WorldWideScience

Sample records for c-deoxyglucose uptake induced

  1. [14C]2-deoxyglucose uptake in ground squirrel brain during hibernation

    International Nuclear Information System (INIS)

    Kilduff, T.S.; Sharp, F.R.; Heller, H.C.

    1982-01-01

    Autoradiographic patterns of [14C]2-deoxyglucose uptake are described throughout the brains of hibernating and euthermic ground squirrels. Autoradiographs of the brains of hibernating animals are generally homogeneous in comparison to euthermic animals; hence, the relative 2-deoxyglucose uptake (R2DGU) of gray to white matter for the majority of the 85 neural structures examined decreases during hibernation. Two categories of structures are identified as potentially important in hibernation: (1) structures that have the highest R2DGU during hibernation (cochlear nucleus, paratrigeminal nucleus, and superior colliculus) and (2) structures that undergo the least reduction in R2DGU in the transition from euthermia to hibernation (suprachiasmatic nucleus and lateral septal nucleus). The percentage of reduction in R2DGU that a structure undergoes in the transition from euthermia to hibernation is proportional to the R2DGU of that structure during euthermia. The suprachiasmatic, paratrigeminal, and cochlear nuclei undergo less of a reduction than would be predicted from this relationship and may be particularly important during hibernation. Sensory nuclei that receive primary afferent projections are among the structures with the highest R2DGU during hibernation. These metabolically active structures may be responsible for the sensitivity of the hibernator to environmental stimuli

  2. Regional changes in brain 2-14C-deoxyglucose uptake induced by convulsant and non-convulsant doses of lindane

    International Nuclear Information System (INIS)

    Sanfeliu, C.; Sola, C.; Camon, L.; Martinez, E.; Rodriguez-Farre, E.

    1990-01-01

    Lindane-induced dose- and time-related changes in regional 2-14C-deoxyglucose (2-DG) uptake were examined in 59 discrete rat brain structures using the 2-DG autoradiographic technique. At different times (0.5-144 hr) after administration of a seizure-inducing single dose of lindane (60 mg/kg), 2-DG uptake was significantly increased in 18 cortical and subcortical regions mainly related to the limbic system (e.g., Ammon's horn, dentate gyrus, septal nuclei, nucleus accumbens, olfactory cortex) and extrapyramidal and sensory-motor areas (e.g., cerebellar cortex, red nucleus, medial vestibular nucleus). There was also a significant increase in superior colliculus layer II. In addition, significant decreases occurred in a group of 6 regions (e.g., auditory and motor cortices). Non-convulsing animals treated with the same dose of lindane showed a regional pattern of 2-DG uptake less modified than the convulsant group. A non-convulsant single dose of lindane (30 mg/kg) also modified significantly the 2-DG uptake (0.5-24 hr) in some brain areas. Although the various single doses of lindane tested produced different altered patterns of brain 2-DG uptake, some structures showed a similar trend in their modification (e.g., superior colliculi and accumbens, raphe and red nuclei). Repeated non-convulsant doses of lindane produced defined and long-lasting significant elevations of 2-DG uptake in some subcortical structures. Considering the treated groups all together, 2-DG uptake increased significantly in 26 of the 59 regions examined but only decreased significantly in 9 of them during the course of lindane effects. This fact can be related to the stimulant action described for this neurotoxic agent. The observed pattern provides a descriptive approach to the functional alterations occurring in vivo during the course of lindane intoxication

  3. Uptake of [14C]deoxyglucose into brain of young rats with inherited hydrocephalus

    International Nuclear Information System (INIS)

    Richards, H.K.; Bucknall, R.M.; Jones, H.C.; Pickard, J.D.

    1989-01-01

    The effect of hydrocephalus on cerebral glucose utilization as reflected by deoxyglucose uptake has been examined in rats with inherited hydrocephalus at 10, 20, and 28 days after birth using a semiquantitative method. Injection of [14C]deoxyglucose intraperitoneally was followed by freezing the brain, sectioning, and quantitative autoradiography of 10 brain regions. Brain [14C] concentration, cortical thickness, and plasma glucose concentrations were measured. Maximal thinning of the cerebral cortex had already occurred by 10 days after birth, although obvious symptoms such as gait disturbance developed after 20 days. In control rats, the cerebral isotope concentration was lower and more homogeneous at 10 days than at 20 or 28 days, which may be a reflection of the use of metabolic substrates other than glucose in younger animals. In order to make comparisons between control and hydrocephalic groups, tissue isotope concentrations were normalized to cerebellar cortex which was not affected by the hydrocephalus at any age. In hydrocephalic rats at 10 and 20 days, the concentration of [14C] was lower in all areas except the inferior colliculi and pons but the reduction was only significant in the sensory-motor cortex at 10 days and in the caudate nuclei at 20 days. By 28 days after birth, all areas except the cerebellum (six cortical regions, inferior colliculi, pons, and caudate) had significantly lower isotope concentrations in the hydrocephalic group. It is concluded that cerebral glucose metabolism is significantly reduced by 28 days after birth in H-Tx rats with congenital hydrocephalus and that less marked reductions occur prior to 28 days

  4. Positron imaging feasibility studies: characteristics of 2-deoxyglucose uptake in rodent and canine neoplasms

    International Nuclear Information System (INIS)

    Larson, S.M.; Weiden, P.L.; Grunbaum, J.

    1981-01-01

    Uptake of [ 3 H]2-deoxyglucose was studied in BALB/c mice with EMT-6 sarcoma, in Buffalo rats with Morris 7777 hepatoma, and in eight dogs with spontaneous neoplasms: five osteosarcomas and three diffuse lymphomas. High tumor-to-tissue ratios were observed for all tumor types studies. In rodents, peak levels of uptake occurred between 30 min and 1 hr, with a slow loss from the tumor of about 10% per hour thereafter. In dogs there was considerable variability in uptake, both between individuals and at different tumor sites within an individual. Necrotic tumor did not take up the radiotracer. Absolute uptakes, when normalized for body weight, were similar for spontaneous and transplanted neoplasms. These studies provide additional support for the concept that positron emission tomography can be used to obtain functional images of important metabolic processes of tumors, including glycolysis

  5. Symmetric increased skeletal muscular uptake of 18F fluoro-deoxyglucose: a clue for the diagnosis of Graves' disease

    International Nuclear Information System (INIS)

    Santhosh, Sampath; Mittal, Bhagwant Rai; Kashyap, Raghava; Bhattacharya, Anish; Singh, Baljinder

    2011-01-01

    18 F fluoro-deoxyglucose (FDG) uptake in the thyroid and thymus is well reported in patients with Grave's disease. Incidental skeletal muscle uptake has also been reported in other non-musculoskeletal (benign and malignant) pathologies. We report a patient of Grave's disease showing symmetrical skeletal muscle uptake but no thyroidal or thymus uptake of FDG. (author)

  6. Fetal frontal cortex transplant (14C) 2-deoxyglucose uptake and histology: survival in cavities of host rat brain motor cortex

    International Nuclear Information System (INIS)

    Sharp, F.R.; Gonzalez, M.F.

    1984-01-01

    Fetal frontal neocortex from 18-day-old rat embryonic brain was transplanted into cavities in 30-day-old host motor cortex. Sixty days after transplantation, 5 of 15 transplanted rats had surviving fetal transplants. The fetal cortex transplants were physically attached to the host brain, completely filled the original cavity, and had numerous surviving cells including pyramidal neurons. Cell lamination within the fetal transplant was abnormal. The ( 14 C) 2-deoxyglucose uptake of all five of the fetal neocortex transplants was less than adjacent cortex and contralateral host motor-sensory cortex, but more than adjacent corpus callosum white matter. The results indicate that fetal frontal neocortex can be transplanted into damaged rat motor cortex. The metabolic rate of the transplants suggests they could be partially functional

  7. Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography

    International Nuclear Information System (INIS)

    Lancet, D.; Greer, C.A.; Kauer, J.S.; Shepherd, G.M.

    1982-01-01

    The spatial distribution of odor-induced neuronal activity in the olfactory bulb, the first relay station of the olfactory pathway, is believed to reflect important aspects of chemosensory coding. We report here the application of high-resolution 2-deoxyglucose autoradiography to the mapping of spatial patterns of metabolic activity at the level of single neurons in the olfactory bulb. It was found that glomeruli, which are synaptic complexes containing the first synaptic relay, tend to be uniformly active or inactive during odor exposure. Differential 2-deoxyglucose uptake was also observed in the somata of projection neurons (mitral cells) and interneurons (periglomerular and granule cells). This confirms and extends our previous studies in which odor-specific laminar and focal uptake patterns were revealed by the conventional x-ray film 2-deoxyglucose method due to Sokoloff and colleagues [Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O. and Shinohara, M. (1977) J. Neurochem. 28, 897-916]. Based on results obtained by the two methods, it is suggested that the glomerulus as a whole serves as a functional unit of activity. The high-resolution results are interpreted in terms of the well-characterized synaptic organization of the olfactory bulb and also serve to illustrate the capability of the 2-deoxyglucose autoradiographic technique to map metabolic activity in single neurons of the vertebrate central nervous system

  8. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury.

    Science.gov (United States)

    Rodrigues, Rosana S; Bozza, Fernando A; Hanrahan, Christopher J; Wang, Li-Ming; Wu, Qi; Hoffman, John M; Zimmerman, Guy A; Morton, Kathryn A

    2017-05-01

    Molecular imaging of the earliest events related to the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) could facilitate therapeutic development and patient management. We previously reported that 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) PET identifies ALI/ARDS prior to radiographic abnormalities. The purpose of this study was to establish the time courses of 18 F-FDG uptake, edema and neutrophil recruitment in an endotoxin-induced acute lung injury model and to examine molecular events required for 14 C-2DG uptake in activated neutrophils. Lung uptake of 18 F-FDG was measured by PET in control male Sprague Dawley rats and at 2, 6 and 24h following the intraperitoneal injection of 10mg/kg LPS. Lung edema (attenuation) was measured by microCT. Neutrophil influx into the lungs was measured by myeloperoxidase assay. Control and activated human donor neutrophils were compared for uptake of 14 C-2DG, transcription and content of hexokinase and GLUT isoforms and for hexokinase (HK) activity. Significant uptake of 18 F-FDG occurred by 2h following LPS, and progressively increased to 24h. Lung uptake of 18 F-FDG preceded increased CT attenuation (lung edema). Myeloperoxidase activity in the lungs, supporting neutrophil influx, paralleled 18 F-FDG uptake. Activation of isolated human neutrophils resulted in increased uptake of 14 C-2DG, expression of GLUT 3 and GLUT 4 and expression and increased HK1 activity. Systemic endotoxin-induced ALI results in very early and progressive uptake of 18 F-FDG, parallels neutrophil accumulation and occurs earlier than lung injury edema. Activated neutrophils show increased uptake of 14 C-2DG, expression of specific GLUT3, GLUT4 and HK1 protein and HK activity. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: 18 F-FDG pulmonary uptake is an early biomarker of neutrophil recruitment in ALI and is associated with specific molecular events that mediate 14 C-2DG uptake in activated neutrophils. 18 F

  9. Rolipram depresses [{sup 3}H]2-deoxyglucose uptake in mouse brain and heart in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Megumi; Hosoi, Rie; Kobayashi, Kaoru; Inoue, Osamu [Department of Medical Physics, School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita-shi, Osaka (Japan); Nishimura, Tsunehiko [Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2002-09-01

    The effects of systemic administration of rolipram, a selective phosphodiesterase type 4 inhibitor, on [{sup 3}H]2-deoxyglucose (DG) uptake in brain and peripheral tissues were examined. Rolipram significantly and dose-dependently decreased [{sup 3}H]DG uptake in brain, heart and skeletal muscle. In contrast, the radioactivity concentrations in the plasma of rolipram-treated mice were significantly higher than those of control mice at all times after injection of the tracer. In the kinetic study, the initial uptake of [{sup 3}H]DG in brain was decreased by rolipram, whereas no significant differences were observed in the uptake in heart and skeletal muscle. However, radioactivity concentrations in the brain, heart and skeletal muscle 30 min after the injection of [{sup 3}H]DG were significantly lowered by rolipram to about 60%, 10% and 10% of control values, respectively. The uptake of [{sup 13}N]ammonia in brain and heart of rolipram-treated mice was slightly decreased, which indicated that rolipram diminished both cerebral and cardiac blood flow. These results indicate that the phosphorylation process via hexokinase rather than the transport of [{sup 3}H]DG might be depressed by rolipram. Together with the previous observations that inhibition of protein kinase A (PKA) markedly enhanced [{sup 14}C]DG uptake in rat brain, these results indicate an important role of the cAMP/PKA systems in the regulation of glucose metabolism in the living brain as well as in peripheral tissues such as the heart and skeletal muscle. (orig.)

  10. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury genetic algorithm

    International Nuclear Information System (INIS)

    Rodrigues, Rosana S.; Bozza, Fernando A.; Hanrahan, Christopher J.; Wang, Li-Ming; Wu, Qi; Hoffman, John M.; Zimmerman, Guy A.; Morton, Kathryn A.

    2017-01-01

    Introduction: Molecular imaging of the earliest events related to the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) could facilitate therapeutic development and patient management. We previously reported that 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) PET identifies ALI/ARDS prior to radiographic abnormalities. The purpose of this study was to establish the time courses of 18 F-FDG uptake, edema and neutrophil recruitment in an endotoxin-induced acute lung injury model and to examine molecular events required for 14 C-2DG uptake in activated neutrophils. Methods: Lung uptake of 18 F-FDG was measured by PET in control male Sprague Dawley rats and at 2, 6 and 24 h following the intraperitoneal injection of 10 mg/kg LPS. Lung edema (attenuation) was measured by microCT. Neutrophil influx into the lungs was measured by myeloperoxidase assay. Control and activated human donor neutrophils were compared for uptake of 14 C-2DG, transcription and content of hexokinase and GLUT isoforms and for hexokinase (HK) activity. Results: Significant uptake of 18 F-FDG occurred by 2 h following LPS, and progressively increased to 24 h. Lung uptake of 18 F-FDG preceded increased CT attenuation (lung edema). Myeloperoxidase activity in the lungs, supporting neutrophil influx, paralleled 18 F-FDG uptake. Activation of isolated human neutrophils resulted in increased uptake of 14 C-2DG, expression of GLUT 3 and GLUT 4 and expression and increased HK1 activity. Conclusion: Systemic endotoxin-induced ALI results in very early and progressive uptake of 18 F-FDG, parallels neutrophil accumulation and occurs earlier than lung injury edema. Activated neutrophils show increased uptake of 14 C-2DG, expression of specific GLUT3, GLUT4 and HK1 protein and HK activity. Advances in knowledge and implications for patient care: 18 F-FDG pulmonary uptake is an early biomarker of neutrophil recruitment in ALI and is associated with specific molecular events that mediate 14

  11. Difference in prognostic significance of maximum standardized uptake value on [18F]-fluoro-2-deoxyglucose positron emission tomography between adenocarcinoma and squamous cell carcinoma of the lung

    International Nuclear Information System (INIS)

    Tsutani, Yasuhiro; Miyata, Yoshihiro; Misumi, Keizo; Ikeda, Takuhiro; Mimura, Takeshi; Hihara, Jun; Okada, Morihito

    2011-01-01

    This study evaluates the prognostic significance of [18F]-fluoro-2-deoxyglucose positron emission tomography/computed tomography findings according to histological subtypes in patients with completely resected non-small cell lung cancer. We examined 176 consecutive patients who had undergone preoperative [18F]-fluoro-2-deoxyglucose-positron emission tomography/computed tomography imaging and curative surgical resection for adenocarcinoma (n=132) or squamous cell carcinoma (n=44). Maximum standardized uptake values for the primary lesions in all patients were calculated as the [18F]-fluoro-2-deoxyglucose uptake and the surgical results were analyzed. The median values of maximum standardized uptake value for the primary tumors were 2.60 in patients with adenocarcinoma and 6.95 in patients with squamous cell carcinoma (P 6.95 (P=0.83) among patients with squamous cell carcinoma, 2-year disease-free survival rates were 93.9% for maximum standardized uptake value ≤3.7 and 52.4% for maximum standardized uptake value >3.7 (P<0.0001) among those with adenocarcinoma, and notably, 100 and 57.2%, respectively, in patients with Stage I adenocarcinoma (P<0.0001). On the basis of the multivariate Cox analyses of patients with adenocarcinoma, maximum standardized uptake value (P=0.008) was a significantly independent factor for disease-free survival as well as nodal metastasis (P=0.001). Maximum standardized uptake value of the primary tumor was a powerful prognostic determinant for patients with adenocarcinoma, but not with squamous cell carcinoma of the lung. (author)

  12. 14C-2-deoxyglucose uptake in the ground squirrel brain during entrance to and arousal from hibernation

    International Nuclear Information System (INIS)

    Kilduff, T.S.; Miller, J.D.; Radeke, C.M.; Sharp, F.R.; Heller, H.C.

    1990-01-01

    Neuronal activity underlying various phases of the mammalian hibernation cycle was investigated using the 14 C-2-deoxyglucose (2DG) method. Relative 2DG uptake (R2DGU) values were computed for 96 brain regions across 7 phases of the hibernation cycle: euthermia, 3 body temperature (Tb) intervals during entrance into hibernation, stable deep hibernation, and 2 Tb intervals during arousal from hibernation. Multivariate statistical techniques were employed to identify objectively groups of brain regions whose R2DGU values showed a similar pattern across all phases of hibernation. Factor analysis revealed that most of the variability in R2DGU values for the 96 brain regions across the entire cycle could be accounted for by 3 principal factors. These factors could accurately discriminate the various phases of hibernation on the basis of the R2DGU values alone. Three hypothalamic and 3 cortical regions were identified as possibly mediating the entrance into hibernation because they underwent a change in R2DGU early in entrance into hibernation and loaded strongly on one of the principal factors. Another 4 hypothalamic regions were similarly identified as possibly causally involved in the arousal from hibernation. These results, coupled with characteristic changes in ordinal rank of the 96 brain regions in each phase of hibernation, support the concept that mammalian hibernation is an active, integrated orchestration of neurophysiological events rather than a state entered through a passive process

  13. Insulin response in individual tissues of control and gold thioglucose-obese mice in vivo with [1-14C]2-deoxyglucose

    International Nuclear Information System (INIS)

    Cooney, G.J.; Astbury, L.D.; Williams, P.F.; Caterson, I.D.

    1987-01-01

    The dose-response characteristics of several glucose-utilizing tissues (brain, heart, white adipose tissue, brown adipose tissue, and quadriceps muscle) to a single injection of insulin have been compared in control mice and mice made obese with a single injection of gold thioglucose (GTG). Tissue content of [1- 14 C]2-deoxyglucose 6-phosphate and blood disappearance rate of [1- 14 C]2-deoxyglucose (2-DG) were measured at nine different insulin doses and used to calculate rates of 2-DG uptake and phosphorylation in tissues from control and obese mice. The insulin sensitivity of tissues reflected in the ED50 of insulin response varied widely, and brown adipose tissue was the most insulin-sensitive tissue studied. In GTG-obese mice, heart, quadriceps, and brown adipose tissue were insulin resistant (demonstrated by increased ED50), whereas in white adipose tissue, 2-DG phosphorylation was more sensitive to insulin. Brain 2-DG phosphorylation was insulin independent in control and obese animals. The largest decrease in insulin sensitivity in GTG-obese mice was observed in brown adipose tissue. The loss of diet-induced thermogenesis in brown adipose tissue as a result of the hypothalamic lesion in GTG-obese mice could be a major cause of insulin resistance in brown adipose tissue. Because brown adipose tissue can make a major contribution to whole-body glucose utilization, insulin resistance in this tissue may have a significant effect on whole-animal glucose homeostasis in GTG-obese mice

  14. Activation of substantia gelatinosa by midbrain reticular stimulation demonstrated with 2-deoxyglucose in the rat spinal cord

    International Nuclear Information System (INIS)

    Gonzales-Lima, F.

    1986-01-01

    The autoradiographic ( 14 C)2-deoxyglucose (2-DG) method was used to map the descending effects of midbrain reticular stimulation on the rat cervical spinal cord. The stimulation evoked consistently a defensive 'freezing' reaction as well as a large and highly localized increase in 2-DG uptake in the substantia gelatinosa (SG)(Rexed laminae 2-3). No stimulus-induced changes in 2-DG uptake were produced in the other regions of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of midbrain reticular stimulation on the spinal cord. They also support the concept of an integrative role for the SG in descending reticular mechanisms at the spinal cord level. (author)

  15. Activation of substantia gelatinosa by midbrain reticular stimulation demonstrated with 2-deoxyglucose in the rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Lima, F

    1986-04-24

    The autoradiographic (/sup 14/C)2-deoxyglucose (2-DG) method was used to map the descending effects of midbrain reticular stimulation on the rat cervical spinal cord. The stimulation evoked consistently a defensive 'freezing' reaction as well as a large and highly localized increase in 2-DG uptake in the substantia gelatinosa (SG)(Rexed laminae 2-3). No stimulus-induced changes in 2-DG uptake were produced in the other regions of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of midbrain reticular stimulation on the spinal cord. They also support the concept of an integrative role for the SG in descending reticular mechanisms at the spinal cord level. 12 refs.

  16. Effect of duration of fasting and diet on the myocardial uptake of F-18-2-fluoro-2-deoxyglucose (F-18 FDG) at rest

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Patel, Chetan D; Singla, Suhas; Malhotra, A

    2014-01-01

    Patterns of myocardial fluoro-2-deoxyglucose (FDG) uptake with respect to duration of fasting and dietary modifications. We observed the effect of duration of fasting and diet on the myocardial uptake pattern of F-18 FDG in patients routinely referred for oncological evaluation and no previous history of Coronary Artery Disease (CAD). Prospective study. A total of 153 patients (M: 81, F: 72; mean age: 47 ± 15 years; mean blood glucose level (mBG) 105 ± 23 mg/dl) were randomly divided in three groups. Group A: 4-6 h fasting; Group B: Overnight fasting (12–14 h); Group C: Low carbohydrate and fat rich diet for 2 days coupled with overnight fasting prior to the positron emission tomography (PET) scan. FDG uptake was classified as following: 1) homogeneous uptake, 2) heterogeneous uptake, and 3) ‘no uptake’ in the left ventricular (LV) myocardium. FDG PET study was performed as standard protocol for oncological conditions. Descriptive statistics, Chi-square test or Fisher's exact test, and Spearman's rank correlation tests were applied. We observed the ‘no uptake’ pattern in five (10%), 28 (55%), and 39 (77%), ‘heterogeneous’ pattern in 20 (39%), 14 (28%), and seven (14%), and ‘homogeneous’ pattern in 26 (51%), nine (18%), and five (10%) patients in Group A, B, and C, respectively. There was statistically significant difference of myocardial uptake pattern between group A and B (P < 0.0001), between group A and C (P < 0.0001), and between Group B and C (P = 0.023). The mBG was 102, 105, and 111 mg/dl in ‘no uptake’, heterogeneous, and homogeneous uptake pattern, respectively, (P = 0.103). Also, within each group the mBG was not related to the uptake pattern. Both restricted diet and duration of fasting play an important role in determining the pattern and suppression of myocardial F-18 FDG uptake. Overnight fasting and restricted diet together suppress myocardial FDG uptake more than overnight fasting alone, which suppresses uptake

  17. A difference in [14C]deoxyglucose autoradiographic patterns in striate cortex between Macaca and Saimiri monkeys following monocular stimulation

    International Nuclear Information System (INIS)

    Hendrickson, A.E.; Wilson, J.R.

    1979-01-01

    Since the apparent absence of ocular dominance columns (ODC) in some New World primates could be caused by deficiencies of the transsynaptic autoradiographic technique, such as spillage of label in the poorly laminated dorsal lateral geniculate nucleus, the authors have examined this question using a functional autoradiographic tracing technique based on the uptake of [ 14 C]2-deoxyglucose ([ 14 C]dG) by active neurons. When only one eye is stimulated, this innovative method graphically demonstrates a repetitive pattern in Macaca monkey striate cortex which has been interpreted to be the ODC driven by the open eye. They now report on the results of a comparative study of Old World Macaca and New World Saimiri monkeys using [ 14 C]dG autoradiography in which evidence is found for repetitive patterns of [ 14 C]dG in Saimiri for layers above, but not in, layer IV. (Auth.)

  18. Chronic effects of dietary carbohydrate variation on [18F]-2-fluoro-2-deoxyglucose uptake in rodent heart.

    Science.gov (United States)

    Fine, Eugene J; Miao, Weibing; Koba, Wade; Volek, Jeff S; Blaufox, M Donald

    2009-09-01

    Measured cardiac [F]-2-fluoro-2-deoxyglucose (FDG) activity in human PET scans is variable despite efforts to standardize patient preparation. Heart uptake can obscure chest disease, and is of physiologic interest. Short-term carbohydrate (CHO) restriction can reduce FDG uptake, although unreliably, whereas long-term restriction of CHO has not been systematically studied. It would be valuable to understand FDG hearts' chronic dietary dependence. Fifteen Wistar rats (age 4 weeks) were randomized to three diet groups (n = 5) of low (0.1% of total energy), intermediate (52%), and high (78%) CHO content (LC, IC, and HC, respectively). After 4 weeks, blood for ketone bodies (KB), glucose, insulin, and glucagon was obtained, followed in 2 days by whole-body PET with 37 MBq FDG. Diet groups were switched every 4 weeks to control for the effects of dietary order. Heart maximal standardized uptake value was compared among animals. Heart mean maximal standardized uptake value was dramatically reduced for LC (3.4+/-0.4; P<0.001) compared with either IC (10.9+/-0.7) or HC (11.0+/-0.7) (P=NS, IC vs. HC). KB (mumol/l) differed widely (P<0.001) in LC (718.6+/-40.0) versus IC (120.3+/-34.0) and HC (99.2+/-32.1) (P=NS, IC vs. HC), whereas glucose, insulin, and glucagon did not differ among the groups. Sustained CHO-restriction results in marked, reproducibly reduced cardiac FDG uptake. Six-fold to seven-fold increased KB concentrations provide alternative substrate to glucose.

  19. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle.

    Science.gov (United States)

    Witczak, Carol A; Jessen, Niels; Warro, Daniel M; Toyoda, Taro; Fujii, Nobuharu; Anderson, Mark E; Hirshman, Michael F; Goodyear, Laurie J

    2010-06-01

    Studies using chemical inhibitors have suggested that the Ca(2+)-sensitive serine/threonine kinase Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of both insulin- and contraction-stimulated glucose uptake in skeletal muscle. However, due to nonspecificity of these inhibitors, the specific role that CaMKII may play in the regulation of glucose uptake is not known. We sought to determine whether specific inhibition of CaMKII impairs insulin- and/or contraction-induced glucose uptake in mouse skeletal muscle. Expression vectors containing green fluorescent protein conjugated to a CaMKII inhibitory (KKALHRQEAVDCL) or control (KKALHAQERVDCL) peptide were transfected into tibialis anterior muscles by in vivo electroporation. After 1 wk, muscles were assessed for peptide expression, CaMK activity, insulin- and contraction-induced 2-[(3)H]deoxyglucose uptake, glycogen concentrations, and changes in intracellular signaling proteins. Expression of the CaMKII inhibitory peptide decreased muscle CaMK activity approximately 35% compared with control peptide. Insulin-induced glucose uptake was not changed in muscles expressing the inhibitory peptide. In contrast, expression of the inhibitory peptide significantly decreased contraction-induced muscle glucose uptake (approximately 30%). Contraction-induced decreases in muscle glycogen were not altered by the inhibitory peptide. The CaMKII inhibitory peptide did not alter expression of the glucose transporter GLUT4 and did not impair contraction-induced increases in the phosphorylation of AMP-activated protein kinase (Thr(172)) or TBC1D1/TBC1D4 on phospho-Akt substrate sites. These results demonstrate that CaMKII does not regulate insulin-stimulated glucose uptake in skeletal muscle. However, CaMKII plays a critical role in the regulation of contraction-induced glucose uptake in mouse skeletal muscle.

  20. Plastic reorganization in the inferior colliculus of the immature mouse studied by 14C$deoxyglucose method

    International Nuclear Information System (INIS)

    Taniguchi, Ikuo; Saito, Nozomu

    1978-01-01

    Plastic reinnervation was observed in the mouse by means of autoradiography with [ 14 C]deoxyglucose (DG). It is possible that the ipsilateral inhibitory pathway for input from the cochlea to the inferior colliculus (IC) switches to excitation or disinhibition following unilateral cochlear destruction. Autoradiographs of the brains of mice exposed to sound stimuli exhibited high optical densities in activated regions due to the increased uptake of DG. IC revealed essentially the same optical density on both sides. No bilateral asymmetry appeared in autoradiographs of IC in 46-day-old normal animals with binaural hearing, indicating glucose consumption at the same rate bilaterally at the level of IC in normal animals. On the 1st and 4th days after destruction of the left cochles, the contralateral IC exhibited less labeling than the ipsilateral IC. However, optical density in the contralateral IC increase. On the 11th day, it was apparently reduced in bilateral asymmetry. Autoradiographs on the 18th day demonstrated essentially an equal uptake of DG on both sides and almost the same pattern as in normal animals. These changes suggested postoperative reorganization possible occurred as a result of reinnervation of the input fibers to IC via the commissure of inferior colliculi (COM) or the lateral lemniscus ipsilaterally. COM was transectioned 31 days after destruction of the left cochlea. IC demonstrated symmetrical uptake of DG on both sides. (J.P.N.)

  1. Common fur and mystacial vibrissae parallel sensory pathways: 14C 2-deoxyglucose and WGA-HRP studies in the rat

    International Nuclear Information System (INIS)

    Sharp, F.R.; Gonzalez, M.F.; Morgan, C.W.; Morton, M.T.; Sharp, J.W.

    1988-01-01

    Stimulation of mystacial vibrissae in rows A,B, and C increased (14C) 2-deoxyglucose (2DG) uptake in spinal trigeminal nucleus pars caudalis (Sp5c) mostly in ventral portions of laminae III-IV with less activation of II and V. Stimulation of common fur above the whiskers mainly activated lamina II, with less activation in deeper layers. The patterns of activation were compatible with an inverted head, onion skin Sp5c somatotopy. Wheatgerm Agglutinin-Horseradish Peroxidase (WGA-HRP) injections into common fur between mystacial vibrissae rows A-B and B-C led to anterograde transganglionic labeling only of Sp5c, mainly of lamina II with less label in layer V, and very sparse label in III and IV. WGA-HRP skin injections appear to primarily label small fibers, which along with larger fibers, were metabolically activated during common fur stimulation. Mystacial vibrissae stimulation increased 2DG uptake in ventral ipsilateral spinal trigeminal nuclei pars interpolaris (Sp5i) and oralis (Sp5o) and principal trigeminal sensory nucleus (Pr5). Common fur stimulation above the whiskers slightly increased 2DG uptake in ventral Sp5i, Sp5o, and possibly Pr5. The most dorsal aspect of the ventroposteromedial (VPM) nucleus of thalamus was activated contralateral to whisker stimulation. Stimulation of the common fur dorsal to the whiskers activated a region of dorsal VPM caudal to the VPM region activated during whisker stimulation. This is consistent with previous data showing that ventral whiskers and portions of the face are represented rostrally in VPM, and more dorsal whiskers and dorsal portions of the face are represented progressively more caudally in VPM. Mystacial vibrissae stimulation activated the contralateral primary sensory SI barrelfield cortex and a separate region in the second somatosensory SII cortex

  2. Relationship between CNS metabolism and cytoarchitecture: a review of 14C-deoxyglucose studies with correlation to cytochrome oxidase histochemistry

    International Nuclear Information System (INIS)

    Di Rocco, R.J.; Kageyama, G.H.; Wong-Riley, M.T.

    1989-01-01

    Since the inception of the 14 C-deoxyglucose method and its extension to in vivo imaging of regional cerebral glucose metabolism in humans by positron emission tomography, uncertainty has persisted concerning the type of work to which regional metabolism is coupled, as well as the distribution of this work within the neuron. 14 C-deoxyglucose studies indicate that functionally-coupled neural metabolism is more apparent in axon terminals and perhaps dendrites than neuronal perikarya. Moreover, it appears that most of the metabolism in axon terminals is accounted for by Na+-K+-ATPase activity. Nevertheless, cytochrome oxidase histochemistry reveals the presence of intensely reactive mitochondria in soma-dendrite regions opposite presynaptic axon terminals, thereby indicating that continuous temporal and spatial summation of postsynaptic graded potentials is associated with increased metabolism. While the situation concerning the relative postsynaptic metabolic prices of EPSP's and IPSP's remains uncertain, the presence of elevated levels of cytochrome oxidase activity within certain classes of presynaptic terminals indicates that active excitation and inhibition is associated with increases in presynaptic metabolism. This observation has been confirmed in 14 C-deoxyglucose studies. Nevertheless, studies of neonatal hippocampus indicate that, before metabolic activity shifts to dendritic and telodendritic regions of electrophysiological activity, metabolism is high in somal foci of biosynthesis. 51 references

  3. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice

    DEFF Research Database (Denmark)

    Sylow, Lykke; Laurent, Ida; Kleinert, Maximilian

    2016-01-01

    is a candidate molecule. This study investigated the role of Rac1 in muscle glucose uptake and substrate utilization during treadmill exercise in mice in vivo. Exercise-induced uptake of radiolabelled 2-deoxyglucose (2-DG) at 65% max running capacity was blocked in soleus and decreased by 80 and 60...

  4. Dephosphorylation of 2-deoxyglucose 6-phosphate and 2-deoxyglucose export from cultured astrocytes.

    Science.gov (United States)

    Forsyth, R J; Bartlett, K; Eyre, J

    1996-03-01

    Neurotransmitter-stimulated mobilization of astrocyte glycogen has been proposed as a basis for local energy homeostasis in brain. However, uncertainty remains over the fate of astrocyte glycogen. Upon transfer of cultured astrocytes pre-loaded with [2-3H]2-deoxyglucose 6-phosphate at non-tracer concentrations to a glucose-free, 2-deoxyglucose-free medium, rapid dephosphorylation of a proportion of the intracellular 2-deoxyglucose 6-phosphate pool and export of 2-deoxyglucose to the extracellular fluid occurs. Astrocytes show very low, basal rates of gluconeogenesis from pyruvate (approx. 1 nmol mg protein-1 h-1). Astrocytes in vivo may be capable of physiologically significant glucose export from glucose-6-phosphate. The low gluconeogenic activity in astrocytes suggests that the most likely source of glucose-6-phosphate may be glycogen. These findings support the hypothesis that export, as glucose, to adjacent neurons may be one of the possible fate(s) of astrocytic glycogen. Such export of glycogen as glucose occurring in response to increases in neuronal activity could contribute to energy homeostasis on a paracrine scale within brain.

  5. A functional study of the rat olfactory bulb through autoradiography with 14C-2-deoxyglucose

    International Nuclear Information System (INIS)

    Verrier, Marie; Leveteau, Jean; Giachetti, Ismene; MacLeod, Patrick

    1978-01-01

    The autoradiographic methods has been used in the rat to map active regions in the olfactory bulb after a pulse of 14 C-2-deoxyglucose with electrical stimulation of the lateral olfactory tract. The highest optical densities were found at the external plexiform, mural, internal plexiform and granular layers: the lowest was found in the glomerular layer [fr

  6. The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in resectable pancreatic cancer.

    Science.gov (United States)

    Crippa, Stefano; Salgarello, Matteo; Laiti, Silvia; Partelli, Stefano; Castelli, Paola; Spinelli, Antonello E; Tamburrino, Domenico; Zamboni, Giuseppe; Falconi, Massimo

    2014-08-01

    The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in pancreatic ductal adenocarcinoma is debated. We retrospectively assessed the value of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in addition to conventional imaging as a staging modality in pancreatic cancer. (18)Fluoro-deoxyglucose positron emission tomography/computed tomography was performed in 72 patients with resectable pancreatic carcinoma after multi-detector computed tomography positron emission tomography was considered positive for a maximum standardized uptake value >3. Overall, 21% of patients had a maximum standardized uptake value ≤ 3, and 60% of those had undergone neoadjuvant treatment (P=0.0001). Furthermore, 11% of patients were spared unwarranted surgery since positron emission tomography/computed tomography detected metastatic disease. All liver metastases were subsequently identified with contrast-enhanced ultrasound. Sensitivity and specificity of positron emission tomography/computed tomography for distant metastases were 78% and 100%. The median CA19.9 concentration was 48.8 U/mL for the entire cohort and 292 U/mL for metastatic patients (P=0.112). The widespread application of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic carcinoma seems not justified. It should be considered in selected patients at higher risk of metastatic disease (i.e. CA19.9>200 U/mL) after undergoing other imaging tests. Neoadjuvant treatment is significantly associated with low metabolic activity, limiting the value of positron emission tomography in this setting. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  7. Critical appraisal of semi-quantitative analysis of 2-deoxyglucose autoradiograms

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P T; McCulloch, J [Glasgow Univ. (UK)

    1983-06-13

    Semi-quantitative analysis (e.g. optical density ratios) of (/sup 14/C)2-deoxyglucose autoradiograms is widely used in neuroscience research. The authors demonstrate that a fixed ratio of /sup 14/C-concentrations in the CNS does not yield a constant optical density ratio but is dependent upon the exposure time in the preparation of the autoradiograms and the absolute amounts of /sup 14/C from which the concentration ratio is derived. The failure of a fixed glucose utilization ratio to result in a constant optical density ratio represents a major interpretative difficulty in investigations where only semi-quantitative analysis of (/sup 14/C)2-deoxyglucose autoradiograms is undertaken.

  8. Accumulation of polymorphonuclear leukocytes in reperfused ischemic canine myocardium: relation with tissue viability assessed by fluorine-18-2-deoxyglucose uptake

    International Nuclear Information System (INIS)

    Wijns, W.; Melin, J.A.; Leners, N.

    1988-01-01

    Polymorphonuclear leukocytes may participate in reperfusion injury. Whether leukocytes affect viable or only irreversibly injured tissue is not known. Therefore, we assessed the accumulation of 111In-labeled leukocytes in tissue samples characterized as either ischemic but viable or necrotic by metabolic, histochemical, and ultrastructural criteria. Six open-chest dogs received left anterior descending coronary occlusion for 2 hr followed by 4 hr reperfusion. Myocardial blood flow was determined by microspheres and autologous 111In-labeled leukocytes were injected intravenously. Fluorine-18-2-deoxyglucose, a tracer of exogenous glucose utilization, was injected 3 hr after reperfusion. The dogs were killed 4 hr after reperfusion. The risk and the necrotic regions were assessed following in vivo dye injection and postmortem tetrazolium staining. Myocardial samples were obtained in the ischemic but viable, necrotic and normal zones, and counted for 111In and 18F activity. Compared to normal, leukocytes were entrapped in necrotic regions (111In activity: 207 +/- 73%) where glucose uptake was decreased (26 +/- 15%). A persistent glucose uptake, marker of viability, was mainly seen in risk region (135 +/- 85%) where leukocytes accumulation was moderate in comparison to normal zone (146 +/- 44%). Thus, the glucose uptake observed in viable tissue is mainly related to myocytes metabolism and not to leukocytes metabolism

  9. A critical appraisal of semi-quantitative analysis of 2-deoxyglucose autoradiograms

    International Nuclear Information System (INIS)

    Kelly, P.T.; McCulloch, J.

    1983-01-01

    Semi-quantitative analysis (e.g. optical density ratios) of [ 14 C]2-deoxyglucose autoradiograms is widely used in neuroscience research. The authors demonstrate that a fixed ratio of 14 C-concentrations in the CNS does not yield a constant optical density ratio but is dependent upon the exposure time in the preparation of the autoradiograms and the absolute amounts of 14 C from which the concentration ratio is derived. The failure of a fixed glucose utilization ratio to result in a constant optical density ratio represents a major interpretative difficulty in investigations where only semi-quantitative analysis of [ 14 C]2-deoxyglucose autoradiograms is undertaken. (Auth.)

  10. Suprachiasmatic nuclei of the fetal rat: characterization of a functional circadian clock using 14C-labeled deoxyglucose

    International Nuclear Information System (INIS)

    Reppert, S.M.; Schwartz, W.J.

    1984-01-01

    The circadian clock located in the suprachiasmatic nuclei (SCN) was characterized in the fetal rat by using 14 C-labeled deoxyglucose to monitor glucose utilization (metabolic activity) of the nuclei. A clear day-night oscillation of metabolic activity was detectable in the fetal SCN from the 19th through the 21st days of gestation; the nuclei were metabolically active during the subjective day and metabolically inactive during the subjective night. During the subjective day on gestational day 21, the fetal SCN were found to manifest high metabolic activity for most of the subjective day. The authors were able to acutely dissociate SCN metabolic activity in the mother rat from that in the fetus by exposing the pregnant animals to light during the normal dark period of diurnal lighting on gestational day 20. The results show the utility of the deoxyglucose method for directly investigating prenatally the function of the biological clock located in the SCN

  11. Comparison of the distribution of fluorine-18 fluoromisonidazole, deoxyglucose and methionine in tumour tissue

    International Nuclear Information System (INIS)

    Kubota, Kazuo; Tada, Masao; Yamada, Susumu; Hori, Katsuyoshi; Saito, Sachiko; Sato, Kazunori; Fukuda, Hiroshi; Iwata, Ren; Ido, Tatsuo

    1999-01-01

    To evaluate the tumour imaging potential of fluorine-18 fluoromisonidazole (FMISO), we studied FMISO uptake in an experimental tumour model and examined the correlation between intratumoral distributions of FMISO, 14 C-2-deoxyglucose (2DG) and 14 C-methionine (Met). The study was performed using control rats with the AH109A tumour and rats with the same tumour under local hypoxia. Tumour uptake of FMISO was constant between 30 min and 2 h after injection, and the tumour to muscle ratio was 2 from 2 to 4 h. A tumour study with FMISO was scheduled at 2 h. Double-tracer autoradiography of the tumour demonstrated that in the areas of high FMISO uptake, there was low uptake of Met, while areas of low FMISO uptake showed high Met uptake. FMISO showed high grain density in the rim of the tumour surrounding the necrotic area. 2DG showed a more uniform distribution over the entire section of viable cells. The mean uptake of FMISO by hypoxic, radioresistant tumours was significantly higher than that by the control tumours (P<0.05), while both 2DG and Met uptake by the control tumours was higher than uptake by hypoxic tumours. When individual tumours were examined, the uptake of FMISO was inversely correlated with that of Met (r = -0.507, P<0.02), while 2DG showed almost uniform uptake with no significant correlation to FMISO. In conclusion, hypoxic and radioresistant tumours could be identified by increased FMISO uptake in our model, consistent with findings reported by others. We found a large overlap in the distribution of FMISO and 2DG within the tumour, but only a small overlap in the distribution of FMISO and Met. A combination of FMISO and other tracers in positron emission tomography or single-photon emission tomography studies might be more helpful than single-tracer studies in predicting the response of tumour tissues to radiotherapy. (orig.)

  12. Brain sites mediating corticosteroid feedback inhibition of stimulated ACTH secretion

    International Nuclear Information System (INIS)

    Jacobson, L.

    1989-01-01

    There is substantial evidence that the brain mediates stress-induced and circadian increases in ACTH secretion and that corticosteroid concentrations which normalize basal plasma ACTH are insufficient to normalize ACTH responses to circadian or stressful stimuli in adrenalectomized rats. To identify brain sites mediating corticosteroid inhibition of stimulated ACTH secretion, two approaches were used. The first compared brain [ 14 C]-2-deoxyglucose uptake in rats with differential ACTH responses to stress. Relative to sham-adrenalectomized (SHAM) rats, adrenalectomized rats replaced with low, constant corticosterone levels via a subcutaneous corticosterone pellet (B-PELLET) exhibited elevated and prolonged ACTH responses to a variety of stimuli. Adrenalectomized rate given a circadian corticosterone rhythm via corticosterone in their drinking water exhibited elevated ACTH levels immediately after stress, but unlike B-PELLET rats, terminated stress induced ACTH secretion normally relative to SHAMS. Therefore, the abnormal ACTH responses to stress in B-PELLET rats were due to the lack of both circadian variations and stress-induced increases in corticosterone. Hypoxia was selected as a standardized stimulus for correlating brain [ 14 C]-2-deoxyglucose uptake with ACTH secretion. In intact rats, increases in plasma ACTH and decreases in arterial PO 2 correlated with the severity of hypoxia at arterial PCO 2 below 60 mm Hg. Hypoxia PELLET vs. SHAM rats. However, in preliminary experiments, although hypoxia increased brain 2-deoxyglucose uptake in most brain regions, plasma ACTH correlated poorly with 2-deoxyglucose uptake at 12% and 10% O 2

  13. Metabolic rate in different rat brain areas during seizures induced by a specific delta opiate receptor agonist.

    Science.gov (United States)

    Haffmans, J; De Kloet, R; Dzoljic, M R

    1984-06-04

    The glucose utilization during specific delta opiate agonist-induced epileptiform phenomena, determined by the [14C]2-deoxyglucose technique (2-DG), was examined in various rat brain areas at different time intervals. The peak in EEG spiking response and the most intensive 2-DG uptake occurred 5 min after intraventricular (i.v.t.) administration of the delta opiate receptor agonist. The most pronounced 2-DG uptake at this time interval can be observed in the subiculum, including the CA1 hippocampal area, frontal cortex and central amygdala. A general decrease of glucose consumption, compared to control values, is observed after 10 min, in all regions, with exception of the subiculum. Since functional activity and 2-DG uptake are correlated, we suggest that the subiculum and/or CA1 area, are probably the brain regions most involved in the enkephalin-induced epileptic phenomena.

  14. Differential uptake of FDG and DG during post-ischaemic reperfusion in the isolated, perfused rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Garlick, P.B.; Medina, R.A.; Southworth, R.; Marsden, P.K. [Department of Radiological Sciences, Guy' s, King' s and St. Thomas' School of Medicine, London (United Kingdom)

    1999-10-01

    Fluorine-18 2-fluoro-2-deoxyglucose (FDG) and 2-deoxyglucose (DG) are widely used as tracers of glucose uptake in the myocardium. Although there is agreement that the two analogues behave similarly to glucose under control conditions, there is growing evidence that some interventions (e.g. insulin stimulation or ischaemia/reperfusion) cause differential changes in their behaviour. The addition of a two-surface coil nuclear magnetic resonance (NMR) probe and a dual-perfusion cannula to our recently developed PET and NMR dual-acquisition (PANDA) system allows us to collect PET (FDG) images and phosphorus-31 NMR (2-deoxyglucose-6-phosphate) spectra simultaneously from each independently perfused coronary bed of the heart. We have used this technique to study the effect of regional ischaemia/reperfusion on FDG and DG uptake in the isolated, perfused rat heart. During control perfusion, FDG uptake was almost identical in both coronary beds. When one coronary bed was made ischaemic, FDG uptake ceased on that side but continued on the control side. Reperfusion failed to restore FDG uptake. In contrast, NMR spectra showed that, during reperfusion, the uptake and phosphorylation of DG did not differ between the two coronary beds. The results thus demonstrate that regional myocardial ischaemia/reperfusion has different effects on the uptake of FDG and DG in the isolated, perfused rat heart. (orig.)

  15. Differential uptake of FDG and DG during post-ischaemic reperfusion in the isolated, perfused rat heart

    International Nuclear Information System (INIS)

    Garlick, P.B.; Medina, R.A.; Southworth, R.; Marsden, P.K.

    1999-01-01

    Fluorine-18 2-fluoro-2-deoxyglucose (FDG) and 2-deoxyglucose (DG) are widely used as tracers of glucose uptake in the myocardium. Although there is agreement that the two analogues behave similarly to glucose under control conditions, there is growing evidence that some interventions (e.g. insulin stimulation or ischaemia/reperfusion) cause differential changes in their behaviour. The addition of a two-surface coil nuclear magnetic resonance (NMR) probe and a dual-perfusion cannula to our recently developed PET and NMR dual-acquisition (PANDA) system allows us to collect PET (FDG) images and phosphorus-31 NMR (2-deoxyglucose-6-phosphate) spectra simultaneously from each independently perfused coronary bed of the heart. We have used this technique to study the effect of regional ischaemia/reperfusion on FDG and DG uptake in the isolated, perfused rat heart. During control perfusion, FDG uptake was almost identical in both coronary beds. When one coronary bed was made ischaemic, FDG uptake ceased on that side but continued on the control side. Reperfusion failed to restore FDG uptake. In contrast, NMR spectra showed that, during reperfusion, the uptake and phosphorylation of DG did not differ between the two coronary beds. The results thus demonstrate that regional myocardial ischaemia/reperfusion has different effects on the uptake of FDG and DG in the isolated, perfused rat heart. (orig.)

  16. Differential labelling of retinal neurones by 3H-2-deoxyglucose

    International Nuclear Information System (INIS)

    Basinger, S.F.; Gordon, W.C.; Lam, D.M.K.

    1979-01-01

    The use of tritium-labelled 2-deoxyglucose in combination with plastic embedding is reported to produce stimulus dependent labelling at cellular level in the isolated goldfish retina. The results suggest that the use of tritium in place of the more usual 14 C labelled tracer is advantageous in studying the physiology and functional connections of retinal neurones. (U.K.)

  17. Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer's disease.

    Science.gov (United States)

    Köfalvi, Attila; Lemos, Cristina; Martín-Moreno, Ana M; Pinheiro, Bárbara S; García-García, Luis; Pozo, Miguel A; Valério-Fernandes, Ângela; Beleza, Rui O; Agostinho, Paula; Rodrigues, Ricardo J; Pasquaré, Susana J; Cunha, Rodrigo A; de Ceballos, María L

    2016-11-01

    Cannabinoid CB2 receptors (CB2Rs) are emerging as important therapeutic targets in brain disorders that typically involve neurometabolic alterations. We here addressed the possible role of CB2Rs in the regulation of glucose uptake in the mouse brain. To that aim, we have undertaken 1) measurement of (3)H-deoxyglucose uptake in cultured cortical astrocytes and neurons and in acute hippocampal slices; 2) real-time visualization of fluorescently labeled deoxyglucose uptake in superfused hippocampal slices; and 3) in vivo PET imaging of cerebral (18)F-fluorodeoxyglucose uptake. We now show that both selective (JWH133 and GP1a) as well as non-selective (WIN55212-2) CB2R agonists, but not the CB1R-selective agonist, ACEA, stimulate glucose uptake, in a manner that is sensitive to the CB2R-selective antagonist, AM630. Glucose uptake is stimulated in astrocytes and neurons in culture, in acute hippocampal slices, in different brain areas of young adult male C57Bl/6j and CD-1 mice, as well as in middle-aged C57Bl/6j mice. Among the endocannabinoid metabolizing enzymes, the selective inhibition of COX-2, rather than that of FAAH, MAGL or α,βDH6/12, also stimulates the uptake of glucose in hippocampal slices of middle-aged mice, an effect that was again prevented by AM630. However, we found the levels of the endocannabinoid, anandamide reduced in the hippocampus of TgAPP-2576 mice (a model of β-amyloidosis), and likely as a consequence, COX-2 inhibition failed to stimulate glucose uptake in these mice. Together, these results reveal a novel general glucoregulatory role for CB2Rs in the brain, raising therapeutic interest in CB2R agonists as nootropic agents. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Elucidation and modulation of glucocorticoid-induced apoptosis in acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Eberhart, K.

    2011-01-01

    This thesis deals with the elucidation of the synergistic effect of the glucocorticoid dexamethasone and the metabolic modulator 2-deoxyglucose on apoptosis induction in two in vitro model systems of childhood acute lymphoblastic leukemia. 2-deoxyglucose accelerated the kinetics of, and increased the sensitivity to, glucocorticoid-induced apoptosis in two leukemia cell lines. In primary lymphocytes from healthy donors, in contrast, 2-deoxyglucose and dexamethasone did not act synergistically on apoptosis induction. To elucidate the molecular basis of the synergistic effect, glycolysis by means of glucose uptake, lactate production, ATP levels, glucose transporter and hexokinase expression and mitochondrial oxygen consumption was analyzed in treated vs. untreated cells. The study revealed a downregulation of gene expression of the glucose transporter GLUT1 and hexokinase 2 (HK2), release of HK2 from the outer mitochondrial membrane, as well as reduced glycolysis and mitochondrial respiration. Moreover, the analysis of the mitochondrial proteome by 2 dimensional differential gel electrophoresis after treatment with 2-deoxyglucose and dexamethasone revealed the regulation of several interesting candidate proteins involved in treatment related apoptosis. (author)

  19. Local cerebral glucose utilization in the beagle puppy model of intraventricular hemorrhage

    International Nuclear Information System (INIS)

    Ment, L.R.; Stewart, W.B.; Duncan, C.C.

    1982-01-01

    Local cerebral glucose utilization has been measured by means of carbon-14( 14 C)-autoradiography with 2-deoxyglucose in the newborn beagle puppy model of intraventricular hemorrhage. Our studies demonstrate gray matter/white matter differentiation of uptake of 14 C-2-deoxyglucose in the control pups, as would be expected from adult animal studies. However, there is a marked homogeneity of 14 C-2-deoxyglucose uptake in all brain regions in the puppies with intraventricular hemorrhage, possibly indicating a loss of the known coupling between cerebral blood flow and metabolism in this neuropathological condition

  20. Plant uptake of dual-labeled organic N biased by inorganic C uptake

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Sauheitl, Leopold; Eriksen, Jørgen

    2010-01-01

    glycine or CO2-3 , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced...

  1. Supplementation of pyruvate prevents palmitate-induced impairment of glucose uptake in C2 myotubes.

    Science.gov (United States)

    Jung, Jong Gab; Choi, Sung-E; Hwang, Yoon-Jung; Lee, Sang-A; Kim, Eun Kyoung; Lee, Min-Seok; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan-Woo

    2011-10-15

    Elevated fatty acid levels have been thought to contribute to insulin resistance. Repression of the glucose transporter 4 (GLUT4) gene as well as impaired GLUT4 translocation may be a mediator for fatty acid-induced insulin resistance. This study was initiated to determine whether palmitate treatment repressed GLUT4 expression, whether glucose/fatty acid metabolism influenced palmitate-induced GLUT4 gene repression (PIGR), and whether attempts to prevent PIGR restored palmitate-induced impairment of glucose uptake (PIIGU) in C2 myotubes. Not only stimulators of fatty acid oxidation, such as bezafibrate, AICAR, and TOFA, but also TCA cycle substrates, such as pyruvate, leucine/glutamine, and α-ketoisocaproate/monomethyl succinate, significantly prevented PIGR. In particular, supplementing with pyruvate through methyl pyruvate resulted in nearly complete prevention of PIIGU, whereas palmitate treatment reduced the intracellular pyruvate level. These results suggest that pyruvate depletion plays a critical role in PIGR and PIIGU; thus, pyruvate supplementation may help prevent obesity-induced insulin resistance in muscle cells. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis

    International Nuclear Information System (INIS)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2017-01-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) – extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. - Highlights: • VPA induced hepatic steatosis and modulated genes associated with lipid metabolism. • CD36-mediated fatty acid uptake contributed to VPA-induced lipid accumulation. • PA increased the hepatic

  3. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Cao, Di [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou (China); Yu, Weibang [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Zhao, Zhongxiang [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou (China); Huang, Min [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Jin, Jing, E-mail: jinjing@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China)

    2017-06-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) – extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. - Highlights: • VPA induced hepatic steatosis and modulated genes associated with lipid metabolism. • CD36-mediated fatty acid uptake contributed to VPA-induced lipid accumulation. • PA increased the hepatic

  4. Phytanic acid stimulates glucose uptake in a model of skeletal muscles, the primary porcine myotubes

    DEFF Research Database (Denmark)

    Che, Brita Ngum; Oksbjerg, Niels; Hellgren, Lars

    2013-01-01

    and tritiated 2-deoxyglucose (2-DOG) was used to measure glucose uptake, in relation to PA and 2-DOG exposure times and also in relation to PA and insulin concentrations. The MIXED procedure model of SAS was used for statistical analysis of data. RESULTS: PA increased glucose uptake by approximately 35...

  5. Cinnamon Extract Enhances Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myocytes by Inducing LKB1-AMP-Activated Protein Kinase Signaling

    Science.gov (United States)

    Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

    2014-01-01

    We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK. PMID:24551069

  6. Effect of hypoxia on the uptake of [methyl-3H]choline, [1-14C] acetate and [18F]FDG in cultured prostate cancer cells

    International Nuclear Information System (INIS)

    Hara, Toshihiko; Bansal, Aditya; DeGrado, Timothy R.

    2006-01-01

    Introduction: Choline, acetate and glucose ([2- 18 F]fluoro-2-deoxyglucose, [ 18 F]FDG) analogs are under investigation as positron emission tomography (PET) tracers for the imaging of prostate cancer; however, their response to tumor hypoxia has not been clarified. Methods: The uptake of [methyl- 3 H]choline, [1- 14 C]acetate and [ 18 F]FDG was monitored in androgen-independent PC-3 cells and androgen-sensitive LNCaP cells under aerobic or anoxic conditions. The effect of androgen depletion was also examined. Results: PC-3 cells exhibited aerobic choline and acetate uptake five to six times higher than FDG uptake, whereas LNCaP cells showed choline uptake 2.2-fold higher than acetate uptake and 10-fold higher than FDG uptake. After 4 h of anoxia, PC-3 cells showed an 85% increase in FDG uptake, a 15% decrease in choline uptake and a 36% increase in acetate uptake, whereas LNCaP cells showed a 212% increase in FDG uptake, a 28% decrease in choline uptake and no change in acetate uptake. Androgen depletion resulted in a marked decrease in the uptake of all tracers in LNCaP cells but no changes in PC-3 cells. Conclusion: In aerobic conditions, both PC-3 and LNCaP cells exhibited an order of uptake preference as follows: choline>acetate>FDG. In hypoxic cells, the order is reversed, reflecting diverse biochemical responses to hypoxia. These findings may help to explain PET imaging findings of the diverse responses of these tracers in different stages and locations of prostate cancer. Androgen depletion markedly suppressed the uptake of all three tracers in LNCaP cells, which suggests the potential for underestimation of the disease state when PET imaging is performed subsequent to antiandrogen therapy

  7. Reassessment of FDG uptake in tumor cells: High FDG uptake as a reflection of oxygen-independent glycolysis dominant energy production

    Energy Technology Data Exchange (ETDEWEB)

    Waki, A.; Fujibayashi, Y.; Yonekura, Y.; Sadato, N.; Ishii, Y.; Yokoyama, A

    1997-10-01

    To determine appropriate use of 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) in the diagnosis of malignant tumors, the mechanism of enhanced FDG uptake in tumor cells was reassessed using in vitro cultured cell lines and {sup 3}H-deoxyglucose (DG), in combination with possible parameters of aerobic and anaerobic energy production. The high DG uptake in the tumor cells reflected the dependency of energy production on anaerobic glycolysis, and paradoxically on low levels of aerobic oxidative phosphorylation in mitochondria. We discuss here factors underlying anaerobic glycolysis in tumor cells.

  8. Investigation of [18F]2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism

    International Nuclear Information System (INIS)

    Phelps, M.E.; Hoffman, E.J.; Selin, C.; Huang, S.C.; Robinson, G.; MacDonald, N.; Schelbert, H.; Kuhl, D.E.

    1978-01-01

    Fluorine-18-labeled 2-deoxyglucose (FDG) was studied as a glucose analog for the measure of myocardial glucose metabolism. Myocardial uptake and retention, blood clearance, species dependence (dog, monkey, man), and effect of diet on uptake were investigated. Normal myocardial uptake of FDG was 3 to 4% of injected dose in dog and monkey, and 1 to 4% in man, compared with brain uptakes of 1.5 to 3% in dog, 5 to 6% in monkey, and 4 to 8% in man. The myocardial metabolic rate (MR) for glucose in the nonfasting (glycolytic) state was 2.8 times that in the fasting (ketogenic) state. Human subjects showed higher myocardial uptake after a normal meal than after a meal containing mostly free fatty acids (FFA). Blood clearance was rapid with initial clearance t/sub 1/2/ of 0.2 to 0.3 min, followed by a t/sub 1/2/ of 8.4 +- 1.2 min in dog and 11.6 +- 1.1 min in man. A small third component had half-times of 59 +- 10 min and 88 +- 4 min in dog and man, respectively. With the ECAT positron tomograph, high image-contrast ratios were found between heart and blood (dog 3.5/1, man 14/1), heart and lung (dog 9/1, man 20/1), and heart and liver (dog 15/1, man 10/1). The FDG was taken up rapidly by the myocardium without any significant tissue clearance over a 4-hr period. The FDG exhibited excellent imaging properties. Average counting rates of 12K, 20K, and 40K c/min-mCi injected are obtained in human subjects with high, medium, and low resolutions of the ECAT tomograph. Determination of glucose and FFA MR in vivo with EACT provides a method for investigation and assessment of changing aerobic and anaerobic metabolic rates in ischemic heart disease in man

  9. Tracing Fasting Glucose Fluxes with Unstressed Catheter Approach in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Shichun Du

    2014-01-01

    Full Text Available Objective. Blood glucose concentrations of type 1 diabetic rats are vulnerable, especially to stress and trauma. The present study aimed to investigate the fasting endogenous glucose production and skeletal muscle glucose uptake of Streptozotocin induced type 1 diabetic rats using an unstressed vein and artery implantation of catheters at the tails of the rats as a platform. Research Design and Methods. Streptozotocin (65 mg·kg−1 was administered to induce type 1 diabetic state. The unstressed approach of catheters of vein and artery at the tails of the rats was established before the isotope tracer injection. Dynamic measurement of fasting endogenous glucose production was assessed by continuously infusing stable isotope [6, 6-2H2] glucose, while skeletal muscle glucose uptake by bolus injecting radioactively labeled [1-14C]-2-deoxy-glucose. Results. Streptozotocin induced type 1 diabetic rats displayed polydipsia, polyphagia, and polyuria along with overt hyperglycemia and hypoinsulinemia. They also had enhanced fasting endogenous glucose production and reduced glucose uptake in skeletal muscle compared to nondiabetic rats. Conclusions. The dual catheters implantation at the tails of the rats together with isotope tracers injection is a save time, unstressed, and feasible approach to explore the glucose metabolism in animal models in vivo.

  10. 2-deoxyglucose tissue levels and insulin levels following tolazamide dosing in normal and obese mice

    International Nuclear Information System (INIS)

    Skillman, C.A.; Fletcher, H.P.

    1986-01-01

    The effect of tolazamide (TZ), a sulfonylurea, on 14 C-2-deoxyglucose ( 14 C-2DG) tissue distribution and insulin levels of normal and obese mice was investigated using an in vivo physiological method. Acute doses of TZ (50 mg/kg ip) increased 14 C-2DG levels in gastrocnemius muscle and retroperitoneal fat and produced a transient elevation of insulin which most likely accounts for the increased 14 C-2DG levels in muscle and fat. The results demonstrate that the in vivo 14 C-2DG method produced results consistent with known actions of sulfonylureas on in vitro hexose assimilation in muscle and fat. Subchronic treatment (7 days) with TZ 50 mg/kg ip twice daily did not result in increased insulin-stimulated 14 C-2DG tissue levels in normal mice when compared to saline treated controls. However, insulin levels were lower in mice treated subchronically with TZ compared to saline controls suggesting an enhancement of insulin action. Viable yellow obese mice represent a model of maturity onset obesity presenting with insulin resistance. The insulin resistance of this obese strain appears to reside in the fat tissue as assessed by comparing 14 C-2DG tissue levels of obese mice with lean littermate controls. Subchronic TZ treatment had no effect on 14 C-2DG uptake in fat or muscle tissue of viable yellow obese mice and did not alter their plasma insulin levels. It appears that genetically obese viable mice may be resistant to subchronic treatment with TZ. (author)

  11. Extracellular Vesicles from Hypoxic Adipocytes and Obese Subjects Reduce Insulin‐Stimulated Glucose Uptake

    Science.gov (United States)

    Mleczko, Justyna; Ortega, Francisco J.; Falcon‐Perez, Juan Manuel; Wabitsch, Martin; Fernandez‐Real, Jose Manuel

    2018-01-01

    Scope We investigate the effects of extracellular vesicles (EVs) obtained from in vitro adipocyte cell models and from obese subjects on glucose transport and insulin responsiveness. Methods and results EVs are isolated from the culture supernatant of adipocytes cultured under normoxia, hypoxia (1% oxygen), or exposed to macrophage conditioned media (15% v/v). EVs are isolated from the plasma of lean individuals and subjects with obesity. Cultured adipocytes are incubated with EVs and activation of insulin signalling cascades and insulin‐stimulated glucose transport are measured. EVs released from hypoxic adipocytes impair insulin‐stimulated 2‐deoxyglucose uptake and reduce insulin mediated phosphorylation of AKT. Insulin‐mediated phosphorylation of extracellular regulated kinases (ERK1/2) is not affected. EVs from individuals with obesity decrease insulin stimulated 2‐deoxyglucose uptake in adipocytes (p = 0.0159). Conclusion EVs released by stressed adipocytes impair insulin action in neighboring adipocytes. PMID:29292863

  12. Significance of local cerebral glucose utilization determined by the autoradiographic (/sup 14/C)deoxyglucose method in experimentally induced coma

    Energy Technology Data Exchange (ETDEWEB)

    Sakurada, O.; Kobayashi, M.; Ueno, H.; Ishii, S. (Juntendo Univ., Tokyo (Japan). School of Medicine)

    1982-01-01

    Bilateral lesions made in the midbrain reticular formation of the rat produced behavioral akinesia. These animals neither ate nor drank. EEGs of these animals usually showed high voltage slow waves at rest. Slight EEG arousal response was demonstrated by clapping, touching and pinching only in rats with moderate impairment. Concerning the rates of local cerebral glucose utilization (LCGU) measured by means of the autoradiographic (/sup 14/C) deoxyglucose method, 13 structures exhibited significant reductions in 28 gray structures examined when compared with sham operated rats. Lesions in the midbrain reticular formation resulted in reduction of LCGU in the neocortex, ventral nucleus of the thalamus, subthalamic nucleus, and medial and lateral geniculated bodies, mamillary body, septal nucleus and caudateputamen. Structures which did not show any significant change in LCGU were those related to the paleo and archi-cortices. These findings suggest the existence of two types of ascending activating systems. Administration of 30 mg/kg of pentobarbital reduced LCGU diffusely throughout the brain. When thyrotropin releasing hormone (TRH) was administered to rats with lesions in the midbrain reticular formation, reversal of the reduction of LCGU was observed in the dorsomedial nucleus of the thalamus and the mamillary body. Reversal of LCGU in the dorsomedial nucleus of thalamus was especially significant and its level exceeded the level of the sham control value. This suggests TRH might exert its function through the dorsomedial nucleus of the thalamus and mamillary body. When TRH was administered to rats treated with pentobarbital, significant reversal was observed in the following structures: the lateral and ventral nucleus of the thalamus, dentate gyrus, caudate-putamen, nucleus accumbens, pontine gray matter, and raphe nucleus.

  13. Zinc uptake in vitro by human retinal pigment epithelium

    International Nuclear Information System (INIS)

    Newsome, D.A.; Rothman, R.J.

    1987-01-01

    Zinc, an essential trace element, is present in unusually high concentrations in the chorioretinal complex relative to most other tissues. Because little has been known about the interactions between the retinal pigment epithelium and free or protein-associated zinc, we studied 65 Zn uptake by human retinal pigment epithelium in vitro. When monolayers were exposed to differing concentrations from 0 to 30 microM 65 Zn in Dulbecco's modified Eagle's medium with 5.4 gm/l glucose at 37 degrees C and 4 degrees C, we observed a temperature-dependent saturable accumulation of the radiolabel. With 15 microM 65 Zn, we saw a biphasic pattern of uptake with a rapid first phase and a slower second phase over 120 min. Uptake of 65 Zn was inhibited by iodacetate and cold, and reduced approximately 50% by the addition of 2% albumin to the labelling medium. Neither ouabain nor 2-deoxyglucose inhibited uptake. Cells previously exposed to 65 Zn retained approximately 70% of accumulated 65 Zn 60 min after being changed to radiolabel-free medium. Following removal of cells from the extracellular matrix adherent to the dish bottom, a variable amount of nonspecific binding of 65 Zn to the residual matrix was demonstrated. These observations are consistent with a facilitated type of transport and demonstrate the ability of human retinal pigment epithelium in vitro to accumulate and retain zinc

  14. Investigation of (/sup 18/F)2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.E.; Hoffman, E.J.; Selin, C.; Huang, S.C.; Robinson, G.; MacDonald, N.; Schelbert, H.; Kuhl, D.E.

    1978-12-01

    Fluorine-18-labeled 2-deoxyglucose (FDG) was studied as a glucose analog for the measure of myocardial glucose metabolism. Myocardial uptake and retention, blood clearance, species dependence (dog, monkey, man), and effect of diet on uptake were investigated. Normal myocardial uptake of FDG was 3 to 4% of injected dose in dog and monkey, and 1 to 4% in man, compared with brain uptakes of 1.5 to 3% in dog, 5 to 6% in monkey, and 4 to 8% in man. The myocardial metabolic rate (MR) for glucose in the nonfasting (glycolytic) state was 2.8 times that in the fasting (ketogenic) state. Human subjects showed higher myocardial uptake after a normal meal than after a meal containing mostly free fatty acids (FFA). Blood clearance was rapid with initial clearance t/sub 1/2/ of 0.2 to 0.3 min, followed by a t/sub 1/2/ of 8.4 +- 1.2 min in dog and 11.6 +- 1.1 min in man. A small third component had half-times of 59 +- 10 min and 88 +- 4 min in dog and man, respectively. With the ECAT positron tomograph, high image-contrast ratios were found between heart and blood (dog 3.5/1, man 14/1), heart and lung (dog 9/1, man 20/1), and heart and liver (dog 15/1, man 10/1). The FDG was taken up rapidly by the myocardium without any significant tissue clearance over a 4-hr period. The FDG exhibited excellent imaging properties. Average counting rates of 12K, 20K, and 40K c/min-mCi injected are obtained in human subjects with high, medium, and low resolutions of the ECAT tomograph. Determination of glucose and FFA MR in vivo with EACT provides a method for investigation and assessment of changing aerobic and anaerobic metabolic rates in ischemic heart disease in man.

  15. [3H]-2-Deoxyglucose autoradiography in a molluscan nervous system

    International Nuclear Information System (INIS)

    Reingold, S.C.; Sejnowski, T.J.; Gelperin, A.

    1981-01-01

    The authors have used [ 3 H]2-deoxyglucose autoradiography to correlate the labeling of individual neurons with electrical activity within the central nervous system of a terrestrial mollusc, Limax maximus. In an electrically quiescent control preparation where a single neuron is impaled with a glass microelectrode but not stimulated, several somata are uniformly labeled at 3-5 times background. In preparations where a single cell is impaled and stimulated, one or more somata are heavily labeled with [ 3 H]2-deoxyglucose at 10-50 times tissue background. This technique may be useful for surveying metabolically active neurons during spontaneous and driven electrical activity. (Auth.)

  16. 2-Deoxyglucose induces the expression of thioredoxin interacting protein (TXNIP) by increasing O-GlcNAcylation – Implications for targeting the Warburg effect in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Shin Yee; Hagen, Thilo, E-mail: bchth@nus.edu.sg

    2015-10-02

    The high proliferation rate of cancer cells and the microenvironment in the tumor tissue require the reprogramming of tumor cell metabolism. The major mechanism of metabolic reprogramming in cancer cells is the Warburg effect, defined as the preferential utilization of glucose via glycolysis even in the presence of oxygen. Targeting the Warburg effect is considered as a promising therapeutic strategy in cancer therapy. In this regard, the glycolytic inhibitor 2-deoxyglucose (2DG) has been evaluated clinically. 2DG exerts its effect by directly inhibiting glycolysis at the level of hexokinase and phosphoglucoisomerase. In addition, 2DG is also known to induce the expression of thioredoxin interacting protein (TXNIP), a tumor suppressor protein and an important negative regulator of cellular glucose uptake. Hence, characterization of the mechanism through which 2DG regulates TXNIP expression may reveal novel approaches to target the Warburg effect in cancer cells. Therefore, in this study we sought to test various hypotheses for the mechanistic basis of the 2DG dependent TXNIP regulation. We have shown that 2DG induced TXNIP expression is independent of carbohydrate response element mediated transcription. Furthermore, the induction of TXNIP is neither dependent on the ability of 2DG to deplete cellular ATP nor to cause endoplasmic reticulum stress. We found that the 2DG induced TXNIP expression is at least in part dependent on the inhibition of the O-GlcNAcase enzyme and the accumulation of O-GlcNAc modified proteins. These results have implications for the identification of therapeutic targets to increase TXNIP expression in cancer. - Highlights: • 2DG increases TXNIP expression at the mRNA and protein level. • The effect of 2DG on TXNIP is independent of ChoRE mediated transcription. • 2DG induces TXNIP independent of ER stress induction and ATP depletion. • 2DG inhibits OGA and leads to accumulation of O-GlcNAcylated proteins. • The upregulation of

  17. Identification of ischemic and hibernating myocardium: feasibility of post-exercise F-18 deoxyglucose positron emission tomography

    International Nuclear Information System (INIS)

    Marwick, T.H.; MacIntyre, W.J.; Salcedo, E.E.; Go, R.T.; Saha, G.; Beachler, A.

    1991-01-01

    The identification of ischemic and hibernating myocardium facilitates the selection of patients most likely to benefit from revascularization. This study examined the feasibility of metabolic imaging, using post-exercise F-18 deoxyglucose positron emission tomography (FDG-PET) for the diagnosis of both ischemia and hibernation in 27 patients with known coronary anatomy. Normal post-exercise FDG uptake was defined in each patient by reference to normal resting perfusion and normal coronary supply. Abnormal elevation of FDG (ischemia or hibernation) was compared in 13 myocardial segments in each patient, with the results of dipyridamole stress perfusion imaging performed by rubidium-82 positron emission tomography (Rb-PET). Myocardial ischemia was diagnosed by either FDG-PET or Rb-PET in 34 segments subtended by significant local coronary stenoses. Increased FDG uptake was present in 32/34 (94%) and a reversible perfusion defect was identified by Rb-PET in 22/34 (65%, p less than .01). In 3 patients, ischemia was identified by metabolic imaging alone. In 16 patients with previous myocardial infarction, perfusion defects were present at rest in 89 regions, 30 of which (34%) demonstrated increased FDG uptake, consistent with the presence of hibernation. Increased post-exercise FDG uptake appears to be a sensitive indicator of ischemia and myocardial hibernation. Increased post-exercise FDG uptake, appears to be a sensitive indicator of ischemia and myocardial hibernation. This test may be useful in selecting post-infarction patients for revascularization

  18. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis.

    Science.gov (United States)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2017-06-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) - extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Investigation of 18F-2-deoxyglucose for the measure of myocardial glucose metabolism

    International Nuclear Information System (INIS)

    Phelps, M.E.; Hoffman, E.J.; Selin, C.; Huang, S.C.; Robinson, G.; MacDonald, N.; Schelbert, H.R.; Kuhl, D.E.

    1977-01-01

    18 F labeled 2-deoxyglucose ( 18 FDG) was studied as a glucose analog. Myocardial uptake and retention, blood clearance, species (dog, monkey, man) dependence and effect of diet on uptake were investigated. Normal myocardial uptake of 18 FDG was 3 to 4% in dog and monkey and 1 to 4% of injected dose in man compared to brain uptake of 2% in dog, 5 to 6% in monkey and 4 to 8% in man. The metabolic rate (MR) for glucose in non-fasting (glycolytic state) was 2.8 times greater than in fasting (ketogenic state). Human subjects showed higher myocardial uptake after a normal meal than after meal containing mostly free fatty acids (FFA). Blood clearance was rapid with initial clearance t 1 / 2 of 0.2 to 0.3 min followed by a t 1 / 2 of 8.4 +- 1.2 min in dog and 11.6 +- 1.1 min in man. A small third component had a t 1 / 2 of 59 +- 10 min and 88 +- 4 min in dog and man, respectively. High image contrast ratios between heart and blood (dog 3.5/1; man 14/1), heart and lung (dog 9/1; man 20/1), heart and liver (dog 15/1; man 10/1) were found with the ECAT positron tomograph. 18 FDG was found to be rapidly taken up by the myocardium without any significant tissue clearance over a 4 hour period. 18 FDG is transported, phosphorylated to 18 FDG-6-PO 4 and trapped in myocardial cells in the same manner as has been found for brain and exhibits excellent imaging properties. Determination of glucose and FFA MR in vivo with ECT provides a method for investigation and assessment of changing aerobic and anaerobic metabolic rates in ischemic heart disease in man

  20. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dov, Nadav [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel); Korenstein, Rafi, E-mail: korens@post.tau.ac.il [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel)

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  1. Differential [14C]2-deoxyglucose uptake after deafferentation of the mammalian auditory pathway - a model for examining tinnitus

    International Nuclear Information System (INIS)

    Sasaki, C.T.; Kauer, J.S.; Babitz, L.

    1980-01-01

    The authors have used 2-DG in examining metabolic changes of the auditory pathways after surgical deafferentation, consequences of which within a week or so often produce the pathophysiological condition of tinnitus in humans. The findings identify increased glucose uptake related to increased neuronal activity after chronic cochlear ablation and may thus represent an analog of the tinnitus phenomenon in man. (Auth.)

  2. Cold exposure potentiates the effect of insulin on in vivo glucose uptake

    International Nuclear Information System (INIS)

    Vallerand, A.L.; Perusse, F.; Bukowiecki, L.J.

    1987-01-01

    The effects of cold exposure and insulin injection on the rates of net 2-[ 3 H]deoxyglucose uptake (K i ) in peripheral tissues were investigated in warm-acclimated rats. Cold exposure and insulin treatment independently increased K i values in skeletal muscles, heart, white adipose tissue, and brown adipose tissue. The effects of cold exposure were particularly evident in brown adipose tissue where the K i increased >100 times. When the two treatments were combined, it was found that cold exposure synergistically enhanced the maximal insulin responses for glucose uptake in brown adipose tissue, all white adipose tissue depots, and skeletal muscles investigated. The results indicate that cold exposure induces an insulin-like effect on K i that does not appear to be specifically associated with shivering thermogenesis in skeletal muscles, because that effect was observed in all insulin-sensitive tissues. The data also demonstrate that cold exposure significantly potentiates the maximal insulin responses for glucose uptake in the same tissues. This potentialization may result from (1) an enhanced responsiveness of peripheral tissues to insulin, possibly occurring at metabolic steps lying beyond the insulin receptor and (2) an increased tissue blood flow augmenting glucose and insulin availability and thereby amplifying glucose uptake

  3. Neomycin inhibits PDGF-induced IP3 formation and DNA synthesis but not PDGF-stimulated uptake of inorganic phosphate in C3H/10T1/2 fibroblasts.

    Science.gov (United States)

    Vassbotn, F S; Langeland, N; Holmsen, H

    1990-09-01

    Porcine PDGF was found to increase [3H]inositol trisphosphate, [3H]thymidine incorporation and 32P-labelling of polyphosphoinositides in C3H/10T1/2 Cl 8 fibroblasts. These responses to PDGF stimulation were all inhibited by 5 mM neomycin, a polycationic aminoglycoside formerly known to inhibit polyphosphoinositide turnover. PDGF also markedly increased the cellular uptake of inorganic [32P]Pi. This response of PDGF was not inhibited by neomycin (5 mM). Thus, neomycin inhibited PDGF-induced IP3 formation, 32P-labelling of polyphosphoinositides and DNA synthesis, but not cellular uptake of inorganic phosphate. These effects of neomycin suggest a bifurcation of the initial part of the PDGF-induced signal transduction, separating at the receptor level or before phospholipase C activation.

  4. Factors influencing intracellular uptake and radiosensitization by 2-nitroimidazoles in vitro

    International Nuclear Information System (INIS)

    Brown, D.M.; Gonzalez-Mendez, R.; Brown, J.M.

    1983-01-01

    In this study it is shown that the radiosensitization of hypoxic Chinese hamster ovary (HA-1) cells in vitro by misonidazole (MIS) and other 1-substituted 2-nitroimidazoles depends on the rate and extent of intracellular uptake of these radiosensitizers, which in turn is governed by their lipophilicity [expressed as the octanol:water partition coefficient (P)]. As the lipophilicity of the compounds decreased, the rate of drug entry into the cells was slower, and below P values of approximately 0.05, peak intracellular drug concentrations were found to be lower than that of MIS (P=0.43). In addition, the number of hydroxyl groups on the side chain of the nitroimidazole molecule influenced the uptake of drug into the cells. For compounds of similar P, but differing in the number of side-chain hydroxyl groups, the addition of a single hydroxyl group to the molecule decreased the amount of drug entering the cell by a factor of approximately 2. These compounds enter the cell by nonmediated passive diffusion since altering the energy (ATP) capacity of the cell by 2-deoxyglucose did not affect uptake. It is also shown that increases in temperature or decreases in pH can increase the intracellular uptake of MIS. For example, equal intracellular and extracellular concentrations (100% uptake) of MIS were obtained if cells were heated to 44-45 0 C for 15 min compared to 20-40% uptake at 37 0 C. Increases in MIS uptake by factors of 2 to 3 could be demonstrated within 30 min when cells were incubated in Hanks' balanced salt solution at pH between 6.0 and 6.3 without loss of cell viability. In addition, MIS uptake in aerobic cultured cells varied from 15 to 60% depending on the cell line and culure conditions used

  5. Differential (/sup 14/C)2-deoxyglucose uptake after deafferentation of the mammalian auditory pathway - a model for examining tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, C T; Kauer, J S; Babitz, L [Yale Univ., New Haven, CT (USA). School of Medicine

    1980-08-04

    The authors have used 2-DG in examining metabolic changes of the auditory pathways after surgical deafferentation, consequences of which within a week or so often produce the pathophysiological condition of tinnitus in humans. The findings identify increased glucose uptake related to increased neuronal activity after chronic cochlear ablation and may thus represent an analog of the tinnitus phenomenon in man.

  6. Catecholamine stimulation, substrate competition, and myocardial glucose uptake in conscious dogs assessed with positron emission tomography

    International Nuclear Information System (INIS)

    Merhige, M.E.; Ekas, R.; Mossberg, K.; Taegtmeyer, H.; Gould, K.L.

    1987-01-01

    Uptake of radiolabelled deoxyglucose out of proportion to reduced coronary flow demonstrated by positron emission tomography has been used to identify reversibly ischemic, viable myocardium. For this concept to be applied reliably in the clinical setting, factors that may depress glucose availability independent of tissue viability, such as adrenergic stimulation and substrate competition, must be examined. Accordingly, we studied the effect of catecholamine stimulation by dopamine on myocardial glucose uptake in vivo using chronically instrumented, intact dogs and positron emission tomography. We measured myocardial activity of [2- 18 F]-2-deoxyglucose (FDG) and 82 Rb in glucose-loaded animals randomly studied during dopamine infusion, during insulin infusion, and then during their combined infusion. Myocardial FDG uptake was significantly decreased when animals were treated with dopamine, compared with treatment in the same animals with insulin. When insulin was added to the dopamine infusion, myocardial FDG uptake was restored. In contrast, myocardial activity of 82 Rb, which is taken up in proportion to coronary flow, was similar under all three experimental conditions. Plasma glucose, free fatty acid, and lactate concentrations were determined before and during each infusion. The depression of myocardial FDG activity seen during dopamine infusion and its reversal with addition of insulin can be explained on the basis of effects of these hormones on substrate availability and competition

  7. Glucose metabolism of fetal rat brain in utero, measured with labeled deoxyglucose

    Energy Technology Data Exchange (ETDEWEB)

    Dyve, S [Department of General Physiology and Biophysics, Panum Institute, Copenhagen (Denmark); Gjedde, A [Positron Imaging Laboratories, McConnell Brain Imaging Center, Montreal, Quebec (Canada)

    1991-01-01

    Mammals have low cerebral metabolic rates immediately after birth and, by inference, also before birth. In this study, we extended the deoxyglucose method to the fetal rat brain in utero. Rate constants for deoxyglucose transfer across the maternal placental and fetal blood-brain barriers, and lumped constant, have not been reported. Therefore, we applied a new method of determining the lumped constant regionally to the fetal rat brain in utero. The lumped constant averaged 0.55 +- 0.15 relative to the maternal circulation. On this basis, we determined the glucose metabolic rate of the fetal rat brain to be one third of the corresponding maternal value, or 19 +- 2 {mu}mol hg{sup -1} min{sup -1}. (author).

  8. Characterization and Predictive Value of Near Infrared 2-Deoxyglucose Optical Imaging in Severe Acute Pancreatitis.

    Directory of Open Access Journals (Sweden)

    Cristiane de Oliveira

    Full Text Available Studying the uptake of 2-deoxy glucose (2-DG analogs such as 2-Deoxy-2-[18F] fluoroglucose (FDG is a common approach to identify and monitor malignancies and more recently chronic inflammation. While pancreatitis is a common cause for false positive results in human studies on pancreatic cancer using FDG, the relevance of these findings to acute pancreatitis (AP is unknown. FDG has a short half-life. Thus, with an aim to accurately characterize the metabolic demand of the pancreas during AP in real-time, we studied the uptake of the non-radioactive, near infrared fluorescence labelled 2-deoxyglucose analog, IRDye® 800CW 2-DG probe (NIR 2-DG; Li-Cor during mild and severe biliary AP.Wistar rats (300 g; 8-12/group were administered NIR 2-DG (10 nM; I.V.. Mild and severe biliary AP were respectively induced by biliopancreatic duct ligation (DL alone or along with infusing glyceryl trilinoleate (GTL; 50 μL/100 g within 10 minutes of giving NIR 2-DG. Controls (CON only received NIR 2-DG. Imaging was done every 5-10 minutes over 3 hrs. Average Radiant Efficiency [p/s/cm²/sr]/[μW/cm²] was measured over the pancreas using the IVIS 200 in-vivo imaging system (PerkinElmer using the Living Image® software and verified in ex vivo pancreata. Blood amylase, lipase and pancreatic edema, necrosis were measured over the course of AP.NIR 2-DG uptake over the first hour was not influenced by AP induction. However, while the signal declined in controls and rats with mild AP, there was significantly higher retention of NIR 2-DG in the pancreas after 1 hour in those with GTL pancreatitis. The increase was > 3 fold over controls in the GTL group and was verified to be in the pancreas ex vivo. In vitro, pancreatic acini exposed to GTL had a similar increase in NIR 2-DG uptake which was followed by progressively worse acinar necrosis. Greater retention of NIR 2-DG in vivo was associated with worse pancreatic necrosis, reduced ATP concentrations and mortality

  9. Rac1 governs exercise‐stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice

    Science.gov (United States)

    Nielsen, Ida L.; Kleinert, Maximilian; Møller, Lisbeth L. V.; Ploug, Thorkil; Schjerling, Peter; Bilan, Philip J.; Klip, Amira; Jensen, Thomas E.; Richter, Erik A.

    2016-01-01

    Key point Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood.The GTPase Rac1 can be activated by muscle contraction and has been found to be necessary for insulin‐stimulated glucose uptake, although its role in exercise‐stimulated glucose uptake is unknown.We show that Rac1 regulates the translocation of the glucose transporter GLUT4 to the plasma membrane in skeletal muscle during exercise.We find that Rac1 knockout mice display significantly reduced glucose uptake in skeletal muscle during exercise. Abstract Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. Despite extensive efforts, the signalling mechanisms vital for glucose uptake during exercise are not yet fully understood, although the GTPase Rac1 is a candidate molecule. The present study investigated the role of Rac1 in muscle glucose uptake and substrate utilization during treadmill exercise in mice in vivo. Exercise‐induced uptake of radiolabelled 2‐deoxyglucose at 65% of maximum running capacity was blocked in soleus muscle and decreased by 80% and 60% in gastrocnemius and tibialis anterior muscles, respectively, in muscle‐specific inducible Rac1 knockout (mKO) mice compared to wild‐type littermates. By developing an assay to quantify endogenous GLUT4 translocation, we observed that GLUT4 content at the sarcolemma in response to exercise was reduced in Rac1 mKO muscle. Our findings implicate Rac1 as a regulatory element critical for controlling glucose uptake during exercise via regulation of GLUT4 translocation. PMID:27061726

  10. Caloric restriction mimetic 2-deoxyglucose maintains cytoarchitecture and reduces tau phosphorylation in primary culture of mouse hippocampal pyramidal neurons.

    Science.gov (United States)

    Bele, M S; Gajare, K A; Deshmukh, A A

    2015-06-01

    Typical form of neurons is crucially important for their functions. This is maintained by microtubules and associated proteins like tau. Hyperphosphorylation of tau is a major concern in neurodegenerative diseases. Glycogen synthase kinase3β (GSK3β) and cyclin-dependent protein kinase 5 (Cdk5) are the enzymes that govern tau phosphorylation. Currently, efforts are being made to target GSK3β and Cdk5 as possible therapeutic avenues to control tau phosphorylation and treat neurodegenerative diseases related to taupathies. In a number of studies, caloric restriction mimetic 2-deoxyglucose (C6H12O5) was found to be beneficial in improving the brain functions. However, no reports are available on the effect of 2-deoxyglucose 2-DG on tau phosphorylation. In the present study, hippocampal pyramidal neurons from E17 mouse embryos were isolated and cultured on poly-L-lysine-coated coverslips. Neurons from the experimental group were treated with 10 mM 2-deoxyglucose. The treatment of 2-DG resulted in healthier neuronal morphology in terms of significantly lower number of cytoplasmic vacuoles, little or no membrane blebbings, maintained axon hillock and intact neurites. There were decreased immunofluorescence signals for GSK3β, pTau at Ser262, Cdk5 and pTau at Ser235 suggesting decreased tau phosphorylation, which was further confirmed by Western blotting. The results indicate the beneficial effects of 2-DG in controlling the tau phosphorylation and maintaining the healthy neuronal cytoarchitecture.

  11. Oleic acid blocks EGF-induced [Ca2+]i release without altering cellular metabolism in fibroblast EGFR T17.

    Science.gov (United States)

    Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F

    1995-02-06

    EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.

  12. Relation between thallium-201/iodine 123-BMIPP subtraction and fluorine 18 deoxyglucose polar maps in patients with hypertrophic cardiomyopathy.

    Science.gov (United States)

    Ito, Y; Hasegawa, S; Yamaguchi, H; Yoshioka, J; Uehara, T; Nishimura, T

    2000-01-01

    Clinical studies have shown discrepancies in the distribution of thallium-201 and iodine 123-beta-methyl-iodophenylpentadecanoic acid (BMIPP) in patients with hypertrophic cardiomyopathy (HCM). Myocardial uptake of fluorine 18 deoxyglucose (FDG) is increased in the hypertrophic area in HCM. We examined whether the distribution of a Tl-201/BMIPP subtraction polar map correlates with that of an FDG polar map. We normalized to maximum count each Tl-201 and BMIPP bull's-eye polar map of 6 volunteers and obtained a standard Tl-201/BMIPP subtraction polar map by subtracting a normalized BMIPP bull's-eye polar map from a normalized Tl-201 bull's-eye polar map. The Tl-201/BMIPP subtraction polar map was then applied to 8 patients with HCM (mean age 65+/-12 years) to evaluate the discrepancy between Tl-201 and BMIPP distribution. We compared the Tl-201/BMIPP subtraction polar map with an FDG polar map. In patients with HCM, the Tl-201/BMIPP subtraction polar map showed a focal uptake pattern in the hypertrophic area similar to that of the FDG polar map. By quantitative analysis, the severity score of the Tl-201/BMIPP subtraction polar map was significantly correlated with the percent dose uptake of the FDG polar map. These results suggest that this new quantitative method may be an alternative to FDG positron emission tomography for the routine evaluation of HCM.

  13. 14C glucose uptake and turnover, a biomarker in benzo(a)pyrene induced lung carcinogenesis: role of curcumin and resveratrol

    International Nuclear Information System (INIS)

    Malhotra, Anshoo; Nair, P.; Dhawan, D.K.

    2010-01-01

    Full text: The aim of the present study was to explore the synergistic potential of curcumin and resveratrol in modulation of glucose metabolism by studying 14 C glucose uptake, turnover in the lung slices and ultra-histoarchitectural changes during benzo(a)pyrene (BP) induced lung carcinogenesis in mice. The mice were segregated into five treatment groups which included group I (normal control), group II (BP treated), group III (BP+curcumin treated), group IV (BP+resveratrol treated) and group V (BP+curcumin+resveratrol treated). Animals in Group II were given a single intraperitoneal injection of Benzo(a)pyrene in corn oil at a dose level of 100mg/Kg body weight. Group III animals were given curcumin orally in drinking water at a dose level of 60 mg /Kg/ body weight, thrice a week. Animals in Group IV were given resveratrol orally at a dose level of 5.7 microgram/ml drinking water, thrice a week. Animals in group V were given a combined treatment of curcumin and resveratrol in a similar manner as was given to group III and group IV animals, respectively. All the animals had free access to the diet and water and the treatments continued for a total duration of 22 weeks. The morphological and ultra-histoachitectural analyses confirmed lung carcinogenesis, in the BP treated mice. Tumor incidence and tumor multiplicity were observed to be 88% and 1.75 respectively in the BP treated mice. A statistically significant increase in the uptake of 14 C glucose was observed in the lung slices of BP treated mice. Further, radiorespirometric analyses of 14 C turnover also showed a significant increase in the lung slices of BP treated mice. The ultra-histoarchitecture of the BP treated mice revealed disruption in cellular integrity along with nuclear deformation. Mitochondria were swollen and cytoplasm appeared granular along with extensive vacuolization. Further, spaces between the endothelium, epithelium and basement membrane indicative of lung injury and edema were observed

  14. Design and synthesis of novel arctigenin analogues for the amelioration of metabolic disorders.

    Science.gov (United States)

    Duan, Shudong; Huang, Suling; Gong, Jian; Shen, Yu; Zeng, Limin; Feng, Ying; Ren, Wenming; Leng, Ying; Hu, Youhong

    2015-04-09

    Analogues of the natural product (-)-arctigenin, an activator of adenosine monophosphate activated protein kinase, were prepared in order to evaluate their effects on 2-deoxyglucose uptake in L6 myotubes and possible use in ameliorating metabolic disorders. Racemic arctigenin 2a was found to display a similar uptake enhancement as does (-)-arctigenin. As a result, the SAR study was conducted utilizing racemic compounds. The structure-activity relationship study led to the discovery of key substitution patterns on the lactone motif that govern 2-deoxyglucose uptake activities. The results show that replacement of the para-hydroxyl group of the C-2 benzyl moiety of arctigenin by Cl has a pronounced effect on uptake activity. Specifically, analogue 2p, which contains the p-Cl substituent, stimulates glucose uptake and fatty acid oxidation in L6 myotubes.

  15. Heterogeneous response of isolated adult rat heart cells to insulin

    International Nuclear Information System (INIS)

    Haworth, R.A.; Hunter, D.R.; Berkoff, H.A.

    1984-01-01

    3-O-Methylglucose uptake by Ca2+-resistant adult rat heart cells in suspension was measured, free of artifactual inhibitor-insensitive uptake, and with an accuracy of +/- 1.9% pellet water. (Ca2+-resistant cells are cells which retain their original rod-shaped morphology in the presence of physiological levels of Ca2+.) High levels of insulin (10(-6) M) stimulated the rate of 3-O-methylglucose uptake approximately 10-fold. In the presence of low levels of insulin (3 X 10(-11) M, 10(-10) M) uptake was biphasic; it could not be described by a single exponential function within experimental error, but required the sum of two exponentials. Deviation from a single exponential function was not so great with high levels of insulin (10(-6) M) or no insulin. Cell sugar uptake was also investigated using autoradiography of cells which had accumulated [2-14C]deoxyglucose under similar conditions. This showed considerable heterogeneity of 2-deoxyglucose uptake by cells treated with low levels of insulin, but significantly less heterogeneity of 2-deoxyglucose uptake by cells treated with high levels of insulin. It is concluded that the deviation of 3-O-methylglucose uptake from a single exponential observed at low insulin levels can be accounted for in terms of a heterogeneous response of cells to insulin

  16. Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake

    Science.gov (United States)

    Oschlies, A.

    2009-08-01

    The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere

  17. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-04-23

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.

  18. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  19. Simultaneous estimates of regional myocardial blood flow and metabolism by the developing chick heart using [201]thallium and [14C] 2-deoxyglucose autoradiography

    International Nuclear Information System (INIS)

    Kostreva, D.R.; Wood, J.D.

    1990-01-01

    Little is known about regional myocardial blood flow and metabolism in the developing heart. Simultaneous estimates of regional myocardial blood flow and glucose metabolism have been made in the adult rat by Yonekura et al using [ 201 ] Thallium (THAL) and [ 14 C]2-deoxyglucose (DG) autoradiography. Since glucose is the primary cardiac metabolic substrate during development, glucose utilization is also an estimate of myocardial metabolism. Examination and comparison of the THAL and DG autoradiographs revealed that there is an uncoupling of blood flow and metabolism in the developing chick heart. Areas of the heart which had marked glucose utilization did not always have marked blood flow. Regions of the heart which had marked blood flow but very little glucose utilization were the interventricular septum and the apex. One explanation for this disparity is that although blood flow may be established in these regions, normal cardiac function requiring significant substrate utilization may not be fully developed

  20. Determination of Glucose Utilization Rates in Cultured Astrocytes and Neurons with [14C]deoxyglucose: Progress, Pitfalls, and Discovery of Intracellular Glucose Compartmentation.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F; Sokoloff, Louis; Driscoll, Bernard F

    2017-01-01

    2-Deoxy-D-[ 14 C]glucose ([ 14 C]DG) is commonly used to determine local glucose utilization rates (CMR glc ) in living brain and to estimate CMR glc in cultured brain cells as rates of [ 14 C]DG phosphorylation. Phosphorylation rates of [ 14 C]DG and its metabolizable fluorescent analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), however, do not take into account differences in the kinetics of transport and metabolism of [ 14 C]DG or 2-NBDG and glucose in neuronal and astrocytic cells in cultures or in single cells in brain tissue, and conclusions drawn from these data may, therefore, not be correct. As a first step toward the goal of quantitative determination of CMR glc in astrocytes and neurons in cultures, the steady-state intracellular-to-extracellular concentration ratios (distribution spaces) for glucose and [ 14 C]DG were determined in cultured striatal neurons and astrocytes as functions of extracellular glucose concentration. Unexpectedly, the glucose distribution spaces rose during extreme hypoglycemia, exceeding 1.0 in astrocytes, whereas the [ 14 C]DG distribution space fell at the lowest glucose levels. Calculated CMR glc was greatly overestimated in hypoglycemic and normoglycemic cells because the intracellular glucose concentrations were too high. Determination of the distribution space for [ 14 C]glucose revealed compartmentation of intracellular glucose in astrocytes, and probably, also in neurons. A smaller metabolic pool is readily accessible to hexokinase and communicates with extracellular glucose, whereas the larger pool is sequestered from hexokinase activity. A new experimental approach using double-labeled assays with DG and glucose is suggested to avoid the limitations imposed by glucose compartmentation on metabolic assays.

  1. 2-deoxyglucose as a selective agent for derepressed mutants of Pichia stipitis

    Science.gov (United States)

    Hassan K. Sreenath; Thomas W. Jeffries

    1998-01-01

    The glucose analog 2-deoxyglucose (2-DOG) has been used to obtain mutants derepressed for pentose metabolism. Some researchers have used 2-DOG alone whereas others have used it in the presence of a glucoserepressible carbon source. We examined both methods and screened mutant strains for improved use of xylose in the presence of glucose. Pichia stipitis mutants...

  2. [{sup 14}C]Serotonin uptake and [O-methyl-{sup 11}C]venlafaxine kinetics in porcine brain

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.F. E-mail: dfsmith@inet.uni2.dk; Hansen, S.B.; Oestergaard, L.; Gee, A.D.; Danielsen, E.; Ishizu, K.; Bender, D.; Poulsen, P.H.; Gjedde, A

    2001-08-01

    As part of our program of developing PET tracers for neuroimaging of psychotropic compounds, venlafaxine, an antidepressant drug, was evaluated. First, we measured in vitro rates of serotonin uptake in synaptosomes prepared from selected regions of porcine brain. Then, we determined the pharmacokinetics of venlafaxine, [O-methyl-{sup 11}C]-labeled for PET. Synaptosomal studies showed that the active uptake of [{sup 14}C]5-HT differed markedly between brain regions, with highest rates in hypothalamus, raphe region, and thalamus, and lowest rates in cortex and cerebellum. PET studies showed that the unidirectional rate of uptake of [O-methyl-{sup 11}C]venlafaxine from blood to brain was highest in the hypothalamus, raphe region, thalamus and basal ganglia and lowest in the cortex and cerebellum. Under normal physiological conditions, the capillary permeability-surface area (PS) product for [O-methyl-{sup 11}C]venlafaxine could not be estimated, because of complete flow-limitation of the cerebral uptake. Nevertheless, a correlation occurred between the apparent partition volume of the radiotracer and the rate of active uptake of 5-HT in selected regions of the porcine brain. During hypercapnia, limitations of blood-brain transfer were observed, giving PS-products for water that were only ca. 50% higher than those of venlafaxine. Thus, under normal physiological conditions, the rate of uptake of venlafaxine from blood into brain is completely flow-limited.

  3. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan)

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  4. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    International Nuclear Information System (INIS)

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2013-01-01

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance

  5. A Comparative Uptake Study of Multiplexed PET Tracers in Mice with Turpentine-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Tingting Huang

    2012-11-01

    Full Text Available The potential value of multiplexed positron emission tomography (PET tracers in mice with turpentine-induced inflammation was evaluated and compared with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG for glucose metabolism imaging. These PET tracers included [18F]fluoromethylcholine ([18F]FCH for choline metabolism imaging, (S-[11C]methyl-D-cysteine ([11C]DMCYS for amino acid metabolism imaging, [11C]bis(zinc(II-dipicolylamine ([11C]DPA-Zn2+ for apoptosis imaging, 2-(4-N-[11C]-methylaminophenyl-6-hydroxybenzothiazole ([11C]PIB for β amyloid binding imaging, and [18F]fluoride (18F− for bone metabolism imaging. In mice with turpentine-induced inflammation mice, the biodistribution of all the tracers mentioned above at 5, 15, 30, 45, and 60 min postinjection was determined. Also, the time-course curves of the tracer uptake ratios for inflammatory thigh muscle (IM to normal uninflammatory thigh muscle (NM, IM to blood (BL, IM to brain (BR, and IM to liver (LI were acquired, respectively. Moreover, PET imaging with the tracers within 60 min postinjection on a clinical PET/CT scanner was also conducted. [18F]FDG and 18F− showed relatively higher uptake ratios for IM to NM, IM to BL, IM to BR, and IM to LI than [18F]FCH, [11C]DPA-Zn2+, [11C]DMCYS and [11C]PIB, which were highly consistent with the results delineated in PET images. The results demonstrate that 18F− seems to be a potential PET tracer for inflammation imaging. [18F]FCH and [11C]DMCYS, with lower accumulation in inflammatory tissue than [18F]FDG, are not good PET tracers for inflammation imaging. As a promising inflammatory tracer, the chemical structure of [11C]DPA-Zn2+ needs to be further optimized.

  6. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  7. Uptake and distribution of 14C during and following exposure to [14C]methyl isocyanate

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Kennedy, A.L.; Stock, M.F.; Brown, W.E.; Alarie, Y.

    1988-01-01

    Guinea pigs were exposed to [ 14 C]methyl isocyanate ( 14 CH 3 -NCO, 14 C MIC) for periods of 1 to 6 hr at concentrations of 0.5 to 15 ppm. Arterial blood samples taken during exposure revealed immediate and rapid uptake of 14 C. Clearance of 14 C was then gradual over a period of 3 days. Similarly 14 C was present in urine and bile immediately following exposure, and clearance paralleled that observed in blood. Guinea pigs fitted with a tracheal cannula and exposed while under anesthesia showed a reduced 14 C uptake in blood indicating that most of the 14 C MIC uptake in normal guinea pigs occurred from retention of this agent in the upper respiratory tract passages. In exposed guinea pigs 14 C was distributed to all examined tissues. In pregnant female mice similarly exposed to 14 C MIC, 14 C was observed in all tissues examined following exposure including the uterus, placenta, and fetus. While the form of 14 C distributed in blood and tissues has not yet been identified, these findings may help to explain the toxicity of MIC or MIC reaction products on organs other than the respiratory tract, as noted by several investigators

  8. Olanzapine promotes fat accumulation in male rats by decreasing physical activity, repartitioning energy and increasing adipose tissue lipogenesis while impairing lipolysis.

    Science.gov (United States)

    Albaugh, V L; Judson, J G; She, P; Lang, C H; Maresca, K P; Joyal, J L; Lynch, C J

    2011-05-01

    Olanzapine and other atypical antipsychotics cause metabolic side effects leading to obesity and diabetes; although these continue to be an important public health concern, their underlying mechanisms remain elusive. Therefore, an animal model of these side effects was developed in male Sprague-Dawley rats. Chronic administration of olanzapine elevated fasting glucose, impaired glucose and insulin tolerance, increased fat mass but, in contrast to female rats, did not increase body weight or food intake. Acute studies were conducted to delineate the mechanisms responsible for these effects. Olanzapine markedly decreased physical activity without a compensatory decline in food intake. It also acutely elevated fasting glucose and worsened oral glucose and insulin tolerance, suggesting that these effects are adiposity independent. Hyperinsulinemic-euglycemic clamp studies measuring (14)C-2-deoxyglucose uptake revealed tissue-specific insulin resistance. Insulin sensitivity was impaired in skeletal muscle, but either unchanged or increased in adipose tissue depots. Consistent with the olanzapine-induced hyperglycemia, there was a tendency for increased (14)C-2-deoxyglucose uptake into fat depots of fed rats and, surprisingly, free fatty acid (FFA) uptake into fat depots was elevated approximately twofold. The increased glucose and FFA uptake into adipose tissue was coupled with increased adipose tissue lipogenesis. Finally, olanzapine lowered fasting plasma FFA, and as it had no effect on isoproterenol-stimulated rises in plasma glucose, it blunted isoproterenol-stimulated in vivo lipolysis in fed rats. Collectively, these results suggest that olanzapine exerts several metabolic effects that together favor increased accumulation of fuel into adipose tissue, thereby increasing adiposity.

  9. Does the uptake of wagering inducements predict impulse betting on sport?

    Science.gov (United States)

    Hing, Nerilee; Russell, Alex M T; Li, En; Vitartas, Peter

    2018-03-01

    Background and aims Marketing inducements for addictive products, such as wagering, can prompt impulse purchasing by triggering consumption reminders, urges, and cravings. Wagering inducements incentivize betting by providing bonus bets, money-back guarantees, deposits into betting accounts, and discounts. Their promotion during sporting events, push marketing efforts directed at consumers, and ease of uptake at the point-of-sale, may trigger betting on impulse. This study examined whether the uptake of wagering inducements predicted impulse betting on sport. Methods Australian sports bettors (N = 1,813) completed an online survey measuring their proportion of planned bets, impulse bets before match commencement, and impulse bets during play; frequency of using wagering inducements; and several psychological, behavioral, and demographic variables. Results More frequent users of wagering inducements had a greater tendency to place impulse in-play bets, which were also predicted by problem gambling, higher buying impulsiveness, higher frequency of watching sports, younger age, and higher educational status. Sports bettors with a greater tendency to place impulse bets before match commencement also tended to have higher buying impulsiveness and to be younger, but they used inducements less frequently, and tended to be female, less-educated and non-problem, moderate risk, or problem gamblers. Discussion and conclusions Uptake of wagering inducements appeared to be particularly effective in stimulating impulse in-play betting among problem gamblers and frequent sports viewers. These results suggest that a more cautious approach to the regulation of both in-play bets and wagering inducements may be required to better protect young adults from gambling problems and harm.

  10. Effects of cocaine on [11C]norepinephrine and [11C]β-CIT uptake in the primate peripheral organs measured by PET

    International Nuclear Information System (INIS)

    Suhara, Tetsuya; Farde, L.; Halldin, C.; Karlsson, P.; Nagren, K.

    1996-01-01

    The toxic properties of cocaine are related to both the central and peripheral effects. To identify possible lethal mechanisms and the accumulation of cocaine in various organs, the effects of cocaine on [ 11 C] norepinephrine and cocaine congener [ 11 C]β-CIT uptake in Cynomolgus monkeys were measured by positron emission tomography (PET). Cocaine (5 mg/kg) noticeably inhibited [ 11 C] norepinephrine uptake in the heart. The uptake of [ 11 C]β-CIT in the heart and lung was reduced by pretreatment with cocaine. There was a significant uptake in the liver which was increased following cocaine pretreatment. The results of this study confirm that cocaine blocks the neuronal uptake of norepinephrine in sympathetic nerve terminals in the myocardium. The effect of cocaine on [ 11 C]β-CIT uptake indicates that the binding sites in the heart and lung are saturable, while the uptake mechanism in the liver is different from those of the heart and lung. (author)

  11. [F-18]2-fluoro-2-deoxyglucose (FDG) positron emission tomography after limb salvage surgery: post-surgical appearance, attenuation correction and local complications

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, Michael J.; Sharp, Susan E. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Nuclear Medicine Division, Cincinnati, OH (United States)

    2015-08-15

    Metal endoprostheses and internal fixation devices cause significant artifacts on CT after limb salvage surgery; positron emission tomography (PET) images should be evaluated for artifacts. (1) To describe [F-18]2-fluoro-2-deoxyglucose (FDG) PET uptake patterns after limb salvage surgery. (2) To determine whether metal endoprostheses and fixation hardware cause significant artifacts on CT attenuation-corrected PET that interfere with diagnostic use of PET/CT after limb salvage surgery. We reviewed 92 studies from 18 patients ages 5-21 years. Diagnoses were osteogenic sarcoma in 14, Ewing sarcoma in 3, and malignant peripheral nerve sheath tumor originating in bone in 1. Nine patients had distal femur/knee endoprostheses, five had lower-extremity bone allografts secured by large metal plates and four had upper-extremity limb salvage procedures. Maximum standardized uptake value was calculated at lower-extremity soft-tissue-endoprosthesis interfaces. In 15 patients with PET/CT imaging, the first PET/CT scan after limb salvage surgery was reviewed for metal artifacts on CT images and for artifacts at locations on PET corresponding to the CT metal artifacts. Increased FDG uptake was consistently present at soft-tissue interfaces with endoprostheses, allografts and internal fixation devices, with little or no FDG uptake at cemented endoprosthesis-bone interfaces. Maximum standardized uptake value at margins of femur/knee endoprostheses ranged from 1.4 to 5.7. In four patients with distal femur/knee endoprostheses, minimal artifact was noted on attenuation-corrected PET images, but image interpretation was not affected. In the other 11 patients who had CT attenuation correction, we detected no artifacts caused by the attenuation correction. CT attenuation correction did not cause artifacts that affected interpretation of attenuation-corrected PET images. (orig.)

  12. [F-18]2-fluoro-2-deoxyglucose (FDG) positron emission tomography after limb salvage surgery: post-surgical appearance, attenuation correction and local complications

    International Nuclear Information System (INIS)

    Gelfand, Michael J.; Sharp, Susan E.

    2015-01-01

    Metal endoprostheses and internal fixation devices cause significant artifacts on CT after limb salvage surgery; positron emission tomography (PET) images should be evaluated for artifacts. (1) To describe [F-18]2-fluoro-2-deoxyglucose (FDG) PET uptake patterns after limb salvage surgery. (2) To determine whether metal endoprostheses and fixation hardware cause significant artifacts on CT attenuation-corrected PET that interfere with diagnostic use of PET/CT after limb salvage surgery. We reviewed 92 studies from 18 patients ages 5-21 years. Diagnoses were osteogenic sarcoma in 14, Ewing sarcoma in 3, and malignant peripheral nerve sheath tumor originating in bone in 1. Nine patients had distal femur/knee endoprostheses, five had lower-extremity bone allografts secured by large metal plates and four had upper-extremity limb salvage procedures. Maximum standardized uptake value was calculated at lower-extremity soft-tissue-endoprosthesis interfaces. In 15 patients with PET/CT imaging, the first PET/CT scan after limb salvage surgery was reviewed for metal artifacts on CT images and for artifacts at locations on PET corresponding to the CT metal artifacts. Increased FDG uptake was consistently present at soft-tissue interfaces with endoprostheses, allografts and internal fixation devices, with little or no FDG uptake at cemented endoprosthesis-bone interfaces. Maximum standardized uptake value at margins of femur/knee endoprostheses ranged from 1.4 to 5.7. In four patients with distal femur/knee endoprostheses, minimal artifact was noted on attenuation-corrected PET images, but image interpretation was not affected. In the other 11 patients who had CT attenuation correction, we detected no artifacts caused by the attenuation correction. CT attenuation correction did not cause artifacts that affected interpretation of attenuation-corrected PET images. (orig.)

  13. Comparison of histomorphometry and 85Sr uptake in induced heterotopic bone in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1992-01-01

    Heterotopic bone formation in the abdominal muscle of 45 male 8-week-old Wistar rats induced by implantation of 5, 10, or 15 mg demineralized bone (DBM) powder was evaluated at 4 weeks by 85Sr uptake of the implants and area histomorphometry of the induced bone. Two indices of 85Sr uptake were...... with increasing mass of implanted DBM, whereas the osteogenic index did not change....

  14. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two......-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover......, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus...

  15. Adaptation of the deoxyglucose method for use at cellular level: histological processing of the central nervous system for high resolution radio-autography

    International Nuclear Information System (INIS)

    Des Rosiers, M.H.; Descarries, Laurent

    1978-01-01

    Vascular perfusion of all products required for primary fixation, postfixation, dehydration and embedding of nervous tissue in Epon permits radio-autographic detection of radioactivity accumulated in the central nervous system after intravenous injection of [ 3 H]deoxyglucose. This histological technique should allow application of the deoxyglucose method at cellular if not subcellular level, since a high proportion of the tracer appears to be retained in situ in specimens adequately preserved for light and electron microscope radio-autography [fr

  16. Plant uptake of bicarbonate as measured with the 11C isotope

    International Nuclear Information System (INIS)

    Wallace, A.; Mueller, R.T.; Wood, R.A.; Soufi, S.M.

    1979-01-01

    11 C which is cyclotron produced by 14 N(P, α) 11 C(half-life 20.1 M) was used as a tracer of bicarbonate to determine its movements from a nutrient solution through roots to stems and leaves of bush bean plants (Phaseolus vulgaris L. var Improved Tendergreen). The short time involved and the high solution pH minimized the need for use of the Henderson Hasselbach equation for activity correction. Quantities of 11 C did move into roots, stems and leaves with a sharp decreasing gradient (root/stem = 14.5, stems/leaves = 11.7) More 11 C moved into plants with KHCO 3 than with NaHCO 3 . The (NH 4 ) 2 SO 4 enhanced 11 C uptake and KNO 3 decreased it. This enhancement and competition indicated possibility of some uptake of HCO 3 - . In an experiment with Galenia pubescens (Eckl. and Zeyh.) Druce, the 11 C was more readily moved to stems and leaves than in bush bean indicating substantial uptake of HCO 3 - . (Auth.)

  17. [14C]-Sucrose uptake by guard cell protoplasts of pisum sativum, argenteum mutant

    International Nuclear Information System (INIS)

    Rohrig, K.; Raschke, K.

    1991-01-01

    Guard cells rely on import for their supply with reduced carbon. The authors tested by silicone oil centrifugation the ability of guard cell protoplasts to accumulated [ 14 C]-sucrose. Uptake rates were corrected after measurement of 14 C-sorbitol and 3 H 2 O spaces. Sucrose uptake followed biphasic kinetics, with a high-affinity component below 1 mM external sucrose (apparent K m 0.8 mM at 25C) and a low-affinity nonsaturable component above. Uptake depended on pH (optimum at pH 5.0). Variations in the concentrations of external KCl, CCCP, and valinomycin indicated that about one-half of the sucrose uptake rate could be related to an electrochemical gradient across the plasmalemma. Total uptake rates measured at 5 mM external sucrose seem to be sufficient to replenish emptied plastids with starch within a few hours

  18. Glucose utilisation during status epilepticus in an epilepsy model induced by pilocarpine: a qualitative study

    Directory of Open Access Journals (Sweden)

    Scorza Fulvio Alexandre

    2002-01-01

    Full Text Available Status epilepticus (SE is a medical emergency and it is associated to brain damage. 2-deoxy-[14C] glucose (2-DG procedure has been used to measure the alterations in the functional activity of the brain induced by various pharmacological and toxicological agents. The aim of this study was to determine which changes occur in the seizure anatomic substrates during the SE induced by pilocarpine (PILO using [14C]-2 deoxyglucose functional mapping technique. Wistar male adult rats were submitted to SE PILO-induced for 6h and received [14C] 2-deoxyglucose injection via jugular vein 45 min before the 6th hour of SE. The control animals were submitted to all procedures but received saline and not pilocarpine. Brain sections were prepared and exposed X-ray film about seven days. The optical density of each region was obtained using a solid state digital analyser. The analysis revealed that 14C-2DG utilisation was pronounced in the SE rats on the areas corresponding to the hippocampal formation (+50.6%, caudate-putamen (+30.6%, frontoparietal cortex (+32.2%, amygdala (+31.7%, entorrinal cortex (+28.2%, thalamic nucleus (+93.5%, pre-tectal area (+50.1% and substantia nigra (+50.3% when compared to control. Our results suggest that the different activation levels of the distinct structures may be particularly important for understanding triggering and spreading mechanisms underlying epileptic activity during status epilepticus.

  19. Correlation of PET and AMS analyses for early kinetics of 2-fluoro-2-deoxyglucose (FDG)

    International Nuclear Information System (INIS)

    Minamimoto, Ryogo; Hamabe, Yoshimi; Miyaoka, Teiji; Theeraladanon, Chumpol; Oka, Takashi; Matsui, Takao; Inoue, Tomio

    2010-01-01

    The draft of the guidelines for microdosing in clinical trials was published in Japan in 2008 following the guidelines of the European Medicines Agency (EMEA) and the Food and Drug Administration (FDA). It recommends utilizing accelerator mass spectrometry (AMS), liquid chromatography/mass spectrometry (LC/MS/MS), and positron emission tomography (PET) for monitoring drug metabolites in preclinical studies. In this study, we clarified the correlation in measuring result between PET and AMS. The AMS measurement was undergone by using AMS system of Institute of Accelerator Analysis Ltd. (IAA, Kawasaki, Japan). First the back ground 14 C level of blood in mice was measured by AMS. Second, we clarified the relationship between AMS and PET by using 2-fluoro-2-deoxyglucose (FDG). The correlation coefficient (r) of the measurements using PET ( 18 F-FDG) and AMS ( 14 C-FDG) were quite high at 0.97 (Y = 7.54E - 05X + 0.02, p 18 F-FDG was nearly identical with that of 14 C-FDG. These results indicate that the AMS analysis has excellent correlation with the PET method.

  20. Correlation of PET and AMS analyses for early kinetics of 2-fluoro-2-deoxyglucose (FDG)

    Science.gov (United States)

    Minamimoto, Ryogo; Hamabe, Yoshimi; Miyaoka, Teiji; Theeraladanon, Chumpol; Oka, Takashi; Matsui, Takao; Inoue, Tomio

    2010-04-01

    The draft of the guidelines for microdosing in clinical trials was published in Japan in 2008 following the guidelines of the European Medicines Agency (EMEA) and the Food and Drug Administration (FDA). It recommends utilizing accelerator mass spectrometry (AMS), liquid chromatography/mass spectrometry (LC/MS/MS), and positron emission tomography (PET) for monitoring drug metabolites in preclinical studies. In this study, we clarified the correlation in measuring result between PET and AMS. The AMS measurement was undergone by using AMS system of Institute of Accelerator Analysis Ltd. (IAA, Kawasaki, Japan). First the back ground 14C level of blood in mice was measured by AMS. Second, we clarified the relationship between AMS and PET by using 2-fluoro-2-deoxyglucose (FDG). The correlation coefficient ( r) of the measurements using PET ( 18F-FDG) and AMS ( 14C-FDG) were quite high at 0.97 ( Y = 7.54 E - 05 X + 0.02, p blood clearance profile of 18F-FDG was nearly identical with that of 14C-FDG. These results indicate that the AMS analysis has excellent correlation with the PET method.

  1. Delayed plasma clearance and hepatic uptake of lymph chylomicron 14C-cholesterol in marginally zinc-deficient rats

    International Nuclear Information System (INIS)

    Koo, S.I.; Algilani, K.; Norvell, J.E.; Henderson, D.A.

    1986-01-01

    Previously, chylomicrons from marginally zinc-deficient rats were shown to be abnormally large, with markedly reduced levels of apoproteins C and E. In the present study, effects of such changes on the plasma clearance and hepatic uptake of chylomicron cholesterol were investigated in rats fed 3 ppm of zinc (ZD), as compared with those fed 30 ppm of zinc (CT). The rate of plasma clearance was determined by plasma 14C-radioactivity at different intervals after intravenous injection of lymph chylomicrons labeled in vivo with 14C-cholesterol. The 14C-clearance curves were nonlinear, consisting of an initial rapid phase followed by a slow phase of clearance. The initial 14C-clearance was significantly (p less than 0.05) delayed whether the labeled chylomicrons from ZD donors were injected into ZD or CT recipients. The hepatic 14C-recovery in extracted lipids was also significantly lower in ZD rats. The present data provide first evidence that a marginal level of zinc deficiency produces a significant delay in the plasma clearance and hepatic uptake of chylomicron cholesterol. This may be attributable in part to the molecular alterations of chylomicrons induced by zinc deficiency

  2. Uptake and translocation of [14C]-monoethanolamine in barley plants

    International Nuclear Information System (INIS)

    Eckert, H.; Bergmann, H.; Reissmann, P.

    1988-01-01

    Uptake and translocation of 14 C-monoethanolamine (EA) and its hydrochloride were investigated after application to an unwounded part of the fifth leaf from the main shoot of intact spring barley plants. After 48 and 72 h, resp., the free EA base was both absorbed rapidly and translocated out of the feeding leaf. The absorbed 14 C preferably migrated to the tillers, which resulted in an approximately uniform distribution of the radioactivity in the above ground parts of the plant after the uptake phase (similar 14 C concentrations in the main shoot and tillers), whereas only few radioactivity moved to the roots. On the other hand, the protonated EA (EA-HCl) exhibited both a reduced uptake and a restricted mobility. The bulk of radioactivity remained in the main shoot. As a consequence of the principally analogous metabolism of EA and its protonated form, the translocation differences are compensated during ontogenesis. When the plants reached maturity, similar distribution patterns could be found in which the kernels represented a considerable sink. (author)

  3. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  4. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775

  5. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    International Nuclear Information System (INIS)

    Eldawud, Reem; Dinu, Cerasela Zoica; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. (paper)

  6. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  7. Effects of melatonin on 2-deoxy-[1-14C]glucose uptake within rat suprachiasmatic nucleus

    International Nuclear Information System (INIS)

    Cassone, V.M.; Roberts, M.H.; Moore, R.Y.

    1988-01-01

    Previously, we have demonstrated that metabolic activity, shown by autoradiographic determination of 2-deoxy-[1- 14 C]glucose (2-DG) uptake, within the rat hypothalamic suprachiasmatic nuclei (SCN) was inhibited by subcutaneous injection of 1 mg/kg melatonin. To determine whether this effect was specific to a particular time of day, the effects of melatonin on 2-DG uptake were studied in several hypothalamic areas, including the SCN, supraoptic nuclei (SON), lateral hypothalamic area (LHA), and anterior hypothalamic area (AHA) every 4 h throughout the circadian day. In a second experiment, the effects of different melatonin doses were studied at the time of day at which melatonin had its maximal effect to determine the dose-response relationship of melatonin-induced inhibition of SCN 2-DG uptake. The data indicate that melatonin inhibited 2-DG uptake in the SCN alone at one time of day, primarily at circadian time (CT) 6 and CT10, 2-6 h before subjective dusk, and secondarily at CT22, just before subjective dawn. This effect was dose dependent with a 50% effective dose of 1.49 +/- 2.30 micrograms/kg. The temporal and dose-response characteristics of these effects are similar to those characterizing the entraining effects of melatonin on circadian patterns of locomotion and drinking

  8. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2010-03-01

    Full Text Available Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated.Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation.These results suggest that AMPK-mediated PLD1 activation is required for (14C

  9. Pulmonary gallium uptake in rats with granulomatosis induced by complete Freund adjuvant

    International Nuclear Information System (INIS)

    Stanislas-Leguern, G.; Masse, R.; Jaubert, F.; Chretien, J.; Huchon, G.

    1988-01-01

    To investigate the mechanism of gallium-67 uptake in lung granulomatosis, we studied 13 rats in which lung granulomatosis was induced by injection of complete Freund adjuvant (CFA) and 14 controls. Gallium uptake was assessed in bronchoalveolar lavage fluid and lavaged lung. The cells responsible for gallium uptake were identified by latent image activation autoradiography. Gallium activity in both lavaged lungs and bronchoalveolar cells (BAC) was higher in CFA-treated animals than in controls [172,205 +/- 134,783 DPM versus 44,456 +/- 14,486 DPM +/- SD (p less than 0.05) and 40,083 +/- 16,350 DPM versus 9100 +/- 4114 DPM (p less than 0.05), respectively]. In control rats, about two-thirds of total lung gallium was located in the interstitium, whereas in CFA-treated rats it was found in the mononuclear cells of lung granulomas. Gallium tracks were more numerous in the alveolar macrophages (AM) of CFA-treated rats than in control AM (28.4 +/- 10.0/field versus 8.4 +/- 3.8/field, p less than 0.001) but the number of tracks was proportional to the number of AM (52.4 +/- 18.7 versus 12.2 +/- 4.3, respectively; p less than 0.001). It is concluded that in rats with CFA-induced lung granulomatosis 1) pulmonary gallium uptake increases, 2) mononuclear cells are responsible for this uptake in both granulomas and AM, and 3) the increased uptake is due to the increased number of mononuclear cells

  10. Ethanol fermentation of beet molasses by a yeast resistant to distillery waste water and 2-deoxyglucose

    Energy Technology Data Exchange (ETDEWEB)

    Tadenuma, Makoto; Shimoi, Hitoshi; Sato, Shun' ichi; Moriya, Kazuhito; Saito, Kazuo [National Research Inst. of Brewing, Tokyo, Japan Hokkaido Sugar Co., Ltd., Tokyo (Japan) Sendai Regional Taxation Bureau, Sendai (Japan)

    1989-05-25

    A flocculent killer yeast, strain H-1 selected for ethanol fermentation of beet molasses, has a tendency to lose its viability in distillery waste water (DWW) of beet molasses mash after ethanol fermentation. Through acclimations of strain H-1 in DWW, strain W-9, resistant to DWW, was isolated. Strain M-9, resistant to 2-deoxyglucose was further isolated through acclimations of strain W-9 in medium containing 150 ppm 2-deoxyglucose. A fermentaion test of beet molasses indicated that the ethanol productivity and suger consumption were improved by strain M-9 compared with the parental strain H-1 and strain W-9. The concentration of ethanol produced by strain M-9 was 107.2 g/1, and concentration of residual sugars, which were mainly composed of sucrose and fructose, were lower than those produced by the parental strain H-9 and strain W-9 at the end of fermentation of beet molasses. 6 refs., 2 figs., 2 tabs.

  11. Double-label autoradiographic deoxyglucose method for sequential measurement of regional cerebral glucose utilization

    Energy Technology Data Exchange (ETDEWEB)

    Redies, C; Diksic, M; Evans, A C; Gjedde, A; Yamamoto, Y L

    1987-08-01

    A new double-label autoradiographic glucose analog method for the sequential measurement of altered regional cerebral metabolic rates for glucose in the same animal is presented. This method is based on the sequential injection of two boluses of glucose tracer labeled with two different isotopes (short-lived /sup 18/F and long-lived /sup 3/H, respectively). An operational equation is derived which allows the determination of glucose utilization for the time period before the injection of the second tracer; this equation corrects for accumulation and loss of the first tracer from the metabolic pool occurring after the injection of the second tracer. An error analysis of this operational equation is performed. The double-label deoxyglucose method is validated in the primary somatosensory (''barrel'') cortex of the anesthetized rat. Two different rows of whiskers were stimulated sequentially in each rat; the two periods of stimulation were each preceded by an injection of glucose tracer. After decapitation, dried brain slices were first exposed, in direct contact, to standard X-ray film and then to uncoated, ''tritium-sensitive'' film. Results show that the double-label deoxyglucose method proposed in this paper allows the quantification and complete separation of glucose utilization patterns elicited by two different stimulations sequentially applied in the same animal.

  12. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H

    2015-01-01

    -500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  13. AKT inhibitors promote cell death in cervical cancer through disruption of mTOR signaling and glucose uptake.

    Directory of Open Access Journals (Sweden)

    Ramachandran Rashmi

    Full Text Available PI3K/AKT pathway alterations are associated with incomplete response to chemoradiation in human cervical cancer. This study was performed to test for mutations in the PI3K pathway and to evaluate the effects of AKT inhibitors on glucose uptake and cell viability.Mutational analysis of DNA from 140 pretreatment tumor biopsies and 8 human cervical cancer cell lines was performed. C33A cells (PIK3CAR88Q and PTENR233* were treated with increasing concentrations of two allosteric AKT inhibitors (SC-66 and MK-2206 with or without the glucose analogue 2-deoxyglucose (2-DG. Cell viability and activation status of the AKT/mTOR pathway were determined in response to the treatment. Glucose uptake was evaluated by incubation with 18F-fluorodeoxyglucose (FDG. Cell migration was assessed by scratch assay.Activating PIK3CA (E545K, E542K and inactivating PTEN (R233* mutations were identified in human cervical cancer. SC-66 effectively inhibited AKT, mTOR and mTOR substrates in C33A cells. SC-66 inhibited glucose uptake via reduced delivery of Glut1 and Glut4 to the cell membrane. SC-66 (1 µg/ml-56% and MK-2206 (30 µM-49% treatment decreased cell viability through a non-apoptotic mechanism. Decreases in cell viability were enhanced when AKT inhibitors were combined with 2-DG. The scratch assay showed a substantial reduction in cell migration upon SC-66 treatment.The mutational spectrum of the PI3K/AKT pathway in cervical cancer is complex. AKT inhibitors effectively block mTORC1/2, decrease glucose uptake, glycolysis, and decrease cell viability in vitro. These results suggest that AKT inhibitors may improve response to chemoradiation in cervical cancer.

  14. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Hsu, Hsin-Fen; Tsou, Tsui-Chun; Chao, How-Ran; Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching

    2010-01-01

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CCAAT/enhancer-binding protein α), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by α-naphthoflavone (α-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  15. Uptake of [2-14C]abscisic acid and distribution of 14C in apple embryos

    International Nuclear Information System (INIS)

    Barthe, P.; Bulard, C.

    1981-01-01

    Pyrus malus L. var. Golden delicious embryos were incubated with (+-)-[2- 14 C] abscisic acid (ABA). After incubations of various durations, the radioactivity was measured in whole embryos, cotyledons, and embryonic axes. With either 48-h or 16-d incubation periods, the uptake of [ 14 C] ABA depended upon the mode of culture used. The lowest values corresponded to the absorption by the embryonic axis, the highest to the absorption by the distal parts of the two cotyledons. The cotyledons accumulated the main part of the radioactivity under all conditions. Dormant and almost completely after-ripened embryos cultivated for 4 d showed no significant differences in the radioactivity uptake for identical modes of culture. There was a linear relationship between exogenous ABA concentrations (0.5 to 3.10 -5 M) and ABA uptake for embryos cultivated for 4 d with the distal parts of the cotyledons immersed in the medium. (orig.) [de

  16. Nocturnal uptake and assimilation of nitrogen dioxide by C3 and CAM plants.

    Science.gov (United States)

    Takahashi, Misa; Konaka, Daisuke; Sakamoto, Atsushi; Morikawa, Hiromichi

    2005-01-01

    In order to investigate nocturnal uptake and assimilation of NO2 by C3 and crassulacean acid metabolism (CAM) plants, they were fumigated with 4 microl l(-1) 15N-labeled nitrogen dioxide (NO2) for 8 h. The amount of NO2 and assimilation of NO2 by plants were determined by mass spectrometry and Kjeldahl-nitrogen based mass spectrometry, respectively. C3 plants such as kenaf (Hibiscus cannabinus), tobacco (Nicotiana tabacum) and ground cherry (Physalis alkekengi) showed a high uptake and assimilation during daytime as high as 1100 to 2700 ng N mg(-1) dry weight. While tobacco and ground cherry strongly reduced uptake and assimilation of NO2 during nighttime, kenaf kept high nocturnal uptake and assimilation of NO2 as high as about 1500 ng N mg(-1) dry weight. Stomatal conductance measurements indicated that there were no significant differences to account for the differences in the uptake of NO2 by tobacco and kenaf during nighttime. CAM plants such as Sedum sp., Kalanchoe blossfeldiana (kalanchoe) and Aloe arborescens exhibited nocturnal uptake and assimilation of NO2. However, the values of uptake and assimilation of NO2 both during daytime and nighttime was very low (at most about 500 ng N mg(-1) dry weight) as compared with those of above mentioned C3 plants. The present findings indicate that kenaf is an efficient phytoremediator of NO2 both during daytime and nighttime.

  17. [14C]Fluciclovine (alias anti-[14C]FACBC) uptake and ASCT2 expression in castration-resistant prostate cancer cells

    International Nuclear Information System (INIS)

    Ono, Masahiro; Oka, Shuntaro; Okudaira, Hiroyuki; Nakanishi, Takeo; Mizokami, Atsushi; Kobayashi, Masato; Schuster, David M.; Goodman, Mark M.; Shirakami, Yoshifumi; Kawai, Keiichi

    2015-01-01

    Introduction: trans-1-Amino-3-[ 18 F]fluorocyclobutanecarboxylic acid ([ 18 F]fluciclovine, also known as anti-[ 18 F]FACBC), is a tracer for positron emission tomography (PET) imaging for detection of tumors such as prostate cancer (PCa). Our previous study showed that ASCT2 (Na + -dependent amino acid transporter (AAT)) mediates fluciclovine uptake in androgen-dependent PCa cells; its expression is influenced by androgen, a key hormone in the progression of primary PCa and castration-resistant prostate cancer (CRPC). In this study, we investigated the uptake mechanisms and feasibility of [ 18 F]fluciclovine for CRPC in the androgen-dependent PCa cell line LNCaP and LNCaP-derivatives LNCaP-SF and LN-REC4. Methods: LNCaP-SF was established after long-term cultivation of LNCaP in steroid-free conditions, and LN-Pre and LN-REC4 were established from LNCaP inoculated in intact and castrated severe combined immunodeficient mice, respectively. Uptake and competitive inhibition experiments were performed with trans-1-amino-3-fluoro[1- 14 C]cyclobutanecarboxylic acid ([ 14 C]fluciclovine) to characterize the involvement of AATs in androgen-dependent PCa (LNCaP and LN-Pre) and CRPC-like (LNCaP-SF and LN-REC4) cell lines. AAT expression was analyzed by Western blotting, and [ 14 C]fluciclovine uptake in androgen-dependent PCa and CRPC-like cell lines were investigated in the presence or absence of dihydrotestosterone (DHT). Results: The contribution of Na + -dependent AATs to [ 14 C]fluciclovine uptake in all cell lines was 88−98%, and [ 14 C]fluciclovine uptake was strongly inhibited by L-glutamine and L-serine, the substrates for Na + -dependent alanine-serine-cysteine (system ASC) AATs, in the presence of Na + . DHT enhanced ASCT2 expression in LNCaP, LN-Pre, and LN-REC4, but not in LNCaP-SF, and the responses of ASCT2 expression to DHT correlated with [ 14 C]fluciclovine uptake. Conclusions: System ASC, especially ASCT2, could play a major role in [ 14 C

  18. The role of 18F-fluoro-2-deoxyglucose positron emission tomography/computed tomography in the management of patients with carcinoma of unknown primary.

    Science.gov (United States)

    Deonarine, P; Han, S; Poon, F W; de Wet, C

    2013-08-01

    Carcinoma of unknown primary is one of the ten most frequent cancers worldwide. Its median survival time is less than 10 months. Detecting primary tumour locations and/or occult metastatic lesions may inform definitive treatment and improve patients' prognosis. We aimed to determine: (1) the sensitivity, specificity and accuracy of (18)F-fluoro-2-deoxyglucose positron emission tomography/computed tomography; (2) its detection rate of primary tumour locations and occult metastases and (3) factors associated with improved survival times. We retrospectively reviewed all cases in the West of Scotland for the period 1 December 2007 to 31 May 2011 that met all our selection criteria: (1) diagnosis of carcinoma of unknown primary; (2) a thorough but negative 'work-up' and (3) (18)F-fluoro-2-deoxyglucose positron emission tomography/computed tomography report. Statistical methods included frequencies, Kaplan-Meier graphs and log-rank tests to compare survival times. (18)F-fluoro-2-deoxyglucose positron emission tomography/computed tomography detected primary tumour sites in 19/51 (37.3%) and occult metastases in 28/51 (54.9%) of eligible patients. Its sensitivity, specificity and accuracy were 79.2%, 70.4% and 74.5%, respectively; 20/51 (39.2%) patients died during the study period with a median survival of 8.4 months (range 21.4, SD ± 6.2). The number of metastatic locations was strongly associated with survival (p = 0.002), but detection of a primary tumour site (p = 0.174) or histopathology (p = 0.301) was not. (18)F-fluoro-2-deoxyglucose positron emission tomography/computed tomography detected occult metastatic sites in the majority and a primary cancer location in a substantial minority of patients. Our results were comparable with international literature and may indicate that (18)F-fluoro-2-deoxyglucose positron emission tomography/computed tomography have an early role to improve the accuracy of cancer staging and to optimise carcinoma of unknown

  19. Effects of reinforcement-blocking doses of pimozide on neural systems driven by rewarding stimulation of the MFB: a /sup 14/C-2-deoxyglucose analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gomita, Y.; Gallistel, C.R.

    1982-10-01

    An analysis by means of /sup 14/C-2-deoxyglucose autoradiography of the neural systems unilaterally activated by the reinforcing stimulation used in the two accompanying papers revealed strong and reliable effects in the nucleus of the diagonal band of Broca, in the medial forebrain bundle (MFB) and/or the fornix throughout the diencephalon, and in the part of the anterior ventral tegmentum where the dopaminergic projection to the lateral habenula originates. The terminal fields of the dopaminergic forebrain projections were not affected, but there was bilateral suppression of lateral habenular activity. A second experiment found that the same systems are still activated by (automatically administered) reinforcing stimulation in rats treated with reinforcement blocking doses of pimozide. The only clear effect of pimozide was to reverse the bilateral suppressive effect of the stimulation on lateral habenular activity. Animals treated with pimozide show greatly elevated activity in the lateral habenula, whether or not they receive reinforcing stimulation. The results suggest that pimozide's effect on reinforcement is mediated by the circuitry interconnecting the lateral habenula with the nucleus of the diagonal band of Broca and/or the anterior ventral tegmentum.

  20. Correlation of PET and AMS analyses for early kinetics of 2-fluoro-2-deoxyglucose (FDG)

    Energy Technology Data Exchange (ETDEWEB)

    Minamimoto, Ryogo, E-mail: ryogom@yokohama-cu.ac.j [Department of Radiology, Graduate School of Medicine, Yokohama City University, Yokohama (Japan); Hamabe, Yoshimi; Miyaoka, Teiji [Institute of Accelerator Analysis (IAA) Ltd., Kawasaki (Japan); Theeraladanon, Chumpol; Oka, Takashi [Department of Radiology, Graduate School of Medicine, Yokohama City University, Yokohama (Japan); Matsui, Takao [Institute of Accelerator Analysis (IAA) Ltd., Kawasaki (Japan); Inoue, Tomio [Department of Radiology, Graduate School of Medicine, Yokohama City University, Yokohama (Japan)

    2010-04-15

    The draft of the guidelines for microdosing in clinical trials was published in Japan in 2008 following the guidelines of the European Medicines Agency (EMEA) and the Food and Drug Administration (FDA). It recommends utilizing accelerator mass spectrometry (AMS), liquid chromatography/mass spectrometry (LC/MS/MS), and positron emission tomography (PET) for monitoring drug metabolites in preclinical studies. In this study, we clarified the correlation in measuring result between PET and AMS. The AMS measurement was undergone by using AMS system of Institute of Accelerator Analysis Ltd. (IAA, Kawasaki, Japan). First the back ground {sup 14}C level of blood in mice was measured by AMS. Second, we clarified the relationship between AMS and PET by using 2-fluoro-2-deoxyglucose (FDG). The correlation coefficient (r) of the measurements using PET ({sup 18}F-FDG) and AMS ({sup 14}C-FDG) were quite high at 0.97 (Y = 7.54E - 05X + 0.02, p < 0.001). The blood clearance profile of {sup 18}F-FDG was nearly identical with that of {sup 14}C-FDG. These results indicate that the AMS analysis has excellent correlation with the PET method.

  1. Metallofullerenol Inhibits Cellular Iron Uptake by Inducing Transferrin Tetramerization.

    Science.gov (United States)

    Li, Jinxia; Xing, Xueqing; Sun, Baoyun; Zhao, Yuliang; Wu, Zhonghua

    2017-10-18

    Herein, A549 tumor cell proliferation was confirmed to be positively dependent on the concentration of Fe 3+ or transferrin (Tf). Gd@C 82 (OH) 22 or C 60 (OH) 22 effectively inhibited the iron uptake and the subsequent proliferation of A549 cells. The conformational changes of Tf mixed with FeCl 3 , GdCl 3 , C 60 (OH) 22 or Gd@C 82 (OH) 22 were obtained by SAXS. The results demonstrate that Tf homodimers can be decomposed into monomers in the presence of FeCl 3 , GdCl 3 or C 60 (OH) 22 , but associated into tetramers in the presence of Gd@C 82 (OH) 22 . The larger change of SAXS shapes between Tf+C 60 (OH) 22 and Tf+FeCl 3 implies that C 60 (OH) 22 is bound to Tf, blocking the iron-binding site. The larger deviation of the SAXS shape from a possible crystal structure of Tf tetramer implies that Gd@C 82 (OH) 22 is bound to the Tf tetramer, thus disturbing iron transport. This study well explains the inhibition mechanism of Gd@C 82 (OH) 22 and C 60 (OH) 22 on the iron uptake and the proliferation of A549 tumor cells and highlights the specific interactions of a nanomedicine with the target biomolecules in cancer therapy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Activation-induced resetting of cerebral oxygen and glucose uptake in the rat

    DEFF Research Database (Denmark)

    Madsen, P L; Linde, R; Hasselbalch, S G

    1998-01-01

    In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose...... and oxygen in the awake rat. Global CBF was measured by the Kety-Schmidt technique, and the ratio between cerebral uptake rates for oxygen, glucose, and lactate was calculated from cerebral arterial-venous differences. During baseline conditions, rats were kept in a closed box designed to minimize...... interference. During baseline conditions CBF was 1.08 +/- 0.25 mL x g(-1) x minute(-1), and the cerebral oxygen to glucose uptake ratio was 5.5. Activation was induced by opening the sheltering box for 6 minutes. Activation increased CBF to 1.81 mL x g(-1) x minute(-1). During activation cerebral glucose...

  3. FDG uptake in cervical lymph nodes in children without head and neck cancer.

    Science.gov (United States)

    Vali, Reza; Bakari, Alaa A; Marie, Eman; Kousha, Mahnaz; Charron, Martin; Shammas, Amer

    2017-06-01

    Reactive cervical lymphadenopathy is common in children and may demonstrate increased 18 F-fluoro-deoxyglucose ( 18 F-FDG) uptake on positron emission tomography/computed tomography (PET/CT). We sought to evaluate the frequency and significance of 18 F-FDG uptake by neck lymph nodes in children with no history of head and neck cancer. The charts of 244 patients (114 female, mean age: 10.4 years) with a variety of tumors such as lymphoma and post-transplant lymphoproliferative diseases (PTLD), but no head and neck cancers, who had undergone 18 F-FDG PET/CT were reviewed retrospectively. Using the maximum standardized uptake value (SUVmax), increased 18 F-FDG uptake by neck lymph nodes was recorded and compared with the final diagnosis based on follow-up studies or biopsy results. Neck lymph node uptake was identified in 70/244 (28.6%) of the patients. In 38 patients, the lymph nodes were benign. In eight patients, the lymph nodes were malignant (seven PTLD and one lymphoma). In 24 patients, we were not able to confirm the final diagnosis. Seven out of the eight malignant lymph nodes were positive for PTLD. The mean SUVmax was significantly higher in malignant lesions (4.2) compared with benign lesions (2.1) (P = 0.00049). 18 F-FDG uptake in neck lymph nodes is common in children and is frequently due to reactive lymph nodes, especially when the SUVmax is cervical lymph nodes is higher in PTLD patients compared with other groups.

  4. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsin-Fen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Chao, How-Ran [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu 912, Pingtung, Taiwan (China); Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China)

    2010-10-15

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPAR{gamma} (peroxisome proliferator-activated receptor {gamma}), C/EBP{alpha} (CCAAT/enhancer-binding protein {alpha}), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by {alpha}-naphthoflavone ({alpha}-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  5. Meal-induced changes in splanchnic blood flow and oxygen uptake in middle-aged healthy humans

    DEFF Research Database (Denmark)

    Madsen, Jan Lysgård; Søndergaard, SB; Møller, Søren

    2006-01-01

    OBJECTIVE: For decades, the determination of changes in splanchnic blood flow and oxygen uptake after a meal has been used in the management of patients with suspected chronic intestinal ischaemia. However, little is known about the normal meal-induced responses. The aim of the present study...... was therefore to measure the splanchnic blood flow and oxygen uptake before and after a standardized meal in a group of middle-aged normal volunteers. MATERIAL AND METHODS: Splanchnic blood flow and oxygen uptake were determined at baseline and after a 3600-kJ mixed meal in 8 healthy women (50-70 years) and 10...... healthy men (52-76 years). Splanchnic blood flow was measured during hepatic vein catheterization by indirect Fick principle with indocyanine green as the indicator. Splanchnic oxygen uptake was calculated from splanchnic blood flow and the arteriovenous oxygen difference. RESULTS: The meal induced...

  6. Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum

    Science.gov (United States)

    2012-01-01

    Background The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. Results By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. Conclusions The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation. PMID:22243621

  7. Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum.

    Science.gov (United States)

    Schneider, Jens; Peters-Wendisch, Petra; Stansen, K Corinna; Götker, Susanne; Maximow, Stanislav; Krämer, Reinhard; Wendisch, Volker F

    2012-01-13

    The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation.

  8. Positron emission tomography with fluorine-deoxyglucose in sarcomas and non-sarcoma non-epithelial tumors

    OpenAIRE

    Massardo, Teresa; Jofré, María Josefina; Sierralta, María Paulina; Canessa, José; Castro, Gabriel; Berrocal, Isabel; Gallegos, Iván

    2012-01-01

    Background: The usefulness of positron emission tomography (PET) with fluorine-deoxyglucose (FDG) in sarcomas and non-sarcoma non-epithelial (NSNE) tumors is not clearly defined. Aim: To report a Chilean experience with NSNE tumors evaluated using PET with FDG. Material and Methods: Retrospective review of the database of a PET laboratory. Demographic data, indications and metabolic findings were compared with conventional imaging in 88 adults and children with diverse bone and soft tissue sa...

  9. Effect of amine uptake inhibitors on the uptake of 14C-bretylium in intact and degenerating sympathetic nerves of the rat

    International Nuclear Information System (INIS)

    Almgren, O.

    1981-01-01

    The effect of different amine uptake inhibitors on the accumulation of 14 C-bretylium in sympathetically denervated or decentralized salivary glands were studied in vivo in rats 11-14 hours after the surgical intervention. The time period chosen is known to be critical for the delaying effect of bretylium on the degeneration transmitter release in sympathetically innervated organs. Cocaine, desmethylimipramine (DMI), protriptyline or reserpine all depressed the uptake of 14 C-bretylium in both denervated and decentralized salivary glands, cocaine being the most efficient one. DMI and protriptyline, but not cocaine inhibit the degeneration delaying effect of bretylium, while all three agents inhibit amine uptake at level of the nerve cell membrane. Apparently, bretylium reaches the critical sites of its degeneration delaying action by the axonal amine pump but only a small fraction of the drug entering the degenerating adrenergic nerve terminal is needed at the critical sites to interact with the degeneration processes. The difference between the tricyclic antidepressants on one hand and cocaine on the other with respect to the effect on the degeneration delaying action of bretylium, must depend on some action different from the axonal membrane uptake inhibition. Reserpine which is known not to interfere with the delaying effect of bretylium on the denervation degeneration did reduce the uptake of 14 C-bretylium. This fact seems to indicate that the site of action of bretylium is located outside the adrenergic nerve granules. (author)

  10. Brain uptake of C14-cycloleucine after damage to blood-brain barrier by mercuric ions

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, O; Synder, S H

    1969-01-01

    Comparisons were made as to extra vasalation of fluorescence Na and uptake of C14-cycloleucine between barrier damaged and undamaged rabbit brain hemispheres. The results show that mercury ions damage the blood-brain barrier and thus the uptake of C14-cycloleucine.

  11. The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake.

    Science.gov (United States)

    Carpéné, Christian; Grès, Sandra; Rascalou, Simon

    2013-06-01

    The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.

  12. Studies on the uptake of 14C-neostigmine in the isolated rat diaphragm

    International Nuclear Information System (INIS)

    Helleberg, L.

    1976-01-01

    The uptake process of 14 C-neostigmine in striated muscles was studied using the isolated rat diaphragm. Hemidiaphragms were incubated with 3x10 -7 M 14 C-neostigmine at 37deg in Krebs-Ringer solution containing 11 mM glucose and aerated with oxygen:carbon dioxide (95:5 v/v %). The uptake, which is expressed as the muscle-to-medium concentration ratio, was 1.41, after 3 hours, after which the rate of uptake diminished and became equal to that of inulin. The uptake which showed partial saturation, was decreased by some tertiary and quarternary amines, metabolic inhibitors, potassium and in an atmosphere of nitrogen. Neostigmine accumulated in all parts of the muscle without preference for the end plate zone. The half-time for the efflux was about 30 min. The phrenic nerve-diaphragm preparation became desensitized to the effect of 3x10 -7 M neostigmine after 2-3 hours. It is suggested that the uptake of neostigmine is mediated via a specialized carrier transport system. (author)

  13. Astragalus Polysaccharide Improves Palmitate-Induced Insulin Resistance by Inhibiting PTP1B and NF-κB in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-06-01

    Full Text Available We investigated the effects of Astragalus polysaccharide (APS on palmitate-induced insulin resistance in C2C12 skeletal muscle myotubes. Palmitate-reduced glucose uptake was restored by APS. APS prevented palmitate-induced C2C12 myotubes from impaired insulin signaling by inhibiting Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 and increasing Ser473 phosphorylation of Akt. Moreover, the increases in protein-tyrosine phosphatase-1B (PTP1B protein level and NF-κB activation associated with palmitate treatment were also prevented by APS. However the treatment with APS didn’t change AMP-activated protein kinase (AMPK activation in palmitate-induced myotubes. The results of the present study suggest that Astragalus polysaccharide inhibits palmitate-induced insulin resistance in C2C12 myotubes by inhibiting expression of PTP1B and regulating NF-κB but not AMPK pathway.

  14. Five-year follow-up of 11C-PIB uptake in Alzheimer's disease and MCI

    International Nuclear Information System (INIS)

    Kemppainen, N.M.; Scheinin, N.M.; Koivunen, J.; Johansson, J.; Toivonen, J.T.; Naagren, K.; Rokka, J.; Rinne, J.O.; Karrasch, M.; Parkkola, R.

    2014-01-01

    The aim of this study was to evaluate the longitudinal changes in [ 11 C]PIB uptake in mild cognitive impairment (MCI) and Alzheimer's disease (AD) over a long-term follow-up. Six AD patients, ten MCI patients and eight healthy subjects underwent a [ 11 C]PIB PET scan at baseline and at 2 and 5 years. The clinical status of the MCI patients was evaluated every 6 months. The MCI group showed a significant increase in [ 11 C]PIB uptake over time (p 11 C]PIB scan at baseline but increased uptake later. There was an increase in [ 11 C]PIB uptake with time in the AD group (p = 0.02), but this did not significantly differ from the change in the control group. Our results revealed a significant increase in amyloid load even at the time of AD diagnosis in some of the MCI patients who converted. A positive [ 11 C]PIB scan at baseline in MCI patients strongly predicted future conversion to AD but a negative PIB scan in MCI patients did not exclude future conversion. The results suggest that there is wide individual variation in the brain amyloid load in MCI, and in the course of amyloid accumulation in relation to the clinical diagnosis of AD. (orig.)

  15. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance.

    Science.gov (United States)

    Qing, Zhou; Xiao-Hui, Wu; Xi-Mei, Wu; Chao-Chun, Zou

    2018-06-15

    Chronic low-grade inflammation plays a major role in the development of insulin resistance. The potential role and underlying mechanism of vitamin C, an antioxidant and anti-inflammatory agent, was investigated in tumor necrosis factor-α (TNF-α)-induced insulin resistance. Gulonolactone oxidase knockout (Gulo -/- ) mice genetically unable to synthesize vitamin C were used to induce insulin resistance by continuously pumping small doses of TNF-α for seven days, and human liver hepatocellular carcinoma cells (HepG2 cells) were used to induce insulin resistance by treatment with TNF-α. Vitamin C deficiency aggravated TNF-α-induced insulin resistance in Gulo -/- mice, resulting in worse glucose tolerance test (GTT) results, higher fasting plasma insulin level, and the inactivation of the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) pathway in the liver. Vitamin C deficiency also worsened liver lipid accumulation and inflammation in TNF-α-treated Gulo -/- mice. In HepG2 cells, vitamin C reversed the TNF-α-induced reduction of glucose uptake and glycogen synthesis, which were mediated by increasing GLUT2 levels and the activation of the insulin receptor substrate (IRS-1)/AKT/GSK3β pathway. Furthermore, vitamin C inhibited the TNF-α-induced activation of not only the mitogen-activated protein kinase (MAPKs), but also nuclear factor-kappa B (NF-κB) signaling. Taken together, vitamin C is essential for preventing and improving insulin resistance, and the supplementing with vitamin C may be an effective therapeutic intervention for metabolic disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effects of β₂-agonists on force during and following anoxia in rat extensor digitorum longus muscle

    DEFF Research Database (Denmark)

    Fredsted, A; Gissel, H; Ortenblad, N

    2012-01-01

    of salbutamol on force recovery were prevented by blocking the Na(+),K(+)- pumps with ouabain or by blocking glycolysis with 2-deoxyglucose. Dibutyryl cAMP (1 mM) or theophylline (1 mM) also improved force recovery remarkably. In anoxic muscles, salbutamol decreased intracellular Na(+), increased (86)Rb uptake...

  17. Pancreas and liver uptake of new radiolabeled incretins (GLP-1 and Exendin-4) in models of diet-induced and diet-restricted obesity

    International Nuclear Information System (INIS)

    Seo, Daniele; Faintuch, Bluma Linkowski; Aparecida de Oliveira, Erica; Faintuch, Joel

    2017-01-01

    Introduction: Radiolabeled GLP-1 and its analog Exendin-4, have been employed in diabetes and insulinoma. No protocol in conventional Diet-Induced Obesity (DIO), and Diet-Restricted Obesity (DRO), has been identified. Aiming to assess pancreatic beta cell uptake in DIO and DRO, a protocol was designed. Methods: GLP-1-βAla-HYNIC and HYNIC-βAla-Exendin-4 were labeled with technetium-99m. Four Swiss mouse models were adopted: Controls (C), Alloxan Diabetes Controls (ADC), DIO and DRO. Biodistribution and ex-vivo planar imaging were documented. Results: Radiolabeling yield was in the range of 97% and both agents were hydrophilic. Fasting Blood Glucose (FBG) was 79.2 ± 8.2 mg/dl in C, 590.4 ± 23.3 mg/dl in ADC, 234.3 ± 66.7 mg/dl in DIO, and 96.6 ± 9.3 in DRO (p = 0.010). Biodistribution confirmed predominantly urinary excretion. DIO mice exhibited depressed uptake in liver and pancreas, for both radiomarkers, in the range of ADC. DRO only partially restored such values. 99m Tc-HYNIC-βAla-Exendin-4 demonstrated better results than GLP-1-βAla-HYNIC- 99m Tc. Conclusions: 1) Diet-induced obesity remarkably depressed beta cell uptake; 2) Restriction of obesity failed to normalize uptake, despite robust improvement of FBG; 3) HYNIC-βAla-Exendin-4 was the most useful marker; 4) Further studies are recommended in obesity and dieting, including bariatric surgery.

  18. [11C] labeled erlotinib as a new radiotracer for identification of patients responding to erlotinib treatment

    DEFF Research Database (Denmark)

    Memon, Ashfaque Ahmed; Weber, Britta; Jakobsen, Steen

    2009-01-01

    Erlotinib (Tarceva®) is a tailored drug targeting the Epidermal Growth Factor Receptor (EGFR), which is commonly overexpressed in various human cancers including lung cancer. The purpose of this study was to develop a method for identification of lung cancer patients that respond to erlotinib...... the accumulation of [11C] erlotinib was higher in the tumor than in all other organs except the liverwhich is the main organ of erlotinib metabolism (Cancer Research, 2009 69: 873-878). We have now extended this study to patients with the aim to identify the subset of patients that will respond to Erlotinib...... treatment (10-15 %). Tumors were identified by routine CT scan and [18F]-2-fluoro- 2-deoxyglucose (FDG) PET/CT and compared with [11C] erlotinib PET/CT. As expected, all patients examined so far (n=4) showed [18F] FDG uptake. Our results with [11C] erlotinib show that tumors can be identified by [11C...

  19. Uptake of inflammatory cell marker [{sup 11}C]PK11195 into mouse atherosclerotic plaques

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, Iina; Marjamaeki, Paeivi; Naagren, Kjell; Roivainen, Anne; Knuuti, Juhani [University of Turku, Turku PET Centre, Turku (Finland); Laine, V.J.O. [Turku University Hospital, Department of Pathology, Turku (Finland); Wilson, Ian [GE Healthcare Biosciences, Medical Diagnostics, London (United Kingdom); Leppaenen, Pia; Ylae-Herttuala, Seppo [University of Kuopio, A.I. Virtanen Institute, Kuopio (Finland)

    2009-01-15

    The ligand [{sup 11}C]PK11195 binds with high affinity and selectivity to peripheral benzodiazepine receptor, expressed in high amounts in macrophages. In humans, [{sup 11}C]PK11195 has been used successfully for the in vivo imaging of inflammatory processes of brain tissue. The purpose of this study was to explore the feasibility of [{sup 11}C]PK11195 in imaging inflammation in the atherosclerotic plaques. The presence of PK11195 binding sites in the atherosclerotic plaques was verified by examining the in vitro binding of [{sup 3}H]PK11195 onto mouse aortic sections. Uptake of intravenously administered [{sup 11}C]PK11195 was studied ex vivo in excised tissue samples and aortic sections of a LDLR/ApoB48 atherosclerotic mice. Accumulation of the tracer was compared between the atherosclerotic plaques and non-atherosclerotic arterial sites by autoradiography and histological analyses. The [{sup 3}H]PK11195 was found to bind to both the atherosclerotic plaques and the healthy wall. The autoradiography analysis revealed that the uptake of [{sup 11}C]PK11195 to inflamed regions in plaques was more prominent (p = 0.011) than to non-inflamed plaque regions, but overall it was not higher than the uptake to the healthy vessel wall. Also, the accumulation of {sup 11}C radioactivity into the aorta of the atherosclerotic mice was not increased compared to the healthy control mice. Our results indicate that the uptake of [{sup 11}C]PK11195 is higher in inflamed atherosclerotic plaques containing a large number of inflammatory cells than in the non-inflamed plaques. However, the tracer uptake to other structures of the artery wall was also prominent and may limit the use of [{sup 11}C]PK11195 in clinical imaging of atherosclerotic plaques. (orig.)

  20. Normal Uptake of 11C-Acetate in Pancreas, Liver, Spleen, and Suprarenal Gland in PET

    Directory of Open Access Journals (Sweden)

    Bogdan Malkowski

    2017-01-01

    Full Text Available Purpose. C11-Acetate is radiotracer being considered an alternative to 18F-fluorodeoxyglucose. Evaluation of C11-acetate biodistribution in human parenchymal organs is described. Methods and Materials. 60 consecutive patients referred to C11-acetate PET CT suspected of renal or prostate cancer relapse with negative results (no recurrent tumor were included in the study. Acquisition from the base of skull to upper thigh was made 20 min after i.v. injection of 720 MBq of C11-acetate. The distribution was evaluated by measuring the uptake in pancreas (uncinate process and body separately, liver, spleen, and left suprarenal gland. Clinical data of included patients showed no abnormalities in these organs. Results. Biodistributions of C11-acetate radiotracer were compared in different organs. Standardized uptake values of 11C-acetate were significantly higher in pancreatic parenchyma (SUV mean 6,4 than in liver (SUV mean 3,3, spleen (SUV mean 4,5, or suprarenal gland (SUV mean 2,7 tissues. No significant difference was found between pancreatic head (SUV mean 6,4 and body (SUV mean 5,9 uptake. In case of all aforementioned organs, there were no differences either between both sexes or between formerly diagnosed tumors (renal and prostate. Conclusions. Evaluation of C11-acetate uptake differences in parenchymal organs will allow establishing normal patterns of distribution. High pancreatic uptake may be used in quantitative assessment of organ function in diffuse nonneoplastic pathology.

  1. Clostridium botulinum C2 toxin--new insights into the cellular up-take of the actin-ADP-ribosylating toxin.

    Science.gov (United States)

    Aktories, Klaus; Barth, Holger

    2004-04-01

    Clostridium botulinum C2 toxin is a member of the family of binary actin-ADP-ribosylating toxins. It consists of the enzyme component C2I, and the separated binding/translocation component C2II. Proteolytically activated C2II forms heptamers and binds to a carbohydrate cell surface receptor. After attachment of C2I, the toxin complex is endocytosed to reach early endosomes. At low pH of endosomes, C2II-heptamers insert into the membrane, form pores and deliver C2I into the cytosol. Here, C2I ADP-ribosylates actin at Arg177 to block actin polymerization and to induce depolymerization of actin filaments. The mini-review describes main properties of C2 toxin and discusses new findings on the involvement of chaperones in the up-take process of the toxin.

  2. Sympathetic ingrowth: A result of cholinergic nerve injury in the adult mammalian brain

    International Nuclear Information System (INIS)

    Davis, J.N.

    1986-01-01

    This paper describes sympathetic ingrowth, its regulation and function. The study leads to a better understanding of the molecular mechanisms that probably underlie the regulation of other neuronal rearrangements. The authors examine tritium-2-deoxyglucose uptake in the hippocampal formation after septal leasions. Preliminary experiments suggest that the septo-hippocampal fibers do influence tritium-2-deoxyglucose uptake throughout the hippocampal formation in normal animals. If sympathetic ingrowth also can influence this uptake, this could provide further evidence for an adaptive role of this noradrenergic replacement of cholinergic neurons

  3. Root-uptake of 14C derived from acetic acid and 14C transfer to rice edible parts

    International Nuclear Information System (INIS)

    Ogiyama, Shinichi; Suzuki, Hiroyuki; Inubushi, Kazuyuki; Takeda, Hiroshi; Uchida, Shigeo

    2010-01-01

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of 14 C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The 14 C radioactivity in the plant, mediums, and atmospheric carbon dioxide ( 14 CO 2 ) in the chamber were determined, and the distribution of 14 C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had 14 C radioactivity, but the upper root which did not have contact with the solution had none. There were also 14 C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that 14 CO 2 gas was released from the culture solution in both types of cultures. Results indicated that the 14 C-acetic acid absorbed by rice plant through its root would be very small. Most of the 14 C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate 14 C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of 14 C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated 14 C through the plant roots not because of uptake of 14 C-acetic acid but because of uptake of 14 C in gaseous forms such as 14 CO 2 .

  4. Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent

    Science.gov (United States)

    Jeppesen, J.; Albers, P. H.; Rose, A. J.; Birk, J. B.; Schjerling, P.; Dzamko, N.; Steinberg, G. R.; Kiens, B.

    2011-01-01

    The aim of this study was to investigate the molecular mechanisms regulating FA translocase CD36 (FAT/CD36) translocation and FA uptake in skeletal muscle during contractions. In one model, wild-type (WT) and AMP-dependent protein kinase kinase dead (AMPK KD) mice were exercised or extensor digitorum longus (EDL) and soleus (SOL) muscles were contracted, ex vivo. In separate studies, FAT/CD36 translocation and FA uptake in response to muscle contractions were investigated in the perfused rat hindlimb. Exercise induced a similar increase in skeletal muscle cell surface membrane FAT/CD36 content in WT (+34%) and AMPK KD (+37%) mice. In contrast, 5-aminoimidazole-4-carboxamide ribonucleoside only induced an increase in cell surface FAT/CD36 content in WT (+29%) mice. Furthermore, in the perfused rat hindlimb, muscle contraction induced a rapid (1 min, +15%) and sustained (10 min, +24%) FAT/CD36 relocation to cell surface membranes. The increase in cell surface FAT/CD36 protein content with muscle contractions was associated with increased FA uptake, both in EDL and SOL muscle from WT and AMPK KD mice and in the perfused rat hindlimb. This suggests that AMPK is not essential in regulation of FAT/CD36 translocation and FA uptake in skeletal muscle during contractions. However, AMPK could be important in regulation of FAT/CD36 distribution in other physiological situations. PMID:21297178

  5. Angiogenesis PET Tracer Uptake (68Ga-NODAGA-E[(cRGDyK]2 in Induced Myocardial Infarction in Minipigs

    Directory of Open Access Journals (Sweden)

    Thomas Rasmussen

    2016-06-01

    Full Text Available Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvβ3 integrin has been found to be highly expressed in activated endothelial cells and has been identified as a critical modulator of angiogenesis. 68Ga-NODAGA-E[c(RGDyK]2 (RGD has recently been developed by us as an angiogenesis positron-emission-tomography (PET ligand targeted towards αvβ3 integrin. In the present study, we induced myocardial infarction in Göttingen minipigs. Successful infarction was documented by 82Rubidium-dipyridamole stress PET and computed tomography. RGD uptake was demonstrated in the infarcted myocardium one week and one month after induction of infarction by RGD-PET. In conclusion, we demonstrated angiogenesis by noninvasive imaging using RGD-PET in minipigs hearts, which resemble human hearts. The perspectives are very intriguing and might permit the evaluation of new treatment strategies targeted towards increasing the angiogenetic response, e.g., stem-cell treatment.

  6. FDG uptake in cervical lymph nodes in children without head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vali, Reza; Bakari, Alaa A.; Marie, Eman; Kousha, Mahnaz; Shammas, Amer [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON (Canada); Charron, Martin [Brampton Nuclear Services, Toronto, ON (Canada)

    2017-06-15

    Reactive cervical lymphadenopathy is common in children and may demonstrate increased {sup 18}F-fluoro-deoxyglucose ({sup 18}F-FDG) uptake on positron emission tomography/computed tomography (PET/CT). We sought to evaluate the frequency and significance of {sup 18}F-FDG uptake by neck lymph nodes in children with no history of head and neck cancer. The charts of 244 patients (114 female, mean age: 10.4 years) with a variety of tumors such as lymphoma and post-transplant lymphoproliferative diseases (PTLD), but no head and neck cancers, who had undergone {sup 18}F-FDG PET/CT were reviewed retrospectively. Using the maximum standardized uptake value (SUVmax), increased {sup 18}F-FDG uptake by neck lymph nodes was recorded and compared with the final diagnosis based on follow-up studies or biopsy results. Neck lymph node uptake was identified in 70/244 (28.6%) of the patients. In 38 patients, the lymph nodes were benign. In eight patients, the lymph nodes were malignant (seven PTLD and one lymphoma). In 24 patients, we were not able to confirm the final diagnosis. Seven out of the eight malignant lymph nodes were positive for PTLD. The mean SUVmax was significantly higher in malignant lesions (4.2) compared with benign lesions (2.1) (P = 0.00049). {sup 18}F-FDG uptake in neck lymph nodes is common in children and is frequently due to reactive lymph nodes, especially when the SUVmax is <3.2. The frequency of malignant cervical lymph nodes is higher in PTLD patients compared with other groups. (orig.)

  7. Evaluation of cellular viability by quantitative autoradiographic study of myocardial uptake of a fatty acid analogue in isoproterenol-induced focal rat heart necrosis

    International Nuclear Information System (INIS)

    Humbert, T.; Luu-Duc, C.; Comet, M.; Demenge, P.

    1991-01-01

    Previous studies led us to hypothesize that a fatty acid analogue, 15-p-iodophenyl-β-methyl pentadecanoic acid (IMPPA or BMIPP), which is taken up but not quickly metabolized by heart cells, would be a more suitable tracer of cellular viability that 201 Tl. Biodistribution studies of 1- 14 C-IMPPA in conscious, freely moving rats showed that the concentration ratio of radioactivity in the heart with respect to the blood was about 8 for at least 60 min after intravenous administration, permitting its use as a putative tracer in these conscious, freely moving rats. Thereafter, the myocardial uptake of 14 C-IMPPA was studied in isoproterenol-treated rats (daily treatment for 10 days in order to induce cardiac hypertrophy and necrotic foci) with respect to control ones. Comparison of myocardial localizations by quantitative autoradiography of the uptake of 201 Tl and 14 C-IMPPA with that of triphenyltetrazolium chloride (TTC) staining enabled comparative evaluation of nutritional blood flow, localization and uptake of 14 C-IMPPA and necrotic foci size. Distributions of 14 C-IMPPA and 201 Tl in control rats' hearts were homogenous, like TTC staining. In infarcted hearts, areas of decreased 14 C-IMPPA uptake were nearly the same (100%±5%) as those unstained by TTC. These areas were larger than those showing a decrease in thallium uptake (about 70%±5% of the total scar size). Therefore, IMPPA seems to be a more accurate and sensitive indicator of necrosis localization compared with thallium. It may be a useful agent for assessment of myocardial viability by single photon emission tomography (SPET) imaging. (orig.)

  8. Molecular Pathogenesis of Liver Steatosis Induced by Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Cheng Jun

    2012-09-01

    Full Text Available Liver steatosis is a pathological hallmark in patients with chronic hepatitis C (CHC. Increased lipid uptake, decreased lipid secretion, increased lipid synthesis and decreased lipid degradation are all involved in pathogenesis of steatosis induced by hepatitic C virus (HCV infection. Level of low density lipoprotein receptor (LDL-R and activity of peroxisome proliferator-activated receptor (PPAR α is related to liver uptake of lipid from circulation, and affected by HCV. Secretion via microsomal triglyceride transfer protein (MTTP, and formation of very low density lipoprotein (VLDL have been hampered by HCV infection. Up-regulation of lipid synthesis related genes, such as sterol regulatory element-binding protein (SREBP-1, SREBP-2, SREBP-1c, fatty acid synthase (FASN, HMG CoA reductase (HMGCR, liver X receptor (LXR, acetyl-CoA carboxylase 1 (ACC1, hepatic CB (1 receptors, retinoid X receptor (RXR α, were the main stay of liver steatosis pathogenesis. Degradation of lipid in liver is decreased in patients with CHC. There is strong evidence that heterogeneity of HCV core genes of different genotypes affect their effects of liver steatosis induction. A mechanism in which steatosis is involved in HCV life cycle is emerging.

  9. Uptake of (2-/sup 14/C)abscisic acid and distribution of /sup 14/C in apple embryos

    Energy Technology Data Exchange (ETDEWEB)

    Barthe, P.; Bulard, C.

    1981-01-01

    Pyrus malus L. var. Golden delicious embryos were incubated with (+-)-(2-/sup 14/C) abscisic acid (ABA). After incubations of various durations, the radioactivity was measured in whole embryos, cotyledons, and embryonic axes. With either 48-h or 16-d incubation periods, the uptake of (/sup 14/C) ABA depended upon the mode of culture used. The lowest values corresponded to the absorption by the embryonic axis, the highest to the absorption by the distal parts of the two cotyledons. The cotyledons accumulated the main part of the radioactivity under all conditions. Dormant and almost completely after-ripened embryos cultivated for 4 d showed no significant differences in the radioactivity uptake for identical modes of culture. There was a linear relationship between exogenous ABA concentrations (0.5 to 3.10/sup -5/ M) and ABA uptake for embryos cultivated for 4 d with the distal parts of the cotyledons immersed in the medium.

  10. Regulation of the proliferation of colon cancer cells by compounds that affect glycolysis, including 3-bromopyruvate, 2-deoxyglucose and biguanides.

    Science.gov (United States)

    Lea, Michael A; Qureshi, Mehreen S; Buxhoeveden, Michael; Gengel, Nicolette; Kleinschmit, Jessica; Desbordes, Charles

    2013-02-01

    In previous studies performed by our group, we observed that 2-deoxyglucose blocked the acidification of the medium used for culture of colon cancer cells caused by incubation with biguanides and it had an additive inhibitory effect on growth. In the present work, we found that 3-bromopyruvate can also prevent the lowering of pH caused by biguanide treatment. 3-Bromopyruvate inhibited colonic cancer cell proliferation, but the effect was not always additive to that of biguanides and an additive effect was more notable in combined treatment with 3-bromopyruvate and 2-deoxyglucose. The induction of alkaline phosphatase activity by butyrate was not consistently affected by combination with other agents that modified glucose metabolism. The drug combinations that were examined inhibited proliferation of wild-type and p53-null cells and affected colonic cancer lines with different growth rates.

  11. Reduced 125I-meta-iodobenzylguanidine uptake and norepinephrine transporter density in the hearts of mice with MPTP-induced parkinsonism

    International Nuclear Information System (INIS)

    Fukumitsu, Nobuyoshi; Suzuki, Masahiko; Fukuda, Takahiro; Kiyono, Yasushi; Kajiyama, Satomi; Saji, Hideo

    2006-01-01

    Uptake of 123 I-meta-iodobenzylguanidine ( 123 I-MIBG) is markedly reduced in the hearts of patients with Parkinson's disease. Although the mechanism of this reduction is unclear, 12 5 I-MIBG uptake is similarly reduced in the hearts of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine (MPTP)-induced parkinsonism. Three groups of ten 15-week-old C57BL6 mice received intraperitoneal injections of (1) saline (control) (2) 10 mg/kg MPTP or (3) 40 mg/kg MPTP. After 0.185 MBq of 125 I-MIBG was injected, the percent injected dose of 125 I-MIBG per gram of tissue (%ID/g) was determined and cardiac concentrations of norepinephrine were measured. Cardiac concentrations of norepinephrine transporter (NET) were measured in three groups of twenty 15-week-old C57BL6 mice receiving these same treatments. The %ID/g in mice receiving 10 or 40 mg/kg MPTP (5.7±1.1 and 4.4±1.2%/g) was significantly lower than that in control mice (11.3±2.2%/g; P 5 and 7.50±0.89x10 5 pg/wet g) was significantly lower than that in control mice (9.21±0.97x10 5 pg/wet g; P 125 I-MIBG and NET density decreased as the dose of MPTP increased. This study clearly shows that reduced cardiac 12 5 I-MIBG uptake in mice with MPTP-induced parkinsonism is closely related to the reduced NET density in postganglionic cardiac sympathetic nerve terminals

  12. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    Science.gov (United States)

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  13. Muscle contraction increases carnitine uptake via translocation of OCTN2

    Energy Technology Data Exchange (ETDEWEB)

    Furuichi, Yasuro [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa (Japan); Sugiura, Tomoko; Kato, Yukio [Faculty of Pharmacy, Kanazawa University, Kanazawa (Japan); Takakura, Hisashi [Faculty of Human Sciences, Kanazawa University, Kanazawa (Japan); Hanai, Yoshiteru [Nagoya Institute of Technology, Nagoya (Japan); Hashimoto, Takeshi [Ritsumeikan University, Kusatsu (Japan); Masuda, Kazumi, E-mail: masuda@ed.kanazawa-u.ac.jp [Faculty of Human Sciences, Kanazawa University, Kanazawa (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Muscle contraction augmented carnitine uptake into rat hindlimb muscles. Black-Right-Pointing-Pointer An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. Black-Right-Pointing-Pointer Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. Black-Right-Pointing-Pointer OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity. The tissue uptake clearance (CL{sub uptake}) of L-[{sup 3}H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL{sub uptake} of [{sup 14}C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL{sub uptake} of L-[{sup 3}H]carnitine in the contracting muscles increased 1.4-1.7-fold as compared to that in the contralateral resting muscles (p < 0.05). The CL{sub uptake} of [{sup 14}C]IAP was much higher than that of L-[{sup 3}H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly

  14. Muscle contraction increases carnitine uptake via translocation of OCTN2

    International Nuclear Information System (INIS)

    Furuichi, Yasuro; Sugiura, Tomoko; Kato, Yukio; Takakura, Hisashi; Hanai, Yoshiteru; Hashimoto, Takeshi; Masuda, Kazumi

    2012-01-01

    Highlights: ► Muscle contraction augmented carnitine uptake into rat hindlimb muscles. ► An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. ► Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. ► OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity. The tissue uptake clearance (CL uptake ) of L-[ 3 H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL uptake of [ 14 C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL uptake of L-[ 3 H]carnitine in the contracting muscles increased 1.4–1.7-fold as compared to that in the contralateral resting muscles (p uptake of [ 14 C]IAP was much higher than that of L-[ 3 H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly via the contraction-induced translocation of its specific transporter OCTN2 to the plasma membrane.

  15. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA

    International Nuclear Information System (INIS)

    Permutt, M.A.; Koranyi, L.; Keller, K.; Lacy, P.E.; Scharp, D.W.; Mueckler, M.

    1989-01-01

    Previous studies have suggested that pancreatic islet glucose transport is mediated by a high-K m , low-affinity facilitated transporter similar to that expressed in liver. To determine the relationship between islet and liver glucose transporters, liver-type glucose-transporter cDNA clones were isolated from a human liver cDNA library. The liver-type glucose-transporter cDNA clone hybridized to mRNA transcripts of the same size in human liver and pancreatic islet RNA. A cDNA library was prepared from purified human pancreatic islet tissue and screened with human liver-type glucose-transporter cDNA. The authors isolated two overlapping cDNA clones encompassing 2600 base pairs, which encode a pancreatic islet protein identical in sequence to that of the putative liver-type glucose-transporter protein. Xenopus oocytes injected with synthetic mRNA transcribed from a full-length cDNA construct exhibited increased uptake of 2-deoxyglucose, confirming the functional identity of the clone. These cDNA clones can now be used to study regulation of expression of the gene and to assess the role of inherited defects in this gene as a candidate for inherited susceptibility to non-insulin-dependent diabetes mellitus

  16. Extracts of human atherosclerotic lesions modify LDL inducing enhanced macrophage uptake

    International Nuclear Information System (INIS)

    Hoff, H.F.; O'Neill, J.

    1986-01-01

    Both an LDL-like fraction isolated from human aortic plaques and LDL incubated with cultured aortic endothelial or smooth muscle cells have been shown to be internalized by macrophages in vitro in an unregulated fashion leading to foam cell formation. Lipid peroxidation induced by free radicals released from cells was shown to be responsible for cell-modified LDL. The authors incubated LDL with a supernatant fraction of leached, i.e. non-homogenized, extracts of aortic plaques for one hour at 37 0 C, to determine whether extracellular components present in arteries were also capable of modifying LDL. Extract-treated LDL showed the following changes relative to untreated LDL: 1) increased electrophretic mobility, 2) altered pattern of B-100 on SDS-PAGE, i.e. presence of a doublet with higher M/sub r/ than B-100, and 3) enhanced uptake by cultured mouse peritoneal macrophages as measured by increased degradation of 125 I-LDL, and increased stimulation of cholesterol esterification using 14 C-oleate. Extracts from homogenized plaques and grossly normal intima induced similar changes. The modification was tissue specific in that extracts of arteries but not of liver, muscle or skin modified LDL. Protease degradation of LDL during incubation was probably not responsible since inhibitors did not prevent modification. It is possible that products of lipid peroxidation present in extracellular lipid of arteries may propagate free radicals or be incorporated into LDL, leading to modifications similar to those found in cell-modified LDL

  17. The regulation of cerebral glucose uptake and metabolism in normal and diabetic man

    International Nuclear Information System (INIS)

    Polonsky, K.

    1987-01-01

    The effects of changes in serum insulin and glucose on brain glucose metabolism using PET technology were investigated. Eight normal, right-handed, male subjects were studied on three separate occasions at least one week apart. In each subject a PET scan was performed under three different metabolic circumstances: basal conditions after an overnight fast, euglycemic clamp, and hypoglycemic clamp in which the plasma glucose was maintained at 55 mg/dl. Exogenous insulin was infused at the same rate in the euglycemic and hypoglycemic clamp studies. In the latter study, the concomitant glucose infusion rate was reduced to allow the plasma glucose concentration to fall to the desired level of mild hypoglycemia. During each study, dynamic positron emission tomography was used to characterize cerebral uptake and distribution of the Fluorine-18 2-deoxyglucose radiotracer as a function of time. Analysis of the brain uptake curve and tracer input function provided rate constants for transport and phosphorylation in accord with a 3 compartmental model (Sokoloff, 1979). Dynamic scans were performed on each study occasion allowing individual rate constants to be studied. In addition to the brain uptake curves, plasma glucose, F-18 2DG levels and counterregulatory hormone values were determined from frequent arterialized venous blood samples

  18. Assessment of 99mTc-DMSA renoscintigraphy and uptake compared with creatinine clearance in rats with drug-induced nephrotoxicity, 1

    International Nuclear Information System (INIS)

    Yamada, Masafumi

    1991-01-01

    For evaluation of technetium-99m dimercaptosuccinic acid ( 99m Tc-DMSA) renal uptake as an absolute renal function, 99m Tc-DMSA uptake was compared with endogenous creatinine clearance (Ccr) in gentamicin-induced nephrotoxicity. Gentamicin (40 mg/kg/day) was given subcutaneously to male Wistar rats for periods of 3, 6, 9 and 12 days. On the next day, the renoscintigraphy was performed 2 hours following intravenous injection of 99m Tc-DMSA and Ccr was measured. On the 7th day, 99m Tc-DMSA uptake was significantly lower in the treated rats than that in control (32.27±0.92 vs 39.84±2.24%; p 99m Tc-DMSA uptake was measured and the histological examination was done. On the 4th day, 99m Tc-DMSA uptake was significantly lower than that on the 1st day (32.32±3.00 vs 38.91±1.95%; p 99m Tc-DMSA uptake reduces earlier than Ccr in gentamicin-induced nephrotoxicity and 99m Tc-DMSA uptake is a reliable indicator in the evaluation of a renal function in drug-induced nephrotoxicity. (author)

  19. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Liu, Xue; Fu, Jing-Wei; Tang, Ni; da Silva, E B; Cao, Yue; Turner, Benjamin L; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Phytate is abundant in soils, which is stable and unavailable for plant uptake. However, it occurs in root exudates of As-hyperaccumulator Pteris vittata (PV). To elucidate its effect on As uptake and growth, P. vittata were grown on agar media (63 μM P) containing 50 μM As and/or 50 or 500 μM phytate with non As-hyperaccumulator Pteris ensiformis (PE) as a congeneric control for 60 d. Phytate induced efficient As and P uptake, and enhanced growth in PV, but had little effects on PE. The As concentrations in PV fronds and roots were 157 and 31 mg kg -1 in As 50 +phytate 50 , 2.2- and 3.1-fold that of As 50 treatment. Phosphorus uptake by PV was reduced by 27% in As treatment than the control (P vs. P+As) but increased by 73% comparing phytate 500 to phytate 500 +As, indicating that PV effectively took up P from phytate. Neither As nor phytate affected Fe accumulation in PV, but phytate reduced root Fe concentration in PE (46-56%). As such, the increased As and P and the unsuppressed Fe uptake in PV probably promoted PV growth. Thus, supplying phytate to As-contaminated soils may promote As uptake and growth in PV and its phytoremediation ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): Implications for energy metabolism and antibiotic-uptake ability.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Gonçalves, Cíntia Almeida; de Brito, Júlio César Moreira; Souza, Amanda Miranda; da Silva Cruz, Fernanda Vieira; Bicalho, Elisa Monteze; Figueredo, Cleber Cunha; Garcia, Queila Souza

    2017-04-15

    We investigate the physiological responses and antibiotic-uptake capacity of Lemna minor exposed to ciprofloxacin. Ciprofloxacin (Cipro) induced toxic effects and hormesis in plants by significantly modifying photosynthesis and respiration pathways. A toxic effect was induced by a concentration ≥1.05mg ciprofloxacin l -1 while hormesis occurs at the lowest concentration studied (0.75mg ciprofloxacin l -1 ). By impairing normal electron flow in the respiratory electron transport chain, ciprofloxacin induces hydrogen peroxide (H 2 O 2 ) production. The ability of plants to cope with H 2 O 2 accumulation using antioxidant systems resulted in stimulation/deleterious effects to photosynthesis by Cipro. Cipro-induced oxidative stress was also associated with the ability of L. minor plants to uptake the antibiotic and, therefore, with plant-uptake capacity. Our results indicate that instead of being a photosystem II binding molecule, Cipro induces oxidative stress by targeting the mitochondrial ETC, which would explain the observed effects of the antibiotic on non-target eukaryotic organisms. The selection of plants species with a high capacity to tolerate oxidative stress may constitute a strategy to be used in Cipro-remediation programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Uptake and expulsion of 14C-xylitol by xylitol-cultured Streptococcus mutans ATCC 25175 in vitro

    International Nuclear Information System (INIS)

    Soederling, E.; Pihlanto-Leppaelae, A.

    1989-01-01

    The effect of successive cultivations in the presence of 6% xylitol on the uptake and expulsion of 14 C-xylitol was studied using the cells of Streptococcus mutans 25175. Three sequential cultivations did not alter the growth inhibition percentage (approximately 50%) observed in the presence of 6% xylitol. The 14 C-xylitol uptake experiments performed with growing and resting cells showed that both the uptake and the expulsion of xylitol were enhanced by xylitolculturing. Both xylitol-cultured and resting control cells contained only one major labeled compound which was identified as 14 C-xylitol 5-phosphate. The label subsequently was expelled from the cells as 14 C-xylitol. These results indicate that S. mutans possesses an intracellular xylitol cycle and this cycle is regulated by adding xylitol to the growth medium. (author)

  2. The effect of endogenous essential and nonessential fatty acids on the uptake and subsequent agonist-induced release of arachidonate

    International Nuclear Information System (INIS)

    Furth, E.E.; Hurtubise, V.; Schott, M.A.; Laposata, M.

    1989-01-01

    We have demonstrated that the uptake and agonist-induced release of a pulse of arachidonate are influenced by the size and composition of preexisting endogenous fatty acid pools. EFD-1 cells, an essential fatty acid-deficient mouse fibrosarcoma cell line, were incubated with radiolabeled (14C or 3H) arachidonate, linoleate, eicosapentaenoate (EPA), palmitate, or oleate in concentrations of 0-33 microM for 24 h. After 24 h, the cells were pulsed with 0.67 microM radiolabeled (3H or 14C, opposite first label) arachidonate for 15 min and then stimulated with 10 microM bradykinin for 4 min. Because EFD-1 cells contain no endogenous essential fatty acids, we were able to create essential fatty acid-repleted cells for which the specific activity of the newly constructed endogenous essential fatty acid pool was known. Loading the endogenous pool with the essential fatty acids arachidonate, eicosapentaenoate, or linoleate (15-20 nmol of fatty acid incorporated/10(6) cells) decreased the uptake of a pulse of arachidonate from 200 to 100 pmol/10(6) cells but had no effect on palmitate uptake. The percent of arachidonate incorporated during the pulse which was released upon agonist stimulation increased 2-fold (4-8%) as the endogenous pool of essential fatty acids was increased from 0 to 15-20 nmol/10(6) cells. This 8% release was at least 3-fold greater than the percent release from the various endogenous essential fatty acid pools. In contrast, loading the endogenous pool with the nonessential fatty acids oleate or palmitate to more than 2-3 times their preexisting cellular level had no effect on the uptake of an arachidonate pulse. Like the essential fatty acids, increasing endogenous oleate increased (by 2-fold) the percent release of arachidonate incorporated during the pulse, whereas endogenous palmitate had no effect on subsequent agonist-induced release from this arachidonate pool

  3. Uptake of extracellular DNA: Competence induced pili in natural transformation of Streptococcus pneumoniae

    Science.gov (United States)

    Muschiol, Sandra; Balaban, Murat; Normark, Staffan; Henriques-Normark, Birgitta

    2015-01-01

    Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram-positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram-negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram-positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram-positive bacterium Streptococcus pneumoniae – one is a long, thin, type IV pilus-like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus-related opening in the cell wall, may mediate DNA uptake in S. pneumoniae. PMID:25640084

  4. Impact of Glycerol as Carbon Source onto Specific Sugar and Inducer Uptake Rates and Inclusion Body Productivity in E. coli BL21(DE3

    Directory of Open Access Journals (Sweden)

    Julian Kopp

    2017-12-01

    Full Text Available The Gram-negative bacterium E. coli is the host of choice for a multitude of used recombinant proteins. Generally, cultivation is easy, media are cheap, and a high product titer can be obtained. However, harsh induction procedures using isopropyl β-d-1 thiogalactopyranoside as inducer are often referred to cause stress reactions, leading to a phenomenon known as “metabolic” or “product burden”. These high expressions of recombinant proteins mainly result in decreased growth rates and cell lysis at elevated induction times. Therefore, approaches tend to use “soft” or “tunable” induction with lactose and reduce the stress level of the production host. The usage of glucose as energy source in combination with lactose as induction reagent causes catabolite repression effects on lactose uptake kinetics and as a consequence reduced product titer. Glycerol—as an alternative carbon source—is already known to have positive impact on product formation when coupled with glucose and lactose in auto-induction systems, and has been referred to show no signs of repression when cultivated with lactose concomitantly. In recent research activities, the impact of different products on the lactose uptake using glucose as carbon source was highlighted, and a mechanistic model for glucose-lactose induction systems showed correlations between specific substrate uptake rate for glucose or glycerol (qs,C and the maximum specific lactose uptake rate (qs,lac,max. In this study, we investigated the mechanistic of glycerol uptake when using the inducer lactose. We were able to show that a product-producing strain has significantly higher inducer uptake rates when being compared to a non-producer strain. Additionally, it was shown that glycerol has beneficial effects on viability of cells and on productivity of the recombinant protein compared to glucose.

  5. Resolution-limiting factors in 2-deoxyglucose autoradiography. I. Factors other than diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gallistel, C.R.; Nichols, S. (Pennsylvania Univ., Philadelphia, PA (USA). Dept. of Psychology)

    1983-05-16

    The authors measured the extent to which factors other than the diffusion of the radioactive label during tissue preparation limits the spatial resolving power of 2-deoxyglucose (2-DG) autoradiography. Radioactive swept frequency gratings were created using microcircuit lithography. The gratings consisted of alternating equal width radioactive and non-radioactive bars in groups of narrowing bar width (effective range 500-20 ..mu..m). The vertical thickness of the gratings ranged from 2.25 to 20 ..mu..m. The isotope in the radioactive bars was either /sup 14/C or /sup 3/H. A variety of X-ray films were exposed to these gratings and the resulting images scanned with microdensitometers or video digitizers to determine the fall off in image contrast (dark-bar values minus light-bar values) as a function of the number of dark bars (lines) per millimeter. The power of the isotope was the resolution limiting factor. Grating thickness and type of film made little difference. The limit of resolution with /sup 14/C was 10 lines/mm: with /sup 3/H it was 25 lines/mm. The microdensitometer itself is apt to be a resolution limiting factor; the resolving power of those commonly used in autoradiography is unlikely to exceed 10 lines/mm. From measurements of the steepness of gray-matter to white-matter transitions in the image from a tissue section, they conclude that the resolution in the image was no worse than 1.6-3.2 lines/mm. Either the isotope or diffusion of the 2-DG during tissue preparation must be the factor that limits resolution.

  6. In whole blood, LPS, TNF-alpha and GM-CSF increase monocyte uptake of {sup 99m}technetium stannous colloid but do not affect neutrophil uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, Stuart C. [Townsville Nuclear Medicine, Mater Hospital, Pimlico, Queensland 4812 (Australia) and School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia)]. E-mail: stuart.ramsay1@jcu.edu.au; Maggs, Jacqueline [Department of Nuclear Medicine, Townsville Hospital, Townsville, Queensland 4814 (Australia); Powell, Kellie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia); Barnes, Jodie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Ketheesan, Natkunam [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia)

    2006-07-15

    Introduction: {sup 99m}Technetium stannous colloid (TcSnC) is used in white cell scanning. It labels neutrophils and monocytes via phagocytosis, with uptake mediated by the phagocytic receptor CD11b/CD18 in neutrophils. Uptake of TcSnC is altered by gram-negative infection, possibly due to the endotoxin component lipopolysaccharide (LPS) or to cytokines released during infection (e.g., TNF-alpha and IFN-gamma). Endotoxemia and increased TNF-alpha levels also occur in inflammatory bowel disease. Another potential confounder in cell labeling is that sepsis patients may be treated with GM-CSF and G-CSF, which alter phagocytic cell function. This study aimed to determine how these factors affect TcSnC cellular uptake. Methods: Whole blood from six healthy volunteers was incubated with LPS, TNF-alpha, IFN-gamma, GM-CSF or G-CSF. Samples were then mixed with TcSnC. Blood was separated across density gradients and imaged using a gamma camera. Three radioactive count peaks were observed in each tube: free plasma activity, mononuclear cell uptake and neutrophil uptake. Results: Compared with controls, significant increases in mononuclear cell uptake were induced by LPS, TNF-alpha and GM-CSF stimulation. It was incidentally noted that exogenous estrogens appear to affect TcSnC labeling and may influence the neutrophil response to stimulation. Neutrophil uptake and plasma activity were not significantly affected. IFN-gamma and G-CSF had no significant effect. Conclusions: In whole blood, the effect of LPS on TcSnC monocyte uptake is different to its effect on neutrophils, consistent with previously reported differences in CD11b/CD18 expression. TNF-alpha response parallels LPS response. GM-CSF also increases TcSnC uptake by monocytes. These effects should be considered when using TcSnC for imaging purposes, as they will tend to increase monocyte labeling. Estrogens may also affect TcSnC labeling. Responses to IFN-gamma and G-CSF are consistent with previously reported effects

  7. Root-uptake of {sup 14}C derived from acetic acid and {sup 14}C transfer to rice edible parts

    Energy Technology Data Exchange (ETDEWEB)

    Ogiyama, Shinichi [Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan)], E-mail: ogiyama@nirs.go.jp; Suzuki, Hiroyuki [Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-5522 (Japan); Inubushi, Kazuyuki [Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi 271-8510 (Japan); Takeda, Hiroshi; Uchida, Shigeo [Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan)

    2010-02-15

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of {sup 14}C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The {sup 14}C radioactivity in the plant, mediums, and atmospheric carbon dioxide ({sup 14}CO{sub 2}) in the chamber were determined, and the distribution of {sup 14}C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had {sup 14}C radioactivity, but the upper root which did not have contact with the solution had none. There were also {sup 14}C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that {sup 14}CO{sub 2} gas was released from the culture solution in both types of cultures. Results indicated that the {sup 14}C-acetic acid absorbed by rice plant through its root would be very small. Most of the {sup 14}C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate {sup 14}C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of {sup 14}C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated {sup 14}C through the plant roots not because of uptake of {sup 14}C-acetic acid but because of uptake of {sup 14}C in gaseous forms such as {sup 14}CO{sub 2}.

  8. New Synthesis of nZVI/C Composites as an Efficient Adsorbent for the Uptake of U(VI) from Aqueous Solutions.

    Science.gov (United States)

    Liu, Haibo; Li, Mengxue; Chen, Tianhu; Chen, Changlun; Alharbi, Njud S; Hayat, Tasawar; Chen, Dong; Zhang, Qiang; Sun, Yubing

    2017-08-15

    New nanoscale zerovalent iron/carbon (nZVI/C) composites were successfully prepared via heating natural hematite and pine sawdust at 800 °C under nitrogen conditions. Characterization by SEM, XRD, FTIR, and XPS analyses indicated that the as-prepared nZVI/C composites contained a large number of reactive sites. The lack of influence of the ionic strength revealed inner-sphere complexation dominated U(VI) uptake by the nZVI/C composites. Simultaneous adsorption and reduction were involved in the uptake process of U(VI) according to the results of XPS and XANES analyses. The presence of U-C/U-U shells demonstrated that innersphere complexation and surface coprecipitation dominated the U(VI) uptake at low and high pH conditions, respectively. The uptake behaviors of U(VI) by the nZVI/C composites were fitted well by surface complexation modeling with two weak and two strong sites. The maximum uptake capacity of U(VI) by the nZVI/C composites was 186.92 mg/g at pH 4.0 and 328 K. Additionally, the nZVI/C composites presented good recyclability and recoverability for U(VI) uptake in regeneration experiments. These observations indicated that the nZVI/C composites can be considered as potential adsorbents to remove radionuclides for environmental remediation.

  9. Effects of Ursolic Acid Derivatives on Caco-2 Cells and Their Alleviating Role in Streptozocin-Induced Type 2 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Panpan Wu

    2014-08-01

    Full Text Available In this study, the effect and mechanism of a series of ursolic acid (UA derivatives on glucose uptake were investigated in a Caco-2 cells model. Their effect on hyperglycemia, hyperlipidemia and oxidative stress were also demonstrated in streptozocin (STZ-induced diabetic rats. 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino]-2-deoxy-glucose (2-NBDG was used as a fluorescein in Caco-2 cells model to screen UA derivatives by glucose uptake and expression of glucose transporter protein (SGLT-1, GLUT-2. Moreover, STZ-induced diabetic rats were administered with these derivatives for 4 weeks of treatment. The fasting blood glucose (FBG, insulin levels, biochemical parameters, lipid levels, and oxidative stress markers were finally evaluated. The results of this study indicated that compounds 10 and 11 significantly inhibited 2-NBDG uptake under both Na+-dependent and Na+-independent conditions by decreasing SGLT-1 and GLUT-2 expression in the Caco-2 cells model. Further in vivo studies revealed that compound 10 significantly reduced hyperglycemia by increasing levels of serum insulin, total protein, and albumin, while the fasting blood glucose, body weight and food intake were restored much closer to those of normal rats. Compounds 10 and 11 showed hypolipidemic activity by decreasing the total amounts of cholesterol (TC and triglycerides (TG. Furthermore, compound 10 showed antioxidant potential which was confirmed by elevation of glutathione (GSH and superoxide dismutase (SOD and reduction of malondialdehyde (MDA levels in the liver and kidney of diabetic rats. It was concluded that compound 10 caused an apparent inhibition of intestinal glucose uptake in Caco-2 cells and hypoglycemia, hypolipidemia and augmented oxidative stress in STZ-induced diabetic rats. Thus, compound 10 could be developed as a potentially complementary therapeutic or prophylactic agent for diabetics mellitus and its complications.

  10. 14 C-Glucose uptake studies in the red rot toxin treated sugarcane ...

    African Journals Online (AJOL)

    Fungal toxins cause serious damage to the cellular functions of host tissue. In the present report the toxin extracted from Colletotrichum falcatum Went was partially purified and treatments were given to the callus of susceptible sugarcane callus variety CoC 671. The influence on 14C-glucose uptake and its further utilization ...

  11. Opposite effects of WR-2721 and WR-1065 on radiation-induced hypothermia: possible correlation with oxygen uptake

    International Nuclear Information System (INIS)

    Kandasamy, S.B.; Kumar, K.S.; Hunt, W.A.; Weiss, J.F.

    1988-01-01

    Ionizing radiation induces hypothermia in guinea pigs. While systemic injection of the radioprotectant S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721) did not block hyperthermia induced by exposure to 10 Gy of gamma radiation, central administration did attenuate it. The dephosphorylated metabolite of WR-2721, N-(2-mercaptoethyl)-1,3-diaminopropane (WR-1065), accentuated radiation-induced hypothermia by both routes of administration. In brain homogenates, oxygen uptake was inhibited by WR-2721 but elevated by WR-1065. These results suggest that the antagonism of radiation-induced hypothermia found only after central administration of WR-2721 is due to its direct actions and not to its dephosphorylated metabolite and that this effect may be correlated with the inhibition by WR-2721 of oxygen uptake

  12. The 18F-FDG uptake in non small cell lung carcinoma correlates with the DNA-grading of malignancy

    International Nuclear Information System (INIS)

    Wu Jinchang

    2002-01-01

    In order to evaluate correlation of glucose metabolism and DNA ploidity of tumors, the uptake of 18 F-Deoxyglucose (FDG) by PET prior to surgery and the DNA content and DNA-grading of malignancy (DNA-MG) of Schiff-stained nuclei obtained from fresh tumor fragments by means of image cytometry were studied, and thereafter the correlation between standardized uptake value (SUV) and (DNA-MG) was analysed in forty-nine patients with histologically proven non-small cell lung carcinoma (NSCLC). As a result of the DNA histograms of these 49 patients, 46(93.88%) were aneuploidy and only 3(6.12%) were tetraploid. A linear correlation of the SUV versus the (DNA-MG) (r=0.336, p=0.024) was found, demonstrating that 18 F-FDG PET as a non-invasive metabolic imaging technique, may also provide information correlated to malignant DNA patterns which may be valuable in malignant differentiation and prognostic prediction

  13. Sulfocerebrosides upregulate liposome uptake in human astrocytes without inducing a proinflammatory response.

    Science.gov (United States)

    Suesca, Elizabeth; Alejo, Jose Luis; Bolaños, Natalia I; Ocampo, Jackson; Leidy, Chad; González, John M

    2013-07-01

    Astrocytes are involved in the pathogenesis of demyelinating diseases, where they actively regulate the secretion of proinflammatory factors, and trigger the recruitment of immune cells in the central nervous system (CNS). Antigen presentation of myelin-derived proteins has been shown to trigger astrocyte response, suggesting that astrocytes can directly sense demyelination. However, the direct response of astrocytes to lipid-debris generated during demyelination has not been investigated. The lipid composition of the myelin sheath is distinct, presenting significant amounts of cerebrosides, sulfocerebrosides (SCB), and ceramides. Studies have shown that microglia are activated in the presence of myelin-derived lipids, pointing to the possibility of lipid-induced astrocyte activation. In this study, a human astrocyte cell line was exposed to liposomes enriched in each myelin lipid component. Although liposome uptake was observed for all compositions, astrocytes had augmented uptake for liposomes containing sulfocerebroside (SCB). This enhanced uptake did not modify their expression of human leukocyte antigen (HLA) molecules or secretion of chemokines. This was in contrast to changes observed in astrocyte cells stimulated with IFNγ. Contrary to human monocytes, astrocytes did not internalize beads in the size-range of liposomes, indicating that liposome uptake is lipid specific. Epifluorescence microscopy corroborated that liposome uptake takes place through endocytosis. Soluble SCB were found to partially block uptake of liposomes containing this same lipid. Endocytosis was not decreased when cells were treated with cytochalasin D, but it was decreased by cold temperature incubation. The specific uptake of SCB in the absence of a proinflammatory response indicates that astrocytes may participate in the trafficking and regulation of sulfocerebroside metabolism and homeostasis in the CNS. Copyright © 2013 International Society for Advancement of Cytometry.

  14. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    2006-06-01

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  15. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  16. **-Postprandial pancreatic ["1"1C]methionine uptake after pancreaticoduodenectomy mirrors basal beta cell function and insulin release

    International Nuclear Information System (INIS)

    Steiner, Emanuel; Kazianka, Lukas; Breuer, Robert; Miholic, Johannes; Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus; Stimpfl, Thomas; Reiter, Birgit; Karanikas, Georgios

    2017-01-01

    [S-methyl-"1"1C]-L-methionine (["1"1C]MET) uptake in the pancreas might be a central indicator of beta cell function. Since gastric emptying was recently shown to influence glycemic control in subjects after pancreaticoduodenectomy (PD, the surgical treatment of neoplasms of the pancreas head), we looked for imaginable relationships between gastric emptying, pre- and postprandial insulin concentrations, and ["1"1C]MET uptake. Nineteen tumor-free survivors after PD (age mean ± SD: 61 ± 8.7 yrs.; 10 male, 9 female) and 10 healthy controls (age: 27 ± 8.7 yrs.; 7 male, 3 female) were given a mixed test meal. One gram of paracetamol was ingested with the meal to evaluate the speed of gastric emptying. Insulin, glucose, and paracetamol plasma concentrations were measured before and over 180 minutes after ingestion. Beta cell function was calculated from fasting glucose and insulin plasma concentrations. Simultaneously, 800 MBq of ["1"1C]MET were administered and the activity (maximum tissue standardized uptake values [SUVmax]) over the pancreas was measured at 15, 30, and 60 minutes after injection. Total integrated SUVmax (area under the curve [AUC]) and incremental SUVmax were calculated. The uptake of ["1"1C]MET in the pancreas was significantly higher (p < 0.0001) in controls compared to the PD group. Gastric emptying was significantly slower in controls compared to pancreatectomy subjects (p < 0.0001). Paracetamol AUC_3_0 correlated with the SUVmax increment between 15 and 30 minutes (R"2 = 0.27, p = 0.0263), suggesting a relationship between gastric emptying and the uptake of ["1"1C]MET. Total integrated SUVmax correlated with insulin AUC_6_0 (R"2 = 0.66,p < 0.0001) in patients after PD. Multivariate regression analysis revealed insulin AUC_6_0 and beta cell function, calculated from the fasting insulin to glucose ratio, as independent predictors of "1"1C-methionine uptake, i.e. total integrated SUVmax, in patients after PD (R"2 = 0.78, p < 0.0001). Postprandial

  17. **-Postprandial pancreatic [{sup 11}C]methionine uptake after pancreaticoduodenectomy mirrors basal beta cell function and insulin release

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Emanuel; Kazianka, Lukas; Breuer, Robert; Miholic, Johannes [Medical University of Vienna, Department of Surgery, Vienna (Austria); Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Vienna (Austria); Stimpfl, Thomas; Reiter, Birgit [Medical University of Vienna, Clinical Institute of Laboratory Medicine, Forensic Toxicology, Vienna (Austria); Karanikas, Georgios [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Divisional Head PET-PET/CT (Nuclear Medicine), Vienna (Austria)

    2017-03-15

    [S-methyl-{sup 11}C]-L-methionine ([{sup 11}C]MET) uptake in the pancreas might be a central indicator of beta cell function. Since gastric emptying was recently shown to influence glycemic control in subjects after pancreaticoduodenectomy (PD, the surgical treatment of neoplasms of the pancreas head), we looked for imaginable relationships between gastric emptying, pre- and postprandial insulin concentrations, and [{sup 11}C]MET uptake. Nineteen tumor-free survivors after PD (age mean ± SD: 61 ± 8.7 yrs.; 10 male, 9 female) and 10 healthy controls (age: 27 ± 8.7 yrs.; 7 male, 3 female) were given a mixed test meal. One gram of paracetamol was ingested with the meal to evaluate the speed of gastric emptying. Insulin, glucose, and paracetamol plasma concentrations were measured before and over 180 minutes after ingestion. Beta cell function was calculated from fasting glucose and insulin plasma concentrations. Simultaneously, 800 MBq of [{sup 11}C]MET were administered and the activity (maximum tissue standardized uptake values [SUVmax]) over the pancreas was measured at 15, 30, and 60 minutes after injection. Total integrated SUVmax (area under the curve [AUC]) and incremental SUVmax were calculated. The uptake of [{sup 11}C]MET in the pancreas was significantly higher (p < 0.0001) in controls compared to the PD group. Gastric emptying was significantly slower in controls compared to pancreatectomy subjects (p < 0.0001). Paracetamol AUC{sub 30} correlated with the SUVmax increment between 15 and 30 minutes (R{sup 2} = 0.27, p = 0.0263), suggesting a relationship between gastric emptying and the uptake of [{sup 11}C]MET. Total integrated SUVmax correlated with insulin AUC{sub 60} (R{sup 2} = 0.66,p < 0.0001) in patients after PD. Multivariate regression analysis revealed insulin AUC{sub 60} and beta cell function, calculated from the fasting insulin to glucose ratio, as independent predictors of {sup 11}C-methionine uptake, i.e. total integrated SUVmax, in

  18. Improving the yield of 2-[18F]fluoro-2-deoxyglucose using a microwave cavity.

    Science.gov (United States)

    Taylor, M D; Roberts, A D; Nickles, R J

    1996-07-01

    We have investigated the use of a microwave cavity (Labwell AB, Sweden) to improve the radiochemical yield of 2-[18F]fluoro-2-deoxyglucose (2-[18F]FDG). After characterizing the heating properties of the cavity, three steps of the Hamacher 2-[18F]FDG synthesis which require heating--azeotropic distillation of the target water, nucleophilic substitution, and hydrolysis of the product--were investigated separately. The average radiochemical yield of 2-[18F]FDG for the microwave synthesis, using the phase transfer reagent tetrabutylammonium bicarbonate, was 62 +/- 4% (72 +/- 5%, decay corrected, synthesis time = 31 min).

  19. Improving the yield of 2-[18F]fluoro-2-deoxyglucose using a microwave cavity

    International Nuclear Information System (INIS)

    Taylor, M.D.; Roberts, A.D.; Nickles, R.J.

    1996-01-01

    We have investigated the use of a microwave cavity (Labwell AB, Sweden) to improve the radiochemical yield of 2-[ 18 F]fluoro-2-deoxyglucose (2-[ 18 F]FDG). After characterizing the heating properties of the cavity, three steps of the Hamacher 2-[ 18 F]FDG synthesis which require heating--azeotropic distillation of the target water, nucleophilic substitution, and hydrolysis of the product--were investigated separately. The average radiochemical yield of 2-[ 18 F]FDG for the microwave synthesis, using the phase transfer reagent tetrabutylammonium bicarbonate, was 62 ± 4% (72 ± 5%, decay corrected, synthesis time = 31 min)

  20. Tissue-specific differences in 2-fluoro-2-deoxyglucose metabolism beyond FDG-6-P: a 19F NMR spectroscopy study in the rat.

    Science.gov (United States)

    Southworth, Richard; Parry, Craig R; Parkes, Harold G; Medina, Rodolfo A; Garlick, Pamela B

    2003-12-01

    2-Fluoro-[(18)F]-2-deoxy-glucose (FDG) is a positron-emitting analogue of glucose used clinically in positron emission tomography (PET) to assess glucose utilization in diseased and healthy tissue. Originally developed to measure local cerebral glucose utilization rates, it has now found applications in tumour diagnosis and in the study of myocardial glucose uptake. Once taken up into the cell, FDG is phosphorylated to FDG-6-phosphate (FDG-6-P) by hexokinase and was originally believed to be trapped as a terminal metabolite. This 'metabolic trapping' of FDG-6-P forms the basis of the analysis of PET data. In this study, we have used (19)F NMR spectroscopy to investigate FDG metabolism following the injection of a bolus of the glucose tracer into the rat (n=6). Ninety minutes after the (19)FDG injection, the brain, heart, liver and kidneys were removed and the (19)FDG metabolites in each were extracted and quantified. We report that significant metabolism of FDG occurs beyond FDG-6-P in all organs examined and that the extent of this metabolism varies from tissue to tissue (degree of metabolism beyond FDG-6-P, expressed as percentage of total organ FDG content, was brain 45 +/- 3%; heart 29 +/- 2%; liver 22+/-3% and kidney 17 +/- 3%, mean +/- SEM n=6). Furthermore, we demonstrate that the relative accumulation of each metabolite was tissue-dependent and reflected the metabolic and regulatory characteristics of each organ. Such inter-tissue differences may have implications for the mathematical modelling of glucose uptake and phosphorylation using FDG as a glucose tracer. Copyright 2003 John Wiley & Sons, Ltd.

  1. Uptake, translocation, and distribution of root-applied [C ring-U-14C]-ZJ0273 in plants of oilseed rape and rice

    International Nuclear Information System (INIS)

    Li Zheng; Han Ailiang; Zhang Yanfei; Li Juying; Wang Yue; Wang Haiyan; Ye Qingfu; Lu Long

    2009-01-01

    ZJ0273, propyl 4-(2-(4, 6-dimethoxypyrimidin-2-yloxy) benzylamino) benzoate, is a novel ALS-inhibited herbicide development for pre-and post-emergence weed control in field of oilseed rape. The comparative uptake, translocation and distribution of root-applied [C ring-U- 14 C] ZJ0273 in the plants of susceptible rice and tolerant oilseed rape were investigated under laboratory conditions. The results showed that the uptake of [C ring-U- 14 C]-ZJ0273 in both rice (Oryza sativa L.) and oilseed rape (Brassica napus L.) increased with time. Larger percentage of the applied ZJ0273 was uptaken by rice than oilseed rape at any sampling time. At 384 hours after treatment, the uptake of [C ring-U- 14 C]-ZJ0273 reached 24.1% of the applied amount in rice, while only 4.1% of the applied in oilseed rape. The majority of the absorbed ZJ0273 remained in the root of the tested plants, which indicated the weak mobility of ZJ0273 and/or its metabolites in both the plants of susceptible rice and tolerant oilseed rape. The radioactivity per unit of dry weight in the roots and leaves of rice was 9.470 Bq/mg and 0.910 Bq/mg, respectively, which was significantly higher than that in oilseed rape (3.870 Bq/mg and 0.390 Bq/mg). Therefore, the difference in the total uptake of ZJ0273 and the accumulation of ZJ0273 and/or its metabolites perunit of dry weight between rice and oilseed rape, which revealed in this study, might be one of the reasons for the different susceptibility of rice and oilseed rape on ZJ0273. (authors)

  2. Uptake, transport and persistence of 14C yeast mannans in plants

    International Nuclear Information System (INIS)

    Kovalenko, A.G.; Kluge, S.

    1988-01-01

    Low-molecular branched-chain 14 C-mannan from Candida tropicalis and high-molecular linear 14 C-mannan from Rhodotorula rubra are not taken up by intact plants. Mechanical injury of plants is a prerequisite for the uptake and transport of polysaccharides in plant tissues. Mannans injected through the epidermis into the parenchyma of tobacco leaves remain mostly confined to the place of injection or to the respective intercostal field. The presence of dimethyl sulfoxide in the solution stimulates the uptake of mannans through intact roots of tobacco, thorn apple and potato plants. Mannans injected in the intercellular space of the parenchyma tissue of tobacco leaves maintain their polymeric structure for at least five days, which almost corresponds with the duration of their antiviral activity in the plants. These results suggest the antiphytoviral activity in fact to be due to the mannans or to principles stimulated by them rather than to their catabolites. (author)

  3. Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading

    Energy Technology Data Exchange (ETDEWEB)

    Capuani, S. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Enrico Fermi Center, Compendio Viminale, Rome (Italy)], E-mail: silvia.capuani@roma1.infn.it; Gili, T. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Enrico Fermi Center, Compendio Viminale, Rome (Italy); Bozzali, M. [Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome (Italy); Russo, S. [Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London (United Kingdom); Porcari, P. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Cametti, C. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Muolo, M. [Department of Biological Science, University ' Rome III' , Viale G. Marconi 446, Rome (Italy); D' Amore, E. [Serv. Qual./Sicurezza Sperim. Anim., Istituto Superiore di Sanita, Rome (Italy); Maraviglia, B. [Enrico Fermi Center, Compendio Viminale, Rome (Italy); Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome (Italy); Lazzarino, G. [Laboratory of Biochemistry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania (Italy); Pastore, F.S. [Department of Neuroscience, Institute of Neurosurgery, University ' Tor Vergata' , Via Montpellier 1, Rome (Italy)

    2009-07-15

    One of the main limitations for BNCT effectiveness is the insufficient intake of {sup 10}B nuclei within tumour cells. This work was aimed at investigating the use of L-DOPA as enhancer for boronophenylalanine (BPA) uptake in the C6 glioma model. The investigation was first performed in vitro, and then extended in vivo to the animal model. BPA accumulation in C6 glioma cells was assessed, using radiowave dielectric spectroscopy (RDS), with and without L-DOPA preloading. C6 glioma cells were also implanted in the brain of 25 rats, randomly assigned to two experimental branches: (1) intra-carotid BPA infusion; (2) intra-carotid BPA infusion after pre-treatment with L-DOPA, administrated 24 h before BPA infusion. All animals were sacrificed, and assessment of BPA concentrations in tumour tissue, normal brain, and blood samples was performed using high performance liquid chromatography (HPLC). L-DOPA preloading induced a massive increase of BPA concentration either in vitro on C6 glioma cells or in vivo in the animal model tumour. Moreover, no significant difference was found in the normal brain and blood samples between the two animal groups. This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT.

  4. Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading

    International Nuclear Information System (INIS)

    Capuani, S.; Gili, T.; Bozzali, M.; Russo, S.; Porcari, P.; Cametti, C.; Muolo, M.; D'Amore, E.; Maraviglia, B.; Lazzarino, G.; Pastore, F.S.

    2009-01-01

    One of the main limitations for BNCT effectiveness is the insufficient intake of 10 B nuclei within tumour cells. This work was aimed at investigating the use of L-DOPA as enhancer for boronophenylalanine (BPA) uptake in the C6 glioma model. The investigation was first performed in vitro, and then extended in vivo to the animal model. BPA accumulation in C6 glioma cells was assessed, using radiowave dielectric spectroscopy (RDS), with and without L-DOPA preloading. C6 glioma cells were also implanted in the brain of 25 rats, randomly assigned to two experimental branches: (1) intra-carotid BPA infusion; (2) intra-carotid BPA infusion after pre-treatment with L-DOPA, administrated 24 h before BPA infusion. All animals were sacrificed, and assessment of BPA concentrations in tumour tissue, normal brain, and blood samples was performed using high performance liquid chromatography (HPLC). L-DOPA preloading induced a massive increase of BPA concentration either in vitro on C6 glioma cells or in vivo in the animal model tumour. Moreover, no significant difference was found in the normal brain and blood samples between the two animal groups. This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT.

  5. Age-related changes in oxygen and nutrient uptake by hindquarters in newborn pigs during cold-induced shivering.

    Science.gov (United States)

    Lossec, G; Lebreton, Y; Hulin, J C; Fillaut, M; Herpin, P

    1998-11-01

    Newborn pigs rely essentially on shivering thermogenesis in the cold. In order to understand the rapid postnatal enhancement of thermogenic capacities in piglets, the oxygen and nutrient uptake of hindquarters was measured in vivo in 1- (n = 6) and 5-day-old (n = 6) animals at thermal neutrality and during cold exposure. The hindquarters were considered to represent a skeletal muscle compartment. Indirect calorimetry and arterio-venous techniques were used. The cold challenge (23 C at 1 day old and 15 C at 5 days old for 90 min) induced a similar increase (+90 %) in regulatory heat production at both ages. Hindquarters blood flow was higher at 5 days than 1 day old at thermal neutrality (26 +/- 3 vs. 17 +/- 1 ml min-1 (100 g hindquarters)-1) and its increase in the cold was much more marked (+65 % at 5 days old vs. +25 % at 1 day old). Oxygen extraction by the hindquarters rose from 30-35 % at thermal neutrality to 65-70 % in the cold at both ages. The calculated contribution of skeletal muscle to total oxygen consumption averaged 34-40 % at thermal neutrality and 50-64 % in the cold and skeletal muscle was the major contributor to regulatory thermogenesis. Based on hindquarters glucose uptake and lactate release, carbohydrate appeared to be an important fuel for shivering. However, net uptake of fatty acids increased progressively during cold exposure at 5 days old. The enhancement in muscular blood supply and fatty acid utilization during shivering is probably related to the postnatal improvement in the thermoregulatory response of the piglet.

  6. Uptake and expulsion of sup 14 C-xylitol by xylitol-cultured Streptococcus mutans ATCC 25175 in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Soederling, E.; Pihlanto-Leppaelae, A. (Department of Biochemistry, Institute of Dentistry, University of Turku, Turku (Finland))

    1989-01-01

    The effect of successive cultivations in the presence of 6% xylitol on the uptake and expulsion of {sup 14}C-xylitol was studied using the cells of Streptococcus mutans 25175. Three sequential cultivations did not alter the growth inhibition percentage (approximately 50%) observed in the presence of 6% xylitol. The {sup 14}C-xylitol uptake experiments performed with growing and resting cells showed that both the uptake and the expulsion of xylitol were enhanced by xylitolculturing. Both xylitol-cultured and resting control cells contained only one major labeled compound which was identified as {sup 14}C-xylitol 5-phosphate. The label subsequently was expelled from the cells as {sup 14}C-xylitol. These results indicate that S. mutans possesses an intracellular xylitol cycle and this cycle is regulated by adding xylitol to the growth medium. (author).

  7. A validated bioanalytical HPLC method for pharmacokinetic evaluation of 2-deoxyglucose in human plasma.

    Science.gov (United States)

    Gounder, Murugesan K; Lin, Hongxia; Stein, Mark; Goodin, Susan; Bertino, Joseph R; Kong, Ah-Ng Tony; DiPaola, Robert S

    2012-05-01

    2-Deoxyglucose (2-DG), an analog of glucose, is widely used to interfere with glycolysis in tumor cells and studied as a therapeutic approach in clinical trials. To evaluate the pharmacokinetics of 2-DG, we describe the development and validation of a sensitive HPLC fluorescent method for the quantitation of 2-DG in plasma. Plasma samples were deproteinized with methanol and the supernatant was dried at 45°C. The residues were dissolved in methanolic sodium acetate-boric acid solution. 2-DG and other monosaccharides were derivatized to 2-aminobenzoic acid derivatives in a single step in the presence of sodium cyanoborohydride at 80°C for 45 min. The analytes were separated on a YMC ODS C₁₈ reversed-phase column using gradient elution. The excitation and emission wavelengths were set at 360 and 425 nm. The 2-DG calibration curves were linear over the range of 0.63-300 µg/mL with a limit of detection of 0.5 µg/mL. The assay provided satisfactory intra-day and inter-day precision with RSD less than 9.8%, and the accuracy ranged from 86.8 to 110.0%. The HPLC method is reproducible and suitable for the quantitation of 2-DG in plasma. The method was successfully applied to characterize the pharmacokinetics profile of 2-DG in patients with advanced solid tumors. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Comparison of standardized uptake values with volume of distribution for quantitation of [11C]PBR28 brain uptake

    International Nuclear Information System (INIS)

    Yoder, Karmen K.; Territo, Paul R.; Hutchins, Gary D.; Hannestad, Jonas; Morris, Evan D.; Gallezot, Jean-Dominique; Normandin, Marc D.; Cosgrove, Kelly P.

    2015-01-01

    Introduction: [ 11 C]PBR28 is a high-affinity ligand for the Translocator Protein 18 kDa (TSPO), which is considered to be a marker for microglial activation. Volume of distribution (V T ) estimated with an arterial plasma input function is the gold standard for quantitation of [ 11 C]PBR28 binding. However, arterial sampling is impractical at many PET sites for multiple reasons. Reference region modeling approaches are not ideal for TSPO tracers, as the existence of a true reference region cannot be assumed. Given that it would be desirable to have a non-invasive index of [ 11 C]PBR28 binding, we elected to study the utility of the semi-quantitative metric, standardized uptake value (SUV) for use in brain [ 11 C]PBR PET studies. The primary goal of this study was to determine the relationship between SUV and V T . Methods: We performed a retrospective analysis of data from sixteen [ 11 C]PBR28 PET scans acquired in baboons at baseline and at multiple time points after IV injection of lipopolysaccharide, an endotoxin that transiently induces neuroinflammation. For each scan, data from 14 brain regions of interest were studied. V T was estimated with the Logan plot, using metabolite-corrected input functions. SUV was calculated with data from 30 to 60 minutes after [ 11 C]PBR28 injection. Results: Within individual PET studies, SUV tended to correlate well with V T . Across studies, the relationship between SUV and V T was variable. Conclusions: From study to study, there was variability in the degree of correlation between [ 11 C]PBR28 V T and SUV. There are multiple physiological factors that may contribute to this variance. Advances in Knowledge: As currently applied, the non-invasive measurement of SUV does not appear to be a reliable outcome variable for [ 11 C]PBR28. Additional work is needed to discover the source of the discrepancy in SUV between [ 11 C]PBR28 scans. Implications for Patient Care: There is a need to develop alternatives to arterial plasma

  9. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    Science.gov (United States)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  10. Uptake and metabolism of 14C-chloropyrifos by marine bivalves

    International Nuclear Information System (INIS)

    Zhong, C.G.; Chen, S.; Zhao, X.; Shi, J.; Carvalho, F.P.

    1999-01-01

    The uptake and metabolism of 14 C-chlorpyrifos by two marine bivalves, Paphia undulata and Sinonovacula constricta, were studied in a simulated ecosystem. The experiments were carried out in two 30 L glass tanks containing each 20 L of filtered sea water, contaminated with 14 C-chlorpyrifos 1.85x10 4 Bq.L -1 (16.7 μg.L -1 ) at the beginning of the exposure period. At different time intervals, three specimens of each species were sampled for analysis of the pesticide in the molluscs tissues. The 14 C-chlorpyrifos residues were extracted from the digestive gland of the molluscs and analyzed by co-chromatography with pesticide standards by TLC methods described before

  11. Knockout of the predominant conventional PKC isoform, PKCalpha, in mouse skeletal muscle does not affect contraction-stimulated glucose uptake

    DEFF Research Database (Denmark)

    Jensen, Thomas E; Maarbjerg, Stine J; Rose, Adam J

    2009-01-01

    Conventional (c) protein kinase C (PKC) activity has been shown to increase with skeletal muscle contraction, and numerous studies using primarily pharmacological inhibitors have implicated cPKCs in contraction-stimulated glucose uptake. Here, to confirm that cPKC activity is required for contrac...... working on other parts of contraction-induced signaling or the remaining cPKC isoforms are sufficient for stimulating glucose uptake during contractions.......Conventional (c) protein kinase C (PKC) activity has been shown to increase with skeletal muscle contraction, and numerous studies using primarily pharmacological inhibitors have implicated cPKCs in contraction-stimulated glucose uptake. Here, to confirm that cPKC activity is required...... for contraction-stimulated glucose uptake in mouse muscles, contraction-stimulated glucose uptake ex vivo was first evaluated in the presence of three commonly used cPKC inhibitors (calphostin C, Gö-6976, and Gö-6983) in incubated mouse soleus and extensor digitorum longus (EDL) muscles. All potently inhibited...

  12. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes.

    Science.gov (United States)

    Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.

  13. Cerebroprotective activity of U-50488H: Relationship to interactions with excitatory amino acids and calcium

    International Nuclear Information System (INIS)

    Camacho Ochoa, M.

    1987-01-01

    The mechanism underlying the anticonvulsant and cerebroprotective activity of U-50488H was evaluated using 45 Ca ++ uptake in rat Ficoll purified synaptosomes, ( 3 H)-2-deoxyglucose uptake in selected mouse brain regions, ( 3 H)kainic acid binding to mouse forebrain synaptic membranes and incidence of KA-induced lesions in the CA3 region of the mouse hippocampus. U-50488H causes reduction in K + -evoked 45 Ca ++ uptake. These effects are comparable to those of the calcium channel blockers verapamil and nifedipine and seem to be related to calcium dependent mechanisms. Changes in saturability, specificity and dissociation constant values of kainic acid receptor binding were demonstrated in the presence of U-50488H at concentrations similar to those used in 45 Ca ++ uptake studies and in the presence of calcium and chloride ions

  14. Mapping of functional activity in brain with 18F-fluoro-deoxyglucose

    International Nuclear Information System (INIS)

    Alavi, A.; Reivich, M.; Greenberg, J.

    1981-01-01

    The efficacy of using the 18 F-fluoro-deoxyglucose ( 18 F-DG) for measuring regional cerebral glucose utilization in man during functional activation is demonstrated. Normal male volunteers subjected to sensory stimuli (visual, auditory, tactile) exhibited focal increases in glucose metabolism in response to the stimulus. Unilateral visual hemifield stimulation caused the contralateral striate cortex to become more active metabolically than the striate cortex ipsilateral to the stimulated hemifield. Similarly, stroking of the fingers and hand of one arm with a brush produced an increase in metabolism in the contralateral postcentral gyrus compared to the homologous ipsilateral region. The auditory stimulus, which consisted of monaural listening to either a meaningful or nonmeaningful story, caused an increase in glucose metabolism in the right temporal cortex independent of which ear was stimulated. These results demonstrate that the 18 F-DG technique is capable of providing functional maps in vivo in the human brain

  15. Phosphorus effect on the uptake, translocation and accumulation of the 14C-urea in orchard grass (Dactylis glomerata L.)

    International Nuclear Information System (INIS)

    Panak, H.; Nowak, G.; Nowak, J.; Akademia Rolniczo-Technicza, Olsztyn

    1981-01-01

    The effect of different phosphorus supplies on the uptake, translocation and accumulation of 14 C-urea by orchard grass was investigated. Phosphorus starvation inhibits the uptake, translocation and accumulation of the carbon of urea similarly to the nitrogen of urea. As compared with the uptake process the reduction of the accumulation is much more effected by the inhibition of the carbon translocation from roots to the aboveground parts. Lack of phosphorus also decreases the incorporation of the 14 C of urea into high-molecular compounds. The effect of phosphorus deficit on the accumulation of 14 C-urea increases with time of starvation. (orig.)

  16. Effects of calcium antagonists on isolated bovine cerebral arteries: inhibition of constriction and calcium-45 uptake induced by potassium or serotonin

    International Nuclear Information System (INIS)

    Wendling, W.W.; Harakal, C.

    1987-01-01

    The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium ( 45 Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased 45 Ca uptake into cerebral artery strips during 5 minutes of 45 Ca loading; for potassium 45 Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal 45 Ca uptake but significantly blocked the increase in 45 Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of 45 Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated 45 Ca efflux. The results demonstrate that verapamil and nifedipine block 45 Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries

  17. Uptake of [3H]PAH and [14C]urate into isolated proximal tubular segments of the pig kidney

    International Nuclear Information System (INIS)

    Schali, C.; Roch-Ramel, F.

    1981-01-01

    Segments of proximal convoluted (PCT) and proximal straight (PST) tubules of minipigs and normal-sized pigs were microdissected (without collagenase treatment) and incubated (30 min, 37 0 C, pH 7.4) in Ringer solution (under O 2 ) containing [ 3 H]PAH (3.10 -5 M) or [ 14 C]urate (9.10 -5 M) and, in inhibitor studies, probenecid, pyrazinoic acid (PZA), urate, or PAH, all at 1 mM. In both strains the uptake of [ 3 H]PAH expressed as mean T/M ratio (cpm per ml tissue water/cpm per ml incubation medium) was significantly higher (P 14 C]urate. In eight minipigs the T/M was 4.9 +/- 0.5 in 24 PCT and 2 +/- 0.2 in 25 PST. In normal-sized pigs the T/M was 3.8 +/- 0.3 in 35 PCT (five pigs) and 1.9 +/- 0.4 in eight PST (two pigs). In inhibitor studies urate significantly depressed the uptake of [ 3 H]PAH, and unlabeled PAH depressed the uptake of [ 14 C]urate. PZA significantly inhibited the uptake of [ 14 C]urate but not that of [ 3 H]PAH, whereas probenecid had a strong inhibitory efect on the uptake of both compounds. These results suggest that [ 14 C]urate and [ 3 H]PAH are transported by a transport system located mainly in the proximal convoluted tubule. These findings are in contrast in the findings are in contrast to the findings obtained in rabbits in which the transport system of PAH and urate is mainly located in the proximal part of the pars recta

  18. Effects of dipyridamole-induced vasodilation on myocardial uptake and clearance kinetics of thallium-201

    International Nuclear Information System (INIS)

    Beller, G.A.; Holzgrefe, H.H.; Watson, D.D.

    1983-01-01

    Myocardial thallium-201 (201Tl) uptake and clearance after intravenous administration of dipyridamole (150 micrograms/kg) were determined in 12 open-chest anesthetized dogs with a partial coronary artery stenosis. 201Tl (1.5 mCi) was injected intravenously and myocardial biopsy specimens were obtained 10 min, 60 min, and 2 hr after injection. Serial changes in 201Tl activity in the normal zone and in the zone of partial stenosis were correlated with microsphere-determined regional blood flow and distal coronary pressure. Another nine dogs with equivalent stenosis not given dipyridamole before 201Tl served as controls. Data indicate that dipyridamole-induced vasodilation in the presence of a partial stenosis results in diminished uptake and delayed clearance compared with increased uptake and more rapid clearance in normally perfused myocardium producing an initial 201Tl defect with delayed redistribution

  19. Assessment of 99mTc-DMSA renoscintigraphy and uptake compared with creatinine clearance in rats with drug-induced nephrotoxicity, 2

    International Nuclear Information System (INIS)

    Yamada, Masafumi

    1991-01-01

    For evaluation of technetium-99m dimercaptosuccinic acid ( 99m Tc-DMSA) renal uptake as an absolute renal function, 99m Tc-DMSA uptake was compared with endogenous creatinine clearance (Ccr) in cisplatin-induced nephrotoxicity. At first, male Wistar rats were given intraperitoneally 1.8 mg/kg/day of cisplatin for periods of 3, 5, 7 and 9 days. On the next day, 99m Tc-DMSA uptake and Ccr were measured. Ccr of 5-day treated group was significantly lower than that of control (0.13±0.10 vs 0.34±0.05 ml/min/100 g; p 99m Tc-DMSA uptake did not change. 99m Tc-DMSA uptake of 7-day treated group was significantly lower than that of control (28.57±7.23 vs 39.84±2.23%; p 99m Tc-DMSA uptake was lower than that of control on the 8th, 11th and 15th day (32.40±3.86, 32.56±1.19, 35.21±2.97 vs 39.84±2.23%, respectively; p 99m Tc-DMSA uptake and Ccr was observed in the cisplatin-induced nephrotoxicity. 99m Tc-DMSA uptake was suggested to be a reliable indicator of a renal function in a different way from Ccr. (author)

  20. Nitrogen Fertilizer and Straw Applications Affect Uptake of 13C,15N-Glycine by Soil Microorganisms in Wheat Growth Stages.

    Directory of Open Access Journals (Sweden)

    Lijie Yang

    Full Text Available This study investigated the influence of nitrogen (N fertilizer and straw on intact amino acid N uptake by soil microorganisms and the relationship between amino acid turnover and soil properties during the wheat growing season. A wheat pot experiment was carried out with three treatments: control (CK, N fertilizer (NF and N fertilizer plus rice straw (NS. We used stable isotope compound-specific analysis to determine the uptake of 13C,15N-glycine by soil microorganisms. In the NF treatment, microbial 13C,15N-glycine uptake was lower compared with CK, suggesting that inorganic N was the preferred N source for soil microorganisms. However, The application of straw with N fertilizer (in NS treatment increased microbial 13C,15N-glycine uptake even with the same amount of N fertilizer application. In this treatment, enzyme activities, soil microbial biomass C and microbial biomass N increased simultaneously because more C was available. Soil mineral N and plant N contents all decreased substantially. The increased uptake of intact 13C,15N-glycine in the NS treatment can be attributed to direct assimilation by soil microorganisms to satisfy the demand for N when inorganic N was consumed.

  1. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    Science.gov (United States)

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    Directory of Open Access Journals (Sweden)

    N. L. Rukavina Mikusic

    2016-01-01

    Full Text Available Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP and Ang-(1-7 may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7 was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7 and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7 stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7 on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7 was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7 on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7 enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  3. Role of the water extract from Coccinia indica stem on the stimulation of glucose transport in L8 myotubes

    Directory of Open Access Journals (Sweden)

    Chaweewan Jansakul

    2006-11-01

    Full Text Available Hypoglycemic effect of Coccinia indica used for treatment of diabetes in traditional remedies has known to relate with increased transport of glucose into peripheral tissues. However, the cellular mechanisms for this effect remain unclear. This present study reports that the water extract (WE of C. indica stem exhibited a dose-dependent induction of 2-deoxyglucose (2-DG uptake in rat L8 myotubes. Maximal uptake was observed with approximately 3-fold increase in 2-DG transport in 16 h treatment compared with the control. Effect of WE was stronger than that of 1 mM metformin. The effects of insulin and WE were additive. WE-induced glucose uptake was significantly inhibited by cycloheximide and partially reversed by SB203580. GLUT1 protein was markedly increased in response to WE. Conversely, WE had no effect on GLUT4 protein level. Redistribution of GLUT4 to the plasma membrane was demonstrated. Triterpenoids and carbohydrates were detected in WE. In conclusion, new GLUT1 protein synthesis is necessary for WEstimulated glucose transport while p38-MAPK-dependent activation of transporter intrinsic activity partly contributes to WE action. These results may explain and support the use of C. indica for the prevention and treatment of diabetes.

  4. Glucose utilisation in the lungs of septic rats

    International Nuclear Information System (INIS)

    Hansson, L.; Jeppsson, B.; Ohlsson, T.; Sandell, A.; Valind, S.; Luts, A.; Wollmer, P.

    1999-01-01

    Sequestration and degranulation of leucocytes in the pulmonary microcirculation is considered to be a key event in the development of acute respiratory distress syndrome in patients with sepsis. Glucose serves as the main source of energy in activated leucocytes. The aim of this study was to assess whether glucose utilisation in the lungs can be used as an indicator of pulmonary leucocyte accumulation in an experimental model of sepsis of intra-abdominal origin. Sepsis was induced in rats by abdominal implantation of a gelatine capsule containing bacteria and rat colonic contents. Empty gelatine capsules were implanted in control animals. Animals were studied 6 and 12 h after sepsis induction. Glucose utilisation was measured as the tissue uptake of fluorine-18-fluorodeoxyglucose ( 18 FDG) 1 h after intravenous injection of the tracer. Micro-autoradiography was also performed after injection of tritiated deoxyglucose. We found increased uptake of 18 FDG in the lungs of septic animals. The uptake also increased with time after sepsis induction. 18 FDG uptake in circulating leucocytes was increased in septic animals compared with controls, and micro-autoradiography showed intense accumulation of deoxyglucose in leucocytes in the lungs of septic animals. We conclude that glucose utilisation is increased in the lungs of septic rats. Measurements of pulmonary glucose utilisation as an index of leucocyte metabolic activity may open new possibilities for studies of the pathophysiology of sepsis and for evaluation of therapeutic interventions. (orig.)

  5. Uptake of [N-methyl-{sup 11}C]{alpha}-methylaminoisobutyric acid in untreated head and neck cancer studied by PET

    Energy Technology Data Exchange (ETDEWEB)

    Sutinen, Eija; Jyrkkioe, Sirkku; Minn, Heikki [Department of Oncology and Radiotherapy, Turku University Central Hospital, PO Box 52, 20521 Turku (Finland); Turku PET Centre, Turku University Central Hospital, Turku (Finland); Alanen, Kalle [Department of Pathology, Turku University Central Hospital, Turku (Finland); Naagren, Kjell [Turku PET Centre, Turku University Central Hospital, Turku (Finland)

    2003-01-01

    Amino acid transport system A is expressed strongly in neoplastic cells. [N-methyl-{sup 11}C]{alpha}-Methylaminoisobutyric acid ({sup 11}C-MeAIB) is a recently developed tracer for PET studies on system A amino acid transport. {sup 11}C-MeAIB is a metabolically stable amino acid analogue which is transported from plasma into the tissue by system A. This study evaluated the kinetics of {sup 11}C-MeAIB uptake from plasma into tumour tissue and normal tissues in 13 patients with untreated head and neck cancer. {sup 11}C-MeAIB uptake in tumour was compared with histological grade and proliferative activity. Tracer uptake was quantitated by calculating the standardised uptake values (SUVs) and the kinetic influx constants (K{sub i}) using graphical analysis. All tumours accumulated {sup 11}C-MeAIB and were visualised clearly. In the graphical analysis, linear plots were achieved; the mean K{sub i} value of tumour was 0.056{+-}0.026 min{sup -1}, and the mean SUV was 6.1{+-}2.7. A close correlation between graphically obtained K{sub i} and semi-quantitative SUV in tumours was found (r=0.887, P=0.00005). We could not demonstrate a correlation between the uptake of {sup 11}C-MeAIB and the grade of malignancy or the proliferative index, as assessed using Ki-67 immunohistochemical assay. Head and neck cancer can be effectively imaged with {sup 11}C-MeAIB PET. {sup 11}C-MeAIB showed active and rapid transport into tumour tissue and salivary glands. Further studies on the applicability of {sup 11}C-MeAIB PET for radiation treatment planning in the head and neck region and the regulation of system A amino acid transport under different metabolic states are warranted. (orig.)

  6. Immuno-PET of undifferentiated thyroid carcinoma with radioiodine-labelled antibody cMAb U36: application to antibody tumour uptake studies

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Marc-Andre [Centre Hospitalier Universitaire de Quebec and Laval University, Laboratory for Biomaterials and Bioengineering, Quebec City (Canada); Uppsala University, Biomedical Radiation Sciences, Department of Oncology, Radiology, and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Salnikov, Alexei V. [Uppsala University, BMC, Department of Medical Biochemistry and Microbiology, Uppsala (Sweden); German Cancer Research Center, Division of Molecular Immunology, Heidelberg (Germany); Nestor, Marika [Uppsala University, Division of Otolaryngology and Head and Neck Surgery, Department of Surgical Sciences, Uppsala (Sweden); Heldin, Nils-Erik [Uppsala University, Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala (Sweden); Rubin, Kristofer [Uppsala University, BMC, Department of Medical Biochemistry and Microbiology, Uppsala (Sweden); Lundqvist, Hans [Uppsala University, Biomedical Radiation Sciences, Department of Oncology, Radiology, and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden)

    2007-09-15

    We tested the suitability of the chimeric monoclonal anti-human CD44 splice version 6 antibody (cMAb U36) for targeting and visualising human anaplastic thyroid carcinoma with PET. We also performed experiments aimed at elucidating the relation between tumour interstitial fluid pressure (TIFP) and the tumour uptake of antibodies. The affinity and specificity of the cMAb U36 for KAT-4 cells were evaluated in vitro, as was the Na{sup +}/I{sup -} symporter (NIS) expression. Biodistribution studies were performed on KAT-4 carcinoma-bearing mice injected with {sup 124}I-cMAb U36 or free iodine. Biodistribution studies were also performed in animals treated with the specific TGF-{beta}1 and -{beta}3 inhibitor Fc:T{beta}RII, which lowers TIFP. Treated and non-treated animals were scanned by microPET. Cultured human undifferentiated/anaplastic thyroid carcinoma KAT-4 cells expressed low levels of NIS and uptake of free iodine was insignificant. The cMAb U36 expressed an affinity (K{sub D}) of 11 {+-} 2 nM. Tumour radioactivity uptake reached maximum values 48 h after injection of {sup 124}I-cMAb U36 ({proportional_to}22%IA/g). KAT-4 carcinomas were readily identified in all {sup 124}I-immuno-PET images. Radioactivity tumour uptake in Fc:T{beta}RII-treated animals was significantly lower at 24 and 48 h after injection, and five times higher thyroid uptake was also noted. We successfully used {sup 124}I-cMAb U36 to visualise CD44v6-expressing human anaplastic thyroid carcinoma. Given the lack of NIS expression in KAT-4, tumour visualisation is not due to free iodine uptake. Lowering the TIFP in KAT-4 carcinomas did not increase the uptake of mAbs into tumour tissue. (orig.)

  7. Five-year follow-up of {sup 11}C-PIB uptake in Alzheimer's disease and MCI

    Energy Technology Data Exchange (ETDEWEB)

    Kemppainen, N.M.; Scheinin, N.M.; Koivunen, J.; Johansson, J.; Toivonen, J.T.; Naagren, K.; Rokka, J.; Rinne, J.O. [University of Turku, Turku PET Centre, P.O. Box 52, Turku (Finland); Karrasch, M. [Abo Akademi University, Department of Psychology and Logopedics, Turku (Finland); Parkkola, R. [Tampere University and Tampere University Hospital, Department of Radiology, Tampere (Finland)

    2014-02-15

    The aim of this study was to evaluate the longitudinal changes in [{sup 11}C]PIB uptake in mild cognitive impairment (MCI) and Alzheimer's disease (AD) over a long-term follow-up. Six AD patients, ten MCI patients and eight healthy subjects underwent a [{sup 11}C]PIB PET scan at baseline and at 2 and 5 years. The clinical status of the MCI patients was evaluated every 6 months. The MCI group showed a significant increase in [{sup 11}C]PIB uptake over time (p < 0.001), with a similar increase from baseline to 2 years (4.7 % per year) and from 2 to 5 years (5.0 % per year). Eight MCI patients (80 %) converted to AD, and two of these patients showed a normal [{sup 11}C]PIB scan at baseline but increased uptake later. There was an increase in [{sup 11}C]PIB uptake with time in the AD group (p = 0.02), but this did not significantly differ from the change in the control group. Our results revealed a significant increase in amyloid load even at the time of AD diagnosis in some of the MCI patients who converted. A positive [{sup 11}C]PIB scan at baseline in MCI patients strongly predicted future conversion to AD but a negative PIB scan in MCI patients did not exclude future conversion. The results suggest that there is wide individual variation in the brain amyloid load in MCI, and in the course of amyloid accumulation in relation to the clinical diagnosis of AD. (orig.)

  8. Tributyltin Differentially Promotes Development of a Phenotypically Distinct Adipocyte

    Science.gov (United States)

    Regnier, Shane M.; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L.; Sargis, Robert M.

    2015-01-01

    Objective Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being pro-adipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. Methods The co-stimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. Results TBT enhanced expression of the adipocyte marker C/EBPα with co-exposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of co-treatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. Conclusions TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. PMID:26243053

  9. Tributyltin differentially promotes development of a phenotypically distinct adipocyte.

    Science.gov (United States)

    Regnier, Shane M; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L; Sargis, Robert M

    2015-09-01

    Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being proadipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. The costimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. TBT enhanced expression of the adipocyte marker C/EBPα with coexposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of cotreatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. © 2015 The Obesity Society.

  10. PET measurements of hyperthermia-induced suppression of protein synthesis in tumors in relation to effects on tumor growth

    International Nuclear Information System (INIS)

    Daemen, B.J.; Elsinga, P.H.; Mooibroek, J.; Paans, A.M.; Wieringa, A.R.; Konings, A.W.; Vaalburg, W.

    1991-01-01

    Hyperthermia-induced metabolic changes in tumor tissue have been monitored by PET. Uptake of L-[1-11C]tyrosine in rhabdomyosarcoma tissue of Wag/Rij rats was dose-dependently reduced after local hyperthermia treatment at 42, 45, or 47 degrees C. Tumor blood flow, as measured by PET with 13NH3, appeared to be unchanged. The L-[1-11C]tyrosine uptake data were compared to uptake data of L-[1-14C]tyrosine and with data on the incorporation of L-[1-14C]tyrosine into tumor proteins. After intravenous injection, the 14C data were obtained from dissected tumor tissue. Heat-induced inhibition of the incorporation of L-[1-14C]tyrosine into tumor proteins tallied with the L-[1-11C]tyrosine uptake data. Heat-induced inhibition of amino acid uptake in the tumor correlated well with regression of tumor growth. It is concluded that PET using L-[1-11C]tyrosine is eligible for monitoring the effect of hyperthermia on tumor growth

  11. Comparison of simplified quantitative analyses of FDG uptake

    International Nuclear Information System (INIS)

    Graham, M.M.; Peterson, L.M.; Hayward, R.M.

    2000-01-01

    Quantitative analysis of [ 18 F]-fluoro-deoxyglucose (FDG) uptake is important in oncologic positron emission tomography (PET) studies to be able to set an objective threshold in determining if a tissue is malignant or benign, in assessing response to therapy, and in attempting to predict the aggressiveness of an individual tumor. The most common method used today for simple, clinical quantitation is standardized uptake value (SUV). SUV is normalized for body weight. Other potential normalization factors are lean body mass (LBM) or body surface area (BSA). More complex quantitation schemes include simplified kinetic analysis (SKA), Patlak graphical analysis (PGA), and parameter optimization of the complete kinetic model to determine FDG metabolic rate (FDGMR). These various methods were compared in a group of 40 patients with colon cancer metastatic to the liver. The methods were assessed by (1) correlation with FDGMR, (2) ability to predict survival using Kaplan-Meier plots, and (3) area under receiver operating characteristic (ROC) curves for distinguishing between tumor and normal liver. The best normalization scheme appears to be BSA with minor differences depending on the specific formula used to calculate BSA. Overall, PGA is the best predictor of outcome and best discriminator between normal tissue and tumor. SKA is almost as good. In conventional PET imaging it is worthwhile to normalize SUV using BSA. If a single blood sample is available, it is possible to use the SKA method, which is distinctly better. If more than one image is available, along with at least one blood sample, PGA is feasible and should produce the most accurate results

  12. Unexpected finding of elevated glucose uptake in fibrous dysplasia mimicking malignancy: contradicting metabolism and morphology in combined PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Stegger, Lars; Weckesser, Matthias [University Hospital of Muenster, Department of Nuclear Medicine (Germany); Juergens, Kai U.; Wormanns, Dag [University Hospital of Muenster, Department of Clinical Radiology (Germany); Kliesch, Sabine [University Hospital of Muenster, Department of Urology (Germany)

    2007-07-15

    Fibrous dysplasia is a common benign disorder of bone in which fibro-osseous tissue replaces bone spongiosa. Lesions have a typical appearance on computed tomography (CT) images and regularly show a markedly increased uptake in bone scintigraphy using {sup 99m}Tc-labelled methylene diphosphonate ({sup 99m}Tc-MDP) as radiotracer. The glucose avidity of these lesions depicted by positron emission tomography (PET) using the radiolabelled glucose derivative {sup 18}F-fluoro-2-deoxy-glucose (FDG) is less well known since FDG-PET does not have a role in the assessment of this disease. However, single cases have been reported in which fibrous dysplasia was present in patients undergoing FDG-PET scanning for oncological reasons, and no significant FDG uptake was observed for lesions identified as fibrous dysplasia. We report on a 24-year-old man with known fibrous dysplasia who underwent combined FDG-PET/CT scanning because of suspected recurrence of testicular cancer. In contrast to prior reports, a markedly elevated uptake of FDG was seen in numerous locations that were identified as fibrous dysplasia by CT. Based on this result, we conclude that fibrous dysplasia may mimick malignancy in FDG-PET and that coregistered CT may help to resolve these equivocal findings. (orig.)

  13. Cortical 11C-PIB Uptake is Associated with Age, APOE Genotype, and Gender in "Healthy Aging"

    DEFF Research Database (Denmark)

    Scheinin, Noora M; Wikman, Kristina; Jula, Antti

    2014-01-01

    with the amyloid tracer 11C-PIB, in 64 cognitively healthy subjects (54-89 years). In addition to PET, magnetic resonance imaging, neuropsychological testing, and APOE genotyping was performed. The results were assessed with a statistical general linear model as well as with Statistical Parametric Mapping (SPM......). Results: The effects of age (p gender (p = 0.001) on composite cortical 11C-PIB uptake were all significant. The effect of educational level was non-significant (p = 0.37). No significant interactions were found between any of the factors. Cortical 11C....... In this sample of cognitively healthy elderly individuals, men exhibited higher 11C-PIB uptake than women. Possible gender differences in Aβ accumulation have not been addressed in detail in previous studies, and deeper evaluation in the future is warranted....

  14. Glucose utilization in the brain during acute seizure is a useful biomarker for the evaluation of anticonvulsants: effect of methyl ethyl ketone in lithium-pilocarpine status epilepticus rats

    International Nuclear Information System (INIS)

    Yamada, Akifumi; Momosaki, Sotaro; Hosoi, Rie; Abe, Kohji; Yamaguchi, Masatoshi; Inoue, Osamu

    2009-01-01

    Enhancement of glucose utilization in the brain has been well known during acute seizure in various kinds of animal model of epilepsy. This enhancement of glucose utilization might be related to neural damage in these animal models. Recently, we found that methyl ethyl ketone (MEK) had both anticonvulsive and neuroprotective effects in lithium-pilocapine (Li-pilo) status epilepticus (SE) rat. In this article, we measured the uptake of [ 14 C]2-deoxyglucose ([ 14 C]DG) in the Li-pilo SE and Li-pilo SE with MEK rat brain in order to assess whether the glucose utilization was a useful biomarker for the detection of efficacy of anticonvulsive compounds. Significant increase of [ 14 C]DG uptake (45 min after the injection) in the cerebral cortex, hippocampus, amygdala and thalamus during acute seizure induced by Li-pilo were observed. On the other hand, the initial uptake of [ 14 C]DG (1 min after the injection) in the Li-pilo SE rats was not different from the control rats. Therefore, the enhancement of glucose metabolism during acute seizure was due to the facilitation of the rate of phosphorylation process of [ 14 C]DG in the brain. Pretreatment with MEK (8 mmol/kg) completely abolished the enhancement of glucose utilization in the Li-pilo SE rats. The present results indicated that glucose utilization in the brain during acute seizure might be a useful biomarker for the evaluation of efficacy of anticonvulsive compounds.

  15. Glucose utilization in the brain during acute seizure is a useful biomarker for the evaluation of anticonvulsants: effect of methyl ethyl ketone in lithium-pilocarpine status epilepticus rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Akifumi [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan); Momosaki, Sotaro; Hosoi, Rie [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan); Abe, Kohji [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan); Developmental Research Laboratories, Shionogi and Co., Ltd., Toyonaka, Osaka, 561-0825 (Japan); Yamaguchi, Masatoshi [Faculty of Pharmaceutical Sciences, Fukuoka University, Johnan, Fukuoka 814-0180 (Japan); Inoue, Osamu [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan)

    2009-11-15

    Enhancement of glucose utilization in the brain has been well known during acute seizure in various kinds of animal model of epilepsy. This enhancement of glucose utilization might be related to neural damage in these animal models. Recently, we found that methyl ethyl ketone (MEK) had both anticonvulsive and neuroprotective effects in lithium-pilocapine (Li-pilo) status epilepticus (SE) rat. In this article, we measured the uptake of [{sup 14}C]2-deoxyglucose ([{sup 14}C]DG) in the Li-pilo SE and Li-pilo SE with MEK rat brain in order to assess whether the glucose utilization was a useful biomarker for the detection of efficacy of anticonvulsive compounds. Significant increase of [{sup 14}C]DG uptake (45 min after the injection) in the cerebral cortex, hippocampus, amygdala and thalamus during acute seizure induced by Li-pilo were observed. On the other hand, the initial uptake of [{sup 14}C]DG (1 min after the injection) in the Li-pilo SE rats was not different from the control rats. Therefore, the enhancement of glucose metabolism during acute seizure was due to the facilitation of the rate of phosphorylation process of [{sup 14}C]DG in the brain. Pretreatment with MEK (8 mmol/kg) completely abolished the enhancement of glucose utilization in the Li-pilo SE rats. The present results indicated that glucose utilization in the brain during acute seizure might be a useful biomarker for the evaluation of efficacy of anticonvulsive compounds.

  16. 18F-FDG PET/CT-based gross tumor volume definition for radiotherapy in head and neck Cancer: a correlation study between suitable uptake value threshold and tumor parameters

    International Nuclear Information System (INIS)

    Kao, Chia-Hung; Hsieh, Te-Chun; Yu, Chun-Yen; Yen, Kuo-Yang; Yang, Shih-Neng; Wang, Yao-Ching; Liang, Ji-An; Chien, Chun-Ru; Chen, Shang-Wen

    2010-01-01

    To define a suitable threshold setting for gross tumor volume (GTV) when using 18 Fluoro-deoxyglucose positron emission tomography and computed tomogram (PET/CT) for radiotherapy planning in head and neck cancer (HNC). Fifteen HNC patients prospectively received PET/CT simulation for their radiation treatment planning. Biological target volume (BTV) was derived from PET/CT-based GTV of the primary tumor. The BTVs were defined as the isodensity volumes when adjusting different percentage of the maximal standardized uptake value (SUVmax), excluding any artifact from surrounding normal tissues. CT-based primary GTV (C-pGTV) that had been previously defined by radiation oncologists was compared with the BTV. Suitable threshold level (sTL) could be determined when BTV value and its morphology using a certain threshold level was observed to be the best fitness of the C-pGTV. Suitable standardized uptake value (sSUV) was calculated as the sTL multiplied by the SUVmax. Our result demonstrated no single sTL or sSUV method could achieve an optimized volumetric match with the C-pGTV. The sTL was 13% to 27% (mean, 19%), whereas the sSUV was 1.64 to 3.98 (mean, 2.46). The sTL was inversely correlated with the SUVmax [sTL = -0.1004 Ln (SUVmax) + 0.4464; R 2 = 0.81]. The sSUV showed a linear correlation with the SUVmax (sSUV = 0.0842 SUVmax + 1.248; R 2 = 0.89). The sTL was not associated with the value of C-pGTVs. In PET/CT-based BTV for HNC, a suitable threshold or SUV level can be established by correlating with SUVmax rather than using a fixed threshold

  17. Seasonal variation in the effect of constant ambient temperature of 24 C in reducing FDG uptake by brown adipose tissue in children

    International Nuclear Information System (INIS)

    Zukotynski, Katherine A.; Fahey, Frederic H.; Laffin, Stephen; Davis, Royal; Treves, S. Ted; Grant, Frederick D.; Drubach, Laura A.

    2010-01-01

    It has been shown that warming patients prior to and during 18 F-FDG uptake by controlling the room temperature can decrease uptake by brown adipose tissue (BAT). The aim of this study is to determine if this effect is subject to seasonal variation. A retrospective review was conducted of all patients referred for whole-body 18 F-FDG PET between December 2006 and December 2008. After December 2007, all patients were kept in the PET injection room at a constant 24 C for 30 min before and until 1 h following FDG administration. Patients over 22 years of age and those who received pre-medication known to reduce FDG uptake by BAT were excluded. One hundred and three patients were warmed to 24 C prior to scanning. The number of patients showing uptake by BAT in this group was compared to a control group of 99 patients who underwent PET prior to December 2007 when the injection room temperature was 21 C. Uptake by BAT occurred in 9% of studies performed after patient warming (24 C), compared to 27% of studies performed on the control group (21 C) (p 0.05). Maintaining room temperature at a constant 24 C for 30 min prior to and 1 h after IV tracer administration significantly decreases FDG uptake by BAT in children. This effect is greatest in the summer and winter. (orig.)

  18. [14C]sucrose uptake and labeling of starch in developing grains of normal segl barley

    International Nuclear Information System (INIS)

    Felker, F.C.; Peterson, D.M.; Nelson, O.E.

    1984-01-01

    Previous work showed that the segl mutant of barley (Hordeum vulgare o Betzes) did not differ from normal Betzes in plant growth, photosynthesis, or fertility, but it produced only shrunken seeds regardless of pollen source. To determine whether defects in sucrose uptake or starch synthesis resulted in the shrunken condition, developing grains of Betzes and segl were cultured in [ 14 C]sucrose solutions after slicing transversely to expose the endosperm cavity and free space. In both young grains (before genotypes differed in dry weight) and older grains (17 days after anthesis, when segl grains were smaller than Betzes), sucrose uptake and starch synthesis were similar in both genotypes on a dry weight basis. To determine if sucrose was hydrolyzed during uptake, spikes of Betzes and segl were allowed to take up [fructose-U- 14 C]sucrose 14 days after anthesis and the radioactivity of endosperm sugars was examined during 3 hours of incubation. Whereas less total radioactivity entered the endosperm and the endosperm cavity (free space) of segl, in both genotypes over 96% of the label of endosperm sugars was in sucrose, and there was no apparent initial or progressive randomization of label among hexose moieties of sucrose as compared to the free space sampled after 1 hour of incubation. The authors conclude that segl endosperms are capable of normal sucrose uptake and starch synthesis and that hydrolysis of sucrose is not required for uptake in either genotype. Evidence suggests abnormal development of grain tissue of maternal origin during growth of segl grains

  19. Targeted Inhibition of EGFR and Glutaminase Induces Metabolic Crisis in EGFR Mutant Lung Cancer.

    Science.gov (United States)

    Momcilovic, Milica; Bailey, Sean T; Lee, Jason T; Fishbein, Michael C; Magyar, Clara; Braas, Daniel; Graeber, Thomas; Jackson, Nicholas J; Czernin, Johannes; Emberley, Ethan; Gross, Matthew; Janes, Julie; Mackinnon, Andy; Pan, Alison; Rodriguez, Mirna; Works, Melissa; Zhang, Winter; Parlati, Francesco; Demo, Susan; Garon, Edward; Krysan, Kostyantyn; Walser, Tonya C; Dubinett, Steven M; Sadeghi, Saman; Christofk, Heather R; Shackelford, David B

    2017-01-17

    Cancer cells exhibit increased use of nutrients, including glucose and glutamine, to support the bioenergetic and biosynthetic demands of proliferation. We tested the small-molecule inhibitor of glutaminase CB-839 in combination with erlotinib on epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) as a therapeutic strategy to simultaneously impair cancer glucose and glutamine utilization and thereby suppress tumor growth. Here, we show that CB-839 cooperates with erlotinib to drive energetic stress and activate the AMP-activated protein kinase (AMPK) pathway in EGFR (del19) lung tumors. Tumor cells undergo metabolic crisis and cell death, resulting in rapid tumor regression in vivo in mouse NSCLC xenografts. Consistently, positron emission tomography (PET) imaging with 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) and 11 C-glutamine ( 11 C-Gln) of xenografts indicated reduced glucose and glutamine uptake in tumors following treatment with CB-839 + erlotinib. Therefore, PET imaging with 18 F-FDG and 11 C-Gln tracers can be used to non-invasively measure metabolic response to CB-839 and erlotinib combination therapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Targeted Inhibition of EGFR and Glutaminase Induces Metabolic Crisis in EGFR Mutant Lung Cancer

    Directory of Open Access Journals (Sweden)

    Milica Momcilovic

    2017-01-01

    Full Text Available Cancer cells exhibit increased use of nutrients, including glucose and glutamine, to support the bioenergetic and biosynthetic demands of proliferation. We tested the small-molecule inhibitor of glutaminase CB-839 in combination with erlotinib on epidermal growth factor receptor (EGFR mutant non-small cell lung cancer (NSCLC as a therapeutic strategy to simultaneously impair cancer glucose and glutamine utilization and thereby suppress tumor growth. Here, we show that CB-839 cooperates with erlotinib to drive energetic stress and activate the AMP-activated protein kinase (AMPK pathway in EGFR (del19 lung tumors. Tumor cells undergo metabolic crisis and cell death, resulting in rapid tumor regression in vivo in mouse NSCLC xenografts. Consistently, positron emission tomography (PET imaging with 18F-fluoro-2-deoxyglucose (18F-FDG and 11C-glutamine (11C-Gln of xenografts indicated reduced glucose and glutamine uptake in tumors following treatment with CB-839 + erlotinib. Therefore, PET imaging with 18F-FDG and 11C-Gln tracers can be used to non-invasively measure metabolic response to CB-839 and erlotinib combination therapy.

  1. Arrhythmia causes lipid accumulation and reduced glucose uptake.

    Science.gov (United States)

    Lenski, Matthias; Schleider, Gregor; Kohlhaas, Michael; Adrian, Lucas; Adam, Oliver; Tian, Qinghai; Kaestner, Lars; Lipp, Peter; Lehrke, Michael; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2015-01-01

    Atrial fibrillation (AF) is characterized by irregular contractions of atrial cardiomyocytes and increased energy demand. The aim of this study was to characterize the influence of arrhythmia on glucose and fatty acid (FA) metabolism in cardiomyocytes, mice and human left atrial myocardium. Compared to regular pacing, irregular (pseudo-random variation at the same number of contractions/min) pacing of neonatal rat cardiomyocytes induced shorter action potential durations and effective refractory periods and increased diastolic [Ca(2+)]c. This was associated with the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK). Membrane expression of fatty acid translocase (FAT/CD36) and (14)C-palmitic acid uptake were augmented while membrane expression of glucose transporter subtype 4 (GLUT-4) as well as (3)H-glucose uptake were reduced. Inhibition of AMPK and CaMKII prevented these arrhythmia-induced metabolic changes. Similar alterations of FA metabolism were observed in a transgenic mouse model (RacET) for spontaneous AF. Consistent with these findings samples of left atrial myocardium of patients with AF compared to matched samples of patients with sinus rhythm showed up-regulation of CaMKII and AMPK and increased membrane expression of FAT/CD36, resulting in lipid accumulation. These changes of FA metabolism were accompanied by decreased membrane expression of GLUT-4, increased glycogen content and increased expression of the pro-apoptotic protein bax. Irregular pacing of cardiomyocytes increases diastolic [Ca(2+)]c and activation of CaMKII and AMPK resulting in lipid accumulation, reduced glucose uptake and increased glycogen synthesis. These metabolic changes are accompanied by an activation of pro-apoptotic signalling pathways.

  2. Lung damage and pulmonary uptake of serotonin in intact dogs

    International Nuclear Information System (INIS)

    Dawson, C.A.; Christensen, C.W.; Rickaby, D.A.; Linehan, J.H.; Johnston, M.R.

    1985-01-01

    The authors examined the influence of glass bead embolization and oleic acid, dextran, and imipramine infusion on the pulmonary uptake of trace doses of [ 3 H]serotonin and the extravascular volume accessible to [ 14 C]antipyrine in anesthetized dogs. Embolization and imipramine decreased serotonin uptake by 53 and 61%, respectively, but no change was observed with oleic acid or dextran infusion. The extravascular volume accessible to the antipyrine was reduced by 77% after embolization and increased by 177 and approximately 44% after oleic acid and dextran infusion, respectively. The results suggest that when the perfused endothelial surface is sufficiently reduced, as with embolization, the uptake of trace doses of serotonin will be depressed. In addition, decreases in serotonin uptake in response to imipramine in this study and in response to certain endothelial toxins in other studies suggest that serotonin uptake can reveal certain kinds of changes in endothelial function. However, the lack of a response to oleic acid-induced damage in the present study suggests that serotonin uptake is not sensitive to all forms of endothelial damage

  3. Imaging analysis of direct alanine uptake by rice seedlings

    International Nuclear Information System (INIS)

    Nihei, Naoto; Masuda, Sayaka; Rai, Hiroki; Nakanishi, Tomoko M.

    2008-01-01

    We presented alanine, a kind of amino acids, uptake by a rice seedling to study the basic mechanism of the organic fertilizer effectiveness in organic farming. The rice grown in the culture solution containing alanine as a nitrogen source absorbed alanine approximately two times faster than that grown with NH 4 + from analysis of 14 C-alanine images by Imaging Plate method. It was suggested that the active transport ability of the rice seeding was induced in roots by existence of alanine in the rhizosphere. The alanine uptake images of the rice roots were acquired every 5 minutes successively by the real-time autoradiography system we developed. The analysis of the successive images showed that alanine uptake was not uniform throughout the root but especially active at the root tip. (author)

  4. AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Schjerling, Peter; Viollet, Benoit

    2008-01-01

    into muscle by certain stimuli. In contrast, no clear function has yet been determined for alpha(1) AMPK in skeletal muscle, possibly due to alpha-AMPK isoform signaling redundancy. By applying low-intensity twitch-contraction and H(2)O(2) stimulation to activate alpha(1) AMPK, but not alpha(2) AMPK......, in wildtype and alpha-AMPK transgenic mouse muscles, this study aimed to define conditions where alpha(1) AMPK is required to increase muscle glucose uptake. METHODOLOGY/PRINCIPAL FINDINGS: Following stimulation with H(2)O(2) (3 mM, 20 min) or twitch-contraction (0.1 ms pulse, 2 Hz, 2 min), signaling and 2......-deoxyglucose uptake were measured in incubated soleus muscles from wildtype and muscle-specific kinase-dead AMPK (KD), alpha(1) AMPK knockout or alpha(2) AMPK knockout mice. H(2)O(2) increased the activity of both alpha(1) and alpha(2) AMPK in addition to Akt phosphorylation, and H(2)O(2)-stimulated glucose...

  5. pH dependence of the isoproterenol-induced /sup 45/Ca net uptake into the ventricular myocardium of rats

    Energy Technology Data Exchange (ETDEWEB)

    Haag, R

    1975-01-01

    Infarction-like or disseminated myocardial necroses can be produced in rats by high doses of isoprotenerol which stimulates the decomposition of energy-rich phosphates to a maximum. The paper shows that acidoses of different genesis (peroral administration of NH/sub 4/Cl, artificial respiration with CO/sub 2/) induced experimentally can inhibit the isoproterenol-induced /sup 45/Ca net uptake and the production of necroses. The findings suggest that Ca/sup + +/ ions play a key role in the production of myocardial necroses which has not been recognized until now - that increased Ca/sup + +/ uptake into damaged myocardial fibres is a result or, at the most, an accompanying symptom of necrosis production - should therefore be discarded.

  6. Specific accumulation of 18F-deoxyglucose in three-dimensional long-term cultures of human and rodent brain tissue

    International Nuclear Information System (INIS)

    Hocke, C.; Prante, O.; Kuwert, T.; Bluemcke, I.; Jeske, I.; Romstoeck, J.; Stefan, H.

    2007-01-01

    Aim: Organotypic slice cultures (OSC) of human brain specimens represent an intriguing experimental model for translational studies addressing, e.g., stem cell transplantation in neurodegenerative diseases or targeting invasion by malignant glioma ex vivo. However, long-term viability and phenomena of structural reorganization of human OSC remain to be further characterized. Here, we report the use of 18 F-deoxyglucose (FDG) for evaluating the viability of brain slice preparations obtained either from postnatal rats or human hippocampal specimens. Methods: Anatomically well preserved human hippocampi obtained from epilepsy surgery and rat hippocampus slice cultures obtained from six day old Wistar rats were dissected into horizontal slices. The slices were incubated with FDG in phosphate buffered saline up to 1 h, either with or without supplementation of glucose at a concentration of 2.5 mg/ml. Radioactivity within the medium or slice cultures was measured using a gamma-counter. In addition, distribution of radioactivity was autoradiographically visualized and quantified as counts per mm 2 . Results: In rat hippocampal slices, FDG accumulated with 1 300 000 ± 68 000 counts/mm 2 , whereas the incorporation of the radioactive label in human slices was in the order of 1 500 000 ± 370 000 counts/mm 2 . The elevation of glucose concentration within the medium led to a significant three-fold decrease of FDG accumulation in rat slices and to a 2.4-fold decrease in human specimens. Conclusions: FDG accumulated in organotypic brain cultures of human or rodent origin. FDG is thus suited to investigate the viability of OSC. Furthermore, these preparations open new ways to study the factors governing cerebral FDG uptake in brain tissue ex vivo. (orig.)

  7. 2-18F-fluoro-2-deoxyglucose positron emission tomography in delirium.

    Science.gov (United States)

    Haggstrom, Lucy R; Nelson, Julia A; Wegner, Eva A; Caplan, Gideon A

    2017-11-01

    Delirium is a common, serious, yet poorly understood syndrome. Growing evidence suggests cerebral metabolism is fundamentally disturbed; however, it has not been investigated using 2- 18 F-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) in delirium. This prospective study thus explored FDG PET patterns of cerebral glucose metabolism in older inpatients with delirium. A particular emphasis was on the posterior cingulate cortex (PCC), a key region for attention, which is a central feature of delirium. Delirium scans were compared with post-delirium scans using visual analysis and semi-quantitative analysis with NeuroQ; 13 participants (8 female, median 84 y) were scanned during delirium, and 6 scanned again after resolution. On visual analysis, cortical hypometabolism was evident in all participants during delirium (13/13), and improved with delirium resolution (6/6). Using NeuroQ, glucose metabolism was higher post-delirium in the whole brain and bilateral PCC compared to during delirium ( p delirium duration. This research found widespread, reversible cortical hypometabolism during delirium and PCC hypometabolism was associated with inattention during delirium.

  8. Exploratory clinical trial of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate for imaging xC- transporter using positron emission tomography in patients with non-small cell lung or breast cancer.

    Science.gov (United States)

    Baek, Sora; Choi, Chang-Min; Ahn, Sei Hyun; Lee, Jong Won; Gong, Gyungyub; Ryu, Jin-Sook; Oh, Seung Jun; Bacher-Stier, Claudia; Fels, Lüder; Koglin, Norman; Hultsch, Christina; Schatz, Christoph A; Dinkelborg, Ludger M; Mittra, Erik S; Gambhir, Sanjiv S; Moon, Dae Hyuk

    2012-10-01

    (4S)-4-(3-[(18)F]fluoropropyl)-l-glutamate (BAY 94-9392, alias [(18)F]FSPG) is a new tracer to image x(C)(-) transporter activity with positron emission tomography (PET). We aimed to explore the tumor detection rate of [(18)F]FSPG in patients relative to 2-[(18)F]fluoro-2-deoxyglucose ([(18)F]FDG). The correlation of [(18)F]FSPG uptake with immunohistochemical expression of x(C)(-) transporter and CD44, which stabilizes the xCT subunit of system x(C)(-), was also analyzed. Patients with non-small cell lung cancer (NSCLC, n = 10) or breast cancer (n = 5) who had a positive [(18)F]FDG uptake were included in this exploratory study. PET images were acquired following injection of approximately 300 MBq [(18)F]FSPG. Immunohistochemistry was done using xCT- and CD44-specific antibody. [(18)F]FSPG PET showed high uptake in the kidney and pancreas with rapid blood clearance. [(18)F]FSPG identified all 10 NSCLC and three of the five breast cancer lesions that were confirmed by pathology. [(18)F]FSPG detected 59 of 67 (88%) [(18)F]FDG lesions in NSCLC, and 30 of 73 (41%) in breast cancer. Seven lesions were additionally detected only on [(18)F]FSPG in NSCLC. The tumor-to-blood pool standardized uptake value (SUV) ratio was not significantly different from that of [(18)F]FDG in NSCLC; however, in breast cancer, it was significantly lower (P < 0.05). The maximum SUV of [(18)F]FSPG correlated significantly with the intensity of immunohistochemical staining of x(C)(-) transporter and CD44 (P < 0.01). [(18)F]FSPG seems to be a promising tracer with a relatively high cancer detection rate in patients with NSCLC. [(18)F]FSPG PET may assess x(C)(-) transporter activity in patients with cancer.

  9. Neuronal uptake and intracellular superoxide scavenging of a fullerene (C60)-poly(2-oxazoline)s nanoformulation

    KAUST Repository

    Tong, Jing

    2011-05-01

    Fullerene, the third allotrope of carbon, has been referred to as a "radical sponge" because of its powerful radical scavenging activities. However, the hydrophobicity and toxicity associated with fullerene limits its application as a therapeutic antioxidant. In the present study, we sought to overcome these limitations by generating water-soluble nanoformulations of fullerene (C(60)). Fullerene (C(60)) was formulated with poly(N-vinyl pyrrolidine) (PVP) or poly(2-alkyl-2-oxazoline)s (POx) homopolymer and random copolymer to form nano-complexes. These C(60)-polymer complexes were characterized by UV-vis spectroscopy, infrared spectroscopy (IR), dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Cellular uptake and intracellular distribution of the selected formulations in catecholaminergic (CATH.a) neurons were examined by UV-vis spectroscopy, immunofluorescence and immunogold labeling. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the ability of these C(60)-polymer complexes to scavenge superoxide. Their cytotoxicity was evaluated in three different cell lines. C(60)-POx and C(60)-PVP complexes exhibited similar physicochemical properties and antioxidant activities. C(60)-poly(2-ethyl-2-oxazoline) (PEtOx) complex, but not C(60)-PVP complex, were efficiently taken up by CATH.a neurons and attenuated the increase in intra-neuronal superoxide induced by angiotensin II (Ang II) stimulation. These results show that C(60)-POx complexes are non-toxic, neuronal cell permeable, superoxide scavenging antioxidants that might be promising candidates for the treatment of brain-related diseases associated with increased levels of superoxide.

  10. Quantifying metabolic heterogeneity in head and neck tumors in real time: 2-DG uptake is highest in hypoxic tumor regions.

    Directory of Open Access Journals (Sweden)

    Erica C Nakajima

    Full Text Available Intratumoral metabolic heterogeneity may increase the likelihood of treatment failure due to the presence of a subset of resistant tumor cells. Using a head and neck squamous cell carcinoma (HNSCC xenograft model and a real-time fluorescence imaging approach, we tested the hypothesis that tumors are metabolically heterogeneous, and that tumor hypoxia alters patterns of glucose uptake within the tumor.Cal33 cells were grown as xenograft tumors (n = 16 in nude mice after identification of this cell line's metabolic response to hypoxia. Tumor uptake of fluorescent markers identifying hypoxia, glucose import, or vascularity was imaged simultaneously using fluorescent molecular tomography. The variability of intratumoral 2-deoxyglucose (IR800-2-DG concentration was used to assess tumor metabolic heterogeneity, which was further investigated using immunohistochemistry for expression of key metabolic enzymes. HNSCC tumors in patients were assessed for intratumoral variability of (18F-fluorodeoxyglucose ((18F-FDG uptake in clinical PET scans.IR800-2-DG uptake in hypoxic regions of Cal33 tumors was 2.04 times higher compared to the whole tumor (p = 0.0001. IR800-2-DG uptake in tumors containing hypoxic regions was more heterogeneous as compared to tumors lacking a hypoxic signal. Immunohistochemistry staining for HIF-1α, carbonic anhydrase 9, and ATP synthase subunit 5β confirmed xenograft metabolic heterogeneity. We detected heterogeneous (18F-FDG uptake within patient HNSCC tumors, and the degree of heterogeneity varied amongst tumors.Hypoxia is associated with increased intratumoral metabolic heterogeneity. (18F-FDG PET scans may be used to stratify patients according to the metabolic heterogeneity within their tumors, which could be an indicator of prognosis.

  11. Apparent discrepancy between single-unit activity and [14C]deoxyglucose labeling in optic tectum of the rattlesnake

    International Nuclear Information System (INIS)

    Auker, C.R.; Meszler, R.M.; Carpenter, D.O.

    1983-01-01

    Autoradiographic analysis of [1- 14 C]2-deoxy-D-glucose-6-phosphate ([ 14 C]2-DG-P) accumulation in the rattlesnake brain stem and optic tectum was used in an effort to map infrared and visual neuronal pathways. Visual stimulation with a standard stimulus (a heat lamp) resulted in dense labeling of the superficial layers of the optic tectum. Infrared stimulation resulted in labeling at the first synaptic relay, the lateral descending nucleus of the trigeminal tract, but not at higher levels. Responses of infrared units in one hemitectum and visual units in the other were analyzed. There were no clear differences in the number, maximal density, spread, or rates of accommodation of visual units and infrared units, although the locus of maximal density was more superficial for visual units. In general, infrared units generated a greater number of action potentials. All infrared units responded to onset but they varied greatly in their ability to maintain discharge for the duration of the stimulus. Infrared stimuli generated single, large, triphasic on-responses, whereas visual stimulation generated complex multiphasic and long-lasting on- and off-responses. The major infrared-on peak reached maximal amplitude at greater depths and was larger than the major visual-on peak. Amplitude of the infrared peak fell off more rapidly with distance than did amplitude of the visual peak. These observations are consistent with the view that infrared stimulation is effective in discharging neurons but is not associated with intense synaptic excitation. Our observations suggest that 2-deoxy-D-glucose uptake is not necessarily correlated with the degree of action potential activation of specific neuronal pathways. The amount of [ 14 C]2-DG-P labeling may reflect the metabolic requirements for support of synaptic depolarization as well as that supporting action potentials

  12. Caloric Restriction Mimetic 2-Deoxyglucose Alleviated Inflammatory Lung Injury via Suppressing Nuclear Pyruvate Kinase M2-Signal Transducer and Activator of Transcription 3 Pathway.

    Science.gov (United States)

    Hu, Kai; Yang, Yongqiang; Lin, Ling; Ai, Qing; Dai, Jie; Fan, Kerui; Ge, Pu; Jiang, Rong; Wan, Jingyuan; Zhang, Li

    2018-01-01

    Inflammation is an energy-intensive process, and caloric restriction (CR) could provide anti-inflammatory benefits. CR mimetics (CRM), such as the glycolytic inhibitor 2-deoxyglucose (2-DG), mimic the beneficial effects of CR without inducing CR-related physiologic disturbance. This study investigated the potential anti-inflammatory benefits of 2-DG and the underlying mechanisms in mice with lipopolysaccharide (LPS)-induced lethal endotoxemia. The results indicated that pretreatment with 2-DG suppressed LPS-induced elevation of tumor necrosis factor alpha and interleukin 6. It also suppressed the upregulation of myeloperoxidase, attenuated Evans blue leakage, alleviated histological abnormalities in the lung, and improved the survival of LPS-challenged mice. Treatment with 2-DG had no obvious effects on the total level of pyruvate kinase M2 (PKM2), but it significantly suppressed LPS-induced elevation of PKM2 in the nuclei. Prevention of PKM2 nuclear accumulation by ML265 mimicked the anti-inflammatory benefits of 2-DG. In addition, treatment with 2-DG or ML265 suppressed the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3). Inhibition of STAT3 by stattic suppressed LPS-induced inflammatory injury. Interestingly, posttreatment with 2-DG at the early stage post-LPS challenge also improved the survival of the experimental animals. This study found that treatment with 2-DG, a representative CRM, provided anti-inflammatory benefits in lethal inflammation. The underlying mechanisms included suppressed nuclear PKM2-STAT3 pathway. These data suggest that 2-DG might have potential value in the early intervention of lethal inflammation.

  13. High affinity (3H) β-Alanine uptake by scar margins of ferric chloride-induced epileptogenic foci in rat isocortex

    International Nuclear Information System (INIS)

    Robitaille, Y.; Sherwin, A.

    1984-01-01

    Cortical astrocytes of normal mammalian brain are endowed with a high affinity uptake system for β-Alanine which is competitively inhibited by gamma aminobutyric acid (GABA), a neurotransmitter strongly implicated in epileptogenesis. The authors evaluated ( 3 H) β-Alanine uptake by reactive astrocytes proliferating within scar of epileptogenic foci induced in rat motor cortex by microinjections of 100 mM ferric chloride. Following in vitro incubation of scar tissue with ( 3 H) β-Alanine, ultrastructural morphometry of grain patterns at 5, 30 and 120 days post injection revealed early and significant grain count increases over astroglial processes, predominantly those related to perivascular glial end-feet. Astrocytic cell body and endothelial cell counts showed a more gradual and stepwise increase. Similar data were obtained by comparing visual and edited mean astrocytic grain counts. These results suggest that the enhanced uptake of reactive astrocytes may reflect a marked decrease of inhibitory GABAergic neurons within ferric chloride-induced scars. 7 figures, 1 table

  14. Characterization of iron uptake from hydroxamate siderophores by Chlorella vulgaris

    International Nuclear Information System (INIS)

    Allnutt, F.C.T.

    1985-01-01

    Iron uptake by Chlorella vulgaris from ferric-hydroxamate siderophores and the possible production of siderophores by these algae was investigated. No production of siderophores or organic acids was observed. Iron from the two hydroxamate siderophores tested, ferrioximine B (Fe 3+ -DFOB) and ferric-rhodotorulate (Fe 3+ -RA), was taken up at the same rate as iron chelated by citrate or caffeate. Two synthetic chelates, Fe 3+ -EDTA and Fe 3+ -EDDHA, provided iron at a slower rate. Iron uptake was inhibited by 50 μM CCCP or 1 mM vanadate. Cyanide (100 μM KCN) or 25 μM antimycin A failed to demonstrate a link between uptake and respiration. Labeled iron ( 55 Fe) was taken up while labeled ligands ([ 14 C] citrate or RA) were not accumulated. Cation competition from Ni 2+ and Co 2+ observed using Fe 3+ -DFOB and Fe 3+ -RA while iron uptake from Fe 3+ -citrate was stimulated. Iron-stress induced iron uptake from the hydroxamate siderophores. Ferric reduction from the ferric-siderophores was investigated with electron paramagnetic resonance (EPR) and bathophenathroline disulfonate (BPDS). Ferric reduction was induced by iron-stress and inhibited by CCCP. A close correlation between iron uptake and ferric reduction was measured by the EPR method. Ferric reduction measured by the BPDS method was greater than that measure by EPR. BPDS reduction was interpreted to indicate a potential for reduction while EPR measures the physiological rate of reduction. BPDS inhibition of iron uptake and ferricyanide interference with reduction indicate that reduction and uptake occur exposed to the external medium. Presumptive evidence using a binding dose response curve for Fe 3+ -DFOB indicated that a receptor may be involved in this mechanism

  15. PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jialin [Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819 (China); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States); Shimpi, Prajakta; Armstrong, Laura; Salter, Deanna [Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States); Slitt, Angela L., E-mail: aslitt@uri.edu [Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States)

    2016-01-01

    PFOS is a chemical of nearly ubiquitous exposure in humans. Recent studies have associated PFOS exposure to adipose tissue-related effects. The present study was to determine whether PFOS alters the process of adipogenesis and regulates insulin-stimulated glucose uptake in mouse and human preadipocytes. In murine-derived 3T3-L1 preadipocytes, PFOS enhanced hormone-induced differentiation to adipocytes and adipogenic gene expression, increased insulin-stimulated glucose uptake at concentrations ranging from 10 to 100 μM, and enhanced Glucose transporter type 4 and Insulin receptor substrate-1 expression. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 and Glutamate-cysteine ligase, catalytic subunit were significantly induced in 3T3-L1 cells treated with PFOS, along with a robust induction of Antioxidant Response Element (ARE) reporter in mouse embryonic fibroblasts isolated from ARE-hPAP transgenic mice by PFOS treatment. Chromatin immunoprecipitation assays further illustrated that PFOS increased Nrf2 binding to ARE sites in mouse Nqo1 promoter, suggesting that PFOS activated Nrf2 signaling in murine-derived preadipocytes. Additionally, PFOS administration in mice (100 μg/kg/day) induced adipogenic gene expression and activated Nrf2 signaling in epididymal white adipose tissue. Moreover, the treatment on human visceral preadipocytes illustrated that PFOS (5 and 50 μM) promoted adipogenesis and increased cellular lipid accumulation. It was observed that PFOS increased Nrf2 binding to ARE sites in association with Nrf2 signaling activation, induction of Peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α expression, and increased adipogenesis. This study points to a potential role of PFOS in dysregulation of adipose tissue expandability, and warrants further investigations on the adverse effects of persistent pollutants on human health. - Highlights: • PFOS induces adipogenesis in association

  16. Evaluation of uptake and systemicity of 14C - fosthiazate in tomato (Lycopersicon esculentum L.)

    International Nuclear Information System (INIS)

    Mukherjee, Santanu; Srivastava, Anjana; Kumar, Surendra; Srivastava, P.C.

    2009-01-01

    Nematodes are round worm species that are found in almost all habitats. Beneficial species are usually referred to free living nematodes, other nematode species are parasitic and harmful to plants, animals and humans. Soil provides an excellent habitat for nematodes. Plant parasitic nematodes may live within plant roots or inhabit in the rhizosphere. The percent yield loss due to root knot nematodes in vegetable crops has been studied under All India Co-ordinated Research Project (Nematodes). The fosthiazate is a new compound incorporated in the market. The uptake and systemicity of fosthiazate in intact tomato plants was studied through 14 C-labeled fosthiazate in presence and absence of DNP. It was found that fosthiazate function as a systemic nematicide in tomato, the accumulation rate of fosthiazate was found higher in roots and shoots part upto 15 hrs. uptake period and after that accumulation slowly becomes saturated in the absence of DNP. In the presence of DNP (10 -2 mM) the amount of fosthiazate in roots as well as shoots was found to be decreased with respect to the uptake time.There was more inhibition on the uptake of fosthiazate in shoots than roots by DNP. (author)

  17. Differential effect of alpha-difluoromethylornithine on the in vivo uptake of 14C-labeled polyamines and methylglyoxal bis(guanylhydrazone) by a rat prostate-derived tumor

    International Nuclear Information System (INIS)

    Heston, W.D.; Kadmon, D.; Covey, D.F.; Fair, W.R.

    1984-01-01

    The uptake of exogenously administered radiolabeled polyamines by a rat prostate-derived tumor line, the Dunning R3327 MAT-Lu, and various normal tissues was studied. Pretreatment of tumor cells in vitro with alpha-difluoromethylornithine (DFMO), a polyamine synthesis inhibitor, resulted in a markedly enhanced uptake of both [ 14 C]putrescine and [14 C]spermidine. The in vitro uptake of [ 14 C]putrescine by these cells was effectively inhibited by unlabeled spermine, spermidine, 1,8-diaminooctane, 1,7-diaminoheptane, 1,6-diaminohexane, 1,5-diaminopentane, 1,4-diaminopentane, and 1,4-diaminobutane, but less effectively by 1,4-diamino-2,3-butene and 1,4-diamino-2,3-butyne. The diamines, 1,3-diaminopropane and 1,2-diaminoethane, were ineffective in inhibiting [ 14 C]putrescine uptake in vitro into the R3327 MAT-Lu cell line. When tumor-bearing animals were pretreated with DFMO or with DFMO and 5-alpha-dihydrotestosterone propionate, the tumor and prostate uptake of [ 14 C]putrescine and [ 14 C]-cadaverine was enhanced but not substantially increased in other tissues. In contrast to the in vitro results, spermidine and spermine were not enhanced substantially by DFMO pretreatment into any tissue, and their uptake into the tumor actually decreased. Ethylenediamine, which does not utilize the polyamine transport system, did not have its uptake increased into any tissue following DFMO pretreatment. The chemotherapeutic agent, methylglyoxal bis(guanylhydrazone), which utilizes the polyamine transport system for uptake into cells, exhibited uptake behavior different from that of the polyamines

  18. Differential effect of alpha-difluoromethylornithine on the in vivo uptake of 14C-labeled polyamines and methylglyoxal bis(guanylhydrazone) by a rat prostate-derived tumor

    Energy Technology Data Exchange (ETDEWEB)

    Heston, W.D.; Kadmon, D.; Covey, D.F.; Fair, W.R.

    1984-03-01

    The uptake of exogenously administered radiolabeled polyamines by a rat prostate-derived tumor line, the Dunning R3327 MAT-Lu, and various normal tissues was studied. Pretreatment of tumor cells in vitro with alpha-difluoromethylornithine (DFMO), a polyamine synthesis inhibitor, resulted in a markedly enhanced uptake of both (/sup 14/C)putrescine and (14 C)spermidine. The in vitro uptake of (/sup 14/C)putrescine by these cells was effectively inhibited by unlabeled spermine, spermidine, 1,8-diaminooctane, 1,7-diaminoheptane, 1,6-diaminohexane, 1,5-diaminopentane, 1,4-diaminopentane, and 1,4-diaminobutane, but less effectively by 1,4-diamino-2,3-butene and 1,4-diamino-2,3-butyne. The diamines, 1,3-diaminopropane and 1,2-diaminoethane, were ineffective in inhibiting (/sup 14/C)putrescine uptake in vitro into the R3327 MAT-Lu cell line. When tumor-bearing animals were pretreated with DFMO or with DFMO and 5-alpha-dihydrotestosterone propionate, the tumor and prostate uptake of (/sup 14/C)putrescine and (/sup 14/C)-cadaverine was enhanced but not substantially increased in other tissues. In contrast to the in vitro results, spermidine and spermine were not enhanced substantially by DFMO pretreatment into any tissue, and their uptake into the tumor actually decreased. Ethylenediamine, which does not utilize the polyamine transport system, did not have its uptake increased into any tissue following DFMO pretreatment. The chemotherapeutic agent, methylglyoxal bis(guanylhydrazone), which utilizes the polyamine transport system for uptake into cells, exhibited uptake behavior different from that of the polyamines.

  19. Interactions of opsonized immune complexes with whole blood cells: binding to erythrocytes restricts complex uptake by leucocyte populations

    DEFF Research Database (Denmark)

    Nielsen, C H; Svehag, S E; Marquart, H V

    1994-01-01

    binding, the main contributors being B cells. E initially inhibited and then later enhanced the IC binding to lymphocytes, suggesting that E promote B cell uptake of C3d,g-covered IC via CR2. Our findings, that E can restrict the IC uptake by circulating leucocytes, and that an IC-induced degranulation...

  20. A Comparison between Radiolabeled Fluorodeoxyglucose Uptake and Hyperpolarized 13C-Labeled Pyruvate Utilization as Methods for Detecting Tumor Response to Treatment

    Directory of Open Access Journals (Sweden)

    Timothy H. Witney

    2009-06-01

    Full Text Available Detection of early tumor responses to treatment can give an indication of clinical outcome. Positron emission tomography measurements of the uptake of the glucose analog, [18F] 2-fluoro-2-deoxy-d-glucose (FDG, have demonstrated their potential for detecting early treatment response in the clinic. We have shown recently that 13C magnetic resonance spectroscopy and spectroscopic imaging measurements of the uptake and conversion of hyperpolarized [1-13C]pyruvate into [1-13C]lactate can be used to detect treatment response in a murine lymphoma model. The present study compares these magnetic resonance measurements with changes in FDG uptake after chemotherapy. A decrease in FDG uptake was found to precede the decrease in flux of hyperpolarized 13C label between pyruvate and lactate, both in tumor cells in vitro and in tumors in vivo. However, the magnitude of the decrease in FDG uptake and the decrease in pyruvate to lactate flux was comparable at 24 hours after drug treatment. In cells, the decrease in FDG uptake was shown to correlate with changes in plasma membrane expression of the facilitative glucose transporters, whereas the decrease in pyruvate to lactate flux could be explained by an increase in poly(ADP-ribose polymerase activity and subsequent depletion of the NAD(H pool. These results show that measurement of flux between pyruvate and lactate may be an alternative to FDG-positron emission tomography for imaging tumor treatment response in the clinic.

  1. Uptake of iodine-123-α-methyl tyrosine by gliomas and non-neoplastic brain lesions

    International Nuclear Information System (INIS)

    Kuwert, T.; Morgenroth, C.; Woesler, B.; Matheja, P.; Palkovic, S.; Vollet, B.; Samnick, S.; Maasjosthusmann, U.; Lerch, H.; Gildehaus, F.J.; Wassmann, H.; Schober, O.

    1996-01-01

    Using single-photon emission tomography (SPET), the radiopharmaceutical L-3-iodine-123-α-methyl tyrosine (IMT) has been applied to the imaging of amino acid transport into brain tumours. It was the aim of this study to investigate whether IMT SPET is capable of differentiating between high-grade gliomas, low-grade gliomas and non-neoplastic brain lesions. To this end, IMT uptake was determined in 53 patients using the triple-headed SPET camera MULTISPECT 3. Twenty-eight of these subjects suffered from high-grade gliomas (WHO grade III or IV), 12 from low-grade gliomas (WHO grade II), and 13 from non-neoplastic brain lesions, including lesions after effective therapy of a glioma (five cases), infarctions (four cases), inflammatory lesions (three cases), infarctions (four cases), inflammatory lesions (three cases) and traumatic haematoma (one case). IMT uptake was significantly higher in high-grade gliomas than in low-grade gliomas and non-neoplastic lesions. IMT uptake by low-grade gliomas was not significantly different from that by non-neoplastic lesions. Diagnostic sensitivity and specificity were 71% and 83% for differentiating high-grade from low-grade gliomas, 82% and 100% for distinguishing high-grade gliomas from non-neoplastic lesions, and 50% and 100% for discriminating low-grade gliomas from non-neoplastic lesions. Analogously to positron emission tomography with radioactively labelled amino acids and fluorine-18 deoxyglucose, IMT SPET may aid in differentiating higc-grade gliomas from histologically benign brain tumours and non-neoplastic brain lesions; it is of only limited value in differentiating between non-neoplastic lesions and histologically benign brain tumours. (orig.)

  2. Ibervillea sonorae (Cucurbitaceae) induces the glucose uptake in human adipocytes by activating a PI3K-independent pathway.

    Science.gov (United States)

    Zapata-Bustos, Rocio; Alonso-Castro, Angel Josabad; Gómez-Sánchez, Maricela; Salazar-Olivo, Luis A

    2014-03-28

    Ibervillea sonorae (S. Watson) Greene (Cucurbitaceae), a plant used for the empirical treatment of type 2 diabetes in México, exerts antidiabetic effects on animal models but its mechanism of action remains unknown. The aim of this study is to investigate the antidiabetic mechanism of an Ibervillea sonorae aqueous extract (ISE). Non-toxic ISE concentrations were assayed on the glucose uptake by insulin-sensitive and insulin-resistant murine and human cultured adipocytes, both in the absence or the presence of insulin signaling pathway inhibitors, and on murine and human adipogenesis. Chemical composition of ISE was examined by spectrophotometric and HPLC techniques. ISE stimulated the 2-NBDGlucose uptake by mature adipocytes in a concentration-dependent manner. ISE 50 µg/ml induced the 2-NBDG uptake in insulin-sensitive 3T3-F442A, 3T3-L1 and human adipocytes by 100%, 63% and 33%, compared to insulin control. Inhibitors for the insulin receptor, PI3K, AKT and GLUT4 blocked the 2-NBDG uptake in murine cells, but human adipocytes were insensitive to the PI3K inhibitor Wortmannin. ISE 50 µg/ml also stimulated the 2-NBDG uptake in insulin-resistant adipocytes by 117% (3T3-F442A), 83% (3T3-L1) and 48% (human). ISE induced 3T3-F442A adipogenesis but lacked proadipogenic effects on 3T3-L1 and human preadipocytes. Chemical analyses showed the presence of phenolics in ISE, mainly an appreciable concentration of gallic acid. Ibervillea sonorae exerts its antidiabetic properties by means of hydrosoluble compounds stimulating the glucose uptake in human preadipocytes by a PI3K-independent pathway and without proadipogenic effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Incubation of 14C-trichloroethylene vapor with rat liver microsomes: uptake of radioactivity and covalent protein binding of metabolites

    International Nuclear Information System (INIS)

    Bolt, H.M.; Wolowski, L.; Buchter, A.; Bolt, W.; Gil, D.L.

    1977-01-01

    Microsomal uptake irreversible protein binding of labelled trichloroehtylene was measured following incubation with rat liver microsomes in an all-glass vacuum system. If the cofactor for oxidative metabolism, NADPH, is not added, the gaseous trichloroethylene rapidly equilibrates with the microsomal suspension. Addition of NADPH results in a further uptake of 14 C-trichloroethylene from the gas phase, linearly with time, which is due to enzymic metabolism. This part of uptake is inhibited by some arylimidazoles and 1.2.3-benzothiadiazoles. The compounds of greatest inhibitory potency were 6-chloro-1.2.3-benzothiadiazole and 5.6-dimethyl-1.2.3-benzothiadiazole. Part of the metabolites of 14 C-trichloroethylene formed by rat liver microsomes were irreversibly bound to microsomal protein, amounting up to 1 nmol per mg microsomal protein per hour. Model experiments on uptake of 14 C-trichloroethylene from the gas phase by albumin solutions and liposomal suspensions (from lecithin) showed a rapid equilibration of trichloroethylene also with these systems. Comparison with previous analogous data on vinyl chloride revealed an about 10 times higher affinity of trichloroethylene to albumin and lipid, consistent with the behaviour of both compounds in the rat liver microsomal system. (orig.) [de

  4. Uptake of carbon monoxide by C3H mice following X irradiation of lung only or total-body irradiation with 60Co

    International Nuclear Information System (INIS)

    Rappaport, D.S.; Niewoehner, D.E.; Kim, T.H.; Song, C.W.; Levitt, S.H.

    1983-01-01

    Carbon monoxide uptake (V/sub co/) and ventilation rate (VR) of C3H mice were determined at 14 weeks following either X irradiation of lungs only or total-body irradiation with 60 Co at different dose rates. Following localized X irradiation of lung at 97 /sub c/Gy/min there was a reduction in V/sub co/, which was inversely related to radiation dose, with a small reduction below control levels being detected at 7 Gy, the lowest dose tested. An increase in VR could be detected only at doses of 11 Gy, or more. Another group of animals received 11.5 Gy total-body irradiation at either 26.2 or 4.85 /sub c/Gy/min fllowed by transplantation with syngeneic bone marrow. Following total-body irradiation, V/sub co/ was significantly reduced by about 37% at the higher dose rate and 23% at the lower dose rate. In contrast, a trend toward elevated VR was detected only at the higher dose rate.The results indicate that V/sub co/ is a sensitive indicator of radiation-induced lung injury and that under the experimental conditions used V/sub co/ is a more sensitive indicator of radiation-induced lung injury in C3H mice than VR

  5. Two weeks of metformin treatment induces AMPK dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Treebak, Jonas Thue; Schjerling, Peter

    2014-01-01

    signaling. Methods: Oral doses of metformin or saline treatment were given muscle-specific kinase α2 dead AMPK mice (KD) and wild type (WT) littermates either once or chronically for 2 weeks. Soleus and Extensor Digitorum Longus (EDL) muscles were used for measurements of glucose transport and Western blot......Background: Metformin-induced activation of AMPK has been associated with enhanced glucose uptake in skeletal muscle but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent upon AMPK...... analyzes. Results: Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (45%, P...

  6. Ocean carbon uptake and storage

    International Nuclear Information System (INIS)

    Tilbrook, Bronte

    2007-01-01

    Full text: The ocean contains about 95% of the carbon in the atmosphere, ocean and land biosphere system, and is of fundamental importance in regulating atmospheric carbon dioxide concentrations. In the 1990s an international research effort involving Australia was established to determine the uptake and storage of anthropogenic C02 for all major ocean basins. The research showed that about 118 of the 244 + 20 billion tons of the anthropogenic carbon emitted through fossil fuel burning and cement production has been stored in the ocean since preindustrial times, thus helping reduce the rate of increase in atmospheric C02. The research also showed the terrestrial biosphere has been a small net source of C02 (39 ± 28 billion tons carbon) to the atmosphere over the same period. About 60% of the total ocean inventory of the anthropogenic C02 was found in the Southern Hemisphere, with most in the 30 0 S to 50 0 S latitude band. This mid-latitude band is where surface waters are subducted as Mode and Intermediate waters, which is a major pathway controlling ocean C02 uptake. High storage (23% of the total) also occurs in the North Atlantic, associated with deep water formation in that basin. The ocean uptake and storage is expected to increase in the coming decades as atmospheric C02 concentrations rise. However, a number of feedback mechanisms associated with surface warming, changes in circulation, and biological effects are likely to impact on the uptake capacity. The accumulation or storage-of the C02 in the ocean is also the major driver of ocean acidification with potential to disrupt marine ecosystems. This talk will describe the current understanding of the ocean C02 uptake and storage and a new international research strategy to detect how the ocean uptake and storage will evolve on interannual through decadal scales. Understanding the ocean response to increasing atmospheric C02 will be a key element in managing future C02 increases and establishing

  7. A Model of Uranium Uptake by Plant Roots Allowing for Root-Induced Changes in the soil.

    Science.gov (United States)

    Boghi, Andrea; Roose, Tiina; Kirk, Guy J D

    2018-03-20

    We develop a model with which to study the poorly understood mechanisms of uranium (U) uptake by plants. The model is based on equations for transport and reaction of U and acids and bases in the rhizosphere around cylindrical plant roots. It allows for the speciation of U with hydroxyl, carbonate, and organic ligands in the soil solution; the nature and kinetics of sorption reactions with the soil solid; and the effects of root-induced changes in rhizosphere pH. A sensitivity analysis showed the importance of soil sorption and speciation parameters as influenced by pH and CO 2 pressure; and of root geometry and root-induced acid-base changes linked to the form of nitrogen taken up by the root. The root absorbing coefficient for U, relating influx to the concentration of U species in solution at the root surface, was also important. Simplified empirical models of U uptake by different plant species and soil types need to account for these effects.

  8. Laser-induced thermal coagulation enhances skin uptake of topically applied compounds.

    Science.gov (United States)

    Haak, C S; Hannibal, J; Paasch, U; Anderson, R R; Haedersdal, M

    2017-08-01

    Ablative fractional laser (AFL) generates microchannels in skin surrounded by a zone of thermally altered tissue, termed the coagulation zone (CZ). The thickness of CZ varies according to applied wavelength and laser settings. It is well-known that AFL channels facilitate uptake of topically applied compounds, but the importance of CZ is unknown. Franz Cells were used to investigate skin uptake and permeation of fluorescent labeled polyethylene glycols (PEGs) with mean molecular weights (MW) of 350, 1,000, and 5,000 Da. Microchannels with CZ thicknesses ranging from 0 to 80 μm were generated from micro-needles (0 μm, CZ-0), and AFL (10,600 nm) applied to -80°C deep frozen skin (20 μm, CZ-20) and skin equilibrated to room temperature (80 μm, CZ-80). Channels penetrated into similar mid-dermal skin depths of 600-700 μm, and number of channels per skin area was similar. At 4 hours incubation, skin uptake of PEGs into CZ and dermis was evaluated by fluorescence microscopy at specific skin depths of 150, 400, and 1,000 μm and the transcutaneous permeation was quantified by fluorescence of receptor fluids. Overall, the highest uptake of PEGs was reached through microchannels surrounded by CZ compared to channels with no CZ (CZ-20 and CZ-80>CZ-0).The thickness of CZ affected PEG distribution in skin. A thin CZ-20 favored significantly higher mean fluorescence intensities inside CZ areas compared to CZ-80 (PEG 350, 1,000, and 5,000; P channels was significantly higher than through CZ-80 and CZ-0 at all skin depths (PEG 350, 1,000 and 5,000, 150-1,000 μm; P distribution, with highest PEG uptake achieved from microchannels surrounded by a thin CZ. Lasers Surg. Med. 49:582-591, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Caloric Restriction Mimetic 2-Deoxyglucose Alleviated Inflammatory Lung Injury via Suppressing Nuclear Pyruvate Kinase M2–Signal Transducer and Activator of Transcription 3 Pathway

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2018-03-01

    Full Text Available Inflammation is an energy-intensive process, and caloric restriction (CR could provide anti-inflammatory benefits. CR mimetics (CRM, such as the glycolytic inhibitor 2-deoxyglucose (2-DG, mimic the beneficial effects of CR without inducing CR-related physiologic disturbance. This study investigated the potential anti-inflammatory benefits of 2-DG and the underlying mechanisms in mice with lipopolysaccharide (LPS-induced lethal endotoxemia. The results indicated that pretreatment with 2-DG suppressed LPS-induced elevation of tumor necrosis factor alpha and interleukin 6. It also suppressed the upregulation of myeloperoxidase, attenuated Evans blue leakage, alleviated histological abnormalities in the lung, and improved the survival of LPS-challenged mice. Treatment with 2-DG had no obvious effects on the total level of pyruvate kinase M2 (PKM2, but it significantly suppressed LPS-induced elevation of PKM2 in the nuclei. Prevention of PKM2 nuclear accumulation by ML265 mimicked the anti-inflammatory benefits of 2-DG. In addition, treatment with 2-DG or ML265 suppressed the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3. Inhibition of STAT3 by stattic suppressed LPS-induced inflammatory injury. Interestingly, posttreatment with 2-DG at the early stage post-LPS challenge also improved the survival of the experimental animals. This study found that treatment with 2-DG, a representative CRM, provided anti-inflammatory benefits in lethal inflammation. The underlying mechanisms included suppressed nuclear PKM2-STAT3 pathway. These data suggest that 2-DG might have potential value in the early intervention of lethal inflammation.

  10. 18F-deoxyglucose-PET in the detection of recurrence in head and neck cancer

    International Nuclear Information System (INIS)

    Chen Yingrui; Li Weixiong; Gu Meixin; Xie Songxi

    2002-01-01

    Objective: To evaluate 18 F-deoxyglucose-positron emission tomography (FDG-PET) in the detection of suspicious recurrence in head and neck cancers, as compared with CT/MRI imaging. Methods: Thirty-seven patients with clinically suspicious recurrences in head and neck cancers underwent FDG-PET, with 34 checked with CT/MRI imaging. The final diagnosis of recurrence were proved by pathology or clinical following-up. Results: FDG-PET detected recurrence successfully in 32 of 37 (86.5%) patients with 3 false positives and 2 false negatives. The FDG-PET sensitivity, specificity and accuracy in defining local recurrence were 91.7%, 76.9%, 86.5%, respectively; and those of CT/MRI were 68.2%, 75.0%, 61.8%, respectively. Conclusion: In comparison with CT/MRI, FDG-PET possesses a high accuracy in detecting recurrence in head and neck cancers

  11. Deoxyglucose method for the estimation of local myocardial glucose metabolism with positron computed tomography

    International Nuclear Information System (INIS)

    Ratib, O.; Phelps, M.E.; Huang, S.C.; Henze, E.; Selin, C.E.; Schelbert, H.R.

    1981-01-01

    The deoxyglucose method originally developed for measurements of the local cerebral metabolic rate for glucose has been investigated in terms of its application to studies of the heart with positron computed tomography (PCT) and FDG. Studies were performed in dogs to measure the tissue kinetics of FDG with PCT and by direct arterial-venous sampling. The operational equation developed in our laboratory as an extension of the Sokoloff model was used to analyze the data. The FDG method accurately predicted the true MMRGlc even when the glucose metabolic rate was normal but myocardial blood flow (MBF) was elevated 5 times the control value or when metabolism was reduced to 10% of normal and MBF increased 5 times normal. Improvements in PCT resolution are required to improve the accuracy of the estimates of the rate constants and the MMRGlc

  12. Quantitation of cardiac sympathetic innervation in rabbits using 11C-hydroxyephedrine PET: relation to 123I-MIBG uptake

    International Nuclear Information System (INIS)

    Nomura, Yusuke; Kajinami, Kouji; Matsunari, Ichiro; Takamatsu, Hiroyuki; Murakami, Yoshihiro; Matsuya, Takahiro; Chen, Wei-Ping; Taki, Junichi; Nakajima, Kenichi; Nekolla, Stephan G.

    2006-01-01

    Although 11 C-hydroxyephedrine ( 11 C-HED) PET is used to map cardiac sympathetic innervation, no studies have shown the feasibility of quantitation of 11 C-HED PET in small- to medium-sized animals. Furthermore, its relation to 123 I-MIBG uptake, the most widely used sympathetic nervous tracer, is unknown. The aims of this study were to establish in vivo sympathetic nerve imaging in rabbits using 11 C-HED PET, and to compare the retention of 11 C-HED with that of 123 I-MIBG. Twelve rabbits were assigned to three groups; control (n=4), chemical denervation by 6-hydroxydopamine (6-OHDA) (n=4) and reserpine treated to inhibit vesicular uptake (n=4). After simultaneous injection of 11 C-HED and 123 I-MIBG, all animals underwent dynamic 11 C-HED PET for 40 min with arterial blood sampling. The 11 C-HED retention fraction and normalised 11 C-HED activity measured by tissue sampling were compared with those measured by PET. Both the 11 C-HED retention fraction and the normalised 11 C-HED activity measured by PET correlated closely with those measured by tissue sampling (R=0.96027, p 11 C-HED and 123 I-MIBG. Reserpine pretreatment reduced 11 C-HED retention by 50%, but did not reduce 123 I-MIBG retention at 40 min after injection. Non-invasive quantitation of cardiac sympathetic innervation using 11 C-HED PET is feasible and gives reliable estimates of cardiac sympathetic innervation in rabbits. Additionally, although both 11 C-HED and 123 I-MIBG are specific for sympathetic neurons, 11 C-HED may be more specific for intravesicular uptake than 123 I-MIBG in some situations, such as that seen in reserpine pretreatment. (orig.)

  13. Additive Effects of Millimeter Waves and 2-Deoxyglucose Co-Exposure on the Human Keratinocyte Transcriptome.

    Science.gov (United States)

    Soubere Mahamoud, Yonis; Aite, Meziane; Martin, Catherine; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves; Habauzit, Denis

    2016-01-01

    Millimeter Waves (MMW) will be used in the next-generation of high-speed wireless technologies, especially in future Ultra-Broadband small cells in 5G cellular networks. Therefore, their biocompatibilities must be evaluated prior to their massive deployment. Using a microarray-based approach, we analyzed modifications to the whole genome of a human keratinocyte model that was exposed at 60.4 GHz-MMW at an incident power density (IPD) of 20 mW/cm2 for 3 hours in athermic conditions. No keratinocyte transcriptome modifications were observed. We tested the effects of MMWs on cell metabolism by co-treating MMW-exposed cells with a glycolysis inhibitor, 2-deoxyglucose (2dG, 20 mM for 3 hours), and whole genome expression was evaluated along with the ATP content. We found that the 2dG treatment decreased the cellular ATP content and induced a high modification in the transcriptome (632 coding genes). The affected genes were associated with transcriptional repression, cellular communication and endoplasmic reticulum homeostasis. The MMW/2dG co-treatment did not alter the keratinocyte ATP content, but it did slightly alter the transcriptome, which reflected the capacity of MMW to interfere with the bioenergetic stress response. The RT-PCR-based validation confirmed 6 MMW-sensitive genes (SOCS3, SPRY2, TRIB1, FAM46A, CSRNP1 and PPP1R15A) during the 2dG treatment. These 6 genes encoded transcription factors or inhibitors of cytokine pathways, which raised questions regarding the potential impact of long-term or chronic MMW exposure on metabolically stressed cells.

  14. Temporal changes and regional differences in treatment uptake of hepatitis C therapy in EuroSIDA

    DEFF Research Database (Denmark)

    Grint, D; Peters, L; Schwarze-Zander, C

    2013-01-01

    All HIV/hepatitis C virus (HCV)-coinfected patients with chronic HCV infection and ≥ F2 fibrosis should be considered for HCV therapy. This study aimed to determine the rate of HCV treatment uptake among coinfected patients in Europe....

  15. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    Science.gov (United States)

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  16. Uptake of [14C]nicotinic acid and [14C]nicotinamide by Bordetella pertussis

    International Nuclear Information System (INIS)

    McPheat, W.L.; Wardlaw, A.C.

    1980-01-01

    Bordetella pertussis has an absolute requirement for either nicotinic acid (NA) or nicotinamide (ND), both being equally effective in supporting growth. The results of an investigation to compare the rates of uptake of NA and ND, to determine the influence of factors such as energy source and temperature on uptake, and to measure the Ksub(m) and Vsub(max) values are reported. (Auth.)

  17. [Chilean experience with the use of 18F-deoxyglucose positron emission tomography].

    Science.gov (United States)

    Massardo, Teresa; Jofré, M Josefina; Sierralta, Paulina; Canessa, José; González, Patricio; Humeres, Pamela; Valdebenito, Robert

    2007-03-01

    Clinical oncology is the main application of 18F-deoxyglucose (FDG) positron emission tomography (PET). To evaluate the first 1,000 patients studied with FDG PET in Chile. Retrospective analysis of 1,000 patients (aged between 1 and 94 years, 550 females) studied with FDG PET, since 2003. All studies were performed in a high resolution Siemens Ecat-Exact HR (+). All reports were based on the visual analysis of three plane and three-dimensional images. Ninety seven percent of exams were done for oncological indications, mainly lung lesions, lymphoma, colorectal and gastroesophageal, cancer and breast tumors. Only 1% of patients had brain tumors. Non tumor neurological indications corresponded to 1.7%. Cardiac studies were only 0.3% and inflammatory process corresponded to 1%. The 5.6% corresponded to pediatric population. Six percent of patients were aged less than 18 years and in 50% of them, the indication was oncological, mainly lymphomas, brain tumors, endocrine cancers and sarcomas. The remaining 50% had a neurological indications, mainly for refractory epilepsy. PET FDG imaging was effective in the management of diverse diseases of children and adults.

  18. Oceanic uptake of CO2 re-estimated through δ13C in WOCE samples

    International Nuclear Information System (INIS)

    Lerperger, Michael; McNichol, A.P.; Peden, J.; Gagnon, A.R.; Elder, K.L.; Kutschera, W.; Rom, W.; Steier, P.

    2000-01-01

    In addition to 14 C, a large set of δ 13 C data was produced at NOSAMS as part of the World ocean circulation experiment (WOCE). In this paper, a subset of 973 δ 13 C results from 63 stations in the Pacific Ocean was compared to a total number of 219 corresponding results from 12 stations sampled during oceanographic programs in the early 1970s. The data were analyzed in light of recent work to estimate the uptake of CO 2 derived from fossil fuel and biomass burning in the oceans by quantifying the δ 13 C Suess effect in the oceans. In principle, the δ 13 C value of dissolved inorganic carbon (DIC) allows a quantitative estimate of how much of the anthropogenic CO 2 released into the atmosphere is taken up by the oceans, because the δ 13 C of CO 2 derived from organic matter (∼2.7 percent) is significantly different from that of the atmosphere (∼0.8 percent). Our new analysis indicates an apparent discrepancy between the old and the new data sets, possibly caused by a constant offset in δ 13 C values in a subset of the data. A similar offset was reported in an earlier work by Paul Quay et al. for one station that was not included in their final analysis. We present an estimate for this assumed offset based on data from water depths below which little or no change in δ 13 C over time would be expected. Such a correction leads to a significantly reduced estimate of the CO 2 uptake, possibly as low as one half of the amount of 2.1 GtC yr -1 (gigatons carbon per year) estimated previously. The present conclusion is based on a comparison with a relatively small data set from the 70s in the Pacific Ocean. The larger data set collected during the GEOSECS program was not used because of problems reported with the data. This work suggests there may also be problems in comparing non-GEOSECS data from the 1970s to the current data. The calculation of significantly lower uptake estimates based on an offset-related problem appears valid, but the exact figures are

  19. Spexin is a Novel Human Peptide that Reduces Adipocyte Uptake of Long Chain Fatty Acids and Causes Weight Loss in Rodents with Diet-induced Obesity*

    Science.gov (United States)

    Walewski, José L.; Ge, Fengxia; Lobdell, Harrison; Levin, Nancy; Schwartz, Gary J.; Vasselli, Joseph; Pomp, Afons; Dakin, Gregory; Berk, Paul D.

    2014-01-01

    Objective Microarray studies identified Ch12:orf39 (Spexin) as the most dysregulated gene in obese human fat. Therefore we examined its role in obesity pathogenesis. Design and Methods Spexin effects on food intake, meal patterns, body weight, Respiratory Exchange Ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with dietary-induced obesity (DIO). Its effects on adipocyte [3H]-oleate uptake were determined. Results In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = −0.797) with Leptin. In rats, Spexin (35 μg/kg/day s.c) reduced caloric intake ~32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 μg/kg/day i.p.) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70μg/kg/day i.p.) demonstrated no aversive Spexin effects. Conclusions Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy. PMID:24550067

  20. Targeting Toll-like receptor 7/8 enhances uptake of apoptotic leukemic cells by monocyte-derived dendritic cells but interferes with subsequent cytokine-induced maturation.

    Science.gov (United States)

    van den Ancker, Willemijn; van Luijn, Marvin M; Ruben, Jurjen M; Westers, Theresia M; Bontkes, Hetty J; Ossenkoppele, Gert J; de Gruijl, Tanja D; van de Loosdrecht, Arjan A

    2011-01-01

    Therapeutic vaccination with dendritic cells (DC) is an emerging investigational therapy for eradication of minimal residual disease in acute myeloid leukemia. Various strategies are being explored in manufacturing DC vaccines ex vivo, e.g., monocyte-derived DC (MoDC) loaded with leukemia-associated antigens (LAA). However, the optimal source of LAA and the choice of DC-activating stimuli are still not well defined. Here, loading with leukemic cell preparations (harboring both unknown and known LAA) was explored in combination with a DC maturation-inducing cytokine cocktail (CC; IL-1β, IL-6, TNF-α, and PGE(2)) and Toll-like receptor ligands (TLR-L) to optimize uptake. Since heat shock induced apoptotic blasts were more efficiently taken up than lysates, we focused on uptake of apoptotic leukemic cells. Uptake of apoptotic blast was further enhanced by the TLR7/8-L R848 (20-30%); in contrast, CC-induced maturation inhibited uptake. CC, and to a lesser extent R848, enhanced the ability of MoDC to migrate and stimulate T cells. Furthermore, class II-associated invariant chain peptide expression was down-modulated after R848- or CC-induced maturation, indicating enhanced processing and presentation of antigenic peptides. To improve both uptake and maturation, leukemic cells and MoDC were co-incubated with R848 for 24 h followed by addition of CC. However, this approach interfered with CC-mediated MoDC maturation as indicated by diminished migratory and T cell stimulatory capacity, and the absence of IL-12 production. Taken together, our data demonstrate that even though R848 improved uptake of apoptotic leukemic cells, the sequential use of R848 and CC is counter-indicated due to its adverse effects on MoDC maturation.

  1. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes

    International Nuclear Information System (INIS)

    Walton, Felecia S.; Harmon, Anne W.; Paul, David S.; Drobna, Zuzana; Patel, Yashomati M.; Styblo, Miroslav

    2004-01-01

    Chronic exposures to inorganic arsenic (iAs) have been associated with increased incidence of noninsulin (type-2)-dependent diabetes mellitus. Although mechanisms by which iAs induces diabetes have not been identified, the clinical symptoms of the disease indicate that iAs or its metabolites interfere with insulin-stimulated signal transduction pathway or with critical steps in glucose metabolism. We have examined effects of iAs and methylated arsenicals that contain trivalent or pentavalent arsenic on glucose uptake by 3T3-L1 adipocytes. Treatment with inorganic and methylated pentavalent arsenicals (up to 1 mM) had little or no effect on either basal or insulin-stimulated glucose uptake. In contrast, trivalent arsenicals, arsenite (iAs III ), methylarsine oxide (MAs III O), and iododimethylarsine (DMAs III O) inhibited insulin-stimulated glucose uptake in a concentration-dependent manner. Subtoxic concentrations of iAs III (20 μM), MAs III O (1 μM), or DMAs III I (2 μM) decreased insulin-stimulated glucose uptake by 35-45%. Basal glucose uptake was significantly inhibited only by cytotoxic concentrations of iAs III or MAs III O. Examination of the components of the insulin-stimulated signal transduction pathway showed that all trivalent arsenicals suppressed expression and possibly phosphorylation of protein kinase B (PKB/Akt). The concentration of an insulin-responsive glucose transporter (GLUT4) was significantly lower in the membrane region of 3T3-L1 adipocytes treated with trivalent arsenicals as compared with untreated cells. These results suggest that trivalent arsenicals inhibit insulin-stimulated glucose uptake by interfering with the PKB/Akt-dependent mobilization of GLUT4 transporters in adipocytes. This mechanism may be, in part, responsible for the development of type-2 diabetes in individuals chronically exposed to iAs

  2. Root-induced decomposer growth and plant N uptake are not positively associated among a set of grassland plants

    DEFF Research Database (Denmark)

    Saj, S.; Mikola, J.; Ekelund, Flemming

    2008-01-01

    It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Base...... that plant traits such as competitive ability for soil mineral N were more important for plant uptake of litter-N than those that directly affected the growth of soil decomposers.......It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Based...... on the hypothesis that root-induced growth of soil decomposers leads to accelerated decomposition of SOM and increased plant N availability in soil, we predicted that (1) among a set of grassland plants the abundance of soil decomposers in the plant rhizosphere is positively associated with plant N uptake from soil...

  3. [Positron emission tomography with fluorine-deoxyglucose in sarcomas and non-sarcoma non-epithelial tumors].

    Science.gov (United States)

    Massardo, Teresa; Jofré, María Josefina; Sierralta, María Paulina; Canessa, José; Castro, Gabriel; Berrocal, Isabel; Gallegos, Iván

    2012-09-01

    The usefulness of positron emission tomography (PET) with fluorine-deoxyglucose (FDG) in sarcomas and non-sarcoma non-epithelial (NSNE) tumors is not clearly defined. To report a Chilean experience with NSNE tumors evaluated using PET with FDG. Retrospective review of the database of a PET laboratory. Demographic data, indications and metabolic findings were compared with conventional imaging in 88 adults and children with diverse bone and soft tissue sarcomas as well as 24 gastrointestinal stromal tumors (GIST), 6 pleural malignant mesotheliomas in adults, and 9 medulloblastomas in children. FDG showed good concordance with conventional imaging in NSNE tumors. It was helpful for staging, restaging, follow-up after treatment and for the detection of new not previously suspected lesions. PET with FDG could have a prognostic role and help in patient management, mainly in musculoskeletal and high grade or less differentiated sarcomas. In GIST, it was a good tool for immunotherapy control.

  4. A two-compartment description and kinetic procedure for measuring regional cerebral [11C]nomifensine uptake using positron emission tomography

    International Nuclear Information System (INIS)

    Salmon, E.; Brooks, D.J.; Leenders, K.L.; Turton, D.R.; Hume, S.P.; Cremer, J.E.; Jones, T.; Frackowiak, R.S.

    1990-01-01

    S-[11C]Nomifensine (S-[11C]NMF) is a positron-emitting tracer suitable for positron emission tomography, which binds to both dopaminergic and noradrenergic reuptake sites in the striatum and the thalamus. Modelling of the cerebral distribution of this drug has been hampered by the rapid appearance of glucuronide metabolites in the plasma, which do not cross the blood--brain barrier. To date, [11C]NMF uptake has simply been expressed as regional versus nonspecific cerebellar activity ratios. We have calculated a free NMF input curve from red cell activity curves, using the fact that the free drug rapidly equilibrates between red cells and plasma, while glucuronides do not enter red cells. With this free [11C]NMF input function, all regional cerebral uptake curves could be fitted to a conventional two-compartment model, defining tracer distribution in terms of [11C]NMF regional volume of distribution. Assuming that the cerebellar volume of distribution of [11C]NMF represents the nonspecific volume of distribution of the tracer in striatum and thalamus, we have calculated an equilibrium partition coefficient for [11C]NMF between freely exchanging specific and nonspecific compartments in these regions, representing its binding potential to dopaminergic or noradrenergic uptake sites (or complexes). This partition coefficient was lower in the striatum when the racemate rather than the active S-enantiomer of [11C]NMF was administered. In the striatum of patients suffering from Parkinson's disease and multiple-system atrophy, the specific compartmentation of S-[11C]NMF was significantly decreased compared with that of age-matched volunteers

  5. Characterization of cadmium uptake in Lactobacillus plantarum and isolation of cadmium and manganese uptake mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Z.; Reiske, H.R.; Wilson, D.B.

    1999-11-01

    Two different Cd{sup 2+} uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn{sup 2+} uptake system which also takes up Cd{sup 2+} and is induced by Mn{sup 2+} starvation. The calculated K{sub m} and V{sub max} are 0.26 {mu}M and 3.6 {mu}mol g of dry cell{sup {minus}1} min{sup {minus}1}, respectively. Unlike Mn{sup 2+} uptake, which is facilitated by citrate and related tricarboxylic acids, Cd{sup 2+} uptake is weakly inhibited by citrate. Cd{sup 2+} and Mn{sup 2+} are competitive inhibitors of each other, and the affinity of the system for Cd{sup 2+} is higher than that for Mn{sup 2+}. The other Cd{sup 2+} uptake system is expressed in Mn{sup 2+}-sufficient cells, and no K{sub m} can be calculated for it because uptake is nonsaturable. Mn{sup 2+} does not compete for transport through this system, nor does any other tested cation, i.e., Zn{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Fe{sup 2+}, or Ni{sup 2+}. Both systems require energy, since uncouplers completely inhibit their activities. Two Mn{sup 2+}-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn{sup 2+} for growth as the parental strain. Mn{sup 2+} starvation-induced Cd{sup 2+} uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn{sup 2+} or Cd{sup 2+} accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system.

  6. Lynch Syndrome Associated Colon Adenocarcinoma Resembling Lymphoma on Fluoro-Deoxyglucose-Positron Emission Tomography/Computed Tomography

    International Nuclear Information System (INIS)

    Aparici, Carina Mari; Win, Aung Zaw

    2015-01-01

    The patient was a 46-year-old Asian male diagnosed with lynch syndrome associated colon adenocarcinoma in the right ascending colon. A presurgical staging 18-fluoro-deoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) found increased metabolic activity in the cervical, axillary, mediastinal, supraclavicular, para-aortic and mesenteric lymph nodes. This pattern of metastasis was very unusual for lynch syndrome associated colon adenocarcinoma and the involvement of those lymph nodes resembles the pattern of spread of lymphoma. He underwent right hemicolectomy and he was subsequently treated with 12 cycles of folinic acid (leucovorin), fluorouracil (5-FU), irinotecan. A restaging FDG-PET/CT at the end of the chemotherapy showed interval decrease in size and metabolic activity in the affected lymph nodes. FDG-PET/CT is a useful imaging modality in following-up the treatment response in colon adenocarcinoma

  7. Uptake of benzyladenine by excised watermelon cotyledons.

    Science.gov (United States)

    Lampugnani, M G; Fantelli, R; Longo, G P; Longo, C P; Rossi, G

    1981-07-01

    The uptake of 8-[(14)C]N(6)-benzyladenine (BA) was studied in excised watermelon (Citrullus vulgaris Schrad.) cotyledons 24 hours after the start of imbibition. The passive nature of this uptake is suggested by the following evidence: (a) no sign of saturation on increasing external concentration of BA; (b) no decrease in uptake under conditions that inhibit ATP synthesis; (c) no change in amount of radioactivity absorbed when cotyledons are frozen and thawed before the uptake test. About two-thirds of the radioactivity taken up is released after 12 hours of washing. If the washing is performed at 2 C very little radioactivity is released.There seems to be a correlation between the level of radioactivity (i.e. of BA + derivatives) present in the cotyledons and the magnitude of hormonal responses that are observed four days after uptake. This relationship holds regardless of whether a given level of radioactivity has been reached after a short period of uptake or after a long period of uptake followed by washing.

  8. Membrane Potential-dependent Uptake of 18F-triphenylphosphonium - A New Voltage Sensor as an Imaging Agent for Detecting Burn-induced Apoptosis

    Science.gov (United States)

    Zhao, Gaofeng; Yu, Yong-Ming; Shoup, Timothy M.; Elmaleh, David R.; Bonab, Ali A.; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Background Mitochondrial dysfunction has been closely related to many pathological processes, such as cellular apoptosis. Alterations in organelle membrane potential are associated with mitochondrial dysfunction. A fluorine -18 labeled phosphonium compound: 18F-triphenylphosphonium (18F-TPP) was prepared to determine its potential use as a mitochondria-targeting radiopharmaceutical to evaluate cellular apoptosis. Methods Studies were conducted in both ex vivo cell lines and in vivo using a burned animal model. Uptake of 18F-TPP was assessed in PC-3 cells by gamma counting under the following conditions: graded levels of extra-cellular potassium concentrations, incubation with carbonyl cyanide m-chlorophenylhydrazone (CCCP) and staurosporine. Apoptosis was studied in a burn animal model using TUNEL staining and simultaneous assessment of 18F-TPP uptake by biodistribution. Results We found that stepwise membrane depolarization by potassium (K) resulted in a linear decrease in 18F-TPP uptake, with a slope of 0.62+/−0.08 and a correlation coefficient of 0.936+/−0.11. Gradually increased concentrations of CCCP lead to decreased uptakes of 18F-TPP. Staurosporine significantly decreased the uptake of 18F-TPP in PC-3 cells from 14.2+/−3.8% to 5.6+/−1.3% (P<0.001). Burn induced significant apoptosis (sham: 4.4 +/−1.8% vs. burn: 24.6+/− 6.7 %; p<0.005) and a reduced uptake of tracer in the spleens of burn injured animals as compared to sham burn controls (burn: 1.13+/−0.24% vs. sham: 3.28+/−0.67%; p<0.005). Biodistribution studies demonstrated that burn induced significant reduction in 18F-TPP uptake in spleen, heart, lung, and liver, which were associated with significantly increased apoptosis. Conclusions 18F-TPP is a promising new voltage sensor for detecting mitochondrial dysfunction and apoptosis in various tissues. PMID:24582214

  9. Additive Effects of Millimeter Waves and 2-Deoxyglucose Co-Exposure on the Human Keratinocyte Transcriptome.

    Directory of Open Access Journals (Sweden)

    Yonis Soubere Mahamoud

    Full Text Available Millimeter Waves (MMW will be used in the next-generation of high-speed wireless technologies, especially in future Ultra-Broadband small cells in 5G cellular networks. Therefore, their biocompatibilities must be evaluated prior to their massive deployment. Using a microarray-based approach, we analyzed modifications to the whole genome of a human keratinocyte model that was exposed at 60.4 GHz-MMW at an incident power density (IPD of 20 mW/cm2 for 3 hours in athermic conditions. No keratinocyte transcriptome modifications were observed. We tested the effects of MMWs on cell metabolism by co-treating MMW-exposed cells with a glycolysis inhibitor, 2-deoxyglucose (2dG, 20 mM for 3 hours, and whole genome expression was evaluated along with the ATP content. We found that the 2dG treatment decreased the cellular ATP content and induced a high modification in the transcriptome (632 coding genes. The affected genes were associated with transcriptional repression, cellular communication and endoplasmic reticulum homeostasis. The MMW/2dG co-treatment did not alter the keratinocyte ATP content, but it did slightly alter the transcriptome, which reflected the capacity of MMW to interfere with the bioenergetic stress response. The RT-PCR-based validation confirmed 6 MMW-sensitive genes (SOCS3, SPRY2, TRIB1, FAM46A, CSRNP1 and PPP1R15A during the 2dG treatment. These 6 genes encoded transcription factors or inhibitors of cytokine pathways, which raised questions regarding the potential impact of long-term or chronic MMW exposure on metabolically stressed cells.

  10. Uptake of acidic and basic sugar derivatives in Lemna gibba G1

    International Nuclear Information System (INIS)

    Sanz, A.; Ullrich, C.I.

    1989-01-01

    The uptake of acidic and basic sugar derivatives in Lemna gibba L. was studied. Uronic acids applied to the experimental solution induced a small decrease of the membrane potential. After incubation of the plants in a 0.1 millimolar solution of these substrates, no decrease in the concentration of reducing groups in the external solution was detected. Respiration increased by 31% with 50 millimolar galacturonic acid, whereas no effect was found with the same concentration of glucuronic acid. Glucosamine caused a considerable concentration-dependent membrane depolarization. ( 14 C)glucosamine uptake followed Michaelis-Menten kinetics together with a linear component. Influx of this substrate was inhibited by glucose but the type of competition could not be clearly distinguished. Glucosamine, 50 millimolar, inhibited the respiration rate by 30%. The glucosamine uptake was pH-dependent, with maximum uptake at around pH 7. Lack of enhancement of uptake by low pH as well as the permanent membrane depolarization suggest a uniport mechanism for the charged species of the substrate and an electroneutral diffusion of the uncharged species

  11. Evidence for increased cellular uptake of glutamate and aspartate in the rat hippocampus during kainic acid seizures. A microdialysis study using the "indicator diffusion' method

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    1997-01-01

    Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration of ....... The results indicate that during KA-induced seizures, uptake of glutamate and aspartate is increased, possibly aimed at maintaining the extracellular homeostasis of these two excitatory amino acids.......Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration...... of kainic acid (KA). With [14C]mannitol as an extracellular reference substance, the cellular extraction of the test substance [3H]D-aspartate was measured at different stages of seizure-activity. The results were compared to those obtained in a sham operated control group. During severe generalized clonic...

  12. Positron emission tomography with fluorine-deoxyglucose in sarcomas and non-sarcoma non-epithelial tumors

    International Nuclear Information System (INIS)

    Massardo, Teresa; Jofre, Maria Josefina; Sierralta, Maria Paulina; Canessa, Jose; Castro, Gabriel; Berrocal, Isabel; Gallegos, Ivan

    2012-01-01

    Background: The usefulness of positron emission tomography (PET) with fluorine-deoxyglucose (FDG) in sarcomas and non-sarcoma non-epithelial (NSNE) tumors is not clearly defined. Aim: To report a Chilean experience with NSNE tumors evaluated using PET with FDG. Material and Methods: Retrospective review of the database of a PET laboratory. Demographic data, indications and metabolic findings were compared with conventional imaging in 88 adults and children with diverse bone and soft tissue sarcomas as well as 24 gastrointestinal stromal tumors (GIST), 6 pleural malignant mesotheliomas in adults, and 9 medulloblastomas in children. Results: FDG showed good concordance with conventional imaging in NSNE tumors. It was helpful for staging, restaging, follow-up after treatment and for the detection of new not previously suspected lesions. Conclusions: PET with FDG could have a prognostic role and help in patient management, mainly in musculoskeletal and high grade or less differentiated sarcomas. In GIST, it was a good tool for immunotherapy control

  13. Hemiballismus: Study of a case using positron emission tomography with 18fluoro-2-deoxyglucose

    International Nuclear Information System (INIS)

    Dubinsky, R.M.; Greenberg, M.; Di Chiro, G.; Baker, M.; Hallett, M.

    1989-01-01

    A 64-year-old man had right-sided persistent hemiballismus. Cerebral computed tomography (CT) and 0.5-T magnetic resonance imaging (MRI) showed no abnormalities, but 1.5-T MRI showed decreased signal intensity of the putamina, greater on the left than on the right. The subthalamic area was normal on CT and MRI. Positron emission tomography with 18fluoro2-deoxyglucose showed marked hypometabolism of the left putamen (60% of the right) and hypermetabolism of the left parietal lobe (138% of the right). The decreased metabolism of the left putamen may indicate a reduction in neuronal firing. The pathophysiology of the hemiballismus in this case may be loss of tonic inhibition of the lateral globus pallidus from the putamen, leading in turn to greater inhibition of the subthalamic nucleus, less excitation of the medial globus pallidus, and less inhibition of the thalamus and motor cortex, and thus allowing expression of the ballistic movements

  14. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    Science.gov (United States)

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  15. Progressive activation of paratrigeminal nucleus during entrance to hibernation

    International Nuclear Information System (INIS)

    Kilduff, T.S.; Sharp, F.R.; Heller, H.C.

    1988-01-01

    The paratrigeminal nucleus (Pa5) undergoes a progressive increase in its uptake of 2-[ 14 C]deoxyglucose (2DG) relative to other brain structures during entrance to hibernation in the ground squirrel. This highly significant increase results in the Pa5 becoming the most highly labeled brain region during hibernation, even though it exhibits one of the lowest levels of 2DG uptake in the brain during the nonhibernating state. The progressive activation of the Pa5 observed during entrance is reversed during arousal from hibernation. These observations and the neuroanatomical projections of the Pa5 implicate this nucleus as playing a role in the entrance and maintenance of the hibernating state

  16. Osmosis-induced water uptake by Eurobitum bituminized radioactive waste and pressure development in constant volume conditions

    International Nuclear Information System (INIS)

    Mariën, A.; Mokni, N.; Valcke, E.; Olivella, S.; Smets, S.; Li, X.

    2013-01-01

    Highlights: ► The water uptake by Eurobitum is studied to judge the safety of geological disposal. ► High pressures of up to 20 MPa are measured in constant volume water uptake tests. ► The morphology of leached Eurobitum samples is studied with μCT and ESEM. ► The observations are reproduced by an existing CHM formulation for Eurobitum. - Abstract: The chemo-hydro-mechanical (CHM) interaction between swelling Eurobitum radioactive bituminized waste (BW) and Boom Clay is investigated to assess the feasibility of geological disposal for the long-term management of this waste. These so-called compatibility studies include laboratory water uptake tests at Belgian Nuclear Research Center SCK-CEN, and the development of a coupled CHM formulation for Eurobitum by the International Center for Numerical Methods and Engineering (CIMNE, Polytechnical University of Cataluña, Spain). In the water uptake tests, the osmosis-induced swelling, pressure increase and NaNO 3 leaching of small cylindrical BW samples (diameter 38 mm, height 10 mm) is studied under constant total stress conditions and nearly constant volume conditions; the actual geological disposal conditions should be intermediate between these extremes. Two nearly constant volume tests were stopped after 1036 and 1555 days to characterize the morphology of the hydrated BW samples and to visualize the hydrated part with microfocus X-ray Computer Tomography (μCT) and Environmental Scanning Electron Microscopy (ESEM). In parallel, a coupled CHM formulation is developed that describes chemically and hydraulically coupled flow processes in porous materials with salt crystals, and that incorporates a porosity dependent membrane efficiency, permeability and diffusivity. When Eurobitum BW is hydrated in (nearly) constant volume conditions, the osmosis-induced water uptake results in an increasing pressure to values that can be (in theory) as high as 42.8 MPa, being the osmotic pressure of a saturated NaNO 3

  17. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-) : cystine supplier and beyond.

    Science.gov (United States)

    Conrad, Marcus; Sato, Hideyo

    2012-01-01

    The oxidative stress-inducible cystine/glutamate exchange system, system x (c) (-) , transports one molecule of cystine, the oxidized form of cysteine, into cells and thereby releases one molecule of glutamate into the extracellular space. It consists of two protein components, the 4F2 heavy chain, necessary for membrane location of the heterodimer, and the xCT protein, responsible for transport activity. Previously, system x (c) (-) has been regarded to be a mere supplier of cysteine to cells for the synthesis of proteins and the antioxidant glutathione (GSH). In that sense, oxygen, electrophilic agents, and bacterial lipopolysaccharide trigger xCT expression to accommodate with increased oxidative stress by stimulating GSH biosynthesis. However, emerging evidence established that system x (c) (-) may act on its own as a GSH-independent redox system by sustaining a redox cycle over the plasma membrane. Hallmarks of this cycle are cystine uptake, intracellular reduction to cysteine and secretion of the surplus of cysteine into the extracellular space. Consequently, increased levels of extracellular cysteine provide a reducing microenvironment required for proper cell signaling and communication, e.g. as already shown for the mechanism of T cell activation. By contrast, the enhanced release of glutamate in exchange with cystine may trigger neurodegeneration due to glutamate-induced cytotoxic processes. This review aims to provide a comprehensive picture from the early days of system x (c) (-) research up to now.

  18. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH.

    Directory of Open Access Journals (Sweden)

    Claire Godinot

    Full Text Available The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO(2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i at three pH(T conditions (8.1, 7.8, and 7.5 and normal temperature (26°C, ii at three temperature conditions (26°, 29°C, and 33°C and normal pH(T (8.1, and iii at three pH(T conditions (8.1, 7.8, and 7.5 and elevated temperature (33°C. After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pH(T 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C and low pH(T (7.5 resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pH(T = 8.1. These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification.

  19. Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    Science.gov (United States)

    Godinot, Claire; Houlbrèque, Fanny

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification. PMID:21949839

  20. Liposomal inhibition of acrolein-induced injury in rat cultured urothelial cells.

    Science.gov (United States)

    Nirmal, J; Wolf-Johnston, A S; Chancellor, M B; Tyagi, P; Anthony, M; Kaufman, J; Birder, L A

    2014-10-01

    To study the protection offered by empty liposomes (LPs) alone against acrolein-induced changes in urothelial cell viability and explored uptake of LPs by primary (rat) urothelial cells. Acrolein was used as a means to induce cellular damage and reduce urothelial cellular viability. The effect of acrolein or liposomal treatment on cellular proliferation was studied using 5-bromo-2'-deoxy-uridine assay. Cytokine release was measured after urothelial cells were exposed to acrolein. Temperature-dependent uptake study was carried out for fluorescent-labeled LPs using confocal microscopy. Liposome pretreatment protected against acrolein-induced decrease in urothelial cell proliferation. LPs also significantly affected the acrolein-induced cytokine (interferon-gamma) release offering protection to the urothelial cells against acrolein damage. We also observed a temperature-dependent urothelial uptake of fluorescent-labeled LPs occurred at 37 °C (but not at 4 °C). Empty LPs alone provide a therapeutic efficacy against acrolein-induced changes in urothelial cell viability and may be a promising local therapy for bladder diseases. Hence, our preliminary evidence provides support for liposome-therapy for urothelial protection and possible repair.

  1. Evaluation on the effectiveness of 2-deoxyglucose-6-phosphate phosphatase (DOGR1) gene as a selectable marker for oil palm (Elaeis guineensis Jacq.) embryogenic calli transformation mediated by Agrobacterium tumefaciens

    Science.gov (United States)

    Izawati, Abang Masli Dayang; Masani, Mat Yunus Abdul; Ismanizan, Ismail; Parveez, Ghulam Kadir Ahmad

    2015-01-01

    DOGR1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOGR1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l-1 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOGR1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOGR1 gene and 2-DOG for regenerating transgenic oil palm. PMID:26442041

  2. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    Science.gov (United States)

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  3. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice.

    Science.gov (United States)

    Lerat, Hervé; Imache, Mohamed Rabah; Polyte, Jacqueline; Gaudin, Aurore; Mercey, Marion; Donati, Flora; Baudesson, Camille; Higgs, Martin R; Picard, Alexandre; Magnan, Christophe; Foufelle, Fabienne; Pawlotsky, Jean-Michel

    2017-08-04

    Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. In vitro uptake of 14C-praziquantel by cestodes, trematodes, and a nematode

    International Nuclear Information System (INIS)

    Andrews, P.; Thomas, H.; Weber, H.

    1980-01-01

    14 C-praziquantel was rapidly taken up by Schistosoma mansoni, Fasciola hepatica, Hymenolepis nana, and isolated strobilocerci of Taenia taeniaeformis. Schistosoma mansoni lost praziquantel rapidly to drug-free medium. Chromatography of extracts prepared after incubation of S. mansoni and H. nana yielded no indication that praziquantel was metabolized. Autoradiography revealed a uniform distribution of praziquantel throughout the tissues of S. mansoni and H. nana. Uptake was considerably slower in the nematode Heterakis spumosa and apparently via the oral route

  5. Heterogeneous uptake of the C1 to C4 organic acids on a swelling clay mineral

    Directory of Open Access Journals (Sweden)

    M. A. Tolbert

    2007-08-01

    Full Text Available Mineral aerosol is of interest due to its physiochemical impacts on the Earth's atmosphere. However, adsorbed organics could influence the chemical and physical properties of atmospheric mineral particles and alter their impact on the biosphere and climate. In this work, the heterogeneous uptake of a series of small organic acids on the swelling clay, Na-montmorillonite, was studied at 212 K as a function of relative humidity (RH, organic acid pressure and clay mass. A high vacuum chamber equipped with a quadrupole mass spectrometer and a transmission Fourier transform infrared spectrometer was used to detect the gas and condensed phases, respectively. Our results show that while the initial uptake efficiency was found to be independent of organic acid pressure, it increased linearly with increasing clay mass. Thus, the small masses studied allow access to the entire surface area of the clay sample with minimal effects due to surface saturation. Additionally, results from this study show that the initial uptake efficiency for butanoic (butyric acid on the clay increases by an order of magnitude as the RH is raised from 0% to 45% RH at 212 K while the initial uptake efficiency of formic, acetic and propanoic (propionic acids increases only slightly at higher humidities. However, the initial uptake efficiency decreases significantly in a short amount of time due to surface saturation effects. Thus, although the initial uptake efficiencies are appropriate for initial times, the fact that the uptake efficiency will decrease over time as the surface saturates should be considered in atmospheric models. Surface saturation results in sub-monolayer coverage of organic acid on montmorillonite under dry conditions and relevant organic acid pressures that increases with increasing humidity for all organic acids studied. Additionally, the presence of large organic acids may slightly enhance the water content of the clay above 45% RH. Our results indicate

  6. Glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners.

    Science.gov (United States)

    Tai, Suh-Jun; Liu, Ren-Shyan; Kuo, Ya-Chen; Hsu, Chi-Yang; Chen, Chi-Hsien

    2010-04-30

    The aim of this study was to determine glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners. Positron emission tomography (PET) using 18F-fluoro-2-deoxyglucose (FDG) was performed to determine the patterns of glucose uptake in lower limbs of short-distance (SD group, n=8) and long-distance (LD group, n=8) male runners after a modified 20 min Bruce treadmill test. Magnetic resonance imaging (MRI) was used to delineate the muscle groups in lower limbs. Muscle groups from hip, knee, and ankle movers were measured. The total FDG uptake and the standard uptake value (SUV) for each muscle group were compared between the 2 groups. For the SD and LD runners, the 2 major muscle groups utilizing glucose during running were knee extensors and ankle plantarflexors, which accounted for 49.3 +/- 8.1% (25.1 +/- 4.7% and 24.2 +/- 6.0%) of overall lower extremity glucose uptake for SD group, and 51.3 +/- 8.0% (27.2 +/- 2.7% and 24.0 +/- 8.1%) for LD group. No difference in muscle glucose uptake was noted for other muscle groups. For SD runners, the SUVs for the muscle groups varied from 0.49 +/- 0.27 for the ankle plantarflexors, to 0.20 +/- 0.08 for the hip flexor. For the LD runners, the highest and lowest SUVs were 0.43 +/- 0.15 for the ankle dorsiflexors and 0.21 +/- 0.19 for the hip. For SD and LD groups, no difference in muscle SUV was noted for the muscle groups. However, the SUV ratio between the ankle dorsiflexors and plantarflexors in the LD group was significantly greater than that in the SD group. We thus conclude that the major propelling muscle groups account for approximately 50% of lower limb glucose utilization during running. Thus, the other muscle groups involving maintenance of balance, limb deceleration, and shock absorption utilize an equal amount. This result provides a new insight into glucose distribution in skeletal muscle, suggesting that propellers and supporters are both energetically important

  7. Biodistribution and tumor uptake of C60(OH)x in mice

    International Nuclear Information System (INIS)

    Ji Zhiqiang; Sun Hongfang; Wang Haifang; Xie Qunying; Liu Yuangfang; Wang Zheng

    2006-01-01

    Radiolabeling of fullerol, 125 I-C 60 (OH) x , was performed by the traditional chloramine-T method. The C-I covalent bond in I-C 60 (OH) x was characterized by X-ray photoelectron spectroscopy (XPS) that was sufficiently stable for in vivo study. Laser light scattering spectroscopy clearly showed that C 60 (OH) x aggregated to large nanoparticle clumps with a wide range of distribution. The clumps formed were also visualized by transmission electron microscope (TEM). We examined the biodistribution and tumor uptake of C 60 (OH) x in five mouse bearing tumor models, including mouse H22 hepatocarcinoma, human lung giantcellcarcinoma PD, human colon cancer HCT-8, human gastric cancer MGC803, and human OS732 osteosarcoma. The accumulation ratios of 125 I-C 60 (OH) x in mouse H22 hepatocarcinoma to that in normal muscle tissue (T/N) and blood (T/B) at 1, 6, 24 and 72 h, reveal that 125 I-C 60 (OH) x gradually accumulates in H22 tumor, and retains for a quite long period (e.g., T/N 3.41, T/B 3.94 at 24 h). For the other four tumor models, the T/N ratio at 24 h ranges within 1.21-6.26, while the T/B ratio ranges between 1.23 and 4.73. The accumulation of C 60 (OH) x in tumor is mostly due to the enhanced permeability and retention effect (EPR) and the phagocytosis of mononuclear phagocytes. Hence, C 60 (OH) x might serve as a photosensitizer in the photodynamic therapy of some kinds of tumor

  8. Normal uptake of 18F-FDG in the testis. An assessment by PET/CT

    International Nuclear Information System (INIS)

    Kitajima, Kazuhiro; Sugimura, Kazuro; Nakamoto, Yuji; Senda, Michio; Onishi, Yumiko; Okizuka, Hiromi

    2007-01-01

    The aim of this study was to assess the physiological uptake of 18 F-fluoro-2-deoxyglucose (FDG) by an apparently normal testis with combined positron emission tomography-computed tomography (PET/CT) and its correlation with age, blood glucose level, and testicular volume. The testicular uptake of 18 F-FDG, expressed as the standardized uptake value (SUV), was measured on PET/CT images in 203 men. The correlation between SUV and age, blood glucose level, and testicular volume was assessed. The SUV in the total of 406 testes was 2.44±0.45 (range 1.23-3.85). The SUV was 2.81±0.43 (2.28-3.85) for 30-39 years (n=12), 2.63±0.45 (1.77-3.75) for 40-49 years (n=64), 2.46±0.35 (1.44-3.15) for 50-59 years (n=82), 2.51±0.41 (1.50-3.46) for 60-69 years (n=86), 2.43±0.47 (1.42-3.29) for 70-79 years (n=86), and 2.18±0.45 (1.23-3.03) for 80-89 years (n=76). When we calculated the mean SUV of bilateral testes in each patient, there were significant statistical differences between those in the age group of 30-39 years and 80-89 years, 40-49 years and 80-89 years, and 50-60 years and 80-89 years, when using an unpaired test with Bonferroni correction. The laterality index (|L-R|/(L+R) x 2) in 203 men was 0.066±0.067 (0-0.522). There was a mild correlation between the mean SUV and age (r=-0.284, P<0.001) as well as between the mean SUV and mean volume (r=+0.368, P<0.001). There was no correlation between the mean SUV and glucose blood level (r=-0.065, P=0.358). Some uptake of FDG is observed in the normal testis and declines slightly with age. Physiological FDG uptake in the testis should not be confused with pathological accumulation. (author)

  9. [High gene conversion frequency between genes encoding 2-deoxyglucose-6-phosphate phosphatase in 3 Saccharomyces species].

    Science.gov (United States)

    Piscopo, Sara-Pier; Drouin, Guy

    2014-05-01

    Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.

  10. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes.

    Science.gov (United States)

    Kellogg, Dean L; McCammon, Karen M; Hinchee-Rodriguez, Kathryn S; Adamo, Martin L; Roman, Linda J

    2017-09-01

    Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H 2 O 2 ) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H 2 O 2 -induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H 2 O 2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H 2 O 2 -stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H 2 O 2 -activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  11. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    Science.gov (United States)

    Kristensen, Jonas Møller; Treebak, Jonas T.; Schjerling, Peter; Goodyear, Laurie

    2014-01-01

    Metformin-induced activation of the 5′-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr308/Ser473 and TBC1D4 Thr642/Ser711 phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment. PMID:24644243

  12. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Shigemasa, E-mail: tomioka@dent.tokushima-u.ac.jp [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Kaneko, Miyuki [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Satomura, Kazuhito [First Department of Oral and Maxillofacial Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Mikyu, Tomiko; Nakajo, Nobuyoshi [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan)

    2009-10-09

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2-{sup 3}H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 {mu}M) significantly increased V{sub max} but not K{sub m} of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  13. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    International Nuclear Information System (INIS)

    Tomioka, Shigemasa; Kaneko, Miyuki; Satomura, Kazuhito; Mikyu, Tomiko; Nakajo, Nobuyoshi

    2009-01-01

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2- 3 H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 μM) significantly increased V max but not K m of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  14. Toward development of an in vitro model of methamphetamine-induced dopamine nerve terminal toxicity.

    Science.gov (United States)

    Kim, S; Westphalen, R; Callahan, B; Hatzidimitriou, G; Yuan, J; Ricaurte, G A

    2000-05-01

    To develop an in vitro model of methamphetamine (METH)-induced dopamine (DA) neurotoxicity, striatal synaptosomes were incubated at 37 degrees C with METH for different periods of time (10-80 min), washed once, then tested for DA transporter function at 37 degrees C. METH produced time- and dose-dependent reductions in the V(max) of DA uptake, without producing any change in K(m). Incubation of synaptosomes with the DA neurotoxins 1-methyl-4-phenyl-pyridinium ion, 6-hydroxydopamine, and amphetamine under similar conditions produced comparable effects. In contrast, incubation with fenfluramine, a serotonin neurotoxin, did not. METH-induced decreases in DA uptake were selective, insofar as striatal glutamate uptake was unaffected. Various DA transporter blockers (cocaine, methylphenidate, and bupropion) afforded complete protection against METH-induced decreases in DA uptake, without producing any effect themselves. METH's effects were also temperature dependent, with greater decreases in DA uptake occurring at higher temperatures. Tests for residual drug revealed small amounts (0.1-0.2 microM) of remaining METH, but kinetic studies indicated that decreases in DA uptake were not likely to be due to METH acting as a competitive inhibitor of DA uptake. Decreases in the V(max) of DA uptake were not accompanied by decreases in B(max) of [(3)H]WIN 35,428 binding, possibly because there is no mechanism for removing damaged DA nerve endings from the in vitro preparation Collectively, these results give good support to the development of a valid in vitro model that may prove helpful for elucidating the mechanisms underlying METH-induced DA neurotoxicity.

  15. Synaptosomal uptake and release of dopamine and 5-hydroxy-tryptamine in the nucleus accumbens in vitro following in vivo administration of lysergic acid diethylamide in rats

    International Nuclear Information System (INIS)

    Hetey, L.; Quiring, K.

    1980-01-01

    The uptake and the depolarisation-induced release of dopamine (DA) and serotonin (5-HT) were investigated after systemic application of LSD on synaptosomes of the nucleus accumbens of rats. For the release experiments synaptosomes were prelabelled with [ 14 C]-DA and [ 3 H]-5-HT, respectively, and superfused with physiological and potassium-enriched (50 mM) solutions. Low doses of LSD (0.1 and 0.5 mg/kg i.p.) induced a dose-dependent inhibition of the DA release and an increase of the DA uptake, respectively. LSD inhibited both the release and the uptake of 5-HT significantly. The results are discussed with respect to a reliable characterization of the in vivo induced effects of LSD on the isolated synaptosomes. (author)

  16. Heavy metals and their radionuclides uptake by Bacillus Licheniformis

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Ahmed, M.M.; Abo-state, M.A.M.; Sarhan, M.; Faroqe, M.

    2007-01-01

    Bacillus licheniformis is a gram positive spore forming bacterium. Different concentrations of cobalt affected the ability of Co uptake and growth of Bacillus licheniformis. As the concentration increased, both the uptake and growth were decreased. Maximum Co uptake was found at ph 7.0, while for growth was ph 8.0. The optimum temperature for uptake and growth was 40 degree C and 20% inoculum size represents the maximum cobalt uptake by Bacillus licheniformis. Also, maximum uptake was recorded after 72 hours, incubation period. As the concentration of cesium was increased till 400 mg/l, the uptake was also increased. The optimum cesium uptake and growth was at ph 8.0. The optimum growth was at 45 degree C while Cs uptake was found at 35 degree C and 15% inoculum size represented the maximum Cs uptake. After 72 hour incubation period, maximum Cs uptake was recorded. Generally, Bacillus licheniformis removed more than 80% of Co and 50% of Cs from the broth medium. Addition of clay to Bacillus licheniformis increased both Co or Cs uptake. Bacillus licheniformis was gamma resistant and 10 KGy reduced the viability by 5.3 log cycles. The irradiated and non-irradiated cultures can grow on 500 or 700 mg Co or Cs. Bacillus licheniformis removed 99.32% of the Co radionuclides and 99.28% of Cs radionuclides

  17. The bifunctional autophagic flux by 2-deoxyglucose to control survival or growth of prostate cancer cells

    International Nuclear Information System (INIS)

    Jeon, Jeong Yong; Kim, Seung Won; Park, Ki Cheong; Yun, Mijin

    2015-01-01

    Recent reports using metabolism regulating drugs showed that nutrient deprivation was an efficient tool to suppress cancer progression. In addition, autophagy control is emerging to prevent cancer cell survival. Autophagy breaks down the unnecessary cytoplasmic components into anabolic units and energy sources, which are the most important sources for making the ATP that maintains homeostasis in cancer cell growth and survival. Therefore, the glucose analog 2-deoxyglucose (2DG) has been used as an anticancer reagent due to its inhibition of glycolysis. Prostate cancer cells (PC3) were treated with 2DG for 6 h or 48 h to analyze the changing of cell cycle and autophagic flux. Rapamycin and LC3B overexpressing vectors were administered to PC3 cells for autophagy induction and chloroquine and shBeclin1 plasmid were used to inhibit autophagy in PC3 cells to analyze PC3 cells growth and survival. The samples for western blotting were prepared in each culture condition to confirm the expression level of autophagy related and regulating proteins. We demonstrated that 2DG inhibits PC3 cells growth and had discriminating effects on autophagy regulation based on the different time period of 2DG treatment to control cell survival. Short-term treatment of 2DG induced autophagic flux, which increased microtubule associated protein 1 light chain 3B (LC3B) conversion rates and reduced p62 levels. However, 2DG induced autophagic flux is remarkably reduced over an extended time period of 2DG treatment for 48 h despite autophagy inducing internal signaling being maintained. The relationship between cell growth and autophagy was proved. Increased autophagic flux by rapamycin or LC3B overexpression powerfully reduced cell growth, while autophagy inhibition with shBeclin1 plasmid or chloroquine had no significant effect on regulating cell growth. Given these results, maintaining increased autophagic flux was more effective at inhibiting cancer cell progression than inhibition of

  18. Arterial 18F-fluorodeoxyglucose uptake reflects balloon catheter-induced thrombus formation and tissue factor expression via nuclear factor-κB in rabbit atherosclerotic lesions

    International Nuclear Information System (INIS)

    Yamashita, Atsushi; Zhao, Yan; Zhao, Songji

    2013-01-01

    Imaging modalities to assess atherosclerotic plaque thrombogenicity have not been established, so in this study the relationship between [ 18 F]-fluorodeoxyglucose ( 18 F-FDG) uptake and thrombus formation was investigated in rabbit atherosclerotic arteries. Atherosclerotic plaque was induced in the iliacofemoral artery by balloon injury and a 0.5% cholesterol diet. At 3 weeks after the first balloon injury, the arteries were visualized by 18 F-FDG positron emission tomography (PET) imaging 2 h after an 18 F-FDG infusion, and then arterial thrombus was induced by a second balloon injury of both iliacofemoral arteries. Imaging with 18 F-FDG-PET revealed significantly more radioactivity along the injured (0.63±0.12 standardized uptake value (SUV)max), than the contralateral non-injured artery (0.34±0.08 SUVmax, n=17, P 18 F-FDG uptake reflects the thrombogenicity of atherosclerotic plaque following balloon injury. (author)

  19. Characteristics of [18F] fluorodeoxyglucose uptake in human colon cancer cells

    International Nuclear Information System (INIS)

    Kim, Chae Kyun; Chung, June Key; Jeong, Jae Min; Lee, Myung Chul; Koh, Chang Soon

    1997-01-01

    Cancer tissues are characterized by increased glucose uptake. 18 F-fluorodeoxyglucose(FDG), a glucose analogue is used for the diagnosis of cancer in PET studies. This study was aimed to compare the glucose uptake and glucose transporter 1(GLUT1) expression in various human colon cancer cells. We measured FDG uptake by cell retention study and expression of GLUT1 using Western blotting. Human colon cancer cells, SNU-C2A, SNU-C4 and SNU-C5, were used. The cells were incubated with 1μ Ci/ml of FDG in HEPES- buffered saline for one hour. The FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were 16.8±1.36, 12.3±5.55 and 61.0±2.17 cpm/μg of protein, respectively. Dose-response and time-course studies represent that FDG uptake of cancer cells were dose dependent and time dependent. The rate of FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were 0.29±0.03, 0.21±0.09 and 1.07±0.07 cpm/min/μg of protein, respectively. Western blot analysis showed that the GLUT1 expression of SNU-C5 was significantly higher than those of SNU-C2A and SNU-C4. These results represent that FDG uptake into human colon cancer cells are different from each other. In addition, FDG uptake and expression of GLUT1 are closely related in human colon cancer cells

  20. A chiral synthesis of dapoxetine hydrochloride, a serotonin re-uptake inhibitor, and its 14C isotopomer

    International Nuclear Information System (INIS)

    Wheeler, W.J.; O'Bannon, D.D.

    1992-01-01

    The 14 C-isotopmer of dapoxetine-[ 14 C] HCl (S (+) -N,N-dimethyl-α[2-(1-naphthalenyloxy)ethyl-2- 14 C]benzenemeth a-n amine hydrochloride, 1a), a potent serotonin re-uptake inhibitor has been prepared by a chiral synthesis, starting with tert. -butyloxyphenylglycine (3). Borane reduction, followed by activation of the resulting alcohol 4 as its mesylate 5b, provided the chiral starting material. The radiolabel was introduced by reaction of 5b with sodium cyanide-[ 14 C]. The desired product (1) was then elaborated from nitrile 6a,b via a five step synthesis in an overall 19.5% radiochemical yield. (Author)

  1. A Descriptive Model of Patient Readiness, Motivators, and Hepatitis C Treatment Uptake among Australian Prisoners

    Science.gov (United States)

    Yap, Lorraine; Carruthers, Susan; Thompson, Sandra; Cheng, Wendy; Jones, Jocelyn; Simpson, Paul; Richards, Alun; Thein, Hla-Hla; Haber, Paul; Lloyd, Andrew; Butler, Tony

    2014-01-01

    Background Hepatitis C virus infection (HCV) has a significant global health burden with an estimated 2%–3% of the world's population infected, and more than 350,000 dying annually from HCV-related conditions including liver failure and liver cancer. Prisons potentially offer a relatively stable environment in which to commence treatment as they usually provide good access to health care providers, and are organised around routine and structure. Uptake of treatment of HCV, however, remains low in the community and in prisons. In this study, we explored factors affecting treatment uptake inside prisons and hypothesised that prisoners have unique issues influencing HCV treatment uptake as a consequence of their incarceration which are not experienced in other populations. Method and Findings We undertook a qualitative study exploring prisoners' accounts of why they refused, deferred, delayed or discontinued HCV treatment in prison. Between 2010 and 2013, 116 Australian inmates were interviewed from prisons in New South Wales, Queensland, and Western Australia. Prisoners experienced many factors similar to those which influence treatment uptake of those living with HCV infection in the community. Incarceration, however, provides different circumstances of how these factors are experienced which need to be better understood if the number of prisoners receiving treatment is to be increased. We developed a descriptive model of patient readiness and motivators for HCV treatment inside prisons and discussed how we can improve treatment uptake among prisoners. Conclusion This study identified a broad and unique range of challenges to treatment of HCV in prison. Some of these are likely to be diminished by improving treatment options and improved models of health care delivery. Other barriers relate to inmate understanding of their illness and stigmatisation by other inmates and custodial staff and generally appear less amenable to change although there is potential for

  2. A descriptive model of patient readiness, motivators, and hepatitis C treatment uptake among Australian prisoners.

    Directory of Open Access Journals (Sweden)

    Lorraine Yap

    Full Text Available BACKGROUND: Hepatitis C virus infection (HCV has a significant global health burden with an estimated 2%-3% of the world's population infected, and more than 350,000 dying annually from HCV-related conditions including liver failure and liver cancer. Prisons potentially offer a relatively stable environment in which to commence treatment as they usually provide good access to health care providers, and are organised around routine and structure. Uptake of treatment of HCV, however, remains low in the community and in prisons. In this study, we explored factors affecting treatment uptake inside prisons and hypothesised that prisoners have unique issues influencing HCV treatment uptake as a consequence of their incarceration which are not experienced in other populations. METHOD AND FINDINGS: We undertook a qualitative study exploring prisoners' accounts of why they refused, deferred, delayed or discontinued HCV treatment in prison. Between 2010 and 2013, 116 Australian inmates were interviewed from prisons in New South Wales, Queensland, and Western Australia. Prisoners experienced many factors similar to those which influence treatment uptake of those living with HCV infection in the community. Incarceration, however, provides different circumstances of how these factors are experienced which need to be better understood if the number of prisoners receiving treatment is to be increased. We developed a descriptive model of patient readiness and motivators for HCV treatment inside prisons and discussed how we can improve treatment uptake among prisoners. CONCLUSION: This study identified a broad and unique range of challenges to treatment of HCV in prison. Some of these are likely to be diminished by improving treatment options and improved models of health care delivery. Other barriers relate to inmate understanding of their illness and stigmatisation by other inmates and custodial staff and generally appear less amenable to change although there

  3. Clinical applications of positron emission tomography at Montreal Neurological Institute

    International Nuclear Information System (INIS)

    Morgan, P.P.

    1983-01-01

    The Montreal Neurological Institute occupies a leading position in positron emission tomography (PET) of the brain with the help of the following three techological gains: they have acquired a 'Therascan' positron emission tomograph manufactured by Atomic Energy of Canada Ltd.; also, a 'Baby Cyclotron' manufactured by Japan Steel Works Ltd.; and they have written a computer program to display the results in colour. Four short-lived isotopes are used; 11 C, 15 O, 18 F, 13 N. Studies of the oxygen uptake of tumours, their glucose metabolism (as monitored by 18 F labelled 2-fluoro-2-deoxyglucose), and their uptake of therapeutic agents, provide valuable research and diagnostic information. PET is also being used to study epilepsy and cerebrovascular disease

  4. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    International Nuclear Information System (INIS)

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi

    2014-01-01

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation

  5. Modeling uptake kinetics of cadmium by field-grown lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)

    2008-03-15

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.

  6. Modeling uptake kinetics of cadmium by field-grown lettuce

    International Nuclear Information System (INIS)

    Chen Weiping; Li Lianqing; Chang, Andrew C.; Wu Laosheng; Kwon, Soon-Ik; Bottoms, Rick

    2008-01-01

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C Plant = C Solution . PUF max . exp[-b . t], where C Plant and C Solution refer to the Cd content in plant tissue and soil solution, respectively, PUF max and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions

  7. Cadmium-109 uptake by tumors derived from Balb C/3T3 cell lines with varying degrees of the transformed phenotype

    International Nuclear Information System (INIS)

    Morton, K.; Alazraki, N.; Winge, D.; Lynch, R.E.

    1986-01-01

    To determine if tumors are rich in metallothionein, the authors measured the vivo uptake of subcutaneously-injected carrier-free cadmium-109 in tumors and in normal tissues of Balb/C mice. The tumors were grown in the mice from cultured Balb/3T3 cells transformed by the Moloney murine sarcoma virus. Uptake of cadmium-109 per gram of tissue was greatest for liver, kidney, and spleen. However, tumor uptake of cadmium-109 was markedly greater than that in blood, skeletal muscle, bones, intestine or adipose tissue. B Sephadex G-75 chromatography, the radioactivity in tumor and in liver lysates eluted with cytochrome-C, a molecule similar in molecular weight to metal-lothionein. To determine if metallothionein levels are related to the degree of malignancy of tumors, cadmium-109 uptake in the tumors from the virally-transformed cells was compared to that in tumors from non-transformed Balb/3T3 cells and two derivative chemically transformed cell lines. There was strong correlation between the substrate-independent growth in soft agarose of the four cell lines, the rate of growth of the corresponding tumors, and the amount of cadmium-109 uptake in the tumors. The authors conclude that metallothionein levels may be elevated in tumors as a function of the degree of expression of the transformed phenotype

  8. Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data.

    Science.gov (United States)

    MacBean, Natasha; Maignan, Fabienne; Bacour, Cédric; Lewis, Philip; Peylin, Philippe; Guanter, Luis; Köhler, Philipp; Gómez-Dans, Jose; Disney, Mathias

    2018-01-31

    Accurate terrestrial biosphere model (TBM) simulations of gross carbon uptake (gross primary productivity - GPP) are essential for reliable future terrestrial carbon sink projections. However, uncertainties in TBM GPP estimates remain. Newly-available satellite-derived sun-induced chlorophyll fluorescence (SIF) data offer a promising direction for addressing this issue by constraining regional-to-global scale modelled GPP. Here, we use monthly 0.5° GOME-2 SIF data from 2007 to 2011 to optimise GPP parameters of the ORCHIDEE TBM. The optimisation reduces GPP magnitude across all vegetation types except C4 plants. Global mean annual GPP therefore decreases from 194 ± 57 PgCyr -1 to 166 ± 10 PgCyr -1 , bringing the model more in line with an up-scaled flux tower estimate of 133 PgCyr -1 . Strongest reductions in GPP are seen in boreal forests: the result is a shift in global GPP distribution, with a ~50% increase in the tropical to boreal productivity ratio. The optimisation resulted in a greater reduction in GPP than similar ORCHIDEE parameter optimisation studies using satellite-derived NDVI from MODIS and eddy covariance measurements of net CO 2 fluxes from the FLUXNET network. Our study shows that SIF data will be instrumental in constraining TBM GPP estimates, with a consequent improvement in global carbon cycle projections.

  9. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton

    International Nuclear Information System (INIS)

    Coveney, M.F.

    1982-01-01

    Microheterotrophic uptake of algal extracellular products was studied in two eutrophic lakes in southern Sweden. Size fractionation was used in H 14 CO 3 uptake experiments to measure 14 C fixation in total particulate, small particulate and dissolved organic fractions. Carbon fixed in algal photosynthesis was recovered as dissolved and small particulate 14 C, representing excretion and bacterial uptake of algal products. Estimated gross extracellular release was low in these eutrophic systems, 1 to 7% of total 14 C uptake per m 2 lake surface. From 28 to 80 % of 14 C released was recovered in the small particulate fraction after ca. 4h incubation.This percentage was uniform within each depth profile, but varied directly with in situ water temperature. Laboratory time-series incubations indicated steady state for the pool of algal extracellular products on one occasion, while increasing pool size was indicated in the remaining two experiments. Uptake of photosynthetic carbon to small particles in situ was 32 to 95% of estimted heterotrophic bacterial production (as dark 14 CO 2 uptake) on four occasions. While excretion apparently was not an important loss of cabon for phytoplankton, it may have represented an important carbon source for planktonic bacteria. (author)

  10. Effect of TNF-Alpha on Caveolin-1 Expression and Insulin Signaling During Adipocyte Differentiation and in Mature Adipocytes

    Directory of Open Access Journals (Sweden)

    Sara Palacios-Ortega

    2015-07-01

    Full Text Available Background/Aims: Tumor necrosis factor-α (TNF-α-mediated chronic low-grade inflammation of adipose tissue is associated with obesity and insulin resistance. Caveolin-1 (Cav-1 is the central component of adipocyte caveolae and has an essential role in the regulation of insulin signaling. The effects of TNF-α on Cav-1 expression and insulin signaling during adipocyte differentiation and in mature adipocytes were studied. Methods: 3T3-L1 cells were differentiated (21 days in the presence TNF-α (10 ng/mL and mature adipocytes were also treated with TNF-α for 48 hours. Cav-1 and insulin receptor (IR gene methylation were determined as well as Cav-1, IR, PKB/AKT-2 and Glut-4 expression and activation by real time RT-PCR and western blot. Baseline and insulin-induced glucose uptake was measured by the 2-[C14]-deoxyglucose uptake assay. Results: TNF-α slowed down the differentiation program, hindering the expression of some insulin signaling intermediates without fully eliminating insulin-mediated glucose uptake. In mature adipocytes, TNF-α did not compromise lipid-storage capacity, but downregulated the expression of the insulin signaling intermediates, totally blocking insulin-mediated glucose uptake. Insulin sensitivity correlated with the level of activated phospho-Cav-1 in both situations, strongly suggesting the direct contribution of Cav-1 to the maintenance of this physiological response. Conclusion: Cav-1 activation by phosphorylation seems to be essential for the maintenance of an active and insulin-sensitive glucose uptake.

  11. Uptake, translocation, distribution and persistence of 14C-metalaxyl in pearl millet (Pennisetum americanum [L.] Leeke)

    International Nuclear Information System (INIS)

    Singh, U.S.; Tripathi, R.K.; Kumar, J.; Dwivedi, T.S.

    1986-01-01

    Time course absorption and desorption of metalaxyl by seeds of pearl millet was analysed by following chemical kinetics equations. Uptake of metalaxyl through roots, leaves and seed, its translocation and distribution in different plant parts and persistence following seed application were studied in pearl millet using 14 C-metalaxyl. Both uptake and efflux of metalaxyl by pearl millet seeds were complex and compartmentalized. Distribution inside the seed was not uniform. A major part of applied fungicide remained within the treated plant part, particularly after seed and foliar applications. Metalaxyl was ambimobile inside the plant and was found to get accumulated at apex and margins of leaf blade. No metalaxyl could be detected in grains harvested from plants grown from metalaxyl treated seeds. (orig.) [de

  12. Expression of hepatitis C virus envelope protein 2 induces apoptosis in cultured mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; You-Hua Xie; Yu-Ying Kong; Ye Ye; Chun-Lin Wang; Guang-Di Li; Yuan Wang

    2004-01-01

    AIM: To explore the role of hepatitis C virus (HCV) envelope protein 2 (E2) in the induction of apoptosis.METHODS: A carboxyterminal truncated E2 (E2-661) was transiently expressed in several cultured mammalian cell lines or stably expressed in Chinese hamster ovary (CHO)cell line. Cell proliferation was assessed by 3H thymidine uptake. Apoptosis was examined by Hoechst 33258staining, flow cytometry and DNA fragmentation analysis.RESULTS: Reduced proliferation was readily observed in the E2-661 expressing cells. These cells manifested the typical features of apoptosis, including cell shrinkage,chromatin condensation and hypodiploid genomic DNA content. Similar apoptotic cell death was observed in an E2-661 stably expressing cell line.CONCLUSION: HCV E2 can induce apoptosis in cultured mammalian cells.

  13. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals.

    Science.gov (United States)

    Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui

    2017-01-01

    Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood-brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p -aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood-brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p -aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells.

  14. 16α-[77Br]bromoestradiol-17β: a high specific-activity, gamma-emitting tracer with uptake in rat uterus and induced mammary tumors

    International Nuclear Information System (INIS)

    Katzenellenbogen, J.A.; Senderoff, S.G.; McElvany, K.D.; O'Brien, H.A. Jr.; Welch, M.J.

    1981-01-01

    16α-[ 77 Br]bromoestradiol-17β (compound 1) has been synthesized by radiobromination of estrone enoldiacetate. Tissue uptake studies performed 1 hr after administration of compound 1 to immature or mature female rats showed uterus-to-blood ratios of 13, with nontarget tissue-to-blood ratios ranging from 0.6 to 2. Co-administration of unlabeled estradiol caused a selective depression in the uterine uptake with no effect on nontarget tissue uptake. In adult animals bearing adenocarcinomas induced by DMBA (7,12-dimethylbenz(a)anthracene), tumor-to-blood ratios of 6.3 were obtained, this uptake also being depressed in animals treated with unlabeled estradiol. The studies demonstrate that compound 1 has suitable binding properties and sufficiently high specific activity so that its uptake in estrogen target tissues in vivo is mediated primarily by the estrogen receptor. Furthermore, they suggest that this compound may be suitable for imaging human breast tumors that contain estrogen receptors

  15. [Usefulness of ¹⁸F-fluoro-2-deoxyglucose positron emission tomography in evaluation of gastric cancer stage].

    Science.gov (United States)

    Yoon, Na Ri; Park, Jae Myung; Jung, Hee Sun; Cho, Yu Kyung; Lee, In Seok; Choi, Myung Gyu; Chung, In Sik; Song, Kyo Young; Park, Cho Hyun

    2012-05-01

    The usefulness of ¹⁸F-fluoro-2-deoxyglucose (FDG)-PET in detecting primary cancer, lymph node metastasis, and distant metastasis were studied in the gastric cancer patients. The subjects were 392 gastric cancer patients who received FDG-PET and an abdominal CT test prior to surgery. The results of FDG-PET and CT were compared with the surgical and pathologic results. The primary site detection rate of FDG-PET was 74.4%, 50.3% in early gastric cancer and 92.0% in advanced gastric cancer. Detection rate was higher when tumors were larger than 3.5 cm, had deeper depth of invasion, and at a later stage (pusefullness of FDG-PET is limited to the advanced stage. Diagnostic value of this test was not superior to CT. However, FDG-PET may be useful in detecting synchronous double primary cancers.

  16. Thromboxane plays a role in postprandial jejunal oxygen uptake and capillary exchange.

    Science.gov (United States)

    Alemayehu, A; Chou, C C

    1990-09-01

    The effects of a thromboxane A2 (TxA2)-endoperoxide receptor antagonist, SQ 29548, on jejunal blood flow, oxygen uptake, and capillary filtration coefficient (Kfc) were determined in anesthetized dogs under resting conditions and during the presence of predigested food in the jejunal lumen in three series of experiments. In series 1, 2.0 micrograms intra-arterial administration of SQ 29548 was found to abolish completely the vasoconstrictor action of graded doses (0.05-2.0 micrograms) of intra-arterial injection of a TxA2-endoperoxide analogue, U44069. SQ 29548 (2.0 micrograms ia) per se did not significantly alter resting jejunal blood flow, oxygen uptake, capillary pressure, or Kfc. Before SQ 29548, placement of food plus bile into the jejunal lumen increased blood flow +42 +/- 9%, oxygen uptake +28 +/- 7%, and Kfc +24 +/- 6%. After SQ 29548, the food placement increased blood flow +37 +/- 8%, oxygen uptake +52 +/- 11%, and Kfc +63 +/- 20%. The food-induced increases in oxygen uptake and Kfc after SQ 29548 were significantly greater than those induced before the blocking of TxA2-endoperoxide receptors by SQ 29548. Our study indicates that endogenous thromboxane does not play a role in regulating jejunal blood flow, capillary filtration, and oxygen uptake under resting conditions. However, it plays a role in limiting the food-induced increases in jejunal oxygen uptake and capillary exchange capacity without influencing the food-induced hyperemia.

  17. Methods to Evaluate the Effect of Ethanol on the Folate Analogue: Fluorescein Methotrexate Uptake in Human Proximal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Sivakumar JT Gowder

    2009-01-01

    Full Text Available Ethanol-induced folate deficiency is due to effects of ethanol on folate metabolism and absorption. We have already shown by using different methods that ethanol interferes with reabsorption of folate from the proximal tubule. In this study, we have used the folate analogue, the fluorescein methotrexate (FL-MTX, in order to evaluate effects of ethanol on FL-MTX uptake by the human proximal tubular (HPT cells by using a confocal microscope and fluoroskan microplate reader. Since endothelins (ETs play a major role in a number of diseases and also in the damage induced by a variety of chemicals, we have used endothelin-B (ET-B and protein kinase-C (PKC inhibitors to evaluate the role of endothelin in ethanol-mediated FL-MTX uptake by using fluoroskan microplate reader. Confocal microscope and fluoroskan studies reveal that cellular absorption of FL-MTX is concentration-dependent. Moreover, ethanol concentration has an impact on FL-MTX uptake. Fluoroskan studies reveal that the ethanol-induced decrease in FL-MTX uptake is reversed by adding the ET-B receptor antagonist (RES-701-1 or PKC-selective inhibitor (BIM. Thus, we can conclude that ethanol may act via ET and ET in turn may act via ET-B receptor and the PKC signaling pathway to impair FL-MTX transport.

  18. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Quines, Caroline Brandão; Stangherlin, Eluza Curte; Nogueira, Cristina Wayne

    2016-03-01

    Monosodium glutamate (MSG), a flavor enhancer used in food, administered to neonatal rats causes neuronal lesions and leads to anxiety when adulthood. We investigated the anxiolytic-like effect of diphenyl diselenide (PhSe)2 and its mechanisms on anxiety induced by MSG. Neonatal male and female Wistar rats received a subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 10th postnatal day. At 60 days of life, the rats received (PhSe)2 (1mg/kg/day) or vehicle by the intragastric route for 7 days. The spontaneous locomotor activity (LAM), elevated plus maze test (EPM) and contextual fear conditioning test (CFC) as well as neurochemical ([(3)H]GABA and [(3)H]5-HT uptake) and molecular analyses (Akt and p-Akt and BDNF levels) were carried out after treatment with (PhSe)2. Neonatal exposure to MSG increased all anxiogenic parameters in LAM, EPM and CFC tests. MSG increased GABA and 5-HT uptake in hippocampus of rats, without changing uptake in cerebral cortex. The levels of BDNF and p-Akt were reduced in hippocampus of rats treated with MSG. The administration of (PhSe)2 to rats reversed all behavioral anxiogenic parameters altered by MSG. The increase in hippocampal GABA and 5-HT uptake induced by MSG was reversed by (PhSe)2. (PhSe)2 reversed the reduction in hippocampal BDNF and p-Akt levels induced by MSG. In conclusion, the anxiolytic-like action of (PhSe)2 in rats exposed to MSG during their neonatal period is related to its modulation of hippocampal GABA and 5-HT uptake as well as the BDNF-Akt pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy

    International Nuclear Information System (INIS)

    Bassett, M.L.; Mullen, K.D.; Scholz, B.; Fenstermacher, J.D.; Jones, E.A.

    1990-01-01

    Transfer of the inhibitory neurotransmitter gamma-aminobutyric acid across the normal blood-brain barrier is minimal. One prerequisite for gamma-aminobutyric acid in plasma contributing to the neural inhibition of hepatic encephalopathy would be that increased transfer of gamma-aminobutyric acid across the blood-brain barrier occurs in liver failure. The aim of the present study was to determine if brain gamma-aminobutyric acid uptake is increased in rabbits with stage II-III (precoma) hepatic encephalopathy due to galactosamine-induced fulminant hepatic failure. A modification of the Oldendorf intracarotid artery-injection technique was applied. [3H] gamma-aminobutyric acid, [14C] butanol, and 113mIn-labeled serum protein (transferrin) were injected simultaneously 4 s before decapitation. The ipsilateral brain uptake index of gamma-aminobutyric acid was determined from measurements of the 3 isotopes in 5 brain regions. Uncorrected or simple brain uptake indices of [3H] gamma-aminobutyric acid and [113mIn] transferrin were calculated using [14C] butanol as the highly extracted reference compound. The [113mIn] transferrin data were also used to correct the brain uptake index of [3H] gamma-aminobutyric acid for intravascular retention of [3H] gamma-aminobutyric acid. The methodology adopted minimized problems attributable to rapid [3H] gamma-aminobutyric acid metabolism, and slow brain washout and recirculation of the radiolabeled tracers. Both the uncorrected and corrected brain uptake indices of gamma-aminobutyric acid as well as the simple brain uptake index of transferrin were significantly increased in both stage II and III hepatic encephalopathy in all brain regions studied. Moreover, these brain uptake indices were significantly greater in stage III hepatic encephalopathy than in stage II hepatic encephalopathy

  20. Thyroid uptake software

    International Nuclear Information System (INIS)

    Alonso, Dolores; Arista, Eduardo

    2003-01-01

    The DETEC-PC software was developed as a complement to a measurement system (hardware) able to perform Iodine Thyroid Uptake studies. The software was designed according to the principles of Object oriented programming using C++ language. The software automatically fixes spectrometric measurement parameters and besides patient measurement also performs statistical analysis of a batch of samples. It possesses a PARADOX database with all information of measured patients and a help system with the system options and medical concepts related to the thyroid uptake study

  1. Potential use of carbon-11 labeled alpha-aminoisobutyric acid (AIB) as an in vivo tracer of amino acid uptake in differing metabolic states

    International Nuclear Information System (INIS)

    Conti, P.S.; Starnes, H.F.; Brennan, M.F.

    1986-01-01

    AIB has been used as a model amino acid for the evaluation of alanine-preferring amino acid transport. Hormonal factors and starvation alter the tissue distribution of amino acids, particularly in liver and muscle. With positron emission tomography and labeling of biochemical tracers with C-11, (t1/2=20.4 min), it is now possible to study amino acid kinetics in vivo using external imaging. In order to investigate the utility of C-11 AIB as an in vivo tracer of altered tissue metabolism, C-14 AIB was studied in groups of rats with either streptozotocin-induced diabetes, insulin-induced hypoglycemia or starvation. The data suggest an increased amino acid uptake in liver in starvation, an increased uptake in muscle in response to insulin and associated hypoglycemia and decreased transport in muscle in starvation, as seen by other investigators. These results suggest that C-11 AIB may be useful as an in vivo monitor of metabolic changes in body tissues

  2. Inhibition of calcium uptake during hypoxia in developing zebrafish is mediated by hypoxia-inducible factor.

    Science.gov (United States)

    Kwong, Raymond W M; Kumai, Yusuke; Tzaneva, Velislava; Azzi, Estelle; Hochhold, Nina; Robertson, Cayleih; Pelster, Bernd; Perry, Steve F

    2016-12-15

    The present study investigated the potential role of hypoxia-inducible factor (HIF) in calcium homeostasis in developing zebrafish (Danio rerio). It was demonstrated that zebrafish raised in hypoxic water (30 mmHg; control, 155 mmHg P O 2 ) until 4 days post-fertilization exhibited a substantial reduction in whole-body Ca 2+ levels and Ca 2+ uptake. Ca 2+ uptake in hypoxia-treated fish did not return to pre-hypoxia (control) levels within 2 h of transfer back to normoxic water. Results from real-time PCR showed that hypoxia decreased the whole-body mRNA expression levels of the epithelial Ca 2+ channel (ecac), but not plasma membrane Ca 2+ -ATPase (pmca2) or Na + /Ca 2+ -exchanger (ncx1b). Whole-mount in situ hybridization revealed that the number of ecac-expressing ionocytes was reduced in fish raised in hypoxic water. These findings suggested that hypoxic treatment suppressed the expression of ecac, thereby reducing Ca 2+ influx. To further evaluate the potential mechanisms for the effects of hypoxia on Ca 2+ regulation, a functional gene knockdown approach was employed to prevent the expression of HIF-1αb during hypoxic treatment. Consistent with a role for HIF-1αb in regulating Ca 2+ balance during hypoxia, the results demonstrated that the reduction of Ca 2+ uptake associated with hypoxic exposure was not observed in fish experiencing HIF-1αb knockdown. Additionally, the effects of hypoxia on reducing the number of ecac-expressing ionocytes was less pronounced in HIF-1αb-deficient fish. Overall, the current study revealed that hypoxic exposure inhibited Ca 2+ uptake in developing zebrafish, probably owing to HIF-1αb-mediated suppression of ecac expression. © 2016. Published by The Company of Biologists Ltd.

  3. Amino acid study of cerebral gliomas using positron emission tomography; Analysis of ( sup 11 C-methyl)-L-methionine uptake index

    Energy Technology Data Exchange (ETDEWEB)

    Mineura, Katsuyoshi; Sasajima, Toshio; Suda, Yoshitaka; Kowada, Masayoshi [Akita Univ. (Japan). School of Medicine; Shishido, Fumio; Uemura, Kazuo

    1990-12-01

    Sixteen patients with gliomas (7 low grade, 9 high grade) were examined using positron emission tomography (PET) with intravenous administration of 22.2 MBq/kg (0.6 mCi/Kg) of ({sup 11}C-methyl)-L-methionine (C-11 Met). The tracer uptake in regions of interest was calculated on PET images taken 45 minutes after injection; the uptake index was represented as a percentage of the total count in the arterial blood summed over 45 minutes. C-11 Met uptake indices in the tumors ranged from 0.020 to 0.041% with a mean of 0.032% for the low-grade gliomas and from 0.013 to 0.044% with a mean of 0.036% for the high-grade gliomas. These indices significantly increased as compared with those in the contralateral gray matter (0.008-0.032% with a mean of 0.023%; p<0.01 vs low-grade gliomas, p<0.001 vs high-grade gliomas). In the low-grade gliomas, C-11 Met PET images clearly depicted the existence and even the extent of the tumors, although x-ray computed tomography (CT) did not always distinguish tumoral lesions. In the high-grade gliomas, the areas of tracer accumulation regionally extended to peritumoral low density on CT scans, where malignant tumor cell infiltration was proved by operative and follow-up CT findings. C-11 Met may be a useful radiopharmaceutical for differential diagnosis of gliomas, and the accuracy of tumor localization will give us a better rationale in therapeutic strategies for surgery and radiation therapy of gliomas. (author).

  4. In vitro uptake of /sup 14/C-praziquantel by cestodes, trematodes, and a nematode

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, P.; Thomas, H.; Weber, H.

    1980-12-01

    /sup 14/C-praziquantel was rapidly taken up by Schistosoma mansoni, Fasciola hepatica, Hymenolepis nana, and isolated strobilocerci of Taenia taeniaeformis. Schistosoma mansoni lost praziquantel rapidly to drug-free medium. Chromatography of extracts prepared after incubation of S. mansoni and H. nana yielded no indication that praziquantel was metabolized. Autoradiography revealed a uniform distribution of praziquantel throughout the tissues of S. mansoni and H. nana. Uptake was considerably slower in the nematode Heterakis spumosa and apparently via the oral route.

  5. Plasma levels of cAMP, cGMP and CGRP in sildenafil-induced headache

    DEFF Research Database (Denmark)

    Kruuse, Christina Rostrup; Frandsen, E; Schifter, S

    2004-01-01

    Sildenafil, a selective inhibitor of the cyclic guanosine monophosphate (cGMP) degrading phosphodiestrase 5 (PDE5), induced migraine without aura in 10 of 12 migraine patients and in healthy subjects it induced significantly more headache than placebo. The aim of the present study was to determine...... whether the pain-inducing effects of sildenafil would be reflected in plasma levels of important signalling molecules in migraine: cGMP, cyclic adenosine monophosphate (cAMP) and calcitonin gene-related peptide (CGRP). Ten healthy subjects (four women, six men) and 12 patients (12 women) suffering from...... migraine without aura were included in two separate double-blind, placebo-controlled, cross-over studies in which placebo or sildenafil 100 mg was administered orally. Plasma levels of CGRP, cAMP and cGMP were determined in blood from the antecubital vein. Despite the ability of sildenafil to induce...

  6. Uptake and elimination of [9-14C]phenanthrene in the turkey wing mussel (Arca zebra)

    International Nuclear Information System (INIS)

    Solbakken, J.E.; Knap, A.H.; Searle, C.E.; Palmork, K.H.

    1983-01-01

    Turkey wing mussels of both sexes were collected from Harrington Sound, Bermuda and dosed after a week-long acclimation period with [9- 14 C]phenanthrene (714 MBq/mmol). They were transferred into 8 liters of seawater containing 8 μg of labelled phenanthrene. Results show that the accumulation of labelled phenanthrene in the turkey wing mussel was very low compared to that found in other species. In the hepatopancreas, the uptake of phenanthrene based on the water concentration was only 4% of the corresponding value found in the calico clam (Macrocallista maculata) inhabiting the same area. In comparison, the uptake of phenanthrene in a temperate mollusc such as the horse mussel (Modiola modiolus) was also considerably higher than in the turkey wing (approx. 4 times). It therefore seems likely that these are due to species variations rather than environmental variations between subtropical and temperate areas

  7. Diselenolane-mediated cellular uptake.

    Science.gov (United States)

    Chuard, Nicolas; Poblador-Bahamonde, Amalia I; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi; Matile, Stefan

    2018-02-21

    The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides.

  8. Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth.

    Science.gov (United States)

    Liu, Xue; Feng, Hua-Yuan; Fu, Jing-Wei; Chen, Yanshan; Liu, Yungen; Ma, Lena Q

    2018-05-01

    It is known that arsenic (As) promotes growth of As-hyperaccumulator Pteris vittata (PV), however, the associated mechanisms are unclear. Here we examined As-induced nutrient uptake in P. vittata and their potential role to enhance plant growth in sterile agar by excluding microbial effects. As-hyperaccumulator P. multifida (PM) and non-hyperaccumulator P. ensiformis (PE) belonging to the Pteris genus were used as comparisons. The results showed that, after 40 d of growth, As induced biomass increase in hyperaccumulators PV and PM by 5.2-9.4 fold whereas it caused 63% decline in PE. The data suggested that As played a beneficial role in promoting hyperaccumulator growth. In addition, hyperaccumulators PV and PM accumulated 7.5-13, 1.4-3.6, and 1.8-4.4 fold more As, Fe, and P than the non-hyperaccumulator PE. In addition, nutrient contents such as K and Zn were also increased while Ca, Mg, and Mn decreased or unaffected under As treatment. This study demonstrated that As promoted growth in hyperaccumulators and enhanced Fe, P, K, and Zn uptake. Different plant growth responses to As among hyperaccumulators PV and PM and non-hyperaccumulator PE may help to better understand why hyperaccumulators grow better under As-stress. Published by Elsevier Ltd.

  9. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity.

    Science.gov (United States)

    Walewski, José L; Ge, Fengxia; Lobdell, Harrison; Levin, Nancy; Schwartz, Gary J; Vasselli, Joseph R; Pomp, Afons; Dakin, Gregory; Berk, Paul D

    2014-07-01

    Microarray studies identified Ch12:orf39 (Spexin) as the most down-regulated gene in obese human fat. Therefore, we examined its role in obesity pathogenesis. Spexin effects on food intake, meal patterns, body weight, respiratory exchange ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with diet-induced obesity (DIO). Its effects on adipocyte [(3)H]-oleate uptake were determined. In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = -0.797) with Leptin. In rats, Spexin (35 µg/kg/day SC) reduced caloric intake ∼32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 µg/kg/day IP) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70 µg/kg/day IP) demonstrated no aversive Spexin effects. Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy. Copyright © 2014 The Obesity Society.

  10. Effects of Ghrelin on Triglyceride Accumulation and Glucose Uptake in Primary Cultured Rat Myoblasts under Palmitic Acid-Induced High Fat Conditions

    Directory of Open Access Journals (Sweden)

    Lingling Han

    2015-01-01

    Full Text Available This study aimed to study the effects of acylated ghrelin on glucose and triglyceride metabolism in rat myoblasts under palmitic acid- (PA- induced high fat conditions. Rat myoblasts were treated with 0, 10−11, 10−9, or 10−7 M acylated ghrelin and 0.3 mM PA for 12 h. Triglyceride accumulation was determined by Oil-Red-O staining and the glycerol phosphate dehydrogenase-peroxidase enzymatic method, and glucose uptake was determined by isotope tracer. The glucose transporter 4 (GLUT4, AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase (ACC, and uncoupling protein 3 (UCP3 were assessed by RT-PCR and western blot. Compared to 0.3 mM PA, ghrelin at 10−9 and 10−7 M reduced triglyceride content (5.855 ± 0.352 versus 5.030 ± 0.129 and 4.158 ± 0.254 mM, P<0.05 and prevented PA-induced reduction of glucose uptake (1.717 ± 0.264 versus 2.233 ± 0.333 and 2.333 ± 0.273 10−2 pmol/g/min, P<0.05. The relative protein expression of p-AMPKα/AMPKα, UCP3, and p-ACC under 0.3 mM PA was significantly reduced compared to controls (all P<0.05, but those in the 10−9 and 10−7 M ghrelin groups were significantly protected from 0.3 mM PA (all P<0.05. In conclusion, acylated ghrelin reduced PA-induced triglyceride accumulation and prevented the PA-induced decrease in glucose uptake in rat myoblasts. These effects may involve fatty acid oxidation.

  11. Synthesis of 14C- and 3H-labeled fluoxetine, a selective serotonin uptake inhibitor

    International Nuclear Information System (INIS)

    Robertson, D.W.; Krushinski, J.H.; Wong, D.T.; Kau, D.

    1987-01-01

    Fluoxetine (N-methyl-γ-(4-(trifluoromethyl)phenoxy) benzenepropanamine) is a potent, highly selective serotonin uptake inhibitor that is useful in treating a variety of major psychiatric derangements. We have synthesized this compound in 14 C- and 3 H-labeled forms. The tritium label was introduced in the final step by catalytic dehalogenation of the brominated fluoxetine precursor. Reaction conditions could be controlled such that catalytic hydrogenolysis of the labile C-O benzylic bond was minimized. Following HPLC purification, [ 3 H]-fluoxetine was obtained in a state of high radiochemical purity (98%) and specific activity (20.4 Ci/mmol). The 14 C-label was introduced in the final step via a nucleophilic aromatic substitution reaction between the sodium salt of α-(2-(methylamino)ethyl)benzenemethanol and uniformly ring-labeled p-chlorobenzotrifluoride. Following purification by flash chromatography, [ 14 C]-fluoxetine was obtained in 98.3% radiochemical purity with a specific activity of 5.52 mCi/mmol. (author)

  12. Thyroid uptake of I-131 during anti-thyroid drug treatment

    International Nuclear Information System (INIS)

    Hoque, M.; Alam, F.; Haque, F.S.; Karim, M.A.; Fariduddin, M.

    2004-01-01

    Hyperthyroidism is a global ailment and its treatment is very promising either by ant-thyroid drug or by radioiodine. Iodine-131 uptake test is very important for evaluation of hyperthyroid in respect to its therapy and to exclude thyroiditis. This study was performed to observe the thyroid uptake pattern during intake of anti-thyroid medicine and workout the possibility to start I-131 therapy just after withdraw of antithyroid drug without waiting few days. In this study total 252 patient's I-131 uptake test is performed. Among the patient 135 (53.57%) were female, 117 (64.43%) were male. All this patients were hyperthyroid both clinically and biochemically. Thyroid uptake was taken to all patients at 24 hours after oral administration of 5 to 10 micro-curie of I -131. Uptake was taken by an uptake system and recorded as percentage uptake. These patients are grouped into three categories. Group-A-newly diagnosed cases, who have not taken antithyroid drug or I-131 therapy, there were 82 patients in this group, and their mean uptake was 37.12 ±18.5%. Group B - this group of patients were studied during intake of antithyroid medicine, there were 130 patients in this group and their mean uptake was 34.34±16.0%. Group-B patients were further divided in two sub-groups, patients having antithyroid drug for 1 to 3 weeks (group-B 1), group B1 have mean uptake 37±21% and those were taking antithyroid for 3 weeks to 2 years (group-B2), group B2 have uptake 34.34±20%. Group C- these patients are taken from those patients who had withdrawn antithyroid drug for 3 days to 3 months, there were 40 such patients. Group C further divided into two sub-group, group-C1 (stopped for 3-10 days) and group C2 (stopped for 11 days to 3 months). Group C1 had mean uptake 38±16% and group C2 had mean uptake 35±19%. From this study it is observed that Iodine-131 uptake percentage of untreated hyperthyroid; during antithyroid drug treatment and after withdraw of antithyroid drug almost

  13. Hydrogen uptake by Azolla-Anabaena

    International Nuclear Information System (INIS)

    Ruschel, A.P.; Freitas, J.R. de; Silva, P.M.

    1984-01-01

    The hydrogen uptake in the Azolla-Anabaena system is studied. Tritium is used as tracer. Plants are incubated under different atmosphere composition: a) Air + 3 H 2 ; b) Air + CO 2 + 3 H 2 + CO; c) Air + 3 H 2 + CO; d) Air + CO 2 + 3 H 2 + CO to study the pathway of absorbed hydrogen in the Azolla - Anabaena system. Azolla-Anabaena showed greater hydrogen uptake under argonium atmosphere than under air. Carbon monoxide decreased hydrogen uptake. There are evidences of recycling of the hydrogen evolved through notrogenease. (Author) [pt

  14. Growth, 14C-sucrose uptake, and metabolites of starch synthesis in apical and basal kernels of corn (Zea mays L.)

    International Nuclear Information System (INIS)

    Greenberg, J.M.

    1985-01-01

    Developing field-grown kernels of corn (Zea mays L. cv. Cornell 175) from the base and apex of the ear were sampled from seven to 70 days after pollination (DAP) an compared with respect to dry weight, ability to take up 14 C-sucrose from solution in vitro, and content of sucrose, glucose, starch, glucose-1-P (G1P), glucose-6-P (G6P), fructose-6-P (F6P), ADP-glucose (ADPG), and UDP-glucose (UDPG). ADPG and UDPG were analyzed by HPLC. All other metabolites were analyzed enzymatically. Simultaneous hand-pollination of all ovaries in an ear did not reduce the difference between apical and basal kernels in dry weight, indicating that the latter fertilization of apical kernels was not responsible for their lesser mature dry weight. Detached kernels took up 14 C-sucrose (0.3-400 mM) and glucose (5-100 mM) at rates linearly proportional to the sugar concentration. Glucose, fructose, and sorbitol did not inhibit uptake of 14 C-sucrose. Uptake was not stimulated by 5 mM CaCl 2 or the addition of buffers (pH 4.5-6.7) to the medium. Sulfhydryl reagents (PCMBS, NEM) and metabolic inhibitors (TNBS, DNP, NaF) did not reduce uptake. These observations suggest that sucrose is taken up by a non-saturable, non-energy-requiring mechanism. Sucrose uptake increased throughout development, especially at the stage when basal kernels began to accumulate more dry weight than apical kernels (10-20 DAP in freely pollinated ears; 25 DAP in synchronously pollinated ears). Hydrolysis of incorporated sucrose increased from 87% at 14 DAP to 99% by 57 DAP

  15. Radiotherapy may induce enhanced uptake on F-18-fluoroestradiol PET scans

    NARCIS (Netherlands)

    Venema, C. M.; Veen, van der S. J.; Glaudemans, A. W. J. M.; Schroder, C. P.; de Vries, E. F. J.; Hospers, G. A. P.

    2016-01-01

    Introduction: Whole body imaging of 18F-fluoroestradiol (FES) uptake combined with positron emission tomography (PET) has been applied for diagnosis and prediction of therapy response in estrogen receptor (ER) positive breast cancer patients. A maximal standardized uptake value (SUVmax) of 1.5 has

  16. Uptake of C14-atrazine by prairie grasses in a phytoremediation setting.

    Science.gov (United States)

    Khrunyk, Yuliya; Schiewer, Silke; Carstens, Keri L; Hu, Dingfei; Coats, Joel R

    2017-02-01

    Agrochemicals significantly contribute to environmental pollution. In the USA, atrazine is a widely used pesticide and commonly found in rivers, water systems, and rural wells. Phytoremediation can be a cost-effective means of removing pesticides from soil. The objective of this project was to investigate the ability of prairie grasses to remove atrazine. 14 C-labeled atrazine was added to sterilized sand and water/nutrient cultures, and the analysis was performed after 21 days. Switchgrass and big bluestem were promising species for phytoremediation, taking up about 40% of the applied [ 14 C] in liquid hydroponic cultures, and between 20% and 33% in sand cultures. Yellow Indiangrass showed low resistance to atrazine toxicity and low uptake of [ 14 C] atrazine in liquid hydroponic cultures. Atrazine degradation increased progressively from sand to roots and leaves. Most atrazine taken up by prairie grasses from sand culture was degraded to metabolites, which accounted for 60-80% of [ 14 C] detected in leaves. Deisopropylatrazine (DIA) was the main metabolite detected in sand and roots, whereas in leaves further metabolism took place, forming increased amounts of didealkylatrazine (DDA) and an unidentified metabolite. In conclusion, prairie grasses achieved high atrazine removal and degradation, showing a high potential for phytoremediation.

  17. Neuroimaging Findings in a Brain With Niemann–Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Jei-Yie Huang

    2011-08-01

    Full Text Available Niemann-Pick type C disease (NPC is a rare autosomal recessive lipid storage disorder caused by impaired cellular functions in processing and transporting low-density lipoprotein-cholesterol. In this report, we present magnetic resonance imaging (MRI, magnetic resonance spectrography (MRS and 18-fluoro-2-deoxyglucose positron emission tomography (PET imaging results for a 22-year-old male NPC patient. The patient's two MRI studies (at age 19 years and 22 years demonstrated progressive changes of brain atrophy that were more prominent at the frontal lobes, and hyperintense signals in bilateral parietal-occipital periventricular white matter. MRS (at age 19 years revealed no significant decrease in N-acetyl aspartate/choline ratio in the left frontal central white matter. PET (at age 22 years showed significant bilateral hypometabolism in the prefrontal cortex and dorsomedial thalamus, and hypermetabolism in the parietal-occipital white matter, lenticular nucleus of the basal ganglia, cerebellum and pons. The imaging findings noted by MRI, MRS and 18-fluoro-2-deoxyglucose PET offered a possible supplementary explanation for the clinical neurological symptoms of this NPC patient.

  18. Disruption of Lipid Uptake in Astroglia Exacerbates Diet-Induced Obesity.

    Science.gov (United States)

    Gao, Yuanqing; Layritz, Clarita; Legutko, Beata; Eichmann, Thomas O; Laperrousaz, Elise; Moullé, Valentine S; Cruciani-Guglielmacci, Celine; Magnan, Christophe; Luquet, Serge; Woods, Stephen C; Eckel, Robert H; Yi, Chun-Xia; Garcia-Caceres, Cristina; Tschöp, Matthias H

    2017-10-01

    Neuronal circuits in the brain help to control feeding behavior and systemic metabolism in response to afferent nutrient and hormonal signals. Although astrocytes have historically been assumed to have little relevance for such neuroendocrine control, we investigated whether lipid uptake via lipoprotein lipase (LPL) in astrocytes is required to centrally regulate energy homeostasis. Ex vivo studies with hypothalamus-derived astrocytes showed that LPL expression is upregulated by oleic acid, whereas it is decreased in response to palmitic acid or triglycerides. Likewise, astrocytic LPL deletion reduced the accumulation of lipid droplets in those glial cells. Consecutive in vivo studies showed that postnatal ablation of LPL in glial fibrillary acidic protein-expressing astrocytes induced exaggerated body weight gain and glucose intolerance in mice exposed to a high-fat diet. Intriguingly, astrocytic LPL deficiency also triggered increased ceramide content in the hypothalamus, which may contribute to hypothalamic insulin resistance. We conclude that hypothalamic LPL functions in astrocytes to ensure appropriately balanced nutrient sensing, ceramide distribution, body weight regulation, and glucose metabolism. © 2017 by the American Diabetes Association.

  19. Hydroxylamine enhances glucose uptake in C2C12 skeletal muscle cells through the activation of insulin receptor substrate 1.

    Science.gov (United States)

    Kimura, Taro; Kato, Eisuke; Machikawa, Tsukasa; Kimura, Shunsuke; Katayama, Shinji; Kawabata, Jun

    2014-02-28

    Diabetes mellitus is a global disease, and the number of patients with it is increasing. Of various agents for treatment, those that directly act on muscle are currently attracting attention because muscle is one of the main tissues in the human body, and its metabolism is decreased in type II diabetes. In this study, we found that hydroxylamine (HA) enhances glucose uptake in C2C12 myotubes. Analysis of HA's mechanism revealed the involvement of IRS1, PI3K and Akt that is related to the insulin signaling pathway. Further investigation about the activation mechanism of insulin receptor or IRS1 by HA may provide a way to develop a novel anti-diabetic agent alternating to insulin. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Rare solitary focal tuberculous involvement of liver masquerading as hepatic metastasis on FDG PET/CT in a case of fibular round cell tumor

    International Nuclear Information System (INIS)

    Puranik, Ameya D; Purandare, Nilendu C; Sridhar, Epari; Agrawal, Archi; Shah, Sneha; Rangarajan, Venkatesh

    2015-01-01

    Finding of focal 18F-fluoro-deoxyglucose (FDG) uptake in liver on FDG positron emission tomography/computed tomography (FDG PET/CT) in a known case of malignancy is often considered to be metastases. We report a similar finding on FDG PET/CT in a case of Ewing's sarcoma of thigh, which turned out to be of tuberculous etiology, an unusual cause of false positive FDG uptake in the liver

  1. A Radiochemical Biotechnological Approach: Preliminary Study of Lactose Uptake Rate by Kefir Cells, Using 14C-labeled Lactose, in Anaerobic Fermentation

    Science.gov (United States)

    Golfinopoulos, A.; Soupioni, M.; Kanellaki, M.; Koutinas, A. A.

    2008-08-01

    The effect of initial lactose concentration on lactose uptake rate by kefir free cells, during the lactose fermentation, was studied in this work. For the investigation 14C-labelled lactose was used due to the fact that labeled and unlabeled molecules are fermented in the same way. The results illustrated lactose uptake rates are about up to two fold higher at lower initial ∘Bé densities as compared with higher initial ∘Bé densities.

  2. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  3. Effects of a phospholipase A2 inhibitor on uptake and toxicity of liposomes containing plant phosphatidylinositol

    International Nuclear Information System (INIS)

    Jett, M.; Alving, C.R.

    1986-01-01

    Plant phosphatidylinositol (PI) has been shown by us to have a direct cytotoxic effect on cultured tumor cells but not on normal cells. Synthetic PI containing 14 C-linoleic acid in the sn-2 position, also showed the same pattern of selective cytotoxicity. When the metabolic fate of synthetic PI was examined with tumor cells, the radioactivity which no longer occurred as PI, was found as either products of phospholipase A 2 (93%, free fatty acids and phosphatidylcholine) or phospholipase C (7%, diglycerides). Uptake of liposomal PI was directly correlated with cytotoxicity. They tested a variety of inhibitors to see the effect on uptake and/or cytotoxicity of plant PI. General metabolic inhibitors such as metrizamide or sodium azide did not alter cellular uptake of the plant PI liposomes. Inhibitors of lipoxygenase formation, such as indomethacin, also did not alter the uptake or cytotoxicity induced by plant PI. Quinacrine, an inhibitor of phospholipase A 2 , decreased the uptake of the PI containing liposomes to 50% of that seen in the presence or absence of any other inhibitor. Although quinacrine is itself toxic to cells, at low concentrations of quinacrine, plant PI did not show the same degree of cytotoxicity as in the absence of quinacrine. These data are compatible with the hypothesis that plant PI exerts cytotoxicity by serving as a substrate for phospholipase A 2

  4. Glucose metabolism and metabolic flexibility in cultured skeletal muscle cells is related to exercise status in young male subjects

    DEFF Research Database (Denmark)

    Lund, Jenny; S Tangen, Daniel; Wiig, Håvard

    2018-01-01

    deoxyglucose accumulation and fractional glucose oxidation (glucose oxidation relative to glucose uptake), and were also more sensitive to the suppressive action of acutely added oleic acid to the cells. Despite lack of correlation of fibre types between skeletal muscle biopsies and cultured cells, myotubes...

  5. 99mTc-DPD uptake in juvenile arthritis

    International Nuclear Information System (INIS)

    Stender Hansen, E.; Holm, I.E.; Buenger, C.; Knudsen, V.; Noer, I.; Bach Christensen, S.

    1986-01-01

    Unilateral arthritis of the knee was induced in mongrel puppies by intraarticular injections of 1% Carragheenan. Bone metabolism was studied by a scintimetric technique on static 99m Tc-diphosphonate bone scans every 2nd week during the induction of arthritis for 3 months and monthly in a postarthritic phase of another 3 months. Changes in uptake of radionuclide were present after 2 weeks. The induction phase was characterized by a decreased uptake in the calcification layer of the juxta-articular growth plates and a moderately increased epiphyseal uptake. The postarthritic phase was characterized by normalization of growth plate uptake and a marked increase in epiphyseal uptake. Using contact autoradiography, the epiphyseal uptake was seen mainly in a narrow subchondral and subsynovial bone layer, around bone cysts and osteophytes, whereas central epiphyseal bone was osteopenic with decreased uptake of tracer. The study suggests that the early scintigraphic appearance of juvenile non-suppurative arthritis may be an overall decrease in uptake of 99m Tc-diphosphonate due to a depression of growth plate metabolism. (author)

  6. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Rowan M; Caplan, David; Pomes, Regis [Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Fadda, Elisa, E-mail: pomes@sickkids.ca [Department of Chemistry, University of Galway (Ireland)

    2011-06-15

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay

  7. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    International Nuclear Information System (INIS)

    Henry, Rowan M; Caplan, David; Pomes, Regis; Fadda, Elisa

    2011-01-01

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay

  8. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    Science.gov (United States)

    Henry, Rowan M.; Caplan, David; Fadda, Elisa; Pomès, Régis

    2011-06-01

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay

  9. Uptake and movement of 14C-lindane in coffee plants

    International Nuclear Information System (INIS)

    Ruegg, E.F.; Lord, K.A.; Mesquita, T.B.

    1977-01-01

    Several types of experiments were performed to investigate the uptake and distribution of lindane in coffee plants using 14 C-labelled insecticide. The investigations showed that the insecticide taken from nutrient solution is concentrated in the roots and then moves to other parts of the plant. Experiments using macerated plant tissue showed that concentration of lindane in the roots occurs probably by a passive physical process. In another series of tests, leaf tretments of coffee plants grown in pots or in solution indicated that in a few hours about 90% of lindane may be lost from treated leaf as vapor. Some lindane, however, has been detected in other parts of the plant indicating leaf transllocation or migration of the insecticide through the air. The latter hypothesis has been proved by closed and open system comparative experiments using gas chromatographic techniques. This does not exclude a slower and possibly smaller translocation within the plant, suggested by the experiments using radioactivity,. (author) [pt

  10. Inducible transport of citrate in Lactobacillus rhamnosus ATCC 7469.

    Science.gov (United States)

    de Figueroa, R M; Benito de Cárdenas, I L; Sesma, F; Alvarez, F; de Ruiz Holgado, A P; Oliver, G

    1996-10-01

    Lactobacillus rhamnosus ATCC 7469 exhibited diauxie when grown in a medium containing both glucose and citrate as energy source. Glucose was used as the primary energy source during the glucose-citrate diauxie. Uptake of citrate was carried out by an inducible citrate transport system. The induction of citrate uptake system was repressed in the presence of glucose. This repression was reversible and mediated by cAMP.

  11. 11C-methionine uptake in the brain of phenylketonuric children

    International Nuclear Information System (INIS)

    Comar, D.; Chopinet, A.; Maziere, M.; Berger, G.; Todd-Pokropek, A.

    The investigation covered 9 children aged between 7 and 77 months. The brain uptake for each examination before and after correction (for each child correction due to pericerebral activity, calculated by a method described) and the ratio between the corrected uptake rates of two examinations are reported. The results show clearly the strong resistance of the blood brain barrier to the passage of methionine in non-dieting phenylketonuric children. Moreover analysis of the brain radioactivity variation with time during the two examinations suggests a partial inhibition of brain protein synthesis, especially when the blood phenylalanine content is high [fr

  12. Uptake of carnitine by red blood cells

    International Nuclear Information System (INIS)

    Campa, M.; Borum, P.

    1986-01-01

    A significant amount of blood carnitine (70% of cord blood and 40% of blood from healthy adults) is partitioned into the red blood cell compartment of whole blood. Data indicate that the plasma compartment and the red blood cell compartment of whole blood represent different metabolic pools of carnitine. There are no data to indicate that red blood cells synthesize carnitine, but our understanding of the uptake of carnitine by red blood cells is negligible. Red blood cells were obtained from healthy adults, washed twice with normal saline, and used for uptake experiments. When the cells were incubated at 37 0 C in the presence of 14 C-carnitine, radioactivity was found both in the soluble cytosolic and membrane fractions of the cells following lysis. The uptake was dependent upon the time of incubation, temperature of incubation, and carnitine concentration in the incubation medium. Washed red blood cell membranes incubated with 14 C-carnitine showed specific binding of radioactivity. These data are consistent with the hypothesis that red blood cells have an uptake mechanism for L-carnitine

  13. A Radiochemical Biotechnological Approach: Preliminary Study of Lactose Uptake Rate by Kefir Cells, Using 14C-labeled Lactose, in Anaerobic Fermentation

    International Nuclear Information System (INIS)

    Golfinopoulos, A.; Soupioni, M.; Kanellaki, M.; Koutinas, A. A.

    2008-01-01

    The effect of initial lactose concentration on lactose uptake rate by kefir free cells, during the lactose fermentation, was studied in this work. For the investigation 14 C-labelled lactose was used due to the fact that labeled and unlabeled molecules are fermented in the same way. The results illustrated lactose uptake rates are about up to two fold higher at lower initial (convolution sign)Be densities as compared with higher initial (convolution sign)Be densities

  14. Uptake of mercury vapor by wheat. An assimilation model

    International Nuclear Information System (INIS)

    Browne, C.L.; Fang, S.C.

    1978-01-01

    Using a whole-plant chamber and 203 Hg-labeled mercury, a quantitative study was made of the effect of environmental parameters on the uptake, by wheat (Triticum aestivum), of metallic mercury vapor, an atmospheric pollutant. Factors were examined in relation to their influence on components of the gas-assimilation model, U(Hg) = (C/sub A' -- C/sub L')/(r/sub L.Hg/ + r/sub M.Hg/) where U(Hg) is the rate of mercury uptake per unit leaf surface, C/sub A'/ is the ambient mercury vapor concentration, C/sub L'/ is the mercury concentration at immobilization sites within the plant (assumed to be zero), r/sub L.Hg/ is the total leaf resistance to mercury vapor exchange, and r/sub M.Hg/ is a residual term to account for unexplained physical and biochemical resistances to mercury vapor uptake. Essentially all mercury vapor uptake was confined to the leaves. r/sub L.Hg/ was particularly influenced by illumination (0 to 12.8 klux), but unaffected by ambient temperature (17 to 33 0 C) and mercury vapor concentration (0 to 40 μg m -3 ). The principal limitation to mercury vapor uptake was r/sub M.Hg/, which was linearly related to leaf temperature, but unaffected by mercury vapor concentration and illumination, except for apparent high values in darkness. Knowing C/sub A'/ and estimating r/sub L.Hg/ and r/sub M.Hg/ from experimental data, mercury vapor uptake by wheat in light was accurately predicted for several durations of exposure using the above model

  15. Gallium-67-labeled lactam bridge-cyclized alpha-MSH peptides with enhanced melanoma uptake and reduced renal uptake.

    Science.gov (United States)

    Guo, Haixun; Gallazzi, Fabio; Miao, Yubin

    2012-06-20

    The purpose of this study was to examine the melanoma targeting and pharmacokinetic properties of (67)Ga-DOTA-GGNle-CycMSHhex {(67)Ga-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and (67)Ga-NOTA-GGNle-CycMSHhex {(67)Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and compare with (67)Ga-DOTA-GlyGlu-CycMSH {(67)Ga-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]} we previously reported. DOTA-GGNle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSHhex was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSHhex. The melanoma targeting and pharmacokinetic properties of (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex displayed comparable MC1 receptor binding affinities (1.6 vs 2.1 nM) in B16/F1 melanoma cells. Both (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex exhibited dramatically enhanced melanoma uptake and reduced renal uptake than (67)Ga-DOTA-GlyGlu-CycMSH in B16/F1 melanoma-bearing C57 mice. Furthermore, (67)Ga-NOTA-GGNle-CycMSHhex exhibited more favorable radiolabeling conditions (>85% radiolabeling yields started at 37 °C), as well as higher tumor/kidney uptake ratios than (67)Ga-DOTA-GGNle-CycMSHhex at 0.5, 2, and 24 h postinjection. High melanoma uptake coupled with low renal uptake highlighted the potential of (67)Ga-NOTA-GGNle-CycMSHhex for melanoma imaging and therapy.

  16. Tunable Robust pacs-MOFs: a Platform for Systematic Enhancement of the C2H2 Uptake and C2H2/C2H4 Separation Performance.

    Science.gov (United States)

    Chen, Di-Ming; Sun, Chun-Xiao; Zhang, Nan-Nan; Si, Huan-Huan; Liu, Chun-Sen; Du, Miao

    2018-03-05

    As a modulatable class of porous crystalline materials, metal-organic frameworks (MOFs) have gained intensive research attention in the domain of gas storage and separation. In this study, we report on the synthesis and gas adsorption properties of two robust MOFs with the general formula [Co 3 (μ 3 -OH)(cpt) 3 Co 3 (μ 3 -OH)(L) 3 (H 2 O) 9 ](NO 3 ) 4 (guests) n [L = 3-amino-1,2,4-triazole (1) and 3,5-diamino-1,2,4-triazole (2); Hcpt = 4-(4-carboxyphenyl)-1,2,4-triazole], which show the same pacs topology. Both MOFs are isostructural to each other and show MIL-88-type frameworks whose pore spaces are partitioned by different functionlized trinuclear 1,2,4-triazolate-based clusters. The similar framework components with different amounts of functional groups make them an ideal platform to permit a systematic gas sorption/separation study to evaluate the effects of distinctive parameters on the C 2 H 2 uptake and separation performance. Because of the presence of additional amido groups, the MOF 2 equipped with a datz-based cluster (Hdatz = 3,5-diamino-1,2,4-triazole) shows a much improved C 2 H 2 uptake capacity and separation performance over that of the MOF 1 equipped with atz-based clusters (Hatz = 3-amino-1,2,4-triazole), although the surface area of the MOF 1 is almost twice than that of the MOF 2. Moreover, the high density of open metal sites, abundant free amido groups, and charged framework give the MOF 2 an excellent C 2 H 2 separation performance, with ideal adsorbed solution theory selectivity values reaching up to 11.5 and 13 for C 2 H 2 /C 2 H 4 (1:99) and C 2 H 2 /CO 2 (50:50) at 298 K and 1 bar, showing potential for use in natural gas purification.

  17. An improved approach for remotely sensing water stress impacts on forest C uptake.

    Science.gov (United States)

    Sims, Daniel A; Brzostek, Edward R; Rahman, Abdullah F; Dragoni, Danilo; Phillips, Richard P

    2014-09-01

    Given that forests represent the primary terrestrial sink for atmospheric CO2 , projections of future carbon (C) storage hinge on forest responses to climate variation. Models of gross primary production (GPP) responses to water stress are commonly based on remotely sensed changes in canopy 'greenness' (e.g., normalized difference vegetation index; NDVI). However, many forests have low spectral sensitivity to water stress (SSWS) - defined here as drought-induced decline in GPP without a change in greenness. Current satellite-derived estimates of GPP use a vapor pressure deficit (VPD) scalar to account for the low SWSS of forests, but fail to capture their responses to water stress. Our objectives were to characterize differences in SSWS among forested and nonforested ecosystems, and to develop an improved framework for predicting the impacts of water stress on GPP in forests with low SSWS. First, we paired two independent drought indices with NDVI data for the conterminous US from 2000 to 2011, and examined the relationship between water stress and NDVI. We found that forests had lower SSWS than nonforests regardless of drought index or duration. We then compared satellite-derived estimates of GPP with eddy-covariance observations of GPP in two deciduous broadleaf forests with low SSWS: the Missouri Ozark (MO) and Morgan Monroe State Forest (MMSF) AmeriFlux sites. Model estimates of GPP that used VPD scalars were poorly correlated with observations of GPP at MO (r(2) = 0.09) and MMSF (r(2) = 0.38). When we included the NDVI responses to water stress of adjacent ecosystems with high SSWS into a model based solely on temperature and greenness, we substantially improved predictions of GPP at MO (r(2) = 0.83) and for a severe drought year at the MMSF (r(2) = 0.82). Collectively, our results suggest that large-scale estimates of GPP that capture variation in SSWS among ecosystems could improve predictions of C uptake by forests under drought. © 2014 John Wiley & Sons

  18. Uptake of indium-111 labelled platelets by normal, nephrotic and transplanted kidneys

    International Nuclear Information System (INIS)

    Desir, G.; Lange, R.; Smith, E.; Bia, M.; Flye, M.; Kashgarian, M.; Canganelli, A.; Ezekowitz

    1984-01-01

    To determine the role of platelets in the genesis of renal transplant (T) rejection, the authors studied 3 groups of adult patients. Group I, n=8, had normal renal function (Cr=1 +- 0.1 mg%, Mean +- SD). Group II, n=9, had nephrotic syndrome (Cr=2.4 +- 1). Group III, n=7, consisted of 5 cadaveric (C) and 2 living related donor (LRD) T. In Group II, 1 patient had received a T 4 years prior to study. Group I and II received 448 +- 101 μCi and Group III 236 +- 51 μCi of Indium-111. In Groups I and II the first image was obtained 18 +- 6 hrs after injection. In Group II the first was obtained 6 +- 2 hr after injection and 1-3 times/day thereafter for a maximum of 7 days. Renal biopsies were obtained in all patients in Group III during imaging (n=5) or within 2 - 5 days of the last image. One patient was studied twice. In Group III, 5 patients received prednisone and azothiaprine and 2 prednisone and cyclosporine. Platelet uptake index (PUI) was calculated as the ratio of uptake over the T against a reference area. Rejection was diagnosed by biopsy. In groups I and II platelet uptake was seen only in the T patient. In Group III the PUI was 1.54 +- .13 in the rejecting T (n=5), 1.42 +- .2 in the non-rejecting T (n=3), 1.62 in a LRD non-rejecting T and 1.31 (n=2) in C non-rejecting T. In the four patients studied within 5 days of T the PUI was elevated at 1.47 +- .1. The authors conclude that: 1) platelets do not accumulate in normal or nephrotic native kidneys, 2) significant uptake occurs in the first week after C and LRD whether or not rejection is present, and 3) uptake in non-rejecting kidneys cannot be ascribed to perfusion induced endothelial injury since it was present in LRD transplants

  19. 16 alpha-[77Br]bromoestradiol-17 beta: a high specific-activity, gamma-emitting tracer with uptake in rat uterus and uterus and induced mammary tumors

    International Nuclear Information System (INIS)

    Katzenellenbogen, J.A.; Senderoff, S.G.; McElvany, K.D.; O'Brien, H.A. Jr.; Welch, M.J.

    1981-01-01

    16 alpha-[77Br]bromoestradiol-17 beta (Compound 1) has been synthesized by radiobromination of estrone enoldiacetate. Tissue uptake studies performed 1 h after administration of Compound 1 to immature or mature female rats showed uterus-to-blood ratios of 13, with nontarget issue-to-blood ratios ranging from 0.6 to 2. Co-administration of unlabelled estradiol caused a selective depression in the uterine uptake with no effect on nontarget tissue uptake. In adult animals bearing adenocarcinomas induced by DMBA (7,12-dimethylbenz(a)anthracene), tumor-to-blood ratios of 6.3 were obtained, this uptake also being depressed in animals treated with unlabeled estradiol. The studies demonstrate that Compound 1 has suitable binding properties and sufficiently high specific activity so that its uptake in estrogen target tissues in vivo is mediated primarily by the estrogen receptor. Furthermore, they suggest that this compound may be suitable for imaging human breast tumors that contain estrogen receptors

  20. The uptake of 14C-glycine to Bufo vulgaris formosus (Boulenger) larva at metamorphosis

    International Nuclear Information System (INIS)

    Hasegawa, Hitoshi; Tanaka, Haruo; Ishiguro, Shigeru; Nonoyama, Kiyoshi; Nakagawa, Harumi.

    1981-01-01

    With the eggs of Bufo vulgaris formosus (Boulenger) immediately after fertilization, the larvae in the 50 ml solution containing 1 ml of 14 C-glycine were developed to the end of metamorphosis. Measurements were made on the length of body, tail, fore limb and hind leg through the stages of tail degeneration and vestige. The radioactivity of the cut off fore limbs, hind legs, tails and head trunks was measured with a scintillation counter, and the 10 μ sections of the samples were used for autoradiography. The larvae uptook orally 14 C-glycine to the organs of cell tissues. On the basis of the reports of the autolysis of tails and the activation of lysosome enzyme in metamorphosis and on the uptake of 14 C-leucine and 14 C-proline to four legs by other workers, and on the present results, the free amino acids formed from the autolysis of tails were utilized for the recomposition of organ protein synthesis in the metamorphosis of the amphibians. (J.P.N.)

  1. Transformation of myelodysplastic syndrome to acute myeloid leukemia: a case with whole-body 2- (18F) fluoro-2-deoxy-D-glucose positron emission tomography

    International Nuclear Information System (INIS)

    Liu, Fang; Cao, Qinghua

    2011-01-01

    The case reported here was that of an old woman characterized by pancytopenia, chromosome clonal abnormality, fluctuation of the percent of blast cells at 20%, and negative evidence of malignancy in whole-body 2-( 18 F) fluoro-2-deoxy-D-glucose positron emission tomography ( 18 F-FDG PET). After about 10 months, the blast cells accounted for about 25%, the morphology of which was similar to that of previous ones, and 18 F-FDG PET demonstrated diffusing increased uptake in the right upper leg and lymph nodes and patchy high uptake of bone marrow. 2-( 18 F)-fluoro-2-deoxyglucose can reflect extramedullary infiltration and bone marrow cellularity of the whole body, compared with invasive, regional biopsies and aspirations. The value of 2-( 18 F)-fluoro-2-deoxyglucose or 3'-deoxy-3'-( 18 F)-fluorothymidine positron emission tomography as an indicator in predicting the transformation of myelodysplastic syndrome to acute myeloid leukemia needs to be explored in the future. (author)

  2. The simultaneous biosynthesis and uptake of amino acids by Lactococcus lactis studied by C-13-labeling experiments

    DEFF Research Database (Denmark)

    Jensen, N.B.S.; Christensen, B.; Nielsen, Jette

    2002-01-01

    Uniformly C-13 labeled glucose was fed to a lactic acid bacterium growing on a defined medium supplemented with all proteinogenic amino acids except glutamate. Aspartate stemming from the protein pool and from the extracellular medium was enriched with C-13 disclosing a substantial de novo...... biosynthesis of this amino acid simultaneous to its uptake from the growth medium and a rapid exchange flux of aspartate over the cellular membrane. Phenylalanine, alanine, and threonine were also synthesized de novo in spite of their presence in the growth medium....

  3. SO4= uptake and catalase role in preconditioning after H2O2-induced oxidative stress in human erythrocytes.

    Science.gov (United States)

    Morabito, Rossana; Remigante, Alessia; Di Pietro, Maria Letizia; Giannetto, Antonino; La Spada, Giuseppina; Marino, Angela

    2017-02-01

    Preconditioning (PC) is an adaptive response to a mild and transient oxidative stress, shown for the first time in myocardial cells and not described in erythrocytes so far. The possible adaptation of human erythrocytes to hydrogen peroxide (H 2 O 2 )-induced oxidative stress has been here verified by monitoring one of band 3 protein functions, i.e., Cl - /HCO 3 - exchange, through rate constant for SO 4 = uptake measurement. With this aim, erythrocytes were exposed to a mild and transient oxidative stress (30 min to either 10 or 100 μM H 2 O 2 ), followed by a stronger oxidant condition (300- or, alternatively, 600-μM H 2 O 2 treatment). SO 4 = uptake was measured by a turbidimetric method, and the possible role of catalase (CAT, significantly contributing to the anti-oxidant system in erythrocytes) in PC response has been verified by measuring the rate of H 2 O 2 degradation. The preventive exposure of erythrocytes to 10 μM H 2 O 2 , and then to 300 μM H 2 O 2 , significantly ameliorated the rate constant for SO 4 = uptake with respect to 300 μM H 2 O 2 alone, showing thus an adaptive response to oxidative stress. Our results show that (i) SO 4 = uptake measurement is a suitable model to monitor the effects of a mild and transient oxidative stress in human erythrocytes, (ii) band 3 protein anion exchange capability is retained after 10 μM H 2 O 2 treatment, (iii) PC response induced by the 10 μM H 2 O 2 pretreatment is clearly detected, and (iv) PC response, elicited by low-concentrated H 2 O 2 , is mediated by CAT enzyme and does not involve band 3 protein tyrosine phosphorylation pathways. Erythrocyte adaptation to a short-term oxidative stress may serve as a basis for future studies about the impact of more prolonged oxidative events, often associated to aging, drug consumption, chronic alcoholism, hyperglycemia, or neurodegenerative diseases.

  4. Physiological conditions and uptake of inorganic carbon-14 by plant roots

    International Nuclear Information System (INIS)

    Amiro, B.D.; Ewing, L.L.

    1992-01-01

    The uptake of inorganic 14 C by bean plant roots was measured. The plants were grown in a nutrient solution culture at pH 6 and a NaH 14 CO 3 tracer was added to the growth medium. Photosynthesis and transpiration were varied by exposing the aerial portions of the plants to different atmospheric CO 2 concentrations, humidities and light levels in a cuvette system. Leaf concentrations of 14 C were measured at the end of the experiments using liquid scintillation counting. Plant uptake of 14 C via the roots was independent of the photosynthetic rate and, in most cases, could be predicted by knowing the transpiration rate and the nutrient solution concentration. However, when a less efficient root-medium aeration system was used, 14 C uptake was greater than that predicted using transpiration, a phenomenon observed by other researchers. This contrasted to results of another experiment where the measured uptake of iodine was much slower than that predicted using transpiration. Knowledge of transpiration rates is useful in predicting inorganic carbon uptake via the roots and in estimating 14 C transport from contaminated soils to biota. Also, the independence of the uptake from photosynthesis and ambient CO 2 concentrations suggests that future increases in atmospheric CO 2 concentrations may not have a direct effect on root uptake of soil carbon. (author)

  5. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    International Nuclear Information System (INIS)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan; Kim, Hyung Sik; Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung; Oh, Seon-Hee; Jun, Dae Won; Lee, Byung-Hoon

    2017-01-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.

  6. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyung Sik [School of Pharmacy, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Oh, Seon-Hee [The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759 (Korea, Republic of); Jun, Dae Won [Internal Medicine, Hanyang University School of Medicine, Seoul 133-791 (Korea, Republic of); Lee, Byung-Hoon, E-mail: lee@snu.ac.kr [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-02-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.

  7. Scoparia dulcis (SDF7) endowed with glucose uptake properties on L6 myotubes compared insulin.

    Science.gov (United States)

    Beh, Joo Ee; Latip, Jalifah; Abdullah, Mohd Puad; Ismail, Amin; Hamid, Muhajir

    2010-05-04

    Insulin stimulates glucose uptake and promotes the translocation of glucose transporter 4 (Glut 4) to the plasma membrane on L6 myotubes. The aim of this study is to investigate affect of Scoparia dulcis Linn water extracts on glucose uptake activity and the Glut 4 translocation components (i.e., IRS-1, PI 3-kinase, PKB/Akt2, PKC and TC 10) in L6 myotubes compared to insulin. Extract from TLC fraction-7 (SDF7) was used in this study. The L6 myotubes were treated by various concentrations of SDF7 (1 to 50 microg/ml) and insulin (1 to 100 nM). The glucose uptake activities of L6 myotubes were evaluated using 2-Deoxy-D-glucose uptake assay in with or without fatty acid-induced medium. The Glut 4 translocation components in SDF7-treated L6 myotubes were detected using immunoblotting and quantified by densitometry compared to insulin. Plasma membrane lawn assay and glycogen colorimetry assay were carried out in SDF7- and insulin-treated L6 myotubes in this study. Here, our data clearly shows that SDF7 possesses glucose uptake properties on L6 myotubes that are dose-dependent, time-dependent and plasma membrane Glut 4 expression-dependent. SDF7 successfully stimulates glucose uptake activity as potent as insulin at a maximum concentration of 50 microg/ml at 480 min on L6 myotubes. Furthermore, SDF7 stimulates increased Glut 4 expression and translocation to plasma membranes at equivalent times. Even in the insulin resistance stage (free fatty acids-induced), SDF7-treated L6 myotubes were found to be more capable at glucose transport than insulin treatment. Thus, we suggested that Scoparia dulcis has the potential to be categorized as a hypoglycemic medicinal plant based on its good glucose transport properties. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs.

    Science.gov (United States)

    Angert, A; Biraud, S; Bonfils, C; Henning, C C; Buermann, W; Pinzon, J; Tucker, C J; Fung, I

    2005-08-02

    An increase in photosynthetic activity of the northern hemisphere terrestrial vegetation, as derived from satellite observations, has been reported in previous studies. The amplitude of the seasonal cycle of the annually detrended atmospheric CO(2) in the northern hemisphere (an indicator of biospheric activity) also increased during that period. We found, by analyzing the annually detrended CO(2) record by season, that early summer (June) CO(2) concentrations indeed decreased from 1985 to 1991, and they have continued to decrease from 1994 up to 2002. This decrease indicates accelerating springtime net CO(2) uptake. However, the CO(2) minimum concentration in late summer (an indicator of net growing-season uptake) showed no positive trend since 1994, indicating that lower net CO(2) uptake during summer cancelled out the enhanced uptake during spring. Using a recent satellite normalized difference vegetation index data set and climate data, we show that this lower summer uptake is probably the result of hotter and drier summers in both mid and high latitudes, demonstrating that a warming climate does not necessarily lead to higher CO(2) growing-season uptake, even in high-latitude ecosystems that are considered to be temperature limited.

  9. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, Paulo Emilio [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil); Jacques, Amanda Virtuoso [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin [Federal University of Paraná, Department of Biochemistry and Molecular Biology (Brazil); Santos-Silva, Maria Claudia dos [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Sayer, Claudia; Araújo, Pedro H. Hermes de, E-mail: pedro.h.araujo@ufsc.br [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil)

    2016-04-15

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  10. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    International Nuclear Information System (INIS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; Santos-Silva, Maria Claudia dos; Sayer, Claudia; Araújo, Pedro H. Hermes de

    2016-01-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  11. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Science.gov (United States)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  12. In vivo effect of 3,5,3'-triiodothyronine on calcium uptake in several tissues in the rat: Evidence for a physiological role for calcium as the first messenger for the prompt action of thyroid hormone at the level of the plasma membrane

    International Nuclear Information System (INIS)

    Segal, J.

    1990-01-01

    Calcium has been shown in vitro to serve as the first messenger for the rapid effect of thyroid hormone at the level of the plasma membrane. In the present study the physiological relevance of this mechanism is examined in the whole animal. To this end, the effect of T3 on 45calcium uptake and sugar 2-deoxyglucose (2-DG) uptake, an effect that requires extracellular calcium, and the influence of calcium blockers thereon were measured in ventricles, atria, diaphragm, fat, and liver in the rat. In the first three tissues, T3 produced comparable changes in 45Ca uptake and 2-DG uptake (T3 increased 2-DG uptake in fat, where 45Ca uptake was undetected, and had no effect in liver); this activity was blocked by the calcium channel blocker cadmium. The effect of T3 on 45Ca uptake, like its effect on the in vivo uptake of 2-DG described previously, was biphasic and time related; at physiological doses of 0.01 and 0.1 micrograms/100 g BW, T3 increased 45Ca uptake, whereas at greater (pharmacological) doses of 1 and 100 micrograms/100 g BW, T3 was without effect or inhibited 45Ca uptake. In ventricles and atria, the stimulatory effect of T3 on 45Ca uptake was very rapid within 2 min, at which time it was at or near maximum (50-90% above control) and then declined gradually and was not seen after 10-20 min. Of the several calcium blockers employed, verapamil (organic) and cadmium (inorganic) were found to be the most effective. Verapamil and cadmium produced a rapid, transient, and dose-related inhibition of 45Ca uptake in the tissues examined (except fat tissue where, under the experimental conditions employed, 45Ca uptake was undetected). Verapamil, given iv (200 micrograms/100 g BW) or ip (1 mg/100 g BW), reduced tissue 45Ca uptake by 50-90% within 2 or 10 min, respectively, and then its inhibitory effect diminished rapidly and was not seen after 20-30 min

  13. Gibberellin Is Involved in Inhibition of Cucumber Growth and Nitrogen Uptake at Suboptimal Root-Zone Temperatures.

    Directory of Open Access Journals (Sweden)

    Longqiang Bai

    Full Text Available Suboptimal temperature stress often causes heavy yield losses of vegetables by suppressing plant growth during winter and early spring. Gibberellin acid (GA has been reported to be involved in plant growth and acquisition of mineral nutrients. However, no studies have evaluated the role of GA in the regulation of growth and nutrient acquisition by vegetables under conditions of suboptimal temperatures in greenhouse. Here, we investigated the roles of GA in the regulation of growth and nitrate acquisition of cucumber (Cucumis sativus L. plants under conditions of short-term suboptimal root-zone temperatures (Tr. Exposure of cucumber seedlings to a Tr of 16°C led to a significant reduction in root growth, and this inhibitory effect was reversed by exogenous application of GA. Expression patterns of several genes encoding key enzymes in GA metabolism were altered by suboptimal Tr treatment, and endogenous GA concentrations in cucumber roots were significantly reduced by exposure of cucumber plants to 16°C Tr, suggesting that inhibition of root growth by suboptimal Tr may result from disruption of endogenous GA homeostasis. To further explore the mechanism underlying the GA-dependent cucumber growth under suboptimal Tr, we studied the effect of suboptimal Tr and GA on nitrate uptake, and found that exposure of cucumber seedlings to 16°C Tr led to a significant reduction in nitrate uptake rate, and exogenous application GA can alleviate the down-regulation by up regulating the expression of genes associated with nitrate uptake. Finally, we demonstrated that N accumulation in cucumber seedlings under suboptimal Tr conditions was improved by exogenous application of GA due probably to both enhanced root growth and nitrate absorption activity. These results indicate that a reduction in endogenous GA concentrations in roots due to down-regulation of GA biosynthesis at transcriptional level may be a key event to underpin the suboptimal Tr-induced

  14. Test-retest studies of cerebral glucose metabolism using fluorine-18 deoxyglucose: validation of method

    International Nuclear Information System (INIS)

    Brooks, R.A.; Di Chiro, G.; Zukerberg, B.W.; Bairamian, D.; Larson, S.M.

    1987-01-01

    In studies using [ 18 F]deoxyglucose (FDG), one often wants to compare metabolic rates following stimulation (drug or motor-sensory) with the baseline values. However, because of reproducibility problems with baseline variations of 25% in the same individual not uncommon, the global effect of the stimulation may be difficult to see. One approach to this problem is to perform the two studies sequentially. This means that, with the 110-min half-life of 18 F, one must take into account the residual activity from the first study when calculating metabolic rates for the second. We performed TEST-RETEST baseline studies on four subjects, with a 1-hr interval between injections. These studies were done without stimulation, in order to validate the repeatability of the method. To reduce the amount of residual activity from the first study, the first injection was only 2 mCi in three cases, and only 1 mCi in one case, out of a total injected dose of 5 mCi. A correction for residual activity was included in the RETEST calculation of metabolic rate. The results showed a global metabolic shift between the two studies of 2% to 9%. An error analysis shows that the shift could be further reduced if anatomically comparable scans are done at comparable postinjection times

  15. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography

    International Nuclear Information System (INIS)

    Schwaiger, M.; Brunken, R.; Grover-McKay, M.; Krivokapich, J.; Child, J.; Tillisch, J.H.; Phelps, M.E.; Schelbert, H.R.

    1986-01-01

    Positron emission tomography has been shown to distinguish between reversible and irreversible ischemic tissue injury. Using this technique, 13 patients with acute myocardial infarction were studied within 72 hours of onset of symptoms to evaluate regional blood flow and glucose metabolism with nitrogen (N)-13 ammonia and fluorine (F)-18 deoxyglucose, respectively. Serial noninvasive assessment of wall motion was performed to determine the prognostic value of metabolic indexes for functional tissue recovery. Segmental blood flow and glucose utilization were evaluated using a circumferential profile technique and compared with previously established semiquantitative criteria. Relative N-13 ammonia uptake was depressed in 32 left ventricular segments. Sixteen segments demonstrated a concordant decrease in flow and glucose metabolism. Regional function did not change over time in these segments. In contrast, 16 other segments with reduced blood flow revealed maintained F-18 deoxyglucose uptake consistent with remaining viable tissue. The average wall motion score improved significantly in these segments (p less than 0.01), yet the degree of recovery varied considerably among patients. Coronary anatomy was defined in 9 of 13 patients: patent infarct vessels supplied 8 of 10 segments with F-18 deoxyglucose uptake, while 10 of 13 segments in the territory of an occluded vessel showed concordant decreases in flow and metabolism (p less than 0.01). Thus, positron emission tomography reveals a high incidence of residual tissue viability in ventricular segments with reduced flow and impaired function during the subacute phase of myocardial infarction. Absence of residual tissue metabolism is associated with irreversible injury, while preservation of metabolic activity identifies segments with a variable outcome.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. An improved automated synthesis and in vivo evaluation of PET radioligand for serotonin re-uptake sites. [11C]McN5652X

    International Nuclear Information System (INIS)

    Sasaki, Masahiro; Suhara, Tetsuya; Suzuki, Kazutoshi; Kubodera, Akiko.

    1996-01-01

    Carbon-11 labeled serotonin (5-HT) re-uptake inhibitor, [ 11 C]McN5 652X ((6S,10bR)-trans-( + )-1,2,3,5,6,10b-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]-isoquinoline), has recently been reported to be favorable for studying human 5-HT re-uptake site by positron emission tomography (PET) because of its rapid and high specific binding characteristics as radioligands. [ 11 C]McN5652X has been synthesized by S-methylation of the corresponding des-methyl precursor A with [ 11 C]iodomethane. One serious disadvantage of this procedure, however, is the lack of stability of A. The improved method for the synthesis of A has been desired. We have found that the decomposition of A is significantly reduced by adding a protecting agent for SH groups, dithiothreitol (DTT), into the reaction medium immediately after the demethylation of McN5652X. By using this stabilized precursor A, we have developed an automated procedure giving [ 11 C]McN5652X with 98.6±0.4% radiochemical purity in high specific activity (181.3±7.4GBq/μmol). Preclinical evaluation of the produ ct was carried out by injecting the solution of [ 11 C]McN5652X obtained by this procedure into mice. [ 11 C]McN5652X showed the high accumulation into mouse thalamus, striatum and cerebral cortex, organs known to have high level of 5-HT receptor density, after intravenous injection. Human PET studies also showed the high uptakes of this radioligand into the thalamus, striatum and midbrain

  17. Training-induced acceleration of O(2) uptake on-kinetics precedes muscle mitochondrial biogenesis in humans.

    Science.gov (United States)

    Zoladz, Jerzy A; Grassi, Bruno; Majerczak, Joanna; Szkutnik, Zbigniew; Korostyński, Michał; Karasiński, Janusz; Kilarski, Wincenty; Korzeniewski, Bernard

    2013-04-01

    The effects of 5 weeks of moderate-intensity endurance training on pulmonary oxygen uptake kinetics (V(O(2)) on-kinetics) were studied in 15 healthy men (mean ± SD: age 22.7 ± 1.8 years, body weight 76.4 ± 8.9 kg and maximal V(O(2)) 46.0 ± 3.7 ml kg(-1) min(-1)). Training caused a significant acceleration (P = 0.003) of V(O(2)) on-kinetics during moderate-intensity cycling (time constant of the 'primary' component 30.0 ± 6.6 versus 22.8 ± 5.6 s before and after training, respectively) and a significant decrease (P = 0.04) in the amplitude of the primary component (837 ± 351 versus 801 ± 330 ml min(-1)). No changes in myosin heavy chain distribution, muscle fibre capillarization, level of peroxisome proliferator-activated receptor γ coactivator 1α and other markers of mitochondrial biogenesis (mitochondrial DNA copy number, cytochrome c and cytochrome oxidase subunit I contents) in the vastus lateralis were found after training. A significant downregulation in the content of the sarcoplasmic reticulum ATPase 2 (SERCA2; P = 0.03) and a tendency towards a decrease in SERCA1 (P = 0.055) was found after training. The decrease in SERCA1 was positively correlated (P = 0.05) with the training-induced decrease in the gain of the V(O(2)) on-kinetics (ΔV(O(2)) at steady state/Δpower output). In the early stage of training, the acceleration in V(O(2)) on-kinetics during moderate-intensity cycling can occur without enhanced mitochondrial biogenesis or changes in muscle myosin heavy chain distribution and in muscle fibre capillarization. The training-induced decrease of the O(2) cost of cycling could be caused by the downregulation of SERCA pumps.

  18. Platinum uptake from chloride solutions using biosorbents

    Directory of Open Access Journals (Sweden)

    Mehmet Hakan Morcali

    2013-04-01

    Full Text Available Present work investigates platinum uptake from synthetically prepared, dilute platinum-bearing solutions using biomass residues, i.e. pistachio nut shell and rice husk, which are abundant in Turkey, and provides a comparison between these two biosorbents. Effects of the different uptake parameters, sorbent dosage, contact time, temperature and pH of solution on platinum uptake (% were studied in detail on a batch sorption. Before the pistachio nut shell was activated, platinum uptake (% was poor compared to the rice husk. However, after the pistachio nut shell was activated at 1000 °C under an argon atmosphere, the platinum uptake (% increased two-fold. The pistachio nut shell (original and activated and rice husk were shown to be better than commercially available activated carbon in terms of adsorption capacity. These two sorbents have also been characterized by FTIR and SEM. Adsorption equilibrium data best complied with the Langmuir isotherm model. Maximum adsorption capacities, Qmax, at 25 °C were found to be 38.31 and 42.02 mg.g- 1for the activated pistachio nut shell and rice husk, respectively. Thermodynamic calculations using the measured ∆H°, ∆S° and ∆G° values indicate that the uptake process was spontaneous and endothermic. The experimental data were shown to be fit the pseudo-second-order kinetic model.

  19. Microcystin-LR induces anoikis resistance to the hepatocyte uptake transporter OATP1B3-expressing cell lines

    International Nuclear Information System (INIS)

    Takano, Hiroyuki; Takumi, Shota; Ikema, Satoshi; Mizoue, Nozomi; Hotta, Yuki; Shiozaki, Kazuhiro; Sugiyama, Yasumasa; Furukawa, Tatsuhiko; Komatsu, Masaharu

    2014-01-01

    Microcystin-LR is a cyclic peptide released by several bloom-forming cyanobacteria. Understanding the mechanism of microcystin-LR toxicity is important, because of the both potencies of its acute cytotoxicity and tumor-promoting activity in hepatocytes of animals and humans. Recently, we have reported that the expression of human hepatocyte uptake transporter OATP1B3 was critical for the selective uptake of microcystin-LR into hepatocytes and for induction of its fatal cytotoxicity. In this study, we demonstrated a novel function of microcystin-LR which induced bipotential changes including anoikis resistance and cytoskeleton reorganization to OATP1B3-transfected HEK293 cells (HEK293-OATP1B3). After exposure to microcystin-LR, HEK293-OATP1B3 cells were divided to the floating cells and remaining adherent cells. After collection and reseeding the floating cells into a fresh flask, cells were confluently proliferated (HEK293-OATP1B3-FL) under the microcystin-LR-free condition. Both the proliferated HEK293-OATP1B3-FL and remaining adherent HEK293-OATP1B3-AD cells changed the character with down- and up-regulation of E-cadherin, respectively. Additionally, these cells acquired resistance to microcystin-LR. These results suggest that microcystin-LR could be associated with not only tumor promotion, but also epithelial–mesenchymal transition-mediated cancer metastasis. Furthermore, microcystin-LR might induce the cytoskeleton reorganization be accompanied epithelial–mesenchymal transition

  20. PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver.

    Science.gov (United States)

    Demers, Annie; Samami, Samaneh; Lauzier, Benjamin; Des Rosiers, Christine; Ngo Sock, Emilienne Tudor; Ong, Huy; Mayer, Gaetan

    2015-12-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor thereby elevating plasma low-density lipoprotein cholesterol levels and the risk of coronary heart disease. Thus, the use of PCSK9 inhibitors holds great promise to prevent heart disease. Previous work found that PCSK9 is involved in triglyceride metabolism, independently of its action on low-density lipoprotein receptor, and that other yet unidentified receptors could mediate this effect. Therefore, we assessed whether PCSK9 enhances the degradation of CD36, a major receptor involved in transport of long-chain fatty acids and triglyceride storage. Overexpressed or recombinant PCSK9 induced CD36 degradation in cell lines and primary adipocytes and reduced the uptake of the palmitate analog Bodipy FL C16 and oxidized low-density lipoprotein in 3T3-L1 adipocytes and hepatic HepG2 cells, respectively. Surface plasmon resonance, coimmunoprecipitation, confocal immunofluorescence microscopy, and protein degradation pathway inhibitors revealed that PCSK9 directly interacts with CD36 and targets the receptor to lysosomes through a mechanism involving the proteasome. Importantly, the level of CD36 protein was increased by >3-fold upon small interfering RNA knockdown of endogenous PCSK9 in hepatic cells and similarly increased in the liver and visceral adipose tissue of Pcsk9(-/-) mice. In Pcsk9(-/-) mice, increased hepatic CD36 was correlated with an amplified uptake of fatty acid and accumulation of triglycerides and lipid droplets. Our results demonstrate an important role of PCSK9 in modulating the function of CD36 and triglyceride metabolism. PCSK9-mediated CD36 degradation may serve to limit fatty acid uptake and triglyceride accumulation in tissues, such as the liver. © 2015 American Heart Association, Inc.

  1. Lead induced changes in growth and micronutrient uptake of Jatropha curcas L.

    Science.gov (United States)

    Shu, Xiao; Zhang, QuanFa; Wang, WeiBo

    2014-11-01

    Effects of lead treatment on growth and micronutrient uptake in Jatropha curcas L. seedlings were assessed by means of microcosm experiments. Results suggested that superoxide dismutase (SOD) activity increased with increasing lead concentration. There was significant positive correlation between lead treatment concentration and SOD and peroxidase activity. Catalase activity was initiated under lower lead stress but, was inhibited under higher lead exposure. Lead had a stimulating effect on seedlings height and leaf area at lower lead concentrations. The J. curcas can accumulate higher amounts of available lead from soil but can translocate only low amounts to the shoots. Results indicating SOD and peroxidase activity in J. curcas seedlings played an important role in resisting the oxidative stress induced by lead. The addition of lead significantly increased the content of zinc in plant tissue and enhanced the transport of iron from roots to shoots but contributed to a decrease in measured copper, iron, and manganese content.

  2. Selenite -Se(4)- uptake mechanisms in the unicellular green alga Chlamydomonas reinhardtii: bioaccumulation and effects induced on growth and ultrastructure

    International Nuclear Information System (INIS)

    Morlon, H.

    2005-03-01

    Selenium is an essential element, but becomes very toxic at higher concentrations. It occurs in the environment at concentrations ranging from nM to μM and selenium pollution is a worldwide phenomenon. This works aims at improving the knowledge on the interactions between selenite - Se(IV) - and a freshwater phyto-planktonic organism: the unicellular green algae Chlamydomonas reinhardtii. The aim of the performed experiments were: i) to investigate selenite -Se(IV)- uptake mechanisms in C. reinhardtii, using Se 75 as a tracer in short term exposures ( -2 .nM -1 .h -1 . The uptake was proportional to ambient levels in a broad range of intermediate concentrations (from nM to μM). However, fluxes were higher at very low concentrations ( μM), suggesting that a high affinity but rapidly saturated transport mechanism could be used at low concentrations, in parallel with a low affinity mechanism that would only saturate at high concentrations (∼mM). The latter could involve transporters used by sulphate and nitrates, as suggested by the inhibition of selenite uptake by those element. Se(IV) speciation changes with pH did not induce significant effect on bioavailability. On the basis of the relationship between Se concentration and maximal cell density achieved, an EC50 of 80 μM ([64; 98]) was derived. No adaptation mechanism were observed as the same the same toxicity was quantified for Se-pre-exposed algae. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For the cell collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that they contained selenium and were also rich in calcium and phosphorus. Finally, growth inhibition was highly correlated to the bioaccumulation of selenite. The latter was inhibited by increasing

  3. Gbu Glycine Betaine Porter and Carnitine Uptake in Osmotically Stressed Listeria monocytogenes Cells

    Science.gov (United States)

    Mendum, Mary Lou; Smith, Linda Tombras

    2002-01-01

    The food-borne pathogen Listeria monocytogenes grows actively under high-salt conditions by accumulating compatible solutes such as glycine betaine and carnitine from the medium. We report here that the dominant transport system for glycine betaine uptake, the Gbu porter, may act as a secondary uptake system for carnitine, with a Km of 4 mM for carnitine uptake and measurable uptake at carnitine concentrations as low as 10 μM. This porter has a Km for glycine betaine uptake of about 6 μM. The dedicated carnitine porter, OpuC, has a Km for carnitine uptake of 1 to 3 μM and a Vmax of approximately 15 nmol/min/mg of protein. Mutants lacking either opuC or gbu were used to study the effects of four carnitine analogs on growth and uptake of osmolytes. In strain DP-L1044, which had OpuC and the two glycine betaine porters Gbu and BetL, triethylglycine was most effective in inhibiting growth in the presence of glycine betaine, but trigonelline was best at inhibiting growth in the presence of carnitine. Carnitine uptake through OpuC was inhibited by γ-butyrobetaine. Dimethylglycine inhibited both glycine betaine and carnitine uptake through the Gbu porter. Carnitine uptake through the Gbu porter was inhibited by triethylglycine. Glycine betaine uptake through the BetL porter was strongly inhibited by trigonelline and triethylglycine. These results suggest that it is possible to reduce the growth of L. monocytogenes under osmotically stressful conditions by inhibiting glycine betaine and carnitine uptake but that to do so, multiple uptake systems must be affected. PMID:12406761

  4. Metabolic Hyperactivity of the Medial Posterior Parietal Lobes in Psychogenic Tremor

    Directory of Open Access Journals (Sweden)

    Peter Hedera

    2012-05-01

    Full Text Available Background: The pathophysiology of psychogenic movement disorders, including psychogenic tremor (PT, is only emerging. Case Report: This is a single case report of a patient who met diagnostic criteria for PT. He underwent positron emission tomography (PET of brain with 18F-deoxyglucose at resting state. His PET study showed symmetrically increased 18F-deoxyglucose uptake in both posterior medial parietal lobes. There was no corresponding abnormality on structural imaging. Discussion: Hypermetabolism of the medial aspects of posterior parietal lobes bilaterally may reflect abnormal activity of sensory integration that is important in the pathogenesis of PT. This further supports the idea that non-organic movement disorders may be associated with detectable functional brain abnormalities.

  5. Wnt/β-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    International Nuclear Information System (INIS)

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-01-01

    Highlights: ► Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. ► Wnt3a induces Id3 expression via canonical Wnt/β-catenin pathway. ► Wnt3a-induced Id3 expression does not depend on BMP signaling activation. ► Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a β-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/β-catenin induced gene in myoblast cell fate determination.

  6. Ursolic acid increases glucose uptake through the PI3K signaling pathway in adipocytes.

    Directory of Open Access Journals (Sweden)

    Yonghan He

    Full Text Available BACKGROUND: Ursolic acid (UA, a triterpenoid compound, is reported to have a glucose-lowering effect. However, the mechanisms are not fully understood. Adipose tissue is one of peripheral tissues that collectively control the circulating glucose levels. OBJECTIVE: The objective of the present study was to determine the effect and further the mechanism of action of UA in adipocytes. METHODS AND RESULTS: The 3T3-L1 preadipocytes were induced to differentiate and treated with different concentrations of UA. NBD-fluorescent glucose was used as the tracer to measure glucose uptake and Western blotting used to determine the expression and activity of proteins involved in glucose transport. It was found that 2.5, 5 and 10 µM of UA promoted glucose uptake in a dose-dependent manner (17%, 29% and 35%, respectively. 10 µM UA-induced glucose uptake with insulin stimulation was completely blocked by the phosphatidylinositol (PI 3-kinase (PI3K inhibitor wortmannin (1 µM, but not by SB203580 (10 µM, the inhibitor of mitogen-activated protein kinase (MAPK, or compound C (2.5 µM, the inhibitor of AMP-activated kinase (AMPK inhibitor. Furthermore, the downstream protein activities of the PI3K pathway, phosphoinositide-dependent kinase (PDK and phosphoinositide-dependent serine/threoninekinase (AKT were increased by 10 µM of UA in the presence of insulin. Interestingly, the activity of AS160 and protein kinase C (PKC and the expression of glucose transporter 4 (GLUT4 were stimulated by 10 µM of UA under either the basal or insulin-stimulated status. Moreover, the translocation of GLUT4 from cytoplasm to cell membrane was increased by UA but decreased when the PI3K inhibitor was applied. CONCLUSIONS: Our results suggest that UA stimulates glucose uptake in 3T3-L1 adipocytes through the PI3K pathway, providing important information regarding the mechanism of action of UA for its anti-diabetic effect.

  7. 99Tcm pertechnetate uptake by hepatoma cells induced by tissue specific hNIS gene expression

    International Nuclear Information System (INIS)

    Chen Libo; Luo Quanyong; Yu Yongli; Yuan Zhibin; Lu Hankui; Zhu Ruisen; Guo Lihe

    2007-01-01

    Objective: Human sodium/iodide symporter (hNIS) gene could be used both as an ideal reporter gene and promising therapeutic gene. Rather than radioiodine, 99 Tc m pertechnetate has been proven to be a better radiopharmaceutical for tracing and imaging purposes. Herein, the authors investigated the feasibility of monitoring hNIS gene expression in hepatoma cells using 99 Tc m pertechnetate as a tracer. Methods: Hepatoma cells MH3924A were stably transfected with recombinant retroviral vector in which hNIS cDNA was driven by murine albumin enhancer/promoter (mAlb) and coupled to hygromycin resistance gene. The uptake and efflux of 99 Tc m pertechnetate by transfected hepatoma cells were tested with 99 Tc m pertechnetate (74 kBq) solution adulterated into the culture media and counted after media suspension discharge at different intervals. In further tests, 50 μmol/L NaClO 4 and 500 μmol/L Ouabain were added into the media for 99 Tc m inhibition tests. For in vive studies, five ACI rats bearing NIS transfected hepatoma xenografts were injected with 99 Tc m pertechnetate (15.8 MBq) and followed by dynamic acquisition (0.57 1, 2 and 4 h) with small gamma camera to semi-quantitatively analyze the radioactivity distribution. Results: In vitro tests, the peak uptake of 99 Tc m pertechnetate by cultured transfected MH3924A cells was up to 254 folds higher than that by the wild type cells. 99 Tc m uptake by transfected cells were significantly inhibited by NaClO 4 down to 2.44% (P 99 Tc m pertechnetate out of cultured transfected cells became rapid immediately after renewal of culture media (half life 99 Tc m accumulations by hNIS transfected tumor xenografts were obvious in early phases of the acquisition with peak uptake at 12 min and gradually declining later on. Conclusions: hNIS transfected hepatoma cells can avidly uptake 99 Tc m pertechnetate both in vitro and in vive. It is feasible to utilize 99 Tc m pertechnetate for monitoring and even quantitatively analyzing

  8. Uptake and translocation of imidacloprid, clothianidin and flupyradifurone in seed-treated soybeans.

    Science.gov (United States)

    Stamm, Mitchell D; Heng-Moss, Tiffany M; Baxendale, Frederick P; Siegfried, Blair D; Blankenship, Erin E; Nauen, Ralf

    2016-06-01

    Seed treatment insecticides have become a popular management option for early-season insect control. This study investigated the total uptake and translocation of seed-applied [(14) C]imidacloprid, [(14) C]clothianidin and [(14) C]flupyradifurone into different plant parts in three soybean vegetative stages (VC, V1 and V2). The effects of soil moisture stress on insecticide uptake and translocation were also assessed among treatments. We hypothesized that (1) uptake and translocation would be different among the insecticides owing to differences in water solubility, and (2) moisture stress would increase insecticide uptake and translocation. Uptake and translocation did not follow a clear trend in the three vegetative stages. Initially, flupyradifurone uptake was greater than clothianidin uptake in VC soybeans. In V1 soybeans, differences in uptake among the three insecticides were not apparent and unaffected by soil moisture stress. Clothianidin was negatively affected by soil moisture stress in V2 soybeans, while imidacloprid and flupyradifurone were unaffected. Specifically, soil moisture stress had a positive effect on the distribution of flupyradifurone in leaves. This was not observed with the neonicotinoids. This study enhances our understanding of the uptake and distribution of insecticides used as seed treatments in soybean. The uptake and translocation of these insecticides differed in response to soil moisture stress. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Biodistribution and tumor uptake of C{sub 60}(OH){sub x} in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhiqiang, Ji; Sun Hongfang, E-mail: shf@pku.edu.cn; Haifang, Wang; Qunying, Xie; Yuangfang, Liu [Peking University, Department of Chemical Biology, College of Chemistry and Molecular Engineering (China); Zheng, Wang [Chinese Academy of Medical Sciences, Cancer Institute (China)

    2006-02-15

    Radiolabeling of fullerol, {sup 125}I-C{sub 60}(OH){sub x}, was performed by the traditional chloramine-T method. The C-I covalent bond in I-C{sub 60}(OH){sub x} was characterized by X-ray photoelectron spectroscopy (XPS) that was sufficiently stable for in vivo study. Laser light scattering spectroscopy clearly showed that C{sub 60}(OH){sub x} aggregated to large nanoparticle clumps with a wide range of distribution. The clumps formed were also visualized by transmission electron microscope (TEM). We examined the biodistribution and tumor uptake of C{sub 60}(OH){sub x} in five mouse bearing tumor models, including mouse H22 hepatocarcinoma, human lung giantcellcarcinoma PD, human colon cancer HCT-8, human gastric cancer MGC803, and human OS732 osteosarcoma. The accumulation ratios of {sup 125}I-C{sub 60}(OH){sub x} in mouse H22 hepatocarcinoma to that in normal muscle tissue (T/N) and blood (T/B) at 1, 6, 24 and 72 h, reveal that {sup 125}I-C{sub 60}(OH){sub x} gradually accumulates in H22 tumor, and retains for a quite long period (e.g., T/N 3.41, T/B 3.94 at 24 h). For the other four tumor models, the T/N ratio at 24 h ranges within 1.21-6.26, while the T/B ratio ranges between 1.23 and 4.73. The accumulation of C{sub 60}(OH){sub x} in tumor is mostly due to the enhanced permeability and retention effect (EPR) and the phagocytosis of mononuclear phagocytes. Hence, C{sub 60}(OH){sub x} might serve as a photosensitizer in the photodynamic therapy of some kinds of tumor.

  10. Synthesis of /sup 14/C- and /sup 3/H-labeled fluoxetine, a selective serotonin uptake inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, D.W.; Krushinski, J.H.; Wong, D.T.; Kau, D.

    1987-11-01

    Fluoxetine (N-methyl-..gamma..-(4-(trifluoromethyl)phenoxy) benzenepropanamine) is a potent, highly selective serotonin uptake inhibitor that is useful in treating a variety of major psychiatric derangements. We have synthesized this compound in /sup 14/C- and /sup 3/H-labeled forms. The tritium label was introduced in the final step by catalytic dehalogenation of the brominated fluoxetine precursor. Reaction conditions could be controlled such that catalytic hydrogenolysis of the labile C-O benzylic bond was minimized. Following HPLC purification, (/sup 3/H)-fluoxetine was obtained in a state of high radiochemical purity (98%) and specific activity (20.4 Ci/mmol). The /sup 14/C-label was introduced in the final step via a nucleophilic aromatic substitution reaction between the sodium salt of ..cap alpha..-(2-(methylamino)ethyl)benzenemethanol and uniformly ring-labeled p-chlorobenzotrifluoride. Following purification by flash chromatography, (/sup 14/C)-fluoxetine was obtained in 98.3% radiochemical purity with a specific activity of 5.52 mCi/mmol.

  11. Electron irradiation-induced defects in {beta}-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Ryuichiro [Osaka Prefectural Univ., Sakai (Japan). Reseach Inst. for Advanced Science and Technology

    1996-04-01

    To add information of point defects in cubic crystal SiC, polycrystal {beta}-SiC on the market was used as sample and irradiated by neutron and electron. In situ observation of neutron and electron irradiation-induced defects in {beta}-SiC were carried out by ultra high-voltage electronic microscope (UHVEM) and ordinary electronic microscope. The obtained results show that the electron irradiation-induced secondary defects are micro defects less than 20 nm at about 1273K, the density of defects is from 2x10{sup 17} to 1x10{sup 18}/cc, the secondary defects may be hole type at high temperature and the preexistant defects control nuclear formation of irradiation-induced defects, effective sink. (S.Y.)

  12. Heterogeneous Uptake of HO2 Radicals onto Atmospheric Aerosols

    Science.gov (United States)

    George, I. J.; Matthews, P. S.; Brooks, B.; Goddard, A.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2011-12-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, together known as HOx, play a vital role in atmospheric chemistry by controlling the oxidative capacity of the troposphere. The atmospheric lifetime and concentrations of many trace reactive species, such as volatile organic compounds (VOCs), are determined by HOx radical levels. Therefore, the ability to accurately predict atmospheric HOx concentrations from a detailed knowledge of their sources and sinks is a very useful diagnostic tool to assess our current understanding of atmospheric chemistry. Several recent field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models, where HO2 loss onto aerosols was suggested as a possible missing sink [1, 2]. However, the mechanism on HO2 uptake onto aerosols and its impact on ambient HOx levels are currently not well understood. To improve our understanding of this process, we have conducted laboratory experiments to measure HO2 uptake coefficients onto submicron aerosol particles. The FAGE (Fluorescence Assay by Gas Expansion) technique, a highly sensitive laser induced fluorescence based detection method, was used to monitor HO2 uptake kinetics onto aerosol particles in an aerosol flow tube. The application of the FAGE technique allowed for kinetic experiments to be performed under low HO2 concentrations, i.e. [HO2] atomizing dilute salt solutions or by homogeneous nucleation. HO2 uptake coefficients (γ) have been measured for single-component solid and aqueous inorganic salt and organic aerosol particles with a wide range of hygroscopicities. HO2 uptake coefficients on solid particles were below the detection limit (γ < 0.001), whereas on aqueous aerosols uptake coefficients were somewhat larger (γ = 0.001 - 0.008). HO2 uptake coefficients were highest on aerosols containing metal ions, such as Cu and Fe. Humidity and aerosol pH did not significantly impact the reactive HO2 uptake. Preliminary experiments have also

  13. Prediction of Central Nervous System Relapse of Diffuse Large B-Cell Lymphoma Using Pretherapeutic [18F]2-Fluoro-2-Deoxyglucose (FDG) Positron Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Song, Yoo Sung; Lee, Won Woo; Lee, Jong Seok; Kim, Sang Eun

    2015-11-01

    Central nervous system (CNS) relapse of diffuse large B-cell lymphoma (DLBCL) is a rare complication, but has a poor prognosis with unknown pathophysiology. Recent trials of CNS prophylaxis have shown to be ineffective, despite patient's selection using several known clinical risk factors. In this study, the authors evaluated the value of pretreatment [F]2-Fluoro-2-deoxyglucose positron emission tomography in predicting CNS relapse in DLBCL patients.The authors analyzed 180 pathologically confirmed DLBCL patients, retrospectively. Patients underwent [F]2-Fluoro-2-deoxyglucose positron emission tomography/computed tomography before first line rituximab to cyclophosphamide, doxorubicin, vincristine, and prednisone therapy. Clinical characteristics were evaluated and total lesion glycolysis (TLG) with a threshold margin of 50% was calculated.Among age, sex, Ann Arbor stage, International Prognostic Index, revised International Prognostic Index, high serum lactate dehydrogenase level, presence of B symptoms, bulky disease (≥10 cm), extranodal lesion involvement, bone marrow involvement, high metabolic tumor volume ( >450 mL), and high TLG50 (>2000), the high TLG50 was the only significant prognostic factor for predicting CNS relapse in a multivariate analysis (P = 0.04). Kaplan-Meir survival analysis between high TLG50 (>2000) and low TLG50 (≤2000) groups revealed significantly different mean progression free survival (PFS) of 1317.2 ± 134.3 days and 1968.6 ± 18.3 days, respectively (P positron emission tomography/computed tomography is the most significant predictor of CNS relapse in un-treated DLBCL patients.

  14. A modified assay method for determining serotonin uptake in human platelets

    International Nuclear Information System (INIS)

    Arora, R.C.; Meltzer, H.Y.

    1981-01-01

    Effects of various experimental conditions on serotonin (5-HT) uptake in human platelets were examined. The experimental design allowed the evaluation of the effect of diffusion and other non-saturable processes on the affinity and maximum activity of the membrane pump for 5-HT uptake. Total 5-HT uptake was determined by incubating platelet-rich plasma (PRP) with increasing concentrations of serotonin at 37 0 C for 4 min. The passive uptake was measured by the addition of various 5-HT concentrations to PRP in buffer at 37 0 C, followed by immediate transfer to an ice-cold water bath. The difference between the total and passive uptake was linear for 6 min. The affinity (Ksub(m)) for active platelet serotonin uptake was 0.45 +- 0.09 μmol/l and maximal rate of uptake (V) was 10.7 +- 2.1 pmol/10 7 platelets/min. The described method provides a convenient and reliable measure of active 5-HT uptake suitable for clinical investigation. The effect of passive diffusion on kinetic parameters is discussed. (Auth.)

  15. Changes in vegetation phenology are not reflected in atmospheric CO2 and 13 C/12 C seasonality.

    Science.gov (United States)

    Gonsamo, Alemu; D'Odorico, Petra; Chen, Jing M; Wu, Chaoyang; Buchmann, Nina

    2017-10-01

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO 2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO 2 and 13 C/ 12 C seasonality. Here, we use four CO 2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO 2 and 13 C/ 12 C seasonality. Since the 1960s, the only significant long-term trend of CO 2 and 13 C/ 12 C seasonality was observed at the northern most station, Alert, where the spring CO 2 drawdown dates advanced by 0.65 ± 0.55 days yr -1 , contributing to a nonsignificant increase in length of the CO 2 uptake period (0.74 ± 0.67 days yr -1 ). For Point Barrow station, vegetation phenology changes in well-watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to 13 C/ 12 C seasonality while the CO 2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of 13 C depleted plant materials cancels out the 12 C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming-induced increases both in photosynthesis and respiration contribute to the long-term stability of CO 2 and 13 C/ 12 C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak-to-through CO 2 amplitude. As the relative magnitude of the increased

  16. Angiogenesis PET Tracer Uptake (68Ga-NODAGA-E[(cRGDyK)]₂) in Induced Myocardial Infarction in Minipigs

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Follin, Bjarke; Kastrup, Jens

    2016-01-01

    Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following...... myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvβ₃ integrin has been found to be highly expressed in activated...... endothelial cells and has been identified as a critical modulator of angiogenesis. (68)Ga-NODAGA-E[c(RGDyK)]₂ (RGD) has recently been developed by us as an angiogenesis positron-emission-tomography (PET) ligand targeted towards αvβ₃ integrin. In the present study, we induced myocardial infarction in Göttingen...

  17. Studies on the influence of the interval after blood withdrawal and different storage temperatures on the uptake and kinetics of 14C-serotonin in human thrombocytes in vitro

    International Nuclear Information System (INIS)

    Jarosch, U.

    1978-07-01

    The active in-vitro uptake of 14 C-serotonin in human thrombocytes was investigated in dependence of the interval after blood withdrawal (10-130 min) and the storage temperature of the platelet-rich plasma (4 0 , 22 0 , 37 0 C) for different incubation periods (2, 5, 10 minutes at 37 0 C). The kinetic study of 14 C serotonin uptake showed a constant affinity to the thrombocyte serotonin transport system for all experimental conditions while the maximum reaction rate was clearly affected. One exception was the value determined after 130 minutes of storage time and a storage temperature of 37 0 C for a 14 C serotonin concentration of 10 -5 M which showed a reduced affinity. (orig./AJ) [de

  18. 14CO2-assimilation, translocation of 14C, and 14C-carbonate uptake in different organs of spring barley plants in relation to adult-plant resistance to powdery mildew

    International Nuclear Information System (INIS)

    Hwang, B.K.; Ibenthal, W.-D.; Heitefuss, R.

    1986-01-01

    The cultivar Peruvian of spring barley, which is susceptible at all growth stages, and Asse, which exhibits adult-plant resistance to powdery mildew, were compared in 14 CO 2 assimilation, distribution of 14 C, and 14 C-carbonate uptake in different organs of healthy and infected plants. The reduction of 14 CO 2 assimilation in infected plants at the first and fourth leaf stages was greater in Peruvian than in Asse. In Peruvian, the 14 C which was fixed by the infected third leaf of plants with mildew on the lower 3 leaves remained in the third leaves with very little translocation to other parts of the plant. Infection of the lower three leaves at the fourth leaf stage reduced 14 CO 2 assimilation in noninfected fourth leaves of Asse less than that of Peruvian, but the flow of 14 C from the healthy fourth leaves into other plant parts such as leaf sheaths was markedly stimulated in Peruvian compared to Asse. Infection also reduced the uptake of 14 C-carbonate by seedling roots, the reduction being greater in Peruvian than Asse. A greater proportion of the 14 C absorbed by roots of Asse was translocated to the infected leaves than that of Peruvian. It was concluded that powdery mildew disrupted the normal pattern of photosynthesis and translocation of metabolites in a susceptible cultivar more markedly than in an adult-plant-resistant cultivar of spring barley. (author)

  19. Perturbations of NAD+ salvage systems impact mitochondrial function and energy homeostasis in mouse myoblasts and intact skeletal muscle

    DEFF Research Database (Denmark)

    Andersen, Marianne Agerholm; Dall, Morten; Jensen, Benjamin Anderschou Holbech

    2018-01-01

    Nicotinamide adenine dinucleotide (NAD+) can be synthesized by nicotinamide phosphoribosyltransferase (NAMPT). We aimed to determine the role of NAMPT for maintaining NAD+ levels, mitochondrial function, and metabolic homeostasis in skeletal muscle cells. We generated stable Nampt knockdown (sh......Nampt KD) C2C12 cells using a shRNA lentiviral approach. Moreover, we applied gene electrotransfer to express cre recombinase in tibialis anterior muscle of floxed Nampt mice. In shNampt KD C2C12 myoblasts, Nampt and NAD+ levels were reduced by 70% and 50%, respectively, and maximal respiratory capacity...... was reduced by 25%. Moreover, anaerobic glycolytic flux increased by 55% and 2-deoxyglucose uptake increased by 25% in shNampt KD cells. Treatment with the NAD+ precursor nicotinamide riboside restored NAD+ levels in shNampt cells and increased maximal respiratory capacity by 18% and 32% in control and sh...

  20. Bioaccumulation of 14C-Labeled Graphene in an Aquatic Food Chain through Direct Uptake or Trophic Transfer.

    Science.gov (United States)

    Dong, Shipeng; Xia, Tian; Yang, Yu; Lin, Sijie; Mao, Liang

    2018-01-16

    The growing applications of graphene materials warrant a careful evaluation of their environmental fate in aquatic food webs. Escherichia coli (Bacteria), Tetrahymena thermophila (protozoa), Daphnia magna (zooplankton), and Danio rerio (vertebrate) were used to build aquatic food chains to investigate the waterborne uptake and trophic transfer of 14 C-labeled graphene. Body burden factor (BBF) and trophic transfer factor (TTF) were analyzed for each organism and food chain to assess the bioaccumulation and biomagnification of graphene. The test organisms have high potential of accumulating graphene via direct uptake from culture medium with log-transformed BBF (log BBF) values of 3.66, 5.1, 3.9, and 1.62 for each organism, respectively. In the food chain from E. coli to T. thermophila, the calculated TTFs of 0.2 to 8.6 indicate the high trophic transfer potential in this aquatic food chain. However, the TTFs calculated for the food chain from T. thermophila to D. magna and from D. magna to D. rerio are much lower than 1, indicating that biomagnification was unlikely to occur in these food chains. Body burden measured for dietary uptake by T. thermophila, D. magna, and D. rerio are higher than that via waterborne exposure in a similar nominal concentration, respectively, indicating that trophic transfer is a nonnegligible route for the bioaccumulation of graphene in organisms.

  1. Demonstration of a specific C3a receptor on guinea pig platelets

    International Nuclear Information System (INIS)

    Fukuoka, Y.; Hugli, T.E.

    1988-01-01

    Guinea pig platelets reportedly contain receptors specific for the anaphylatoxin C3a based on both ligand-binding studies and functional responses. A portion of the human 125I-C3a that binds to guinea pig platelets is competitively displaced by excess unlabeled C3a; however, the majority of ligand uptake was nonspecific. Uptake of 125I-C3a by guinea pig platelets is maximal in 1 min, and stimulation of guinea pig platelets by thrombin, ADP, or the Ca2+ ionophore A23187 showed little influence on binding of the ligand. Scatchard analysis indicated that approximately 1200 binding sites for C3a exist per cell with an estimated Kd of 8 x 10(-10) M. Human C3a des Arg also binds to guinea pig platelets, but Scatchard analysis indicated that no specific binding occurred. Because the ligand-binding studies were complicated by high levels of nonspecific uptake, we attempted to chemically cross-link the C3a molecule to a specific component on the platelet surface. Cross-linkage of 125I-C3a to guinea pig platelets with bis(sulfosuccinimidyl)suberate revealed radioactive complexes at 105,000 and 115,000 m.w. on SDS-PAGE gels by autoradiographic analysis. In the presence of excess unlabeled C3a, complex formation was inhibited. No cross-linkage could be demonstrated between the inactive 125I-C3a des Arg and the putative C3a-R on guinea pig platelets. Human C3a, but not C3a des Arg induces serotonin release and aggregation of the guinea pig platelets. Human C3a was unable to induce either serotonin release or promote aggregation of human platelets. Uptake of human 125I-C3a by human platelets was not saturable, and Scatchard analysis was inconclusive. Attempts to cross-link 125I-C3a to components on the surface of human platelets also failed to reveal a ligand-receptor complex. Therefore, we conclude that guinea pig platelets have specific surface receptors to C3a and that human platelets appear devoid of receptors to the anaphylatoxin

  2. Vitamin C Prevents Sleep Deprivation-induced Elevation in Cortisol ...

    African Journals Online (AJOL)

    In this study, we examined the potential protective effects of administration of vitamin C on acute and chronic sleep deprivation-induced metabolic derangement. In addition, possible processes involved in vitamin C effects on acute and chronic sleep deprivation-induced metabolic derangement were determined. Thirty-five ...

  3. Ibuprofen induces reduction of the proliferation-seeking radiotracer 99mTc-(V)DMSA uptake in severe epithelial breast hyperplasia without atypia.

    Science.gov (United States)

    Papantoniou, Vassilios; Tsaroucha, Angeliki; Valsamaki, Pipitsa; Tsiouris, Spyridon; Sotiropoulou, Evangelia; Karianos, Theodore; Marinopoulos, Spyridon; Fothiadaki, Athina; Sotiropoulou, Maria; Archontaki, Aikaterini; Syrgiannis, Konstantinos; Dimitrakakis, Konstantinos; Antsaklis, Aris

    2010-10-01

    The purpose of this study was to investigate if ibuprofen intake can influence mammary uptake of the proliferation-seeking radiotracer technetium 99m-pentavalent dimercaptosuccinic acid (99mTc-(V)DMSA) in women with severe epithelial and atypical epithelial breast hyperplasia. Eight patients with histologically confirmed severe epithelial breast hyperplasia with (n  =  4) and without atypia (n  =  4) were submitted prospectively to 99mTc-(V)DMSA scintimammography before and after a 4-week course of 400 mg ibuprofen daily oral intake. Lesion to background ratios 60 minutes postinjection were calculated and compared (t-test) before and after ibuprofen administration. Prior to ibuprofen, the patients with severe epithelial hyperplasia displayed a significantly higher 99mTc-(V)DMSA uptake ratio compared to those with atypical epithelial hyperplasia (2.40 ± 0.32 vs 1.67 ± 0.09, respectively; p  =  .003). They also exhibited a more substantial percent decline in tracer uptake postibuprofen compared to women with atypical epithelial hyperplasia (62.0 ± 7.1 vs 15.0 ± 0.2, respectively; p  =  .001). Ibuprofen induces significant uptake reduction of the proliferation-seeking radiotracer 99mTc-(V)DMSA in severe epithelial breast hyperplasia without atypia. This agent could therefore constitute a potential imaging tool for monitoring chemoprophylaxis effectiveness in women at the early stages of malignant transformation.

  4. IL-4 induces cAMP and cGMP in human monocytic cells

    Directory of Open Access Journals (Sweden)

    B. Dugas

    1995-01-01

    Full Text Available Human monocytes, preincubated with IFN-γ respond to IL-4 by a cGMP increase through activation of an inducible NO synthase. Here, IL-4 was found to induce an accumulation of cGMP (1 – 3 min and cAMP (20 – 25 min in unstimulated monocytes. This was impaired with NOS inhibitors, but also with EGTA and calcium/calmodulin inhibitors. These results suggest that: (1 IL-4 may stimulate different NOS isoforms in resting and IFN-γ activated monocytes, and (2 cAMP accumulation may be partially dependent on the NO pathway. By RT-PCR, a type III constitutive NOS mRNA was detected in U937 monocytic cells. IL-4 also increased the [Ca2+]i in these cells. Different NOS may thus be expressed in monocytic cells depending on their differentiation and the signals they receive.

  5. Increase vs. decrease of calcium uptake by isolated heart cells induced by H2O2 vs. HOCl

    International Nuclear Information System (INIS)

    Kaminishi, T.; Matsuoka, T.; Yanagishita, T.; Kako, K.J.

    1989-01-01

    Adult rat heart myocytes were labeled rapidly with exogenous [45Ca2+]. Addition of 2.5 mM H2O2 to the heart cell suspension raised the content of rapidly exchangeable intracellular Ca2+ twofold, whereas addition of 1-30 mM HOCl decreased the Ca2+ content. The H2O2-induced increase in Ca2+ content was dependent on the medium Na+, pH, and temperature but was not significantly affected by addition of verapamil, diltiazem, amiloride, or 3-aminobenzamide. The [3H]ouabain binding to myocytes was suppressed by H2O2, whereas the Ca2+ efflux from myocytes was not influenced. An uncoupler, carbonyl cyanide m-chlorophenylhydrazone, reduced Ca2+ content, implying that the H2O2-induced change in Ca2+ content was not directly related to ATP depletion. On the other hand, the H2O2-induced Ca2+ accumulation in myocytes was prevented by deferoxamine or o-phenanthroline. These results suggest that H2O2 inhibited Na+-K+-ATPase, resulting in an increase in intracellular Na+ concentration and stimulation of sarcolemmal Na+-Ca2+ exchange activity, which caused a transient net Ca2+ influx into myocytes. By contrast, HOCl decreased the Ca2+ content of the rapidly exchangeable pool below control levels and this action of HOCl was antagonized by 1,4-dithiothreitol. HOCl accelerated Ca2+ efflux from myocytes. Ca2+ uptake and Ca2+-ATPase of the isolated sarcoplasmic reticular (SR) fraction were highly sensitive to the action of HOCl. Ca2+ uptake by intracellular sites, studied with myocytes permeabilized with digitonin, was inhibited by both H2O2 and HOCl. Thus these results suggest that HOCl inhibits the SR Ca2+ pump, resulting in the observed acceleration of Ca2+ efflux from and decline in Ca2+ content of myocytes

  6. Macropinocytosis is responsible for the uptake of pathogenic and non-pathogenic mycobacteria by B lymphocytes (Raji cells

    Directory of Open Access Journals (Sweden)

    García-Pérez Blanca Estela

    2012-10-01

    Full Text Available Abstract Background The classical roles of B cells include the production of antibodies and cytokines and the generation of immunological memory, these being key factors in the adaptive immune response. However, their role in innate immunity is currently being recognised. Traditionally, B cells have been considered non-phagocytic cells; therefore, the uptake of bacteria by B cells is not extensively documented. In this study, we analysed some of the features of non-specific bacterial uptake by B lymphocytes from the Raji cell line. In our model, B cells were infected with Mycobacterium tuberculosis (MTB, Mycobacterium smegmatis (MSM, and Salmonella typhimurium (ST. Results Our observations revealed that the Raji B cells were readily infected by the three bacteria that were studied. All of the infections induced changes in the cellular membrane during bacterial internalisation. M. smegmatis and S. typhimurium were able to induce important membrane changes that were characterised by abundant filopodia and lamellipodia formation. These membrane changes were driven by actin cytoskeletal rearrangements. The intracellular growth of these bacteria was also controlled by B cells. M. tuberculosis infection also induced actin rearrangement-driven membrane changes; however, the B cells were not able to control this infection. The phorbol 12-myristate 13-acetate (PMA treatment of B cells induced filopodia and lamellipodia formation, the production of spacious vacuoles (macropinosomes, and the fluid-phase uptake that is characteristic of macropinocytosis. S. typhimurium infection induced the highest fluid-phase uptake, although both mycobacteria also induced fluid uptake. A macropinocytosis inhibitor such as amiloride was used and abolished the bacterial uptake and the fluid-phase uptake that is triggered during the bacterial infection. Conclusions Raji B cells can internalise S. typhimurium and mycobacteria through an active process, such as

  7. Using stable isotopes in tree rings to evaluate the impact of urban pollution on CO2 uptake by forests

    International Nuclear Information System (INIS)

    Savard, M.M.; Begin, Ch.; Marion, J.

    2004-01-01

    Contributions addressing the impact of industrial activities on tree growth are scarce; likewise, only a few studies document δ 13 C values in growth rings of natural specimens subjected to potentially toxic industrial emissions. These last studies suggest that the SO 2 emissions affect the physiology of trees and induce changes in their carbon isotope ratios. It has been reported that copper-smelter emissions reduce the C uptake of exposed trees by 35 % to 6 % relatively to unexposed trees, in growth stands located between 9 and 120 km from the smelter. In the context of the globally increasing concentrations of CO 2 in the atmosphere, what is the net impact of the large-scale annual reduction of CO 2 uptake induced by phyto-toxic pollutants? What should we expect for trees growing in regions submitted to urban diffuse pollution? It has been recently suggested on the basis of plant biomass measurements in the New York region that urban pollution can relatively reduce plant growth, but the effect is apparently greater in distant rural sites than in peri-urban and urban ones. Is this representative of numerous urban settings? If the answer to this question is yes, the pollution-effect parameter should be considered in the global annual forest C budget, particularly for the highly industrialized northern hemisphere. The specific objectives of this study are to: (1) measure the tissue increments of the stems and determine the C isotopic ratios in tree-ring cellulose of selected trees undergoing pollution stress in selected peri-urban stands; (2) present a secular time series of the CO 2 uptake by forests peripheral to a large urban region; and (3) evaluate stable isotope dendro-geochemistry as a proxy for past changes of air quality in urban and peri-urban settings. (authors)

  8. Uptake of proline by the scutellum of germinating barley grain

    International Nuclear Information System (INIS)

    Vaeisaenen, E.; Sopanen, T.

    1986-01-01

    Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up 1 millimolar L-[ 14 C]proline at an initial rate of about 6.5 micromoles gram -1 fresh weight hour -1 (pH 5, 30 0 C). The uptake had a pH optimum at 5. The bulk of the uptake (93%) was via carrier-mediated active transport. All of the 19 L-amino acids tested at 10 millimolar concentration inhibited the mediated uptake of 1 millimolar proline, the inhibitions varying from 18 to 76%. By studying how large a fraction of the mediated uptake was inhibitable by asparagine, alanine, glutamine, and leucine, the mediated uptake was shown to be due to three components. Two of these are most probably attributable to the two nonspecific uptake systems proposed earlier to act in the uptake of glutamine and leucine. The third component was not inhibited by glutamine, asparagine, or alanine, but was inhibited by unlabeled proline and leucine. The uptake by this system was apparently carrier-mediated active transport. D-Proline inhibited this system as strongly as L-proline. Nine of the 16 L-amino tested at 50 millimolar concentrations did not inhibit the uptake of 1 millimolar proline by this system. Valine, leucine, isoleucine, and the basic amino acids were inhibitory, but in spite of this, they did not appear to be taken up by this system. It seems therefore that in addition to two nonspecific amino acid uptake systems the scutella have an uptake system which is specific for proline. It is likely that this proline-specific system accounts for the bulk of proline uptake in a germinating grain

  9. Metabolic neural mapping in neonatal rats

    International Nuclear Information System (INIS)

    DiRocco, R.J.; Hall, W.G.

    1981-01-01

    Functional neural mapping by 14 C-deoxyglucose autoradiography in adult rats has shown that increases in neural metabolic rate that are coupled to increased neurophysiological activity are more evident in axon terminals and dendrites than neuron cell bodies. Regions containing architectonically well-defined concentrations of terminals and dendrites (neuropil) have high metabolic rates when the neuropil is physiologically active. In neonatal rats, however, we find that regions containing well-defined groupings of neuron cell bodies have high metabolic rates in 14 C-deoxyglucose autoradiograms. The striking difference between the morphological appearance of 14 C-deoxyglucose autoradiograms obtained from neonatal and adult rats is probably related to developmental changes in morphometric features of differentiating neurons, as well as associated changes in type and locus of neural work performed

  10. Hyperthermic treatment at 56 °C induces tumour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens.

    Science.gov (United States)

    De Sanctis, Francesco; Sandri, Sara; Martini, Matteo; Mazzocco, Marta; Fiore, Alessandra; Trovato, Rosalinda; Garetto, Stefano; Brusa, Davide; Ugel, Stefano; Sartoris, Silvia

    2018-06-14

    Most active cancer immunotherapies able to induce a long-lasting protection against tumours are based on the activation of tumour-specific cytotoxic T lymphocytes (CTLs). Cell death by hyperthermia induces apoptosis followed by secondary necrosis, with the production of factors named "danger associated molecular pattern" (DAMP) molecules (DAMPs), that activate dendritic cells (DCs) to perform antigen uptake, processing and presentation, followed by CTLs cross priming. In many published studies, hyperthermia treatment of tumour cells is performed at 42-45 °C; these temperatures mainly promote cell surface expression of DAMPs. Treatment at 56 °C of tumour cells was shown to induce DAMPs secretion rather than their cell surface expression, improving DC activation and CTL cross priming in vitro. Thus we tested the relevance of this finding in vivo on the generation of a tumour-specific memory immune response, in the TRAMP-C2 mouse prostate carcinoma transplantable model. TRAMP-C2 tumour cells treated at 56 °C were able not only to activate DCs in vitro but also to trigger a tumour-specific CTL-dependent immune response in vivo. Prophylactic vaccination with 56 °C-treated TRAMP-C2 tumour cells alone provided protection against TRAMP-C2 tumour growth in vivo, whilst in the therapeutic regimen, control of tumour growth was achieved combining immunization with adjuvant chemotherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Yan M

    2016-02-01

    Full Text Available Ming Yan,1,* Yun Zhang,2,* Haiyan Qin,3 Kezhou Liu,1 Miao Guo,1 Yakun Ge,1 Mingen Xu,1 Yonghong Sun,4 Xiaoxiang Zheng4 1Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 2Basic Medical Sciences, College of Medicine, Shaoxing University, Shaoxing, 3Department of Chemistry, Zhejiang University, 4Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Cadmium telluride quantum dots (CdTe QDs have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs. However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (–21.63±0.91 mV, with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature. The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and

  12. Effect of root temperature on the uptake and metabolism of anions by the root system of Zea mays L. I. Uptake of sulphate by resistant and non-resistant plants

    Energy Technology Data Exchange (ETDEWEB)

    Holobrada, M; Mistrik, I; Kolek, J [Institute of Experimental Biology and Ecology of the Slovak Academy of Sciences, Bratislava (Czechoslovakia)

    1980-01-01

    The effect of root temperature upon the uptake of /sup 35/S-sulfate by intact 21 days old maize roots was discussed. The plant roots grown at 20 degC were cooled in steps down to 15 degC or 5 degC. The rate of /sup 35/S uptake was studied both in the whole root system and separately in the individual roots (primary seminal root, seminal adventitious roots and nodal roots). Differences were ascertained at lower uptakes by various root samples from resistant and nonresistant maize cultivars.

  13. Inhibition of glioblastoma tumorspheres by combined treatment with 2-deoxyglucose and metformin.

    Science.gov (United States)

    Kim, Eui Hyun; Lee, Ji-Hyun; Oh, Yoonjee; Koh, Ilkyoo; Shim, Jin-Kyoung; Park, Junseong; Choi, Junjeong; Yun, Mijin; Jeon, Jeong Yong; Huh, Yong Min; Chang, Jong Hee; Kim, Sun Ho; Kim, Kyung-Sup; Cheong, Jae-Ho; Kim, Pilnam; Kang, Seok-Gu

    2017-02-01

    Deprivation of tumor bioenergetics by inhibition of multiple energy pathways has been suggested as an effective therapeutic approach for various human tumors. However, this idea has not been evaluated in glioblastoma (GBM). We hypothesized that dual inhibition of glycolysis and oxidative phosphorylation could effectively suppress GBM tumorspheres (TS). Effects of 2-deoxyglucose (2DG) and metformin, alone and in combination, on GBM-TS were evaluated. Viability, cellular energy metabolism status, stemness, invasive properties, and GBM-TS transcriptomes were examined. In vivo efficacy was tested in a mouse orthotopic xenograft model. GBM-TS viability was decreased by the combination of 2DG and metformin. ATP assay and PET showed that cellular energy metabolism was also decreased by this combination. Sphere formation, expression of stemness-related proteins, and invasive capacity of GBM-TS were also significantly suppressed by combined treatment with 2DG and metformin. A transcriptome analysis showed that the expression levels of stemness- and epithelial mesenchymal transition-related genes were also significantly downregulated by combination of 2DG and metformin. Combination treatment also prolonged survival of tumor-bearing mice and decreased invasiveness of GBM-TS. The combination of 2DG and metformin effectively decreased the stemness and invasive properties of GBM-TS and showed a potential survival benefit in a mouse orthotopic xenograft model. Our findings suggest that targeting TS-forming cells by this dual inhibition of cellular bioenergetics warrants expedited clinical evaluation for the treatment of GBM. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  14. Fatty Acid Uptake and Lipid Storage Induced by HIF-1α Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation

    Directory of Open Access Journals (Sweden)

    Karim Bensaad

    2014-10-01

    Full Text Available Summary: An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3 and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α-dependent manner. There was a significant lipid droplet (LD accumulation in hypoxia that was time and O2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via β-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo. : Bensaad et al. now show that FABP3 and FABP7 are induced by HIF-1α and lead to a significant lipid droplet (LD accumulation in hypoxia. In hypoxia-reoxygenation, ATP production occurs via fatty acid β-oxidation or glycogen degradation in a cell-type-dependent manner, while inhibition of LD formation increases ROS toxicity and decreases cell survival in vitro and strongly impairs tumorigenesis in vivo.

  15. Factors influencing physiological FDG uptake in the intestine

    International Nuclear Information System (INIS)

    Yasuda, Seiei; Takahashi, Wakoh; Takagi, Shigeharu; Fujii, Hirofumi; Ide, Michiru; Shohtsu, Akira

    1998-01-01

    The intestine is a well-known site of physiological 18 F-fluorodeoxyglucose (FDG) accumulation in positron emission tomography (PET). To identify factors influencing physiological FDG uptake in the intestine, the intensity of FDG uptake was evaluated in a total of 1,068 healthy adults. Non-attenuation-corrected whole-body PET images were obtained for all subjects and visually evaluated. Subjects were then classified into two groups according to the intensity of intestinal FDG uptake. Sex, age, presence or absence of constipation, and serum glucose, hemoglobin A 1 c, and free fatty acid levels were compared between the two groups. High intestinal FDG uptake was observed at an overall rate of 11.0%. Sex (female), age, and bowel condition (constipation) were found to affect intestinal FDG uptake. The factors we identified lead to further questions the relationship between intestinal motility and glucose uptake that warrant further study. (author)

  16. Tissue distributions of radiopharmaceuticals labeled with positron emitters and problems in relating them to human studies

    International Nuclear Information System (INIS)

    Christman, D.R.

    1980-01-01

    This paper discusses a few specific examples of organ distributions involving positron-emitting nuclides intended to illustrate some specific points in this area. In particular, work with 2-fluoro-2-deoxyglucose will be discussed in some detail, and its distribution in the body compared with the closely related (chemically but not biologically) 3-fluoro-3-deoxyglucose and 1- 11 C-2-deoxyglucose. Other compounds labeled with these two nuclides, and with 13 N and 15 O will also be discussed

  17. Standardized uptake value and quantification of metabolism for breast cancer imaging with FDG and L-[1-C-11]tyrosine PET

    NARCIS (Netherlands)

    Kole, AC; Nieweg, OE; Pruim, J; Paans, AMJ; Plukker, JTM; Hoekstra, HJ; Vaalburg, W; Schraffordt Koops, H.

    The aims of the study were to compare the value of L-[1-C-11]tyrosine (TYR) and [F-18]fluoro-2-deoxy-D-glucose (FDG) as tumor tracers in patients with breast cancer, to investigate the correlation between quantitative values and standardized uptake values (SUVs) and to estimate the value of SUVs for

  18. Downstream mechanisms of nitric oxide-mediated skeletal muscle glucose uptake during contraction.

    Science.gov (United States)

    Merry, Troy L; Lynch, Gordon S; McConell, Glenn K

    2010-12-01

    There is evidence that nitric oxide (NO) is required for the normal increases in skeletal muscle glucose uptake during contraction, but the mechanisms involved have not been elucidated. We examined whether NO regulates glucose uptake during skeletal muscle contractions via cGMP-dependent or cGMP-independent pathways. Isolated extensor digitorum longus (EDL) muscles from mice were stimulated to contract ex vivo, and potential NO signaling pathways were blocked by the addition of inhibitors to the incubation medium. Contraction increased (P contraction by ∼50% (P contraction; however, DTT attenuated (P contraction-stimulated glucose uptake (by 70%). NOS inhibition and antioxidant treatment reduced contraction-stimulated increases in protein S-glutathionylation and tyrosine nitration (P skeletal muscle glucose uptake during ex vivo contractions via a cGMP/PKG-, AMPK-, and p38 MAPK-independent pathway. In addition, it appears that NO and ROS may regulate skeletal muscle glucose uptake during contraction through a similar pathway.

  19. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography

    International Nuclear Information System (INIS)

    Brudin, L.H.; Valind, S.O.; Rhodes, C.G.; Pantin, C.F.; Sweatman, M.; Jones, T.; Hughes, J.M.B.

    1994-01-01

    Regional pulmonary glucose metabolism (MR glu ; μmol h -1 g -1 ), extravascular lung density (D EV ; g cm -3 ) and vascular volume (V B ; ml cm -3 ) were measured in a single midthoracic transaxial slice (-2 cm thick) using positron emission tomography (PET) in seven patients with histologically proven sarcoidosis. The measurements were repeated 1-7 months later after steroid therapy (in two cases, no treatment) in order to assess MR glu as an index of inflammation and relate it to routine pulmonary function tests, chest radiography and serum angiotensin converting enzyme (SACE) levels. MR glu was computed from serial lung scans and peripheral venous blood samples for 60 min following an i.v. injection of 18 F-2-fluoro-2-deoxy-D-glucose ( 18 FDG). Both MR glu (which was increased in six of seven patients) and elevated SACE levels returned to normal in those patients treated with high-dose steroids. Regional vascular volume was normal in six of seven cases and did not change significantly with therapy. The high tissue density measured in all patients decreased significantly in two of three patients treated with 40 mg prednisolone daily. The abnormal MR glu observed in active sarcoidosis becomes normal pari passu with SACE levels during high-dose steroid therapy. We conclude that MR glu measured with 18 FDG and PET may reflect ''disease activity'' in sarcoidosis in quantitative terms (per gram lung tissue) and in respect of disease distribution. (orig.)

  20. Evaluation of Positron Emission Tomographic Tracers for Imaging of Papillomavirus-Induced Tumors in Rabbits

    Directory of Open Access Journals (Sweden)

    Sonja Probst

    2014-01-01

    Full Text Available In this study, simultaneous positron emission tomography (PET/magnetic resonance (MR imaging was employed to evaluate the feasibility of the PET tracers 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG, 11C-choline, and 18F-fluorothymidine (18F-FLT to detect papillomavirus-induced tumors in an established rabbit model system. The combined PET/MR allowed the analysis of tracer uptake of the tumors using the morphologic information acquired by MR. New Zealand White rabbits were infected with cottontail rabbit papillomavirus genomes and were imaged for up to 10 months with a simultaneous PET/MR system during the course of infection. The uptake characteristics of the PET tracers 11C-choline and 18F-FLT of tumors and reference tissues were examined relative to the clinical standard, 18F-FDG. Tracer biodistribution of various organs was measured by gamma-counting after the last PET scan and compared to the in vivo PET/MR 18F-FDG uptake. Increased tracer uptake was found 2 months postinfection in primary tumors with 18F-FDG and 11C-choline, whereas 18F-FLT failed to detect the tumors at all measured time points. Our data show that the PET tracer 18F-FDG is superior for imaging papillomavirus-induced tumors in rabbits compared to 11C-choline and 18F-FLT. However, 11C-choline imaging, which has previously been applied to detect various tumor entities in patients, appears to be an alternative to 18F-FDG.

  1. A systematic review of Hepatitis C virus treatment uptake among people who inject drugs in the European Region

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V; Sperle, Ida; Maticic, Mojca

    2014-01-01

    in relation to the number of patients who either: (a) tested HCV antibody-positive; (b) tested positive for HCV-RNA; or (c) tested positive for HCV-RNA and met additional treatment criteria. RESULTS: Twenty-five articles from 12 countries were included in the review. Among groups of drug-using study......BACKGROUND: Fifteen million adults in the World Health Organization European Region are estimated to have active hepatitis C infection. Intravenous drug use is a major hepatitis C transmission route in this region, and people who inject drugs (PWID) constitute a high-risk and high......-prevalence population. A systematic review was conducted to assess levels of hepatitis C treatment uptake among PWID in Europe. METHODS: Searches in MEDLINE and EMBASE were carried out for articles in any language published between 1 January 2000 and 31 December 2012. Articles were included in the review...

  2. Uptake of radiocarbon from plant rhizosphere based on geological disposal of TRU waste. Root-uptake of radiocarbon carbon derived from acetic acid

    International Nuclear Information System (INIS)

    Ogiyama, Shinichi; Takeda, Hiroshi; Uchida, Shigeo; Suzuki, Hiroyuki; Inubushi, Kazuyuki

    2008-01-01

    Hydroponic experiments were conducted to examine root-uptake of 14 C in the form of acetic acid by 3 kinds of plants (marigold, tall fescue, and paddy rice) based on buried transuranic (TRU) waste disposal. Also, chamber experiment was conducted to examine loss of 14 C as vaporized carbon dioxide (CO 2 ) from the experimental tessera (spatially heterogeneous environment). The distribution of radioactivity in the plant, mediums, and carbon dioxide ( 14 CO 2 ) in the chamber were determined, and the distribution of 14 C in the plant was visualized by the autoradiography. The plants absorbed and assimilated 14 C through the roots. The amount of 14 C in marigold and tall fescue were higher than that of paddy rice. However, the amounts of 14 C-acetic acid absorbed by all the plants through their roots were considered to be very small. More so, 14 CO 2 gas was released from the culture solution to the atmosphere; however, it was not enough for the plant to perform photosynthesis. Assimilation of 14 C in the plant shoots would be because of 14 C movement of inorganic forms such as CO 2 and HCO 3 - via the roots. Thus, the results indicated that the plants absorbed 14 C through the roots and assimilated it into the shoots or edible parts not because of uptake of 14 C-acetic acid but because of uptake of 14 C in inorganic forms. (author)

  3. A rapid microassay for detecting antibodies against poliovirus based on [14C]thymidine uptake of treated cell cultures

    International Nuclear Information System (INIS)

    Hilfenhaus, J.; Damm, H.; Ziegelmaier, R.; Gruschkau, H.

    1977-01-01

    DNA synthesis of mammalian cells propagated in microplates can easily be measured if cell cultures incubated with [ 14 C]thymidine are harvested on to glass fibre filters by a semiautomatic harvesting technique. Soon after infection with poliovirus, [ 14 C]thymidine uptake of U cells (established, human amniotic cell line) is inhibited. This inhibition can be prevented by previous virus neutralization with antibody. Based on this effect a rapid, precise assay method was set up to determine neutralizing antibody titres against poliovirus. There was a good correlation between titres obtained by this assay and those obtained by 50% endpoint titrations in cytopathogenic effect inhibition assays

  4. Assessing the Long-Term Impact of Treating Hepatitis C Virus (HCV-Infected People Who Inject Drugs in the UK and the Relationship between Treatment Uptake and Efficacy on Future Infections.

    Directory of Open Access Journals (Sweden)

    Hayley Bennett

    Full Text Available The prevalence of the hepatitis C virus (HCV remains high amongst people who inject drugs (PWID and accounts for the majority of newly acquired infections. This study aims to quantify the value of treatment amongst PWID with more efficacious treatments and at increased uptake rates, with respect to the avoidance of future infections and subsequent long-term complications of HCV.A dynamic HCV transmission and disease progression model was developed, incorporating acute and chronic infection and their long-term complications (decompensated cirrhosis, cancer, liver transplant and mortality, with the potential for HCV transmission to other PWID prior to successful treatment. The model was populated with prevalence and therapy data from a UK setting. Scenarios of current standard of care (SoC treatment efficacy and uptake were compared to anticipated sustained virologic response (SVR rates of 90-100% and increased uptake over varied horizons.SoC led to modest reductions in prevalence; >5% after 200 years. New treatments achieving 90% SVR could reduce prevalence below 5% within 60 years at current uptake rates or within 5 years if all patients are treated. Amongst 4,240 PWID, chronic HCV infections avoided as a result of increasing treatment uptake over the period 2015-2027 ranged from 20-580 and 34-912 with SoC and 90% SVR rates respectively. The reduction in downstream HCV infections due to increasing treatment uptake resulted in an approximate discounted gain of 300 life-years (from avoiding reduced life expectancy from HCV infection and a gain of 1,700 QALYs (from avoiding the disutility of HCV infection and related complications, with a projected £5.4 million cost saving.While improved SVR profiles led to reductions in modelled prevalence, increased treatment uptake was the key driver of future infections avoided. Increased treatment among PWID with new more efficacious therapies could significantly change the future dynamics, cost and health

  5. L-DOPA Preloading Increases the Uptake of Borophenylalanine in C6 Glioma Rat Model: A New Strategy to Improve BNCT Efficacy

    International Nuclear Information System (INIS)

    Capuani, Silvia; Gili, Tommaso; Bozzali, Marco; Russo, Salvatore; Porcari, Paola; Cametti, Cesare; D'Amore, Emanuela; Colasanti, Marco; Venturini, Giorgio; Maraviglia, Bruno; Lazzarino, Giuseppe; Pastore, Francesco S.

    2008-01-01

    Purpose: Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on 10 B(n,α) 7 Li reaction, for the treatment of malignant gliomas. One of the main limitations for BNCT effectiveness is the insufficient intake of 10 B nuclei in the tumor cells. This work was aimed at investigating the use of L-DOPA as a putative enhancer for 10 B-drug 4-dihydroxy-borylphenylalanine (BPA) uptake in the C6-glioma model. The investigation was first performed in vitro and then extended to the animal model. Methods and Materials: BPA accumulation in C6-glioma cells was assessed using radiowave dielectric spectroscopy, with and without L-DOPA preloading. Two L-DOPA incubation times (2 and 4 hours) were investigated, and the corresponding effects on BPA accumulation were quantified. C6-glioma cells were also implanted in the brain of 32 rats, and tumor growth was monitored by magnetic resonance imaging. Rats were assigned to two experimental branches: (1) BPA administration; (2) BPA administration after pretreatment with L-DOPA. All animals were sacrificed, and assessments of BPA concentrations in tumor tissue, normal brain, and blood samples were performed using high-performance liquid chromatography. Results: L-DOPA preloading induced a massive increase of BPA concentration in C6-glioma cells only after a 4-hour incubation. In the animal model, L-DOPA pretreatment produced a significantly higher accumulation of BPA in tumor tissue but not in normal brain and blood samples. Conclusions: This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT. L-DOPA preloading effect is discussed in terms of membrane transport mechanisms

  6. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation

    International Nuclear Information System (INIS)

    Chu, Che-Kuan; Tu, Yi-Chou; Chang, Yu-Wei; Chu, Chih-Ken; Chen, Shih-Yang; Chi, Ting-Ta; Kiang, Yean-Woei; Yang, Chih-Chung

    2015-01-01

    Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I 2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I 2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I 2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs. (paper)

  7. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  8. Uptake of dehydroascorbic acid and ascorbic acid to isolated nerve terminals and secretory granules from ox neurohypophyses

    DEFF Research Database (Denmark)

    Thorn, N A; Nielsen, F S; Jeppesen, C K

    1986-01-01

    When uptake of L-[14C]ascorbic acid ([14C]AA) to various organs in guinea-pigs was studied after intracardiac injection, the adenohypophysis, pars intermedia, and the neurohypophysis had an uptake per milligramme protein which was about half of the uptake to the adrenals. Adrenal uptake was 20...

  9. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Peng, Tsung-Hung; Takahashi, Taro

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0 2 include carbon chemistry, distribution of alkalinity, pCO 2 and total concentration of dissolved C0 2 , sea-air pCO 2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0 2 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0 2 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0 2 fertilization is a potential candidate for such missing carbon sinks

  10. In vivo characterization of insulin uptake by dog renal cortical epithelium

    International Nuclear Information System (INIS)

    Whiteside, C.I.; Lumsden, C.J.; Silverman, M.

    1988-01-01

    In vivo 125I-labeled insulin uptake by dog renal tubular epithelium was studied using the single-pass multiple indicator dilution (MID) method and analyzed by a computer-assisted model of transcapillary exchange and substrate-cell interaction. Anesthetized dogs received an intrarenal arterial bolus of multiple tracers: [3H]dextran greater than 70 kDa (plasma reference), [14C]inulin (extracellular reference), and 125I-insulin. Rapid serial sampling of the renal venous and urine outflows was performed. The renal venous outflow curves of 125I-insulin fell below [14C]inulin implying postglomerular extraction and antiluminal membrane (ALM) uptake. The fractional urine recovery of 125I-insulin was less than 0.03, indicating luminal tubular uptake of filtered hormone. After intravenous infusion of unlabeled insulin, repeat MID runs with tracer revealed saturable ALM uptake as evidenced by the 125I-insulin renal venous outflow curves approaching [14C]inulin. Luminal tubular uptake was unchanged and therefore unsaturable. The 125I-insulin renal venous data were studied using three mathematical models, incorporating postglomerular reversible binding, irreversible binding or transport. The best fit was obtained using the transport model. The modeling analysis is consistent with either uptake into a virtual epithelial membrane space (i.e., insulin never enters the cell but binds to or is distributed along the ALM) or insulin actually enters the intracellular compartment. In vivo uptake of 125I-insulin ALM is characterized by a Km of 15.44 nM

  11. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health.

    Science.gov (United States)

    Fuhrmeister, Jessica; Zota, Annika; Sijmonsma, Tjeerd P; Seibert, Oksana; Cıngır, Şahika; Schmidt, Kathrin; Vallon, Nicola; de Guia, Roldan M; Niopek, Katharina; Berriel Diaz, Mauricio; Maida, Adriano; Blüher, Matthias; Okun, Jürgen G; Herzig, Stephan; Rose, Adam J

    2016-06-01

    Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45β represents a liver-specific molecular event promoting adaptive metabolic function. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Targeting of VX2 Rabbit Liver Tumor by Selective Delivery of 3-Bromopyruvate: A Biodistribution and Survival Study

    Science.gov (United States)

    Vali, Mustafa; Vossen, Josephina A.; Buijs, Manon; Engles, James M.; Liapi, Eleni; Ventura, Veronica Prieto; Khwaja, Afsheen; Acha-Ngwodo, Obele; Shanmugasundaram, Ganapathy; Syed, Labiq; Wahl, Richard L.; Geschwind, Jean-Francois H.

    2009-01-01

    The aim of this study was to determine the biodistribution and tumor targeting ability of 14C-labeled 3-bromopyruvate ([14C]3-BrPA) after i.a. and i.v. delivery in the VX2 rabbit model. In addition, we evaluated the effects of [14C]3-BrPA on tumor and healthy tissue glucose metabolism by determining 18F-deoxyglucose (FDG) uptake. Last, we determined the survival benefit of i.a. administered 3-BrPA. In total, 60 rabbits with VX2 liver tumor received either 1.75 mM [14C]3-BrPA i.a., 1.75 mM [14C]3-BrPA i.v., 20 mM [14C]3-BrPA i.v., or 25 ml of phosphate-buffered saline (PBS). All rabbits (with the exception of the 20 mM i.v. group) received FDG 1 h before sacrifice. Next, we compared survival of animals treated with i.a. administered 1.75 mM [14C]3-BrPA in 25 ml of PBS (n = 22) with controls (n = 10). After i.a. infusion, tumor uptake of [14C]3-BrPA was 1.8 ± 0.2% percentage of injected dose per gram of tissue (%ID/g), whereas other tissues showed minimal uptake. After i.v. infusion (1.75 mM), tumor uptake of [14C]3-BrPA was 0.03 ± 0.01% ID/g. After i.a. administration of [14C]3-BrPA, tumor uptake of FDG was 26 times lower than in controls. After i.v. administration of [14C]3-BrPA, there was no significant difference in tumor FDG uptake. Survival analysis showed that rabbits treated with 1.75 mM 3-BrPA survived longer (55 days) than controls (18.6 days). Intra-arterially delivered 3-BrPA has a favorable biodistribution profile, combining a high tumor uptake resulting in blockage of FDG uptake with no effects on healthy tissue. The local control of the liver tumor by 3-BrPA resulted in a significant survival benefit. PMID:18591216

  13. Disruption of Lipid Uptake in Astroglia Exacerbates Diet-Induced Obesity

    NARCIS (Netherlands)

    Gao, Yuanqing; Layritz, Clarita; Legutko, Beata; Eichmann, Thomas O.; Laperrousaz, Elise; Moullé, Valentine S.; Cruciani-Guglielmacci, Celine; Magnan, Christophe; Luquet, Serge; Woods, Stephen C.; Eckel, Robert H.; Yi, Chun-Xia; Garcia-Caceres, Cristina; Tschöp, Matthias H.

    2017-01-01

    Neuronal circuits in the brain help to control feeding behavior and systemic metabolism in response to afferent nutrient and hormonal signals. Although astrocytes have historically been assumed to have little relevance for such neuroendocrine control, we investigated whether lipid uptake via

  14. Factors Associated with Diffusely Increased Splenic F-18 FDG Uptake in Patients with Cholangiocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keunyoung; Kim, Seongjang; Kim, Injoo; Kim, Dong Uk; Kim, Heeyoung; Kim, Sojung; Ahn, Sang Hyun [Pusan National Univ. Hospital, Busan (Korea, Republic of)

    2014-06-15

    Although diffuse splenic {sup 18}F-fluorodeoxyglucose (F-18 FDG) uptake exceeding hepatic activity, is considered abnormal, its clinical significance is rarely discussed in the literature. The aim of this study was to determine the contributing factors causing diffusely increased splenic FDG uptake in patients with cholangiocarcinoma. From January 2010 to March 2013, 140 patients (84 men, 56 women) were enrolled in this study. All patients had been diagnosed with cholangiocarcinoma and underwent F-18 FDG positron emission tomography/computed tomography (PET/CT) for the pretreatment staging work up. Clinical records were reviewed retrospectively. Various hematological parameters, C-reactive protein (CRP) level, CEA, CA19-9, pancreatic enzymes and liver function tests were conducted within 2 days after the F-18 FDG PET/CT study. Diffuse splenic uptake was observed in 23 patients (16.4%). Of those, 19 patients (82.6%) underwent endoscopic retrograde cholangiopancreastography (ERCP) 7 days before F-18 FDG PET/CT. The CRP level (p <0.001) and white blood cell count (p =0.023) were significantly higher in the group of patients with diffuse splenic FDG uptake. The hemoglobin (p <0.001) and the hematocrit (p <0.001) were significantly lower in patients with diffuse splenic FDG uptake. Pancreatic enzymes, liver function test results, and tumor markers were not significantly different between the patients who did or did not have diffusely increased splenic FDG uptake. The significant factors for diffuse splenic F-18 FDG uptake exceeding hepatic F-18 FDG uptake on multivariate analysis included: performing ERCP before F-18 FDG PET-CT (odds ratio [OR], 77.510; 95% CI, 7.624-132.105), and the presence of leukocytosis (OR, 12.436; 95% CI, 2.438-63.445) or anemia (OR, 1.211; 95% CI, 1.051-1.871). In conclusion, our study demonstrated that concurrent inflammation could be associated with diffusely increased splenic FDG uptake. We suggest that performing ERCP before F-18 FDG PET

  15. Factors Associated with Diffusely Increased Splenic F-18 FDG Uptake in Patients with Cholangiocarcinoma

    International Nuclear Information System (INIS)

    Kim, Keunyoung; Kim, Seongjang; Kim, Injoo; Kim, Dong Uk; Kim, Heeyoung; Kim, Sojung; Ahn, Sang Hyun

    2014-01-01

    Although diffuse splenic 18 F-fluorodeoxyglucose (F-18 FDG) uptake exceeding hepatic activity, is considered abnormal, its clinical significance is rarely discussed in the literature. The aim of this study was to determine the contributing factors causing diffusely increased splenic FDG uptake in patients with cholangiocarcinoma. From January 2010 to March 2013, 140 patients (84 men, 56 women) were enrolled in this study. All patients had been diagnosed with cholangiocarcinoma and underwent F-18 FDG positron emission tomography/computed tomography (PET/CT) for the pretreatment staging work up. Clinical records were reviewed retrospectively. Various hematological parameters, C-reactive protein (CRP) level, CEA, CA19-9, pancreatic enzymes and liver function tests were conducted within 2 days after the F-18 FDG PET/CT study. Diffuse splenic uptake was observed in 23 patients (16.4%). Of those, 19 patients (82.6%) underwent endoscopic retrograde cholangiopancreastography (ERCP) 7 days before F-18 FDG PET/CT. The CRP level (p <0.001) and white blood cell count (p =0.023) were significantly higher in the group of patients with diffuse splenic FDG uptake. The hemoglobin (p <0.001) and the hematocrit (p <0.001) were significantly lower in patients with diffuse splenic FDG uptake. Pancreatic enzymes, liver function test results, and tumor markers were not significantly different between the patients who did or did not have diffusely increased splenic FDG uptake. The significant factors for diffuse splenic F-18 FDG uptake exceeding hepatic F-18 FDG uptake on multivariate analysis included: performing ERCP before F-18 FDG PET-CT (odds ratio [OR], 77.510; 95% CI, 7.624-132.105), and the presence of leukocytosis (OR, 12.436; 95% CI, 2.438-63.445) or anemia (OR, 1.211; 95% CI, 1.051-1.871). In conclusion, our study demonstrated that concurrent inflammation could be associated with diffusely increased splenic FDG uptake. We suggest that performing ERCP before F-18 FDG PET

  16. Uptake of C-14 tagged acetate by rice in a paddy soil-to-rice plant system

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuyoshi; Tagami, Keiko; Uchida, Shigeo [Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

    2014-07-01

    rice plants in the control group. Similar phenomena should also be found for spiked group so that it was difficult to estimate root uptake rate from soil. The highest activity was 1.3 x 10{sup 3} ± 2.3 x 10{sup 2} Bq/g of the rice husk sample in the spiked group, and the C-14 activities in each plant part of the spiked group decreased in the same order as those of the control group. The average soil-to-plant transfer factor for C-14 in white rice (TF: Bq/g-dry of C-14 in white rice/ Bq/g-dry of C-14 in the soil) was 6.8. This TF includes the C-14 uptake by rice plants from the atmosphere. Therefore, new environmental parameter, which considers the transfer of C-14 from atmosphere, is desired. This work has been partially supported by the Agency of Natural Resources and Energy, the Ministry of Economy, Trade, and Industry (METI) Japan. (authors)

  17. Evaluation of [{sup 11}C]rofecoxib as PET tracer for cyclooxygenase 2 overexpression in rat models of inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Erik F.J. de [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen (Netherlands)], E-mail: e.f.j.de.vries@ngmb.umcg.nl; Doorduin, Janine; Dierckx, Rudi A.; Waarde, Aren van [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen (Netherlands)

    2008-01-15

    Background: Overexpression of cyclooxygenase type 2 (COX-2) is triggered by inflammatory stimuli, but it also plays a prominent role in the initiation and progression of various diseases. This study aims to investigate [{sup 11}C]rofecoxib as a positron emission tomography (PET) tracer for COX-2 expression. Methods: [{sup 11}C]Rofecoxib was prepared by methylation of its sulphinate precursor. Regional brain distribution and specific binding of [{sup 11}C]rofecoxib in healthy rats was studied by ex vivo biodistribution and autoradiography. Regional brain distribution and PET imaging studies were also performed on rats with severe encephalitis, caused by nasal infection with herpes simplex virus (HSV). Finally, ex vivo biodistribution and blocking studies were carried in rats with a sterile inflammation, induced by intramuscular turpentine injection. Results: [{sup 11}C]rofecoxib brain uptake in control animals corresponded with the known distribution of COX-2. Pretreatment with NS398 significantly reduced tracer uptake in the cingulate/frontopolar cortex, whereas the reduction in hippocampus approached significance. Ex vivo autoradiography also revealed preferential tracer uptake in hippocampus and cortical areas that could be blocked by NS398. In HSV-infected animals, [{sup 11}C]rofecoxib uptake was moderately increased in all brain regions, but it could not be blocked with indomethacin. Yet, some PET images revealed increased tracer uptake in brain areas with microglia activation. In turpentine-injected animals, [{sup 11}C]rofecoxib uptake in inflamed muscle was not higher than in control muscle and could not be blocked with NS398. Indomethacin caused a slight reduction in muscle uptake. Conclusions: Despite the apparent correlation between [{sup 11}C]rofecoxib uptake and COX-2 distribution in healthy rats, [{sup 11}C]rofecoxib could not unambiguously detect COX-2 overexpression in two rat models of inflammation.

  18. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia; Schneider, Birgit; Frolicher, Thomas L.; Segschneider, Joachim; Tjiputra, Jerry; Heinze, Christoph; Joos, Fortunat

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid-latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra-tropics, to large freshwater fluxes in the extra-tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra-tropics and 25% in the southern extra-tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  19. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub-polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra tropics, to large freshwater fluxes in the extra tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra tropics and 25% in the southern extra tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  20. Fasting induces basolateral uptake transporters of the SLC family in the liver via HNF4alpha and PGC1alpha.

    Science.gov (United States)

    Dietrich, Christoph G; Martin, Ina V; Porn, Anne C; Voigt, Sebastian; Gartung, Carsten; Trautwein, Christian; Geier, Andreas

    2007-09-01

    Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.

  1. GATA-dependent regulation of TPO-induced c-mpl gene expression during megakaryopoiesis.

    Science.gov (United States)

    Sunohara, Masataka; Morikawa, Shigeru; Fuse, Akira; Sato, Iwao

    2014-01-01

    Thrombopoietin (TPO) and its receptor, c-Mpl, play the crucial role during megakaryocytopoiesis. Previously, we have shown that the promoter activity of c-mpl induced by TPO is modulated by transcription through a PKC-dependent pathway and that GATA(-77) is involved as a positive regulatory element in TPO-induced c-mpl gene expression in the megakaryoblastic CMK cells. In this research, to examine participating possibility of GATA promoter element in TPO- induced c-mpl gene expression through a PKC-independent pathway, the promoter activity of site-directed mutagenesis and the effect of potein kinase C modulator were measured by a transient transfection assay system. Together with our previous results on the TPO-induced c-mpl promoter, this study indicates destruction of -77GATA in c-mpl promoter decreased the activity by 47.3% under existence of GF109203. These results suggest that GATA promoter element plays significant role in TPO-induced c-mpl gene expression through a PKC-independent pathway.

  2. Technical note: Influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies

    Directory of Open Access Journals (Sweden)

    G. Li

    2018-02-01

    Full Text Available Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. Coating surface roughness may potentially distort the laminar flow pattern, induce turbulence and introduce uncertainties in the calculated uptake coefficient based on molecular diffusion assumptions (e.g., Brown/Cooney–Kim–Davis (CKD/Knopf–Pöschl–Shiraiwa (KPS methods, which has not been fully resolved in earlier studies. Here, we investigate the influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies. According to laminar boundary theory and considering the specific flow conditions in a coated-wall flow tube, we derive and propose a critical height δc to evaluate turbulence effects in the design and analysis of coated-wall flow tube experiments. If a geometric coating thickness δg is larger than δc, the roughness elements of the coating may cause local turbulence and result in overestimation of the real uptake coefficient (γ. We further develop modified CKD/KPS methods (i.e., CKD-LT/KPS-LT to account for roughness-induced local turbulence effects. By combination of the original methods and their modified versions, the maximum error range of γCKD (derived with the CKD method or γKPS (derived with the KPS method can be quantified and finally γ can be constrained. When turbulence is generated, γCKD or γKPS can bear large difference compared to γ. Their difference becomes smaller for gas reactants with lower uptake (i.e., smaller γ and/or for a smaller ratio of the geometric coating thickness to the flow tube radius (δg ∕ R0. On the other hand, the critical height δc can also be adjusted by optimizing flow tube configurations and operating conditions (i.e., tube diameter, length, and flow velocity, to ensure not only unaffected laminar flow patterns but also other specific requirements for an

  3. Cardiac c-Kit Biology Revealed by Inducible Transgenesis.

    Science.gov (United States)

    Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M; Ilves, Kelli; Nguyen, Kristine P; Payne, Christina R; Sacchi, Veronica; Monsanto, Megan M; Casillas, Alexandria R; Khalafalla, Farid G; Wang, Bingyan J; Ebeid, David E; Alvarez, Roberto; Dembitsky, Walter P; Bailey, Barbara A; van Berlo, Jop; Sussman, Mark A

    2018-06-22

    Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart

  4. Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration.

    Science.gov (United States)

    Feng, Xiaolan; Wang, Pan; Liu, Quanhong; Zhang, Ting; Mai, Bingjie; Wang, Xiaobing

    2015-06-01

    Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.

  5. Reproducibility of automated simplified voxel-based analysis of PET amyloid ligand [11C]PIB uptake using 30-min scanning data

    International Nuclear Information System (INIS)

    Aalto, Sargo; Scheinin, Noora M.; Naagren, Kjell; Rinne, Juha O.; Kemppainen, Nina M.; Kailajaervi, Marita; Leinonen, Mika; Scheinin, Mika

    2009-01-01

    Positron emission tomography (PET) with 11 C-labelled Pittsburgh compound B ([ 11 C]PIB) enables the quantitation of β-amyloid accumulation in the brain of patients with Alzheimer's disease (AD). Voxel-based image analysis techniques conducted in a standard brain space provide an objective, rapid and fully automated method to analyze [ 11 C]PIB PET data. The purpose of this study was to evaluate both region- and voxel-level reproducibility of automated and simplified [ 11 C]PIB quantitation when using only 30 min of imaging data. Six AD patients and four healthy controls were scanned twice with an average interval of 6 weeks. To evaluate the feasibility of short scanning (convenient for AD patients), [ 11 C]PIB uptake was quantitated using 30 min of imaging data (60 to 90 min after tracer injection) for region-to-cerebellum ratio calculations. To evaluate the reproducibility, a test-retest design was used to derive absolute variability (VAR) estimates and intraclass correlation coefficients at both region-of-interest (ROI) and voxel level. The reproducibility both at the region level (VAR 0.9-5.5%) and at the voxel level (VAR 4.2-6.4%) was good to excellent. Based on the variability estimates obtained, power calculations indicated that 90% power to obtain statistically significant difference can be achieved using a sample size of five subjects per group when a 15% change from baseline (increase or decrease) in [ 11 C]PIB accumulation in the frontal cortex is anticipated in one group compared to no change in another group. Our results showed that an automated analysis method based on an efficient scanning protocol provides reproducible results for [ 11 C]PIB uptake and appears suitable for PET studies aiming at the quantitation of amyloid accumulation in the brain of AD patients for the evaluation of progression and treatment effects. (orig.)

  6. Interactions of opsonized immune complexes with whole blood cells: binding to erythrocytes restricts complex uptake by leucocyte populations

    DEFF Research Database (Denmark)

    Nielsen, C H; Svehag, S E; Marquart, H V

    1994-01-01

    -binding to granulocytes (PMN), monocytes and lymphocytes was inhibited by up to 46%, 61% and 48%, respectively, depending on the incubation time and the IC-concentration tested. The E-mediated inhibition of the binding to PMN was found to correlate with the average numbers of CR1 per E during the initial 15 min...... to the findings for PMN, the difference between IC-binding to monocytes in the absence and presence of E increased progressively over the 90 min observation period, suggesting that different mechanisms are involved in the late-phase IC uptake by monocytes and PMN. Lymphocytes were heterogeneous with respect to IC...... binding, the main contributors being B cells. E initially inhibited and then later enhanced the IC binding to lymphocytes, suggesting that E promote B cell uptake of C3d,g-covered IC via CR2. Our findings, that E can restrict the IC uptake by circulating leucocytes, and that an IC-induced degranulation...

  7. ATP depletion during mitotic arrest induces mitotic slippage and APC/CCdh1-dependent cyclin B1 degradation.

    Science.gov (United States)

    Park, Yun Yeon; Ahn, Ju-Hyun; Cho, Min-Guk; Lee, Jae-Ho

    2018-04-27

    ATP depletion inhibits cell cycle progression, especially during the G1 phase and the G2 to M transition. However, the effect of ATP depletion on mitotic progression remains unclear. We observed that the reduction of ATP after prometaphase by simultaneous treatment with 2-deoxyglucose and NaN 3 did not arrest mitotic progression. Interestingly, ATP depletion during nocodazole-induced prometaphase arrest resulted in mitotic slippage, as indicated by a reduction in mitotic cells, APC/C-dependent degradation of cyclin B1, increased cell attachment, and increased nuclear membrane reassembly. Additionally, cells successfully progressed through the cell cycle after mitotic slippage, as indicated by EdU incorporation and time-lapse imaging. Although degradation of cyclin B during normal mitotic progression is primarily regulated by APC/C Cdc20 , we observed an unexpected decrease in Cdc20 prior to degradation of cyclin B during mitotic slippage. This decrease in Cdc20 was followed by a change in the binding partner preference of APC/C from Cdc20 to Cdh1; consequently, APC/C Cdh1 , but not APC/C Cdc20 , facilitated cyclin B degradation following ATP depletion. Pulse-chase analysis revealed that ATP depletion significantly abrogated global translation, including the translation of Cdc20 and Cdh1. Additionally, the half-life of Cdh1 was much longer than that of Cdc20. These data suggest that ATP depletion during mitotic arrest induces mitotic slippage facilitated by APC/C Cdh1 -dependent cyclin B degradation, which follows a decrease in Cdc20 resulting from reduced global translation and the differences in the half-lives of the Cdc20 and Cdh1 proteins.

  8. Elevated [11C]-D-Deprenyl Uptake in Chronic Whiplash Associated Disorder Suggests Persistent Musculoskeletal Inflammation

    Science.gov (United States)

    Linnman, Clas; Appel, Lieuwe; Fredrikson, Mats; Gordh, Torsten; Söderlund, Anne; Långström, Bengt; Engler, Henry

    2011-01-01

    There are few diagnostic tools for chronic musculoskeletal pain as structural imaging methods seldom reveal pathological alterations. This is especially true for Whiplash Associated Disorder, for which physical signs of persistent injuries to the neck have yet to be established. Here, we sought to visualize inflammatory processes in the neck region by means Positron Emission Tomography using the tracer 11C-D-deprenyl, a potential marker for inflammation. Twenty-two patients with enduring pain after a rear impact car accident (Whiplash Associated Disorder grade II) and 14 healthy controls were investigated. Patients displayed significantly elevated tracer uptake in the neck, particularly in regions around the spineous process of the second cervical vertebra. This suggests that whiplash patients have signs of local persistent peripheral tissue inflammation, which may potentially serve as a diagnostic biomarker. The present investigation demonstrates that painful processes in the periphery can be objectively visualized and quantified with PET and that 11C-D-deprenyl is a promising tracer for these purposes. PMID:21541010

  9. Elevated [11C]-D-deprenyl uptake in chronic Whiplash Associated Disorder suggests persistent musculoskeletal inflammation.

    Directory of Open Access Journals (Sweden)

    Clas Linnman

    Full Text Available There are few diagnostic tools for chronic musculoskeletal pain as structural imaging methods seldom reveal pathological alterations. This is especially true for Whiplash Associated Disorder, for which physical signs of persistent injuries to the neck have yet to be established. Here, we sought to visualize inflammatory processes in the neck region by means Positron Emission Tomography using the tracer (11C-D-deprenyl, a potential marker for inflammation. Twenty-two patients with enduring pain after a rear impact car accident (Whiplash Associated Disorder grade II and 14 healthy controls were investigated. Patients displayed significantly elevated tracer uptake in the neck, particularly in regions around the spineous process of the second cervical vertebra. This suggests that whiplash patients have signs of local persistent peripheral tissue inflammation, which may potentially serve as a diagnostic biomarker. The present investigation demonstrates that painful processes in the periphery can be objectively visualized and quantified with PET and that (11C-D-deprenyl is a promising tracer for these purposes.

  10. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  11. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    Science.gov (United States)

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na

  12. IP3-dependent intracellular Ca2+ release is required for cAMP-induced c-fos expression in hippocampal neurons

    International Nuclear Information System (INIS)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng; Johnson, Hong W.; Schell, Michael J.; Lord, Rebecca L.; Chawla, Sangeeta

    2012-01-01

    Highlights: ► cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca 2+ pool. ► The submembraneous Ca 2+ pool derives from intracellular ER stores. ► Expression of IP 3 -metabolizing enzymes inhibits cAMP-induced c-fos expression. ► SRE-mediated and CRE-mediated gene expression is sensitive to IP 3 -metabolizing enzymes. ► Intracellular Ca 2+ release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca 2+ and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca 2+ and cAMP signals, including some that are Ca 2+ -responsive, some that are cAMP-responsive and some that detect coincident Ca 2+ and cAMP signals. Because Ca 2+ and cAMP can influence each other’s amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca 2+ are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca 2+ buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP 3 levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements – the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP 3 metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by depletion of intracellular Ca 2+ stores. Our data indicate that Ca 2+ release from IP 3 -sensitive pools is required for cAMP-induced transcription in hippocampal neurons.

  13. Uptake and metabolism of [14C]-aspartate by developing kernels of maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Muhitch, M.J.

    1990-01-01

    Pulse-chase experiments were performed to determine the metabolic fate of [14C]-aspartate in the pedicel region and subsequent uptake into the endosperm. Kernels were removed from the cob, leaving the pedicel attached but removing glumes, palea, and lemma. The basal tips were incubated in [14C]-aspartate for 0.5 h, followed by a 2 h chase period with unlabeled aspartate. In contrast to a previous study in which 70% of the 14C from aspartate was recovered in the organic acid fraction (Lyznik, et al., Phytochemistry 24: 425, 1985), only 20 to 25% of the radioactivity found in the 2 h chase period. While a small amount of the 14C transiently appeared in alanine at the beginning of the chase period, the most heavily labeled non-fed amino acid was glutamine, which accounted for 21% of the radioactivity within the pedicel amino acid fraction by 0.5 h into the chase period. There was no evidence for asparagine synthesis within the pedicel region of the kernel. 14C recovered from the endosperm in the form of amino acids were aspartate (60%), glutamine (20%), glutamate (15%), and alanine (5%). These results suggest that some of the maternally supplied amino acids undergo metabolic conversion to other amino acids before being taken up by the endosperm

  14. Radioiodine-labeled disulfide: a novel radiotracer for evaluation of tumor uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, E. K.; Choi, Y. S.; Byun, S. S.; Baek, J. Y.; Lee, K. H.; Kim, S. E.; Choi, Y.; Kim, B. T. [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Diallyl disulfide found in garlic has been known to inhibit the growth of various cancer cells. In this study, iodine-substituted disulfides were synthesized and their growth inhibitory effects on cancer cells (SUN C5 and MCF-7) were investigated. Dibenzyl disulfide was labeled with {sup 123}I/{sup 125}I for evaluation of tumor uptake. Halogen-substituted disulfides were synthesized using 2,2'-dithiobis(benzothiazole) and one equivalent each of the corresponding thiols. Growth inhibition studies were performed on cancer cells that were grown at 37 .deg. C for 48 hr prior to exposure to the disulfides. Radioiodine-labeled disulfide was prepared by halogen exchange reaction on the 4-bromodibenzyl disulfide in the presence of Na{sup 123}I/{sup 125}I and CuCl at 150 .deg. C for 60 min, followed by HPLC purification. Uptake of the radioactivity to SUN C5 cells was measured as a function of time, and inhibition studies were performed in the presence of either S-methyl methanethiosulfonate (MMTS) or diallyl disulfide. Disulfides were synthesized in the high yields (90%). Tumor growth inhibition studies by the 3 iododisulfides showed the inhibition (>95%) comparable to diallyl disulfide (100%). Cu(I)-assisted radioiodination gave 4-{sup 123}I/{sup 125}I-iododibenzyl disulfide in overall 30-40% radiochemical yield and with high specific activity. Cell uptake studies of the radiolabeled disulfide showed a time-dependent increase of the uptake (4-fold increase from 15 min to 2 hr). Both MMTS, a glutathione depleting agent, and diallyl disulfide reduced the uptake of the radioactivity in a dose-dependent manner. Inhibition studies suggest that uptake of disulfide to the tumor cells could be mediated by thiol-disulfide exchange. This study demonstrates that radioiodine-labeled dibenzyl disulfide may be useful for evaluation of tumor uptake.

  15. Uptake of 14C-labelled chloroquine and an 125I-labelled chloroquine analogue in some polypeptide hormone producing cell systems

    International Nuclear Information System (INIS)

    Dencker, L.; Lindquist, N.G.; Tjaelve, H.

    1976-01-01

    After the injection of 14 C-labelled chloroquine and the 125 I-labelled chloroquine analogue 4-(3 1 -dimethylaminopropylamino)-7-iodoquinoline [ 125 I]DAPQ into mice, rats and a monkey the distribution of the radioactivity was studied by autoradiographical methods. A high and persistent uptake occurred in some endocrine cell systems, such as the pancreatic islets, the hypophysis, the adrenal medulla and the thyroid (in cells that were probably identical with the parafollicular cells). The melanin-containing tissues were the only ones which showed a higher uptake and retention of radioactivity. The above mentioned endocrine cells and the melanocytes have a common embryological origin and common morphological and cytochemical characteristics. They have been called the APUD (Amine Precursor Uptake and Decarboxylation)-cell series. It is proposed that the polypeptide hormone producing cells and the melanocytes may use a similar mechanism for accumulating chloroquine and (as shown earlier) also some other drugs such as nicotine, alprenolol, local anesthetics and atropine. These drugs however, accumulate stronger within the melanocytes and become bound to the melanin for a long time. The ability to accumulate these drugs may be considered another characteristic of the APUD-cell series. (author)

  16. Aspirin Induces Apoptosis through Release of Cytochrome c from Mitochondria

    Directory of Open Access Journals (Sweden)

    Katja C. Zimmermann

    2000-01-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAID reduce the risk for cancer, due to their anti proliferative and apoptosis-inducing effects. A critical pathway for apoptosis involves the release of cytochrome c from mitochondria, which then interacts with Apaf-1 to activate caspase proteases that orchestrate cell death. In this study we found that treatment of a human cancer cell line with aspirin induced caspase activation and the apoptotic cell morphology, which was blocked by the caspase inhibitor zVAD-fmk. Further analysis of the mechanism underlying this apoptotic event showed that aspirin induces translocation of Bax to the mitochondria and triggers release of cytochrome c into the cytosol. The release of cytochrome c from mitochondria was inhibited by overexpression of the antiapoptotic protein Bcl-2 and cells that lack Apaf-1 were resistant to aspirin-induced apoptosis. These data provide evidence that the release of cytochrome c is an important part of the apoptotic mechanism of aspirin.

  17. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by {sup 11}C-hydroxyephedrine

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Rudolf A.; Higuchi, Takahiro [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); University of Wuerzburg, Comprehensive Heart Failure Center, Wuerzburg (Germany); Maya, Yoshifumi [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nihon Medi-Physics Co., Ltd., Research Centre, Chiba (Japan); Rischpler, Christoph [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Muenchen (Germany); Javadi, Mehrbod S. [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Baltimore, MD (United States); Fukushima, Kazuhito [Hyogo College of Medicine, Department of Radiology, Hyogo (Japan); Lapa, Constantin [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Herrmann, Ken [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States)

    2016-02-15

    An altered state of the cardiac sympathetic nerves is an important prognostic factor in patients with coronary artery disease. The aim of this study was to investigate regional sympathetic nerve damage and restoration utilizing a rat model of myocardial transient ischemia and a catecholamine analog PET tracer, {sup 11}C-hydroxyephedrine ({sup 11}C-HED). Transient myocardial ischemia was induced by coronary occlusion for 20 min and reperfusion in male Wistar rats. Dual-tracer autoradiography was performed subacutely (7 days) and chronically (2 months) after ischemia, and in control rats without ischemia using {sup 11}C-HED as a marker of sympathetic innervation and {sup 201}TI for perfusion. Additional serial in vivo cardiac {sup 11}C-HED and {sup 18}F-FDG PET scans were performed in the subacute and chronic phases after ischemia. After transient ischemia, the {sup 11}C-HED uptake defect areas in both the subacute and chronic phases were clearly larger than the perfusion defect areas in the midventricular wall. The subacute {sup 11}C-HED uptake defect showed a transmural pattern, whereas uptake recovered in the subepicardial portion in the chronic phase. Tyrosine hydroxylase antibody nerve staining confirmed regional denervation corresponding to areas of decreased {sup 11}C-HED uptake. Serial in vivo PET imaging visualized reductions in the area of the {sup 11}C-HED uptake defects in the chronic phase consistent with autoradiography and histology. Higher susceptibility of sympathetic neurons compared to myocytes was confirmed by a larger {sup 11}C-HED defect with a corresponding histologically identified region of denervation. Furthermore, partial reinnervation was observed in the chronic phase as shown by recovery of subepicardial {sup 11}C-HED uptake. (orig.)

  18. Mutually Exclusive Alterations in Secondary Metabolism Are Critical for the Uptake of Insoluble Iron Compounds by Arabidopsis and Medicago truncatula1[C][W

    Science.gov (United States)

    Rodríguez-Celma, Jorge; Lin, Wen-Dar; Fu, Guin-Mau; Abadía, Javier; López-Millán, Ana-Flor; Schmidt, Wolfgang

    2013-01-01

    The generally low bioavailability of iron in aerobic soil systems forced plants to evolve sophisticated genetic strategies to improve the acquisition of iron from sparingly soluble and immobile iron pools. To distinguish between conserved and species-dependent components of such strategies, we analyzed iron deficiency-induced changes in the transcriptome of two model species, Arabidopsis (Arabidopsis thaliana) and Medicago truncatula. Transcriptional profiling by RNA sequencing revealed a massive up-regulation of genes coding for enzymes involved in riboflavin biosynthesis in M. truncatula and phenylpropanoid synthesis in Arabidopsis upon iron deficiency. Coexpression and promoter analysis indicated that the synthesis of flavins and phenylpropanoids is tightly linked to and putatively coregulated with other genes encoding proteins involved in iron uptake. We further provide evidence that the production and secretion of phenolic compounds is critical for the uptake of iron from sources with low bioavailability but dispensable under conditions where iron is readily available. In Arabidopsis, homozygous mutations in the Fe(II)- and 2-oxoglutarate-dependent dioxygenase family gene F6′H1 and defects in the expression of PLEIOTROPIC DRUG RESISTANCE9, encoding a putative efflux transporter for products from the phenylpropanoid pathway, compromised iron uptake from an iron source of low bioavailability. Both mutants were partially rescued when grown alongside wild-type Arabidopsis or M. truncatula seedlings, presumably by secreted phenolics and flavins. We concluded that production and secretion of compounds that facilitate the uptake of iron is an essential but poorly understood aspect of the reduction-based iron acquisition strategy, which is likely to contribute substantially to the efficiency of iron uptake in natural conditions. PMID:23735511

  19. Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer

    International Nuclear Information System (INIS)

    Gao, Xuemei; Wu, Xinchao; Zhang, Xiao; Hua, Wenjuan; Zhang, Yajing; Maimaiti, Yusufu; Gao, Zairong; Zhang, Yongxue

    2016-01-01

    Thyroid cancer is a common malignancy of the endocrine system. Although radioiodine "1"3"1I treatment on differentiated thyroid cancer is widely used, many patients still fail to benefit from "1"3"1I therapy. Therefore, exploration of novel targeted therapies to suppress tumor growth and improve radioiodine uptake remains necessary. Bromodomain-containing protein 4 (BRD4) is an important member of the bromodomain and extra terminal domain family that influences transcription of downstream genes by binding to acetylated histones. In the present study, we found that BRD4 was up-regulated in thyroid cancer tissues and cell lines. Inhibition of BRD4 in thyroid cancer cells by JQ1 resulted in cell cycle arrest at G0/G1 phase and enhanced "1"3"1I uptake in vitro and suppressed tumor growth in vivo. Moreover, JQ1 treatment suppressed C-MYC but enhanced NIS expression. We further demonstrated that BRD4 was enriched in the promoter region of C-MYC, which could be markedly blocked by JQ1 treatment. In conclusion, our findings revealed that the aberrant expression of BRD4 in thyroid cancer is possibly involved in tumor progression, and JQ1 is potentially an effective chemotherapeutic agent against human thyroid cancer. - Highlights: • BRD4 is upregulated in thyroid cancer tissues and cell lines. • Inhibition of BRD4 induced cell cycle arrest and enhanced radioiodine uptake in vitro and impaired tumor growth in vivo. • JQ1 suppressed the expression of C-MYC and promoted the expression of NIS and P21. • JQ1 attenuated the recruitment of BRD4 to MYC promoter in thyroid cancer.

  20. Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xuemei [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China); Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Wu, Xinchao [Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Zhang, Xiao; Hua, Wenjuan; Zhang, Yajing [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China); Maimaiti, Yusufu [Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Gao, Zairong, E-mail: gaobonn@163.com [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China); Zhang, Yongxue [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China)

    2016-01-15

    Thyroid cancer is a common malignancy of the endocrine system. Although radioiodine {sup 131}I treatment on differentiated thyroid cancer is widely used, many patients still fail to benefit from {sup 131}I therapy. Therefore, exploration of novel targeted therapies to suppress tumor growth and improve radioiodine uptake remains necessary. Bromodomain-containing protein 4 (BRD4) is an important member of the bromodomain and extra terminal domain family that influences transcription of downstream genes by binding to acetylated histones. In the present study, we found that BRD4 was up-regulated in thyroid cancer tissues and cell lines. Inhibition of BRD4 in thyroid cancer cells by JQ1 resulted in cell cycle arrest at G0/G1 phase and enhanced {sup 131}I uptake in vitro and suppressed tumor growth in vivo. Moreover, JQ1 treatment suppressed C-MYC but enhanced NIS expression. We further demonstrated that BRD4 was enriched in the promoter region of C-MYC, which could be markedly blocked by JQ1 treatment. In conclusion, our findings revealed that the aberrant expression of BRD4 in thyroid cancer is possibly involved in tumor progression, and JQ1 is potentially an effective chemotherapeutic agent against human thyroid cancer. - Highlights: • BRD4 is upregulated in thyroid cancer tissues and cell lines. • Inhibition of BRD4 induced cell cycle arrest and enhanced radioiodine uptake in vitro and impaired tumor growth in vivo. • JQ1 suppressed the expression of C-MYC and promoted the expression of NIS and P21. • JQ1 attenuated the recruitment of BRD4 to MYC promoter in thyroid cancer.

  1. Influence of hirudin and cobra venom factor on the release of 14C-serotonin and 51chromium from human platelets induced by thrombin, collagen, aggregate gammaglobulin and HLA antibody

    International Nuclear Information System (INIS)

    Hagemeyer, G.M.

    1982-01-01

    The present work investigates the influence of hirudin and cobra venom factor on thrombin, collagen, aggregate gammaglobulin and HLA-antibody-induced release of 14 C-serotonin and 51 chromium from human platelets. Besides the platelet-specific release reaction ( 14 C-serotonin) the extent of platelet lysis was determined by measurement of the loss of 51 chromium from the platelets. The results showed the thrombin, collagen and aggregate-gammaglobulin-induced platelet alteration to be a non-complement-dependent reaction of the platelets with release of 14 C-serotonin. Following long-term incubation small quantities of 51 chromium are also released. As this release of 51 chromium cannot be inhibited using cobra venom factor and does not occur in washed platelets either, it is most probably a non-complement-dependent reaction. The HLA-antibody-induced, specific platelet alteration is both complement-dependent and complement-independent. Differentiation is possible by inhibition of the complement-dependent lysis. On the other hand thrombin is of no relevance to the collagen, aggregate gammaglobulin, and HLA-antibody-induced platelet alteration as the interactions of these substances with platelets are not inhibited by hirudin. The above results are confirmed by investigation of the 51 chromium uptake capacity of washed platelets treated previously with thrombin, collagen and HLA antibody. (orig./MG) [de

  2. Vitamin C-linker-conjugated tripeptide AHK stimulates BMP-2-induced osteogenic differentiation of mouse myoblast C2C12 cells.

    Science.gov (United States)

    Jung, Jung-Il; Park, Kyeong-Yong; Lee, Yura; Park, Mira; Kim, Jiyeon

    2018-03-15

    Vitamin C-linker-conjugated Ala-His-Lys tripeptide (Vit C-AHK) is a derivative of Vitamin C-conjugated tripeptides, which were originally developed as a component of a product for collagen synthesis enhancement or human dermal fibroblast growth. Here, we investigated the effect of Vit C-AHK on bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Vit C-AHK enhanced proliferation of C2C12 cells and induction of BMP-2-induced alkaline phosphatase, a typical marker of osteoblast differentiation. Vit C-AHK also stimulated the phosphorylation and translocation of Smad1/5/8 to the nucleus and phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2 and p38. In addition, Vit C-AHK enhanced the BMP-2-induced mRNA expression of osteoblast differentiation-related genes such as ALP, BMP-2, Osteocalcin, and Runx2. Our results suggest that Vit C-AHK exerts an enhancing effect on osteoblast proliferation and differentiation through activation of Smad1/5/8 and MAPK ERK1/2 and p38 signaling and without significant cytotoxicity. These results provide important data for the development of peptide-based bone-regenerative agents and treatment of bone-related disorders. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  3. Inorganic carbon uptake during photosynthesis. II. Uptake by isolated Asparagus mesophyll cells during isotopic disequilibrium

    International Nuclear Information System (INIS)

    Espie, G.S.; Owttrim, G.W.; Colman, B.

    1986-01-01

    The species of inorganic carbon (CO 2 or HCO 3 - ) taken up as a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO 2 or HCO 3 - transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14 C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO 2 or HCO 3 - transport) and experimental time-courses of 14 C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO 2 , rather than HCO 3 - , is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO 2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO 3 - transport, as the incorporation of 14 C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO 2 uptake alone. The contribution of HCO 3 - to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO 3 - concentration. The evidence for direct HCO 3 - transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14 C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO 2 , which is partially alleviated by a high extracellular concentration of HCO 3 -

  4. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro.

    Science.gov (United States)

    Nobuhara, Chloe K; DeVos, Sarah L; Commins, Caitlin; Wegmann, Susanne; Moore, Benjamin D; Roe, Allyson D; Costantino, Isabel; Frosch, Matthew P; Pitstick, Rose; Carlson, George A; Hock, Christoph; Nitsch, Roger M; Montrasio, Fabio; Grimm, Jan; Cheung, Anne E; Dunah, Anthone W; Wittmann, Marion; Bussiere, Thierry; Weinreb, Paul H; Hyman, Bradley T; Takeda, Shuko

    2017-06-01

    The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Influence of psychiatric diagnosis on treatment uptake and interferon side effects in patients with hepatitis C.

    Science.gov (United States)

    Wu, Jing Yuan J; Shadbolt, Bruce; Teoh, Narci; Blunn, Anne; To, Caroline; Rodriguez-Morales, Ilys; Chitturi, Shivakumar; Kaye, Graham; Rodrigo, Kalyana; Farrell, Geoff

    2014-06-01

    Pegylated-interferon-α/ribavirin (PEG-IFN/RBV) treatment can cure hepatitis C virus (HCV) infection but has frequent neuropsychiatric side-effects. Patients with pre-existing psychiatric illness may not be offered therapy. We established prevalence of self-reported psychiatric comorbidity among HCV-infected patients in a hospital-liver clinic, and determined the impact of such diagnoses on uptake and tolerance to PEG-IFN/RBV. All HCV cases referred for assessment in Australian Capital Territory/surrounding regions April 2004-March 2012 were entered into a clinical database. We conducted univariate and multivariate analyses of variables correlating with uptake of antiviral therapy and frequency of treatment-related side-effects. Of 773 referred patients, 235 (30%) described pre-existing psychiatric illness. Among these, 26% received antiviral therapy, compared with 30% of 538 without psychiatric comorbidity. History of depression (usually validated by liaison psychiatry) was associated with higher incidence of treatment-related neuropsychiatric side-effects (odds ratio 2.79 [1.35-5.70], P schizophrenia: three (11%) received antiviral therapy, compared with 30% admitting depression and 20% with bipolar affective disorder (all assessed by psychiatrist). In most schizophrenia cases, the reason for not offering antiviral treatment was psychological illness, yet none of five treated (these three plus two others in a psychiatric rehabilitation facility) experienced worsening psychiatric symptoms. A history of depression is common with hepatitis C but does not affect initiation of antiviral treatment, despite substantially increased risk of psychiatric side-effects. In contrast, pre-existing schizophrenia appears to influence treatment decisions, despite little evidence that PEG-IFN/RBV exacerbates the psychiatric condition, and well-supervised antiviral therapy can have good outcomes.

  6. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    OpenAIRE

    Brod, Eva; Øgaard, Anne K. Falk; Krogstad, Tore; Haraldsen, Trond; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with...

  7. Drivers of phosphorus uptake by barley following secondary resource application

    OpenAIRE

    Eva eBrod; Eva eBrod; Anne Falk Øgaard; Tore eKrogstad; Trond Knapp Haraldsen; Emmanuel eFrossard; Astrid eOberson

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake are still poorly understood. Using radioactive labelling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal and wood ash were studied as P uptake by barley after 44 days and compared wit...

  8. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    OpenAIRE

    Brod, Eva; Øgaard, Anne K. Falk; Krogstad, Tore; Haraldsen, Trond; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with...

  9. Hydrogen-induced blistering of Mo/Si multilayers: Uptake and distribution

    NARCIS (Netherlands)

    Kuznetsov, A. S.; Gleeson, M. A.; F. Bijkerk,

    2013-01-01

    Abstract We report on the uptake of deuterium by thin-film Mo/Si multilayer samples as a result of exposure to fluxes of predominantly thermal atomic and molecular species, but also containing a small fraction of energetic (800 1000 eV) ions. These exposures result in blister formation

  10. Assaying Cellular Viability Using the Neutral Red Uptake Assay.

    Science.gov (United States)

    Ates, Gamze; Vanhaecke, Tamara; Rogiers, Vera; Rodrigues, Robim M

    2017-01-01

    The neutral red uptake assay is a cell viability assay that allows in vitro quantification of xenobiotic-induced cytotoxicity. The assay relies on the ability of living cells to incorporate and bind neutral red, a weak cationic dye, in lysosomes. As such, cytotoxicity is expressed as a concentration-dependent reduction of the uptake of neutral red after exposure to the xenobiotic under investigation. The neutral red uptake assay is mainly used for hazard assessment in in vitro toxicology applications. This method has also been introduced in regulatory recommendations as part of 3T3-NRU-phototoxicity-assay, which was regulatory accepted in all EU member states in 2000 and in the OECD member states in 2004 as a test guideline (TG 432). The present protocol describes the neutral red uptake assay using the human hepatoma cell line HepG2, which is often employed as an alternative in vitro model for human hepatocytes. As an example, the cytotoxicity of acetaminophen and acetyl salicylic acid is assessed.

  11. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle.

    Science.gov (United States)

    Sylow, Lykke; Jensen, Thomas E; Kleinert, Maximilian; Mouatt, Joshua R; Maarbjerg, Stine J; Jeppesen, Jacob; Prats, Clara; Chiu, Tim T; Boguslavsky, Shlomit; Klip, Amira; Schjerling, Peter; Richter, Erik A

    2013-04-01

    In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (~60-100%) and humans (~40%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20-58% in extensor digitorum longus (EDL; P contraction-stimulated increment in glucose uptake was decreased by 27% (P = 0.1) and 40% (P muscles, respectively, of muscle-specific inducible Rac1 knockout mice. Furthermore, depolymerization of the actin cytoskeleton decreased contraction-stimulated glucose uptake by 100% and 62% (P muscles, respectively. These are the first data to show that Rac1 is activated during muscle contraction in murine and human skeletal muscle and suggest that Rac1 and possibly the actin cytoskeleton are novel regulators of contraction-stimulated glucose uptake.

  12. Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Parker, Benjamin L; Fritzen, Andreas Mæchel

    2017-01-01

    Exercise increases glucose uptake into insulin-resistant muscle. Thus, elucidating the exercise signalling network in muscle may uncover new therapeutic targets. mTORC2, a regulator of insulin-controlled glucose uptake, has been reported to interact with Rac1, which plays a role in exercise-induc...

  13. Effect of sulfite and fluoride on carbon dioxide uptake by mosses in the light

    Energy Technology Data Exchange (ETDEWEB)

    Inglis, F.; Hill, D.J.

    1974-01-01

    Four mosses, Bryum argenteum, Grimmia pulvinata, Hypnum cupressiforme and Tortula muralis were exposed to sulfite, and their uptake of radioactive bicarbonate measured. About 50% reduction in /sup 14/C uptake was caused by 0.01-0.1 mM sulfite. The effect of pH indicated that SO/sub 2/ (or H/sub 2/SO/sub 3/) was the active molecular species. Fluoride had little effect on /sup 14/C uptake.

  14. Uptake of different species of iodine by water spinach and its effect to growth.

    Science.gov (United States)

    Weng, Huan-Xin; Yan, Ai-Lan; Hong, Chun-Lai; Xie, Lin-Li; Qin, Ya-Chao; Cheng, Charles Q

    2008-08-01

    A hydroponic experiment has been carried out to study the influence of iodine species [iodide (I(-)), iodate (IO(-)(3)), and iodoacetic acid (CH(2)ICOO(-))] and concentrations on iodine uptake by water spinach. Results show that low levels of iodine in the nutrient solution can effectively stimulate the growth of biomass of water spinach. When iodine levels in the nutrient solution are from 0 to 1.0 mg/l, increases in iodine levels can linearly augment iodine uptake rate by the leafy vegetables from all three species of iodine, and the uptake effects are in the following order: CH(2)ICOO(-) >I(-)>IO(-)(3). In addition, linear correlation was observed between iodine content in the roots and shoots of water spinach, and their proportion is 1:1. By uptake of I(-), vitamin C (Vit C) content in water spinach increased, whereas uptake of IO(-)(3) and CH(2)ICOO(-) decreased water spinach Vit C content. Furthermore, through uptake of I(-) and IO(-)(3). The nitrate content in water spinach was increased by different degrees.

  15. Effect of exercise and obesity on skeletal muscle amino acid uptake

    International Nuclear Information System (INIS)

    Friedman, J.E.

    1988-01-01

    To determine if amino acid uptake by muscle of the obese Zucker rat is impaired, epitrochlearis (EPI) and soleus strip (SOL) muscles from 32 pairs of female lean (Fa/-) and obese (fa/fa) Zucker rats were incubated using [ 14 C]α-aminoisobutyric acid (AIB). Because contractile activity also influences amino acid uptake, the effect of acute endurance exercise on amino acid uptake by skeletal muscle from lean and obese rats was also studied. Muscle wet and dry weights were similar in lean and obese rats. However, both muscle protein content and concentration from obese rats were significantly reduced. In preliminary studies, pinning EPI at resting length during incubation significantly increased AIB uptake and reduced muscle water accumulation. AIB uptake was similar in stripped and intact SOL. Lean and obese rats were studied at rest or following a 1 hr treadmill run at 8% grade Muscles were pinned, and preincubated for 30 min at 37 degree C in Krebs Ringer bicarbonate buffer (KRB) containing 5mM glucose under 95:5 O 2 /CO 2 , followed by 30, 60, 120, or 180 min of incubation in KRB with 0.5 mM AIB, [ 14 C]-AIB to measure amino acid, and [ 3 H]-inulin to determine extracellular water

  16. Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates

    International Nuclear Information System (INIS)

    Roy, T.; Matear, R.; Rayner, P.; Francey, R.

    2003-01-01

    Using an atmospheric inversion model we investigate the southern hemisphere ocean CO 2 uptake. From sensitivity studies that varied both the initial ocean flux distribution and the atmospheric data used in the inversion, our inversion predicted a total (ocean and land) uptake of 1.65-1.90 Gt C/yr. We assess the consistency between the mean southern hemisphere ocean uptake predicted by an atmospheric inversion model for the 1991-1997 period and the T99 ocean flux estimate based on observed pCO 2 in Takahashi et al. (2002; Deep-Sea Res II, 49, 1601-1622). The inversion can not match the large 1.8 Gt C/yr southern extratropical (20-90 deg S) uptake of the T99 ocean flux estimate without producing either unreasonable land fluxes in the southern mid-latitudes or by increasing the mismatches between observed and simulated atmospheric CO 2 data. The southern extratropical uptake is redistributed between the mid and high latitudes. Our results suggest that the T99 estimate of the Southern Ocean uptake south of 50 deg S is too large, and that the discrepancy reflects the inadequate representation of wintertime conditions in the T99 estimate

  17. Hydrogen-induced blistering of Mo/Si multilayers: Uptake and distribution

    NARCIS (Netherlands)

    Kuznetsov, Alexey; Gleeson, M.A.; Bijkerk, Frederik

    2013-01-01

    We report on the uptake of deuterium by thin-film Mo/Si multilayer samples as a result of exposure to fluxes of predominantly thermal atomic and molecular species, but also containing a small fraction of energetic (800–1000 eV) ions. These exposures result in blister formation characterized by layer

  18. Anaphylatoxin C3a induced mediator release from mast cells

    International Nuclear Information System (INIS)

    Herrscher, R.; Hugli, T.E.; Sullivan, T.J.

    1986-01-01

    The authors investigated the biochemical and functional consequences of the binding of highly purified human C3a to isolated rat serosal mast cells. C3a caused a dose-dependent (1-30 μM), noncytotoxic release of up to 64% (+/- 7 SEM) of the mast cell histamine content. C3a (10μM) increased 45 Ca ++ uptake 8.2- fold (+/- 2.2 SEM) above unstimulated control values within 10 minutes. Arachidonyl-diacylglycerol and arachidonyl-monoacylglycerol levels increased significantly within 2 minutes after C3a (10 μM) stimulation. Turnover of phosphatidylinositol, phosphatidic acid, and phosphatidylcholine were increased within 15 minutes. In contrast to antigen, C3a stimulation (10 μM) was not enhanced by exogenous phosphatidylserine, and was not inhibited by ethanol (100 μmM). C3a suppressed arachidonic acid (AA) release to 38% (+/- 9 SEM) below baseline, and did not cause PGD 2 formation. C3a and the desarginine form of C3a caused identical responses in all experiments. These studies indicate that C3a stimulation activates mast cell preformed mediator release in a manner very similar to antigen-IgE stimulation, but C3a suppresses free AA levels and does not stimulate PGD 2 synthesis

  19. Sugar uptake and starch biosynthesis by slices of developing maize endosperm

    International Nuclear Information System (INIS)

    Felker, F.C.; Liu, Kangchien; Shannon, J.C.

    1990-01-01

    14 C-Sugar uptake and incorporation into starch by slices of developing maize (Zea mays L.) endosperm were examined and compared with sugar uptake by maize endosperm-derived suspension cultures. Rates of sucrose, fructose, and D- and L-glucose uptake by slices were similar, whereas uptake rates for these sugars differed greatly in suspension cultures. Concentration dependence of sucrose, fructose, and D-glucose uptake was biphasic (consisting of linear plus saturable components) with suspension cultures but linear with slices. These and other differences suggest that endosperm slices are freely permeable to sugars. After diffusion into the slices, sugars were metabolized and incorporated into starch. Starch synthesis, but not sugar accumulation, was greatly reduced by 2.5 millimolar p-chloromercuribenzenesulfonic acid and 0.1 millimolar carbonyl cyanide m-chlorophenylhydrazone. Starch synthesis was dependent on kernel age and incubation temperature, but not on external pH (5 through 8). Competing sugars generally did not affect the distribution of 14 C among the soluble sugars extracted from endosperm slices incubated in 14 C-sugars. Competing hexoses reduced the incorporation of 14 C into starch, but competing sucrose did not, suggesting that sucrose is not a necessary intermediate in starch biosynthesis. The bidirectional permeability of endosperm slices to sugars makes the characterization of sugar transport into endosperm slices impossible, however the model system is useful for experiments dealing with starch biosynthesis which occurs in the metabolically active tissue

  20. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin.

    Science.gov (United States)

    Wagner, Mark C; Campos-Bilderback, Silvia B; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M; Wean, Sarah E; Wei, Yuan; Satlin, Lisa M; Wiggins, Roger C; Witzmann, Frank A; Molitoris, Bruce A

    2016-02-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. Copyright © 2016 by the American Society of Nephrology.

  1. Plant uptake of pentachlorophenol from sludge-amended soils

    International Nuclear Information System (INIS)

    Bellin, C.A.; O'Connor, G.A.

    1990-01-01

    A greenhouse study was conducted to determine the effects of sludge on plant uptake of 14 C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal 14 C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent of sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were < 0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge

  2. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    International Nuclear Information System (INIS)

    Dupre de Boulois, Herve; Delvaux, Bruno; Declerck, Stephane

    2005-01-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus

  3. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    Energy Technology Data Exchange (ETDEWEB)

    Dupre de Boulois, Herve [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Delvaux, Bruno [Universite catholique de Louvain, Unite des Sciences du Sol, Place Croix du Sud 2/10, 1348 Louvain-la-Neuve (Belgium); Declerck, Stephane [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)]. E-mail: declerck@mbla.ucl.ac.be

    2005-04-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus.

  4. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    Science.gov (United States)

    Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.

    2013-10-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.

  5. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    International Nuclear Information System (INIS)

    Poitry-Yamate, C; Lepore, M; Gruetter, R; Gianoncelli, A; Kourousias, G; Kiskinova, M; Kaulich, B

    2013-01-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19 F in 19 FDG, trapped as intracellular 19 F-deoxyglucose-6-phosphate ( 19 FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19 FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19 FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19 F-deoxyglucose-6P is structurally identical to 18 F-deoxyglucose-6P, LEXRF of subcellular 19 F provides a link to in vivo 18 FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18 FDG PET image, and the contribution of neurons and glia to the PET signal

  6. cAMP and forskolin decrease γ-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    International Nuclear Information System (INIS)

    Heuschneider, G.; Schwartz, R.D.

    1989-01-01

    The effects of the cyclic nucleotide cAMP on γ-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N 6 , O 2' -dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36 Cl - uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the γ-aminobutyric acid-gated Cl - channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36 Cl - uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl - channel directly. The data suggest that γ-aminobutyric acid (GABA A ) receptor function in brain can be regulated by cAMP-dependent phosphorylation

  7. Uptake of antibiotics by human polymorphonuclear leukocyte cytoplasts

    International Nuclear Information System (INIS)

    Hand, W.L.; King-Thompson, N.L.

    1990-01-01

    Enucleated human polymorphonuclear leukocytes (PMN cytoplasts), which have no nuclei and only a few granules, retain many of the functions of intact neutrophils. To better define the mechanisms and intracellular sites of antimicrobial agent accumulation in human neutrophils, we studied the antibiotic uptake process in PMN cytoplasts. Entry of eight radiolabeled antibiotics into PMN cytoplasts was determined by means of a velocity gradient centrifugation technique. Uptakes of these antibiotics by cytoplasts were compared with our findings in intact PMN. Penicillin entered both intact PMN and cytoplasts poorly. Metronidazole achieved a concentration in cytoplasts (and PMN) equal to or somewhat less than the extracellular concentration. Chloramphenicol, a lipid-soluble drug, and trimethoprim were concentrated three- to fourfold by cytoplasts. An unusual finding was that trimethroprim, unlike other tested antibiotics, was accumulated by cytoplasts more readily at 25 degrees C than at 37 degrees C. After an initial rapid association with cytoplasts, cell-associated imipenem declined progressively with time. Clindamycin and two macrolide antibiotics (roxithromycin, erythromycin) were concentrated 7- to 14-fold by cytoplasts. This indicates that cytoplasmic granules are not essential for accumulation of these drugs. Adenosine inhibited cytoplast uptake of clindamycin, which enters intact phagocytic cells by the membrane nucleoside transport system. Roxithromycin uptake by cytoplasts was inhibited by phagocytosis, which may reduce the number of cell membrane sites available for the transport of macrolides. These studies have added to our understanding of uptake mechanisms for antibiotics which are highly concentrated in phagocytes

  8. A field study of the uptake of 35S and 14C into crops characteristic of the UK diet

    International Nuclear Information System (INIS)

    Kluczewski, S.M.; Bell, J.N.B.; Nair, S.

    1986-02-01

    The uptake of 35 S and 14 C into crops characteristic of the UK diet was studied. Four common types of green vegetable, six common types of root vegetable and perennial ryegrass were grown in a garden plot in the environs of Hinkley Point Nuclear Power Station and the 35 S and 14 C contents of the crops were measured. Also measured were the corresponding air concentrations over the plot averaged over a range of time periods between sowing and harvesting. The results were analysed in terms of air to crop transfer factors for 35 S and 14 C and the implications of these for dose calculations were assessed for both collective dose and for a hypothetical critical group consuming a range of foods produced in situ. (author)

  9. Chronic vitamin C administration induces thermal hyperalgesia in ...

    African Journals Online (AJOL)

    Against a backdrop of neurological effects, the effects of acute and chronic administration of vitamin C (600mg/kg) on pain processing were investigated in male rats. Chronic administration of vitamin C induced significant thermal hyperalgesia while acute administration had no effect. In addition, the intraperitoneal ...

  10. Factors influencing the in vitro uptake of mercury vapour in blood

    Energy Technology Data Exchange (ETDEWEB)

    Kudsk, F.N.

    1969-01-01

    The influence of a number of factors on the in vitro uptake of mercury vapour in blood has been investigated in order to clarify the mechanism by which mercury is oxidized in blood. The rate of mercury uptake in blood in a pure oxygen atmosphere is moderately increased, but somewhat decreased in a nitrogen atmosphere when compared with the rate of uptake in an atmospheric air phase. Increasing concentrations of methylene blue induce a very pronounced acceleration of the rate of mercury uptake in blood up to a maximum of about 10 times the normal uptake in an atmospheric air phase. Menadione shows a similar, but even more pronounced effect. The menadione-stimulated uptake is markedly inhibited by low concentrations of ethyl alcohol. Concentrations of potassium cyanide from 1/8 x 10/sup -3/ to 4 x 10/sup -3/ M cause a progressive inhibition of the mercury uptake in the blood up to a maximum of about 60%, which is very similar to the effect produced by ethyl alcohol. The investigations point to hydrogen peroxide and oxidized glutathione as agents of importance in the oxidation and uptake of mercury vapour in blood. The way in which ethyl alcohol inhibits the uptake is still unknown. Some possible mechanisms are discussed. 24 references, 4 figures, 3 tables.

  11. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT

    International Nuclear Information System (INIS)

    Wiesmueller, Marco; Schmidt, Daniela; Beck, Michael; Kuwert, Torsten; Gall, Carl C. von; Quick, Harald H.; Navalpakkam, Bharath; Lell, Michael M.; Uder, Michael; Ritt, Philipp

    2013-01-01

    PET/MR hybrid scanners have recently been introduced, but not yet validated. The aim of this study was to compare the PET components of a PET/CT hybrid system and of a simultaneous whole-body PET/MR hybrid system with regard to reproducibility of lesion detection and quantitation of tracer uptake. A total of 46 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 88 min later a second scan using a hybrid PET/MR system. The radioactive tracers used were 18 F-deoxyglucose (FDG), 18 F-ethylcholine (FEC) and 68 Ga-DOTATATE (Ga-DOTATATE). The PET images from PET/CT (PET CT ) and from PET/MR (PET MR ) were analysed for tracer-positive lesions. Regional tracer uptake in these foci was quantified using volumes of interest, and maximal and average standardized uptake values (SUV max and SUV avg , respectively) were calculated. Of the 46 patients, 43 were eligible for comparison and statistical analysis. All lesions except one identified by PET CT were identified by PET MR (99.2 %). In 38 patients (88.4 %), the same number of foci were identified by PET CT and by PET MR . In four patients, more lesions were identified by PET MR than by PET CT , in one patient PET CT revealed an additional focus compared to PET MR . The mean SUV max and SUV avg of all lesions determined by PET MR were by 21 % and 11 % lower, respectively, than the values determined by PET CT (p CT and PET MR were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PET MR and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations. (orig.)

  12. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Wei, E-mail: weiming@xiyi.edu.cn [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); Department of Pharmacology, Xi’an Medical University, Xi’an 710021 (China); Lu, Gan, E-mail: leonming99@163.com [Department of Gynecology of Shaanxi Provincial People’s Hospital, Xi’an, 710068 (China); Xin, Sha, E-mail: 248967979@qq.com [Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032 (China); Huanyu, Lu, E-mail: 2366927258@qq.com [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an 710032 (China); Yinghao, Jiang, E-mail: jiangyh@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); Xiaoying, Lei, E-mail: leixiaoy@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); Chengming, Xu, E-mail: chengmingxu@yeah.net [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); Banjun, Ruan, E-mail: running@163.com [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); Li, Wang, E-mail: wanglifw@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); and others

    2016-08-05

    Therapeutic targeting bone loss has been the focus of the study in osteoporosis. The present study is intended to evaluate whether MOTS-c, a novel mitochondria related 16 aa peptide, can protect mice from ovariectomy-induced osteoporosis. After ovary removal, the mice were injected with MOTS-c at a dose of 5 mg/kg once a day for 12 weeks. Our results showed that MOTS-c treatment significantly alleviated bone loss, as determined by micro-CT examination. Mechanistically, we found that the receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclast differentiation was remarkably inhibited by MOTS-c. Moreover, MOTS-c increased phosphorylated AMPK levels, and compound C, an AMPK inhibitor, could partially abrogate the effects of the MOTS-c on osteoclastogenesis. Thus, our findings provide evidence that MOTS-c may exert as an inhibitor of osteoporosis via AMPK dependent inhibition of osteoclastogenesis. -- Highlights: •MOTS-c decreases OVX-induced bone loss in vivo. •MOTS-c inhibits RANKL-induced osteoclast formation. •MOTS-c inhibits RANKL-induced osteoclast-specific gene expression. •MOTS-c represses osteoclast differentiation via the activation of AMPK.

  13. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation

    International Nuclear Information System (INIS)

    Ming, Wei; Lu, Gan; Xin, Sha; Huanyu, Lu; Yinghao, Jiang; Xiaoying, Lei; Chengming, Xu; Banjun, Ruan; Li, Wang

    2016-01-01

    Therapeutic targeting bone loss has been the focus of the study in osteoporosis. The present study is intended to evaluate whether MOTS-c, a novel mitochondria related 16 aa peptide, can protect mice from ovariectomy-induced osteoporosis. After ovary removal, the mice were injected with MOTS-c at a dose of 5 mg/kg once a day for 12 weeks. Our results showed that MOTS-c treatment significantly alleviated bone loss, as determined by micro-CT examination. Mechanistically, we found that the receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclast differentiation was remarkably inhibited by MOTS-c. Moreover, MOTS-c increased phosphorylated AMPK levels, and compound C, an AMPK inhibitor, could partially abrogate the effects of the MOTS-c on osteoclastogenesis. Thus, our findings provide evidence that MOTS-c may exert as an inhibitor of osteoporosis via AMPK dependent inhibition of osteoclastogenesis. -- Highlights: •MOTS-c decreases OVX-induced bone loss in vivo. •MOTS-c inhibits RANKL-induced osteoclast formation. •MOTS-c inhibits RANKL-induced osteoclast-specific gene expression. •MOTS-c represses osteoclast differentiation via the activation of AMPK.

  14. Uptake and depuration of 131I by the edible periwinkle Littorina littorea: uptake from labelled seaweed (Chondrus crispus)

    International Nuclear Information System (INIS)

    Wilson, R.C.; Vives i Batlle, J.; McDonald, P.; Parker, T.G.

    2005-01-01

    Uptake and depuration experiments of 131 I from labelled seaweed (Chondrus crispus) by the edible periwinkle Littorina littorea have been performed. Radioiodine concentrations in winkles during uptake followed first-order kinetics with an uptake half-time of 1 day, and a calculated equilibrium concentration (C ∞ ) of 21 000 Bq kg -1 resulting in a transfer factor of 0.07 with respect to the labelled seaweed used as food. For depuration, a biphasic sequence with biological half-lives of 1 and 24 days was determined. The results suggest that in general, iodine turnover in periwinkles is slower than observed for other molluscs (monophasic biological half-lives in the order of 2-3 days). Both environmental media, food and seawater, can be significant sources of radioiodine for the winkle

  15. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    Directory of Open Access Journals (Sweden)

    Daphna D.J. Habets

    2012-09-01

    Full Text Available Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/ long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-λ knockout mice the roles of atypical PKCs (PKC-ζ and PKC-λ in regulating cardiac glucose and fatty acid uptake. Results: Neither insulin-stimulated nor AMPK-mediated glucose and fatty acid uptake were inhibited upon genetic PKC-λ ablation in cardiomyocytes. In contrast, myristoylated PKC-ζ pseudosubstrate inhibited both insulin-stimulated and AMPK-mediated glucose and fatty acid uptake by >80% in both wild-type and PKC-λ-knockout cardiomyocytes. In PKC-λ knockout cardiomyocytes, PKC-ζ is the sole remaining atypical PKC isoform, and its expression level is not different from wild-type cardiomyocytes, in which it contributes to 29% and 17% of total atypical PKC expression and phosphorylation, respectively. Conclusion: Taken together, atypical PKCs are necessary for insulin-stimulated and AMPK-mediated glucose uptake into the heart, as well as for insulin-stimulated and AMPK-mediated fatty acid uptake. However, the residual PKC-ζ activity in PKC-λ-knockout cardiomyocytes is sufficient to allow optimal stimulation of glucose and fatty acid uptake, indicating that atypical PKCs are necessary but not rate-limiting in the regulation of cardiac substrate uptake and that PKC-λ and PKC-ζ have interchangeable functions in these processes.

  16. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.

    Science.gov (United States)

    Zoladz, J A; Korzeniewski, B; Grassi, B

    2006-11-01

    It is well known that the oxygen uptake kinetics during rest-to-work transition (V(O2) on-kinetics) in trained subjects is significantly faster than in untrained individuals. It was recently postulated that the main system variable that determines the transition time (t(1/2)) of the V(O2) on-kinetics in skeletal muscle, at a given moderate ATP usage/work intensity, and under the assumption that creatine kinase reaction works near thermodynamic equilibrium, is the absolute (in mM) decrease in [PCr] during rest-to-work transition. Therefore we postulate that the training-induced acceleration of the V(O2) on-kinetics is a marker of an improvement of absolute metabolic stability in skeletal muscles. The most frequently postulated factor responsible for enhancement of muscle metabolic stability is the training-induced increase in mitochondrial proteins. However, the mechanism proposed by Gollnick and Saltin (1982) can improve absolute metabolic stability only if training leads to a decrease in resting [ADP(free)]. This effect is not observed in many examples of training causing an acceleration of the V(O2) on-kinetics, especially in early stages of training. Additionally, this mechanism cannot account for the significant training-induced increase in the relative (expressed in % or as multiples of the resting values) metabolic stability at low work intensities, condition in which oxidative phosphorylation is not saturated with [ADP(free)]. Finally, it was reported that in the early stage of training, acceleration in the V(O2) on-kinetics and enhancement of muscle metabolic stability may precede adaptive responses in mitochondrial enzymes activities or mitochondria content. We postulate that the training-induced acceleration in the V(O2) on-kinetics and the improvement of the metabolite stability during moderate intensity exercise in the early stage of training is mostly caused by an intensification of the "parallel activation" of ATP consumption and ATP supply pathways

  17. Inhibition of epithelial Na+ transport by atriopeptin, protein kinase c, and pertussis toxin

    International Nuclear Information System (INIS)

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A.

    1987-01-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na + by atrial natriuretic peptide and 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK i . Using 22 Na + fluxes, they further investigated the modulation of Na + transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na + uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators of protein kinase c, inhibit Na + uptake by 93 ± 13 and 51 ± 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK i cells, inhibits 22 Na + influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na + uptake. These events may be sequentially involved in the action of atrial natriuretic peptide

  18. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis.

    Science.gov (United States)

    Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P; De Geest, Bart

    2017-07-18

    Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher ( p coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold ( p coconut oil mice than in standard chow mice. Myocardial capillary density ( p coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold ( p coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower ( p coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  19. Bladder uptake of liposomes after intravesical administration occurs by endocytosis.

    Directory of Open Access Journals (Sweden)

    Bharathi Raja Rajaganapathy

    Full Text Available Liposomes have been used therapeutically and as a local drug delivery system in the bladder. However, the exact mechanism for the uptake of liposomes by bladder cells is unclear. In the present study, we investigated the role of endocytosis in the uptake of liposomes by cultured human UROtsa cells of urothelium and rat bladder. UROtsa cells were incubated in serum-free media with liposomes containing colloidal gold particles for 2 h either at 37°C or at 4°C. Transmission Electron Microscopy (TEM images of cells incubated at 37°C found endocytic vesicles containing gold inside the cells. In contrast, only extracellular binding was noticed in cells incubated with liposomes at 4°C. Absence of liposome internalization at 4°C indicates the need of energy dependent endocytosis as the primary mechanism of entry of liposomes into the urothelium. Flow cytometry analysis revealed that the uptake of liposomes at 37°C occurs via clathrin mediated endocytosis. Based on these observations, we propose that clathrin mediated endocytosis is the main route of entry for liposomes into the urothelial layer of the bladder and the findings here support the usefulness of liposomes in intravesical drug delivery.

  20. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    International Nuclear Information System (INIS)

    Yuan, Jie; Zhu, Chao; Hong, Yali; Sun, Zongxing; Fang, Xianjun; Wu, Biao; Li, Shengnan

    2017-01-01

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR) or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.