and the mutation c.436G>A (a missense mutation substituting aspartic acid in asparagine in the NHLRC1 gene confirmed this diagnosis. After 5 years of evolution, the patient only has moderate cognitive impairment. Some NHLRC1 mutations, particularly c.436G>A, are associated with a slower clinical course, but there are conflicting data in the literature. This case strengthens the hypothesis that the c.436G>A mutation in the NHLRC1 gene leads to less severe phenotypes and late-onset disease.

  9. A Point Mutation in Suppressor of Cytokine Signalling 2 (Socs2 Increases the Susceptibility to Inflammation of the Mammary Gland while Associated with Higher Body Weight and Size and Higher Milk Production in a Sheep Model.

    Directory of Open Access Journals (Sweden)

    Rachel Rupp

    2015-12-01

    Full Text Available Mastitis is an infectious disease mainly caused by bacteria invading the mammary gland. Genetic control of susceptibility to mastitis has been widely evidenced in dairy ruminants, but the genetic basis and underlying mechanisms are still largely unknown. We describe the discovery, fine mapping and functional characterization of a genetic variant associated with elevated milk leukocytes count, or SCC, as a proxy for mastitis. After implementing genome-wide association studies, we identified a major QTL associated with SCC on ovine chromosome 3. Fine mapping of the region, using full sequencing with 12X coverage in three animals, provided one strong candidate SNP that mapped to the coding sequence of a highly conserved gene, suppressor of cytokine signalling 2 (Socs2. The frequency of the SNP associated with increased SCC was 21.7% and the Socs2 genotype explained 12% of the variance of the trait. The point mutation induces the p.R96C substitution in the SH2 functional domain of SOCS2 i.e. the binding site of the protein to various ligands, as well-established for the growth hormone receptor GHR. Using surface plasmon resonance we showed that the p.R96C point mutation completely abrogates SOCS2 binding affinity for the phosphopeptide of GHR. Additionally, the size, weight and milk production in p.R96C homozygote sheep, were significantly increased by 24%, 18%, and 4.4%, respectively, when compared to wild type sheep, supporting the view that the point mutation causes a loss of SOCS2 functional activity. Altogether these results provide strong evidence for a causal mutation controlling SCC in sheep and highlight the major role of SOCS2 as a tradeoff between the host's inflammatory response to mammary infections, and body growth and milk production, which are all mediated by the JAK/STAT signaling pathway.

  10. Diagnosis of Xeroderma Pigmentosum Groups A and C by Detection of Two Prevalent Mutations in West Algerian Population: A Rapid Genotyping Tool for the Frequent XPC Mutation c.1643_1644delTG.

    Science.gov (United States)

    Bensenouci, Salima; Louhibi, Lotfi; De Verneuil, Hubert; Mahmoudi, Khadidja; Saidi-Mehtar, Nadhira

    2016-01-01

    Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder. Considering that XP patients have a defect of the nucleotide excision repair (NER) pathway which enables them to repair DNA damage caused by UV light, they have an increased risk of developing skin and eyes cancers. In the present study, we investigated the involvement of the prevalent XPA and XPC genes mutations-nonsense mutation (c.682C>T, p.Arg228X) and a two-base-pair (2 bp) deletion (c.1643_1644delTG or p.Val548Ala fsX25), respectively-in 19 index cases from 19 unrelated families in the West of Algeria. For the genetic diagnosis of XPA gene, we proceeded to PCR-RFLP. For the XPC gene, we validated a routine analysis which includes a specific amplification of a short region surrounding the 2 bp deletion using a fluorescent primer and fragment sizing (GeneScan size) on a sequencing gel. Among the 19 index cases, there were 17 homozygous patients for the 2 bp deletion in the XPC gene and 2 homozygous patients carrying the nonsense XPA mutation. Finally, XPC appears to be the major disease-causing gene concerning xeroderma pigmentosum in North Africa. The use of fragment sizing is the simplest method to analyze this 2 bp deletion for the DNA samples coming from countries where the mutation c.1643_1644delTG of XPC gene is prevalent.

  11. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Risques, R A; Toyota, M; Capella, G; Moreno, V; Peinado, M A; Baylin, S B; Herman, J G

    2001-06-15

    Defects in DNA repair may be responsible for the genesis of mutations in key genes in cancer cells. The tumor suppressor gene p53 is commonly mutated in human cancer by missense point mutations, most of them G:C to A:T transitions. A recognized cause for this type of change is spontaneous deamination of the methylcytosine. However, the persistence of a premutagenic O(6)-methylguanine can also be invoked. This last lesion is removed in the normal cell by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). In many tumor types, epigenetic silencing of MGMT by promoter hypermethylation has been demonstrated and linked to the appearance of G to A mutations in the K-ras oncogene in colorectal tumors. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of p53 mutations, we studied 314 colorectal tumors for MGMT promoter hypermethylation and p53 mutational spectrum. Inactivation of MGMT by aberrant methylation was associated with the appearance of G:C to A:T transition mutations at p53 (Fischer's exact test, two-tailed; P = 0.01). Overall, MGMT methylated tumors displayed p53 transition mutations in 43 of 126 (34%) cases, whereas MGMT unmethylated tumors only showed G:C to A:T changes in 37 of 188 (19%) tumors. A more striking association was found in G:C to A:T transitions in non-CpG dinucleotides; 71% (12 of 17) of the total non-CpG transition mutations in p53 were observed in MGMT aberrantly methylated tumors (Fischer's exact test, two-tailed; P = 0.008). Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to G:C to A:T transition mutations in p53.

  12. Investigation of FANCA mutations in Greek patients.

    Science.gov (United States)

    Selenti, Nikoletta; Sofocleous, Christalena; Kattamis, Antonis; Kolialexi, Aggeliki; Kitsiou, Sophia; Fryssira, Elena; Polychronopoulou, Sophia; Kanavakis, Emmanouel; Mavrou, Ariadni

    2013-08-01

    Fanconi anemia (FA) is a rare genetic disease characterized by considerable heterogeneity. Fifteen subtypes are currently recognised and deletions of the Fanconi anemia complementation group A (FANCA) gene account for more than 65% of FA cases. We report on the results from a cohort of 166 patients referred to the Department of Medical Genetics of Athens University for genetic investigation after the clinical suspicion of FA. For clastogen-induced chromosome damage, cultures were set up with the addition of mitomycin C (MMC) and diepoxybutane (DEB), respectively. Following a positive cytogenetic result, molecular analysis was performed to allow identification of causative mutations in the FANCA gene. A total of 13/166 patients were diagnosed with FA and 8/13 belonged to the FA-A subtype. A novel point mutation was identified in exon 26 of FANCA gene. In our study 62% of FA patients were classified in the FA-A subtype and a point mutation in exon 26 was noted for the first time.

  13. Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.

    Science.gov (United States)

    Springuel, Lorraine; Losdyck, Elisabeth; Saussoy, Pascale; Turcq, Béatrice; Mahon, François-Xavier; Knoops, Laurent; Renauld, Jean-Christophe

    2016-12-01

    Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.

  14. Towards trans-diagnostic mechanisms in psychiatry: neurobehavioral profile of rats with a loss-of-function point mutation in the dopamine transporter gene

    Directory of Open Access Journals (Sweden)

    Valentina Vengeliene

    2017-04-01

    Full Text Available The research domain criteria (RDoC matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT gene (Slc6a3_N157K to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3_N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity.

  15. The effect of mutations in the AmpC promoter region on β-lactam ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... between the -10 and -35 boxes affects the resistance of bacteria to β-lactam antibiotics. .... The chromosomal cephalosporinase gene, ampC, of E. .... mutation in the ampC promoter increasing resistance to β-lactams in.

  16. Mesotrypsin Signature Mutation in a Chymotrypsin C (CTRC) Variant Associated with Chronic Pancreatitis.

    Science.gov (United States)

    Szabó, András; Ludwig, Maren; Hegyi, Eszter; Szépeová, Renata; Witt, Heiko; Sahin-Tóth, Miklós

    2015-07-10

    Human chymotrypsin C (CTRC) protects against pancreatitis by degrading trypsinogen and thereby curtailing harmful intra-pancreatic trypsinogen activation. Loss-of-function mutations in CTRC increase the risk for chronic pancreatitis. Here we describe functional analysis of eight previously uncharacterized natural CTRC variants tested for potential defects in secretion, proteolytic stability, and catalytic activity. We found that all variants were secreted from transfected cells normally, and none suffered proteolytic degradation by trypsin. Five variants had normal enzymatic activity, whereas variant p.R29Q was catalytically inactive due to loss of activation by trypsin and variant p.S239C exhibited impaired activity possibly caused by disulfide mispairing. Surprisingly, variant p.G214R had increased activity on a small chromogenic peptide substrate but was markedly defective in cleaving bovine β-casein or the natural CTRC substrates human cationic trypsinogen and procarboxypeptidase A1. Mutation p.G214R is analogous to the evolutionary mutation in human mesotrypsin, which rendered this trypsin isoform resistant to proteinaceous inhibitors and conferred its ability to cleave these inhibitors. Similarly to the mesotrypsin phenotype, CTRC variant p.G214R was inhibited poorly by eglin C, ecotin, or a CTRC-specific variant of SGPI-2, and it readily cleaved the reactive-site peptide bonds in eglin C and ecotin. We conclude that CTRC variants p.R29Q, p.G214R, and p.S239C are risk factors for chronic pancreatitis. Furthermore, the mesotrypsin-like CTRC variant highlights how the same natural mutation in homologous pancreatic serine proteases can evolve a new physiological role or lead to pathology, determined by the biological context of protease function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Hinkley Point 'C' power station public inquiry: proof of evidence on comparison of non-fossil options to Hinkley Point 'C'

    International Nuclear Information System (INIS)

    Goddard, S.C.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. This evidence to the Inquiry sets out and explains the non-fossil fuel options, with particular reference to renewable energy sources and other PWR locations; gives feasibility, capital cost, performance and total resource estimates for the renewable sources; and shows that no other non-fossil fuel source is to be preferred to Hinkley Point ''C''. (author)

  18. Significance of Coexisting Mutations on Determination of the Degree of Isoniazid Resistance in Mycobacterium tuberculosis Strains.

    Science.gov (United States)

    Karunaratne, Galbokka Hewage Roshanthi Eranga; Wijesundera, Sandhya Sulochana; Vidanagama, Dhammika; Adikaram, Chamila Priyangani; Perera, Jennifer

    2018-04-23

    The emergence and spread of drug-resistant tuberculosis (TB) pose a threat to TB control in Sri Lanka. Isoniazid (INH) is a key element of the first-line anti-TB treatment regimen. Resistance to INH is mainly associated with point mutations in katG, inhA, and ahpC genes. The objective of this study was to determine mutations of these three genes in INH-resistant Mycobacterium tuberculosis (MTb) strains in Sri Lanka. Complete nucleotide sequence of the three genes was amplified by polymerase chain reaction and subjected to DNA sequencing. Point mutations in the katG gene were identified in 93% isolates, of which the majority (78.6%) were at codon 315. Mutations at codons 212 and 293 of the katG gene have not been reported previously. Novel mutations were recognized in the promoter region of the inhA gene (C deletion at -34), fabG1 gene (codon 27), and ahpC gene (codon 39). Single S315T mutation in the katG gene led to a high level of resistance, while a low level of resistance with high frequency (41%) was observed when katG codon 315 coexisted with the mutation at codon 463. Since most of the observed mutations of all three genes coexisted with the katG315 mutation, screening of katG315 mutations will be a useful marker for molecular detection of INH resistance of MTb in Sri Lanka.

  19. Severe Clinical Course in a Patient with Congenital Amegakaryocytic Thrombocytopenia Due to a Missense Mutation of the c-MPL Gene.

    Science.gov (United States)

    Ok Bozkaya, İkbal; Yaralı, Neşe; Işık, Pamir; Ünsal Saç, Rukiye; Tavil, Betül; Tunç, Bahattin

    2015-06-01

    Congenital amegakaryocytic thrombocytopenia (CAMT) generally begins at birth with severe thrombocytopenia and progresses to pancytopenia. It is caused by mutations in the thrombopoietin receptor gene, the myeloproliferative leukemia virus oncogene (c-MPL). The association between CAMT and c-MPL mutation type has been reported in the literature. Patients with CAMT have been categorized according to their clinical symptoms caused by different mutations. Missense mutations of c-MPL have been classified as type II and these patients have delayed onset of bone marrow failure compared to type I patients. Here we present a girl with severe clinical course of CAMT II having a missense mutation in exon 4 of the c-MPL gene who was admitted to our hospital with intracranial hemorrhage during the newborn period.

  20. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  1. Mitochondrial DNA mutation load in a family with the m.8344A>G point mutation and lipomas

    DEFF Research Database (Denmark)

    Jeppesen, Tina Dysgaard; Al-Hashimi, Noor; Duno, Morten

    2017-01-01

    Studies have shown that difference in mtDNA mutation load among tissues is a result of postnatal modification. We present five family members with the m.8344A>G with variable phenotypes but uniform intrapersonal distribution of mutation load, indicating that there is no postnatal modification of mt......DNA mutation load in this genotype....

  2. The point mutation process in proteins

    Science.gov (United States)

    Schwartz, R. M.; Dayhoff, M. O.

    1978-01-01

    An optimized scoring matrix for residue-by-residue comparisons of distantly related protein sequences has been developed. The scoring matrix is based on observed exchanges and mutabilities of amino acids in 1572 closely related sequences derived from a cross-section of protein groups. Very few superimposed or parallel mutations are included in the data. The scoring matrix is most useful for demonstrating the relatedness of proteins between 65 and 85% different.

  3. Phase I dose-escalation study of the c-Met tyrosine kinase inhibitor SAR125844 in Asian patients with advanced solid tumors, including patients with MET-amplified gastric cancer.

    Science.gov (United States)

    Shitara, Kohei; Kim, Tae Min; Yokota, Tomoya; Goto, Masahiro; Satoh, Taroh; Ahn, Jin-Hee; Kim, Hyo Song; Assadourian, Sylvie; Gomez, Corinne; Harnois, Marzia; Hamauchi, Satoshi; Kudo, Toshihiro; Doi, Toshihido; Bang, Yung-Jue

    2017-10-03

    SAR125844 is a potent and selective inhibitor of the c-Met kinase receptor. This was an open-label, phase I, multicenter, dose-escalation, and dose-expansion trial of SAR125844 in Asian patients with solid tumors, a subgroup of whom had gastric cancer and MET amplification (NCT01657214). SAR125844 was administered by intravenous infusion (260-570 mg/m 2 ) on days 1, 8, 15, and 22 of each 28-day cycle. Objectives were to determine the maximum tolerated dose (MTD) and to evaluate SAR125844 safety and pharmacokinetic profile. Antitumor activity was also assessed. Of 38 patients enrolled (median age 64.0 years), 22 had gastric cancer, including 14 with MET amplification. In the dose-escalation cohort ( N = 19; unselected population, including three patients with MET -amplification [two with gastric cancer and one with lung cancer]), the MTD was not reached, and the recommended dose was established at 570 mg/m 2 . Most frequent treatment-emergent adverse events (AEs) were nausea (36.8%), vomiting (34.2%), decreased appetite (28.9%), and fatigue or asthenia, constipation, and abdominal pains (each 21.1%); none appeared to be dose-dependent. Grade ≥ 3 AEs were observed in 39.5% of patients and considered drug-related in 7.9%. SAR125844 exposure increased slightly more than expected by dose proportionality; dose had no significant effect on clearance. No objective responses were observed in the dose-escalation cohort, with seven patients (three gastric cancer, two colorectal cancer, one breast cancer, and one with cancer of unknown primary origin) having stable disease. Modest antitumor activity was observed at 570 mg/m 2 in the dose-expansion cohort, comprising patients with MET -amplified tumors ( N = 19). Two gastric cancer patients had partial responses, seven patients had stable disease (six gastric cancer and one kidney cancer), and 10 patients had progressive disease. Single-agent SAR125844 administered up to 570 mg/m 2 has acceptable tolerability and modest

  4. Modified Proofreading PCR for Detection of Point Mutations, Insertions and Deletions Using a ddNTP-Blocked Primer

    Science.gov (United States)

    Chen, Qianqian; Chen, Xiaoxiang; Zhang, Sichao; Lan, Ke; Lu, Jian; Zhang, Chiyu

    2015-01-01

    The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR) was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3'-5' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels), and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3'-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach. PMID:25915410

  5. Accuracy of three hemoglobin A1c point-of-care systems for glucose monitoring in patients with diabetes mellitus.

    Science.gov (United States)

    Torregrosa, María-Eugenia; Molina, Juan; Argente, Carlos R; Ena, Javier

    2015-12-01

    Use of hemoglobin A1c point-of-care devices in physician offices provides immediate results and reduces inconveniences for the patients. We compared the analytical performances of 3 point-of-care HbA1c analyzers to high pressure liquid chromatography (HPLC). We preselected a pool of 40 EDTA-preserved whole blood samples from our laboratory with HbA1c results obtained by HPLC (mean 6.6% [49 mmol/mol] and range: 4.6-9.9% [27-87 mmol/mol]). Aliquots of theses samples were tested by Afinion AS100, DCA Vantage and In2it point-of-care systems. According the Clinical Laboratory Standards Institute EP-09 protocol we determined linearity (linear regression and correlation coefficient between point-of-care and reference methods), bias (Bland-Altman analysis) and coefficient of variation (%). We used the acceptability criteria endorsed by the National Glycohemoglobin Standardization Program. The calculated correlation coefficients (r) were 0.98, 0.98 and 0.83 for Afinion AS100, DCA Vantage and In2it systems, respectively. The 95% confidence interval of the error between point-of-care systems and the reference method was -0.41% and +0.34% (p =.22) for Afinion AS100, -0.62% and +0.05% (p =.57) for DCA Vantage, and -1.15% and +1.26% (p<.001) for the In2it. The coefficients of variation for Afinion AS100, DCA Vantage and In2it systems were 1.80, 3.74 and 7.14%, respectively. Only the Afinion AS100 point-of-care system met all NGSP performance criteria. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  6. Analogía y metáfora en el análisis organizacional. Un ejemplo: la organización como cárcel

    Directory of Open Access Journals (Sweden)

    Jairo E. Carrillo G.

    2003-01-01

    Full Text Available Este ensayo busca mostrar cómo la analogía y la metáfora constituyen recursos metodológicos adecuados para describir y comprender aspectos centrales de la dinámica organizacional, no accesibles por otros métodos. Como ilustración se hará énfasis en la metáfora que asocia las organizaciones con el concepto de prisión psíquica o cárcel virtual

  7. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    Science.gov (United States)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  8. A novel nonsense mutation in cathepsin C gene in an Egyptian ...

    African Journals Online (AJOL)

    Hala Soliman

    2015-04-22

    Apr 22, 2015 ... as defects of phagocytic function and deregulation of localized ... Aim: The aim of this study is to detect the mutation in CTSC gene expected to be the ..... [20] Toomes C, James J, Wood AJ, McCormick D, Lench N, Hewitt.

  9. A new variation in the promoter region, the -604 C>T, and the Leu72Met polymorphism of the ghrelin gene are associated with protection to insulin resistance.

    Science.gov (United States)

    Zavarella, S; Petrone, A; Zampetti, S; Gueorguiev, M; Spoletini, M; Mein, C A; Leto, G; Korbonits, M; Buzzetti, R

    2008-04-01

    Previous studies suggested that polymorphisms in the coding region of the preproghrelin were involved in the etiology of obesity and might modulate glucose-induced insulin secretion. We evaluated the association of a new variation, -604C>T, in the promoter region of the ghrelin gene, of Leu72Met (247C>A) and of Gln90Leu (265A>T), all haplotype-tagging single nucleotide polymorphisms (SNPs), with measures of insulin sensitivity in 1420 adult individuals. The three SNPs were genotyped using ABI PRISM 7900 HT Sequence Detection System. We used multiple linear regression analysis for quantitative traits and THESIAS software for haplotype analysis. We observed a protective effect exerted by Met72 variant of Leu72Met SNP on insulin resistance parameters; a significant decreasing trend from Leu/Leu to Leu/Met and to Met/Met homozygous subjects in triglycerides, fasting insulin levels and HOMA-IR index (P=0.02, 0.01 and 0.003, respectively), and, consistently, an increase in ghrelin levels (P=0.003) was found. A significant decrease from CC to TC and to TT genotypes in insulin levels and HOMA-IR index was also detected (P=0.00l for both), but only in subjects homozygous for Leu72, where the protective effect of Met72 was not present. The haplotype analysis results supported the data obtained by the evaluation of each single SNP, showing the highest value of insulin levels and HOMA-IR index in the -604(c)247(c) haplotype intermediate value in -604(T)247(C) and lowest value in -604(C)247(A). Our observations suggest a protective role of the Met72 variant and of -604 T allele in modulating insulin resistance. These SNPs or an unknown functional variant in linkage disequilibrium could increase ghrelin levels and probably insulin sensitivity.

  10. Frequent topoisomerase IV mutations associated with fluoroquinolone resistance in Ureaplasma species.

    Science.gov (United States)

    Song, Jingjuan; Qiao, Yingli; Kong, Yingying; Ruan, Zhi; Huang, Jun; Song, Tiejun; Zhang, Jun; Xie, Xinyou

    2015-11-01

    This study aimed to investigate the role of quinolone resistance-determining regions (QRDRs) of DNA gyrase (encoded by gyrA and gyrB) and topoisomerase IV (encoded by parC and parE) associated with fluoroquinolone resistance. A total of 114 Ureaplasma spp. strains, isolated from clinical female patients with symptomatic infection, were tested for species distribution and susceptibility to four fluoroquinolones. Moreover, we analysed the QRDRs and compared these with 14 ATCC reference strains of Ureaplasma spp. serovars to identify mutations that caused antimicrobial resistance. Our study indicated that moxifloxacin was the most effective fluoroquinolone against Ureaplasma spp. (MIC range: 0.125-32 μg ml⁻¹). However, extremely high MICs were estimated for ciprofloxacin (MIC range: 1-256 μg ml⁻¹) and ofloxacin (MIC range: 0.5-128 μg ml⁻¹), followed by levofloxacin (MIC range: 0.5-64 μg ml⁻¹). Seven amino acid substitutions were discovered in GyrB, ParC and ParE, but not in GyrA. Ser-83 → Leu/Trp (C248T/G) in ParC and Arg-448 → Lys (G1343A) in ParE, which were potentially responsible for fluoroquinolone resistance, were observed in 89 (77.2 %) and three (2.6 %) strains, respectively. Pro-462 → Ser (C1384T), Asn-481 → Ser (A1442G) and Ala-493 → Val (C1478T) in GyrB and Met-105 → Ile (G315T) in ParC seemed to be neutral polymorphisms, and were observed and occurred along with the amino acid change of Ser-83 → Leu (C248T) in ParC. Interestingly, two novel mutations of ParC and ParE were independently found in four strains. These observations suggest that amino acid mutation in topoisomerase IV appears to be the leading cause of fluoroquinolone resistance, especially the mutation of Ser-83 → Leu (C248T) in ParC. Moxifloxacin had the best activity against strains with Ser-83 → Leu mutation.

  11. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

    Directory of Open Access Journals (Sweden)

    Alison A Williams

    Full Text Available Methyl-CpG binding protein 2 (MeCP2 is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X, a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80 and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2.

  12. A genomic point mutation in the extracellular domain of the thyrotropin receptor in patients with Graves` ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, R.S.; Dutton, C.M.; Heufelder, A.E.; Sarkar, G. [Mayo Clinic/Foundation, Rochester, MN (United States)]|[Ludwig-Maximilians-Universitat, Munich (Germany)

    1994-02-01

    Orbital and pretibial fibroblasts are targets of autoimmune attack in Graves` ophthalmopathy (GO) and pretibial dermopathy (PTD). The fibroblast autoantigen involved in these peripheral manifestations of Graves` disease and the reason for the association of GO and PTD with hyperthyroidism are unknown. RNA encoding the full-length extracellular domain of the TSH receptor has been demonstrated in orbital and dermal fibroblasts from patients with GO and normal subjects, suggesting a possible antigenic link between fibroblasts and thyrocytes. RNA was isolated from cultured orbital, pretibial, and abdominal fibroblasts obtained from patients with severe GO (n = 22) and normal subjects (n = 5). RNA was reverse transcribed, and the resulting cDNA was amplified by the polymerase chain reaction, using primers spanning overlapping regions of the entire extracellular domain of the TSH receptor. Nucleotide sequence analysis showed an A for C substitution in the first position of codon 52 in 2 of the patients, both of whom had GO, PTD, and acropachy. Genomic DNA isolated from the 2 affected patients, and not from an additional 12 normal subjects, revealed the codon 52 mutation by direct sequencing and AciI restriction enzyme digestions. In conclusion, the authors have demonstrated the presence of a genomic point mutation, leading to a threonine for proline amino acid shift in the predicted peptide, in the extracellular domain of the TSH receptor in two patients with severe GO, PTD, acropachy, and high thyroid-stimulating immunoglobulin levels. RNA encoding this mutant product was demonstrated in the fibroblasts of these patients. They suggest that the TSH receptor may be an important fibroblast autoantigen in GO and PTD, and that this mutant form of the receptor may have unique immunogenic properties. 28 refs., 3 figs., 2 tabs.

  13. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

    Directory of Open Access Journals (Sweden)

    Lijuan He

    Full Text Available Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.

  14. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

    Science.gov (United States)

    He, Lijuan; Serrano, Christopher; Niphadkar, Nitish; Shobnam, Nadia; Hristova, Kalina

    2012-01-01

    Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.

  15. Stepwise Exposure of Staphylococcus aureus to Pleuromutilins Is Associated with Stepwise Acquisition of Mutations in rplC and Minimally Affects Susceptibility to Retapamulin▿

    Science.gov (United States)

    Gentry, Daniel R.; Rittenhouse, Stephen F.; McCloskey, Lynn; Holmes, David J.

    2007-01-01

    To assess their effects on susceptibility to retapamulin in Staphylococcus aureus, first-, second-, and third-step mutants with elevated MICs to tiamulin and other investigational pleuromutilin compounds were isolated and characterized through exposure to high drug concentrations. All first- and second-step mutations were in rplC, encoding ribosomal protein L3. Most third-step mutants acquired a third mutation in rplC. While first- and second-step mutations did cause an elevation in tiamulin and retapamulin MICs, a significant decrease in activity was not seen until a third mutation was acquired. All third-step mutants exhibited severe growth defects, and faster-growing variants arose at a high frequency from most isolates. These faster-growing variants were found to be more susceptible to pleuromutilins. In the case of a mutant with three alterations in rplC, the fast-growing variants acquired an additional mutation in rplC. In the case of fast-growing variants of isolates with two mutations in rplC and at least one mutation at an unmapped locus, one of the two rplC mutations reverted to wild type. These data indicate that mutations in rplC that lead to pleuromutilin resistance have a direct, negative effect on fitness. While reduction in activity of retapamulin against S. aureus can be seen through mutations in rplC, it is likely that target-specific resistance to retapamulin will be slow to emerge due to the need for three mutations for a significant effect on activity and the fitness cost of each mutational step. PMID:17404009

  16. A new point mutation in the iron-sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorum.

    Science.gov (United States)

    Wang, Yong; Duan, Yabing; Wang, Jianxin; Zhou, Mingguo

    2015-09-01

    Research has established that mutations in highly conserved amino acids of the succinate dehydrogenase (SDH) complex in various fungi confer SDH inhibitor (SDHI) resistance. For Sclerotinia sclerotiorum (Lib.) de Bary, a necrotrophic fungus with a broad host range and a worldwide distribution, boscalid resistance has been attributed to the mutation H132R in the highly conserved SdhD subunit protein of the SDH complex. In our previous study, however, only one point mutation, A11V in SdhB (GCA to GTA change in SdhB), was detected in S. sclerotiorum boscalid-resistant (BR) mutants. In the current study, replacement of the SdhB gene in a boscalid-sensitive (BS) S. sclerotiorum strain with the mutant SdhB gene conferred resistance. Compared with wild-type strains, BR and GSM (SdhB gene in the wild-type strain replaced by the mutant SdhB gene) mutants were more sensitive to osmotic stress, lacked the ability to produce sclerotia and exhibited lower expression of the pac1 gene. Importantly, the point mutation was not located in the highly conserved sequence of the iron-sulfur subunit of SDH. These results suggest that resistance based on non-conserved vs. conserved protein domains differs in mechanism. In addition to increasing our understanding of boscalid resistance in S. sclerotiorum, the new information will be useful for the development of alternative antifungal drugs. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  17. Kinetics of gene and chromosome mutations induced by UV-C in yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Koltovaya, N.; Kokoreva, A.; Senchenko, D.; Shvaneva, N.; Zhuchkina, N.

    2017-01-01

    The systematic study of the kinetics of UV-induced gene and structural mutations in eukaryotic cells was carried out on the basis of model yeast S. cerevisiae. A variety of genetic assays (all types of base pair substitutions, frameshifts, forward mutations canl, chromosomal and plasmid rearrangements) in haploid strains were used. Yeast cells were treated by UV-C light of fluence of energy up to 200 J/m"2. The kinetics of the induced gene and structural mutations is represented by a linear-quadratic and exponential functions. The slope of curves in log-log plots was not constant, had the value 2-4 and depended on the interval of doses. It was suggested that it is the superposition and dynamics of different pathways form the mutagenic responses of eukaryotic cells to UV-C light that cause the high-order curves. [ru

  18. Sensitivity of the ViroSeq HIV-1 Genotyping System for Detection of the K103N Resistance Mutation in HIV-1 Subtypes A, C, and D

    Science.gov (United States)

    Church, Jessica D.; Jones, Dana; Flys, Tamara; Hoover, Donald; Marlowe, Natalia; Chen, Shu; Shi, Chanjuan; Eshleman, James R.; Guay, Laura A.; Jackson, J. Brooks; Kumwenda, Newton; Taha, Taha E.; Eshleman, Susan H.

    2006-01-01

    The US Food and Drug Administration-cleared ViroSeq HIV-1 Genotyping System (ViroSeq) and other population sequencing-based human immunodeficiency virus type 1 (HIV-1) genotyping methods detect antiretroviral drug resistance mutations present in the major viral population of a test sample. These assays also detect some mutations in viral variants that are present as mixtures. We compared detection of the K103N nevirapine resistance mutation using ViroSeq and a sensitive, quantitative point mutation assay, LigAmp. The LigAmp assay measured the percentage of K103N-containing variants in the viral population (percentage of K103N). We analyzed 305 samples with HIV-1 subtypes A, C, and D collected from African women after nevirapine administration. ViroSeq detected K103N in 100% of samples with >20% K103N, 77.8% of samples with 10 to 20% K103N, 71.4% of samples with 5 to 10% K103N, and 16.9% of samples with 1 to 5% K103N. The sensitivity of ViroSeq for detection of K103N was similar for subtypes A, C, and D. These data indicate that the ViroSeq system reliably detects the K103N mutation at levels above 20% and frequently detects the mutation at lower levels. Further studies are needed to compare the sensitivity of different assays for detection of HIV-1 drug resistance mutations and to determine the clinical relevance of HIV-1 minority variants. PMID:16931582

  19. Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase.

    Science.gov (United States)

    Mashhadi, Zahra; Boeglin, William E; Brash, Alan R

    2014-11-01

    True catalases efficiently breakdown hydrogen peroxide, whereas the catalase-related enzyme allene oxide synthase (cAOS) is completely unreactive and instead metabolizes a fatty acid hydroperoxide. In cAOS a Thr residue adjacent to the distal His restrains reaction with H2O2 (Tosha et al. (2006) J. Biol. Chem. 281:12610; De Luna et al. (2013) J. Phys. Chem. B 117: 14635) and its mutation to the consensus Val of true catalases permits the interaction. Here we investigated the effects of the reciprocal experiment in which the Val74 of human catalase is mutated to Thr, Ser, Met, Pro, or Ala. The Val74Thr substitution decreased catalatic activity by 3.5-fold and peroxidatic activity by 3-fold. Substitution with Ser had similar negative effects (5- and 3-fold decreases). Met decreased catalatic activity 2-fold and eliminated peroxidatic activity altogether, whereas the Val74Ala substitution was well tolerated. (The Val74Pro protein lacked heme). We conclude that the conserved Val74 of true catalases helps optimize catalysis. There are rare substitutions of Val74 with Ala, Met, or Pro, but not with Ser of Thr, possibly due their hydrogen bonding affecting the conformation of His75, the essential distal heme residue for activity in catalases. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  20. High prevalence of exon 8 G533C mutation in apparently sporadic medullary thyroid carcinoma in Greece.

    Science.gov (United States)

    Sarika, H L; Papathoma, A; Garofalaki, M; Vasileiou, V; Vlassopoulou, B; Anastasiou, E; Alevizaki, M

    2012-12-01

    Genetic screening for ret mutation has become routine practice in the evaluation of medullary thyroid carcinoma (MTC). Approximately 25% of these tumours are familial, and they occur as components of the multiple endocrine neoplasia type 2 syndromes (MEN 2A and 2B) or familial MTC. In familial cases, the majority of mutations are found in exons 10, 11, 13, 14 or 15 of the ret gene. A rare mutation involving exon 8 (G533C) has recently been reported in familial cases of MTC in Brazil and Greece; some of these cases were originally thought to be sporadic. The aim of this study was to re-evaluate a series of sporadic cases of MTC, with negative family history, and screen them for germline mutations in exon 8. Genomic DNA was extracted from peripheral lymphocytes in 129 unrelated individuals who had previously been characterized as 'sporadic' based on the negative family history and negative screening for ret gene mutations. Samples were analysed in Applied Biosystems 7500 real-time PCR and confirmed by sequencing. The G533C exon 8 mutation was identified in 10 of 129 patients with sporadic MTC. Asymptomatic gene carriers were subsequently identified in other family members. In our study, we found that 7·75% patients with apparently sporadic MTC do carry G533C mutation involving exon 8 of ret. We feel that there is now a need to include exon 8 mutation screening in all patients diagnosed as sporadic MTC, in Greece. © 2012 Blackwell Publishing Ltd.

  1. Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.

    Science.gov (United States)

    Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei

    2009-06-26

    Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.

  2. Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19.

    Science.gov (United States)

    Park, Min Ju; Shen, Hailian; Spaeth, Jason M; Tolvanen, Jaana H; Failor, Courtney; Knudtson, Jennifer F; McLaughlin, Jessica; Halder, Sunil K; Yang, Qiwei; Bulun, Serdar E; Al-Hendy, Ayman; Schenken, Robert S; Aaltonen, Lauri A; Boyer, Thomas G

    2018-03-30

    Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at high frequency in uterine fibroids (UFs) and breast fibroepithelial tumors as well as recurrently, albeit less frequently, in malignant uterine leimyosarcomas, chronic lymphocytic leukemias, and colorectal cancers. Previously, we reported that UF-linked mutations in MED12 disrupt its ability to activate cyclin C (CycC)-dependent kinase 8 (CDK8) in Mediator, implicating impaired Mediator-associated CDK8 activity in the molecular pathogenesis of these clinically significant lesions. Notably, the CDK8 paralog CDK19 is also expressed in myometrium, and both CDK8 and CDK19 assemble into Mediator in a mutually exclusive manner, suggesting that CDK19 activity may also be germane to the pathogenesis of MED12 mutation-induced UFs. However, whether and how UF-linked mutations in MED12 affect CDK19 activation is unknown. Herein, we show that MED12 allosterically activates CDK19 and that UF-linked exon 2 mutations in MED12 disrupt its CDK19 stimulatory activity. Furthermore, we find that within the Mediator kinase module, MED13 directly binds to the MED12 C terminus, thereby suppressing an apparent UF mutation-induced conformational change in MED12 that otherwise disrupts its association with CycC-CDK8/19. Thus, in the presence of MED13, mutant MED12 can bind, but cannot activate, CycC-CDK8/19. These findings indicate that MED12 binding is necessary but not sufficient for CycC-CDK8/19 activation and reveal an additional step in the MED12-dependent activation process, one critically dependent on MED12 residues altered by UF-linked exon 2 mutations. These findings confirm that UF-linked mutations in MED12 disrupt composite Mediator-associated kinase activity and identify CDK8/19 as prospective therapeutic targets in UFs. © 2018 Park et al.

  3. Towards trans-diagnostic mechanisms in psychiatry: neurobehavioral profile of rats with a loss-of-function point mutation in the dopamine transporter gene.

    Science.gov (United States)

    Vengeliene, Valentina; Bespalov, Anton; Roßmanith, Martin; Horschitz, Sandra; Berger, Stefan; Relo, Ana L; Noori, Hamid R; Schneider, Peggy; Enkel, Thomas; Bartsch, Dusan; Schneider, Miriam; Behl, Berthold; Hansson, Anita C; Schloss, Patrick; Spanagel, Rainer

    2017-04-01

    The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene ( Slc6a3 _N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3 _N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity. © 2017. Published by The Company of Biologists Ltd.

  4. Common mutations of hepatitis B virus and their clinical significance

    Directory of Open Access Journals (Sweden)

    HU Airong

    2016-06-01

    Full Text Available Hepatitis B virus (HBV tends to mutate easily due to its special structure and life cycle. Mutation changes the biological behavior of HBV and its sensitivity to antiviral drugs and even affects therapeutic effect and accelerate disease progression. The point mutations are commonly see in the pre-S/S open reading frame (ORF, which may be associated with immune escape and occult HBV infection. The G1896A mutation is often observed in the pre-C/C-ORF and is associated with the development of HBeAg-negative chronic hepatitis B (CHB, hepatocellular carcinoma (HCC, and severe chronic hepatitis (liver failure. The mutations in P-ORF mainly occur in the reverse transcriptase (RT domain and are closely related to the resistance to nucleos(tide analogues. The A1762T and G1764A mutations occur in the basal core promoter (BCP, which overlaps with X-ORF, and may be associated with HBeAg-negative CHB, HCC, and severe chronic hepatitis (liver failure. Clarification of the association between these mutations and diseases helps to develop tailor-made diagnostic and therapeutic regimens for patients with HBV infection.

  5. Combined exposure to X-irradiation followed by N-ethyl-N-nitrosourea treatment alters the frequency and spectrum of Ikaros point mutations in murine T-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kakinuma, Shizuko, E-mail: skakinum@nirs.go.jp [Radiobiology for Children' s Health Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nishimura, Mayumi; Amasaki, Yoshiko; Takada, Mayumi; Yamauchi, Kazumi; Sudo, Satomi; Shang, Yi [Radiobiology for Children' s Health Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Doi, Kazutaka; Yoshinaga, Shinji [Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shimada, Yoshiya [Radiobiology for Children' s Health Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2012-09-01

    Ionizing radiation is a well-known carcinogen, but its potency may be influenced by other environmental carcinogens, which is of practical importance in the assessment of risk. Data are scarce, however, on the combined effect of radiation with other environmental carcinogens and the underlying mechanisms involved. We studied the mode and mechanism of the carcinogenic effect of radiation in combination with N-ethyl-N-nitrosourea (ENU) using doses approximately equal to the corresponding thresholds. B6C3F1 mice exposed to fractionated X-irradiation (Kaplan's method) followed by ENU developed T-cell lymphomas in a dose-dependent manner. Radiation doses above an apparent threshold acted synergistically with ENU to promote lymphoma development, whereas radiation doses below that threshold antagonized lymphoma development. Ikaros, which regulates the commitment and differentiation of lymphoid lineage cells, is a critical tumor suppressor gene frequently altered in both human and mouse lymphomas and shows distinct mutation spectra between X-ray- and ENU-induced lymphomas. In the synergistically induced lymphomas, we observed a low frequency of LOH and an inordinate increase of Ikaros base substitutions characteristic of ENU-indcued point mutations, G:C to A:T at non-CpG, A:T to G:C, G:C to T:A and A:T to T:A. This suggests that radiation doses above an apparent threshold activate the ENU mutagenic pathway. This is the first report on the carcinogenic mechanism elicited by combined exposure to carcinogens below and above threshold doses based on the mutation spectrum of the causative gene. These findings constitute a basis for assessing human cancer risk following exposure to multiple carcinogens.

  6. Screening of point mutations by multiple SSCP analysis in the dystrophin gene

    Energy Technology Data Exchange (ETDEWEB)

    Lasa, A.; Baiget, M.; Gallano, P. [Hospital Sant Pau, Barcelona (Spain)

    1994-09-01

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder. The population frequency of DMD is one in approximately 3500 boys, of which one third is thought to be a new mutant. The DMD gene is the largest known to date, spanning over 2,3 Mb in band Xp21.2; 79 exons are transcribed into a 14 Kb mRNA coding for a protein of 427 kD which has been named dystrophin. It has been shown that about 65% of affected boys have a gene deletion with a wide variation in localization and size. The remaining affected individuals who have no detectable deletions or duplications would probably carry more subtle mutations that are difficult to detect. These mutations occur in several different exons and seem to be unique to single patients. Their identification represents a formidable goal because of the large size and complexity of the dystrophin gene. SSCP is a very efficient method for the detection of point mutations if the parameters that affect the separation of the strands are optimized for a particular DNA fragment. The multiple SSCP allows the simultaneous study of several exons, and implies the use of different conditions because no single set of conditions will be optimal for all fragments. Seventy-eight DMD patients with no deletion or duplication in the dystrophin gene were selected for the multiple SSCP analysis. Genomic DNA from these patients was amplified using the primers described for the diagnosis procedure (muscle promoter and exons 3, 8, 12, 16, 17, 19, 32, 45, 48 and 51). We have observed different mobility shifts in bands corresponding to exons 8, 12, 43 and 51. In exons 17 and 45, altered electrophoretic patterns were found in different samples identifying polymorphisms already described.

  7. Two novel exonic point mutations in HEXA identified in a juvenile Tay-Sachs patient: role of alternative splicing and nonsense-mediated mRNA decay.

    Science.gov (United States)

    Levit, A; Nutman, D; Osher, E; Kamhi, E; Navon, R

    2010-06-01

    We have identified three mutations in the beta-hexoseaminidase A (HEXA) gene in a juvenile Tay-Sachs disease (TSD) patient, which exhibited a reduced level of HEXA mRNA. Two mutations are novel, c.814G>A (p.Gly272Arg) and c.1305C>T (p.=), located in exon 8 and in exon 11, respectively. The third mutation, c.1195A>G (p.Asn399Asp) in exon 11, has been previously characterized as a common polymorphism in African-Americans. Hex A activity measured in TSD Glial cells, transfected with HEXA cDNA constructs bearing these mutations, was unaltered from the activity level measured in normal HEXA cDNA. Analysis of RT-PCR products revealed three aberrant transcripts in the patient, one where exon 8 was absent, one where exon 11 was absent and a third lacking both exons 10 and 11. All three novel transcripts contain frameshifts resulting in premature termination codons (PTCs). Transfection of mini-gene constructs carrying the c.814G>A and c.1305C>T mutations proved that the two mutations result in exon skipping. mRNAs that harbor a PTC are detected and degraded by the nonsense-mediated mRNA decay (NMD) pathway to prevent synthesis of abnormal proteins. However, although NMD is functional in the patient's fibroblasts, aberrant transcripts are still present. We suggest that the level of correctly spliced transcripts as well as the efficiency in which NMD degrade the PTC-containing transcripts, apparently plays an important role in the phenotype severity of the unique patient and thus should be considered as a potential target for drug therapy.

  8. Hereditary spastic paraplegia type 43 (SPG43) is caused by mutation in C19orf12

    Science.gov (United States)

    Landouré, Guida; Zhu, Peng-Peng; Lourenço, Charles M.; Johnson, Janel O.; Toro, Camilo; Bricceno, Katherine V.; Rinaldi, Carlo; Meilleur, Katherine G.; Sangaré, Modibo; Diallo, Oumarou; Pierson, Tyler M.; Ishiura, Hiroyuki; Tsuji, Shoji; Hein, Nichole; Fink, John K.; Stoll, Marion; Nicholson, Garth; Gonzalez, Michael; Speziani, Fiorella; Dürr, Alexandra; Stevanin, Giovanni; Biesecker, Leslie G.; Accardi, John; Landis, Dennis M. D.; Gahl, William A.; Traynor, Bryan J.; Marques, Wilson; Züchner, Stephan; Blackstone, Craig; Fischbeck, Kenneth H.; Burnett, Barrington G.

    2013-01-01

    We report here the genetic basis for a form of progressive hereditary spastic paraplegia (SPG43) previously described in two Malian sisters. Exome sequencing revealed a homozygous missense variant (c.187G>C; p.Ala63Pro) in C19orf12, a gene recently implicated in neurodegeneration with brain iron accumulation (NBIA). The same mutation was subsequently also found in a Brazilian family with features of NBIA, and we identified another NBIA patient with a three-nucleotide deletion (c.197_199del; p.Gly66del). Haplotype analysis revealed that the p.Ala63Pro mutations have a common origin, but MRI scans showed no brain iron deposition in the Malian SPG43 subjects. Heterologous expression of these SPG43 and NBIA variants resulted in similar alterations in the subcellular distribution of C19orf12. The SPG43 and NBIA variants reported here as well as the most common C19orf12 missense mutation reported in NBIA patients are found within a highly-conserved, extended hydrophobic domain in C19orf12, underscoring the functional importance of this domain. PMID:23857908

  9. Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury.

    Science.gov (United States)

    Trapp, Thorsten; Kögler, Gesine; El-Khattouti, Abdelouahid; Sorg, Rüdiger V; Besselmann, Michael; Föcking, Melanie; Bührle, Christian P; Trompeter, Ingo; Fischer, Johannes C; Wernet, Peter

    2008-11-21

    An under-agarose chemotaxis assay was used to investigate whether unrestricted somatic stem cells (USSC) that were recently characterized in human cord blood are attracted by neuronal injury in vitro. USSC migrated toward extracts of post-ischemic brain tissue of mice in which stroke had been induced. Moreover, apoptotic neurons secrete factors that strongly attracted USSC, whereas necrotic and healthy neurons did not. Investigating the expression of growth factors and chemokines in lesioned brain tissue and neurons and of their respective receptors in USSC revealed expression of hepatocyte growth factor (HGF) in post-ischemic brain and in apoptotic but not in necrotic neurons and of the HGF receptor c-MET in USSC. Neuronal lesion-triggered migration was observed in vitro and in vivo only when c-MET was expressed at a high level in USSC. Neutralization of the bioactivity of HGF with an antibody inhibited migration of USSC toward neuronal injury. This, together with the finding that human recombinant HGF attracts USSC, document that HGF signaling is necessary for the tropism of USSC for neuronal injury. Our data demonstrate that USSC have the capacity to migrate toward apoptotic neurons and injured brain. Together with their neural differentiation potential, this suggests a neuroregenerative potential of USSC. Moreover, we provide evidence for a hitherto unrecognized pivotal role of the HGF/c-MET axis in guiding stem cells toward brain injury, which may partly account for the capability of HGF to improve function in the diseased central nervous system.

  10. Somatic point mutation calling in low cellularity tumors.

    Directory of Open Access Journals (Sweden)

    Karin S Kassahn

    Full Text Available Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/ for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform.

  11. HFE Mutations C282Y and H63D in Iranian Population With Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Golchin

    2015-04-01

    Full Text Available Background Type 2 diabetes (T2D is a common metabolic disease caused by insulin secretion defects, which is associated with a variety of complications such as retinopathy, nephropathy, and neuropathy. Objectives Regarding the relationship between type 2 diabetes and hereditary chromatists, we conducted a genetic analysis on two previously reported mutations C282Y and H63D related to the HFE gene in our population. Patients and Methods Altogether, 145 patients with type 2 diabetes and 145 healthy controls were examined. A genotyping assay performed using electrophoresis of the DNA digestion products from MboI and RsaI for H63D and C282Y, respectively. Results Results showed a significant difference between case and controls regarding C282Y (P value < 0.001 and H63D genotypes (P value = 0.013. We also found a relationship between both mutations and nephropathy. Moreover, the difference between C282Y genotypes of patients with retinopathy and healthy controls were statistically significant (P value = 0.020 while there was no association between H63D and retinopathy. In addition, observed differences of both mutations were significant when nephropathic patients compared to the controls. Conclusions Our study showed a significant association between H63D and C282Y mutations and the risk of type 2 diabetes in Iranian population.

  12. Met kerse op met -konstruksies 1 : 'n Verwysingspuntperspektief ...

    African Journals Online (AJOL)

    Met kerse op met-konstruksies1: 'n Verwysingspuntperspektief. Johanna Messerschmidt, Luna Bergh. Abstract. This article analyses the usage of the Afrikaans preposition met ('with'). The analysis is done within the framework of Cognitive Linguistics and more specifically within the model proposed by Langacker (1993) ...

  13. c.1643_1644delTG XPC mutation is more frequent in Moroccan patients with xeroderma pigmentosum.

    Science.gov (United States)

    Senhaji, Mohamed Amine; Abidi, Omar; Nadifi, Sellama; Benchikhi, Hakima; Khadir, Khadija; Ben Rekaya, Mariem; Eloualid, Abdelmajid; Messaoud, Olfa; Abdelhak, Sonia; Barakat, Abdelhamid

    2013-01-01

    Xeroderma pigmentosum is a rare autosomal recessive disease characterized by hypersensitivity to UV light which is due to alterations of the nucleotide excision repair pathway. Eight genes (XPA to XPG and XPV) are responsible for the disease. Among them, the XPC gene is known to be the most mutated in Mediterranean patients. The aim of this study was to determine the frequency of the most common XPC mutation and describe the clinical features of Moroccan patients with xeroderma pigmentosum. Twenty four patients belonging to 21 unrelated Moroccan families and 58 healthy subjects were investigated. After clinical examination, the screening for the c.1643_1644delTG (p.Val548AlafsX25) mutation in the XPC gene was performed by PCR and automated sequencing of exon 9 in all patients and controls. The molecular analysis showed that among the 24 patients, 17 were homozygous for the c.1643_1644delTG mutation and all their tested parents were heterozygous, whereas the others (7 patients) did not carry the mutation. The frequency of this mutation was estimated to be 76.19 % (16/21 families). None of the 58 healthy individuals carried this mutation. In addition, clinical investigation showed that the majority of the patients bearing this mutation have the same clinical features. Our results revealed that the p.Val548AlafsX25 mutation is the major cause (76.19 %) of xeroderma pigmentosum in Moroccan families. This would have an important impact on improving management of patients and their relatives.

  14. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    Science.gov (United States)

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  15. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Science.gov (United States)

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  16. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Directory of Open Access Journals (Sweden)

    David Bednar

    2015-11-01

    Full Text Available There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  17. Hemochromatosis C282Y gene mutation as a potential susceptibility factor for iron-overload in Egyptian beta-thalassemia patients

    Directory of Open Access Journals (Sweden)

    G.M. Mokhtar

    2018-04-01

    Full Text Available Background: Hereditary hemochromatosis is the most frequent cause of primary iron overload that is associated with HFE gene’s mutation especially the C282Y mutation. The interaction between hemoglobin chain synthesis’ disorders and the C282Y mutation may worsen the clinical picture of beta-thalassemia major (β-TM. Aim: To establish the prevalence of the C282Y mutations in Egyptian β-TM patients and to address its adverse effects. Methods: Two-hundred and five β-TM patients were recruited and divided into two groups based on their serum ferritin (SF; group I (N = 125 (SF ≤ 2500 ng/dl and group II (N = 80 (SF > 2500 ng/dl. All patients were subjected to clinical and laboratory assessment with special emphasis on iron overload complications. Genotyping was assessed by polymerase chain reaction for detection of C282Y mutation in HFE gene. Results: The C282Y mutation was not detected in the studied β-TM neither in homozygous nor heterozygous state. There were several iron overload complications including cardiac complication (9.1%, liver disease (36.6%, delayed puberty (56.6%, primary (35.71% and secondary amenorrhea (21.42%, short stature (27.3%, diabetes (3.4%, neutropenia (9.7%, arthralgia (10.2%, gastrointestinal (21.1%, depression (2.9% and others (12.05%. Group I showed a statistically significant lower rate of taking iron-rich diet when compared to group II. Group II showed significant longer mean duration of disease, higher total transfusion rate per life, lower mean HbF% level, higher mean HbA% level, and higher rate of elevated liver enzymes than patients with SF ≤ 2500 ng/dl. Conclusion: The C282Y mutation was not detected in the studied cohort of Egyptian β-TM patients neither in homozygous nor heterozygous state in spite of manifestations of iron overload complications. Keywords: Beta-thalassemia major, Hereditary hemochromatosis, The C282Y mutation, Iron overload complications, Egyptian

  18. Safety of American Heart Association-recommended minimum exercise for desmosomal mutation carriers.

    Science.gov (United States)

    Sawant, Abhishek C; Te Riele, Anneline S J M; Tichnell, Crystal; Murray, Brittney; Bhonsale, Aditya; Tandri, Harikrishna; Judge, Daniel P; Calkins, Hugh; James, Cynthia A

    2016-01-01

    Endurance exercise is associated with adverse outcomes in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). Exercise recommendations for family members remain undetermined. The purposes of this study were to determine if (1) endurance exercise (Bethesda class C) and exercise intensity (metabolic equivalent hours per year [MET-Hr/year]) increase the likelihood of fulfilling 2010 Task Force Criteria and ventricular arrhythmias/implantable cardioverter-defibrillator shock (ventricular tachycardia/ventricular fibrillation [VT/VF]), and (2) exercise restriction to the American Heart Association (AHA)-recommended minimum for healthy adults is associated with favorable outcomes of at-risk family members. Twenty-eight family members of 10 probands inheriting a PKP2 mutation were interviewed about exercise from age 10. Exercise threshold to maintain overall health was based on the 2007 AHA guidelines of a minimum 390 to 650 MET-Hr/year. After adjustment for age, sex, and family membership, both participation in endurance athletics (odds ratio [OR] 7.4, P = .03) and higher-intensity exercise (OR = 4.2, P = .004) were associated with diagnosis (n = 13). Endurance athletes were also significantly more likely to develop VT/VF (n = 6, P = .02). Family members who restricted exercise at or below the upper bound of the AHA goal (≤650 MET-Hr/year) were significantly less likely to be diagnosed (OR = 0.07, P = .002) and had no VT/VF. At diagnosis and first VT/VF, family members had accumulated 2.8-fold (P = .002) and 3.5-fold (P = .03), respectively, greater MET-Hr exercise than the AHA-recommended minimum. Those who developed VT/VF had performed particularly high-intensity exercise in adolescence compared to unaffected family members (age 10-14: P = .04; age 14-19: P = .02). The results of this study suggest restricting unaffected desmosomal mutation carriers from endurance and high-intensity athletics but potentially not from AHA

  19. A Study Of Oral PF-02341066, A C-Met/Hepatocyte Growth Factor Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer

    Science.gov (United States)

    2018-01-29

    Non-Small Cell Lung Cancer ALK-positive; Non-Small Cell Lung Cancer c-Met Dependent; Non-Small Cell Lung Cancer ROS Marker Positive; Systemic Anaplastic Large-Cell Lymphoma; Advanced Malignancies Except Leukemia

  20. MetBaro - Pressure Device for Mars MetNet Lander

    Science.gov (United States)

    Haukka, Harri; Polkko, Jouni; Harri, Ari-Matti; Schmidt, Walter; Leinonen, Jussi; Genzer, Maria; Mäkinen, Teemu

    2010-05-01

    MetNet Mars Mission focused for Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetBaro is the pressure sensor of MetNet Lander designed to work on Martian surface. It is based on Barocap® technology developed by Vaisala, Inc. MetBaro is a capacitive type of sensing device where capasitor plates are moved by ambient pressure. MetBaro device consists of two pressure transducers including a total of 4 Barocap® sensor heads of high-stability and high-resolution types. The long-term stability of MetBaro is in order of 20…50 µBar and resolution a few µBar. MetBaro is small, lightweighed and has low power consumption. It weighs about 50g without wires and controlling FPGA, and consumes 15 mW of power. A similar device has successfully flown in Phoenix mission, where it performed months of measurements on Martian ground. Another device is also part of the Mars Science Laboratory REMS instrument (to be launched in 2011).

  1. Mutation Analysis in Classical Phenylketonuria Patients Followed by Detecting Haplotypes Linked to Some PAH Mutations.

    Science.gov (United States)

    Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B

    2017-02-01

    Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.

  2. POLR2C Mutations Are Associated With Primary Ovarian Insufficiency in Women.

    Science.gov (United States)

    Moriwaki, Mika; Moore, Barry; Mosbruger, Timothy; Neklason, Deborah W; Yandell, Mark; Jorde, Lynn B; Welt, Corrine K

    2017-03-01

    Primary ovarian insufficiency (POI) results from a premature loss of oocytes, causing infertility and early menopause. The etiology of POI remains unknown in a majority of cases. To identify candidate genes in families affected by POI. This was a family-based genetic study. The study was performed at two academic institutions. A family with four generations of women affected by POI (n = 5). Four of these women, three with an associated autoimmune diagnosis, were studied. The controls (n = 387) were recruited for health in old age. Whole-genome sequencing was performed. Candidate genes were identified by comparing gene mutations in three family members and 387 control subjects analyzed simultaneously using the pedigree Variant Annotation, Analysis and Search Tool. Data were also compared with that in publicly available databases. We identified a heterozygous nonsense mutation in a subunit of RNA polymerase II ( POLR2C ) that synthesizes messenger RNA. A rare sequence variant in POLR2C was also identified in one of 96 women with sporadic POI. POLR2C expression was decreased in the proband compared with women with POI from another cause. Knockdown in an embryonic carcinoma cell line resulted in decreased protein production and impaired cell proliferation. These data support a role for RNA polymerase II mutations as candidates in the etiology of POI. The current data also support results from genome-wide association studies that hypothesize a role for RNA polymerase II subunits in age at menopause in the population.

  3. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism.

    Science.gov (United States)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet; Kelsh, Robert N; Hansen, Lars; Levesque, Mitchell P; Vilhelmsen, Kaj; Møllgård, Kjeld; Stemple, Derek L; Rosenberg, Thomas

    2013-03-07

    Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2-q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Analysis of gyrA and parC mutations in enterococci from environmental samples with reduced susceptibility to ciprofloxacin

    DEFF Research Database (Denmark)

    Petersen, A.; Jensen, Lars Bogø

    2004-01-01

    The quinolone resistance determining regions of gyrA and parC in four species of enterococci from environmental samples with reduced susceptibility to ciprofloxacin were sequenced. The nucleotide sequence variations of parC could be related to the different enterococcal species. Mutations...... in Enterococcus faecalis and Enterococcus faecium related to reduced susceptibility were identical to mutations detected in E jaecalis and E. faecium of clinical origin. A minimal inhibitory concentration of 8 mug ml(-1) to ciprofloxacin was not associated with any mutations in the gyrA and parC gene...... of Enterococcus casseliflavus and Enterococcus gallinarum. These two species may be intrinsically less susceptible to ciprofloxacin....

  5. Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C virus

    DEFF Research Database (Denmark)

    Russell, Rodney S; Meunier, Jean-Christophe; Takikawa, Shingo

    2008-01-01

    mutations that were selected during serial passage in Huh-7.5 cells were studied. Recombinant genomes containing all five mutations produced 3-4 logs more infectious virions than did wild type. Neither a coding mutation in NS5A nor a silent mutation in E2 was adaptive, whereas coding mutations in E2, p7......The JFH1 strain of hepatitis C virus (HCV) is unique among HCV isolates, in that the wild-type virus can traverse the entire replication cycle in cultured cells. However, without adaptive mutations, only low levels of infectious virus are produced. In the present study, the effects of five...

  6. The Interplay of Population Size and Mutation Probability in the (1+λ) EA on OneMax

    DEFF Research Database (Denmark)

    Gießen, Christian; Witt, Carsten

    2017-01-01

    The ((Formula presented.)) EA with mutation probability c / n, where (Formula presented.) is an arbitrary constant, is studied for the classical OneMax function. Its expected optimization time is analyzed exactly (up to lower order terms) as a function of c and (Formula presented.). It turns out...... that 1 / n is the only optimal mutation probability if (Formula presented.), which is the cut-off point for linear speed-up. However, if (Formula presented.) is above this cut-off point then the standard mutation probability 1 / n is no longer the only optimal choice. Instead, the expected number...... of generations is (up to lower order terms) independent of c, irrespectively of it being less than 1 or greater. The theoretical results are obtained by a careful study of order statistics of the binomial distribution and variable drift theorems for upper and lower bounds. Experimental supplements shed light...

  7. Modeling the ferrochelatase c.315-48C modifier mutation for erythropoietic protoporphyria (EPP in mice

    Directory of Open Access Journals (Sweden)

    Jasmin Barman-Aksözen

    2017-03-01

    Full Text Available Erythropoietic protoporphyria (EPP is caused by deficiency of ferrochelatase (FECH, which incorporates iron into protoporphyrin IX (PPIX to form heme. Excitation of accumulated PPIX by light generates oxygen radicals that evoke excessive pain and, after longer light exposure, cause ulcerations in exposed skin areas of individuals with EPP. Moreover, ∼5% of the patients develop a liver dysfunction as a result of PPIX accumulation. Most patients (∼97% have a severe FECH mutation (Mut in trans to an intronic polymorphism (c.315-48C, which reduces ferrochelatase synthesis by stimulating the use of an aberrant 3′ splice site 63 nt upstream of the normal site for exon 4. In contrast, with the predominant c.315-48T allele, the correct splice site is mostly used, and individuals with a T/Mut genotype do not develop EPP symptoms. Thus, the C allele is a potential target for therapeutic approaches that modify this splicing decision. To provide a model for pre-clinical studies of such approaches, we engineered a mouse containing a partly humanized Fech gene with the c.315-48C polymorphism. F1 hybrids obtained by crossing these mice with another inbred line carrying a severe Fech mutation (named m1Pas show a very strong EPP phenotype that includes elevated PPIX in the blood, enlargement of liver and spleen, anemia, as well as strong pain reactions and skin lesions after a short period of light exposure. In addition to the expected use of the aberrant splice site, the mice also show a strong skipping of the partly humanized exon 3. This will limit the use of this model for certain applications and illustrates that engineering of a hybrid gene may have unforeseeable consequences on its splicing.

  8. The potential roles of hepatocyte growth factor (HGF-MET pathway inhibitors in cancer treatment

    Directory of Open Access Journals (Sweden)

    Parikh RA

    2014-06-01

    Full Text Available Rahul A Parikh,1 Peng Wang,2 Jan H Beumer,3 Edward Chu,1 Leonard J Appleman11Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; 2Division of Medical Oncology, University of Kentucky College of Medicine, Markey Cancer Center, Lexington, KY, USA; 3University of Pittsburgh School of Pharmacy, Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USAAbstract: MET is located on chromosome 7q31 and is a proto-oncogene that encodes for hepatocyte growth factor (HGF receptor, a member of the receptor tyrosine kinase (RTK family. HGF, also known as scatter factor (SF, is the only known ligand for MET. MET is a master regulator of cell growth and division (mitogenesis, mobility (motogenesis, and differentiation (morphogenesis; it plays an important role in normal development and tissue regeneration. The HGF-MET axis is frequently dysregulated in cancer by MET gene amplification, translocation, and mutation, or by MET or HGF protein overexpression. MET dysregulation is associated with an increased propensity for metastatic disease and poor overall prognosis across multiple tumor types. Targeting the dysregulated HGF-MET pathway is an area of active research; a number of monoclonal antibodies to HGF and MET, as well as small molecule inhibitors of MET, are under development. This review summarizes the key biological features of the HGF-MET axis, its dysregulation in cancer, and the therapeutic agents targeting the HGF-MET axis, which are in development.Keywords: MET inhibitor, HGF inhibitor, cancer

  9. Contribution of EGFR and ErbB-3 Heterodimerization to the EGFR Mutation-Induced Gefitinib- and Erlotinib-Resistance in Non-Small-Cell Lung Carcinoma Treatments.

    Directory of Open Access Journals (Sweden)

    Debby D Wang

    Full Text Available EGFR mutation-induced drug resistance has become a major threat to the treatment of non-small-cell lung carcinoma. Essentially, the resistance mechanism involves modifications of the intracellular signaling pathways. In our work, we separately investigated the EGFR and ErbB-3 heterodimerization, regarded as the origin of intracellular signaling pathways. On one hand, we combined the molecular interaction in EGFR heterodimerization with that between the EGFR tyrosine kinase and its inhibitor. For 168 clinical subjects, we characterized their corresponding EGFR mutations using molecular interactions, with three potential dimerization partners (ErbB-2, IGF-1R and c-Met of EGFR and two of its small molecule inhibitors (gefitinib and erlotinib. Based on molecular dynamics simulations and structural analysis, we modeled these mutant-partner or mutant-inhibitor interactions using binding free energy and its components. As a consequence, the mutant-partner interactions are amplified for mutants L858R and L858R_T790M, compared to the wild type EGFR. Mutant delL747_P753insS represents the largest difference between the mutant-IGF-1R interaction and the mutant-inhibitor interaction, which explains the shorter progression-free survival of an inhibitor to this mutant type. Besides, feature sets including different energy components were constructed, and efficient regression trees were applied to map these features to the progression-free survival of an inhibitor. On the other hand, we comparably examined the interactions between ErbB-3 and its partners (EGFR mutants, IGF-1R, ErbB-2 and c-Met. Compared to others, c-Met shows a remarkably-strong binding with ErbB-3, implying its significant role in regulating ErbB-3 signaling. Moreover, EGFR mutants corresponding to poor clinical outcomes, such as L858R_T790M, possess lower binding affinities with ErbB-3 than c-Met does. This may promote the communication between ErbB-3 and c-Met in these cancer cells. The

  10. Ancestral association between HLA and HFE H63D and C282Y gene mutations from northwest Colombia.

    Science.gov (United States)

    Rodriguez, Libia M; Giraldo, Mabel C; Velasquez, Laura I; Alvarez, Cristiam M; Garcia, Luis F; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2015-03-01

    A significant association between HFE gene mutations and the HLA-A*03-B*07 and HLA-A*29-B*44 haplotypes has been reported in the Spanish population. It has been proposed that these mutations are probably connected with Celtic and North African ancestry, respectively. We aimed to find the possible ancestral association between HLA alleles and haplotypes associated with the HFE gene (C282Y and H63D) mutations in 214 subjects from Antioquia, Colombia. These were 18 individuals with presumed hereditary hemochromatosis ("HH") and 196 controls. The HLA-B*07 allele was in linkage disequilibrium (LD) with C282Y, while HLA-A*23, A*29, HLA-B*44, and B*49 were in LD with H63D. Altogether, our results show that, although the H63D mutation is more common in the Antioquia population, it is not associated with any particular HLA haplotype, whereas the C282Y mutation is associated with HLA-A*03-B*07, this supporting a northern Spaniard ancestry.

  11. Ancestral association between HLA and HFE H63D and C282Y gene mutations from northwest Colombia

    Directory of Open Access Journals (Sweden)

    Libia M Rodriguez

    2015-03-01

    Full Text Available A significant association between HFE gene mutations and the HLA-A*03-B*07 and HLA-A*29-B*44 haplotypes has been reported in the Spanish population. It has been proposed that these mutations are probably connected with Celtic and North African ancestry, respectively. We aimed to find the possible ancestral association between HLA alleles and haplotypes associated with the HFE gene (C282Y and H63D mutations in 214 subjects from Antioquia, Colombia. These were 18 individuals with presumed hereditary hemochromatosis (“HH” and 196 controls. The HLA-B*07 allele was in linkage disequilibrium (LD with C282Y, while HLA-A*23, A*29, HLA-B*44, and B*49 were in LD with H63D. Altogether, our results show that, although the H63D mutation is more common in the Antioquia population, it is not associated with any particular HLA haplotype, whereas the C282Y mutation is associated with HLA-A*03-B*07, this supporting a northern Spaniard ancestry.

  12. Mutations in SYNGAP1 Cause Intellectual Disability, Autism, and a Specific Form of Epilepsy by Inducing Haploinsufficiency

    DEFF Research Database (Denmark)

    Berryer, Martin H; Hamdan, Fadi F; Klitten, Laura L

    2013-01-01

    De novo mutations in SYNGAP1, which codes for a RAS/RAP GTP-activating protein, cause nonsyndromic intellectual disability (NSID). All disease-causing point mutations identified until now in SYNGAP1 are truncating, raising the possibility of an association between this type of mutations and NSID...... also showed ataxia, autism, and a specific form of generalized epilepsy that can be refractory to treatment. All of these mutations occurred de novo, except c.283dupC, which was inherited from a father who is a mosaic. Biolistic transfection of wild-type SYNGAP1 in pyramidal cells from cortical...

  13. Novel Founder Mutation in FANCA Gene (c.3446_3449dupCCCT) Among Romani Patients from the Balkan Region

    OpenAIRE

    Marija Dimishkovska; Vjosa Mulliqi Kotori; Zoran Gucev; Svetlana Kocheva; Momir Polenakovic; Dijana Plaseska-Karanfilska

    2018-01-01

    Background: Fanconi anemia is a rare autosomal recessive or X-linked disorder characterised by clinical and genetic heterogeneity. Most fanconi anemia patients harbour homozygous or double heterozygous mutations in the FANCA (60-65%), FANCC (10-15%), FANCG (~10%) or FANCD2 (3-6%) genes. We have already reported the FANCA variant c.190–256_283+1680del2040dupC as a founder mutation among Macedonian fanconi anemia patients of Gypsy-like ethnic origin. Here, we present a novel FANCA mutation in t...

  14. A novel c.1037C > G (p.Ala346Gly) mutation in TP63 as cause of the ectrodactyly-ectodermal dysplasia and cleft lip/palate (EEC) syndrome

    Science.gov (United States)

    Alves, Leandro Ucela; Pardono, Eliete; Otto, Paulo A.; Mingroni Netto, Regina Célia

    2015-01-01

    Ectrodactyly – ectodermal dysplasia and cleft lip/palate (EEC) syndrome (OMIM 604292) is a rare disorder determined by mutations in the TP63 gene. Most cases of EEC syndrome are associated to mutations in the DNA binding domain (DBD) region of the p63 protein. Here we report on a three-generation Brazilian family with three individuals (mother, son and grandfather) affected by EEC syndrome, determined by a novel mutation c.1037C > G (p.Ala346Gly). The disorder in this family exhibits a broad spectrum of phenotypes: two individuals were personally examined, one presenting the complete constellation of EEC syndrome manifestations and the other presenting an intermediate phenotype; the third affected, a deceased individual not examined personally and referred to by his daughter, exhibited only the split-hand/foot malformation (SHFM). Our findings contribute to elucidate the complex phenotype-genotype correlations in EEC syndrome and other related TP63-mutation syndromes. The possibility of the mutation c.1037C > G being related both to acro-dermato-ungual-lacrimal-tooth (ADULT) syndrome and SHFM is also raised by the findings here reported. PMID:25983622

  15. Association of HFE gene C282Y and H63D mutations with liver cirrhosis in the Lithuanian population

    Directory of Open Access Journals (Sweden)

    Simonas Juzėnas

    2016-01-01

    Conclusions: Heterozygous C282Y mutation of the HFE gene was associated with liver cirrhosis in the Lithuanian population. In gender-related analysis, heterozygous C282Y and homozygous H63D mutations were linked to liver cirrhosis in men, not in women.

  16. A brain-derived neurotrophic factor polymorphism Val66Met identifies fibromyalgia syndrome subgroup with higher body mass index and C-reactive protein.

    Science.gov (United States)

    Xiao, Yangming; Russell, I Jon; Liu, Ya-Guang

    2012-08-01

    A common single nucleotide polymorphism (SNP) in the gene of brain-derived neurotrophic factor (BDNF) results from a substitution at position 66 from valine (Val) to methionine (Met) and may predispose to human neuropsychiatric disorders. We proposed to determine whether these BDNF gene SNPs were associated with fibromyalgia syndrome (FMS) and/or any of its typical phenotypes. Patients with FMS (N = 95) and healthy normal controls (HNC, N = 58) were studied. Serum high-sensitivity C-reactive protein (hsCRP) levels were measured using an enzyme-linked immunosorbent assay (ELISA). The BDNF SNPs were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).The BDNF SNP distribution was 65 (68%) Val/Val, 28 (30%) Val/Met, and 2 (2%) Met/Met for FMS and 40 (69%), 17(29%), and 1 (2%) for HNC, respectively. The serum high-sensitivity C-reactive protein (hsCRP)and body mass index (BMI) in FMS were higher than in HNC. The FMS with BDNF Val66Val had significantly higher mean BMI (P = 0.0001) and hsCRP (P = 0.02) than did FMS carrying the Val66Met genotype. This pattern was not found in HNC. Phenotypic measures of subjective pain, pain threshold, depression, or insomnia did not relate to either of the BDNF SNPs in FMS. The relative distribution BDNF SNPs did not differ between FMS and HNC. The BDNF Val66Met polymorphism is not selective for FMS. The BDNF Val66Val SNP identifies a subgroup of FMS with elevated hsCRP and higher BMI. This is the first study to associate a BDNF polymorphism with a FMS subgroup phenotype.

  17. Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC.

    Science.gov (United States)

    Chubukov, Victor; Mingardon, Florence; Schackwitz, Wendy; Baidoo, Edward E K; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D; Mukhopadhyay, Aindrila

    2015-07-01

    Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain of Escherichia coli and found a mutation in ahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpC(L177Q)) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-type E. coli cells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. P53, K-RAS, β-CATENIN, C-KIT and BAK mutations in the lung cancer of Chinese and Japanese patients

    International Nuclear Information System (INIS)

    Shuo Xing; Nobotoshi Nawa; Kazuhiro Tanabe; Tadashi Hongyo; Li- Ya Li; Jing-Tian Tang; Mitsunori Ohta

    2005-01-01

    Seventeen Chinese (Beijing) and 24 Japanese (Osaka) lung cancer cases were analyzed for mutations of p53, K-ras, β-catenin, c-kit and bak genes by PCR-SSCP analysis followed by direct sequencing. Significantly higher mutation frequency of p53 gene, one of key genes for radiation sensitivity, was found in Chinese cases (11/17; 64.7 %) than Japanese cases (8/24; 33.3 %) (p< O.O5). Fourteen of the 16 mutations found in the Chinese cases were transitions at exon 4,5 and intron 4. In the Japanese cases, of the total of 11 mutations, 5 were transitions and 5 were transversions and one was deletion. Six β-catenin mutations were found in 6 Chinese cases (35.3 % ) at codon 53 and 58, and 4 were found in 3 Japanese cases (12.5 %). C-kit mutations were detected in 5 Chinese cases (29.4 %), while no mutations were found in Japanese cases (p< O.O5). No K-ras mutation was found in both Chinese and Japanese cases. For the first time, we report on bak mutation in human lung cancer in Chinese (2/17; 11.8% ) and Japanese cases (2/24; 8.3% ). C-kit and bak genes are also definitive factors to radiosensitivity. These data thus suggest that there were apparent differences in frequency and/or mutational types of p53, β-catenin and c-kit? genes between Chinese and Japanese cases. The differences can be attributed to factors such as lifestyles including smoking and racial and/or environmental factors, and also to the prediction of the response to radiotherapy. (author)

  19. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival.

    Science.gov (United States)

    Yap, Kai Lee; Kiyotani, Kazuma; Tamura, Kenji; Antic, Tatjana; Jang, Miran; Montoya, Magdeline; Campanile, Alexa; Yew, Poh Yin; Ganshert, Cory; Fujioka, Tomoaki; Steinberg, Gary D; O'Donnell, Peter H; Nakamura, Yusuke

    2014-12-15

    Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators. Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients. We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22-0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage. Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted. ©2014 American Association for Cancer Research.

  20. Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India

    Directory of Open Access Journals (Sweden)

    Bhatt Rajendra M

    2010-05-01

    Full Text Available Abstract Background Knockdown resistance in insects resulting from mutation(s in the voltage gated Na+ channel (VGSC is one of the mechanisms of resistance against DDT and pyrethroids. Recently a point mutation leading to Leu-to-Phe substitution in the VGSC at residue 1014, a most common kdr mutation in insects, was reported in Anopheles culicifacies-a major malaria vector in the Indian subcontinent. This study reports the presence of two additional amino acid substitutions in the VGSC of an An. culicifacies population from Malkangiri district of Orissa, India. Methods Anopheles culicifacies sensu lato (s.l. samples, collected from a population of Malkangiri district of Orissa (India, were sequenced for part of the second transmembrane segment of VGSC and analyzed for the presence of non-synonymous mutations. A new primer introduced restriction analysis-PCR (PIRA-PCR was developed for the detection of the new mutation L1014S. The An. culicifacies population was genotyped for the presence of L1014F substitution by an amplification refractory mutation system (ARMS and for L1014S substitutions by using a new PIRA-PCR developed in this study. The results were validated through DNA sequencing. Results DNA sequencing of An. culicifacies individuals collected from district Malkangiri revealed the presence of three amino acid substitutions in the IIS6 transmembrane segments of VGSC, each one resulting from a single point mutation. Two alternative point mutations, 3042A>T transversion or 3041T>C transition, were found at residue L1014 leading to Leu (TTA-to-Phe (TTT or -Ser (TCA changes, respectively. A third and novel substitution, Val (GTG-to-Leu (TTG or CTG, was identified at residue V1010 resulting from either of the two transversions–3028G>T or 3028G>C. The L1014S substitution co-existed with V1010L in all the samples analyzed irrespective of the type of point mutation associated with the latter. The PIRA-PCR strategy developed for the

  1. Japonica rice variety Yangfujing 7 bred by mutation

    International Nuclear Information System (INIS)

    He Zhentian; Chen Xiulan; Han Yuepeng; Wang Jinrong; Yang Hefeng; Wang Jianhua

    2006-01-01

    A japonica variety, Yangfujing 7, which possessing high yield potential, good quality and disease resistance was developed through cross breeding combined mutation breeding. The variety met the needs of agricultural environment in Jiangsu province. (authors)

  2. MetBaro - Pressure Instrument for Mars MetNet Lander

    Science.gov (United States)

    Polkko, J.; Haukka, H.; Harri, A.-M.; Schmidt, W.; Leinonen, J.; Mäkinen, T.

    2009-04-01

    THE METNET MISSION FOCUSED ON THE Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetBaro is the pressure instrument of MetNet Lander designed to work on Martian surface. It is based on Barocap® technology developed by Vaisala, Inc. MetBaro is a capacitic type of sensing device where capasitor plates are moved by ambient pressure. MetBaro device consists of two pressure transducers including a total of 6 Barocap® sensor heads of high-stability and high-resolution types. The long-term stability of MetBaro is in order of 20…50 µBar and resolution a few µBar. MetBaro is small, lightweighed and has low power consumption. It weighs about 50g without wires and controlling FPGA, and consumes 15 mW of power. A similar device has successfully flown in Phoenix mission, where it performed months of measurements on Martian ground. Another device is also part of the Mars Science Laboratory REMS instrument (to be launched in 2011).

  3. Whole-exome sequencing identified a homozygous FNBP4 mutation in a family with a condition similar to microphthalmia with limb anomalies.

    Science.gov (United States)

    Kondo, Yukiko; Koshimizu, Eriko; Megarbane, Andre; Hamanoue, Haruka; Okada, Ippei; Nishiyama, Kiyomi; Kodera, Hirofumi; Miyatake, Satoko; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Doi, Hiroshi; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2013-07-01

    Microphthalmia with limb anomalies (MLA), also known as Waardenburg anophthalmia syndrome or ophthalmoacromelic syndrome, is a rare autosomal recessive disorder. Recently, we and others successfully identified SMOC1 as the causative gene for MLA. However, there are several MLA families without SMOC1 abnormality, suggesting locus heterogeneity in MLA. We aimed to identify a pathogenic mutation in one Lebanese family having an MLA-like condition without SMOC1 mutation by whole-exome sequencing (WES) combined with homozygosity mapping. A c.683C>T (p.Thr228Met) in FNBP4 was found as a primary candidate, drawing the attention that FNBP4 and SMOC1 may potentially modulate BMP signaling. Copyright © 2013 Wiley Periodicals, Inc.

  4. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome.

    Science.gov (United States)

    Burrage, Lindsay C; Charng, Wu-Lin; Eldomery, Mohammad K; Willer, Jason R; Davis, Erica E; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S; Akdemir, Zeynep C; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P; Schoots, Jeroen; de Munnik, Sonja A; Roepman, Ronald; Pearring, Jillian N; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E L M; Brunner, Han G; Beaudet, Arthur L; Rosenfeld, Jill A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Xia, Fan; Lalani, Seema R; Lupski, James R; Bongers, Ernie M H F; Yang, Yaping

    2015-12-03

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Iron Overload Leading to Torsades de Pointes in β-Thalassemia and Long QT Syndrome

    DEFF Research Database (Denmark)

    Refaat, Marwan M; El Hage, Lea; Steffensen, Annette Buur

    2016-01-01

    The authors present a unique case of torsades de pointes in a β-thalassemia patient with early iron overload in the absence of any structural abnormalities as seen in hemochromatosis. Genetic testing showed a novel KCNQ1 gene mutation 1591C>T [Gln531Ter(X)]. Testing of the gene mutation in Xenopus...

  6. Impaired epithelial differentiation of induced pluripotent stem cells from ectodermal dysplasia-related patients is rescued by the small compound APR-246/PRIMA-1MET.

    Science.gov (United States)

    Shalom-Feuerstein, Ruby; Serror, Laura; Aberdam, Edith; Müller, Franz-Josef; van Bokhoven, Hans; Wiman, Klas G; Zhou, Huiqing; Aberdam, Daniel; Petit, Isabelle

    2013-02-05

    Ectodermal dysplasia is a group of congenital syndromes affecting a variety of ectodermal derivatives. Among them, ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome is caused by single point mutations in the p63 gene, which controls epidermal development and homeostasis. Phenotypic defects of the EEC syndrome include skin defects and limbal stem-cell deficiency. In this study, we designed a unique cellular model that recapitulated major embryonic defects related to EEC. Fibroblasts from healthy donors and EEC patients carrying two different point mutations in the DNA binding domain of p63 were reprogrammed into induced pluripotent stem cell (iPSC) lines. EEC-iPSC from both patients showed early ectodermal commitment into K18(+) cells but failed to further differentiate into K14(+) cells (epidermis/limbus) or K3/K12(+) cells (corneal epithelium). APR-246 (PRIMA-1(MET)), a small compound that restores functionality of mutant p53 in human tumor cells, could revert corneal epithelial lineage commitment and reinstate a normal p63-related signaling pathway. This study illustrates the relevance of iPSC for p63 related disorders and paves the way for future therapy of EEC.

  7. Molecular basis of hereditary C1q deficiency-revisited: identification of several novel disease-causing mutations

    DEFF Research Database (Denmark)

    Schejbel, L; Skattum, L; Hagelberg, S

    2011-01-01

    C1q is the central pattern-recognition molecule in the classical pathway of the complement system and is known to have a key role in the crossroads between adaptive and innate immunity. Hereditary C1q deficiency is a rare genetic condition strongly associated with systemic lupus erythematosus...... and increased susceptibility to bacterial infections. However, the clinical symptoms may vary. For long, the molecular basis of C1q deficiency was ascribed to only six different mutations. In the present report, we describe five new patients with C1q deficiency, present the 12 causative mutations described till...... now and review the clinical spectrum of symptoms found in patients with C1q deficiency. With the results presented here, confirmed C1q deficiency is reported in 64 patients from at least 38 families....

  8. Naturally occurring dominant drug resistance mutations occur infrequently in the setting of recently acquired hepatitis C.

    Science.gov (United States)

    Applegate, Tanya L; Gaudieri, Silvana; Plauzolles, Anne; Chopra, Abha; Grebely, Jason; Lucas, Michaela; Hellard, Margaret; Luciani, Fabio; Dore, Gregory J; Matthews, Gail V

    2015-01-01

    Direct-acting antivirals (DAAs) are predicted to transform hepatitis C therapy, yet little is known about the prevalence of naturally occurring resistance mutations in recently acquired HCV. This study aimed to determine the prevalence and frequency of drug resistance mutations in the viral quasispecies among HIV-positive and -negative individuals with recent HCV. The NS3 protease, NS5A and NS5B polymerase genes were amplified from 50 genotype 1a participants of the Australian Trial in Acute Hepatitis C. Amino acid variations at sites known to be associated with possible drug resistance were analysed by ultra-deep pyrosequencing. A total of 12% of individuals harboured dominant resistance mutations, while 36% demonstrated non-dominant resistant variants below that detectable by bulk sequencing (that is, Resistance variants (resistance from all classes, with the exception of sofosbuvir. Dominant resistant mutations were uncommonly observed in the setting of recent HCV. However, low-level mutations to all DAA classes were observed by deep sequencing at the majority of sites and in most individuals. The significance of these variants and impact on future treatment options remains to be determined. Clinicaltrials.gov NCT00192569.

  9. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Felhi, Rahma; Tabebi, Mouna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Alila-Fersi, Olfa; Chamkha, Imen [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Maalej, Marwa; Ammar, Marwa [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Kammoun, Fatma [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Keskes, Leila [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Hachicha, Mongia [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh02@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia)

    2016-04-29

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.

  10. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations.

    Science.gov (United States)

    Gu, Shun; Tian, Yuanyuan; Chen, Xue; Zhao, Chen

    2016-01-01

    We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease-relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant's colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all Chinese patients carrying mutations in the EYS

  11. Differences in MetS marker prevalence between black African and ...

    African Journals Online (AJOL)

    Multiple linear regression analysis, independent of covariates, showed that the albumin:creatinine ratio is explained only by glucose in Africans. Conclusion: African women, as a group, present with few MetS risk factors, and glucose is associated with renal function risk in Africans. Keywords: MetS, metabolic syndrome, ...

  12. c.376G>A mutation in WFS1 gene causes Wolfram syndrome without deafness.

    Science.gov (United States)

    Safarpour Lima, Behnam; Ghaedi, Hamid; Daftarian, Narsis; Ahmadieh, Hamid; Jamshidi, Javad; Khorrami, Mehdi; Noroozi, Rezvan; Sohrabifar, Nasim; Assarzadegan, Farhad; Hesami, Omid; Taghavi, Shaghayegh; Ahmadifard, Azadeh; Atakhorrami, Minoo; Rahimi-Aliabadi, Simin; Shahmohammadibeni, Neda; Alehabib, Elham; Andarva, Monavvar; Darvish, Hossein; Emamalizadeh, Babak

    2016-02-01

    Wolfram syndrome is one of the rare autosomal recessive, progressive, neurodegenerative disorders, characterized by diabetes mellitus and optic atrophy. Several other features are observed in patients including deafness, ataxia, and peripheral neuropathy. A gene called WFS1 is identified on chromosome 4p, responsible for Wolfram syndrome. We investigated a family consisted of parents and 8 children, which 5 of them have been diagnosed for Wolfram syndrome. WFS1 gene in all family members was sequenced for causative mutations. A mutation (c.376G>A, p.A126T) was found in all affected members in homozygous state and in both parents in heterozygous state. The bioinformatics analysis showed the deleterious effects of this nucleotide change on the structure and function of the protein product. As all of the patients in the family showed the homozygote mutation, and parents were both heterozygote, this mutation is probably the cause of the disease. We identified this mutation in homozygous state for the first time as Wolfram syndrome causation. We also showed that this mutation probably doesn't cause deafness in affected individuals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. A Novel Alpha Cardiac Actin (ACTC1 Mutation Mapping to a Domain in Close Contact with Myosin Heavy Chain Leads to a Variety of Congenital Heart Defects, Arrhythmia and Possibly Midline Defects.

    Directory of Open Access Journals (Sweden)

    Céline Augière

    Full Text Available A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects, conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5.A set of 399 poly(AC markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. The haplotype analysis delineated a 7.7 meganucleotides genomic interval which included the alpha-cardiac actin gene (ACTC1 among 36 other protein coding genes. A heterozygous missense mutation was found (c.251T>C, p.(Met84Thr in the ACTC1 gene which changed a methionine residue conserved up to yeast. This mutation was absent from 1000 genomes and exome variant server database but segregated perfectly in this family with the affection status. This mutation and 2 other ACTC1 mutations (p.(Glu101Lys and p.(Met125Val which result also in congenital heart defects are located in a region in close apposition to a myosin heavy chain head region by contrast to 3 other alpha-cardiac actin mutations (p.(Ala297Ser,p.(Asp313His and p.(Arg314His which result in diverse cardiomyopathies and are located in a totally different interaction surface.Alpha-cardiac actin mutations lead to congenital heart defects, cardiomyopathies and eventually midline defects. The consequence of an ACTC1 mutation may in part be dependent on the interaction surface between actin and myosin.

  14. Protease Inhibitors Drug Resistance Mutations in Turkish Patients with Chronic Hepatitis C.

    Science.gov (United States)

    Sargin Altunok, Elif; Sayan, Murat; Akhan, Sila; Aygen, Bilgehan; Yildiz, Orhan; Tekin Koruk, Suda; Mistik, Resit; Demirturk, Nese; Ural, Onur; Kose, Şükran; Aynioglu, Aynur; Korkmaz, Fatime; Ersoz, Gülden; Tuna, Nazan; Ayaz, Celal; Karakecili, Faruk; Keten, Derya; Inan, Dilara; Yazici, Saadet; Koculu, Safiye; Yildirmak, Taner

    2016-09-01

    Drug resistance development is an expected problem during treatment with protease inhibitors (PIs), this is largely due to the fact that Pls are low-genetic barrier drugs. Resistance-associated variants (RAVs) however may also occur naturally, and prior to treatment with Pls, the clinical impact of this basal resistance remains unknown. In Turkey, there is yet to be an investigation into the hepatitis C (HCV) drug associated resistance to oral antivirals. 178 antiviral-naïve patients infected with HCV genotype 1 were selected from 27 clinical centers of various geographical regions in Turkey and included in the current study. The basal NS3 Pls resistance mutations of these patients were analyzed. In 33 (18.5%) of the patients included in the study, at least one mutation pattern that can cause drug resistance was identified. The most frequently detected mutation pattern was T54S while R109K was the second most frequently detected. Following a more general examination of the patients studied, telaprevir (TVR) resistance in 27 patients (15.2%), boceprevir (BOC) resistance in 26 (14.6%) patients, simeprevir (SMV) resistance in 11 (6.2%) patients and faldaprevir resistance in 13 (7.3%) patients were detected. Our investigation also revealed that rebound developed in the presence of a Q80K mutation and amongst two V55A mutations following treatment with TVR, while no response to treatment was detected in a patient with a R55K mutation. We are of the opinion that drug resistance analyses can be beneficial and necessary in revealing which variants are responsible for pre-treatment natural resistance and which mutations are responsible for the viral breakthrough that may develop during the treatment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Hepatitis C virus protease inhibitor-resistance mutations: our experience and review.

    Science.gov (United States)

    Wu, Shuang; Kanda, Tatsuo; Nakamoto, Shingo; Imazeki, Fumio; Yokosuka, Osamu

    2013-12-21

    Direct-acting antiviral agents (DAAs) for hepatitis C virus (HCV) infection are one of the major advances in its medical treatment. The HCV protease inhibitors boceprevir and telaprevir were the first approved DAAs in the United States, Europe, and Japan. When combined with peginterferon plus ribavirin, these agents increase sustained virologic response rates to 70%-80% in treatment-naïve patients and previous-treatment relapsers with chronic HCV genotype 1 infection. Without peginterferon plus ribavirin, DAA mono-therapies increased DAA-resistance mutations. Several new DAAs for HCV are now in clinical development and are likely to be approved in the near future. However, it has been reported that the use of these drugs also led to the emergence of DAA-resistance mutations in certain cases. Furthermore, these mutations exhibit cross-resistance to multiple drugs. The prevalence of DAA-resistance mutations in HCV-infected patients who were not treated with DAAs is unknown, and it is as yet uncertain whether such variants are sensitive to DAAs. We performed a population sequence analysis to assess the frequency of such variants in the sera of HCV genotype 1-infected patients not treated with HCV protease inhibitors. Here, we reviewed the literature on resistance variants of HCV protease inhibitors in treatment naïve patients with chronic HCV genotype 1, as well as our experience.

  16. A double mutation in exon 6 of the [beta]-hexosaminidase [alpha] subunit in a patient with the B1 variant of Tay-Sachs disease

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, P.J. (Univ. of Western Ontario, Ontario (Canada) Child Health Research Institute, London, Ontario (Canada)); Coulter-Mackie, M.B. (Univ. of Western Ontario, Ontario (Canada) Child Health Research Institute, London, Ontario (Canada) Children' s Psychiatric Research Institute, London, Ontario (Canada))

    1992-10-01

    The B1 variant form of Tay-Sachs disease is enzymologically unique in that the causative mutation(s) appear to affect the active site in the [alpha] subunit of [beta]-hexosaminidase A without altering its ability to associate with the [beta] subunit. Most previously reported B1 variant mutations were found in exon 5 within codon 178. The coding sequence of the [alpha] subunit gene of a patient with the B1 variant form was examined with a combination of reverse transcription of mRNA to cDNA, PCR, and dideoxy sequencing. A double mutation in exon 6 has been identified: a G[sub 574][yields]C transversion causing a val[sub 192][yields]leu change and a G[sub 598][yields] A transition resulting in a val[sub 200][yields]met alteration. The amplified cDNAs were otherwise normal throughout their sequence. The 574 and 598 alterations have been confirmed by amplification directly from genomic DNA from the patient and her mother. Transient-expression studies of the two exon 6 mutations (singly or together) in COS-1 cells show that the G[sub 574][yields]C change is sufficient to cause the loss of enzyme activity. The biochemical phenotype of the 574 alteration in transfection studies is consistent with that expected for a B1 variant mutation. As such, this mutation differs from previously reported B1 variant mutations, all of which occur in exon 5. 31 refs., 2 figs., 2 tabs.

  17. La metáfora

    DEFF Research Database (Denmark)

    Agustin, Oscar Garcia

    2007-01-01

    2002 y principios de 2003, anteriores a la proclamación de las Juntas de Buen Gobierno. Nuestro objetivo es comprobar cómo las metáforas crean nuevas significaciones, que intentan deshacer una lógica comúnmente asumida, y promover otros modos de comprender la acción y la realidad político-social. Este...

  18. Genomic profiling of CHEK2*1100delC-mutated breast carcinomas

    International Nuclear Information System (INIS)

    Massink, Maarten P. G.; Kooi, Irsan E.; Martens, John W. M.; Waisfisz, Quinten; Meijers-Heijboer, Hanne

    2015-01-01

    CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. We performed copy number and gene expression profiling to investigate whether CHEK2*1100delC breast cancers harbor characteristic genomic aberrations, as seen for BRCA1 mutated breast cancers. We performed high-resolution SNP array and gene expression profiling of 120 familial breast carcinomas selected from a larger cohort of 155 familial breast tumors, including BRCA1, BRCA2, and CHEK2 mutant tumors. Gene expression analyses based on a mRNA immune signature was used to identify samples with relative low amounts of tumor infiltrating lymphocytes (TILs), which were previously found to disturb tumor copy number and LOH (loss of heterozygosity) profiling. We specifically compared the genomic and gene expression profiles of CHEK2*1100delC breast cancers (n = 14) with BRCAX (familial non-BRCA1/BRCA2/CHEK2*1100delC mutated) breast cancers (n = 34) of the luminal intrinsic subtypes for which both SNP-array and gene expression data is available. High amounts of TILs were found in a relatively small number of luminal breast cancers as compared to breast cancers of the basal-like subtype. As expected, these samples mostly have very few copy number aberrations and no detectable regions of LOH. By unsupervised hierarchical clustering of copy number data we observed a great degree of heterogeneity amongst the CHEK2*1100delC breast cancers, comparable to the BRCAX breast cancers. Furthermore, copy number aberrations were mostly seen at low frequencies in both the CHEK2*1100delC and BRCAX group of breast cancers. However, supervised class comparison identified copy number loss of chromosomal arm 1p to be associated with CHEK2*1100delC status. In conclusion, in contrast to basal-like BRCA1 mutated breast cancers, no apparent specific somatic copy number aberration (CNA) profile for CHEK2*1100delC breast cancers was found. With the possible exception of copy number loss

  19. Intrafamiliar clinical variability of circumferential skin creases Kunze type caused by a novel heterozygous mutation of N-terminal TUBB gene.

    Science.gov (United States)

    Dentici, M L; Terracciano, A; Bellacchio, E; Capolino, R; Novelli, A; Digilio, M C; Dallapiccola, B

    2018-02-10

    Circumferential skin creases Kunze type (CSC-KT; OMIM 156610, 616734) is a rare disorder characterized by folding of excess skin, which leads to ringed creases, known as Michelin Tire Baby Syndrome (MTBS). CSC-KT patients also exhibit facial dysmorphism, growth retardation, intellectual disability (ID) and multiple congenital malformations. Recently, 2 heterozygous mutations in TUBB gene and 4 mutations (both homozygous and heterozygous) in MAPRE2 gene were identified in 3 and 4 CSC-KT patients, respectively. In the 3 TUBB gene-related CSC-KT patients, all mutations fall in the N-terminal gene domain and were de novo. Mutations in the C-terminal of TUBB gene have been associated to microcephaly and structural brain malformation, in the absence of CSC-KT features. We report a 9-year-old boy with a diagnosis of CSC-KT based on MTBS, facial dysmorphism, microcephaly, severe ID, cortical atrophy and corpus callosum hypoplasia. Sanger sequencing identified a novel heterozygous c.218T>C (p.Met73Thr) mutation in the N-terminal of TUBB gene, that was inherited from the mother affected by isolated MTBS. This is the first report of inherited TUBB gene-related CSC-KT resulting from a novel heterozygous mutation in the N-terminal domain. Present data support the role of TUBB mutations in CSC-KT and definitely includes CSC-KT syndrome within the tubulinopathies. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Analysis of HLA-A antigens and C282Y and H63D mutations of the HFE gene in Brazilian patients with hemochromatosis

    Directory of Open Access Journals (Sweden)

    Bittencourt P.L.

    2002-01-01

    Full Text Available The hemochromatosis gene, HFE, is located on chromosome 6 in close proximity to the HLA-A locus. Most Caucasian patients with hereditary hemochromatosis (HH are homozygous for HLA-A3 and for the C282Y mutation of the HFE gene, while a minority are compound heterozygotes for C282Y and H63D. The prevalence of these mutations in non-Caucasian patients with HH is lower than expected. The objective of the present study was to evaluate the frequencies of HLA-A antigens and the C282Y and H63D mutations of the HFE gene in Brazilian patients with HH and to compare clinical and laboratory profiles of C282Y-positive and -negative patients with HH. The frequencies of HLA-A and C282Y and H63D mutations were determined by PCR-based methods in 15 male patients (median age 44 (20-72 years with HH. Eight patients (53% were homozygous and one (7% was heterozygous for the C282Y mutation. None had compound heterozygosity for C282Y and H63D mutations. All but three C282Y homozygotes were positive for HLA-A3 and three other patients without C282Y were shown to be either heterozygous (N = 2 or homozygous (N = 1 for HLA-A3. Patients homozygous for the C282Y mutation had higher ferritin levels and lower age at onset, but the difference was not significant. The presence of C282Y homozygosity in roughly half of the Brazilian patients with HH, together with the findings of HLA-A homozygosity in C282Y-negative subjects, suggest that other mutations in the HFE gene or in other genes involved in iron homeostasis might also be linked to HH in Brazil.

  1. Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor.

    Directory of Open Access Journals (Sweden)

    Aron K Barbey

    Full Text Available Brain-derived neurotrophic factor (BDNF promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI. In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156 consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points, verbal comprehension (6 IQ points, perceptual organization (6 IQ points, working memory (8 IQ points, and processing speed (8 IQ points after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI.

  2. Eerstejaars zicht geven op hun latere beroep: herontwerp van propedeuse Facility management met behulp van het 4C-ID model

    NARCIS (Netherlands)

    Hoogveld, Bert; Steinen, Hennie

    2010-01-01

    Redesign of preparatory higher professional bachelor curriculum facility management applying 4C-ID instructional design methodology. Reference please cite as: Hoogveld, A. W. M., & Steinen, H. (2008). Eerstejaars zicht geven op hun latere beroep: herontwerp van propedeuse Facility management met

  3. Requirements to be met by the operation manual

    International Nuclear Information System (INIS)

    1981-03-01

    The rule applies to the contents and the lay-out of the operating manual for stationary nuclear power plants. The draft contains: 1. General requirement to be met by the contents of the operating manual. The operating manual to be arranged in 4 parts (part 1: internal rules and regulations; part 2: operation overall plant; part 3: incidents; part 4: operation systems). Safety specifications to be included in the manual, the exemption being the system of technical documentation. 2. General requirements to be met by the lay-out of the operating manual. Comprehensibility; legibility; structure and subdivisions; arrangement of the instructions and design of the manuals cover. 3. Requirements to be met by part 1. Defining the various internal rules and regulations (personnel management); rules and regulations concerning inspections and shift work; maintenance and repair; radiation protection; guard duty and admission; alarm; fire protection; first aid. 4. Requirements to be met by part 2. Provisions and operational limitations; limit values important from the point of view of safety; normal operation; anomalous operation; in-service inspections. 6. Requirements to be met by part 3. 7. Annex: Rules, regulations and stipulations mentioned in the rule draft. (orig.)

  4. A three-step programmed method for the identification of causative gene mutations of maturity onset diabetes of the young (MODY).

    Science.gov (United States)

    Li, Qian; Cao, Xi; Qiu, Hai-Yan; Lu, Jing; Gao, Rui; Liu, Chao; Yuan, Ming-Xia; Yang, Guang-Ran; Yang, Jin-Kui

    2016-08-22

    To establish a three-step programmed method to find gene mutations related to maturity onset diabetes of the young (MODY). Target region capture and next-generation sequencing (NGS) were performed using customized oligonucleotide probes designed to capture suspected genes for MODY in 11 probands with clinically diagnosed MODY. The suspected associations of certain genes with MODY were then confirmed by Sanger sequencing in the probands and their family members. Finally, to validate variants of one of the genes of interest (glucokinase, GCK) as pathogenic mutations, protein function editing by the variant genes was assessed. In the target region capture and NGS phase, a total of nine variants of seven genes (GCK, WFS1, SLC19A2, SH2B1, SERPINB4, RFX6, and GATA6) were identified in eight probands. Two heterozygous GCK mutations located on the same allele (p.Leu77Arg and p.Val101Met) were identified in a MODY family. Sanger sequencing was used to confirm the variants identified by NGS to be present in probands and their diabetic family members, but not in non-diabetic family members. Finally, enzyme kinetic and thermal stability analyses revealed that the p.Leu77Arg mutation or the p.Leu77Arg mutation in combination with the p.Val101Met mutation inactivates GCK function and stability, while mutation of p.Val101Met alone does not. The p.Leu77Arg but not p.Val101Met GCK mutation is therefore considered a pathogenic mutation associated with MODY. Genetic screening coupled with gene-editing protein function testing is an effective and reliable method by which causative gene mutations of MODY can be identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Lamin A/C might be involved in the EMT signalling pathway.

    Science.gov (United States)

    Zuo, Lingkun; Zhao, Huanying; Yang, Ronghui; Wang, Liyong; Ma, Hui; Xu, Xiaoxue; Zhou, Ping; Kong, Lu

    2018-07-15

    We have previously reported a heterogeneous expression pattern of the nuclear membrane protein lamin A/C in low- and high-Gleason score (GS) prostate cancer (PC) tissues, and we have now found that this change is not associated with LMNA mutations. This expression pattern appears to be similar to the process of epithelial to mesenchymal transition (EMT) or to that of mesenchymal to epithelial transition (MET). The role of lamin A/C in EMT or MET in PC remains unclear. Therefore, we first investigated the expression levels of and the associations between lamin A/C and several common EMT markers, such as E-cadherin, N-cadherin, β-catenin, snail, slug and vimentin in PC tissues with different GS values and in different cell lines with varying invasion abilities. Our results suggest that lamin A/C might constitute a type of epithelial marker that better signifies EMT and MET in PC tissue, since a decrease in lamin A/C expression in GS 4 + 5 cases is likely associated with the EMT process, while the re-expression of lamin A/C in GS 5 + 4 cases is likely linked with MET. The detailed GS better exhibited the changes in lamin A/C and the EMT markers examined. Lamin A/C overexpression or knockdown had an impact on EMT biomarkers in a cell model by direct regulation of β-catenin. Hence, we suggest that lamin A/C might serve as a reliable epithelial biomarker for the distinction of PC cell differentiation and might also be a fundamental factor in the occurrence of EMT or MET in PC. Copyright © 2018. Published by Elsevier B.V.

  6. Mutation Spectrum and Phenotypic Features in Noonan Syndrome with PTPN11 Mutations: Definition of Two Novel Mutations.

    Science.gov (United States)

    Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda

    2016-06-01

    To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.

  7. Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases

    Science.gov (United States)

    Ullah, Inayat; Kabir, Firoz; Iqbal, Muhammad; Gottsch, Clare Brooks S.; Naeem, Muhammad Asif; Assir, Muhammad Zaman; Khan, Shaheen N.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2016-01-01

    Purpose To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases. Methods Seven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon–intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect. Results The ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A>G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A>C; and a novel missense variation in exon 15, c.1561C>T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p<10−6) that affected individuals inherited the causal mutation from a common ancestor. Conclusions Pathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families. PMID:27440997

  8. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene.

    Science.gov (United States)

    Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; Van Kuilenburg, André B P

    2016-01-12

    Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  9. The NOD2 3020insC Mutation in Women with Breast Cancer from the Bydgoszcz Region in Poland. First Results

    Directory of Open Access Journals (Sweden)

    Janiszewska Hanna

    2006-01-01

    Full Text Available Abstract The frameshift NOD2 gene mutation 3020insC is predominantly associated with Crohn's disease, but predisposes to many types of common cancers as well. We studied the frequency of this mutant NOD2 allele in 148 breast cancer women from the Bydgoszcz region in Poland. The NOD2 mutation was present in 8.8% of the patients. The mean age at breast cancer diagnosis of the mutation carriers was 43 years. We did not find any mutation in patients diagnosed with breast cancer after the age of 50 years. There was no association of the NOD2 mutation with a strong family history of breast cancer. On the contrary, the mutation frequency (11.4% was two times higher in women from families with a single case of breast cancer and with aggregation of other common types of cancer, especially digestive tract cancers. Low risk of breast cancer in the mutation carriers seems to be confirmed by finding the 3020insC mutation in three healthy parents of probands aged 73, 74 and 83 years, from three separate families.

  10. Identification of a Variety of Mutations in Cancer Predisposition Genes in Patients With Suspected Lynch Syndrome.

    Science.gov (United States)

    Yurgelun, Matthew B; Allen, Brian; Kaldate, Rajesh R; Bowles, Karla R; Judkins, Thaddeus; Kaushik, Praveen; Roa, Benjamin B; Wenstrup, Richard J; Hartman, Anne-Renee; Syngal, Sapna

    2015-09-01

    Multigene panels are commercially available tools for hereditary cancer risk assessment that allow for next-generation sequencing of numerous genes in parallel. However, it is not clear if these panels offer advantages over traditional genetic testing. We investigated the number of cancer predisposition gene mutations identified by parallel sequencing in individuals with suspected Lynch syndrome. We performed germline analysis with a 25-gene, next-generation sequencing panel using DNA from 1260 individuals who underwent clinical genetic testing for Lynch syndrome from 2012 through 2013. All patients had a history of Lynch syndrome-associated cancer and/or polyps. We classified all identified germline alterations for pathogenicity and calculated the frequencies of pathogenic mutations and variants of uncertain clinical significance (VUS). We also analyzed data on patients' personal and family history of cancer, including fulfillment of clinical guidelines for genetic testing. Of the 1260 patients, 1112 met National Comprehensive Cancer Network (NCCN) criteria for Lynch syndrome testing (88%; 95% confidence interval [CI], 86%-90%). Multigene panel testing identified 114 probands with Lynch syndrome mutations (9.0%; 95% CI, 7.6%-10.8%) and 71 with mutations in other cancer predisposition genes (5.6%; 95% CI, 4.4%-7.1%). Fifteen individuals had mutations in BRCA1 or BRCA2; 93% of these met the NCCN criteria for Lynch syndrome testing and 33% met NCCN criteria for BRCA1 and BRCA2 analysis (P = .0017). An additional 9 individuals carried mutations in other genes linked to high lifetime risks of cancer (5 had mutations in APC, 3 had bi-allelic mutations in MUTYH, and 1 had a mutation in STK11); all of these patients met NCCN criteria for Lynch syndrome testing. A total of 479 individuals had 1 or more VUS (38%; 95% CI, 35%-41%). In individuals with suspected Lynch syndrome, multigene panel testing identified high-penetrance mutations in cancer predisposition genes, many

  11. C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis.

    Science.gov (United States)

    Deschauer, M; Gaul, C; Behrmann, C; Prokisch, H; Zierz, S; Haack, T B

    2012-11-01

    Mutations in C19orf12 have been recently identified as the molecular genetic cause of a subtype of neurodegeneration with brain iron accumulation (NBIA). Given the mitochondrial localization of the gene product the new NBIA subtype was designated mitochondrial membrane protein-associated neurodegeneration. Frequent features in the patients described so far included extrapyramidal signs and pyramidal tract involvement. Here, we report three C19orf12-mutant patients from two families presenting with predominant upper and lower motor neuron dysfunction mimicking amyotrophic lateral sclerosis with juvenile onset. While extrapyramidal signs were absent, all patients showed neuropsychological abnormalities with disinhibited or impulsive behavior. Optic atrophy was present in the simplex case. T2-weighted cranial MRI showed hypointensities suggestive of iron accumulation in the globi pallidi and the midbrain in all patients. Sequence analysis of C19orf12 revealed a novel mutation, p.Gly66del, compound heterozygous with known mutations in all patients. These patients highlight that C19orf12 defects should be considered as a differential diagnosis in patients with juvenile onset motor neuron diseases. Patients have to be examined carefully for neuropsychological abnormalities, optic neuropathy, and signs of brain iron accumulation in MRI.

  12. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins.

    Directory of Open Access Journals (Sweden)

    Adam Ameur

    2011-03-01

    Full Text Available Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA polymerase (mtDNA mutator mice have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life.

  13. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    Energy Technology Data Exchange (ETDEWEB)

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R. [Ohio State Univ., Columbus, OH (United States); Moxley, R.T. [Univ. of Rochester Medical Center, NY (United States)

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  14. Efficient detection of factor IX mutations by denaturing high-performance liquid chromatography in Taiwanese hemophilia B patients, and the identification of two novel mutations

    Directory of Open Access Journals (Sweden)

    Pei-Chin Lin

    2014-04-01

    Full Text Available Hemophilia B (HB is an X-linked recessive disorder characterized by mutations in the clotting factor IX (FIX gene that result in FIX deficiency. Previous studies have shown a wide variation of FIX gene mutations in HB. Although the quality of life in HB has greatly improved mainly because of prophylactic replacement therapy with FIX concentrates, there exists a significant burden on affected families and the medical care system. Accurate detection of FIX gene mutations is critical for genetic counseling and disease prevention in HB. In this study, we used denaturing high-performance liquid chromatography (DHPLC, which has proved to be a highly informative and practical means of detecting mutations, for the molecular diagnosis of our patients with HB. Ten Taiwanese families affected by HB were enrolled. We used the DHPLC technique followed by direct sequencing of suspected segments to detect FIX gene mutations. In all, 11 FIX gene mutations (8 point mutations, 2 small deletions/insertions, and 1 large deletion, including two novel mutations (exon6 c.687–695, del 9 mer and c.460–461, ins T were found. According to the HB pedigrees, 25% and 75% of our patients were defined as familial and sporadic HB cases, respectively. We show that DHPLC is a highly sensitive and cost-effective method for FIX gene analysis and can be used as a convenient system for disease prevention.

  15. The Hepatocyte Growth Factor (HGF/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms?

    Directory of Open Access Journals (Sweden)

    Marjorie Boissinot

    2014-08-01

    Full Text Available Met is the receptor of hepatocyte growth factor (HGF, a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML, and myeloproliferative neoplasms (MPNs. The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs.

  16. The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms?

    Energy Technology Data Exchange (ETDEWEB)

    Boissinot, Marjorie [Translational Neuro-Oncology Group, Leeds Institute of Cancer and Pathology, University of Leeds, Level 5 Wellcome Trust Brenner Building, St James’s Hospital, Leeds LS9 7TF (United Kingdom); Vilaine, Mathias [Institute of Research on Cancer and Aging (IRCAN), CNRS-Inserm-UNS UMR 7284, U 1081, Centre A. Lacassagne, 33 Avenue Valombrose, Nice 06189 (France); Hermouet, Sylvie, E-mail: sylvie.hermouet@univ-nantes.fr [Centre Hospitalier Universitaire (CHU), Place Alexis Ricordeau, Nantes 44093 (France); Inserm UMR892, Centre de Recherche en Cancérologie Nantes-Angers, Institut de Recherche en Santé, Université de Nantes, 8 quai Moncousu, Nantes cedex 44007 (France)

    2014-08-12

    Met is the receptor of hepatocyte growth factor (HGF), a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML), and myeloproliferative neoplasms (MPNs). The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs)

  17. Impact of Fluoroquinolone Resistance Mutations on Gonococcal Fitness and In Vivo Selection for Compensatory Mutations

    Science.gov (United States)

    Kunz, Anjali N.; Begum, Afrin A.; Wu, Hong; D'Ambrozio, Jonathan A.; Robinson, James M.; Shafer, William M.; Bash, Margaret C.; Jerse, Ann E.

    2012-01-01

    Background. Quinolone-resistant Neisseria gonorrhoeae (QRNG) arise from mutations in gyrA (intermediate resistance) or gyrA and parC (resistance). Here we tested the consequence of commonly isolated gyrA91/95 and parC86 mutations on gonococcal fitness. Methods. Mutant gyrA91/95 and parC86 alleles were introduced into wild-type gonococci or an isogenic mutant that is resistant to macrolides due to an mtrR−79 mutation. Wild-type and mutant bacteria were compared for growth in vitro and in competitive murine infection. Results. In vitro growth was reduced with increasing numbers of mutations. Interestingly, the gyrA91/95 mutation conferred an in vivo fitness benefit to wild-type and mtrR−79 mutant gonococci. The gyrA91/95, parC86 mutant, in contrast, showed a slight fitness defect in vivo, and the gyrA91/95, parC86, mtrR−79 mutant was markedly less fit relative to the parent strains. A ciprofloxacin-resistant (CipR) mutant was selected during infection with the gyrA91/95, parC86, mtrR−79 mutant in which the mtrR−79 mutation was repaired and the gyrA91 mutation was altered. This in vivo–selected mutant grew as well as the wild-type strain in vitro. Conclusions. gyrA91/95 mutations may contribute to the spread of QRNG. Further acquisition of a parC86 mutation abrogates this fitness advantage; however, compensatory mutations can occur that restore in vivo fitness and maintain CipR. PMID:22492860

  18. Finnish Fanconi anemia mutations and hereditary predisposition to breast and prostate cancer.

    Science.gov (United States)

    Mantere, T; Haanpää, M; Hanenberg, H; Schleutker, J; Kallioniemi, A; Kähkönen, M; Parto, K; Avela, K; Aittomäki, K; von Koskull, H; Hartikainen, J M; Kosma, V-M; Laasanen, S-L; Mannermaa, A; Pylkäs, K; Winqvist, R

    2015-07-01

    Mutations in downstream Fanconi anemia (FA) pathway genes, BRCA2, PALB2, BRIP1 and RAD51C, explain part of the hereditary breast cancer susceptibility, but the contribution of other FA genes has remained questionable. Due to FA's rarity, the finding of recurrent deleterious FA mutations among breast cancer families is challenging. The use of founder populations, such as the Finns, could provide some advantage in this. Here, we have resolved complementation groups and causative mutations of five FA patients, representing the first mutation confirmed FA cases in Finland. These patients belonged to complementation groups FA-A (n = 3), FA-G (n = 1) and FA-I (n = 1). The prevalence of the six FA causing mutations was then studied in breast (n = 1840) and prostate (n = 565) cancer cohorts, and in matched controls (n = 1176 females, n = 469 males). All mutations were recurrent, but no significant association with cancer susceptibility was observed for any: the prevalence of FANCI c.2957_2969del and c.3041G>A mutations was even highest in healthy males (1.7%). This strengthens the exclusive role of downstream genes in cancer predisposition. From a clinical point of view, current results provide fundamental information of the mutations to be tested first in all suspected FA cases in Finland. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Stability enhancement of cytochrome c through heme deprotonation and mutations.

    Science.gov (United States)

    Sonoyama, Takafumi; Hasegawa, Jun; Uchiyama, Susumu; Nakamura, Shota; Kobayashi, Yuji; Sambongi, Yoshihiro

    2009-01-01

    The chemical denaturation of Pseudomonas aeruginosa cytochrome c(551) variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0-4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond formation with heme 17-propionate at pH 5.0, but less efficiently at pH 3.6, because the propionate is deprotonated at the higher pH. Our results provide an insight into a stabilization strategy for heme proteins involving variation of the heme electronic state and introduction of appropriate mutations.

  20. Correlation Between C677T and A1298C Mutations on the MTHFR Gene With Plasma Homocysteine Levels and Venous Thrombosis in Pregnant Women at Risk of Thrombosis

    Directory of Open Access Journals (Sweden)

    Kazem Ghaffari

    2015-12-01

    Full Text Available Background: Deep venous thrombosis (DVT is a common disease with a high morbidity, mortality and increase in miscarriages. Objectives: The purpose of this study was to assessment the correlation between C677T and A1298C mutations on the methylenetetrahydrofolate reductase (MTHFR gene with total plasma homocysteine levels and deep venous thrombosis in pregnant women at risk of thrombosis. Patients and Methods: In this case-control study, 120 pregnant women with risk of DVT and 100 pregnant women without risk of DVT were included in the study. Assay for identification of MTHFR mutations was carried out by PCR-RFLP. Total plasma homocysteine was measured by ELISA method. Results: Homozygous (MM mutations of MTHFR C677T and A1298C were not associated with DVT in pregnant women with and without DVT, respectively. Plasma homocysteine levels were significantly higher in pregnant women with DVT (18.3 ± 5.9 μmol/L than in the pregnant women without DVT (8.9 ± 6.4 μmol/L in C677T and A1298C mutations on the MTHFR gene, respectively (P = 0.021. Conclusions: Our results showed that MTHFR C677T and MTHFR A1289C polymorphisms are not connected with total plasma homocysteine levels in pregnant women with and without DVT. Also, plasma homocysteine levels were significantly higher in pregnant women with DVT.

  1. Development of a PCR/LDR/capillary electrophoresis assay with potential for the detection of a beta-thalassemia fetal mutation in maternal plasma.

    Science.gov (United States)

    Yi, Ping; Chen, Zhuqin; Yu, Lili; Zheng, Yingru; Liu, Guodong; Xie, Haichang; Zhou, Yuanguo; Zheng, Xiuhui; Han, Jian; Li, Li

    2010-08-01

    Analysis of fetal DNA in maternal plasma has recently been introduced for non-invasive prenatal diagnosis. We have now investigated the feasibility of polymerase chain reaction (PCR)/ligase detection reaction (LDR)/capillary electrophoresis for the detection of fetal point mutations, such as the beta-thalassemia mutation, IVS2 654(C --> T), in maternal plasma DNA. The sensitivity of LDR/capillary electrophoresis was examined by quantifying the mutant PCR products in the presence of a vast excess of non-mutant competitor template, a situation that mimics the detection of rare fetal mutations in the presence of excess maternal DNA. PCR/LDR/capillary electrophoresis was applied to detect the mutation, IVS2 654(C --> T), in an experimental model at different sensitivity levels and from 10 maternal plasma samples. Our results demonstrated that this approach to detect a low abundance IVS2 654(C --> T) mutation achieved a sensitivity of approximately 1:10,000. The approach was applied to maternal plasma DNA to detect the paternally inherited fetal IVS2 654(C --> T) mutation, and the results were equivalent to those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. PCR/LDR/capillary electrophoresis has a very high sensitivity that can distinguish low abundance single nucleotide differences and can detect paternally inherited fetal point mutations in maternal plasma.

  2. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    Science.gov (United States)

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  3. Mutation effects of C2+ ion irradiation on the greasy Nitzschia sp

    International Nuclear Information System (INIS)

    Yang, Y.N.; Liu, C.L.; Wang, Y.K.; Xue, J.M.

    2013-01-01

    Highlights: • The optimal conditions of C 2+ ion irradiation on Nitzschia sp. were discussed. • Get the “saddle type” survival curve. • One mutant whose lipid content improved significantly was selected. • The C 2+ ion irradiation didn’t change the algae's morphology and growth rate. - Abstract: Screening and nurturing algae with high productivity, high lipid content and strong stress resistance are very important in algae industry. In order to increase the lipid content, the Nitzschia sp. was irradiated with a 3 MeV C 2+ beam. The sample pretreatment method was optimized to obtain the best mutagenic condition and the survival ratio curve. The positive mutants with a significant improvement in lipid content were screened and their C 2+ mutagenic effects were analyzed by comparing the greasiness and growth characteristics with the wild type algae. Results showed that when the Nitzschia sp. was cultivated in nutritious medium containing 10% glycerol solution, and dried on the filter for 5 min after centrifugation, the realization of the microalgae heavy ion mutagenesis could be done. The survival ratio curve caused by C 2+ irradiation was proved to be “saddle-shaped”. A positive mutant was screened among 20 survivals after irradiation, the average lipid content of the mutation increased by 9.8% than the wild type after 4 generations. But the growth rate of the screened mutation didn’t change after the heavy ion implantation compared to the wild type algae

  4. A nonsense mutation in FMR1 causing fragile X syndrome

    DEFF Research Database (Denmark)

    Grønskov, Karen; Brøndum-Nielsen, Karen; Dedic, Alma

    2011-01-01

    Fragile X syndrome is a common cause of inherited intellectual disability. It is caused by lack of the FMR1 gene product FMRP. The most frequent cause is the expansion of a CGG repeat located in the 5'UTR of FMR1. Alleles with 200 or more repeats become hypermethylated and transcriptionally silent....... Only few patients with intragenic point mutations in FMR1 have been reported and, currently, routine analysis of patients referred for fragile X syndrome includes solely analysis for repeat expansion and methylation status. We identified a substitution in exon 2 of FMR1, c.80C>A, causing a nonsense...... mutation p.Ser27X, in a patient with classical clinical symptoms of fragile X syndrome. The mother who carried the mutation in heterozygous form presented with mild intellectual impairment. We conclude that further studies including western blot and DNA sequence analysis of the FMR1 gene should...

  5. The clinical presentation and genotype of protein C deficiency with double mutations of the protein C gene.

    Science.gov (United States)

    Inoue, Hirofumi; Terachi, Shin-Ichi; Uchiumi, Takeshi; Sato, Tetsuji; Urata, Michiyo; Ishimura, Masataka; Koga, Yui; Hotta, Taeko; Hara, Toshiro; Kang, Dongchon; Ohga, Shouichi

    2017-07-01

    Severe protein C (PC) deficiency is a rare heritable thrombophilia leading to thromboembolic events during the neonatal period. It remains unclear how individuals with complete PC gene (PROC) defects develop or escape neonatal stroke or purpura fulminans (PF). We studied the onset of disease and the genotype of 22 PC-deficient patients with double mutations in PROC based on our cohort (n = 12) and the previous reports (n = 10) in Japan. Twenty-two patients in 20 unrelated families had 4 homozygous and 18 compound heterozygous mutations. Sixteen newborns presented with PF (n = 11, 69%), intracranial thromboembolism and hemorrhage (n = 13, 81%), or both (n = 8, 50%), with most showing a plasma PC activity of <10%. Six others first developed overt thromboembolism when they were over 15 years of age, showing a median PC activity of 31% (range: 19-52%). Fifteen of the 22 patients (68%) had the five major mutations (G423VfsX82, V339M, R211W, M406I, and F181V) or two others (E68K and K193del) that have been reported in Japan. Three of the six late-onset cases, but none of the 16 neonatal cases, had the K193del mutation, which has been reported to be the most common variant of Chinese thrombophilia. A novel mutation of A309V was determined in a family of two patients with late onset. The genotype of double-PROC mutants might show less diversity than heterozygous mutants in terms of the timing of the onset of thrombophilia (newborn onset or late onset). © 2017 Wiley Periodicals, Inc.

  6. Screening for mutations in two exons of FANCG gene in Pakistani population.

    Science.gov (United States)

    Aymun, Ujala; Iram, Saima; Aftab, Iram; Khaliq, Saba; Nadir, Ali; Nisar, Ahmed; Mohsin, Shahida

    2017-06-01

    Fanconi anemia is a rare autosomal recessive disorder of genetic instability. It is both molecularly and clinically, a heterogeneous disorder. Its incidence is 1 in 129,000 births and relatively high in some ethnic groups. Sixteen genes have been identified among them mutations in FANCG gene are most common after FANCA and FANCC gene mutations. To study mutations in exon 3 and 4 of FANCG gene in Pakistani population. Thirty five patients with positive Diepoxybutane test were included in the study. DNA was extracted and amplified for exons 3 and 4. Thereafter Sequencing was done and analyzed for the presence of mutations. No mutation was detected in exon 3 whereas a carrier of known mutation c.307+1 G>T was found in exon 4 of the FANCG gene. Absence of any mutation in exon 3 and only one heterozygous mutation in exon 4 of FANCG gene points to a different spectrum of FA gene pool in Pakistan that needs extensive research in this area.

  7. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency.

    Science.gov (United States)

    Volk, Timo; Pannicke, Ulrich; Reisli, Ismail; Bulashevska, Alla; Ritter, Julia; Björkman, Andrea; Schäffer, Alejandro A; Fliegauf, Manfred; Sayar, Esra H; Salzer, Ulrich; Fisch, Paul; Pfeifer, Dietmar; Di Virgilio, Michela; Cao, Hongzhi; Yang, Fang; Zimmermann, Karin; Keles, Sevgi; Caliskaner, Zafer; Güner, S Ükrü; Schindler, Detlev; Hammarström, Lennart; Rizzi, Marta; Hummel, Michael; Pan-Hammarström, Qiang; Schwarz, Klaus; Grimbacher, Bodo

    2015-12-20

    Null mutations in genes involved in V(D)J recombination cause a block in B- and T-cell development, clinically presenting as severe combined immunodeficiency (SCID). Hypomorphic mutations in the non-homologous end-joining gene DCLRE1C (encoding ARTEMIS) have been described to cause atypical SCID, Omenn syndrome, Hyper IgM syndrome and inflammatory bowel disease-all with severely impaired T-cell immunity. By whole-exome sequencing, we investigated the molecular defect in a consanguineous family with three children clinically diagnosed with antibody deficiency. We identified perfectly segregating homozygous variants in DCLRE1C in three index patients with recurrent respiratory tract infections, very low B-cell numbers and serum IgA levels. In patients, decreased colony survival after irradiation, impaired proliferative response and reduced counts of naïve T cells were observed in addition to a restricted T-cell receptor repertoire, increased palindromic nucleotides in the complementarity determining regions 3 and long stretches of microhomology at switch junctions. Defective V(D)J recombination was complemented by wild-type ARTEMIS protein in vitro. Subsequently, homozygous or compound heterozygous DCLRE1C mutations were identified in nine patients from the same geographic region. We demonstrate that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency. This novel association broadens the clinical spectrum associated with ARTEMIS mutations. Clinicians should consider the possibility that an immunodeficiency with a clinically mild initial presentation could be a combined immunodeficiency, so as to provide appropriate care for affected patients. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS Gene

    Directory of Open Access Journals (Sweden)

    Yoko Nakajima

    2016-01-01

    Full Text Available Dihydropyrimidinase (DHP deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  9. HNPCC: Six new pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Epplen Joerg T

    2004-06-01

    Full Text Available Abstract Background Hereditary non-polyposis colorectal cancer (HNPCC is an autosomal dominant disease with a high risk for colorectal and endometrial cancer caused by germline mutations in DNA mismatch-repair genes (MMR. HNPCC accounts for approximately 2 to 5% of all colorectal cancers. Here we present 6 novel mutations in the DNA mismatch-repair genes MLH1, MSH2 and MSH6. Methods Patients with clinical diagnosis of HNPCC were counselled. Tumor specimen were analysed for microsatellite instability and immunohistochemistry for MLH1, MSH2 and MSH6 protein was performed. If one of these proteins was not detectable in the tumor mutation analysis of the corresponding gene was carried out. Results We identified 6 frameshift mutations (2 in MLH1, 3 in MSH2, 1 in MSH6 resulting in a premature stop: two mutations in MLH1 (c.2198_2199insAACA [p.N733fsX745], c.2076_2077delTG [p.G693fsX702], three mutations in MSH2 (c.810_811delGT [p.C271fsX282], c.763_766delAGTGinsTT [p.F255fsX282], c.873_876delGACT [p.L292fsX298] and one mutation in MSH6 (c.1421_1422dupTG [p.C475fsX480]. All six tumors tested for microsatellite instability showed high levels of microsatellite instability (MSI-H. Conclusions HNPCC in families with MSH6 germline mutations may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations.

  10. DPAGT1-CDG: Functional analysis of disease-causing pathogenic mutations and role of endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Patricia Yuste-Checa

    Full Text Available Pathogenic mutations in DPAGT1 are manifested as two possible phenotypes: congenital disorder of glycosylation DPAGT1-CDG (also known as CDG-Ij, and limb-girdle congenital myasthenic syndrome (CMS with tubular aggregates. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosamine phosphotransferase (GPT, the protein encoded by DPAGT1, is an endoplasmic reticulum (ER-resident protein involved in an initial step in the N-glycosylation pathway. The aim of the present study was to examine the effect of six variants in DPAGT1 detected in patients with DPAGT1-CDG, and the role of endoplasmic reticulum stress, as part of the search for therapeutic strategies to use against DPAGT1-CDG. The effect of the six mutations, i.e., c.358C>A (p.Leu120Met, c.791T>G (p.Val264Gly, c.901C>T (p.Arg301Cys, c.902G>A (p.Arg301His, c.1154T>G (p.Leu385Arg, and of the novel mutation c.329T>C (p.Phe110Ser, were examined via the analysis of DPAGT1 transcriptional profiles and GTP levels in patient-derived fibroblasts. In addition, the transient expression of different mutations was analysed in COS-7 cells. The results obtained, together with those of bioinformatic studies, revealed these mutations to affect the splicing process, the stability of GTP, or the ability of this protein to correctly localise in the ER membrane. The unfolded protein response (UPR; the response to ER stress was found not to be active in patient-derived fibroblasts, unlike that seen in cells from patients with PMM2-CDG or DPM1-CDG. Even so, the fibroblasts of patients with DPAGT1-CDG seemed to be more sensitive to the stressor tunicamycin. The present work improves our knowledge of DPAGT1-CDG and provides bases for developing tailored splicing and folding therapies.

  11. Novel Mitochondrial Homoplasmic T4216C Mutation in Iranian Patients with Friedreich Ataxia

    Directory of Open Access Journals (Sweden)

    M Heidari

    2010-06-01

    Full Text Available Introduction: The mitochondrial defects in Friedreich ataxia (FRDA have been reported in many researches. Friedreich ataxia is an autosomal recessive neurodegenerative disorder caused by decreased expression of the Frataxin protein. Frataxin deficiency leads to excessive free radical production and dysfunction of respiratory chain complexes. Mitochondrial DNA (mtDNA could be considered as a candidate modifier factor for FRDA disease. It prompted us to focus on the mtDNA and monitor the nucleotide changes of genome which are probably the cause of respiratory chain defects and reduced ATP generation. Methods: We searched the mitochondrial NADH dehydroganase I (ND1 gene by PCR-TTGE and DNA fragments showing abnormal banding patterns were sequenced for the identification of exact mutations. Results: In 20 patients, we detected 3 mtDNA mutations which is novel in Friedreich ataxia. T4216C mutation results in conversion of Tyrosine to Histidine in 313 amino acid locations in ND1 and bioinformatics studies show that ND1 protein loses sixth intramembrane α chain. Conclusion: Our results showed that ND1 gene mutations in FRDA samples are higher than normal controls (P<0.001. It is possible that mutations in mtDNA could constitute a predisposing factor in combination with environmental risk factors that could affect the age of onset and rate of disease progression.

  12. Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome

    DEFF Research Database (Denmark)

    Petitprez, Séverine; Jespersen, Thomas; Pruvot, Etienne

    2008-01-01

    S SCN5A mutation. METHODS AND RESULTS: SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. Sodium currents (I(Na)) were analysed using the whole-cell patch-clamp technique at 37 degrees C......AIMS: Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel Br....... The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (I(to)) was incorporated. A new mutation (C1850S) was identified in the Na(v)1.5 C-terminal domain. In HEK293 cells, mutant I(Na) density was decreased by 62% at -20 mV. Inactivation of mutant...

  13. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction.

    Science.gov (United States)

    Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping

    2011-08-15

    Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Characterization of mutations causing rifampicin and isoniazid resistance of Mycobacterium tuberculosis in Syria.

    Science.gov (United States)

    Madania, Ammar; Habous, Maya; Zarzour, Hana; Ghoury, Ifad; Hebbo, Barea

    2012-01-01

    In order to characterize mutations causing rifampicin and isoniazid resistance of M. tuberculosis in Syria, 69 rifampicin resistant (Rif(r)) and 72 isoniazid resistant (Inh(r)) isolates were screened for point mutations in hot spots of the rpoB, katG and inhA genes by DNA sequencing and real time PCR. Of 69 Rif(r) isolates, 62 (90%) had mutations in the rifampin resistance determining region (RRDR) of the rpoB gene, with codons 531 (61%), 526 (13%), and 516 (8.7%) being the most commonly mutated. We found two new mutations (Asp516Thr and Ser531Gly) described for the first time in the rpoB-RRDR in association with rifampicin resistance. Only one mutation (Ile572Phe) was found outside the rpoB-RRDR. Of 72 Inh(r) strains, 30 (41.6%) had a mutation in katGcodon315 (with Ser315Thr being the predominant alteration), and 23 (32%) harbored the inhA(-15C-->T) mutation. While the general pattern of rpoB-RRDR and katG mutations reflected those found worldwide, the prevalence of the inhA(-15C-->T mutation was above the value found in most other countries, emphasizing the great importance of testing the inhA(-15C-->T) mutation for prediction of isoniazid resistance in Syria. Sensitivity of a rapid test using real time PCR and 3'-Minor groove binder (MGB) probes in detecting Rif(r) and Inh(r) isolates was 90% and 69.4%, respectively. This demonstrates that a small set of MGB-probes can be used in real time PCR in order to detect most mutations causing resistance to rifampicin and isoniazid.

  15. Mutations in MARS identified in a specific type of pulmonary alveolar proteinosis alter methionyl-tRNA synthetase activity.

    Science.gov (United States)

    Comisso, Martine; Hadchouel, Alice; de Blic, Jacques; Mirande, Marc

    2018-05-18

    Biallelic missense mutations in MARS are responsible for rare but severe cases of pulmonary alveolar proteinosis (PAP) prevalent on the island of La Réunion. MARS encodes cytosolic methionyl-tRNA synthetase (MetRS), an essential translation factor. The multisystemic effects observed in patients with this form of PAP are consistent with a loss-of-function defect in an ubiquitously expressed enzyme. The pathophysiological mechanisms involved in MARS-related PAP are currently unknown. In this work, we analyzed the effect of the PAP-related mutations in MARS on the thermal stability and on the catalytic parameters of the MetRS mutants, relative to wild-type. The effect of these mutations on the structural integrity of the enzyme as a member of the cytosolic multisynthetase complex was also investigated. Our results establish that the PAP-related substitutions in MetRS impact the tRNA Met -aminoacylation reaction especially at the level of methionine recognition, and suggest a direct link between the loss of activity of the enzyme and the pathological disorders in PAP. © 2018 Federation of European Biochemical Societies.

  16. Targeted 'next-generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations.

    Science.gov (United States)

    Jimenez, Nelson Lopez; Flannick, Jason; Yahyavi, Mani; Li, Jiang; Bardakjian, Tanya; Tonkin, Leath; Schneider, Adele; Sherr, Elliott H; Slavotinek, Anne M

    2011-12-28

    Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.

  17. Somatic mosaicism of a point mutation in the dystrophin gene in a patient presenting with an asymmetrical muscle weakness and contractures

    NARCIS (Netherlands)

    Helderman-van den Enden, A. T. J. M.; Ginjaar, H. B.; Kneppers, A. L. J.; Bakker, E.; Breuning, M. H.; de Visser, M.

    2003-01-01

    We describe a patient with somatic mosaicism of a point mutation in the dystrophin gene causing benign muscular dystrophy with an unusual asymmetrical distribution of muscle weakness and contractures. To our knowledge this is the first patient with asymmetrical weakness and contractures in an

  18. [Clinical significance of drug resistance-associated mutations in treatment of hepatitis C with direct-acting antiviral agents].

    Science.gov (United States)

    Li, Z; Chen, Z W; Ren, H; Hu, P

    2017-03-20

    Direct-acting antiviral agents (DAAs) achieve a high sustained virologic response rate in the treatment of chronic hepatitis C virus infection. However, drug resistance-associated mutations play an important role in treatment failure and have attracted more and more attention. This article elaborates on the clinical significance of drug resistance-associated mutations from the aspects of their definition, association with genotype, known drug resistance-associated mutations and their prevalence rates, the impact of drug resistance-associated mutations on treatment naive and treatment-experienced patients, and the role of clinical detection, in order to provide a reference for clinical regimens with DAAs and help to achieve higher sustained virologic response rates.

  19. Selection-Mutation Dynamics of Signaling Games

    Directory of Open Access Journals (Sweden)

    Josef Hofbauer

    2015-01-01

    Full Text Available We study the structure of the rest points of signaling games and their dynamic behavior under selection-mutation dynamics by taking the case of three signals as our canonical example. Many rest points of the replicator dynamics of signaling games are not isolated and, therefore, not robust under perturbations. However, some of them attract open sets of initial conditions. We prove the existence of certain rest points of the selection-mutation dynamics close to Nash equilibria of the signaling game and show that all but the perturbed rest points close to strict Nash equilibria are dynamically unstable. This is an important result for the evolution of signaling behavior, since it shows that the second-order forces that are governed by mutation can increase the chances of successful signaling.

  20. Identification of a novel homozygous mutation, TMPRSS3: c.535G>A, in a Tibetan family with autosomal recessive non-syndromic hearing loss.

    Directory of Open Access Journals (Sweden)

    Dongyan Fan

    Full Text Available Different ethnic groups have distinct mutation spectrums associated with inheritable deafness. In order to identify the mutations responsible for congenital hearing loss in the Tibetan population, mutation screening for 98 deafness-related genes by microarray and massively parallel sequencing of captured target exons was conducted in one Tibetan family with familiar hearing loss. A homozygous mutation, TMPRSS3: c.535G>A, was identified in two affected brothers. Both parents are heterozygotes and an unaffected sister carries wild type alleles. The same mutation was not detected in 101 control Tibetan individuals. This missense mutation results in an amino acid change (p.Ala179Thr at a highly conserved site in the scavenger receptor cysteine rich (SRCR domain of the TMPRSS3 protein, which is essential for protein-protein interactions. Thus, this mutation likely affects the interactions of this transmembrane protein with extracellular molecules. According to our bioinformatic analyses, the TMPRSS3: c.535G>A mutation might damage protein function and lead to hearing loss. These data suggest that the homozygous mutation TMPRSS3: c.535G>A causes prelingual hearing loss in this Tibetan family. This is the first TMPRSS3 mutation found in the Chinese Tibetan population.

  1. Real-time resolution of point mutations that cause phenovariance in mice

    Science.gov (United States)

    Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Lyon, Stephen; Pratt, David; Hildebrand, Sara; Choi, Jin Huk; Zhang, Zhao; Zeng, Ming; Wang, Kuan-wen; Turer, Emre; Chen, Zhe; Zhang, Duanwu; Yue, Tao; Wang, Ying; Shi, Hexin; Wang, Jianhui; Sun, Lei; SoRelle, Jeff; McAlpine, William; Hutchins, Noelle; Zhan, Xiaoming; Fina, Maggy; Gobert, Rochelle; Quan, Jiexia; Kreutzer, McKensie; Arnett, Stephanie; Hawkins, Kimberly; Leach, Ashley; Tate, Christopher; Daniel, Chad; Reyna, Carlos; Prince, Lauren; Davis, Sheila; Purrington, Joel; Bearden, Rick; Weatherly, Jennifer; White, Danielle; Russell, Jamie; Sun, Qihua; Tang, Miao; Li, Xiaohong; Scott, Lindsay; Moresco, Eva Marie Y.; McInerney, Gerald M.; Karlsson Hedestam, Gunilla B.; Xie, Yang; Beutler, Bruce

    2015-01-01

    With the wide availability of massively parallel sequencing technologies, genetic mapping has become the rate limiting step in mammalian forward genetics. Here we introduce a method for real-time identification of N-ethyl-N-nitrosourea-induced mutations that cause phenotypes in mice. All mutations are identified by whole exome G1 progenitor sequencing and their zygosity is established in G2/G3 mice before phenotypic assessment. Quantitative and qualitative traits, including lethal effects, in single or multiple combined pedigrees are then analyzed with Linkage Analyzer, a software program that detects significant linkage between individual mutations and aberrant phenotypic scores and presents processed data as Manhattan plots. As multiple alleles of genes are acquired through mutagenesis, pooled “superpedigrees” are created to analyze the effects. Our method is distinguished from conventional forward genetic methods because it permits (1) unbiased declaration of mappable phenotypes, including those that are incompletely penetrant (2), automated identification of causative mutations concurrent with phenotypic screening, without the need to outcross mutant mice to another strain and backcross them, and (3) exclusion of genes not involved in phenotypes of interest. We validated our approach and Linkage Analyzer for the identification of 47 mutations in 45 previously known genes causative for adaptive immune phenotypes; our analysis also implicated 474 genes not previously associated with immune function. The method described here permits forward genetic analysis in mice, limited only by the rates of mutant production and screening. PMID:25605905

  2. Naturally occurring hepatitis C virus protease inhibitors resistance-associated mutations among chronic hepatitis C genotype 1b patients with or without HIV co-infection.

    Science.gov (United States)

    Cao, Ying; Zhang, Yu; Bao, Yi; Zhang, Renwen; Zhang, Xiaxia; Xia, Wei; Wu, Hao; Xu, Xiaoyuan

    2016-05-01

    The aim of this study was to measure the frequency of natural mutations in hepatitis C virus (HCV) mono-infected and HIV/HCV co-infected protease inhibitor (PI)-naive patients. Population sequence of the non-structural (NS)3 protease gene was evaluated in 90 HCV mono-infected and 96 HIV/HCV co-infected PI treatment-naive patients. The natural prevalence of PI resistance mutations in both groups was compared. Complete HCV genotype 1b NS3 sequence information was obtained for 152 (81.72%) samples. Seven sequences (8.33%) of the 84 HCV mono-infected patients and 21 sequences (30.88%) of the 68 HIV/HCV co-infected patients showed amino acid substitutions associated with HCV PI resistance. There was a significant difference in the natural prevalence of PI resistance mutations between these two groups (P = 0.000). The mutations T54S, R117H and N174F were observed in 1.19%, 5.95% and 1.19% of HCV mono-infected patients. The mutations F43S, T54S, Q80K/R, R155K, A156G/V, D168A/E/G and V170A were found in 1.47%, 4.41%, 1.47%/1.47%, 2.94%, 23.53%/1.47%, 1.47%/1.47%/1.47% and 1.47% of HIV/HCV co-infected patients, respectively. In addition, the combination mutations in the NS3 region were detected only in HIV/HCV genotype 1b co-infected patients. Naturally occurring HCV PI resistance mutations existed in HCV mono-infected and HIV/HCV co-infected genotype 1b PI-naive patients. HIV co-infection was associated with a greater frequency of PI resistance mutations. The impact of HIV infection on baseline HCV PI resistance mutations and treatment outcome in chronic hepatitis C (CHC) patients should be further analyzed. © 2015 The Japan Society of Hepatology.

  3. A mutational analysis and molecular dynamics simulation of quinolone resistance proteins QnrA1 and QnrC from Proteus mirabilis

    Directory of Open Access Journals (Sweden)

    Ye Xinyu

    2010-10-01

    Full Text Available Abstract Background The first report on the transferable, plasmid-mediated quinolone-resistance determinant qnrA1 was in 1998. Since then, qnr alleles have been discovered worldwide in clinical strains of Gram-negative bacilli. Qnr proteins confer quinolone resistance, and belong to the pentapeptide repeat protein (PRP family. Several PRP crystal structures have been solved, but little is known about the functional significance of their structural arrangement. Results We conducted random and site-directed mutagenesis on qnrA1 and on qnrC, a newly identified quinolone-resistance gene from Proteus mirabilis. Many of the Qnr mutants lost their quinolone resistance function. The highly conserved hydrophobic Leu or Phe residues at the center of the pentapeptide repeats are known as i sites, and loss-of-function mutations included replacement of the i site hydrophobic residues with charged residues, replacing the i-2 site, N-terminal to the i residues, with bulky side-chain residues, introducing Pro into the β-helix coil, deletion of the N- and C-termini, and excision of a central coil. Molecular dynamics simulations and homology modeling demonstrated that QnrC overall adopts a stable β-helix fold and shares more similarities with MfpA than with other PRP structures. Based on homology modeling and molecular dynamics simulation, the dysfunctional point mutations introduced structural deformations into the quadrilateral β-helix structure of PRPs. Of the pentapeptides of QnrC, two-thirds adopted a type II β-turn, while the rest adopted type IV turns. A gap exists between coil 2 and coil 3 in the QnrC model structure, introducing a structural flexibility that is similar to that seen in MfpA. Conclusion The hydrophobic core and the β-helix backbone conformation are important for maintaining the quinolone resistance property of Qnr proteins. QnrC may share structural similarity with MfpA.

  4. Retinal vascular abnormalities and dragged maculae in a carrier with a new NDP mutation (c.268delC) that caused severe Norrie disease in the proband.

    Science.gov (United States)

    Lin, Phoebe; Shankar, Suma P; Duncan, Jacque; Slavotinek, Anne; Stone, Edwin M; Rutar, Tina

    2010-02-01

    Norrie disease (ND) is caused by mutations in the ND pseudoglioma (NDP) gene (MIM 300658) located at chromosome Xp11.4-p11.3. ND is characterized by abnormal retinal vascular development and vitreoretinal disorganization presenting at birth. Systemic manifestations include sensorineural deafness, progressive mental disorder, behavioral and psychological problems, growth failure, and seizures. Other vitreoretinopathies that are associated with NDP gene mutations include X-linked familial exudative vitreoretinopathy, Coats disease, persistent fetal vasculature, and retinopathy of prematurity. Phenotypic variability associated with NDP gene mutations has been well documented in affected male patients. However, there are limited data on signs in female carriers, with mild peripheral retinal abnormalities reported in both carrier and noncarrier females of families with NDP gene mutations. Here, we report a family harboring a single base-pair deletion, c.268delC, in the NDP gene causing a severe ND phenotype in the male proband and peripheral retinal vascular abnormalities with dragged maculae similar to those observed in familial exudative vitreoretinopathy in his carrier mother. Copyright (c) 2010 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  5. Disruption Neutral Point Experiment on Alcator C-Mod

    Science.gov (United States)

    Granetz, R. S.; Nakamura, Y.

    2000-10-01

    Disruptions of single-null elongated plasmas generally result in loss of vertical position control, leading to a current quench occurring at the top or bottom of the machine, with all the attendant problems of halo and eddy currents flowing in divertor structures. On JT-60U, it has been found that if the plasma is operated with its magnetic axis at a particular height, called the neutral point, the initial vertical drift after a thermal quench is significantly slower than usual, and sometimes can even be arrested, thereby avoiding a current quench in the divertor region entirely. In an ongoing collaboration between MIT and JAERI, the neutral point concept is being tested in Alcator C-Mod, which has a significantly higher plasma elongation than JT-60U (1.65 vs 1.3). Calculations using TSC predict a neutral point at z~=+1 cm above the midplane (a=22 cm). The existence of a neutral point has now been experimentally confirmed, albeit at a height of z=+2.7 cm. The plasma has remained vertically stable for up to 9 ms after the disruption thermal quench, which in principle, is long enough for the PF control system to respond, if programmed appropriately. In addition, the physics of the neutral point stability on C-Mod appears to be somewhat different than that on JT-60U.

  6. Novel point mutations and mutational complexes in the enhancer II, core promoter and precore regions of hepatitis B virus genotype D1 associated with hepatocellular carcinoma in Saudi Arabia.

    Science.gov (United States)

    Khan, Anis; Al Balwi, Mohammed A; Tanaka, Yasuhito; Hajeer, Ali; Sanai, Faisal M; Al Abdulkarim, Ibrahim; Al Ayyar, Latifah; Badri, Motasim; Saudi, Dib; Tamimi, Waleed; Mizokami, Masashi; Al Knawy, Bandar

    2013-12-15

    In this study, a cohort of 182 patients [55 hepatocellular carcinoma (HCC) and 127 non-HCC] infected with hepatitis B virus (HBV) in Saudi Arabia was investigated to study the relationship between sequence variation in the enhancer II (EnhII), basal core promoter (BCP) and precore regions of HBV genotype D (HBV/D) and the risk of HCC. HBV genotypes were determined by sequencing analysis and/or enzyme-linked immunosorbent assay. Variations in the EnhII, BCP and precore regions were compared between 107 non-HCC and 45 HCC patients infected with HBV/D, followed by age-matched analysis of 40 cases versus equal number of controls. Age and male gender were significantly associated with HCC (p = 0.0001 and p = 0.03, respectively). Serological markers such as aspartate aminotransferase, albumin and anti-HBe were significantly associated with HCC (p = 0.0001 for all), whereas HBeAg positivity was associated with non-HCC (p = 0.0001). The most prevalent HBV genotype was HBV/D (94%), followed by HBV/E (4%), HBV/A (1.6%) and HBV/C (0.5%). For HBV/D1, genomic mutations associated with HCC were T1673/G1679, G1727, C1741, C1761, A1757/T1764/G1766, T1773, T1773/G1775 and C1909. Age- and gender-adjusted stepwise logistic regression analysis indicated that mutations G1727 [odds ratio (OR) = 18.3; 95% confidence interval (CI) = 2.8-118.4; p = 0.002], A1757/T1764/G1766 (OR = 4.7; 95% CI = 1.3-17.2; p = 0.01) and T1773 (OR = 14.06; 95% CI = 2.3-84.8; p = 0.004) are independent predictors of HCC development. These results implicate novel individual and combination patterns of mutations in the X/precore region of HBV/D1 as predictors of HCC. Risk stratification based on these mutation complexes would be useful in determining high-risk patients and improving diagnostic and treatment strategies for HBV/D1. Copyright © 2013 UICC.

  7. Knock-in mice harboring a Ca(2+) desensitizing mutation in cardiac troponin C develop early onset dilated cardiomyopathy.

    Science.gov (United States)

    McConnell, Bradley K; Singh, Sonal; Fan, Qiying; Hernandez, Adriana; Portillo, Jesus P; Reiser, Peter J; Tikunova, Svetlana B

    2015-01-01

    The physiological consequences of aberrant Ca(2+) binding and exchange with cardiac myofilaments are not clearly understood. In order to examine the effect of decreasing Ca(2+) sensitivity of cTnC on cardiac function, we generated knock-in mice carrying a D73N mutation (not known to be associated with heart disease in human patients) in cTnC. The D73N mutation was engineered into the regulatory N-domain of cTnC in order to reduce Ca(2+) sensitivity of reconstituted thin filaments by increasing the rate of Ca(2+) dissociation. In addition, the D73N mutation drastically blunted the extent of Ca(2+) desensitization of reconstituted thin filaments induced by cTnI pseudo-phosphorylation. Compared to wild-type mice, heterozygous knock-in mice carrying the D73N mutation exhibited a substantially decreased Ca(2+) sensitivity of force development in skinned ventricular trabeculae. Kaplan-Meier survival analysis revealed that median survival time for knock-in mice was 12 weeks. Echocardiographic analysis revealed that knock-in mice exhibited increased left ventricular dimensions with thinner walls. Echocardiographic analysis also revealed that measures of systolic function, such as ejection fraction (EF) and fractional shortening (FS), were dramatically reduced in knock-in mice. In addition, knock-in mice displayed electrophysiological abnormalities, namely prolonged QRS and QT intervals. Furthermore, ventricular myocytes isolated from knock-in mice did not respond to β-adrenergic stimulation. Thus, knock-in mice developed pathological features similar to those observed in human patients with dilated cardiomyopathy (DCM). In conclusion, our results suggest that decreasing Ca(2+) sensitivity of the regulatory N-domain of cTnC is sufficient to trigger the development of DCM.

  8. Resistance to cyclosporin A derives from mutations in hepatitis C virus nonstructural proteins.

    Science.gov (United States)

    Arai, Masaaki; Tsukiyama-Kohara, Kyoko; Takagi, Asako; Tobita, Yoshimi; Inoue, Kazuaki; Kohara, Michinori

    2014-05-23

    Cyclosporine A (CsA) is an immunosuppressive drug that targets cyclophilins, cellular cofactors that regulate the immune system. Replication of hepatitis C virus (HCV) is suppressed by CsA, but the molecular basis of this suppression is still not fully understood. To investigate this suppression, we cultured HCV replicon cells (Con1, HCV genotype 1b, FLR-N cell) in the presence of CsA and obtained nine CsA-resistant FLR-N cell lines. We determined full-length HCV sequences for all nine clones, and chose two (clones #6 and #7) of the nine clones that have high replication activity in the presence of CsA for further analysis. Both clones showed two consensus mutations, one in NS3 (T1280V) and the other in NS5A (D2292E). Characterization of various mutants indicated that the D2292E mutation conferred resistance to high concentrations of CsA (up to 2 μM). In addition, the missense mutation T1280V contributed to the recovery of colony formation activity. The effects of these mutations are also evident in two established HCV replicon cell lines-HCV-RMT ([1], genotype 1a) and JFH1 (genotype 2a). Moreover, three other missense mutations in NS5A-D2303H, S2362G, and E2414K-enhanced the resistance to CsA conferred by D2292E; these double or all quadruple mutants could resist approximately 8- to 25-fold higher concentrations of CsA than could wild-type Con1. These four mutations, either as single or combinations, also made Con1 strain resistant to two other cyclophilin inhibitors, N-methyl-4-isoleucine-cyclosporin (NIM811) or Debio-025. Interestingly, the changes in IC50 values that resulted from each of these mutations were the lowest in the Debio-025-treated cells, indicating its highest resistant activity against the adaptive mutation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Mutation analysis of the cathepsin C gene in Indian families with Papillon-Lefèvre syndrome

    Directory of Open Access Journals (Sweden)

    Srivastava Satish

    2003-07-01

    Full Text Available Abstract Background PLS is a rare autosomal recessive disorder characterized by early onset periodontopathia and palmar plantar keratosis. PLS is caused by mutations in the cathepsin C (CTSC gene. Dipeptidyl-peptidase I encoded by the CTSC gene removes dipeptides from the amino-terminus of protein substrates and mainly plays an immune and inflammatory role. Several mutations have been reported in this gene in patients from several ethnic groups. We report here mutation analysis of the CTSC gene in three Indian families with PLS. Methods Peripheral blood samples were obtained from individuals belonging to three Indian families with PLS for genomic DNA isolation. Exon-specific intronic primers were used to amplify DNA samples from individuals. PCR products were subsequently sequenced to detect mutations. PCR-SCCP and ASOH analyses were used to determine if mutations were present in normal control individuals. Results All patients from three families had a classic PLS phenotype, which included palmoplantar keratosis and early-onset severe periodontitis. Sequence analysis of the CTSC gene showed three novel nonsense mutations (viz., p.Q49X, p.Q69X and p.Y304X in homozygous state in affected individuals from these Indian families. Conclusions This study reported three novel nonsense mutations in three Indian families. These novel nonsense mutations are predicted to produce truncated dipeptidyl-peptidase I causing PLS phenotype in these families. A review of the literature along with three novel mutations reported here showed that the total number of mutations in the CTSC gene described to date is 41 with 17 mutations being located in exon 7.

  10. Rocket experiment METS - Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  11. Rocket experiment METS Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  12. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy.

    Science.gov (United States)

    Estep, Anne L; Tidyman, William E; Teitell, Michael A; Cotter, Philip D; Rauen, Katherine A

    2006-01-01

    Costello syndrome (CS) is a complex developmental disorder involving characteristic craniofacial features, failure to thrive, developmental delay, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Based on similarities with other cancer syndromes, we previously hypothesized that CS is likely due to activation of signal transduction through the Ras/MAPK pathway [Tartaglia et al., 2003]. In this study, the HRAS coding region was sequenced for mutations in a large, well-characterized cohort of 36 CS patients. Heterogeneous missense point mutations predicting an amino acid substitution were identified in 33/36 (92%) patients. The majority (91%) had a 34G --> A transition in codon 12. Less frequent mutations included 35G --> C (codon 12) and 37G --> T (codon 13). Parental samples did not have an HRAS mutation supporting the hypothesis of de novo heterogeneous mutations. There is phenotypic variability among patients with a 34G --> A transition. The most consistent features included characteristic facies and skin, failure to thrive, developmental delay, musculoskeletal abnormalities, visual impairment, cardiac abnormalities, and generalized hyperpigmentation. The two patients with 35G --> C had cardiac arrhythmias whereas one patient with a 37G --> T transversion had an enlarged aortic root. Of the patients with a clinical diagnosis of CS, neoplasia was the most consistent phenotypic feature for predicating an HRAS mutation. To gain an understanding of the relationship between constitutional HRAS mutations and malignancy, HRAS was sequenced in an advanced biphasic rhabdomyosarcoma/fibrosarcoma from an individual with a 34G --> A mutation. Loss of the wild-type HRAS allele was observed, suggesting tumorigenesis in CS patients is accompanied by additional somatic changes affecting HRAS. Finally, due to phenotypic overlap between CS and cardio-facio-cutaneous (CFC) syndromes, the HRAS coding region was sequenced in a well-characterized CFC cohort

  13. MET Activation and Physical Dynamics of the Metastatic Process: The Paradigm of Cancers of Unknown Primary Origin

    Directory of Open Access Journals (Sweden)

    Giulia M. Stella

    2017-10-01

    Full Text Available The molecular and cellular mechanisms which drive metastatic spread are the topic of constant debate and scientific research due to the potential implications for cancer patients' prognosis. In addition to genetics and environmental factors, mechanics of single cells and physical interaction with the surrounding environment play relevant role in defining invasive phenotype. Reconstructing the physical properties of metastatic clones may help to clarify still open issues in disease progression as well as to lead to new diagnostic and therapeutic approaches. In this perspective cancer of unknown primary origin (CUP identify the ideal model to study physical interactions and forces involved in the metastatic process. We have previously demonstrated that MET oncogene is mutated with unexpected high frequency in CUPs. We here analyze and discuss how the MET activation by somatic mutation may affect physical properties in giving rise to such a highly malignant syndrome, as that defined by CUP.

  14. Association of HFE gene C282Y and H63D mutations with liver cirrhosis in the Lithuanian population.

    Science.gov (United States)

    Juzėnas, Simonas; Kupčinskas, Juozas; Valantienė, Irena; Šumskienė, Jolanta; Petrenkienė, Vitalija; Kondrackienė, Jūrate; Kučinskas, Laimutis; Kiudelis, Gediminas; Skiecevičienė, Jurgita; Kupčinskas, Limas

    2016-01-01

    Liver cirrhosis is the end-stage disease of chronic liver injury. Due to differences in the natural course of chronic liver diseases, identification of genetic factors that influence individual outcomes is warranted. HFE-linked hereditary hemochromatosis (HH) predisposes disease progression to cirrhosis; however, the role of heterozygous C282Y or H63D mutations in the development of cirrhosis in the presence of other etiological factors is still debated. The aim of this study was to determine the association between heterozygous C282Y and H63D mutations and non-HH liver cirrhosis in Lithuanian population. The patient cohort consisted of 209 individuals. Diagnosis of cirrhosis was confirmed by clinical, laboratory parameters, liver biopsy, and radiological imaging. Control samples were obtained from 1005 randomly selected unrelated healthy individuals. HFE gene mutations were determined using the PCR-RFLP method. The most common causes of cirrhosis were hepatitis C (33.9%), hepatitis B (13.6%), and alcohol (25.8%). C282Y allele was associated with the presence of cirrhosis (OR=2.07; P=0.005); this was also observed under recessive model for C282Y (OR=2.06, P=0.008). The prevalence of C282Y allele was higher in cirrhotic men than in controls (7.0% vs. 2.8%, P=0.002). The carriage of H63D risk allele (OR=1.54; P=0.02), heterozygous C282Y/wt and homozygous H63D/H63D genotypes were associated with liver cirrhosis in males (OR=2.48, P=0.008, and OR=4.13, P=0.005, respectively). Heterozygous C282Y mutation of the HFE gene was associated with liver cirrhosis in the Lithuanian population. In gender-related analysis, heterozygous C282Y and homozygous H63D mutations were linked to liver cirrhosis in men, not in women. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Remembering the early days of the Met Lab

    International Nuclear Information System (INIS)

    Katz, J.J.

    1990-01-01

    The Met Lab was set up by the war-time Manhattan District, US Corp of Engineers to (i) find a system using normal uranium in which a chain reaction would occur; (ii) to show that if such a chain reaction did occur, it would be possible to separate plutonium chemically from the uranium matrix and the fission products formed in the chain reactions; and (iii) to prepare plans for the large-scale production of plutonium. Chemistry Section C-1 of the Met Lab was assigned the responsibility for developing separation methods for plutonium production on the industrial scale. This report describes some aspects of daily life in Section C-1

  16. In silico reversal of repeat-induced point mutation (RIP identifies the origins of repeat families and uncovers obscured duplicated genes

    Directory of Open Access Journals (Sweden)

    Hane James K

    2010-11-01

    Full Text Available Abstract Background Repeat-induced point mutation (RIP is a fungal genome defence mechanism guarding against transposon invasion. RIP mutates the sequence of repeated DNA and over time renders the affected regions unrecognisable by similarity search tools such as BLAST. Results DeRIP is a new software tool developed to predict the original sequence of a RIP-mutated region prior to the occurrence of RIP. In this study, we apply deRIP to the genome of the wheat pathogen Stagonospora nodorum SN15 and predict the origin of several previously uncharacterised classes of repetitive DNA. Conclusions Five new classes of transposon repeats and four classes of endogenous gene repeats were identified after deRIP. The deRIP process is a new tool for fungal genomics that facilitates the identification and understanding of the role and origin of fungal repetitive DNA. DeRIP is open-source and is available as part of the RIPCAL suite at http://www.sourceforge.net/projects/ripcal.

  17. SCREENING OF PROTEASE INHIBITORS RESISTANCE MUTATIONS IN HEPATITIS C VIRUS ISOLATES INFECTING ROMANIAN PATIENTS UNEXPOSED TO TRIPLE THERAPY.

    Science.gov (United States)

    Dinu, Sorin; Calistru, Petre-Iacob; Ceauşu, Emanoil; Târdeil, Graţiela; Oprişan, Gabriela

    2015-01-01

    Although the European recommendations include the use of new antiviral drugs for the treatment of hepatitis C, in Romania the current treatment remains interferon plus ribavirin. First generation viral protease inhibitors (i.e. boceprevir, telaprevir), which have raised the chances of obtaining viral clearance in up to 70% of infection cases produced by genotype 1 isolates, have not been introduced yet as standard treatment in our country. The success of these new antivirals is limited by the occurrence and selection of resistance mutations during therapy. We set-up a molecular study aiming to detect any resistance mutations to boceprevir and telaprevir harbored by hepatitis C isolates infecting Romanian patients naïve to viral protease inhibitors. Since these new antivirals are efficient and approved for genotype 1 infection, viral samples were genotyped following a protocol previously developed by our research group. We analyzed by both population sequencing and molecular cloning and sequencing the NS3 protease region of hepatitis C virus isolates infecting patients which were not previously exposed to boceprevir and telaprevir. All the analyzed samples were subtype 1b and resembled the samples collected in recent years from Romanian patients. Molecular cloning followed by sequencing showed great intra-host diversity, which is known to represent the source of isolates with different resistance phenotypes. Both population sequencing and molecular cloning followed by clone sequencing revealed two boceprevir resistance mutations (T54S and V55A), respectively, a telaprevir resistance mutation (T54S) in the sequences obtained from a patient with chronic hepatitis C. To our knowledge, this is the first study indicating the existence of pre-treatment resistance mutations to boceprevir and telaprevir in hepatitis C virus isolates infecting Romanian patients.

  18. Novel gene PUS3 c.A212G mutation in Ukrainian family with intellectual disability

    Directory of Open Access Journals (Sweden)

    Gulkovskyi R. V.

    2015-04-01

    Full Text Available Aim. To evaluate a possible role of a novel c.A212G substitution in the PUS3 gene at intellectual disability (ID. Methods. The observed group consisted of the ID Ukrainian family members (parents and two affected children and the control group – of 300 healthy individuals from general population of Ukraine. Sanger sequencing of the PUS3 gene exon 1 was performed for the family members. Polymorphic variants of c.A212G were analyzed using ARMS PCR. The homology models of wild type and p.Y71C mutant catalytic domains of human Pus3 were generated using the crystal structure of the human Pus1 catalytic domain (PDB ID: 4NZ6 as a template. Results. It was shown that the father of the affected siblings was the c.A212G substitution heterozygous carrier whereas the mother was a wild type allele homozygote, and the exom sequencing result was confirmed – the affected children are 212G homozygotes. We supposed de novo mutation in the maternal germ line. A low frequency of 212G allele (0.0017 was shown in the population of Ukraine. Homology modelling of the wild type and p.Y71C mutant catalytic domain of human Pus3 revealed that substitution p.Y71C is located in close proximity to its active site. Conclusions. The absence of hypoproteinemia in our patients, homozygous for the 212C allele allows us to assume that the mutation c.A212G PUS3 is rather neutral and cannot be the major cause of ID. However, considering a low frequency of the 212G allele in the population and close localization of p.Y71C substitution to the active site of hPus3 we cannot exclude that the c.A212G mutation in PUS3 may be a modifier for some pathologies including syndromic ID.

  19. Mast Cell Leukaemia: c-KIT Mutations Are Not Always Positive

    Directory of Open Access Journals (Sweden)

    Magalie Joris

    2012-01-01

    Full Text Available Mast cell leukemia (MCL is a rare and aggressive disease with poor prognosis and short survival time. D816V c-KIT mutation is the most frequent molecular abnormality and plays a crucial role in the pathogenesis and development of the disease. Thus, comprehensive diagnostic investigations and molecular studies should be carefully carried out to facilitate the therapeutic choice. A MCL patient’s case with rare phenotypic and genotypic characteristics is described with review of major clinical biological and therapeutic approaches in MCL.

  20. UK academics share their thoughts on Hinkley Point C

    International Nuclear Information System (INIS)

    Dalton, David

    2016-01-01

    The proposed Hinkley Point C nuclear power plant project has experienced controversy in the public since its inception. However the proposed Hinkley plant has many benefits. It will be the biggest construction site in Europe, providing 25,000 jobs. It will generate low carbon energy, providing enough power for six million homes, and supplying seven per cent of the UK's electricity needs over its 60 year lifetime. Six experts from Imperial College London, one of Europe's top science-based universities, give their opinions on Hinkley Point C.