WorldWideScience

Sample records for c-catalyzed sphingomyelin hydrolysis

  1. Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Liang, Shanshan; Hellgren, Lars;

    2008-01-01

    of sphingomyelin has been proven to be a feasible method to produce ceramide. In the membrane reactor constructed, the aqueous phase and the organic phase were separated by a membrane containing the immobilized enzyme, while the organic phasewas continuously circulated. Among the 10 selected membranes, the enzyme...... immobilized in membrane RC 70PP had low immobilization efficiency, but retained the highest catalytic activity. Three immobilization methods, i.e. filtration (adsorption/entrapment), covalent binding, and cross-linking, were compared. The enzyme immobilized by filtration had the highest activity even under...

  2. Kinetic study of sphingomyelin hydrolysis for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2008-01-01

    in cosmetic and pharmaceutical industries such as in hair and skin care products. The enzymatic hydrolysis of sphingomyelin has been proved to be a feasible method to produce ceramide. The kinetic performance of sphingomyelin hydrolysis in the optimal two-phase (water:organic solvent) reaction system...

  3. Immobilization of phospholipase C for the production of ceramide from sphingomyelin hydrolysis

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2007-01-01

    industries such as in hair and skin care products, due to its major role in maintaining the water-retaining properties of the epidermis. The feasibility of enzymatic production of ceramide through hydrolysis of sphingomyelin has previously been proven. In order to improve the reusability of the enzyme...

  4. Enzymatic Modification of Sphingomyelin

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    -efficient, high yield production methods are of great interest. In the present study, the potential of producing ceramide through enzymatic hydrolysis of sphingomyelin have been studied. Sphingomyelin (SM) is a ubiquitous membrane-lipid and dairy products or by-products is a rich source of sphingomyelin...

  5. Quantitative Analysis of Sphingomyelin by High-Performance Liquid Chromatography after Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Seunghyun Lee

    2012-01-01

    Full Text Available Sphingomyelin is the most abundant sphingolipid in mammalian cells and is mostly present in the plasma membrane. A new analytical method using high-performance liquid chromatography (HPLC was developed to quantify sphingomyelin in mouse plasma and tissues, 3T3-L1 cells, rat aortic smooth muscle cells, and HT-29 cells. Sphingomyelin and dihydrosphingomyelin, an internal standard, were separated by high-performance thin-layer chromatography and simultaneously hydrolyzed with sphingolipid ceramide N-deacylase and sphingomyelinase to release sphingosine and dihydrosphingosine, respectively. Sphingomyelin content was measured by HPLC following o-phthalaldehyde derivatization. Sphingomyelin concentrations in 3T3-L1 cells, rat aortic smooth muscle cells, and HT-29 cells were 60.10±0.24, 62.69±0.08, and 58.38±0.37 pmol/μg protein, respectively, whereas those in brain, kidney, and liver of ICR mice were 55.60±0.43, 43.75±0.21, and 22.26±0.14 pmol/μg protein. The sphingomyelin concentration in mouse plasma was 407.40±0.31 μM. The limits of detection and quantification for sphingomyelin were 5 and 20 pmol, respectively, in the HPLC analysis with fluorescence detection. This sensitivity was sufficient for analyzing sphingomyelin in biological samples. In conclusion, this analytical method is a sensitive and specific technique for quantifying sphingomyelin and was successfully applied to diverse biological samples with excellent reproducibility.

  6. Regulation of sphingomyelin metabolism.

    Science.gov (United States)

    Bienias, Kamil; Fiedorowicz, Anna; Sadowska, Anna; Prokopiuk, Sławomir; Car, Halina

    2016-06-01

    Sphingolipids (SFs) represent a large class of lipids playing diverse functions in a vast number of physiological and pathological processes. Sphingomyelin (SM) is the most abundant SF in the cell, with ubiquitous distribution within mammalian tissues, and particularly high levels in the Central Nervous System (CNS). SM is an essential element of plasma membrane (PM) and its levels are crucial for the cell function. SM content in a cell is strictly regulated by the enzymes of SM metabolic pathways, which activities create a balance between SM synthesis and degradation. The de novo synthesis via SM synthases (SMSs) in the last step of the multi-stage process is the most important pathway of SM formation in a cell. The SM hydrolysis by sphingomyelinases (SMases) increases the concentration of ceramide (Cer), a bioactive molecule, which is involved in cellular proliferation, growth and apoptosis. By controlling the levels of SM and Cer, SMSs and SMases maintain cellular homeostasis. Enzymes of SM cycle exhibit unique properties and diverse tissue distribution. Disturbances in their activities were observed in many CNS pathologies. This review characterizes the physiological roles of SM and enzymes controlling SM levels as well as their involvement in selected pathologies of the Central Nervous System, such as ischemia/hypoxia, Alzheimer disease (AD), Parkinson disease (PD), depression, schizophrenia and Niemann Pick disease (NPD). PMID:26940196

  7. Inhibitors of the sphingomyelin cycle: Sphingomyelin synthases and sphingomyelinases.

    Science.gov (United States)

    Adada, Mohamad; Luberto, Chiara; Canals, Daniel

    2016-05-01

    Sphingolipids are a class of bioactive lipids, which are key modulators of an increasing number of physiologic and pathophysiologic processes that include cell cycle, apoptosis, angiogenesis, stress and inflammatory responses. Sphingomyelin is an important structural component of biological membranes, and one of the end-points in the synthesis of sphingolipids. Mainly synthetized in the Golgi apparatus, sphingomyelin is transported to all other biological membranes. Upon stimulation, sphingomyelin can be hydrolyzed to ceramide by 5 different sphingomyelinases. The diversity and cellular topology of ceramide allow it to exert multiple biologies. Furthermore, ceramide can be metabolized to many other bioactive sphingolipids. Ceramide, coming from sphingomyelin or other complex sphingolipids, can be hydrolyzed to sphingosine, which can easily change cellular localization. In turn, sphingosine can be recycled to ceramide and to sphingomyelin in the endoplasmic reticulum, completing the sphingomyelin cycle. Our understanding of the roles of various sphingolipids in the regulation of different cellular processes has come from studying the enzymes that regulate these sphingolipids, and their manipulation. The use of pharmacologic inhibitors has been critical for their study, as well as being promising bullets for disease treatment. Some of these diseases involving the sphingomyelin cycle include cancer, inflammation, atherosclerosis, diabetes and some rare diseases such as Niemann-Pick disease. This review will focus on the enzymes involved in the sphingomyelin cycle, their history, and their involvement in pathophysiological processes. Finally, it will describe in details all the small molecules that are being used to inhibit these enzymes and their use in therapeutics. PMID:26200918

  8. Enzymatic Production of Ceramide from Sphingomyelin

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    Ceramide is the key intermediate in the biosynthesis of all complex sphingolipids. Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetic and pharmaceuticals such as hair and skin care products. Currently, chemical...... through system evaluation and the optimization of several important factors. Sphingomyelin hydrolysis proved to be more efficient in two-phase (water: organic solvent) system than in one-phase (water-saturated organic solvent) system. Phospholipase C from Clostridium perfringens is the tested enzyme which...... has the most advantageous properties. For reusing the enzyme, the immobilization of phospholipase C and the properties of immobilized enzyme have been addressed. By screening nine different carriers, we found that the enzyme immobilized on Lewatit VP OC 1600 (Bayer AG) have the highest catalytic...

  9. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    International Nuclear Information System (INIS)

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo

  10. Sphingomyelin Synthases Regulate Protein Trafficking and Secretion

    OpenAIRE

    Subathra, Marimuthu; Qureshi, Asfia; Luberto, Chiara

    2011-01-01

    Sphingomyelin synthases (SMS1 and 2) represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG). SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 r...

  11. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization

    OpenAIRE

    Li, Zhiqiang; Hailemariam, Tiruneh K.; Zhou, Hongwen; Li, Yan; Duckworth, Dale C.; Peake, David A.; Zhang, Youyan; Kuo, Ming-Shang; Cao, Guoqing; Jiang, Xian-Cheng

    2007-01-01

    Sphingomyelin plays a very important role both in cell membrane formation that may well have an impact on the development of diseases like atherosclerosis and diabetes. However, the molecular mechanism that governs intracellular and plasma membrane SM levels is largely unknown. Recently, two isoforms of sphingomyelin synthase (SMS1 and SMS2), the last enzyme for SM de novo synthesis, have been cloned. We have hypothesized that SMS1 and SMS2 are the two most likely candidates responsible for t...

  12. Subcellular Targeting Domains of Sphingomyelin Synthase 1 and 2

    OpenAIRE

    Yeang Calvin; Ding Tingbo; Chirico William J; Jiang Xian-Cheng

    2011-01-01

    Abstract Sphingomyelin synthase (SMS) sits at the crossroads of sphingomyelin (SM), ceramide, diacylglycerol (DAG) metabolism. It utilizes ceramide and phosphatidylcholine as substrates to produce SM and DAG, thereby regulating lipid messengers which play a role in cell survival and apoptosis. Furthermore, its product SM has been implicated in atherogenic processes such as retention of lipoproteins in the blood vessel intima. There are two mammalian sphingomyelin synthases: SMS1 and SMS2. SMS...

  13. Phospholipase D toxins of brown spider venom convert lysophosphatidylcholine and sphingomyelin to cyclic phosphates.

    Directory of Open Access Journals (Sweden)

    Daniel M Lajoie

    Full Text Available Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using (31P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.

  14. Cholesterol interactions with ceramide and sphingomyelin.

    Science.gov (United States)

    García-Arribas, Aritz B; Alonso, Alicia; Goñi, Felix M

    2016-09-01

    Sphingolipids contain in their polar heads chemical groups allowing them to establish a complex network of H-bonds (through different OH and NHgroups) with other lipids in the bilayer. In the recent years the specific interaction of sphingomyelin (SM) with cholesterol (Chol) has been examined, largely in the context of the "lipid raft" hypothesis. Formation of SM-Ceramide (Cer) complexes, proposed to exist in cell membranes in response to stress, has also been described. More recently, a delicate balance of phase formation and transformation in ternary mixtures of SM, Chol and Cer, with mutual displacement of Chol and Cer from their interaction with SM is considered to exist. In addition, data demonstrating direct Chol-Cer interaction are becoming available. PMID:27132117

  15. The Domain Responsible for Sphingomyelin Synthase (SMS) Activity

    OpenAIRE

    Yeang, Calvin; Varsheny, Shweta; Wang, Renxiao; ZHANG, YA; Ye, Deyong; Jiang, Xian-Cheng

    2008-01-01

    Sphingomyelin synthase (SMS) sits at the crossroads of sphingomyelin (SM), ceramide, diacylglycerol (DAG) metabolism. It utilizes ceramide and phosphatidylcholine as substrates to produce SM and DAG, thereby regulating lipid messengers which play a role in cell survival and apoptosis. There are two isoforms of the enzyme, SMS1 and SMS2. Both SMS1 and SMS2 contain two histidines and one aspartic acid which are evolutionary conserved within the lipid phosphate phosphatase superfamily. In this s...

  16. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure.

    Science.gov (United States)

    Corcelle-Termeau, Elisabeth; Vindeløv, Signe Diness; Hämälistö, Saara; Mograbi, Baharia; Keldsbo, Anne; Bräsen, Jan Hinrich; Favaro, Elena; Adam, Dieter; Szyniarowski, Piotr; Hofman, Paul; Krautwald, Stefan; Farkas, Thomas; Petersen, Nikolaj H T; Rohde, Mikkel; Linkermann, Andreas; Jäättelä, Marja

    2016-05-01

    Sphingomyelin is an essential cellular lipid that traffics between plasma membrane and intracellular organelles until directed to lysosomes for SMPD1 (sphingomyelin phosphodiesterase 1)-mediated degradation. Inactivating mutations in the SMPD1 gene result in Niemann-Pick diseases type A and B characterized by sphingomyelin accumulation and severely disturbed tissue homeostasis. Here, we report that sphingomyelin overload disturbs the maturation and closure of autophagic membranes. Niemann-Pick type A patient fibroblasts and SMPD1-depleted cancer cells accumulate elongated and unclosed autophagic membranes as well as abnormally swollen autophagosomes in the absence of normal autophagosomes and autolysosomes. The immature autophagic membranes are rich in WIPI2, ATG16L1 and MAP1LC3B but display reduced association with ATG9A. Contrary to its normal trafficking between plasma membrane, intracellular organelles and autophagic membranes, ATG9A concentrates in transferrin receptor-positive juxtanuclear recycling endosomes in SMPD1-deficient cells. Supporting a causative role for ATG9A mistrafficking in the autophagy defect observed in SMPD1-deficient cells, ectopic ATG9A effectively reverts this phenotype. Exogenous C12-sphingomyelin induces a similar juxtanuclear accumulation of ATG9A and subsequent defect in the maturation of autophagic membranes in healthy cells while the main sphingomyelin metabolite, ceramide, fails to revert the autophagy defective phenotype in SMPD1-deficient cells. Juxtanuclear accumulation of ATG9A and defective autophagy are also evident in tissues of smpd1-deficient mice with a subsequent inability to cope with kidney ischemia-reperfusion stress. These data reveal sphingomyelin as an important regulator of ATG9A trafficking and maturation of early autophagic membranes. PMID:27070082

  17. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  18. Identification of a family of animal sphingomyelin synthases

    OpenAIRE

    Huitema, K.R.; van den Dikkenberg, J.; Brouwers, J.F.H.M.; Holthuis, J.C.M.

    2003-01-01

    Sphingomyelin (SM) is a major component of animal plasma membranes. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, yielding diacylglycerol as a side product. This reaction is catalysed by SM synthase, an enzyme whose biological potential can be judged from the roles of diacylglycerol and ceramide as anti- and proapoptotic stimuli, respectively. SM synthesis occurs in the lumen of the Golgi as well as on the cell surface. As no gene for SM syntha...

  19. Nuclear Phosphatidylcholine and Sphingomyelin Metabolism of Thyroid Cells Changes during Stratospheric Balloon Flight

    Directory of Open Access Journals (Sweden)

    Elisabetta Albi

    2009-01-01

    Full Text Available Nuclear sphingomyelin and phosphatidylcholine metabolism is involved in the response to ultraviolet radiation treatment in different ways related to the physiological state of cells. To evaluate the effects of low levels of radiation from the stratosphere on thyroid cells, proliferating and quiescent FRTL-5 cells were flown in a stratospheric balloon (BIRBA mission. After recovery, the activity of neutral sphingomyelinase, phosphatidylcholine-specific phospholipase C, sphingomyelin synthase, and reverse sphingomyelin synthase was assayed in purified nuclei and the nuclei-free fraction. In proliferating FRTL-5, space radiation stimulate nuclear neutral sphingomyelinase and reverse sphingomyelin synthase activity, whereas phosphatidylcholine-specific phospholipase C and sphingomyelin synthase were inhibited, thus inducing sphingomyelin degradation and phosphatidylcholine synthesis. This effect was lower in quiescent cells. The possible role of nuclear lipid metabolism in the thyroid damage induced by space radiations is discussed.

  20. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains.

    Science.gov (United States)

    Kishimoto, Takuma; Ishitsuka, Reiko; Kobayashi, Toshihide

    2016-08-01

    Although sphingomyelin and cholesterol are major lipids of mammalian cells, the detailed distribution of these lipids in cellular membranes remains still obscure. However, the recent development of protein probes that specifically bind sphingomyelin and/or cholesterol provides new information about the landscape of the lipid domains that are enriched with sphingomyelin or cholesterol or both. Here, we critically summarize the tools to study distribution and dynamics of sphingomyelin and cholesterol. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26993577

  1. Regulation of Cell Migration by Sphingomyelin Synthases: Sphingomyelin in Lipid Rafts Decreases Responsiveness to Signaling by the CXCL12/CXCR4 Pathway

    OpenAIRE

    Asano, Satoshi; Kitatani, Kazuyuki; Taniguchi, Makoto; Hashimoto, Mayumi; Zama, Kota; Mitsutake, Susumu; Igarashi, Yasuyuki; Takeya, Hiroyuki; KIGAWA, JUNZO; Hayashi, Akira; Umehara, Hisanori; Okazaki, Toshiro

    2012-01-01

    Sphingomyelin synthase (SMS) catalyzes the formation of sphingomyelin, a major component of the plasma membrane and lipid rafts. To investigate the role of SMS in cell signaling and migration induced by binding of the chemokine CXCL12 to CXCR4, we used mouse embryonic fibroblasts deficient in SMS1 and/or SMS2 and examined the effects of SMS deficiency on cell migration. SMS deficiency promoted cell migration through a CXCL12/CXCR4-dependent signaling pathway involving extracellular signal-reg...

  2. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts.

    Science.gov (United States)

    Quinn, Peter J

    2013-07-30

    Sphingomyelin and cholesterol are of interest to biologists because they interact to form condensed structures said to be responsible for a variety of functions that membranes perform. Synchrotron X-ray diffraction methods have been used to investigate the structure of bilayers of D-erythro palmitoyl-sphingomyelin and complexes formed by palmitoyl- and egg-sphingomyelin with cholesterol in aqueous multibilayer dispersions. D-erythro palmitoyl sphingomyelin bilayers exist in two conformers that are distinguished by their lamellar repeat spacing, bilayer thickness, and polar group hydration. The distinction is attributed to hydrogen bonding to water or to intermolecular hydrogen bonds that are disrupted by the formation of ripple structure. The coexisting bilayer structures of pure palmitoyl sphingomyelin are observed in the presence of cholesterol-rich bilayers that are characterized by different bilayer parameters. The presence of cholesterol preferentially affects the conformer of D-erythro sphingomyelin with thicker, more hydrated bilayers. Coexisting bilayers of sphingomyelin and complexes with cholesterol are in register and remain coupled at temperatures at least up to 50 °C. Cholesterol forms a complex of 1.8 mols of sphingomyelin per cholesterol at 37 °C that coexists with bilayers of pure sphingomyelin up to 50 °C. Redistribution of the two lipids takes place on cooling below the fluid- to gel-phase transition temperature, resulting in the withdrawal of sphingomyelin into gel phase and the formation of coexisting bilayers of equimolar proportions of the two lipids. Cholesterol-rich bilayers fit a stripe model at temperatures less than 37 °C characterized by alternating rows of sphingomyelin and cholesterol molecules. A quasicrystalline array models the arrangement at higher temperatures in which each cholesterol molecule is surrounded by seven hydrocarbon chains, each of which is in contact with two cholesterol molecules. The thickness of bilayer

  3. Nerve growth factor, sphingomyelins, and sensitization in sensory neurons

    Institute of Scientific and Technical Information of China (English)

    Grant D. Nicol

    2008-01-01

    @@ Because nerve growth factor (NGF) is elevated during inflammation, plays a causal role in the initiation of hyperalgesia, and is known to activate the sphingomyelin signalling pathway, we examined whether NGF and its putative second messenger, ceramide, could modulate the excitability of capsaicin-sensitive adult sensory neurons.Using the whole-cell patch-clamp recording technique,exposure of isolated sensory neurons to either 100 ng/mL NGF or 1 mmol/L N-acetyl sphingosine (C2-ceramide) produced a 3-4 fold increase in the number of action po-tentials (APs) evoked by a ramp of depolarizing current in a time-dependent manner. Intracellular perfusion with bac- terial sphingomyelinase (SMase) also increased the num- ber of APs suggesting that the release of native ceramide enhanced neuronal excitability.

  4. The Role of Sphingomyelin Breakdown in Measles Virus Immunmodulation

    Directory of Open Access Journals (Sweden)

    Elita Avota

    2014-06-01

    Full Text Available Measles virus (MV efficiently causes generalized immunosuppression which accounts to a major extent for cases of measles-asscociated severe morbidity and mortality. MV infections alter many functions of antigen presenting cells (APC (dendritic cells (DCs and lymphocytes, yet many molecular targets of the virus remain poorly defined. Cellular interactions and effector functions of DCs and lymphocytes are regulated by surface receptors. Associating with other proteins involved in cell signaling, receptors form part of receptosomes that respond to and transmit external signals through dynamic interctions with the cytoskeleton. Alterations in the composition and metabolism of membrane sphingolipids have a substantial impact on both processes. In this review we focus on the regulation of sphingomyelinase activity and ceramide release in cells exposed to MV and discuss the immunosuppressive role of sphingomyelin breakdown induced by MV.

  5. Molecular Modeling of the Three-Dimensional Structure of Human Sphingomyelin Synthase%Molecular Modeling of the Three-Dimensional Structure of Human Sphingomyelin Synthase

    Institute of Scientific and Technical Information of China (English)

    张亚; 林赋; 邓晓东; 王任小; 叶德泳

    2011-01-01

    Sphingomyelin synthase (SMS) produces sphingomyelin and diacylglycerol from ceramide and phosphatidyl- choline. It plays an important role in cell survival and apoptosis, inflammation, and lipid homeostasis, and therefore has been noticed in recent years as a novel potential drug target. In this study, we combined homology modeling, molecular docking, molecular dynamics simulation, and normal mode analysis to derive a three-dimensional struc- ture of human sphingomyelin synthase (hSMS 1) in complex with sphingomyelin. Our model provides a reasonable explanation on the catalytic mechanism of hSMS 1. It can also explain the high selectivity of hSMS 1 towards phos- phocholine and sphingomyelin as well as some other known experimental results about hSMS1. Moreover, we also derived a complex model of D609, the only known small-molecule inhibitor of hSMS 1 so far. Our hSMS 1 model may serve as a reasonable structural basis for the discovery of more effective small-molecule inhibitors of hSMS 1.

  6. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity[S

    OpenAIRE

    Ding, Tingbo; Kabir, Inamul; Li, Yue; Lou, Caixia; Yazdanyar, Amirfarbod; Xu, Jiachen; Dong, Jibin; Zhou, Hongwen; Park, Taesik; Boutjdir, Mohamed; Li, Zhiqiang; Jiang, Xian-Cheng

    2015-01-01

    Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide a...

  7. Sphingomyelin synthase 2 (SMS2) deficiency attenuates LPS-induced lung injury

    OpenAIRE

    Gowda, Satish; Yeang, Calvin; Wadgaonkar, Sunil; Anjum, Fatima; Grinkina, Natalia; Cutaia, Michael; Jiang, Xian-Chen; Wadgaonkar, Raj

    2010-01-01

    Sphingomyelin synthase (SMS) catalyzes the synthesis of sphingomyelin (SM) and is required for maintenance of plasma membrane microdomain fluidity. Of the two isoforms of mammalian SMS, SMS1 is mostly present in the trans-Golgi apparatus, whereas SMS2 is predominantly found at the plasma membrane. SMS2 has a role in receptor mediated response to inflammation in macrophages, however, the role of SMS2 in vascular permeability, pulmonary edema, and lung injury have not been investigated. To defi...

  8. Sphingomyelin synthase 1 activity is regulated by the BCR-ABL oncogene[S

    OpenAIRE

    Burns, Tara Ann; Subathra, Marimuthu; signorelli, Paola; Choi, Young; Yang, Xiaofeng; Wang, Yong; Villani, Maristella; Bhalla, Kapil; Zhou, Daohong; Luberto, Chiara

    2013-01-01

    Sphingomyelin synthase (SMS) produces sphingomyelin while consuming ceramide (a negative regulator of cell proliferation) and forming diacylglycerol (DAG) (a mitogenic factor). Therefore, enhanced SMS activity could favor cell proliferation. To examine if dysregulated SMS contributes to leukemogenesis, we measured SMS activity in several leukemic cell lines and found that it is highly elevated in K562 chronic myelogenous leukemia (CML) cells. The increased SMS in K562 cells was caused by the ...

  9. Increased Oxidative Stress Impairs Adipose Tissue Function in Sphingomyelin Synthase 1 Null Mice

    OpenAIRE

    Masato Yano; Tadashi Yamamoto; Naotaka Nishimura; Tomomi Gotoh; Ken Watanabe; Kazutaka Ikeda; Yohei Garan; Ryo Taguchi; Koichi Node; Toshiro Okazaki; Yuichi Oike

    2013-01-01

    Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we found that SMS1 null mice showed lipodystrophic phenotype. Mutant mice showed up-regulation of plasma triglyceride concentrations accompanied by reduction of white adipose tissue (WAT) as they aged. Lipoprotein lipase (LPL) activity was severely reduced in mutant mice. In vivo analysis indicated that fatty acid uptake in WAT but not in liver decreased in SMS1 null compared to wild-type mice. In vit...

  10. Hydrolysis of uranium hexafluoride

    International Nuclear Information System (INIS)

    A literature survey is presented of uranium hexafluoride hydrolysis methods as the first step in UF6 conversion to UO2. Reviewed are early methods of hydrolysis, the hydrolysis by dry water vapour, the fluidized-bed method, and the liquid phase hydrolysis of UF6 gas. (J.P.)

  11. Interaction of Egg-Sphingomyelin with DOPC in Langmuir Monolayers

    Institute of Scientific and Technical Information of China (English)

    Chang-chun Hao; Run-guang Sun; Jing Zhang

    2012-01-01

    Lipid rafts are a dynamic microdomain structure found in recent years,enriched in sphingolipids,cholesterol and particular proteins.The change of structure and function of lipid rafts could result in many diseases.In this work,the monolayer miscibility behavior of mixed systems of Egg-Sphingomyelin (ESM) with 1,2-dioleoyl-sn-glycero-3-phosphocholine was investigated in terms of mean surface area per molecule and excess molecular area △Aex at certain surface pressure,surface pressure and excess surface pressure △πex at certain mean molecular area.The stability and compressibility of the mixed monolayers was assessed by the parameters of surface excess Gibbs free energy △Gex,excess Helmholtz energy △Hex and elasticity.Thermodynamic analysis indicates △Aex and △πex in the binary systems with positive deviations from the ideal behavior,suggesting repulsive interaction.The maximum of △Gex and △Hex was at the molar fraction of ESM of 0.6,demonstrating the mixed monolayer was more unstable.The repulsive interaction induced phase separation in the monolayer.

  12. Interaction of Egg-Sphingomyelin with DOPC in Langmuir Monolayers

    Science.gov (United States)

    Hao, Chang-chun; Sun, Run-guang; Zhang, Jing

    2012-12-01

    Lipid rafts are a dynamic microdomain structure found in recent years, enriched in sphingolipids, cholesterol and particular proteins. The change of structure and function of lipid rafts could result in many diseases. In this work, the monolayer miscibility behavior of mixed systems of Egg-Sphingomyelin (ESM) 1 with 2-dioleoyl-sn-glycero-3-phosphocholine was investigated in terms of mean surface area per molecule and excess molecular area ΔAex at certain surface pressure, surface pressure and excess surface pressure Δπex at certain mean molecular area. The stability and compressibility of the mixed monolayers was assessed by the parameters of surface excess Gibbs free energy ΔGex, excess Helmholtz energy ΔHex and elasticity. Thermodynamic analysis indicates ΔAex and Δπex in the binary systems with positive deviations from the ideal behavior, suggesting repulsive interaction. The maximum of ΔGex and ΔHex was at the molar fraction of ESM of 0.6, demonstrating the mixed monolayer was more unstable. The repulsive interaction induced phase separation in the monolayer.

  13. Nuclear Lipid Microdomain as Place of Interaction between Sphingomyelin and DNA during Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Samuela Cataldi

    2013-03-01

    Full Text Available Nuclear sphingomyelin is a key molecule for cell proliferation. This molecule is organized with cholesterol and proteins to form specific lipid microdomains bound to the inner nuclear membrane where RNA is synthesized. Here, we have reported the ability of the sphingomyelin present in the nuclear microdomain to bind DNA and regulate its synthesis, and to highlight its role in cell proliferation induced by partial hepatectomy. During G1/S transition of the cell cycle, sphingomyelin and DNA content is very high and it is strongly reduced after exogenous sphingomyelinase treatment. During the S-phase of the cell cycle, the stimulation of sphingomyelinase and inhibition of sphingomyelin–synthase are accompanied by the DNA synthesis start. To assess the specificity of the results, experiments were repeated with trifluoperazine, a drug known to affect the synthesis of lipids and DNA and to stimulate sphingomyelinase activity. The activity of sphingomyelinase is stimulated in the first hour after hepatectomy and sphingomyelin–DNA synthesis is strongly attenuated. It may be hypothesized that the nuclear microdomain represents a specific area of the inner nuclear membrane that acts as an active site of chromatin anchorage thanks to the stabilizing action of sphingomyelin. Thus, sphingomyelin metabolism in nuclear lipid microdomains is suggested to regulate cell proliferation.

  14. Both Sphingomyelin Synthases SMS1 and SMS2 Are Required for Sphingomyelin Homeostasis and Growth in Human HeLa Cells

    OpenAIRE

    Geta Tafesse, F.; Huitema, K.R.; Hermansson, M; van der Poel, S.; van den Dikkenberg, J.; Uphoff, A.; Somerharju, P; Holthuis, J.C.M.

    2007-01-01

    Sphingomyelin (SM) is a vital component of cellular membranes in organisms ranging from mammals to protozoa. Its production involves the transfer of phosphocholine from phosphatidylcholine to ceramide, yielding diacylglycerol in the process. The mammalian genome encodes two known SM synthase (SMS) isoforms, SMS1 and SMS2. However, the relative contributions of these enzymes to SM production in mammalian cells remained to be established. Here we show that SMS1 and SMS2 are co-expressed in a va...

  15. Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice

    DEFF Research Database (Denmark)

    Zhang, Yao; Cheng, Yajun; Hansen, Gert H;

    2011-01-01

    Alkaline sphingomyelinase (alk-SMase) hydrolyses sphingomyelin (SM) to ceramide in the gut. To evaluate the physiological importance of the enzyme, we generated alk-SMase knockout (KO) mice by the Cre-recombinase-Locus of X-over P1(Cre-LoxP) system and studied SM digestion. Both wild-type (WT...

  16. Intranuclear sphingomyelin is associated with transcriptionally active chromatin and plays a role in nuclear integrity

    NARCIS (Netherlands)

    C. Scassellati; E. Albi; D. Cmarko; C. Tiberi; J. Cmarkova; C. Bouchet‑Marquis; P.J. Verschure; R. van Driel; M. Viola Magni; S. Fakan

    2010-01-01

    Background information. Sphingomyelin is one of the major phospholipids in the cell nucleus. However, its intranuclear distribution with regard to different functional nuclear domains as well as its possible involvement in the nuclear functional architecture remains to be elucidated. Results. We car

  17. A Lipidomic Study of the Effects of N-methyl-N'-nitro-N-nitrosoguanidine on Sphingomyelin Metabolism

    Institute of Scientific and Technical Information of China (English)

    Yun HUANG; Jing SHEN; Ting WANG; Yan-Ke YU; Fanqing F. CHEN; Jun YANG

    2005-01-01

    Systems biology is a new and rapidly developing research area in which, by quantitatively describing the interaction among all the individual components of a cell, a systems-level understanding of a biological response can be achieved. Therefore, it requires high-throughput measurement technologies for biological molecules, such as genomic and proteomic approaches for DNA/RNA and protein, respectively.Recently, a new concept, lipidomics, which utilizes the mass spectrometry (MS) method for lipid analysis,has been proposed. Using this lipidomic approach, the effects ofN-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on sphingomyelin metabolism, a major class of sphingolipids, were evaluated. Sphingomyelin molecules were extracted from cells and analyzed by matrix-assisted laser desorption ionization-time of flight MS. It was found that MNNG induced profound changes in sphingomyelin metabolism, including the appearance of some new sphingomyelin species and the disappearance of some others, and the concentrations of several sphingomyelin species also changed. This was accompanied by the redistribution of acid sphingomyelinase (ASM), a key player in sphingomyelin metabolism. On the other hand, imipramine, an inhibitor of ASM, caused the accumulation of sphingomyelin. It also prevented some of the effects of MNNG, as well as the redistribution of ASM. Taken together, these data suggested that the lipidomic approach is highly effective for the systematic analysis of cellular lipids metabolism.

  18. The hydrolysis of polyimides

    Science.gov (United States)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  19. Dynamic Modification of Sphingomyelin in Lipid Microdomains Controls Development of Obesity, Fatty Liver, and Type 2 Diabetes*

    OpenAIRE

    Mitsutake, Susumu; Zama, Kota; Yokota, Hazuki; Yoshida, Tetsuya; Tanaka, Miki; Mitsui, Masaru; Ikawa, Masahito; Okabe, Masaru; Tanaka, Yoshikazu; Yamashita, Tadashi; Takemoto, Hiroshi; Okazaki, Toshiro; Watanabe, Ken; Igarashi, Yasuyuki

    2011-01-01

    Lipid microdomains or caveolae, small invaginations of plasma membrane, have emerged as important elements for lipid uptake and glucose homeostasis. Sphingomyelin (SM) is one of the major phospholipids of the lipid microdomains. In this study, we investigated the physiological function of sphingomyelin synthase 2 (SMS2) using SMS2 knock-out mice, and we found that SMS2 deficiency prevents high fat diet-induced obesity and insulin resistance. Interestingly, in the liver of SMS2 knock-out mice,...

  20. Detailed Comparison of Deuterium Quadrupole Profiles between Sphingomyelin and Phosphatidylcholine Bilayers

    OpenAIRE

    Yasuda, Tomokazu; Kinoshita, Masanao; Murata, Michio; Matsumori, Nobuaki

    2014-01-01

    Lipid rafts are microdomains rich in sphingomyelin (SM) and cholesterol (Chol). The essential question is why natural lipid rafts prefer SM rather than saturated diacyl glycerophosphocholine, although both form ordered membranes with Chol in model systems. Hence in this study, we synthesized site-specifically deuterated 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholines that match the acyl chain length of stearoyl-SM (SSM), and compared their deuterium quadrupole coupling profiles in detail....

  1. The Chlamydial Inclusion Preferentially Intercepts Basolaterally Directed Sphingomyelin-Containing Exocytic Vacuoles

    OpenAIRE

    Moore, Elizabeth R.; Fischer, Elizabeth R.; Mead, David J.; Hackstadt, Ted

    2008-01-01

    Chlamydiae replicate intracellularly within a unique vacuole termed the inclusion. The inclusion circumvents classical endosomal/lysosomal pathways but actively intercepts a subset of Golgi-derived exocytic vesicles containing sphingomyelin (SM) and cholesterol. To further examine this interaction, we developed a polarized epithelial cell model to study vectoral trafficking of lipids and proteins to the inclusion. We examined seven epithelial cell lines for their ability to form single monola...

  2. Elevation in sphingomyelin synthase activity is associated with increases in amyloid-beta peptide generation.

    Directory of Open Access Journals (Sweden)

    Jen-Hsiang T Hsiao

    Full Text Available A pathological hallmark of Alzheimer's disease (AD is the presence of amyloid-beta peptide (Aβ plaques in the brain. Aβ is derived from a sequential proteolysis of the transmenbrane amyloid precursor protein (APP, a process which is dependent on the distribution of lipids present in the plasma membrane. Sphingomyelin is a major membrane lipid, however its role in APP processing is unclear. Here, we assessed the expression of sphingomyelin synthase (SGMS1; the gene responsible for sphingomyelin synthesis in human brain and found that it was significantly elevated in the hippocampus of AD brains, but not in the cerebellum. Secondly, we assessed the impact of altering SGMS activity on Aβ generation. Inhibition of SGMS activity significantly reduced the level of Aβ in a dose- and time dependent manner. The decrease in Aβ level occurred without changes in APP expression or cell viability. These results when put together indicate that SGMS activity impacts on APP processing to produce Aβ and it could be a contributing factor in Aβ pathology associated with AD.

  3. Cholesterol and Sphingomyelin-Containing Model Condensed Lipid Monolayers: Heterogeneities Involving Ordered Microdomains Assessed by Two Cholesterol Derivatives.

    Science.gov (United States)

    Lecompte, Marie-France; Gaibelet, Gérald; Lebrun, Chantal; Tercé, François; Collet, Xavier; Orlowski, Stéphane

    2015-11-01

    Lipid monolayers are often considered as model membranes, but they are also the physiologic lipid part of the peripheral envelope of lipoproteins and cytosolic lipid bodies. However, their structural organization is still rather elusive, in particular when both cholesterol and sphingomyelin are present. To investigate such structural organization of hemimembranes, we measured, using alternative current voltammetry, the differential capacitance of condensed phosphatidylcholine-based monolayers as a function of applied potential, which is sensitive to their lipid composition and molecular arrangement. Especially, monolayers containing both sphingomyelin and cholesterol, at 15% w/w, presented specific characteristics of the differential capacitance versus potential curves recorded, which was indicative of specific interactions between these two lipid components. We then compared the behavior of two cholesterol derivatives (at 15% w/w), 21-methylpyrenyl-cholesterol (Pyr-met-Chol) and 22-nitrobenzoxadiazole-cholesterol (NBD-Chol), with that of cholesterol when present in model monolayers. Indeed, these two probes were chosen because of previous findings reporting opposite behaviors within bilayer membranes regarding their interaction with ordered lipids, with only Pyr-met-Chol mimicking cholesterol well. Remarkably, in monolayers containing sphingomyelin or not, Pyr-met-Chol and NBD-Chol presented contrasting behaviors, and Pyr-met-Chol mimicked cholesterol only in the presence of sphingomyelin. These two observations (i.e., optimal amounts of sphingomyelin and cholesterol, and the ability to discriminate between Pyr-met-Chol and NBD-Chol) can be interpreted by the existence of heterogeneities including ordered patches in sphingomyelin- and cholesterol-containing monolayers. Since such monolayer lipid arrangement shares some properties with the raft-type lipid microdomains well-described in sphingomyelin- and cholesterol-containing bilayer membranes, our data thus

  4. The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes

    Directory of Open Access Journals (Sweden)

    Veranič P

    2012-04-01

    Full Text Available Maruša Lokar1,*, Doron Kabaso1,2,*, Nataša Resnik3, Kristina Sepcic5, Veronika Kralj-Iglic4,6, Peter Veranic3, Robert Zorec2, Aleš Iglic1,6 1Laboratory of Biophysics, Faculty of Electrical Engineering, 2Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, 3Institute of Cell Biology, Faculty of Medicine, 4Faculty of Health Sciences, 5Department of Biology, Biotechnical Faculty, 6Laboratory of Clinical Biophysics, Department of Orthopedic Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia*These authors equally share first authorshipAbstract: Intercellular membrane nanotubes (ICNs are highly curved tubular structures that connect neighboring cells. The stability of these structures depends on the inner cytoskeleton and the cell membrane composition. Yet, due to the difficulty in the extraction of ICNs, the cell membrane composition remains elusive. In the present study, a raft marker, ostreolysin, revealed the enrichment of cholesterol-sphingomyelin membrane nanodomains along ICNs in a T24 (malignant urothelial cancer cell line. Cholesterol depletion, due to the addition of methyl-β-cyclodextrin, caused the dispersion of cholesterol-sphingomyelin membrane nanodomains and the retraction of ICNs. The depletion of cholesterol also led to cytoskeleton reorganization and to formation of actin stress fibers. Live cell imaging data revealed the possible functional coupling between the change from polygonal to spherical shape, cell separation, and the disconnection of ICNs. The ICN was modeled as an axisymmetric tubular structure, enabling us to investigate the effects of cholesterol content on the ICN curvature. The removal of cholesterol was predicted to reduce the positive spontaneous curvature of the remaining membrane components, increasing their curvature mismatch with the tube curvature. The mechanisms by which the increased curvature mismatch could contribute to the disconnection of ICNs are

  5. Improved sensitivity of an acid sphingomyelinase activity assay using a C6:0 sphingomyelin substrate

    OpenAIRE

    Wei-Lien Chuang; Joshua Pacheco; Samantha Cooper; Kingsbury, Jonathan S.; John Hinds; Pavlina Wolf; Petra Oliva; Joan Keutzer; Cox, Gerald F.; Kate Zhang

    2015-01-01

    Short-chain C6-sphingomyelin is an artificial substrate that was used in an acid sphingomyelinase activity assay for a pilot screening study of patients with Niemann–Pick disease types A and B. Using previously published multiplex and single assay conditions, normal acid sphingomyelinase activity levels (i.e. false negative results) were observed in two sisters with Niemann–Pick B who were compound heterozygotes for two missense mutations, p.C92W and p.P184L, in the SMPD1 gene. Increasing the...

  6. Structural Basis for Nucleotide Hydrolysis by the Acid Sphingomyelinase-like Phosphodiesterase SMPDL3A.

    Science.gov (United States)

    Gorelik, Alexei; Illes, Katalin; Superti-Furga, Giulio; Nagar, Bhushan

    2016-03-18

    Sphingomyelin phosphodiesterase, acid-like 3A (SMPDL3A) is a member of a small family of proteins founded by the well characterized lysosomal enzyme, acid sphingomyelinase (ASMase). ASMase converts sphingomyelin into the signaling lipid, ceramide. It was recently discovered that, in contrast to ASMase, SMPDL3A is inactive against sphingomyelin and, surprisingly, can instead hydrolyze nucleoside diphosphates and triphosphates, which may play a role in purinergic signaling. As none of the ASMase-like proteins has been structurally characterized to date, the molecular basis for their substrate preferences is unknown. Here we report crystal structures of murine SMPDL3A, which represent the first structures of an ASMase-like protein. The catalytic domain consists of a central mixed β-sandwich surrounded by α-helices. Additionally, SMPDL3A possesses a unique C-terminal domain formed from a cluster of four α-helices that appears to distinguish this protein family from other phosphoesterases. We show that SMDPL3A is a di-zinc-dependent enzyme with an active site configuration that suggests a mechanism of phosphodiester hydrolysis by a metal-activated water molecule and protonation of the leaving group by a histidine residue. Co-crystal structures of SMPDL3A with AMP and α,β-methylene ADP (AMPCP) reveal that the substrate binding site accommodates nucleotides by establishing interactions with their base, sugar, and phosphate moieties, with the latter the major contributor to binding affinity. Our study provides the structural basis for SMPDL3A substrate specificity and sheds new light on the function of ASMase-like proteins. PMID:26792860

  7. Self-consistent mean-field model for palmitoyloleoylphosphatidylcholine-palmitoyl sphingomyelin-cholesterol lipid bilayers

    Science.gov (United States)

    Tumaneng, Paul W.; Pandit, Sagar A.; Zhao, Guijun; Scott, H. L.

    2011-03-01

    The connection between membrane inhomogeneity and the structural basis of lipid rafts has sparked interest in the lateral organization of model lipid bilayers of two and three components. In an effort to investigate anisotropic lipid distribution in mixed bilayers, a self-consistent mean-field theoretical model is applied to palmitoyloleoylphosphatidylcholine (POPC)-palmitoyl sphingomyelin (PSM)-cholesterol mixtures. The compositional dependence of lateral organization in these mixtures is mapped onto a ternary plot. The model utilizes molecular dynamics simulations to estimate interaction parameters and to construct chain conformation libraries. We find that at some concentration ratios the bilayers separate spatially into regions of higher and lower chain order coinciding with areas enriched with PSM and POPC, respectively. To examine the effect of the asymmetric chain structure of POPC on bilayer lateral inhomogeneity, we consider POPC-lipid interactions with and without angular dependence. Results are compared with experimental data and with results from a similar model for mixtures of dioleoylphosphatidylcholine, steroyl sphingomyelin, and cholesterol.

  8. Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice

    Directory of Open Access Journals (Sweden)

    Zhao Yarui

    2011-01-01

    Full Text Available Abstract Background Sphingomyelin synthase 2 (SMS2 contributes to de novo sphingomyelin (SM biosynthesis. Its activity is related to SM levels in the plasma and the cell membrane. In this study, we investigated the possibility of a direct relationship between SMS and atherosclerosis. Methods The Adenovirus containing SMS2 gene was given into 10-week ApoE KO C57BL/6J mice by femoral intravenous injection. In the control group, the Adenovirus containing GFP was given. To confirm this model, we took both mRNA level examination (RT-PCR and protein level examination (SMS activity assay. Result We generated recombinant adenovirus vectors containing either human SMS2 cDNA (AdV-SMS2 or GFP cDNA (AdV-GFP. On day six after intravenous infusion of 2 × 1011 particle numbers into ten-week-old apoE KO mice, AdV-SMS2 treatment significantly increased liver SMS2 mRNA levels and SMS activity (by 2.7-fold, 2.3-fold, p Conclusions Our results present direct morphological evidence for the pro-atherogenic capabilities of SMS2. SMS2 could be a potential target for treating atherosclerosis.

  9. Guanidination of notexin alters its membrane-damaging activity in response to sphingomyelin and cholesterol

    Indian Academy of Sciences (India)

    Pei-Hsiu Kao; Yi-Ling Chiou; Shinne-Ren Lin; Long-Sen Chang

    2010-12-01

    To elucidate the contribution of phospholipase A2 (PLA2) activity of notexin to its ability to perturb membranes, comparative studies on the interaction of notexin and guanidinated notexin (Gu-notexin) with egg yolk phosphatidylcholine (EYPC), EYPC/egg yolk sphingomyelin (EYSM) and EYPC/EYSM/cholesterol vesicles were conducted. EYSM notably reduced the membrane-damaging activity of notexin against EYPC vesicles, but had an insignificant influence on that of Gu-notexin. Unlike the effects noted with notexin, inactivation of PLA2 activity by EDTA led to a reduction in the ability of Gu-notexin to induce EYPC/EYSM vesicle leakage and to increase Gu-notexin-induced membrane permeability of EYPC/EYSM/cholesterol vesicles. The geometrical arrangement of notexin and Gu-notexin in contact with either EYPC/EYSM vesicles or EYPC/EYSM/cholesterol vesicles differed. Moreover, global conformation of notexin and Gu-notexin differed in either Ca2+-bound or metal-free states. These results indicate that notexin and Gu-notexin could induce membrane permeability without the involvement of PLA2 activity, and suggest that guanidination alters the membrane-bound mode of notexin on damaging phospholipid vesicles containing sphingomyelin and cholesterol.

  10. Enzymatic Hydrolysis of Lignocelluloses

    DEFF Research Database (Denmark)

    Kolasa, Marta; Ahring, Birgitte Kiær; Lübeck, Peter Stephensen;

    2010-01-01

    bonds. Cellulose can be degraded to simple sugar components by means of enzymatic hydrolysis. However, due to its complex, crystalline structure it is difficult to break it down and the cooperative action of a variety of cellulolytic enzymes is necessary. Fungi are known to have potential in production...... genes which subsequently will be cloned and expressed in a relevant fungal host for further characterization of the expressed enzymes. The goal is to introduce new enzymes to industrial processes....

  11. Structure of Human Acid Sphingomyelinase Reveals the Role of the Saposin Domain in Activating Substrate Hydrolysis.

    Science.gov (United States)

    Xiong, Zi-Jian; Huang, Jingjing; Poda, Gennady; Pomès, Régis; Privé, Gilbert G

    2016-07-31

    Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine. While other lysosomal sphingolipid hydrolases require a saposin activator protein for full activity, the ASM polypeptide incorporates a built-in N-terminal saposin domain and does not require an external activator protein. Here, we report the crystal structure of human ASM and describe the organization of the three main regions of the enzyme: the N-terminal saposin domain, the proline-rich connector, and the catalytic domain. The saposin domain is tightly associated along an edge of the large, bowl-shaped catalytic domain and adopts an open form that exposes a hydrophobic concave surface approximately 30Å from the catalytic center. The calculated electrostatic potential of the enzyme is electropositive at the acidic pH of the lysosome, consistent with the strict requirement for the presence of acidic lipids in target membranes. Docking studies indicate that sphingomyelin binds with the ceramide-phosphate group positioned at the binuclear zinc center and molecular dynamic simulations indicate that the intrinsic flexibility of the saposin domain is important for monomer-dimer exchange and for membrane interactions. Overall, ASM uses a combination of electrostatic and hydrophobic interactions to cause local disruptions of target bilayers in order to bring the lipid headgroup to the catalytic center in a membrane-bound reaction.

  12. Structure of Human Acid Sphingomyelinase Reveals the Role of the Saposin Domain in Activating Substrate Hydrolysis.

    Science.gov (United States)

    Xiong, Zi-Jian; Huang, Jingjing; Poda, Gennady; Pomès, Régis; Privé, Gilbert G

    2016-07-31

    Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine. While other lysosomal sphingolipid hydrolases require a saposin activator protein for full activity, the ASM polypeptide incorporates a built-in N-terminal saposin domain and does not require an external activator protein. Here, we report the crystal structure of human ASM and describe the organization of the three main regions of the enzyme: the N-terminal saposin domain, the proline-rich connector, and the catalytic domain. The saposin domain is tightly associated along an edge of the large, bowl-shaped catalytic domain and adopts an open form that exposes a hydrophobic concave surface approximately 30Å from the catalytic center. The calculated electrostatic potential of the enzyme is electropositive at the acidic pH of the lysosome, consistent with the strict requirement for the presence of acidic lipids in target membranes. Docking studies indicate that sphingomyelin binds with the ceramide-phosphate group positioned at the binuclear zinc center and molecular dynamic simulations indicate that the intrinsic flexibility of the saposin domain is important for monomer-dimer exchange and for membrane interactions. Overall, ASM uses a combination of electrostatic and hydrophobic interactions to cause local disruptions of target bilayers in order to bring the lipid headgroup to the catalytic center in a membrane-bound reaction. PMID:27349982

  13. Improved sensitivity of an acid sphingomyelinase activity assay using a C6:0 sphingomyelin substrate.

    Science.gov (United States)

    Chuang, Wei-Lien; Pacheco, Joshua; Cooper, Samantha; Kingsbury, Jonathan S; Hinds, John; Wolf, Pavlina; Oliva, Petra; Keutzer, Joan; Cox, Gerald F; Zhang, Kate

    2015-06-01

    Short-chain C6-sphingomyelin is an artificial substrate that was used in an acid sphingomyelinase activity assay for a pilot screening study of patients with Niemann-Pick disease types A and B. Using previously published multiplex and single assay conditions, normal acid sphingomyelinase activity levels (i.e. false negative results) were observed in two sisters with Niemann-Pick B who were compound heterozygotes for two missense mutations, p.C92W and p.P184L, in the SMPD1 gene. Increasing the sodium taurocholate detergent concentration in the assay buffer lowered the activity levels of these two patients into the range observed with other patients with clear separation from normal controls. PMID:26937397

  14. Enzymatic hydrolysis of polyester fabrics

    International Nuclear Information System (INIS)

    Enzymatic hydrolysis of polyester fabrics has been investigated, using different treatment times, temperature and concentration of enzymes. The effects of hydrolysis on samples were evaluated by measurement of weight loss, moisture regain, breaking load of warp yarns, thickness and Ftir spectroscopy. Results show that hydrolysis under mild conditions can improve moisture absorption of the samples. If the applied temperature, treatment time and concentration exceeded some specific range, the moisture regain would be affected negatively. The Ftir spectrums showed an increase in functional groups specially hydroxyl. However the effects of enzymatic hydrolysis on weight loss, tensile strength and thickness of polyester fabrics were negligible

  15. Effects of chronic injection of sphingomyelin-containing liposomes on lymphoid and non-lymphoid cells in the spleen. Transient suppression of marginal zone macrophages.

    OpenAIRE

    E. Claassen; Westerhof, Y.; Versluis, B.; Kors, N.; Schellekens, M.; Van Rooijen, N.

    1988-01-01

    Mice were injected with sphingomyelin/cholesterol or phosphatidylcholine/cholesterol (PC/C) liposomes, from twice up to 10 times, on alternate days. Administration of sphingomyelin/cholesterol (SM/C) liposomes gave rise to hepato and splenomegaly, microgranulomatous infections and changes in macrophage numbers and activity in spleen and liver. Enzyme and immuno-cytochemical methods were used, to demonstrate the effect of liposomes on the lymphoid and non-lymphoid cell populations, on cryostat...

  16. Suppression of sphingomyelin synthase 1 by small interference RNA is associated with enhanced ceramide production and apoptosis after photodamage

    OpenAIRE

    Separovic, Duska; Semaan, Louie; Tarca, Adi L.; Maitah, Ma’In Yehya Awad; Hanada, Kentaro; Bielawski, Jacek; Villani, Maristella; Luberto, Chiara

    2008-01-01

    We have shown that overexpression of SMS1, an enzyme that converts de novo ceramide into sphingomyelin, is accompanied by attenuated ceramide response and apoptotic resistance after photodamage with the photosensitizer Pc 4 (photodynamic therapy; PDT). To test whether SMS1 overexpression-related effects after PDT can be reversed, in this study SMS1 was downregulated in Jurkat T lymphoma/leukemia cells using small inhibitory RNA (siRNA) for SMS1. Compared to scrambled (control) siRNA-transfect...

  17. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models.

    OpenAIRE

    Webb, M S; Harasym, T. O.; Masin, D.; Bally, M. B.; Mayer, L. D.

    1995-01-01

    This study reports on the development of a liposomal formulation of vincristine with significantly enhanced stability and biological properties. The in vitro and in vivo pharmacokinetic, tumour delivery and efficacy properties of liposomal vincristine formulations based on sphingomyelin (SM) and cholesterol were compared with liposomes composed of distearoylphosphatidylcholine (DSPC) and cholesterol. SM/cholesterol liposomes had significantly greater in vitro stability than did similar DSPC/c...

  18. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse.

    Science.gov (United States)

    Aubin, Isabelle; Adams, Carolyn P; Opsahl, Sibylle; Septier, Dominique; Bishop, Colin E; Auge, Nathalie; Salvayre, Robert; Negre-Salvayre, Anne; Goldberg, Michel; Guénet, Jean-Louis; Poirier, Christophe

    2005-08-01

    The mouse mutation fragilitas ossium (fro) leads to a syndrome of severe osteogenesis and dentinogenesis imperfecta with no detectable collagen defect. Positional cloning of the locus identified a deletion in the gene encoding neutral sphingomyelin phosphodiesterase 3 (Smpd3) that led to complete loss of enzymatic activity. Our knowledge of SMPD3 function is consistent with the pathology observed in mutant mice and provides new insight into human pathologies.

  19. Inhibition of sphingomyelin synthase 1 affects ceramide accumulation and hydrogen peroxide-induced apoptosis in Neuro-2a cells.

    Science.gov (United States)

    Tu, Ranran; Yang, Wei; Hu, Zhiping

    2016-09-01

    Oxidative stress plays a key role in brain injury after cerebral ischemia-reperfusion, which contributes toward excessive apoptosis of nerve cells. Therefore, it would be beneficial to identify a therapy that could interfere with the progression of apoptosis and protect the brain from ischemia-reperfusion injury. As ceramide, a well-known second messenger of apoptosis, can be metabolized by sphingomyelin synthase 1 (SMS1), recent research has focused on the link between SMS1 and apoptosis in different cells. To investigate whether SMS1 is involved in the process of oxidative stress-induced apoptosis in neurons and to explore the possible underlying mechanism, we treated mouse neuroblastoma Neuro-2A (N2a) cells with hydrogen peroxide (H2O2). Incubation with H2O2 significantly upregulated the expression of SMS1, increased the intracellular levels of ceramide and sphingomyelin synthase activity, and induced apoptosis. Moreover, pretreatment of N2a cells with D609, an sphingomyelin synthase inhibitor, or SMS1-silencing RNA (siRNA) further increased ceramide and potentiated H2O2-induced apoptosis which could be reversed by SB203580 (a p38 inhibitor). Thus, our study has shown that SMS1 regulates ceramide levels in N2a cells and plays a potent protective role in this oxidative stress-induced apoptosis partly through the p38 pathway.

  20. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy.

    Science.gov (United States)

    Ando, Jun; Kinoshita, Masanao; Cui, Jin; Yamakoshi, Hiroyuki; Dodo, Kosuke; Fujita, Katsumasa; Murata, Michio; Sodeoka, Mikiko

    2015-04-14

    Sphingomyelin (SM) and cholesterol (chol)-rich domains in cell membranes, called lipid rafts, are thought to have important biological functions related to membrane signaling and protein trafficking. To visualize the distribution of SM in lipid rafts by means of Raman microscopy, we designed and synthesized an SM analog tagged with a Raman-active diyne moiety (diyne-SM). Diyne-SM showed a strong peak in a Raman silent region that is free of interference from intrinsic vibrational modes of lipids and did not appear to alter the properties of SM-containing monolayers. Therefore, we used Raman microscopy to directly visualize the distribution of diyne-SM in raft-mimicking domains formed in SM/dioleoylphosphatidylcholine/chol ternary monolayers. Raman images visualized a heterogeneous distribution of diyne-SM, which showed marked variation, even within a single ordered domain. Specifically, diyne-SM was enriched in the central area of raft domains compared with the peripheral area. These results seem incompatible with the generally accepted raft model, in which the raft and nonraft phases show a clear biphasic separation. One of the possible reasons is that gradual changes of SM concentration occur between SM-rich and -poor regions to minimize hydrophobic mismatch. We believe that our technique of hyperspectral Raman imaging of a single lipid monolayer opens the door to quantitative analysis of lipid membranes by providing both chemical information and spatial distribution with high (diffraction-limited) spatial resolution.

  1. Detailed comparison of deuterium quadrupole profiles between sphingomyelin and phosphatidylcholine bilayers.

    Science.gov (United States)

    Yasuda, Tomokazu; Kinoshita, Masanao; Murata, Michio; Matsumori, Nobuaki

    2014-02-01

    Lipid rafts are microdomains rich in sphingomyelin (SM) and cholesterol (Chol). The essential question is why natural lipid rafts prefer SM rather than saturated diacyl glycerophosphocholine, although both form ordered membranes with Chol in model systems. Hence in this study, we synthesized site-specifically deuterated 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholines that match the acyl chain length of stearoyl-SM (SSM), and compared their deuterium quadrupole coupling profiles in detail. The results suggest a deeper distribution of Chol in the SSM membranes, a lower entropic penalty upon accommodation of Chol in SSM membranes, and a higher thermal stability of acyl-chain orders in the SSM-Chol bilayers than in the 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine-Chol system at various Chol concentrations. The entropy effect and thermal stability should render SM a more preferred raft constituent than saturated diacyl glycerophosphocholine. Our data also demonstrate that the selective and comprehensive deuteration strategy is indispensable for accurate comparison of order profiles. PMID:24507603

  2. Sphingomyelin in High-Density Lipoproteins: Structural Role and Biological Function

    Directory of Open Access Journals (Sweden)

    Jesús Osada

    2013-04-01

    Full Text Available High-density lipoprotein (HDL levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin–cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat, drugs (statins or diuretics and modified in diseases such as diabetes, renal failure or Niemann–Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future.

  3. Sphingomyelin in High-Density Lipoproteins: Structural Role and Biological Function

    Science.gov (United States)

    Martínez-Beamonte, Roberto; Lou-Bonafonte, Jose M.; Martínez-Gracia, María V.; Osada, Jesús

    2013-01-01

    High-density lipoprotein (HDL) levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM) is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin–cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat), drugs (statins or diuretics) and modified in diseases such as diabetes, renal failure or Niemann–Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future. PMID:23571495

  4. Phase Behavior and Domain Size in Sphingomyelin-Containing Lipid Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Petruzielo, Robin S [Cornell University; Heberle, Frederick A [ORNL; Drazba, Paul [ORNL; Katsaras, John [ORNL; Feigenson, Gerald [Cornell University

    2013-01-01

    Membrane raft size measurements are crucial to understanding the stability and functionality of rafts in cells. The challenge of accurately measuring raft size is evidenced by the disparate reports of domain sizes, which range from nanometers to microns for the ternary model membrane system sphingomyelin (SM)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). Using F rster resonance energy transfer (FRET) and differential scanning calorimetry (DSC), we established phase diagrams for porcine brain SM (bSM)/dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Chol and bSM/POPC/Chol at 15 and 25 C. By combining two techniqueswith different spatial sensitivities, namely FRET and small-angle neutron scattering (SANS),we have significantly narrowed the uncertainty in domain size estimates for bSM/POPC/Chol mixtures. Compositional trends in FRET data revealed coexisting domains at 15 and 25 C for bothmixtures, while SANS measurements detected no domain formation for bSM/POPC/Chol. Together these results indicate that liquid domains in bSM/POPC/Chol are between 2 and 7 nmin radius at 25 C: that is, domains must be on the order of the 2 6 nmF rster distance of the FRET probes, but smaller than the ~7 nm minimum cluster size detectable with SANS. However, for palmitoyl SM (PSM)/POPC/Chol at a similar composition, SANS detected coexisting liquid domains. This increase in domain size upon replacing the natural SMcomponent (which consists of amixture of chain lengths) with synthetic PSM, suggests a role for SM chain length in modulating raft size in vivo.

  5. Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA.

    Directory of Open Access Journals (Sweden)

    Vijay R Gupta

    2008-05-01

    Full Text Available The vacuolating cytotoxin (VacA of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM, as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells.

  6. Effect of saturated and unsaturated fat diets on molecular species of phosphatidylcholine and sphingomyelin of human plasma lipoproteins.

    Science.gov (United States)

    Myher, J J; Kuksis, A; Shepherd, J; Packard, C J; Morrisett, J D; Taunton, O D; Gotto, A M

    1981-10-23

    Four healthy 21-23-year-old males with normal lipoprotein patterns and plasma lipid concentrations were subjected voluntarily to two diets of 5 weeks duration each: I, highly saturated fat diet; II, highly polyunsaturated fat diet. The VLDL, LDL and HDL3 fractions were isolated by conventional ultracentrifugation from each subject on the high fat diets and the molecular species of the component phosphatidylcholines and sphingomyelins were identified and quantitated by GC-MS of the t-butyldimethylsilyl ethers of the corresponding diacylglycerols and ceramides. It was shown that the diet markedly and rather evenly affected the molecular species of the phosphatidylcholines of all lipoprotein classes. However, the changes in the corresponding major molecular species were reciprocal in nature and were consistent with a demonstrated relative resistance to alterations in surface fluidity. In contrast, the dietary fat had only a minor effect on the composition of the sphingomyelins, and did not alter the characteristic differential distribution of the molecular species among the low and high density lipoprotein classes. These results, which were free of the uncertainties introduced by analyses of derived fatty acid and which were obtained on samples isolated from the same subjects, clearly demonstrate that a complete equilibration of the molecular species of the phospholipids is not attained amont the plasma lipoprotein classes even in the fasting state. The possible physico-chemical and metabolic basis of these observations is briefly discussed.

  7. Mass Spectrometry Imaging Reveals Elevated Glomerular ATP/AMP in Diabetes/obesity and Identifies Sphingomyelin as a Possible Mediator

    Directory of Open Access Journals (Sweden)

    Satoshi Miyamoto

    2016-05-01

    Full Text Available AMP-activated protein kinase (AMPK is suppressed in diabetes and may be due to a high ATP/AMP ratio, however the quantitation of nucleotides in vivo has been extremely difficult. Via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI to localize renal nucleotides we found that the diabetic kidney had a significant increase in glomerular ATP/AMP ratio. Untargeted MALDI-MSI analysis revealed that a specific sphingomyelin species (SM(d18:1/16:0 accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with wild-type controls. In vitro studies in mesangial cells revealed that exogenous addition of SM(d18:1/16:0 significantly elevated ATP via increased glucose consumption and lactate production with a consequent reduction of AMPK and PGC1α. Furthermore, inhibition of sphingomyelin synthases reversed these effects. Our findings suggest that AMPK is reduced in the diabetic kidney due to an increase in the ATP/AMP ratio and that SM(d18:1/16:0 could be responsible for the enhanced ATP production via activation of the glycolytic pathway.

  8. Enzymatic hydrolysis of potato pulp

    Directory of Open Access Journals (Sweden)

    Mariusz Lesiecki

    2012-03-01

    Full Text Available Background. Potato pulp constitutes a complicated system of four types of polysaccharides: cellulose, hemicellulose, pectin and starch. Its composition makes it a potential and attractive raw material for the production of the second generation bioethanol. The aim of this research project was to assess the usefulness of commercial enzymatic preparations for the hydrolysis of potato pulp and to evaluate the effectiveness of hydrolysates obtained in this way as raw materials for ethanol fermentation. Material  and methods. Sterilised potato pulp was subjected to hydrolysis with commercial enzymatic preparations. The effectiveness of the preparations declared as active towards only one fraction of potato pulp (separate amylase, pectinase and cellulase activity and mixtures of these preparations was analysed. The monomers content in hydrolysates was determined using HPLC method. Results.  The application of amylolytic enzymes for potato pulp hydrolysis resulted in the release of only 18% of raw material with glucose as the dominant (77% constituent of the formed product. In addition, 16% galactose was also determined in it. The hydrolysis of the cellulose fraction yielded up to 35% raw material and the main constituents of the obtained hydrolysate were glucose (46% and arabinose (40%. Simultaneous application of amylolytic, cellulolytic and pectinolytic enzymes turned out to be the most effective way of carrying out the process as its efficiency in this case reached 90%. The obtained hydrolysate contained 63% glucose, 25% arabinose and 12% other simple substances. Conclusion. The application of commercial enzymatic preparations made it possible to perform potato pulp hydrolysis with 90% effectiveness. This was achieved by the application of a complex of amylolytic, cellulolytic and pectinolytic enzymes and the hydrolysate obtained in this way contained, primarily, glucose making it a viable substrate for ethanol fermentation.

  9. Enzymatic hydrolysis of potato pulp

    OpenAIRE

    Mariusz Lesiecki; Wojciech Białas; Grażyna Lewandowicz

    2012-01-01

    Background. Potato pulp constitutes a complicated system of four types of polysaccharides: cellulose, hemicellulose, pectin and starch. Its composition makes it a potential and attractive raw material for the production of the second generation bioethanol. The aim of this research project was to assess the usefulness of commercial enzymatic preparations for the hydrolysis of potato pulp and to evaluate the effectiveness of hydrolysates obtained in this way as raw materials for ethanol ferment...

  10. Techno-economical evaluation of lignocellulose hydrolysis

    OpenAIRE

    Mirsch, Mikaela

    2014-01-01

    The economic dependency on fossil fuels affects the climate and environment, which drives the fuel research on the largest known renewable carbohydrate source: fermentable sugars from lignocellulose. Several fermentable sugars exist in lignicellulosic materials, but are not accessible for efficient use without pretreatment and hydrolysis. Enzymatic hydrolysis is typically used. Enzymatic hydrolysis has a high selectivity and is performed in mild conditions, but the cost of...

  11. Enzymatic hydrolysis of plant extracts containing inulin

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, J.P.; Galzy, P.

    1981-10-01

    Inulin-rich extracts of chicory and Jerusalem artichoke are a good potential source of fructose. Total enzymatic hydrolysis of these extracts can be effected by yeast inulinases (EC 3.2.1.7). Chemical prehydrolysis is unfavourable. Enzymatic hydrolysis has advantages over chemical hydrolysis: it does not produce a dark-coloured fraction or secondary substances. It is possible to envisage the preparation of high fructose syrups using this process. (Refs. 42).

  12. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    OpenAIRE

    Neeharika, T. S.V.R.; Lokesh, P.; Prasanna Rani, K. N.; Prathap Kumar, T.; Prasad, R. B.N.

    2015-01-01

    Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candi...

  13. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains, in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane.

    Science.gov (United States)

    Murthy, Appala Venkata Ramana; Guyomarc'h, Fanny; Lopez, Christelle

    2016-07-01

    Sphingomyelin-rich microdomains have been observed in the biological membrane surrounding milk fat globules (MFGM). The role played by cholesterol in these domains and in the physical properties and functions of the MFGM remains poorly understood. The objective of this work was therefore to investigate the phase state, topography, and mechanical properties of MFGM polar lipid bilayers as a function of cholesterol concentration, by combining X-ray diffraction, atomic force microscopy imaging, and force spectroscopy. At room temperature, i.e. below the phase transition temperature of the MFGM polar lipids, the bilayers showed the formation of sphingomyelin-rich domains in the solid ordered (so) phase that protruded about 1 nm above the liquid disordered (ld) phase. These so phase domains have a higher mechanical resistance to rupture than the ld phase (30 nN versus 15 nN). Addition of cholesterol in the MFGM polar lipid bilayers (i) induced the formation of liquid ordered (lo) phase for up to 27 mol % in the bilayers, (ii) decreased the height difference between the thicker ordered domains and the surrounding ld phase, (iii) promoted the formation of small sized domains, and (iv) decreased the mechanical resistance to rupture of the sphingomyelin-rich domains down to ∼5 nN. The biological and functional relevance of the lo phase cholesterol/sphingomyelin-rich domains in the membrane surrounding fat globules in milk remains to be elucidated. This study brought new insight about the functional role of cholesterol in milk polar lipid ingredients, which can be used in the preparation of food emulsions, e.g. infant milk formulas. PMID:27300157

  14. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.

    OpenAIRE

    Hackstadt, T; Rockey, D D; Heinzen, R A; Scidmore, M. A.

    1996-01-01

    Chlamydia trachomatis acquires C6-NBD-sphingomyelin endogenously synthesized from C6-NBD-ceramide and transported to the vesicle (inclusion) in which they multiply. Here we explore the mechanisms of this unusual trafficking and further characterize the association of the chlamydial inclusion with the Golgi apparatus. Endocytosed chlamydiae are trafficked to the Golgi region and begin to acquire sphingolipids from the host within a few hours following infection. The transport of NBD-sphingolip...

  15. Hydrolysis kinetics of atrazine and influence factors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The hydrolysis kinetics of atrazine in distilled water and leaching water from soil, and their influence factors were studied by incubation at 35℃ and HPLC analysis method in this paper. The kinetic process of atrazine hydrolysis can be described by the first-order reaction law. The results showed that the hydrolysis rate constants k in leaching water and distilled water were 1.606x10-3/d and 1.055x10-3/d, respectively; the half-life of atrazine hydrolysis in distilled water at pH 3, pH 4.5 and pH 8 were 373 days, 522 days and 657 days respectively. The results also showed that the proton in reaction solution can catalyze the atrazine hydrolysis; humic acid and NH4+ etc. substances in aqueous solution can facilitate atrazine hydrolysis; rate constants of atrazine hydrolysis with humic acid and NH4NO3 were 2.431x10-3/d and 1.498x10-3/d respectively which were 2.3 and 1.42 times of control(1.055x10-3/d); anion NO3- can inhibit catalysis of humic acid to atrazine hydrolysis.

  16. Enhancement of enzymatic adipyl-7-ADCA hydrolysis

    NARCIS (Netherlands)

    Schroën, C.G.P.H.; Kroon, P.J.; Vanderlaan, J.M.; Janssen, A.E.M.; Tramper, J.

    2002-01-01

    We studied enzymatic adipyl-7-ADCA hydrolysis as a new process for the production of 7-aminodeacetoxycephalosporanic acid (7-ADCA), one of the building blocks for cephalosporin antibiotics like cephalexin and cefadroxil. Adipyl-7-ADCA hydrolysis carried out with immobilised glutaryl acylase was cons

  17. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model.

    Science.gov (United States)

    Arroyo, Ana I; Camoletto, Paola G; Morando, Laura; Sassoe-Pognetto, Marco; Giustetto, Maurizio; Van Veldhoven, Paul P; Schuchman, Edward H; Ledesma, Maria D

    2014-03-01

    Understanding the role of lipids in synapses and the aberrant molecular mechanisms causing the cognitive deficits that characterize most lipidosis is necessary to develop therapies for these diseases. Here we describe sphingomyelin (SM) as a key modulator of the dendritic spine actin cytoskeleton. We show that increased SM levels in neurons of acid sphingomyelinase knock out mice (ASMko), which mimic Niemann Pick disease type A (NPA), result in reduced spine number and size and low levels of filamentous actin. Mechanistically, SM accumulation decreases the levels of metabotropic glutamate receptors type I (mGluR1/5) at the synaptic membrane impairing membrane attachment and activity of RhoA and its effectors ROCK and ProfilinIIa. Pharmacological enhancement of the neutral sphingomyelinase rescues the aberrant molecular and morphological phenotypes in vitro and in vivo and improves motor and memory deficits in ASMko mice. Altogether, these data demonstrate the influence of SM and its catabolic enzymes in dendritic spine physiology and contribute to our understanding of the cognitive deficits of NPA patients, opening new perspectives for therapeutic interventions.

  18. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model

    Science.gov (United States)

    Arroyo, Ana I; Camoletto, Paola G; Morando, Laura; Sassoe-Pognetto, Marco; Giustetto, Maurizio; Van Veldhoven, Paul P; Schuchman, Edward H; Ledesma, Maria D

    2014-01-01

    Understanding the role of lipids in synapses and the aberrant molecular mechanisms causing the cognitive deficits that characterize most lipidosis is necessary to develop therapies for these diseases. Here we describe sphingomyelin (SM) as a key modulator of the dendritic spine actin cytoskeleton. We show that increased SM levels in neurons of acid sphingomyelinase knock out mice (ASMko), which mimic Niemann Pick disease type A (NPA), result in reduced spine number and size and low levels of filamentous actin. Mechanistically, SM accumulation decreases the levels of metabotropic glutamate receptors type I (mGluR1/5) at the synaptic membrane impairing membrane attachment and activity of RhoA and its effectors ROCK and ProfilinIIa. Pharmacological enhancement of the neutral sphingomyelinase rescues the aberrant molecular and morphological phenotypes in vitro and in vivo and improves motor and memory deficits in ASMko mice. Altogether, these data demonstrate the influence of SM and its catabolic enzymes in dendritic spine physiology and contribute to our understanding of the cognitive deficits of NPA patients, opening new perspectives for therapeutic interventions. Subject Categories Genetics, Gene Therapy & Genetic Disease; Neuroscience PMID:24448491

  19. Hemicellulose hydrolysis catalysed by solid acids

    NARCIS (Netherlands)

    P.D.. Carà; M. Pagliaro; A. Elmekawy; D.R. Brown; P. Verschuren; N.R. Shiju; G. Rothenberg

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running reaction

  20. Hydrolysis of isocyanic acid on SCR catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, M.; Kleemann, M.; Koebel, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Standard SCR catalysts possess high activity for the hydrolysis of HNCO and thus explain the suitability of urea as a selective reducing agent for NO{sub x}. At high space velocities HNCO-slip can get perceptible over the entire temperature range. This can be attributed to the fact that the temperature dependence is strong for the SCR reaction, but weak for the hydrolysis reaction. (author) 3 figs., 5 refs.

  1. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite.

    Science.gov (United States)

    Fulmer, M T; Brown, P W

    1998-04-01

    Dicalcium phosphate dihydrate (DCPD) was hydrolysed in water and in 1 M Na2HPO4 solution at temperatures from 25-60 degrees C. Hydrolysis was incomplete in water. At 25 degrees C, DCPD partially hydrolysed to hydroxyapatite (HAp). Formation of HAp is indicative of incongruent DCPD dissolution. At the higher temperatures, hydrolysis to HAp was more extensive and was accompanied by the formation of anhydrous dicalcium phosphate (DCP). Both of these processes are endothermic. When hydrolysis was carried out in 1 M Na2HPO4 solution, heat absorption was greater at any given temperature than for hydrolysis in water. Complete hydrolysis to HAp occurred in this solution. The hydrolysis of DCPD to HAp in sodium phosphate solution was also endothermic. The complete conversion of DCPD to HAp in sodium phosphate solution would not be expected if the only effect of this solution was to cause DCPD dissolution to become congruent. Because of the buffering capacity of a dibasic sodium phosphate solution, DCPD hydrolysed completely to HAp. Complete conversion to HAp was accompanied by the conversion of dibasic sodium phosphate to monobasic sodium phosphate. The formation of DCP was not observed indicating that the sodium phosphate solution precluded the DCPD-to-DCP dehydration reaction. In addition to affecting the extent of hydrolysis, reaction in the sodium phosphate solution also caused a morphological change in the HAp which formed. HAp formed by hydrolysis in water was needle-like to globular while that formed in the sodium phosphate solution exhibited a florette-like morphology.

  2. Sustained Epigenetic Drug Delivery Depletes Cholesterol-Sphingomyelin Rafts from Resistant Breast Cancer Cells, Influencing Biophysical Characteristics of Membrane Lipids.

    Science.gov (United States)

    Raghavan, Vijay; Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Yamada, Masayoshi; Morisada, Megan; Labhasetwar, Vinod

    2015-10-27

    Cell-membrane lipid composition can greatly influence biophysical properties of cell membranes, affecting various cellular functions. We previously showed that lipid synthesis becomes altered in the membranes of resistant breast cancer cells (MCF-7/ADR); they form a more rigid, hydrophobic lipid monolayer than do sensitive cell membranes (MCF-7). These changes in membrane lipids of resistant cells, attributed to epigenetic aberration, significantly affected drug transport and endocytic function, thus impacting the efficacy of anticancer drugs. The present study's objective was to determine the effects of the epigenetic drug, 5-aza-2'-deoxycytidine (DAC), delivered in sustained-release nanogels (DAC-NGs), on the composition and biophysical properties of membrane lipids of resistant cells. Resistant and sensitive cells were treated with DAC in solution (DAC-sol) or DAC-NGs, and cell-membrane lipids were isolated and analyzed for lipid composition and biophysical properties. In resistant cells, we found increased formation of cholesterol-sphingomyelin (CHOL-SM) rafts with culturing time, whereas DAC treatment reduced their formation. In general, the effect of DAC-NGs was greater in changing the lipid composition than with DAC-sol. DAC treatment also caused a rise in levels of certain phospholipids and neutral lipids known to increase membrane fluidity, while reducing the levels of certain lipids known to increase membrane rigidity. Isotherm data showed increased lipid membrane fluidity following DAC treatment, attributed to decrease levels of CHOL-SM rafts (lamellar beta [Lβ] structures or ordered gel) and a corresponding increase in lipids that form lamellar alpha-structures (Lα, liquid crystalline phase). Sensitive cells showed marginal or insignificant changes in lipid profile following DAC-treatment, suggesting that epigenetic changes affecting lipid biosynthesis are more specific to resistant cells. Since membrane fluidity plays a major role in drug transport

  3. A raft-associated species of phosphatidylethanolamine interacts with cholesterol comparably to sphingomyelin. A Langmuir-Blodgett monolayer study.

    Directory of Open Access Journals (Sweden)

    Michal Grzybek

    Full Text Available BACKGROUND: Specific interactions between sphingomyelin (SM and cholesterol (Ch are commonly believed to play a key role in the formation of rafts in the biological membranes. A weakness of this model is the implication that these microdomains are confined to the outer bilayer leaflet. The cytoplasmic leaflet, which contains the bulk of phosphatidylethanolamine (PE, phosphatidylserine (PS and phosphatidylinositol (PI, is thought also to harbour half of the membrane cholesterol. Moreover, SLPE (1-stearoyl-2-linoleoyl-sn-glycero-3-phosphatidyl-ethanolamine has recently been shown to be enriched in isolated detergent-resistant membranes (DRM, and this enrichment was independent of the method of isolation of DRM. METHODOLOGY/PRINCIPAL FINDINGS: Here we present quantitative evidence coming from Langmuir-Blodgett monolayer experiments that SLPE forms complex with Ch similar to that between SM and Ch. The energies of these interactions as calculated form the monolayer studies are highly negative. FRAP analysis showed that NBD-Ch recovery was similar in liposomes composed of DOPC/Ch SM or SLPE but not DPPE, providing further evidence that SLPE may form an l(o phase in the presence of high Ch concentration. Experiments on the solubility of DOPC liposomes containing DPPE/Ch (1ratio1, SM/Ch (1ratio1 or SLPE/Ch (1ratio1 showed the presence of Triton X-100 insoluble floating fraction (TIFF in the case of SM/Ch or SLPE/Ch but not in DPPE/Ch containing liposomes. Quantitative determination of particular lipid species in the TIFF fraction confirms the conclusion that SLPE (or similar PE species could be an important constituent of the inner leaflet raft. CONCLUSION: Such interactions suggest a possible existence of inner-leaflet nanoscale assemblies composed of cholesterol complexes with SLPE or similar unsaturated PE species.

  4. Sustained Epigenetic Drug Delivery Depletes Cholesterol-Sphingomyelin Rafts from Resistant Breast Cancer Cells, Influencing Biophysical Characteristics of Membrane Lipids.

    Science.gov (United States)

    Raghavan, Vijay; Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Yamada, Masayoshi; Morisada, Megan; Labhasetwar, Vinod

    2015-10-27

    Cell-membrane lipid composition can greatly influence biophysical properties of cell membranes, affecting various cellular functions. We previously showed that lipid synthesis becomes altered in the membranes of resistant breast cancer cells (MCF-7/ADR); they form a more rigid, hydrophobic lipid monolayer than do sensitive cell membranes (MCF-7). These changes in membrane lipids of resistant cells, attributed to epigenetic aberration, significantly affected drug transport and endocytic function, thus impacting the efficacy of anticancer drugs. The present study's objective was to determine the effects of the epigenetic drug, 5-aza-2'-deoxycytidine (DAC), delivered in sustained-release nanogels (DAC-NGs), on the composition and biophysical properties of membrane lipids of resistant cells. Resistant and sensitive cells were treated with DAC in solution (DAC-sol) or DAC-NGs, and cell-membrane lipids were isolated and analyzed for lipid composition and biophysical properties. In resistant cells, we found increased formation of cholesterol-sphingomyelin (CHOL-SM) rafts with culturing time, whereas DAC treatment reduced their formation. In general, the effect of DAC-NGs was greater in changing the lipid composition than with DAC-sol. DAC treatment also caused a rise in levels of certain phospholipids and neutral lipids known to increase membrane fluidity, while reducing the levels of certain lipids known to increase membrane rigidity. Isotherm data showed increased lipid membrane fluidity following DAC treatment, attributed to decrease levels of CHOL-SM rafts (lamellar beta [Lβ] structures or ordered gel) and a corresponding increase in lipids that form lamellar alpha-structures (Lα, liquid crystalline phase). Sensitive cells showed marginal or insignificant changes in lipid profile following DAC-treatment, suggesting that epigenetic changes affecting lipid biosynthesis are more specific to resistant cells. Since membrane fluidity plays a major role in drug transport

  5. PC-PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries.

    Science.gov (United States)

    Mauban, Joseph R H; Zacharia, Joseph; Fairfax, Seth; Wier, Withrow Gil

    2015-06-15

    Myogenic tone is an intrinsic property of the vasculature that contributes to blood pressure control and tissue perfusion. Earlier investigations assigned a key role in myogenic tone to phospholipase C (PLC) and its products, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Here, we used the PLC inhibitor, U-73122, and two other, specific inhibitors of PLC subtypes (PI-PLC and PC-PLC) to delineate the role of PLC in myogenic tone of pressurized murine mesenteric arteries. U-73122 inhibited depolarization-induced contractions (high external K(+) concentration), thus confirming reports of nonspecific actions of U-73122 and its limited utility for studies of myogenic tone. Edelfosine, a specific inhibitor of PI-PLC, did not affect depolarization-induced contractions but modulated myogenic tone. Because PI-PLC produces IP3, we investigated the effect of blocking IP3 receptor-mediated Ca(2+) release on myogenic tone. Incubation of arteries with xestospongin C did not affect tone, consistent with the virtual absence of Ca(2+) waves in arteries with myogenic tone. D-609, an inhibitor of PC-PLC and sphingomyelin synthase, strongly inhibited myogenic tone and had no effect on depolarization-induced contraction. D-609 appeared to act by lowering cytoplasmic Ca(2+) concentration to levels below those that activate contraction. Importantly, incubation of pressurized arteries with a membrane-permeable analog of DAG induced vasoconstriction. The results therefore mandate a reexamination of the signaling pathways activated by the Bayliss mechanism. Our results suggest that PI-PLC and IP3 are not required in maintaining myogenic tone, but DAG, produced by PC-PLC and/or SM synthase, is likely through multiple mechanisms to increase Ca(2+) entry and promote vasoconstriction.

  6. Dietary sphingomyelin lowers hepatic lipid levels and inhibits intestinal cholesterol absorption in high-fat-fed mice.

    Directory of Open Access Journals (Sweden)

    Rosanna W S Chung

    Full Text Available Controlling intestinal lipid absorption is an important strategy for maintaining lipid homeostasis. Accumulation of lipids in the liver is a major risk factor for metabolic syndrome and nonalcoholic fatty liver disease. It is well-known that sphingomyelin (SM can inhibit intestinal cholesterol absorption. It is, however, unclear if dietary SM also lowers liver lipid levels. In the present study (i the effect of pure dietary egg SM on hepatic lipid metabolism and intestinal cholesterol absorption was measured with [(14C]cholesterol and [(3H]sitostanol in male C57BL/6 mice fed a high-fat (HF diet with or without 0.6% wt/wt SM for 18 days; and (ii hepatic lipid levels and gene expression were determined in mice given a HF diet with or without egg SM (0.3, 0.6 or 1.2% wt/wt for 4 weeks. Mice supplemented with SM (0.6% wt/wt had significantly increased fecal lipid and cholesterol output and reduced hepatic [(14C]cholesterol levels after 18 days. Relative to HF-fed mice, SM-supplemented HF-fed mice had significantly lower intestinal cholesterol absorption (-30%. Liver weight was significantly lower in the 1.2% wt/wt SM-supplemented mice (-18%. Total liver lipid (mg/organ was significantly reduced in the SM-supplemented mice (-33% and -40% in 0.6% wt/wt and 1.2% wt/wt SM, respectively, as were triglyceride and cholesterol levels. The reduction in liver triglycerides was due to inactivation of the LXR-SREBP-1c pathway. In conclusion, dietary egg SM has pronounced hepatic lipid-lowering properties in mice maintained on an obesogenic diet.

  7. Clearance of Hepatic Sphingomyelin by Olipudase Alfa Is Associated With Improvement in Lipid Profiles in Acid Sphingomyelinase Deficiency.

    Science.gov (United States)

    Thurberg, Beth L; Wasserstein, Melissa P; Jones, Simon A; Schiano, Thomas D; Cox, Gerald F; Puga, Ana Cristina

    2016-09-01

    Acid sphingomyelinase deficiency (ASMD; Niemann-Pick disease type A and B) is a lysosomal storage disorder characterized by abnormal intracellular sphingomyelin (SM) accumulation. Prominent liver involvement results in hepatomegaly, fibrosis/cirrhosis, abnormal liver chemistries, and a proatherogenic lipid profile. Olipudase alfa (recombinant human ASM) is in clinical development as an investigational enzyme replacement therapy for the non-neurological manifestations of ASMD. In a phase 1b study conducted to evaluate the safety and tolerability of within-patient dose escalation with olipudase alfa, measurement of SM levels in liver biopsies was used as a pharmacodynamic biomarker of substrate burden. Five adult patients with non neuronopathic ASMD received escalating doses of olipudase alfa every 2 weeks for 26 weeks. Liver biopsies obtained at baseline and 26 weeks after treatment were evaluated for SM storage by histomorphometric analysis, biochemistry, and electron microscopy. Biopsies were also assessed for inflammation and fibrosis, and for the association of SM levels with liver volume, liver function tests, and lipid profiles. At baseline, SM storage present in Kupffer cells and hepatocytes ranged from 9.8% to 53.8% of the microscopic field. After 26 weeks of treatment, statistically significant reductions in SM (P<0.0001) measured by morphometry were seen in 4 patients with evaluable liver biopsies. The 26-week biopsy of the fifth patient was insufficient for morphometric quantitation. Posttreatment SM levels ranged from 1.2% to 9.5% of the microscopic field, corresponding to an 84% to 92% relative reduction from baseline. Improvements in liver volume, liver function tests, and lipid profiles were also observed. This study illustrates the utility of SM assessment by liver biopsy as a pharmacodynamic biomarker of disease burden in these patients. PMID:27340749

  8. Sphingomyelin phosphodiesterase-1 (SMPD1 coding variants do not contribute to low levels of high-density lipoprotein cholesterol

    Directory of Open Access Journals (Sweden)

    Genest Jacques

    2007-12-01

    Full Text Available Abstract Background Niemann-Pick disease type A and B is caused by a deficiency of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase-1 (SMPD1 gene. In Niemann-Pick patients, SMPD1 gene defects are reported to be associated with a severe reduction in plasma high-density lipoprotein (HDL cholesterol. Methods Two common coding polymorphisms in the SMPD1 gene, the G1522A (G508R and a hexanucleotide repeat sequence within the signal peptide region, were investigated in 118 unrelated subjects of French Canadian descent with low plasma levels of HDL-cholesterol (th percentile for age and gender-matched subjects. Control subjects (n = 230 had an HDL-cholesterol level > the 25th percentile. Results For G1522A the frequency of the G and A alleles were 75.2% and 24.8% respectively in controls, compared to 78.6% and 21.4% in subjects with low HDL-cholesterol (p = 0.317. The frequency of 6 and 7 hexanucleotide repeats was 46.2% and 46.6% respectively in controls, compared to 45.6% and 49.1% in subjects with low HDL-cholesterol (p = 0.619. Ten different haplotypes were observed in cases and controls. Overall haplotype frequencies in cases and controls were not significantly different. Conclusion These results suggest that the two common coding variants at the SMPD1 gene locus are not associated with low HDL-cholesterol levels in the French Canadian population.

  9. Enzymes involved in triglyceride hydrolysis.

    Science.gov (United States)

    Taskinen, M R; Kuusi, T

    1987-08-01

    The lipolytic enzymes LPL and HL play important roles in the metabolism of lipoproteins and participate in lipoprotein interconversions. LPL was originally recognized to be the key enzyme in the hydrolysis of chylomicrons and triglyceride, but it also turned out to be one determinant of HDL concentration in plasma. When LPL activity is high, chylomicrons and VLDL are rapidly removed from circulation and a concomitant rise of the HDL2 occurs. In contrast, low LPL activity impedes the removal of triglyceride-rich particles, resulting in the elevation of serum triglycerides and a decrease of HDL (HDL2). Concordant changes of this kind in LPL and HDL2 are induced by many physiological and pathological perturbations. Finally, the operation of LPL is also essential for the conversion of VLDL to LDL. This apparently clear-cut role of LPL in lipoprotein interconversions is contrasted with the enigmatic actions of HL. The enzyme was originally thought to participate in the catalyses of chylomicron and VLDL remnants generated in the LPL reaction. However, substantial in vitro and in vivo data indicate that HL is a key enzyme in the degradation of plasma HDL (HDL2) in a manner which opposes LPL. A scheme is presented for the complementary actions of the two enzymes in plasma HDL metabolism. In addition, recent studies have attributed a role to HL in the catabolism of triglyceride-rich lipoproteins, particularly those containing apo E. However, this function becomes clinically important only under conditions where the capacity of the LPL-mediated removal system is exceeded. Such a situation may arise when the input of triglyceride-rich particles (chylomicrons and/or VLDL) is excessive or LPL activity is decreased or absent.

  10. Hydrolytic gain during hydrolysis reactions : implications and correction procedures

    NARCIS (Netherlands)

    Marchal, L.M.; Tramper, J.

    1999-01-01

    Some of the structural parameters of starch (e.g. % beta- or gluco-hydrolysis) were influenced by the increase in mass during the hydrolysis reactions (hydrolytic gain). Procedures were derived to correct this apparent % of hydrolysis to actual % of hydrolysis. These analytically derived equations a

  11. Synergy between cellulases and pectinases in the hydrolysis of hemp.

    Science.gov (United States)

    Zhang, Junhua; Pakarinen, Annukka; Viikari, Liisa

    2013-02-01

    The impact of pectinases in the hydrolysis of fresh, steam-exploded and ensiled hemp was investigated and the synergy between cellulases, pectinases and xylanase in the hydrolysis was evaluated. About half; 59.3% and 46.1% of pectin in the steam-exploded and ensiled hemp, respectively, could be removed by a low dosage of pectinases used. Pectinases were more efficient than xylanase in the hydrolysis of fresh and ensiled hemp whereas xylanase showed higher hydrolytic efficiency than the pectinase preparation used in the hydrolysis of steam-exploded hemp. Clear synergistic action between cellulases and xylanase could be observed in the hydrolysis of steam-exploded hemp. Supplementation of pectinase resulted in clear synergism with cellulases in the hydrolysis of all hemp substrates. Highest hydrolysis yield of steam-exploded hemp was obtained in the hydrolysis with cellulases and xylanase. In the hydrolysis of ensiled hemp, the synergistic action between cellulases and pectinases was more obvious for efficient hydrolysis.

  12. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  13. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development.

    Directory of Open Access Journals (Sweden)

    Cherilyn A Elwell

    2011-09-01

    Full Text Available The strain designated Chlamydia trachomatis serovar that was used for experiments in this paper is Chlamydia muridarum, a species closely related to C. trachomatis (and formerly termed the Mouse Pneumonitis strain of C. trachomatis. [corrected]. The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM, a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM, for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic

  14. Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Nehman Makdissy

    Full Text Available Sterol response element binding protein (SREBP is a key transcription factor in insulin and glucose metabolism. We previously demonstrated that elevated levels of membrane sphingomyelin (SM were related to peroxisome proliferator-activated receptor-γ (PPARγ, which is a known target gene of SREBP-1 in adipocytes. However, the role of SM in SREBP expression in adipocytes remains unknown. In human abdominal adipose tissue from obese women with various concentrations of fasting plasma insulin, SREBP-1 proteins decreased in parallel with increases in membrane SM levels. An inverse correlation was found between the membrane SM content and the levels of SREBP-1c/ERK/Ras/PPARγ/CREB proteins. For the first time, we demonstrate the effects of SM and its signaling pathway in 3T3-F442A adipocytes. These cells were enriched or unenriched with SM in a range of concentrations similar to those observed in obese subjects by adding exogenous natural SMs (having different acyl chain lengths or by inhibiting neutral sphingomyelinase. SM accumulated in caveolae of the plasma membrane within 24 h and then in the intracellular space. SM enrichment decreased SREBP-1 through the inhibition of extracellular signal-regulated protein kinase (ERK but not JNK or p38 mitogen-activated protein kinase (MAPK. Ras/Raf-1/MEK1/2 and KSR proteins, which are upstream mediators of ERK, were down-regulated, whereas SREBP-2/caveolin and cholesterol were up-regulated. In SM-unmodulated adipocytes treated with DL-1-Phenyl-2-Palmitoylamino-3-morpholino-1-propanol (PPMP, where the ceramide level increased, the expression levels of SREBPs and ERK were modulated in an opposite direction relative to the SM-enriched cells. SM inhibited the insulin-induced expression of SREBP-1. Rosiglitazone, which is an anti-diabetic agent and potent activator of PPARγ, reversed the effects of SM on SREBP-1, PPARγ and CREB. Taken together, these findings provide novel insights indicating that excess

  15. Enzymatic hydrolysis of corn bran arabinoxylan

    DEFF Research Database (Denmark)

    Agger, Jane

    in a complex and ridig cell wall structure. This thesis contains a thorough examination of the monosaccharide and structural composition of corn bran, which is used to assess and apply the relevant mono component enzyme preparations. In this way, the aim is to obtain the most effective minimal enzymatic...... is mainly composed by heat, acid and alkali labile linkages in arabinoxylan. It therefore becomes a balancing task to find optimum conditions that compromise the advantages and disadvantages. Acidic pretreatments (pH 1.5-2) are found to be particularly effective in promoting the enzymatic hydrolysis......-linkings between arabinoxylans, which have been believed to be a major obstical for enzymatic hydrolysis. The chemical removal of these cross-links allows for the interpretation of hindering effects of cross-linking and it is concluded that they do not pose a significant barrier for enzymatic hydrolysis...

  16. Catalytic Hydrolysis of Borohydride for Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Lianbang; ZHAN Xingyue; YANG Zhenzhen; MA Chun'an

    2011-01-01

    Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.

  17. ENZYMATIC HYDROLYSIS OF AGRICULTURAL LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    S. STRAVA

    2009-05-01

    Full Text Available The yield, productivity and cost for the enzymatic hydrolysis of cellulose to glucoseare crucial for the production of second generation ethanol. In the first study wehave evaluated the activity of several commercial cellulolytic enzymes and a crudeextract of a local strain of Trichoderma viride. The load used was 15 U ofcellulase/gram cellulose and 90 U of cellobiase/gram cellulose. The hydrolysis wascarried out at 50oC and pH 4,8 for 96 hours. The best cellulose hydrolysis yield of58% was obtained with the cocktail formed of crude cellulases from T. virideCMIT3.5 combined with Novozyme 188. This cocktail was used in the second study,when alkaline-steam pretreated wheat straw and corn stover where hydrolyzed at pH4,8 for 96 hours. The temperature was set at 50oC and 40oC. The hydrolysis at lowertemperature was tested for a future experiment of simultaneous hydrolysis andfermentation. An enzymatic assay using glucose-6-phosphate dehydrogenase wasused to determine exclusively glucose, instead of wide-range sugar DNS assay.Reporting to 100 grams of wet pretreated biomass, the following results wereobtained: 14.4 g% glucose for corn stover at 50oC and 13,0 g% at 40oC; 13,1 g%glucose for wheat straw at 50oC and 10.3 g% at 40oC. Considering that wheat strawcontain 36.6% glucose-based carbohydrates, the hydrolysis yields are between39.3% and 28.1%. Further studies, concerning the optimal parameters for cellulasecocktail will be made.

  18. Enzymatic Hydrolysis Conditions for Egg White Proteins

    OpenAIRE

    Chi, Yujie; Tian, Bo; Sun, Bo; Guo, Mingruo

    2006-01-01

    The enzymatic hydrolysis of proteins in egg white by Alcalase was systematically studied through dual quadratic rotary, orthogonal and regressive design. The optimum conditions of hydrolysis were determined. The results showed that the optimum temperature was 68.5℃, pH 8.21 at the substrate concentration of 5.5%. The regression equation, Y=42.6994+0.3344X1+7.53X2-0.0086X1X2-0.001X21-0.4726X22 (Y-nitrogen recovery rate, NR; X1-enzyme concentration /substrate concentration, E/S; X2-hydrolytic t...

  19. Enzymatic Modification of Sphingomyelin

    DEFF Research Database (Denmark)

    Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetic and pharmaceuticals such as hair and skin care products. Currently, chemical synthesis of ceramide is a costly process, and developments of alternative cost...

  20. Enzymatic Modification of Sphingomyelin

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    . Due to its major role in the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetic and pharmaceuticals such as hair and skin care products. In current, ceramide is not easy to synthesis for industrial application and synthetic ceramide is still expensive...

  1. Monitoring enzymatic ATP hydrolysis by EPR spectroscopy

    OpenAIRE

    Hacker, Stephan M.; Hintze, Christian; Marx, Andreas; Drescher, Malte

    2014-01-01

    An adenosine triphosphate (ATP) analogue modified with two nitroxide radicals is developed and employed to study its enzymatic hydrolysis by electron paramagnetic resonance spectroscopy. For this application, we demonstrate that EPR holds the potential to complement fluorogenic substrate analogues in monitoring enzymatic activity.

  2. Effects of cyclodextrins on hydrolysis of malathion

    Institute of Scientific and Technical Information of China (English)

    ZHANG An-ping; LUO Fan; CHEN Sheng-wen; LIU Wei-ping

    2006-01-01

    Cyclodextrins (CDs), with hydrophobic interior cavity and hydrophilic external surface, are capable of accelerating or inhibiting chemical degradation of organophosphorus pesticides through forming inclusion complexes between CDs and pesticides. This work evaluated the effects of CDs on hydrolysis of malathion in an attempt to assess their potential application in environmental approach. β-CD and its two derivatives, randomly methylated β-CD (RAMEB) and hydroxypropyl β-CD (HP-β-CD), were tested. It was found that RAMEB could inhibit the hydrolysis of malathion, and this was the function of pH and temperature, the inhibitory effects increase with increasing concentration of RAMEB and elevating temperature between 15 and 35 ℃. On the other hand, β-CD and HP-β-CD have little or no stabilizing effects on malathion at all pH and temperature studied, except that the large concentration of β-CD and HP-β-CD can mildly reduce hydrolysis of malathion. Both 2 mol/L and 5 mol/L urea increase the inhibitory effects of RAMEB on hydrolysis of malathion at 25 ℃, pH 9.0.

  3. Modeling the mechanisms of biological GTP hydrolysis

    DEFF Research Database (Denmark)

    Carvalho, Alexandra T.P.; Szeler, Klaudia; Vavitsas, Konstantinos;

    2015-01-01

    Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond ...

  4. HYDROLYSIS OF CHEESEWHEY PROTEINSWITH TRYPSIN, CHYMOTRYPSINAND CARBOXYPEPTIDASEA

    Directory of Open Access Journals (Sweden)

    M. F. CUSTÓDIO

    2009-01-01

    Full Text Available

    This work presents a method for adding value to cheese whey residues by whey proteins hydrolysis, using trypsin, chymotrypsin and carboxypeptidase A as catalysts. Sweet cheese whey was dialyzed and filtered in kaolin. Lactose and protein contents were analyzed after each step. The activities of bovine pancreas trypsin and chymotrypsin were measured at different pHs and temperatures. The optimal pH for the hydrolysis of whey proteins was 9.0 for both enzymes. Optima temperatures were 60ºC for trypsin, and 50ºC for chymotrypsin. Trypsin exhibited typical Michaelis-Menten behavior, but chymotrypsin did not. Electrophoretic analysis showed that neither trypsin nor chymotrypsin alone hydrolyzed whey proteins in less than three hours. Hydrolysis rates of -lactalbumin by trypsin, and of bovine serum albumin by chymotrypsin were low. When these enzymes were combined, however, all protein fractions were attacked and rates of hydrolysis were enhanced by one order of magnitude. The addition of carboxypeptidase A to the others enzymes did not improve the process yield.

  5. Kinetics of ptaquiloside hydrolysis in aqueous solution

    DEFF Research Database (Denmark)

    Ayala-Luis, Karina B.; Bildsøe Hansen, Pernille; Rasmussen, Lars Holm;

    2006-01-01

    of the toxin, a full understanding of the PTA degradation in aqueous environments is important. The kinetics of PTA hydrolysis was examined at 22C in aqueous buffered solutions (pH 2.88–8.93). The reaction was found to follow first-order kinetics with respect to PTA at all pH and temperature conditions. At p...

  6. FLUORESCENT, SHORT-CHAIN C-6-NBD-SPHINGOMYELIN, BUT NOT C-6-NBD-GLUCOSYLCERAMIDE, IS SUBJECT TO EXTENSIVE DEGRADATION IN THE PLASMA-MEMBRANE - IMPLICATIONS FOR SIGNAL-TRANSDUCTION RELATED TO CELL-DIFFERENTIATION

    NARCIS (Netherlands)

    KOK, JW; BABIA, T; KLAPPE, K; HOEKSTRA, D

    1995-01-01

    The involvement of the plasma membrane in the metabolism of the sphingolipids sphingomyelin (SM) and glucosylceramide (GlcCer) was studied, employing fluorescent short-chain analogues of these lipids, 6-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoylsphingosylphosphorylcholine (C-6-NBD-SM), C-6-

  7. Hydrolysis of Raw Corn Starch Granules by Glucoamylase and Product Inhibition During the Hydrolysis

    Institute of Scientific and Technical Information of China (English)

    WANG Jinpeng; ZENG Aiwu; LIU Zhen; YUAN Xigang; WU Shaomin

    2005-01-01

    Raw corn starch granules were hydrolysized by glucoamylase in a chemostat. The hydro-lysis of three different-sized granules shows that smaller granules undergo more hydrolyzation than larger ones. After 78 h, 97% of the granules was hydrolysized with diameter between 0.15 mm and 0.3 mm at 50 ℃. When corn starch concentration increased from 100 g/L to 250 g/L, the amount of reducing sugar produced was proportional to the initial substrate concentration and no substrate inhibition phenomenon appeared. In order to study the product inhibition exactly, the product from hydrolysis reaction itself was added into the hydrolysis system at the beginning of starch hydrolysis. Product inhibition with different quantities of product added were studied in the initial several hours, during which period enzyme inactivation could be neglected and product inhibition could be studied separately. The experiments indicate that product inhibition happens when the additional quantity exceeds 9.56 g/L.

  8. Microwave-assisted Weak Acid Hydrolysis of Proteins

    Directory of Open Access Journals (Sweden)

    Miyeong Seo

    2012-06-01

    Full Text Available Myoglobin was hydrolyzed by microwave-assisted weak acid hydrolysis with 2% formic acid at 37 oC, 50 oC, and100 oC for 1 h. The most effective hydrolysis was observed at 100 oC. Hydrolysis products were investigated using matrixassistedlaser desorption/ionization time-of-flight mass spectrometry. Most cleavages predominantly occurred at the C-termini ofaspartyl residues. For comparison, weak acid hydrolysis was also performed in boiling water for 20, 40, 60, and 120 min. A 60-min weak acid hydrolysis in boiling water yielded similar results as a 60-min microwave-assisted weak acid hydrolysis at100 oC. These results strongly suggest that microwave irradiation has no notable enhancement effect on acid hydrolysis of proteinsand that temperature is the major factor that determines the effectiveness of weak acid hydrolysis.

  9. Corn Gluten Hydrolysis By Alcalase: Effects of Process Parameters on Hydrolysis, Solubilization and Enzyme Inactivation

    OpenAIRE

    Kilic-Apar, D.; Ozbek, B.

    2008-01-01

    The aim of this study was to investigate the influences of substrate concentration, enzyme concentration, temperature and pH on hydrolysis and solubilization of corn gluten as well as enzyme stability. The corn gluten was hydrolyzed by Alcalase enzyme (a bacterial protease produced by a selected strain of Bacillus Licheniformis) that was chosen among five commercial enzymes examined. The optimum process conditions for hydrolysis and solubilization were obtained as 30 g L-1 substrate mass conc...

  10. Modeling and analysis of the enzymatic hydrolysis of lignocellulosic substrates

    OpenAIRE

    Sola Saura, Alaia

    2010-01-01

    Simultaneous saccharification and fermentation (SSF) and simultaneous saccharification and cofermentation (SSCF) are two process options for production of ethanol from lignocellulosic substrates that are superior to separate hydrolysis and fermentation (SHF). The principal benefits of performing the enzymatic hydrolysis together with the fermentation, instead of in a separate step after the hydrolysis as SHF does, are the reduced end-product inhibition of the enzymatic hydrolysis, and t...

  11. FTIR-ATR study of the influence of the pyrimidine analog of fluphenazine on the chain-melting phase transition of sphingomyelin membranes

    Science.gov (United States)

    Kuć, Marta; Cieślik-Boczula, Katarzyna; Świątek, Piotr; Jaszczyszyn, Agata; Gąsiorowski, Kazimierz; Malinka, Wiesław

    2015-09-01

    The membrane perturbing potency of the highly effective anti-multidrug resistance (MDR) pyrimidine analog of fluphenazine (FPh-prm), has been studied using attenuated total reflectance Fourier-transfer infrared spectroscopy (FTIR-ATR). The temperature- and FPh-prm-dose-dependent evolutions of the infrared spectra of FPh-prm/sphingomyelin (SM) mixtures were analyzed using principal component analysis (PCA). It has been postulated that the distinct anti-MDR activity of FPh-prm could be related to its ability to affect the modification of SM membranes. A reduction in the temperature of the chain-melting phase transition was observed in FPh-prm-mixed SM membranes together with the loosing of the phase transition cooperativity. Increasing the temperature led to the trans to gauche isomerization of FPh-prm-rich lipid membranes, which resulted in the gradual release of FPh-prm from the lipid membrane to the water phase.

  12. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis

    NARCIS (Netherlands)

    Baks, T.; Bruins, M.E.; Matser, A.M.; Janssen, A.E.M.; Boom, R.M.

    2008-01-01

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with ¿-amylase from Bac

  13. KINETICS OF HYDROLYSIS OF TRIBUTYRIN BY LIPASE

    Directory of Open Access Journals (Sweden)

    SULAIMAN AL-ZUHAIR

    2006-06-01

    Full Text Available Kinetics of the enzymatic hydrolysis of tributyrin using lipase has been investigated. The initial rate of reaction was determined experimentally at different substrate concentration by measuring the rate of butyric acid produced. Michaels-Menten kinetic model has been proposed to predict the initial rate of hydrolysis of tributyrin in micro-emulsion system. The kinetic parameters were estimated by fitting the data to the model using three methods, namely, the Lineweaver-Burk, Edie-Hofstee and Hanes methods. The Michaels-Menten model with the constant predicted by Edie-Hofstee and Hanes methods predicted the initial rate of reaction at various substrate concentrations better than the model with the constant predicted Lineweaver-Burk method, especially at high substrate concentrations.

  14. ACID HYDROLYSIS OF HEMICELLULOSE FROM SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    A. PESSOA JR.

    1997-09-01

    Full Text Available Hydrolysis of the hemicellulosic fraction of sugarcane bagasse by sulphuric acid was performed in laboratory (25 mL and semi-pilot (25 L reactors under different conditions of temperature, time and acid concentration. On the laboratory scale, the three highest recovery yields were obtained at: 140ºC for 10 min with 100 mgacid/gdm (yield=73.4%; 140ºC for 20 min with 100 mgacid/gdm (yield=73.9% and 150ºC for 20 min with 70 mgacid/gdm (yield=71.8%. These conditions were also used for hydrolysis in a semi-pilot reactor, and the highest xylose recovery yield (83.3% was obtained at 140ºC for 20 min with 100 mgacid/gdm

  15. Enzymatic hydrolysis of poly(ethylene furanoate).

    Science.gov (United States)

    Pellis, Alessandro; Haernvall, Karolina; Pichler, Christian M; Ghazaryan, Gagik; Breinbauer, Rolf; Guebitz, Georg M

    2016-10-10

    The urgency of producing new environmentally-friendly polyesters strongly enhanced the development of bio-based poly(ethylene furanoate) (PEF) as an alternative to plastics like poly(ethylene terephthalate) (PET) for applications that include food packaging, personal and home care containers and thermoforming equipment. In this study, PEF powders of various molecular weights (6, 10 and 40kDa) were synthetized and their susceptibility to enzymatic hydrolysis was investigated for the first time. According to LC/TOF-MS analysis, cutinase 1 from Thermobifida cellulosilytica liberated both 2,5-furandicarboxylic acid and oligomers of up to DP4. The enzyme preferentially hydrolyzed PEF with higher molecular weights but was active on all tested substrates. Mild enzymatic hydrolysis of PEF has a potential both for surface functionalization and monomers recycling. PMID:26854948

  16. Enzymatic hydrolysis of PTT polymers and oligomers

    OpenAIRE

    Eberl, A.; Heumann, Sonja; Kotek, R.; Kaufmann, F; Mitscher, S.; Paulo, Artur Cavaco; Gübitz, Georg M.

    2008-01-01

    Oligomers and polymers (film, fabrics) of the linear aromatic polyester poly(trimethylene terephthalate) (PTT) were treated with polyesterases from Thermomyces lanuginosus, Penicillium citrinum, Thermobifida fusca and Fusarium solani pisi. The cutinase from T. fusca was found to release the highest amounts of hydrolysis products from PTT materials and was able to open and hydrolyse a cyclic PTT dimer according to RP-HPLC–UV detection. In contrast, the lipase from T. lanuginosus also showed ac...

  17. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  18. Phytate hydrolysis by germfree and conventional rats.

    OpenAIRE

    Wise, A; Gilburt, D J

    1982-01-01

    Phytic acid is naturally occurring compound that reduces intestinal absorption of many metals. Early work suggests that some dietary phytate may be hydrolyzed in the large intestines by bacteria, but more recently nutritionists have suggested that a mucosal enzyme is responsible. This paper reports a study intended to resolve this controversy. The hydrolysis of dietary phytic acid was measured in germfree and conventional rats fed either of two diets that differed in their calcium content. Ne...

  19. Hemicellulose hydrolysis catalysed by solid acids

    OpenAIRE

    Carà, P.D..; Pagliaro, M.; Elmekawy, A.; Brown, D R; Verschuren, P.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running reactions in water, under neutral pH and relatively mild temperature and pressure (120 degrees C and 10 bar) conditions. Sulphonated resins are highly active, but they leach out sulphonic groups. Sulphonat...

  20. Palm Date Fibers: Analysis and Enzymatic Hydrolysis

    OpenAIRE

    Taherzadeh, Mohammad J.; Keikhosro Karimi; Marzieh Shafiei

    2010-01-01

    Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was i...

  1. Hydrolysis of Fish Protein by Analkaline Protease

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cod muscle protein was hydrolyzed by an alkaline protease in our study. The influences of hydrolysis temperature,fish protein concentration,and ratio of protease addition to protein amount on its degree of hy drolysis (DH) of protein were studied in details by applying dual quadratic rotary combinational design. The final results showed that more than 84% cod muscle protein could be hydrolyzed and recovered. Cod protein hydrolysate thus obtained had a balanced amino acid composition and mainly consisted of small peptides with molecule weight less than 6900 dalton.

  2. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    Science.gov (United States)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  3. Mechanisms and kinetics of the hydrolysis and condensation of alkoxides

    OpenAIRE

    Schmidt, Helmut K.; Scholze, Horst

    1985-01-01

    Hydrolysis and condensation of alkoxides involve different reaction steps. Generally the first step is the dissolution of monomers in organic solvents like alcohols. The second step is hydrolysis, where in most cases condensation may not be separated. Dissolution may incorporate solvatation, coordination, complexation of polymerization. The addition of water leads to hydrolysis of Si-O-C bonds and subsequently condensation of silanoles takes place. Another possibility of reaction is the hydro...

  4. Experimental investigation on lithium borohydride hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Goudon, J.P. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); SNPE Materiaux Energetiques, Centre de Recherches du Bouchet, Laboratoire BCFB, 9 rue Lavoisier, 91710 Vert-le-Petit (France); Bernard, F. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Renouard, J.; Yvart, P. [SNPE Materiaux Energetiques, Centre de Recherches du Bouchet, Laboratoire BCFB, 9 rue Lavoisier, 91710 Vert-le-Petit (France)

    2010-10-15

    Lithium borohydride, one of the highest energy density chemical energy carriers, is considered as an attractive potential hydrogen storage material due to its high gravimetric hydrogen density (19.6%). Belonging to borohydride compounds, it presents a real issue to overcome aims fixed by the U.S. Department of Energy in the field of energy, and so crystallizes currently attention and effort to use this material for large scale civil and military applications. However, due to its important hygroscopicity, lithium borohydride is a hazardous material which requires specific handling conditions for industrial aspects. In order to understand much more the reaction mechanism involved between LiBH{sub 4} and the water vapor which leads to the native material dehydrogenation, several experimental techniques such as X-ray Photoelectrons Spectroscopy (XPS), Raman spectroscopy, X-Ray Diffraction (XRD) or thermal analysis (TGA/DTA) were investigated. Indeed, depending on water stoichiometric coefficient, several reactions are suggested in literature but the lithium borohydride hydrolysis way reaction scheme is still uncertain. Investigations exhibited interesting results and, highlighted the formation of lithium metaborate dihydrate LiBO{sub 2},2H{sub 2}O as hydrolysis product via such a solid-gas reaction. (author)

  5. Muscarinic receptor activation of phosphatidylcholine hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, E.A.; Goldstein, D.; Brown, J.H. (Univ. of California, San Diego, La Jolla (USA))

    1989-09-05

    We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of (3H)choline and (3H)phosphorylcholine ((3H)Pchol) from cells containing (3H)choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of (3H)phosphatidic acid ((3H)PA) in cells containing (3H)myristate-labeled PC. (3H)Diacylglycerol ((3H)DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with (3H)myristate and (14C)arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol.

  6. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts.

    Science.gov (United States)

    Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa

    2013-11-01

    Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction. PMID:24002447

  7. Enzymatic hydrolysis of PTT polymers and oligomers.

    Science.gov (United States)

    Eberl, A; Heumann, S; Kotek, R; Kaufmann, F; Mitsche, S; Cavaco-Paulo, A; Gübitz, G M

    2008-05-20

    Oligomers and polymers (film, fabrics) of the linear aromatic polyester poly(trimethylene terephthalate) (PTT) were treated with polyesterases from Thermomyces lanuginosus, Penicillium citrinum, Thermobifida fusca and Fusarium solani pisi. The cutinase from T. fusca was found to release the highest amounts of hydrolysis products from PTT materials and was able to open and hydrolyse a cyclic PTT dimer according to RP-HPLC-UV detection. In contrast, the lipase from T. lanuginosus also showed activity on the PTT fibres and on bis(3-hydroxypropyl) terephthalate (BHPT) but was not able to hydrolyse the polymer film, mono(3-hydroxypropyl) terephthalate (MHPT) nor the cyclic dimer of PTT. As control enzymes inhibited with mercury chloride were used. Surface hydrophilicity changes were investigated with contact angle measurements and the degree of crystallinity changes were determined with DSC. PMID:18405994

  8. Hydrolysis and formation constants at 250C

    International Nuclear Information System (INIS)

    A database consisting of hydrolysis and formation constants for about 20 metals associated with the disposal of nuclear waste is given. Complexing ligands for the various ionic species of these metals include OH, F, Cl, SO4, PO4 and CO3. Table 1 consists of tabulated calculated and experimental values of log K/sub xy/, mainly at 250C and various ionic strengths together with references to the origin of the data. Table 2 consists of a column of recommended stability constants at 250C and zero ionic strength tabulated in the column headed log K/sub xy/(0); other columns contain coefficients for an extended Debye-Huckel equation to permit calculations of stability constants up to 3 ionic strength, and up to 0.7 ionic strength using the Davies equation. Selected stability constants calculated with these coefficients for various ionic strengths agree to an average of +- 2% when compared with published experimental and calculated values

  9. Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors

    Science.gov (United States)

    Removal of inhibitory compounds by bioabatement, combined with xylan hydrolysis, enables effective cellulose hydrolysis of pretreated corn stover, for fermentation of the sugars to fuel ethanol or other products. The fungus Coniochaeta ligniaria NRRL30616 eliminates most enzyme and fermentation inhi...

  10. Multivariate data analysis of enzyme production for hydrolysis purposes

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Suhr, K.I.

    1999-01-01

    of the structure in the data - possibly combined with analysis of variance (ANOVA). Partial least squares regression (PLSR) showed a clear connection between the two differentdata matrices (the fermentation variables and the hydrolysis variables). Hence, PLSR was suitable for prediction purposes. The hydrolysis...

  11. Water Availability as a Measure of Cellulose Hydrolysis Efficiency

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen

    decreases. However, the addition of surfactants such as polyethylene glycol (PEG) increases the water mobility, leading to higher water availability, and ultimately higher glucose production. More specifically, the higher water availability boosts the activity of processive cellulases. Thus, water......Enzymatic hydrolysis involves the use of cellulases to break down cellulose in the presence of water. Therefore, not only are enzyme and substrate properties important for efficient hydrolysis, but also the hydrolysis medium, i.e. the liquid phase. The LF-NMR technique is used in this work...... to measure properties of the liquid phase, where water protons are characterized based on their mobility in the system as measured by their relaxation time. Studies of cellulose hydrolysis at low dry matter show that the contents of the liquid phase influence the final hydrolysis yield, as the presence...

  12. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    Directory of Open Access Journals (Sweden)

    Neeharika, T. S.V.R.

    2015-12-01

    Full Text Available Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candida antarctica Lipase B was carried out in this study by varying reaction temperature (40–60 °C and enzyme concentration (2–5%. The optimal conditions were found to be 6 h reaction time, temperature 60°C, buffer to methyl ricinoleate ratio 2:1(v/w and 4% enzyme concentration to achieve a maximum conversion of 98.5%. A first order reversible reaction kinetic model was proposed to describe this reaction and a good agreement was observed between the experimental data and the model values. The effect of temperature on the forward reaction rate constant was determined by fitting data to the Arrhenius equation. The activation energy for forward reaction was found to be 14.69 KJ·mol−1.El ácido ricinoleico es un hidroxiácido insaturado que se produce naturalmente en el aceite de ricino en proporciones de hasta el 85–90%. El ácido ricinoleico es una materia prima con gran potencial y tiene aplicaciones en revestimientos, formulaciones lubricantes y en áreas farmacéuticas. Para la preparación del ácido ricinoleico se prefiere la hidrólisis enzimática del aceite de ricino a la hidrólisis convencional, para evitar la formación de estólidos. En este estudio se llevó a cabo la cinética de la hidrólisis enzimática del ricinoleato de metilo en presencia de lipasa de Candida antarctica B mediante la variación de la temperatura de reacción (40–60 °C y la concentración de la enzima (2–5%. Las condiciones óptimas de la reacción para

  13. Sphingomyelin synthase 2 affects CD14‑associated induction of NF‑κB by lipopolysaccharides in acute lung injury in mice.

    Science.gov (United States)

    Hu, Shidong; Ding, Yi; Gong, Jie; Yan, Nianlong

    2016-10-01

    Lipopolysaccharide (LPS) is the predominant component of the outer membrane of Gram-negative bacteria, which can cause severe inflammation in the body. The acute lung injury (ALI) induced by LPS can cause extensive damage to the lung tissue, the severe stage of which is termed acute respiratory distress syndrome, when multiple organ dysfunction syndrome may appear. There are no effective clinical treatment measures at present. The involvement of cluster of differentiation (CD)14 assists LPS in causing inflammatory reactions, and CD14 and sphingomyelin (SM), located in lipid rafts areas, are closely associated. SM synthase (SMS) is a key enzyme in the synthesis of SM, however, the effect of SMS on the inflammatory pathway involving nuclear factor (NF)‑κB induced by LPS remains to be elucidated. Under the premise of the establishment of an ALI mouse model induced by LPS, the present study established a control group, LPS group and pyrrolidine dithiocarbamate (PDTC; an NF‑κB pathway inhibitor) group. Hematoxylin‑eosin staining, reverse transcription‑quantitative polymerase chain reaction analysis, western blot analysis and thin layer chromatography were used to investigate the mechanism of SMS in ALI. Compared with the control group, the mRNA and protein levels of CD14 were significantly increased (P<0.001; n=5 and P<0.05, n=5), and the activity of SMS and expression of SMS2 were significantly upregulated (P<0.001; n=5 and P<0.05, n=5) in the model group. The increases of SMS2 and CD14 in the PDTC group were less marked, compared with those in the model group (P<0.05; n=5). These findings suggested that the degree of lung injury was reduced during the acute inflammatory reaction when NF‑κB was inhibited, and that the expression of SMS2 may affect the induction of the NF‑κB pathway by LPS through CD14. PMID:27510408

  14. Furfural production from fruit shells by acid-catalyzed hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk Univ., Konya (Turkey). Dept. of Chemical Engineering

    2006-01-21

    Pentosans are hydrolyzed to pentoses by dilute mineral acid hydrolysis. The main source of pentosans is hemicelluloses. Furfural can be produced by the acid hydrolysis of pentosan from fruit shells such as hazelnut, sunflower, walnut, and almond of agricultural wastes. Further dehydration reactions of the pentoses yield furfural. The hydrolysis of each shell sample was carried out in dilute sulfuric acid (0.05 to 0.200 mol/l), at high temperature (450-525 K), and short reaction times (from 30 to 600 s). (author)

  15. HYDROLYSIS OF PAPER-DISHWARE WASTES BY CELLULASE

    Institute of Scientific and Technical Information of China (English)

    JieLu; ShulanShi; RunanYang; FuzhengLiang

    2004-01-01

    The optimum conditions of hydrolysis of cellulosic wastes by cellulase were studied. The results show that the optimum conditions of sulfuric acid pretreatment were sulfuric acid consistency 0.3M, pretreatment temperature 100℃, pretreatment time 4hours. After sulfuric acid pretreatment, the optimum conditions of hydrolysis by cellulase were enzymatic temperature 50℃, enzymatic time 48hours,pH4.8,the charge of cellulase 100IU/g and the substraste consistency 60g/l. Meanwhile this paper studies that the structural change of cellulose during sulfuric acid pretreatment and cellulase hydrolysis by analyzing the infrared spectra.

  16. HYDROLYSIS OF PAPER-DISHWARE WASTES BY CELLULASE

    Institute of Scientific and Technical Information of China (English)

    Jie Lu; Shulan Shi; Runan Yang; Fuzheng Liang

    2004-01-01

    The optimum conditions of hydrolysis of cellulosic wastes by cellulase were studied. The results show that the optimum conditions of sulfuric acid pretreatment were sulfuric acid consistency 0.3M,pretreatment temperature 100℃, pretreatment time 4hours. After sulfuric acid pretreatment, the optimum conditions of hydrolysis by cellulase were enzymatic temperature 50℃ ,enzymatic time 48hours,pH4.8,the charge of cellulase 100IU/g and the substraste consistency 60g/l. Meanwhile this paper studies that the structural change of cellulose during sulfuric acid pretreatment and cellulase hydrolysis by analyzing the infrared spectra.

  17. Hydrolysis and Partial Recycling of a Chloroaluminate Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Li-Sheng Wang

    2007-06-01

    Full Text Available Hydrolysis of the ionic liquid Et3NHCl-2AlCl3 and a process for recycling thetriethylamine were studied. When the hydrolysis was carried out at a relatively hightemperature, the released HCl could be absorbed more easily. With addition of sodiumhydroxide to the aqueous hydrolysis solution, a feasible process for recycling triethylaminewas developed, involving first distillation of triethylamine, followed by filtration of thealuminium hydroxide. The yield of recovered triethylamine was about 95%. Thetriethylhydrogenammonium chloride prepared from the recycled triethylamine was of goodpurity and could be reused to synthesize new chloroaluminate ionic liquids.

  18. Improvement of fat enzymatic hydrolysis technology

    OpenAIRE

    Некрасов, Павло Олександрович; Плахотна, Юлія Миколаївна; Некрасов, Олександр Павлович

    2011-01-01

    Дана робота присвячена дослідженню гідролізу олії під дією ферментних препаратів вітчизняного та закордонного виробництва. Створені математичні моделі процесів та оптимізовано їх параметри. This article covers the investigation of hydrolysis of oil by domestic and foreign produced enzymes. The mathematical models of the processes were designed and process conditions were optimized....

  19. Enzymatic hydrolysis of biomass from wood.

    Science.gov (United States)

    Álvarez, Consolación; Reyes-Sosa, Francisco Manuel; Díez, Bruno

    2016-03-01

    Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta-xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta-mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2-20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood. PMID:26833542

  20. Characterization of Soil Humin by Acid Hydrolysis

    Institute of Scientific and Technical Information of China (English)

    李云峰; 徐建民; 等

    1999-01-01

    Studies were conducted to characterize soil humin by acid hydrolysis.Two humin samples collected from two different types of soil,namely chernozem and laterite,which are widespread over a vast area from the north to south of China,were hyrolyzed under reflux with 0.5M H2SO4or 3M H2SO4for 4h.The results showed that 25%-29% of organic carbon and 46%-54%of organic nitrogen could be hydrolyzed by 0.5M H2SO4;36%-40%of organic carbon and 93%-97% of organic nitrogen hydrolyzed by 3M H2SO4.The C/N ration in hydrolyzed organic matter is lower than that in soil humin and that in organic matter hydrolyzed by 3M H2SO4 is lower than that in organic matter hydrolyzed by 0.5M H2SO4.The proportion of nitrogen hydrolyzed from humin is markedly larger than that from the original soil and also markedly larger than that from humic acid fraction.Only 3%-7% of nitrogen in humin exists in a relatively stable from,which is not easy to hydrolyze.There in little nitrogen that occurs in the form of heterocyclic rings in humin.Incubation experiments showed that the newly formed organic matter can be hydrolyzed more easily.

  1. Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Yue; WU; Bin; YAN; Baixu; GAO; Peiji

    2004-01-01

    An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.

  2. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.;

    2004-01-01

    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied, and the...... compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature of the...... pretreatment, the residual hemicellulose content of the substrate, and the type of the commercial cellulase preparation used were the most important factors affecting the enzymatic hydrolysis. The highest sugar yield in a 72-h hydrolysis, 79% of theoretical, was obtained using a pretreatment of 200degreesC for...

  3. Improved Method for Isolation of Bacterial Inhibitors from Oleuropein Hydrolysis

    OpenAIRE

    Federici, Federico; Bongi, Guido

    1983-01-01

    A new high-pressure liquid chromatography multidetection quantitative method for the isolation of the products of oleuropein hydrolysis is described. A single analysis yields sufficient amounts of the compounds to test their inhibitory effect on bacterial growth.

  4. Evaluation of hydrolysis-esterification biodiesel production from wet microalgae.

    Science.gov (United States)

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Li, Shuhong; Kitamura, Yutaka

    2016-08-01

    Wet microalgae hydrolysis-esterification route has the advantage to avoid the energy-intensive units (e.g. drying and lipid extraction) in the biodiesel production process. In this study, techno-economic evaluation of hydrolysis-esterification biodiesel production process was carried out and compared with conventional (usually including drying, lipid extraction, esterification and transesterification) biodiesel production process. Energy and material balance of the conventional and hydrolysis-esterification processes was evaluated by Aspen Plus. The simulation results indicated that drying (2.36MJ/L biodiesel) and triolein transesterification (1.89MJ/L biodiesel) are the dominant energy-intensive stages in the conventional route (5.42MJ/L biodiesel). By contrast, the total energy consumption of hydrolysis-esterification route can be reduced to 1.81MJ/L biodiesel, and approximately 3.61MJ can be saved to produce per liter biodiesel. PMID:27209457

  5. USE OF ENZYMES IN HYDROLYSIS OF MAIZE STALKS

    Directory of Open Access Journals (Sweden)

    Ivo Valchev

    2009-02-01

    Full Text Available Lignocellulosic biomass is the most abundant organic raw material in the world. Cellulose and hemicellulose from plants and other biomass can be hydrolyzed to produce sugars. Native lignocellulosic biomass provides limited accessibility to cellulase enzymes due to structural features. The investigations were carried out with waste lignocellulosic raw material, consisting of maize stalks and cobs. Enzyme hydrolysis was performed after acid hydrolysis with a cellulasic product. It was established that the enzyme stage, as a first treatment phase, was inefficient. It was found that cellulase activity was considerably improved after acid hydrolysis of a crushed mass. A two-stage process with acidic and then enzyme hydrolysis method was most efficient and promising for obtaining sugars for ethanol production.

  6. Hydrolysis of Polysaccharides with 77% Sulfuric Acid for Quantitative Saccharification

    OpenAIRE

    UÇAR, Güneş; Balaban, Mualla

    2003-01-01

    Classical standard hydrolysis of polysaccharides with 72% sulfuric acid was modified in 2 manners. In order to avoid treatment in an autoclave at 120 °C under pressure, wood or pulp material was first swollen in cold 77% acid followed by hydrolysis steps in diluted acid solutions. Further, the neutralization of the hydrolyzate with dilute barium hydroxide was carried out in heated mother liquor ensuring a crystalline precipitate of barium sulfate. Digestion enables the separation of clear ali...

  7. Optimization of enzymatic hydrolysis of fibre sludge from pulp mill

    OpenAIRE

    Zinchenko, Ganna

    2012-01-01

    This thesis is a part of a project which aims at utilizing fibre sludge from pulp mill as a source of biofuel production. The study concentrates on optimizing one of the processing steps, enzymatic hydrolysis, in converting fibre sludge to bioalcohol. The aim of the thesis was to find optimum process parameters that enable maximum yield of glucose after performing the enzymatic hydrolysis. For this purpose, a series of experiments with changed process parameters was conducted. Also, enzym...

  8. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    OpenAIRE

    Thygesen, Lisbeth G; Thybring, Emil E.; Johansen, Katja S.; Claus Felby

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic ...

  9. Alkali pretreated of wheat straw and its enzymatic hydrolysis

    OpenAIRE

    Lirong Han; Juntao Feng; Shuangxi Zhang; Zhiqing Ma; Yonghong Wang; Xing Zhang

    2012-01-01

    The efficiency of enzymatic hydrolysis of cellulose can be improved by various pretreatments of the substrate. In order to increase the efficiency of enzymatic saccharification of the wheat straw, we determined the effect of different pretreatments on the physical structure, chemical components and enzymatic saccharification of wheat straw. Our results showed that combination of grinding and sodium hydroxide (NaOH) treatment had high effect on the enzymatic hydrolysis of wheat straws. The opt...

  10. Hydrolysis of starch by sorghum malt for maltodextrin production [abstract

    OpenAIRE

    Thonart, P.; Destain, J.; Ba, K.

    2010-01-01

    Maltodextrin is a mixture of saccharides with a molecular weight between polysaccharides and oligosaccharides with DE lower than 20. Maltodextrin is more soluble in water than native starches, also is cheaper in comparison with other major edible hydrocolloids. Maltodextrin is obtained by moderate enzymatic or acidic hydrolysis of starch. The hydrolysis of starch, catalyzed by amylases, is the most important commercial enzyme process. The hydrolyzed products are widely applied in food, paper ...

  11. Hydrolysis of starch by sorghum malt for maltodextrin production

    OpenAIRE

    Ba, K.; Destain, Jacqueline; Thonart, Philippe

    2010-01-01

    Maltodextrin is a mixture of saccharides with a molecular weight between polysaccharides and oligosaccharides with DE lower than 20. Maltodextrin is more soluble in water than native starches, also is cheaper in comparison with other major edible hydrocolloids. Maltodextrin is obtained by moderate enzymatic or acidic hydrolysis of starch. The hydrolysis of starch, catalyzed by amylases, is the most important commercial enzyme process. The hydrolyzed products are widely applied in food, paper ...

  12. Characterization of casein hydrolysates derived from enzymatic hydrolysis

    OpenAIRE

    Wang, Jinshui; Su, Yinjie; Jia, Feng; Jin, Huali

    2013-01-01

    Background Casein is the main proteinaceous component of milk and has made us interest due to its wide applications in the food, drug, and cosmetic industries as well as to its importance as an investigation material for elucidating essential questions regarding the protein chemistry. Enzymatic hydrolysis is an important method commonly used in the modification of protein structure in order to enhance the functional properties of proteins. The relationship between enzymatic hydrolysis and str...

  13. Coupling catalytic hydrolysis and oxidation for CS2 removal

    Institute of Scientific and Technical Information of China (English)

    WANG Li; WU Diyong; WANG Shudong; YUAN Quan

    2008-01-01

    CS2 removal was Obtained by coupling catalytic hyidation on bi-functional catalyst.On the hydrolysis active sites,CS2 is hydrolyzed to H2S,while on the oxidation active sites,H2S is oxidized to elemental S or sulfuric acid deposited on the porous support.The above process can be expressed as follows:CS2→H2O COS →H2O H2S→O2 S/SO2- 4.H2S oxidation eliminates its prohibition on CS2 hydrolysis so that the rate of coupling removal CS2 is 5 times higher than that of CS2 hydrolysis.The same active energy of hydrolysis and coupling reaction also indicates that H2S oxidation does not change the reaction mechanism of CS2 hydrolysis.Temperature has obvious effect on the process while the mole ratio of O2 concentration to CS2 concentration (O/S) does not,especially in excess of 2.5.The formation of sulfuric acid on the catalyst surface poisons hydrolysis active sites and causes the decrease of left OH-1 concentration on the catalysts surface.Lower temperature is suggested for this bi-functional catalyst owing to the low yield ratio of S/SO4 2-.

  14. Study of microwave effects on the lipase-catalyzed hydrolysis.

    Science.gov (United States)

    Chen, Chia-Chen; Reddy, P Muralidhar; Devi, C Shobha; Chang, Po-Chi; Ho, Yen-Peng

    2016-01-01

    The effect of microwave heating on lipase-catalyzed reaction remains controversial. It is not clear whether the reaction rate enhancements are purely due to thermal/heating effects or to non-thermal effects. Therefore, quantitative mass spectrometry was used to conduct accurate kinetic analysis of lipase-catalyzed hydrolysis of triolein by microwave and conventional heating. Commercial lipases from Candida rugosa (CRL), Porcine Pancreas (PPL), and Burkholderia cepacia (BCL) were used. Hydrolysis reactions were performed at various temperatures and pH levels, along with various amounts of buffer and enzymes. Hydrolysis product yields at each time point using an internal-standard method showed no significant difference between microwave and conventional heating conditions when the reaction was carried out at the same temperature. CRL showed optimum catalytic activity at 37 °C, while PPL and BCL had better activities at 50 °C. The phosphate buffer was found to give a better hydrolysis yield than the Tris-HCl buffer. Overall results prove that a non-thermal effect does not exist in microwave-assisted lipase hydrolysis of triolein. Therefore, conventional heating at high temperatures (e.g., 50 °C) can be also used to accelerate hydrolysis reactions.

  15. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng

    2012-09-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop-in replacements for petroleum based fuels. To improve the economics of the process, attention is now focused on optimizing the energy efficiency of the process, maximizing the reaction rate, and improving the recovery of the glycerol by-product. A laboratory-scale reactor system has been designed and built with this goal in mind.Sweet water (water with glycerol from the hydrolysis reaction) is routed to a distillation column and heated above the boiling point of water at the reaction pressure. The steam pressure allows the steam to return to the reactor without pumping. Direct injection of steam into the hydrolysis reactor is shown to provide favorable equilibrium conditions resulting in a high quality of FFA product and rapid reaction rate, even without preheating the inlet water and oil and with lower reactor temperatures and lower fresh water demand. The high enthalpy of the steam provides energy for the hydrolysis reaction. Steam injection offers enhanced conditions for continuous hydrolysis of triglycerides to high-purity streams of FFA and glycerol. © 2012 Elsevier B.V.

  16. Milk Lactose Hydrolysis In A Batch Reactor: Optimisation Of Process Parameters, Kinetics Of Hydrolysis And Enzyme Inactivation

    OpenAIRE

    Sener, N.; Kilic-Apar, D.; DEMIRHAN, E.; Ozbek, B.

    2008-01-01

    The present investigation describes the effects of the process quantities on enzymatic hydrolysis of milk lactose and enzyme stability. The lactose hydrolysis reactions were carried out in 250 mL of milk by using a commercial β-galactosidase produced from Kluyveromyces marxianus lactis. The residual lactose mass concentration (g L-1) and residual enzyme activity (%) against time were investigated vs. process variables such as temperature, impeller speed and enzyme concentration. Optimum condi...

  17. Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis

    OpenAIRE

    Ometto, Francesco; Quiroga, Gerardo; Psenǐckǎ, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-01-01

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatm...

  18. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals.

    Science.gov (United States)

    Sághy, Éva; Szőke, Éva; Payrits, Maja; Helyes, Zsuzsanna; Börzsei, Rita; Erostyák, János; Jánosi, Tibor Zoltán; Sétáló, György; Szolcsányi, János

    2015-10-01

    Transient Receptor Potential (TRP) cation channels, such as TRP Vanilloid 1 and TRP Ankyrin repeat domain 1 (TRPV1 and TRPA1) are nocisensors playing important role to signal pain. Two "melastatin" TRP receptors, like TRPM8 and TRPM3 are also expressed in a subgroup of primary sensory neurons. These channels serve as thermosensors with unique thermal sensitivity ranges and are activated also by several exogenous and endogenous chemical ligands inducing conformational changes from various allosteric ("multisteric") sites. We analysed the role of plasma membrane microdomains of lipid rafts on isolated trigeminal (TRG) neurons and TRPV1-expressing CHO cell line by measuring agonist-induced Ca2+ transients with ratiometric technique. Stimulation-evoked calcitonin gene related peptide (CGRP) release from sensory nerve endings of the isolated rat trachea by radioimmunoassay was also measured. Lipid rafts were disrupted by cleaving sphingomyelin (SM) with sphingomyelinase (SMase), cholesterol depletion with methyl β-cyclodextrin (MCD) and ganglioside breakdown with myriocin. It has been revealed that intracellular Ca2+ increase responses evoked by the TRPV1 agonist capsaicin, the TRPA1 agonsits allyl isothiocyanate (AITC) and formaldehyde as well as the TRPM8 activator icilin were inhibited after SMase, MCD and myriocin incubation but the response to the TRPM3 agonist pregnenolon sulphate was not altered. Extracellular SMase treatment did not influence the thapsigargin-evoked Ca2+-release from intracellular stores. Besides the cell bodies, SMase also inhibited capsaicin- or AITC-evoked CGRP release from peripheral sensory nerve terminals, this provides the first evidence for the importance of lipid raft integrity in TRPV1 and TRPA1 gating on capsaicin-sensitive nerve terminals. SM metabolites, ceramide and sphingosine, did not influence TRPA1 and TRPV1 activation on TRG neurons, TRPV1-expressing CHO cell line, and nerve terminals. We suggest, that the hydrophobic

  19. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production

    OpenAIRE

    Kumar, Deepak; Murthy, Ganti S.

    2013-01-01

    Background During cellulosic ethanol production, cellulose hydrolysis is achieved by synergistic action of cellulase enzyme complex consisting of multiple enzymes with different mode of actions. Enzymatic hydrolysis of cellulose is one of the bottlenecks in the commercialization of the process due to low hydrolysis rates and high cost of enzymes. A robust hydrolysis model that can predict hydrolysis profile under various scenarios can act as an important forecasting tool to improve the hydrol...

  20. Enteral Tube Feeding Nutritional Protein Hydrolysate Production Under Different Factors By Enzymatic Hydrolysis

    OpenAIRE

    Nguyen ThiQuynhHoa; Nguyen Ngoc Phuong Diem; Nguyen Phuoc Minh; Dong ThiAnh Dao

    2015-01-01

    Abstract Hydrolysis of proteins involves the cleavage of peptide bonds to give peptides of varying sizes and amino acid composition. There are a number of types of hydrolysis enzymatic acid or alkali hydrolysis. Chemical hydrolysis is difficult to control and reduces the nutritional quality of products destroying L-form amino acids and producing toxic substances such as lysino-alanine. Enzymatic hydrolysis works without destructing amino acids and by avoiding the extreme temperatures and pH l...

  1. Enzymatic hydrolysis of fructans in the tequila production process.

    Science.gov (United States)

    Avila-Fernández, Angela; Rendón-Poujol, Xóchitl; Olvera, Clarita; González, Fernando; Capella, Santiago; Peña-Alvarez, Araceli; López-Munguía, Agustín

    2009-06-24

    In contrast to the hydrolysis of reserve carbohydrates in most plant-derived alcoholic beverage processes carried out with enzymes, agave fructans in tequila production have traditionally been transformed to fermentable sugars through acid thermal hydrolysis. Experiments at the bench scale demonstrated that the extraction and hydrolysis of agave fructans can be carried out continuously using commercial inulinases in a countercurrent extraction process with shredded agave fibers. Difficulties in the temperature control of large extraction diffusers did not allow the scaling up of this procedure. Nevertheless, batch enzymatic hydrolysis of agave extracts obtained in diffusers operating at 60 and 90 degrees C was studied at the laboratory and industrial levels. The effects of the enzymatic process on some tequila congeners were studied, demonstrating that although a short thermal treatment is essential for the development of tequila's organoleptic characteristics, the fructan hydrolysis can be performed with enzymes without major modifications in the flavor or aroma, as determined by a plant sensory panel and corroborated by the analysis of tequila congeners.

  2. Effects of structural features of cotton cellulose on enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Textile cotton wastes were treated with γ rays and 18% NaOH and 70% ZnCl2 solutions and were subjected to enzymatic hydrolysis. The untreated and treated samples were characterized both before and after hydrolysis by means of parameters concerning molecular structure (degree of polymerization), supermolecular structure (x-ray diffraction), accessibility, and reactivity (moisture regain, enzyme adsorption, and solubility in FeTNa). These parameters were correlated to kinetic parameters of the hydrolysis reaction. The V/sub max/ and K/sub m/ values were evaluated from Lineweaver-Burk plots at different temperatures. The V/sub max//K/sub m/ ratio, analogous to the specificity constant, proved to be less sensitive to experimental errors and more suitable for a comparison of the kinetic behavior of the samples. The modifications of both supermolecular structure and morphology of cellulose were of primary importance to attain high yields and rates of hydrolysis. Furthermore, the structural and morphologic parameters chosen to characterize the samples can be correlated to the kinetic parameters of enzymatic hydrolysis, in particular to K/sub m/ values

  3. Benefits from Tween during enzymic hydrolysis of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Kaar, W.E.; Holtzapple, M.T. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering

    1998-08-20

    Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. The critical relationship was the Tween loading on the biomass, not the Tween concentration in solution. The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector.

  4. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    addition were evaluated in the dry grind process using GSHE (GSH process). Addition of proteases resulted in higher ethanol concentrations (15.2 to 18.0% v/v) and lower (DDGS) yields (32.9 to 45.8% db) compared to the control (no protease addition). As level of proteases and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Proteases addition reduced required GSHE dose. Ethanol concentrations with protease addition alone were higher than with urea or with addition of both protease and urea. Corn endosperm consists of soft and hard endosperm. More exposed starch granules and rough surfaces produced from soft endosperm compared to hard endosperm will create more surface area which will benefit the solid phase hydrolysis as used in GSH process. In this study, the effects of protease, urea, endosperm hardness and GSHE levels on the GSH process were evaluated. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from dry milling pilot plant. Soft endosperm resulted in higher ethanol concentrations (at 72 hr) compared to ground corn or hard endosperm. Addition of urea increased ethanol concentrations (at 72 hr) for soft and hard endosperm. The effect of protease addition on increasing ethanol concentrations and fermentation rates was more predominant for soft endosperm, less for hard endosperm and least for ground corn. The GSH process with protease resulted in higher ethanol concentration than that with urea. For fermentation of soft endosperm, GSHE dose can be reduced. Ground corn fermented faster at the beginning than hard and soft endosperm due to the presence of inherent nutrients which enhanced yeast growth.

  5. Homogeneous catalysis of valeronitrile hydrolysis under supercritical conditions.

    Science.gov (United States)

    Sarlea, Michael; Kohl, Sabine; Blickhan, Nina; Vogel, Herbert

    2012-01-01

    Supercritical nitrile hydrolysis can be used for both, amide and acid production as well as waste water treatment, as the hydrolysis products show good biodegradability. The conventional process at ambient conditions requires large amounts of mineral acid or base. Approaches that use supercritical water as a green solvent without a catalyst have been investigated over recent years. Findings for valeronitrile hydrolysis presented recently showed promising reaction rates and valeric acid yields. In an attempt to further maximize product yield and to better understand the impact of the pH, reactions in dilute sulfuric acid (0.01 mol L(-1)) were performed in a continuous high-pressure laboratory-scale apparatus at 400-500 °C, 30 MPa, and a maximum residence time of 100 s. Results from both reaction media were compared with regard to productivity and sustainability.

  6. Research on Hydrolysis and Sacchariifcation of Corn Stover

    Institute of Scientific and Technical Information of China (English)

    Gao Lan; Liu Ying; Guo Yong; Liu Jinsheng; Lin Jianmin

    2014-01-01

    In this paper three methods (dilute acid pretreatment, aqueous ammonia/dilute acid pretreatment and alkaline pre-treatment) were used to study the hydrolysis of corn stover and characteristics of each method were compared. The results showed that the lignin removal rate was 71.8%when the corn stover was treated with a caustic soda solution containing 1.5%of NaOH, at a temperature of 75℃for 90 min with an initial solid-liquid ratio of 1:8 (w/v). Hydrolysis yield of the NaOH pretreated sample reached 78.5%, which was much higher than other control groups. These results are useful for evaluation of pretreatment technologies, and identiifcation of key factors that limit cellulose hydrolysis, and can also serve as a basis for designing and screening appropriate pretreatment technologies.

  7. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran.

    Science.gov (United States)

    Liu, Lei; Wen, Wei; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Xiao, Juan; Zhang, Mingwei

    2017-01-01

    In this study, phenolic profiles and antioxidant activity of rice bran were analyzed following successive treatment by gelatinization, liquefaction and complex enzyme hydrolysis. Compared with gelatinization alone, liquefaction slightly increased the total amount of phenolics and antioxidant activity as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Complex enzyme hydrolysis significantly increased the total phenolics, flavonoids, FRAP and ORAC by 46.24%, 79.13%, 159.14% and 41.98%, respectively, compared to gelatinization alone. Furthermore, ten individual phenolics present in free or soluble conjugate forms were also analyzed following enzymatic processing. Ferulic acid experienced the largest release, followed by protocatechuic acid and then quercetin. Interestingly, a major proportion of phenolics existed as soluble conjugates, rather than free form. Overall, complex enzyme hydrolysis releases phenolics, thus increasing the antioxidant activity of rice bran extract. This study provides useful information for processing rice bran into functional beverage rich in phenolics. PMID:27507440

  8. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    Science.gov (United States)

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries. PMID:24755261

  9. EFFECT OF LIGNIN CONTENT ON ENZYMATIC HYDROLYSIS OF FURFURAL RESIDUES

    Directory of Open Access Journals (Sweden)

    Jianxin Jiang

    2011-02-01

    Full Text Available The enzymatic saccharification of pretreated furfural residues with different lignin content was studied to verify the effect of lignin removal in the hydrolysis process. The results showed that the glucose yield was improved by increasing the lignin removal. A maximum glucose yield of 96.8% was obtained when the residue with a lignin removal of 51.4% was hydrolyzed for 108 h at an enzyme loading of 25 FPU/g cellulose. However, further lignin removal did not increase the hydrolysis. The effect of enzyme loading on the enzymatic hydrolysis was also explored in this work. It was concluded that a high glucose yield of 90% was achieved when the enzyme dosage was reduced from 25 to 15 FPU/g cellulose, which was cost-effective for the sugar and ethanol production. The structures of raw material and delignified samples were further characterized by XRD and scanning electron microscopy (SEM.

  10. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    Science.gov (United States)

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries.

  11. Acid hydrolysis of Biomass lignocellulose Onopordum nervosum Boiss

    International Nuclear Information System (INIS)

    Hydrolysis of resistant cellulose of Onopordum nervosum Boiss (thistle) to reducing sugars in dilute sulfuric acid in glass ampoules and long residence times has been studied and kinetic parameters determined. The rate of hydrolysis is similar to that of the cellulose of Douglas fir, but comparatively the effect of the acid is more pronounced than temperature. From kinetic data it can be pre ducted the yield and since it can be obtained at least 45% of the potential glucose (48% as reducing sugars) at 190 degree centigree, 1,6% acid and 6,1 min. residence time, it indicates that the continuous acid hydrolysis of thistle may be a process of commercial interest. (Author) 18 refs

  12. Hydrolysis of starch by sorghum malt for maltodextrin production [abstract

    Directory of Open Access Journals (Sweden)

    Thonart, P.

    2010-01-01

    Full Text Available Maltodextrin is a mixture of saccharides with a molecular weight between polysaccharides and oligosaccharides with DE lower than 20. Maltodextrin is more soluble in water than native starches, also is cheaper in comparison with other major edible hydrocolloids. Maltodextrin is obtained by moderate enzymatic or acidic hydrolysis of starch. The hydrolysis of starch, catalyzed by amylases, is the most important commercial enzyme process. The hydrolyzed products are widely applied in food, paper and textile industries. Because of the increasing demand for these enzymes in various industries, there is enormous interest in developing enzymes with better properties, such as raw starch-degrading amylases suitable for industrial applications and their cost-effective production techniques. Sorghum (Sorghum bicolor is a widely grown crop in Africa. Obtaining enzymes from sorghum requires a transformation. The objective of this study was application of sorghum amylase for maltodextrin. Sorghum seeds were supplied by the ISRA (Bambey, Senegal. Seeds were germinated in the laboratory at 30°C for 72 h and the sorghum malt was dried at 40°C for 48 h. Corn starch (from Roquette, France hydrolysis was assayed in a bioreactor of 2 l at a temperature of 65°C gently stirred. Raw starch was slurried in water (30% w/v and sorghum malt was introduced, chloride calcium was added, pH was adjusted to 6. Maltodextrin was characterized in term of the dextrose equivalent (DE during the hydrolysis. The yield of hydrolysis was evaluated by soluble solids (° BRIX at different hydrolysis time. The glucose concentration released was measured by DNS method (Miller method.

  13. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon;

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood....... Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry...

  14. Enzymatic hydrolysis of fish frames using pilot plant scale systems

    OpenAIRE

    Himonides, Aristotelis T.; Taylor, Anthony K. D.; Morris, Anne J.

    2011-01-01

    Papain was used to hydrolyse fish frames under controlled conditions at a batch-pilot plant scale-process, for the pro-duction of fish protein hydrolysates (FPH). Mass balance calculations were carried out so that the rate of hydrolysis, rate of protein solubilisation and yields could be estimated. Almost complete hydrolysis could be achieved in 1 hour, at 40°C, with no pH adjustment, at 0.5% (5 g·kg−1) enzyme to substrate ratio (E/S, were S is Kjeldahl protein) using whole fish frames (inclu...

  15. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    on a demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis......; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable...... tool to support process optimization, performance monitoring, diagnosis and process control at full-scale studies....

  16. Enzymatic hydrolysis of potato starch and ethanol production

    OpenAIRE

    Lazić Miodrag L.; Rašković Suzana; Stanković Mihajlo Z.; Veljković Vlada B.

    2004-01-01

    The hydrolysis of potato starch using one (Termamyl or Fungamyl) and two combined (Termamyl and Supersan) commercial enzyme preparations and ethanol production from the hydrolysates obtained using the yeast Saccharomyces cerevisiae were studied. Potato tubers were previously prepared as mash or flour. The study dealt with the effects of the hydromodulus (1:1 and 1:0.5), particle size (0.1, 0.2 and 0.4 mm) as well as the type and concentration of enzyme on the enzymatic hydrolysis of potato st...

  17. The hydrolysis of aluminium, a mass spectrometric study

    OpenAIRE

    Sarpola, A.

    2007-01-01

    Abstract This thesis is focused on the hydrolysis of aluminium, the polymerisation of the hydrolysis products, and how these can be monitored by mass spectrometric methods. The main aim of this research is to figure out how the aqueous speciation of aluminium changes as a function of pH (3.2–10), concentration (1–100 mM), reaction time (1s–14d), and counter anion (Cl-, SO42-, HCOO-). The method used was electrospray mass spectrometry. The results showed more variable speciation than those ...

  18. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase

    DEFF Research Database (Denmark)

    Kerovuo, J.; Rouvinen, J.; Hatzack, Frank-Andreas

    2000-01-01

    Phytic acid (myo-inositol hexakisphosphate, InsP(6)) hydrolysis by Bacillus phytase (PhyC) was studied. The enzyme hydrolyses only three phosphates from phytic acid. Moreover, the enzyme seems to prefer the hydrolysis of every second phosphate over that of adjacent ones. Furthermore, it is very...... a reaction mechanism different from that of other phytases. By combining the data presented in this study with (1) structural information obtained from the crystal structure of Bacillus amyloliquefaciens phytase [Ha, Oh, Shin, Kim, Oh, Kim, Choi and Oh (2000) Nat. Struct. Biol. 7, 147-153], and (2) computer...

  19. Benzene/nitrous oxide flammability in the precipitate hydrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, R A [Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.

    1989-09-18

    The HAN (hydroxylamine nitrate) process for destruction of nitrite in precipitate hydrolysis produces nitrous oxide (N2O) gas as one of the products. N2O can form flammable mixtures with benzene which is also present due to radiolysis and hydrolysis of tetraphenylborate. Extensive flame modeling and explosion testing was undertaken to define the minimum oxidant for combustion of N2O/benzene using both nitrogen and carbon dioxide as diluents. The attached memorandum interprets and documents the results of the studies.

  20. Reaction pathways and free energy profiles for spontaneous hydrolysis of urea and tetramethylurea: Unexpected substituent effects

    OpenAIRE

    Yao, Min; Tu, Wenlong; Chen, Xi; Zhan, Chang-Guo

    2013-01-01

    It has been difficult to directly measure the spontaneous hydrolysis rate of urea and, thus, 1,1,3,3-tetramethylurea (Me4U) was used as a model to determine the “experimental” rate constant for urea hydrolysis. The use of Me4U was based on an assumption that the rate of urea hydrolysis should be 2.8 times that of Me4U hydrolysis because the rate of acetamide hydrolysis is 2.8 times that of N,N-dimethyl-acetamide hydrolysis. The present first-principles electronic-structure calculations on the...

  1. Optimization of enzymatic hydrolysis of cassava to obtain fermentable sugars

    Institute of Scientific and Technical Information of China (English)

    Renata M. COLLARES; Luiza V. S. MIKLASEVICIUS; Mariana M. BASSACO; Nina P. G. SALAU; Marcio A. MAZUTTI; Dilson A. BISOGNIN; Lisiane M. TERRA

    2012-01-01

    This work evaluates the enzymatic hydrolysis of starch from cassava using pectinase,α-amylase,and amyloglucosidase.A central composite rotational design (CCRD) was carried out to evaluate the effects of amyloglucosidase,pectinase,reaction time,and solid to liquid ratio.All the experiments were carried out in a bioreactor with working volume of 2 L.Approximately 98% efficiency hydrolysis was obtained,resulting in a concentration of total reducing sugar released of 160 g/L.It was concluded that pectinase improved the hydrolysis of starch from cassava.Reaction time was found to be significant until 7 h of reaction.A solid to liquid ratio of 1.0 was considered suitable for hydrolysis of starch from cassava.Amyloglucosidase was a significant variable in the process:after its addition to the reaction media,a 30%-50% increase in the amount of total reducing sugar released was observed.At optimal conditions the maximum productivity obtained was 22.9 g/(L·h).

  2. Intramolecular Amide Hydrolysis in N-Methylmaleamic Acid Revisited

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The intramolecular amide hydrolysis of N-methylmaleamic acid have been revisited by use of density functional theory and inclusion of solvent effects. The results indicate that concerted reaction mechanism is favored over stepwise reaction mechanism. This is in agreement with the previous theoretical study. Sovlent effects have significant influence on the reaction barrier.

  3. Starch hydrolysis under low water conditions: a conceptual process design

    NARCIS (Netherlands)

    Veen, van der M.E.; Veelaert, S.; Goot, van der A.J.; Boom, R.M.

    2006-01-01

    A process concept is presented for the hydrolysis of starch to glucose in highly concentrated systems. Depending on the moisture content, the process consists of two or three stages. The two-stage process comprises combined thermal and enzymatic liquefaction, followed by enzymatic saccharification.

  4. Influence of water availability on the enzymatic hydrolysis of proteins

    NARCIS (Netherlands)

    Butré, C.I.; Wierenga, P.A.; Gruppen, H.

    2014-01-01

    The overall rate of enzymatic protein hydrolysis decreases with increasing protein concentration (0.1–30% (w/v)) at constant enzyme/substrate ratio. To understand the role of water, the amount of available water was expressed as the ratio between free and bound water and experimentally determined fr

  5. Radioactive demonstration of the ''late wash'' Precipitate Hydrolysis Process

    International Nuclear Information System (INIS)

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ''late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests

  6. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus

    Science.gov (United States)

    Particle size reduction is a crucial factor in transportation logistics as well as cellulosic conversion. The effect of particle size on enzymatic hydrolysis of pretreated Miscanthus x giganteus was determined. Miscanthus was ground using a hammer mill equipped with screens having 0.08, 2.0 or 6.0...

  7. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    Science.gov (United States)

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…

  8. Bioabatement with xylanase supplementation to reduce enzymatic hydrolysis inhibitors

    Science.gov (United States)

    Bioabatement, using the fungus Coniochaeta ligniaria NRRL30616 can effectively eliminate enzyme inhibitors from pretreated biomass hydrolysis. However, our recent research suggested that bioabatement had no beneficial effect on removing xylo-oligomers which were identified as strong inhibitors to ce...

  9. Effect of lignin structure on enzymatic hydrolysis of plant residues

    OpenAIRE

    Sipponen, Mika

    2015-01-01

    Biochemical conversion of lignocellulose into high value and energy-intensive products necessitates pretreatments that enhance enzymatic hydrolysis of lignocellulosic carbohydrates. This thesis investigated structural changes in lignin during various analytical and industrially relevant treatments of crop residues. The objective was to elucidate the effect of lignin structure on enzymatic digestibility of cellulose. Fractionation of lignin during sequential alkaline treatments of maize ste...

  10. Visualizing phosphodiester-bond hydrolysis by an endonuclease

    DEFF Research Database (Denmark)

    Molina, Rafael; Stella, Stefano; Redondo, Pilar;

    2015-01-01

    The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two-metal-...

  11. Heteropoly acid catalyzed hydrolysis of glycogen to glucose

    International Nuclear Information System (INIS)

    Complete conversion of glycogen to glucose is achieved by using H3PW12O40·nH2O (HPW) and H4SiW12O40·nH2O (HSiW) as catalysts for the hydrolysis under optimized hydrothermal conditions (mass fraction of catalyst 2.4%, 373 K and 2 h reaction time). The reusability of the catalyst (HPW) was demonstrated. In addition to carrying out the glycogen hydrolysis in an autoclave, other novel methods such as microwave irradiation and sonication have also been investigated. At higher mass fraction of the heteropoly acids (10.5%), glycogen could be completely converted to glucose under microwave irradiation. Sonication of an aqueous solution of glycogen in the presence of HPW and HSiW also yielded glucose. Thus, heteropoly acids are efficient, environmentally friendly and reusable catalysts for the conversion of glycogen to glucose. - Highlights: • Hydrothermal, microwave and sonication based methods of hydrolysis. • Heteropoly acids are green catalysts for glycogen hydrolysis. • Glycogen from cyanobacteria is demonstrated as a potential feedstock for glucose

  12. OPTIMIZATION STUDY OF CITRUS WASTES SACCHARIFICATION BY DILUTE ACID HYDROLYSIS

    Directory of Open Access Journals (Sweden)

    Farid Talebnia

    2008-02-01

    Full Text Available The effect of time, acid concentration, temperature and solid concentration on dilute-acid hydrolysis of orange peels was investigated. A central composite rotatable experimental design (CCRD was applied to study the individual effects of these hydrolysis factors and also their interdependence effects. The enzymatic hydrolysis of the peels by cellulase, β-glucosidase, and pectinase enzyme resulted in 72% dissolution of the peels, including 18.7% galacturonic acid and 53.3% of a total of glucose, fructose, galactose, and arabinose. Dilute-acid hydrolysis up to 210°C was not able to hydrolyze pectin to galacturonic acid. However, the sugar polymers were hydrolyzed at relatively low temperature. The optimum results were obtained at 116°C, 0.5% sulfuric acid concentration, 6% solid fraction, and 12.9 min retention time. Under these conditions, the total sugars obtained at 41.8 g/g dry peels and 2.6% of total hexose sugars were further degraded to hydroxymethylfurfural (HMF. No furfural was detected through these experiments from decomposition of pentoses.

  13. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  14. Hydrolysis of aluminum nitride powders in moist air

    International Nuclear Information System (INIS)

    High thermal conductivity is required for successful application of aluminum nitride (AlN) as a substrate material in electronic devices. AlN powders of low oxygen content are needed since oxygen contamination greatly reduces the thermal conductivity of AlN ceramics. High-purity AlN powders are commercially available, but can be contaminated by oxygen when contacting water/oxygen in powder processing after manufacturing. The present study investigates the hydrolysis properties of AlN powders in moist air at room temperature, so as to understand the degradation phenomena during powder handling in the normal atmospheric environment. The powders investigated were produced via three major commercial processes, namely, chemical vapor deposition from triethyl aluminum, carbothermal reduction and nitridation of alumina, and direct nitridation of aluminum. At the beginning of hydrolysis, an induction period is observed for each powder, which is attributed to slow hydrolysis of the surface oxide/oxyhydroxide layer. The length of this period is thus dependent on the composition and thickness of the surface layer, which is in turn affected by the manufacturing method. The AlN powder produced by the carbothermal process shows the longest induction period. The hydrolysis reaction produces initially amorphous AlOOH, which is further hydrolyzed to mixtures of bayerite, nordstrandite, and gibbsite, forming agglomerates around the unreacted AlN. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  15. Catalytic hydrolysis for the degradation of organophosphorus pesticides in water

    International Nuclear Information System (INIS)

    The kinetic studies of catalytic hydrolysis revealed that the concentration of two kinds of organophosphorus pesticides (omethoate and methidathion) in solution apparently decays according to the second order reaction. It was found that the rate constant value was highest at strong acidic conditions and it continued to decrease as the pH of the solution was increased. At basic conditions the rate constant value decreased to minimum. Manganese dioxide under acidic conditions converted into Mn/sup 2+/ ions and then these ions in water form hexaaquomanganese (II) ion. This hexaaquomanganese (II ion then adsorbed itself on the S or O atom of the organophosphorus compound and thus weakens the bond between P-S. This reaction facilitated the attack of H/sub 2/O or OH/sup -/ ion and thus enhanced the efficiency of hydrolysis. It was studied that methidathion hydrolyzed more efficiently than omethoate The rate constants of catalytic hydrolysis were increased with increasing the amount of MnO/sub 2/. It was found that the pesticides had undergone adsorption on catalyst in the first few minutes and there was the rapid drop of total phosphorus concentration. The decrease of total phosphorus adsorption with increasing pH was also observed. After the addition of alkaline earth metal cations (Ca/sup 2+/ and Mg/sup 2+/) along with magnesium, the enhancement in the efficiency of hydrolysis at near neutral conditions occurred. (author)

  16. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    Science.gov (United States)

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  17. Effects of hydrolysis and carbonization reactions on hydrochar production.

    Science.gov (United States)

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. PMID:26051497

  18. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2014-01-01

    .7% of the theoretical maximum value. Pretreatment at 200 C with oxygen exhibited enhanced enzymatic efficiency but lower xylose recovery and formation of the degradation products such as acetate, furfural and HMF of 7.6, 3.3 and 1.0 g/L, respectively. In the hydrolysis, the total sugars (glucose + xylose) yielded...

  19. Chemical and enzymatic hydrolysis of anthraquinone glycosides from Madder roots

    NARCIS (Netherlands)

    Derksen, G.C.H.; Naayer, M.; Beek, T.A. van; Capelle, A.; Haaksman, I.K.; Doren, H.A. van; Groot, Æ. de

    2003-01-01

    For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin pritneveroside to the unwanted mutagenic agl

  20. Chemical and enzymatic hydrolysis fo anthraquinone glycosides from madder roots

    NARCIS (Netherlands)

    Derksen, G.C.H.; Naayer, M.; Beek, van T.A.; Capelle, A.; Haaksman, I.K.; Doren, H.A.; Groot, de Æ.

    2003-01-01

    For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin primeveroside to the unwanted mutagenic agly

  1. Enzymatic hydrolysis of protein:mechanism and kinetic model

    Institute of Scientific and Technical Information of China (English)

    Qi Wei; He Zhimin

    2006-01-01

    The bioreaction mechanism and kinetic behavior of protein enzymatic hydrolysis for preparing active peptides were investigated to model and characterize the enzymatic hydrolysis curves.Taking into account single-substrate hydrolysis,enzyme inactivation and substrate or product inhibition,the reaction mechanism could be deduced from a series of experimental results carried out in a stirred tank reactor at different substrate concentrations,enzyme concentrations and temperatures based on M-M equation.An exponential equation dh/dt = aexp(-bh) was also established,where parameters a and b have different expressions according to different reaction mechanisms,and different values for different reaction systems.For BSA-trypsin model system,the regressive results agree with the experimental data,i.e.the average relative error was only 4.73%,and the reaction constants were determined as Km = 0.0748 g/L,Ks = 7.961 g/L,kd = 9.358/min,k2 =38.439/min,Ea= 64.826 kJ/mol,Ed= 80.031 kJ/mol in accordance with the proposed kinetic mode.The whole set of exponential kinetic equations can be used to model the bioreaction process of protein enzymatic hydrolysis,to calculate the thermodynamic and kinetic constants,and to optimize the operating parameters for bioreactor design.

  2. Influence of kaolinite on chiral hydrolysis of methyl dichlorprop enantiomers

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The effect of kaolinite on the enzymatic chiral hydrolysis of methyl dichlorprop enantiomers ((R,S)-methyl-2-(2,4-dichlorophenoxy) propanoic acid, 2,4-DPM) was investigated using chiral gas chromatography. Compared with the control without kaolinite, the enantiomeric ratio (ER) increased from 1.35 to 8.33 and the residual ratio of 2,4-DPM decreased from 60.89% to 41.55% in the presence of kaolinite. Kaolinite likely had emotion influence on lipase activity and its enantioselectivity.Moreover, the amount of kaolinite added was also found to be a sensitive factor affecting the enantioselective hydrolysis of 2,4-DPM. Fourier transform infrared (FTIR) spectroscopy studies of the interaction of lipase with kaolinite provided insight into the molecular structure of the complex and offered explanation of the effects of kaolinite on enzymatic hydrolysis of 2,4-DPM.Spectra showed that the effect of kaolinite on the hydrolysis of 2,4-DPM was affected by adsorption of lipase on kaolinite and changes of adsorbed lipase conformation, which led to the modified enantioselectivity.

  3. Lipase-catalyzed hydrolysis of methyl-3-phenylglycidate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The enzymatic resolution of racemic methyl 3-phenylglycidate was investigated. It was found that the hydrolysis rate of (2S, 3R)-enantiomer was faster than that of (2R, 3S)-enantiomer by a new lipase. At optimal condition 96% of (2R, 3S)-methyl phenylglycidate with ee of 100% was recovered from the racemic mixture.

  4. Effect of nitrogen oxide pretreatments on enzymatic hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Borrevik, R.K.; Wilke, C.R.; Brink, D.L.

    1978-09-01

    This work considers the effect of nitrogen oxide pretreatments on the subsequent enzymatic hydrolysis by Trichoderma viride cellulase of the cellulose occurring in wheat straw; Triticum Aestivum-L, em. Thell. In the pretreatment scheme the straw is first reacted with nitric oxide and air, and then extracted in aqueous solution. In this way, overall sugar yields increased from 17% for the case of no pretreatment to 70%. The glucose yield increased from 20 to 60%. The yield of glucose during enzymatic hydrolysis is dependent on the reaction time of the gas phase reaction. For a 24 hour reaction the yield is 60%, but drops to 45% for a reaction time of 2 hours. Xylose, a potentially valuable side product of the pretreatment, is obtained by dilute acid hydrolysis during the extraction stage in yields of 90 to 96%. In acidic media, the kinetics of both the rate of formation and destruction of xylose were found to follow the first-order rate laws reported in the literature. These were determined to be 4.5 (liter/gmole)(hr./sup -1/) and 0.03 hr./sup -1/, respectively. However, the rate of formation is much greater (20.4 (liter/gmole) (hr./sup -1/)) when the extraction liquor is recycled. The most likely explanation for this is that the increased total acidity of the recycled liquor compensates for diffusional limitations. A preliminary design and cost analysis of the pretreatment-hydrolysis scheme indicates that glucose can be produced at 10.86 cents per pound, exclusive of straw cost. The corresponding cost per pound of total sugars produced is 5.0 cents. Sensitivity analyses indicate that 42% of the pretreatment cost (excluding hydrolysis) can be attributed to nitric oxide production, and the high yield of sugar obtained is advantageous when considering the cost of straw.

  5. Bioethanol production: Pretreatment and enzymatic hydrolysis of softwood

    Energy Technology Data Exchange (ETDEWEB)

    Tengborg, Charlotte

    2000-05-01

    The enzymatic hydrolysis process can be used to produce bioethanol from softwood, which are the dominating raw material in the Northern hemisphere. This thesis deals with the development of the process focusing on the pretreatment and the enzymatic hydrolysis stages. The influence of pretreatment conditions on sugar yield, and the effect of inhibitors on the ethanol yield, were investigated for spruce and pine. The maximum yields of hemicellulose sugars and glucose were obtained under different pretreatment conditions. This indicates that two-stage pretreatment may be preferable. The added catalysts, H{sub 2}SO{sub 4} and SO{sub 2}, resulted in similar total sugar yields about 40 g/100 g dry raw material. However, the fermentability of SO{sub 2}-impregnated material was better. This pretreatment resulted in the formation of inhibitors to the subsequent process steps, e.g. sugar and lignin degradation products. The glucose yield in the enzymatic hydrolysis stage was affected by various parameters such as enzyme loading, temperature, pH, residence time, substrate concentration, and agitation. To decrease the amount of fresh water used and thereby waste water produced, the sugar-rich prehydrolysate from the pretreatment step was included in the enzymatic hydrolysis of the solid fraction, resulting in a reduction in the cellulose conversion of up to 36%. Different prehydrolysate detoxification methods, such as treatment with Ca(OH){sub 2}, laccase, and fermentation using yeast, were investigated. The latter was shown to be very efficient. The amount of fresh water used can be further reduced by recycling various process streams. This was simulated experimentally in a bench-scale process. A reduction in fresh water demand of 50% was obtained without any further negative effects on either hydrolysis or fermentation.

  6. Generation of group B soyasaponins I and III by hydrolysis.

    Science.gov (United States)

    Zhang, Wei; Teng, Su Ping; Popovich, David G

    2009-05-13

    Soyasaponins are a group of oleanane triterpenoids found in soy and other legumes that have been associated with some of the benefits achieved by consuming plant-based diets. However, these groups of compounds are diverse and structurally complicated to chemically characterize, separate from the isoflavones, and isolate in sufficient quantities for bioactive testing. Therefore, the aim of this study was to maximize the extraction of soyasaponins from soy flour, remove isoflavones, separate group B soyasaponins from group A, and produce an extract that contained a majority of non-DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one)-conjugated group B soyasaponins I and III. Room temperature extraction in methanol for 24 or 48 h resulted in the maximum recovery of soyasaponins, and Soxhlet extraction resulted in the least. A solid-phase extraction using methanol (45%) was found to virtually eliminate the interfering isoflavones as compared to butanol-water liquid-liquid extraction and ammonium sulfate precipitation, while maximizing saponin recovery. Alkaline hydrolysis in anhydrous methanol produced the maximum amount of soyasaponins I and III as compared to aqueous methanol and acid hydrolysis in both aqueous and anhydrous methanol. The soyasaponin I amount was increased by 175%, and soyasaponin III was increased by 211% after alkaline hydrolysis. Furthermore, after alkaline hydrolysis, a majority of DDMP-conjugated group B soyasaponins such as betag, betaa, gammag, and gammaa transformed into the non-DDMP-conjugated soyasaponins I and III without affecting the glycosidic bond at position C-3 of the ring structure. Therefore, we have developed a method that maximizes the recovery of DDMP-conjugated saponins and uses alkaline hydrolysis to produce an extract containing mainly soyasaponins I and III. PMID:19338335

  7. Study of Enzymatic Hydrolysis of Dilute Acid Pretreated Coconut Husk

    Directory of Open Access Journals (Sweden)

    Rudy Agustriyanto

    2012-12-01

    Full Text Available Coconut husk is classified as complex lignocellulosic material that contains cellulose, hemicellulose, lignin, and some other extractive compounds. Cellulose from coconut husk can be used as fermentation substrate after enzymatic hydrolysis. In contrary, lignin content from the coconut husk will act as an inhibitor in this hydrolysis process. Therefore, a pretreatment process is needed to enhance the hydrolysis of cellulose. The objective of this research is to investigate the production of the glucose through dilute acid pretreatment and to obtain its optimum operating conditions. In this study, the pretreatment was done using dilute sulfuric acid in an autoclave reactor. The pretreatment condition were varied at 80°C, 100°C, 120°C and 0.9%, 1.2%, 1.5% for temperature and acid concentration respectively. The acid pretreated coconut husk was then hydrolyzed using commercial cellulase (celluclast and β-glucosidase (Novozyme 188. The hydrolysis time was 72 hours and the operating conditions were varied at several temperature and pH. From the experimental results it can be concluded that the delignification temperature variation has greater influence than the acid concentration. The optimum operating condition was obtained at pH 4 and 50°C which was pretreated at 100°C using 1.5% acid concentration. Copyright © 2012 by BCREC UNDIP. All rights reserved. (Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 28th September 2012, Revised: 2nd October 2012, Accepted: 4th October 2012[How to Cite: R. Agustriyanto, A. Fatmawati, Y. Liasari. (2012. Study of Enzymatic Hydrolysis of Dilute Acid Pretreated Coconut Husk. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 137-141. doi:10.9767/bcrec.7.2.4046.137-141] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4046.137-141 ] | View in 

  8. Hydrolysis of thorium(iv) at variable temperatures.

    Science.gov (United States)

    Zanonato, P L; Di Bernardo, P; Zhang, Z; Gong, Y; Tian, G; Gibson, J K; Rao, L

    2016-08-01

    Hydrolysis of Th(iv) was studied in tetraethylammonium perchlorate (0.10 mol kg(-1)) at variable temperatures (283-358 K) by potentiometry and microcalorimetry. Three hydrolysis reactions, mTh(4+) + nH2O = Thm(OH)n((4m-n)+) + nH(+), in which (n,m) = (2,2), (8,4), and (15,6), were invoked to describe the potentiometric and calorimetric data for solutions with the [hydroxide]/[Th(iv)] ratio ≤ 2. At higher ratios, the formation of (16,5) cannot be excluded. The hydrolysis constants, *β2,2, *β8,4, and *β15,6, increased by 3, 7, and 11 orders of magnitude, respectively, as the temperature was increased from 283 to 358 K. The enhancement is mainly due to the significant increase of the degree of ionization of water as the temperature rises. All three hydrolysis reactions are endothermic at 298 K, with enthalpies of (118 ± 4) kJ mol(-1), (236 ± 7) kJ mol(-1), and (554 ± 4) kJ mol(-1) for ΔH2,2, ΔH8,4, and ΔH15,6 respectively. The hydrolysis constants at infinite dilution have been obtained with the specific ion interaction approach. The applicability of three approaches for estimating the equilibrium constants at different temperatures, including the constant enthalpy approach, the constant heat capacity approach and the DQUANT equation was evaluated with the data from this work. PMID:27460458

  9. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    Science.gov (United States)

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  10. Hydrolysis of soy isoflavone conjugates using enzyme may underestimate isoflavone concentrations in tissue

    Institute of Scientific and Technical Information of China (English)

    Hebron C. Chang; Myriam Laly; Melody Harrison; Thomas M. Badger

    2005-01-01

    Objective: To investigate the differences of using enzymatic hydrolysis and acid hydrolysis for identification and quantification of isoflavone aglycones from biomatrices. Methods: β-glucuronidase/sulfatase isolated from Helix pomatia for routine enzymatic hydrolysis or 6N HCl was used to release glucuronide and sulfate conjugates in the serum, urine and tissue samples. Profiles of soy isoflavones after enzymatic hydrolysis or acid hydrolysis in several tissues of rat fed with diets containing soy protein isolate were also compared using LC/MS and HPLC-ECD. Results: Acid hydrolysis released more aglycone than enzymatic digestion ( P <0.05) in liver tissue. The total genistein, daidzein and other metabolites were 20% to 60% lower in samples from enzymatic hydrolysis than in acid hydrolysis. Conclusion: These results indicated that unknown factors in tissues reduced the enzymatic hydrolytic efficiency for releasing isoflavone aglycones even in optimized condition. This would underestimate isoflavone tissue concentrations up to 60%.

  11. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  12. Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis

    OpenAIRE

    Peciulyte, Ausra; Karlström, Katarina; Larsson, Per Tomas; Olsson, Lisbeth

    2015-01-01

    Background The efficiency of enzymatic hydrolysis is reduced by the structural properties of cellulose. Although efforts have been made to explain the mechanism of enzymatic hydrolysis of cellulose by considering the interaction of cellulolytic enzymes with cellulose or the changes in the structure of cellulose during enzymatic hydrolysis, the process of cellulose hydrolysis is not yet fully understood. We have analysed the characteristics of the complex supramolecular structure of cellulose ...

  13. Study on Optimal Conditions of Alcalase Enzymatic Hydrolysis of Soybean Protein Isolate

    OpenAIRE

    Yongsheng Ma; Xianhui Sun; Lintong Wang

    2015-01-01

    Soybean protein isolate was hydrolyzed to obtain soybean polypeptide solution using Alcalase as hydrolase. Degree of hydrolysis and the recovery rate of protein were used to characterize the soybean protein hydrolysis reaction result. Influence factors of soybean protein hydrolysis reaction including the substrate concentration, temperature, pH, enzyme concentration characterized by E/S (ratio of Enzyme and Substrate) and hydrolysis time were systematically studied with single factor and mult...

  14. Study on Hydrolysis Conditions of Flavourzyme in Soybean Polypeptide Alcalase Hydrolysate and Soybean Polypeptide Refining Process

    OpenAIRE

    Yongsheng Ma; Lintong Wang; Xianhui Sun; Jianqiang Zhang; Junfeng Wang; Yue Li

    2014-01-01

    Soybean protein Alcalase hydrolysate was further hydrolyzed by adopting Flavourzyme as hydrolytic enzyme. The optimal hydrolysis conditions of Flavourzyme was that pH was 7.0 at temperature 50°C and E/S(ratio of enzyme and substrate) was 20LAPU/g. Bitterness value was reduced to 2 after Flavourzyme hydrolysis reaction in optimal hydrolysis conditions. The change of molecular weight distribution range from Alcalase hydrolysate to Flavourzyme hydrolysate was not obvious. DH (Degree of hydrolysi...

  15. Analysis of Hydrolysis Reaction of N-Phosphorylphenylalanine by HPLC-ESI-MS/MS

    Institute of Scientific and Technical Information of China (English)

    CAO Shu-Xia; ZHANG Jian-Chen; LIAO Xin-Cheng; ZHAO Yu-Fen

    2003-01-01

    @@ Hydrolysis procedure of N-diisopropyloxyphosphoryl phenylalanine (DIPP-Phe) has been studied by HPLCESI-MS. The hydrolysis products and intermediate were identified by HPLC-ESI-MS/MS. The results showed that (HO)(i-PrO)P(O)Phe was intermediate in the hydrolysis process.

  16. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ(7)-Sterols.

    Science.gov (United States)

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by Δ(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All Δ(7)-sterols identified (Δ(7)-stigmastenyl, spinasteryl, Δ(7)-campesteryl, Δ(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized Δ(7)-sterols, or Δ(5)-sterols if present, and could be identified as Δ(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% Δ(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of Δ(7)-stigmastenol was determined. The artifact of Δ(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG.

  17. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  18. Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas fluorescens Esterase

    Energy Technology Data Exchange (ETDEWEB)

    Yin, D.; Bernhardt, P; Morley, K; Jiang, Y; Cheeseman, J; Purpero, V; Schrag, J; Kazlauskas, R

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of {var_epsilon}-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k{sub cat}, but K{sub m} also increased so the specificity constant, k{sub cat}/K{sub m}, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of {var_epsilon}-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the

  19. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis

    OpenAIRE

    Galbe Mats; Monavari Sanam; Zacchi Guido

    2009-01-01

    Abstract Background Two-step dilute acid hydrolysis of softwood, either as a stand-alone process or as pretreatment before enzymatic hydrolysis, is considered to result in higher sugar yields than one-step acid hydrolysis. However, this requires removal of the liquid between the two steps. In an industrial process, filtration and washing of the material between the two steps is difficult, as it should be performed at high pressure to reduce energy demand. Moreover, the application of pressure...

  20. Influence of protein hydrolysis on the growth kinetics of β-lg fibrils.

    Science.gov (United States)

    Kroes-Nijboer, Ardy; Venema, Paul; Bouman, Jacob; van der Linden, Erik

    2011-05-17

    Recently it was found that protein hydrolysis is an important step in the formation of β-lactoglobulin fibrils at pH 2 and elevated temperatures. The objective of the present study was to further investigate the influence of hydrolysis on the kinetics of fibril formation. Both the hydrolysis of β-lactoglobulin and the growth of the fibrils were followed as a function of time and temperature, using SDS polyacrylamide gel electrophoresis and a Thioflavin T fluorescence assay. As an essential extension to existing models, the quantification of the effect of the hydrolysis on the fibrillar growth was established by a simple polymerization model including a hydrolysis step.

  1. Alkaline Hydrolysis Kinetics Modeling of Bagasse Pentosan Dissolution

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2013-11-01

    Full Text Available The main pentosan components of sugarcane bagasse, which can be subjected to alkaline hydrolysis, are xylose, arabinose, glucose, and galactose. The pentosan reaction mechanism was considered for alkali-treated bagasse with variation of temperature and time. The kinetics of pentosan degradation were studied concurrently at temperatures of 50 °C, 70 °C, and 90 °C, with a solid-liquid mass ratio of 1:15, a stirring speed of 500 revolutions/min, and different holding times for bagasse alkali pre-extraction. With respect to residual pentosan content and the losses of raw material, the hydrolysis rates of alkali pre-extraction and pentosan degradation reactions of bagasse all followed pseudo-first-order kinetic models. Finally, the main degradation activation energy was determined to be 20.86 KJ/mol, and the residual degradation activation energy was 28.75 KJ/mol according to the Arrhenius equation.

  2. Optimal extraction and hydrolysis of Chlorella pyrenoidosa proteins.

    Science.gov (United States)

    Wang, Xiaoqin; Zhang, Xuewu

    2012-12-01

    In this study, for the first time, the applications of two new methods, ionic liquid and low-temperature high-pressure cell breakage methods, to the extraction of whole proteins in Chlorella pyrenoidosa cells were explored. Meanwhile, the comparison with three traditional methods was also made. The results indicated that the extraction rate for ionic liquid is only at moderate level, but the new low-temperature high-pressure cell breakage method can obviously increase the protein extraction rate up to 2- to 15-fold. Subsequently, the hydrolysis of the extracted proteins was conducted with three enzymes (papain, trypsin and alcalase). The data presented that the degree of hydrolysis for each enzyme under the optimal conditions is in the order of: alcalase (18.31%)>papain (14.33%)>trypsin (8.47%), demonstrating the potential of C. pyrenoidosa protein hydrolysates obtained here in nutritional supplement and medical foods. PMID:23117187

  3. Investigation of the Polymorphs and Hydrolysis of Uranium Trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Lucas E.; Blake, Thomas A.; Henager, Charles H.; Hu, Shenyang Y.; Johnson, Timothy J.; Meier, David E.; Peper, Shane M.; Schwantes, Jon M.

    2013-04-01

    This work focuses on progress in gaining a better understanding of the polymorphic nature of the UO3-water system, one of several important materials associated with the nuclear fuel cycle. The UO3-water system is complex and has not been fully characterized, even though these species are common throughout the fuel cycle. Powder x-ray diffraction, Raman and fluorescence characterization was performed on polymorphic forms of UO3 and UO3 hydrolysis products for the purpose of developing some predictive capability of estimating process history and utility, e.g. for polymorphic phases of unknown origin. Specifically, we have investigated three industrially relevant production pathways of UO3 and discovered a previously unknown low temperature route to β-UO3. Pure phases of UO3, hydrolysis products and starting materials were used to establish optical spectroscopic signatures for these compounds.

  4. Catalysis of a Flavoenzyme-Mediated Amide Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Tathagata; Zhang, Yang; Abdelwahed, Sameh; Ealick, Steven E.; Begley, Tadhg P. (Cornell); (TAM)

    2010-09-13

    A new pyrimidine catabolic pathway (the Rut pathway) was recently discovered in Escherichia coli K12. In this pathway, uracil is converted to 3-hydroxypropionate, ammonia, and carbon dioxide. The seven-gene Rut operon is required for this conversion. Here we demonstrate that the flavoenzyme RutA catalyzes the initial uracil ring-opening reaction to give 3-ureidoacrylate. This reaction, while formally a hydrolysis reaction, proceeds by an oxidative mechanism initiated by the addition of a flavin hydroperoxide to the C4 carbonyl. While peroxide-catalyzed amide hydrolysis has chemical precedent, we are not aware of a prior example of analogous chemistry catalyzed by flavin hydroperoxides. This study further illustrates the extraordinary catalytic versatility of the flavin cofactor.

  5. Effect of Limited Hydrolysis on Traditional Soy Protein Concentrate

    Directory of Open Access Journals (Sweden)

    Mirjana B. Pesic

    2006-09-01

    Full Text Available The influence of limited proteolysis of soy protein concentrate on proteinextractability, the composition of the extractable proteins, their emulsifying properties andsome nutritional properties were investigated. Traditional concentrate (alcohol leachedconcentrate was hydrolyzed using trypsin and pepsin as hydrolytic agents. Significantdifferences in extractable protein composition between traditional concentrate and theirhydrolysates were observed by polyacrylamide gel electrophoresis (PAGE and by SDSPAGE.All hydrolysates showed better extractability than the original protein concentrate,whereas significantly better emulsifying properties were noticed at modified concentratesobtained by trypsin induced hydrolysis. These improved properties are the result of twosimultaneous processes, dissociation and degradation of insoluble alcohol-induced proteinaggregates. Enzyme induced hydrolysis had no influence on trypsin-inibitor activity, andsignificantly reduced phytic acid content.

  6. Hydrolysis of Adiponitrile in Near-critical Water

    Institute of Scientific and Technical Information of China (English)

    DUAN Pei-Gao; NIU Yan-Lei; WANG Yuan-Yuan; DAI Li-Yi

    2008-01-01

    Hydrolysis of adiponitrile (ADN) in near-critical water was successfully conducted in a batch reactor.Influences of m(AND)/m(water) ratio,temperature,time,m(AND)/m(additive) ratio,kind of additive and pressure on the yield of each product were investigated.Five compounds resulting from the hydrolysis of ADN,including 5-cyanovaleramide,adipamide,adipamic acid,adipic acid and trace of 5-cyanovaleric acid,were detected by high performance liquid chromatography.The results showed that change of ADN concentration and temperature had significant influences on the yields of adipamide,adipamic acid and adipic acid;time was the significant factor for the yield of 5-cyanovaleric acid;and the yield of 5-cyanovaleramide was more dependent on the ADN concentration.

  7. Enzymatic hydrolysis and fermentation of agricultural residues to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1984-01-01

    A combined enzymatic hydrolysis and fermentation process was used to convert steam-treated wheat and barley straw to ethanol. Maximum conversion efficiencies were obtained when the substrates were steamed for 90 s. These substrates could yield over 0.4 g ethanol/g cellulose following a combined enzymatic hydrolysis and fermentation process procedure using culture filtrates derived from Trichoderma harzianum E58. When culture filtrates from Trichoderma reesei C30 and T. reesei QM9414 were used, the ethanol yields obtained were 0.32 and 0.12 g ethanol/g cellulose utilized, respectively. The lower ethanol yields obtained with these strains were attributed to the lower amounts of ..beta..-glucosidase detected in the T. reesei culture filtrates.

  8. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    lignocellulose is the required high cellulase enzyme dosages that increase the processing costs. One method to decrease the enzyme dosage is to re-use BG, which hydrolyze the soluble substrate cellobiose. Based on the hypothesis that immobilized BG can be re-used, how many times the enzyme could be recycled......, the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... that more than 60% of enzymatic activity could be maintained under optimized immobilization condition. In order to evaluate stability, the immobilized enzymes were reused for the hydrolysis of Avicel. No significant loss of activity was observed up to 20th round. Similar glucose yields were obtained...

  9. A DFT investigation of methanolysis and hydrolysis of triacetin

    CERN Document Server

    Limpanuparb, Taweetham; Tantirungrotechai, Yuthana; 10.1016/j.theochem.2010.05.022

    2012-01-01

    The thermodynamic and kinetic aspects of the methanolysis and hydrolysis reactions of glycerol triacetate or triacetin, a model triacylglycerol compound, were investigated by using Density Functional Theory (DFT) at the B3LYP/6-31++G(d,p) level of calculation. Twelve elementary steps of triacetin methanolysis were studied under acid-catalyzed and base-catalyzed conditions. The mechanism of acid-catalyzed methanolysis reaction which has not been reported yet for any esters was proposed. The effects of substitution, methanolysis/hydrolysis position, solvent and face of nucleophilic attack on the free energy of reaction and activation energy were examined. The prediction confirmed the facile position at the middle position of glycerol observed by NMR techniques. The calculated activation energy and the trends of those factors agree with existing experimental observations in biodiesel production.

  10. Novel Penicillium cellulases for total hydrolysis of lignocellulosics.

    Science.gov (United States)

    Marjamaa, Kaisa; Toth, Karolina; Bromann, Paul Andrew; Szakacs, George; Kruus, Kristiina

    2013-05-10

    The (hemi)cellulolytic systems of two novel lignocellulolytic Penicillium strains (Penicillium pulvillorum TUB F-2220 and P. cf. simplicissimum TUB F-2378) have been studied. The cultures of the Penicillium strains were characterized by high cellulase and β-glucosidase as well moderate xylanase activities compared to the Trichoderma reesei reference strains QM 6a and RUTC30 (volumetric or per secreted protein, respectively). Comparison of the novel Penicillium and T. reesei secreted enzyme mixtures in the hydrolysis of (ligno)cellulose substrates showed that the F-2220 enzyme mixture gave higher yields in the hydrolysis of crystalline cellulose (Avicel) and similar yields in hydrolysis of pre-treated spruce and wheat straw than enzyme mixture secreted by the T. reesei reference strain. The sensitivity of the Penicillium cellulase complexes to softwood (spruce) and grass (wheat straw) lignins was lignin and temperature dependent: inhibition of cellulose hydrolysis in the presence of wheat straw lignin was minor at 35°C while at 45°C by spruce lignin a clear inhibition was observed. The two main proteins in the F-2220 (hemi)cellulase complex were partially purified and identified by peptide sequence similarity as glycosyl hydrolases (cellobiohydrolases) of families 7 and 6. Adsorption of the GH7 enzyme PpCBH1 on cellulose and lignins was studied showing that the lignin adsorption of the enzyme is temperature and pH dependent. The ppcbh1 coding sequence was obtained using PCR cloning and the translated amino acid sequence of PpCBH1 showed up to 82% amino acid sequence identity to known Penicillium cellobiohydrolases.

  11. Effect of bovine serum albumin (BSA) on enzymatic cellulose hydrolysis.

    Science.gov (United States)

    Wang, Hui; Mochidzuki, Kazuhiro; Kobayashi, Shinichi; Hiraide, Hatsue; Wang, Xiaofen; Cui, Zongjun

    2013-06-01

    Bovine serum albumin (BSA) was added to filter paper during the hydrolysis of cellulase. Adding BSA before the addition of the cellulase enhances enzyme activity in the solution, thereby increasing the conversion rate of cellulose. After 48 h of BSA treatment, the BSA adsorption quantities are 3.3, 4.6, 7.8, 17.2, and 28.3 mg/g substrate, each with different initial BSA concentration treatments at 50 °C; in addition, more cellulase was adsorbed onto the filter paper at 50 °C compared with 35 °C. After 48 h of hydrolysis, the free-enzyme activity could not be measured without the BSA treatment, whereas the remaining activity of the filter paper activity was approximately 41 % when treated with 1.0 mg/mL BSA. Even after 96 h of hydrolysis, 25 % still remained. Meanwhile, after 48 h of incubation without substrate, the remaining enzyme activities were increased 20.7 % (from 43.7 to 52.7 %) and 94.8 % (from 23.3 to 45.5 %) at 35 and 50 °C, respectively. Moreover, the effect of the BSA was more obvious at 35 °C compared with 50 °C. When using 15 filter paper cellulase units per gram substrate cellulase loading at 50 °C, the cellulose conversion was increased from 75 % (without BSA treatment) to ≥90 % when using BSA dosages between 0.1 and 1.5 mg/mL. Overall, these results suggest that there are promising strategies for BSA treatment in the reduction of enzyme requirements during the hydrolysis of cellulose.

  12. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...... are Cl- and CO-2, the rest comprising a range of water-soluble compounds, a small, Cl-free residue, and a recognizable amount of H-2....

  13. Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis

    Directory of Open Access Journals (Sweden)

    Engel Philip

    2012-10-01

    Full Text Available Abstract Background The analysis of cellulose molecular weight distributions by gel permeation chromatography (GPC is a powerful tool to obtain detailed information on enzymatic cellulose hydrolysis, supporting the development of economically viable biorefinery processes. Unfortunately, due to work and time consuming sample preparation, the measurement of cellulose molecular weight distributions has a limited applicability until now. Results In this work we present a new method to analyze cellulose molecular weight distributions that does not require any prior cellulose swelling, activation, or derivatization. The cellulose samples were directly dissolved in dimethylformamide (DMF containing 10-20% (v/v 1-ethyl-3-methylimidazolium acetate (EMIM Ac for 60 minutes, thereby reducing the sample preparation time from several days to a few hours. The samples were filtrated 0.2 μm to avoid column blocking, separated at 0.5 mL/min using hydrophilic separation media and were detected using differential refractive index/multi angle laser light scattering (dRI/MALLS. The applicability of this method was evaluated for the three cellulose types Avicel, α-cellulose and Sigmacell. Afterwards, this method was used to measure the changes in molecular weight distributions during the enzymatic hydrolysis of the different untreated and ionic liquid pretreated cellulose substrates. The molecular weight distributions showed a stronger shift to smaller molecular weights during enzymatic hydrolysis using a commercial cellulase preparation for cellulose with lower crystallinity. This was even more pronounced for ionic liquid-pretreated cellulose. Conclusions In conclusion, this strongly simplified GPC method for cellulose molecular weight distribution allowed for the first time to demonstrate the influence of cellulose properties and pretreatment on the mode of enzymatic hydrolysis.

  14. STUDY OF ENZYMATIC HYDROLYSIS OF MILD PRETREATED LIGNOCELLULOSIC BIOMASSES

    OpenAIRE

    Michael Ioelovich; Ely Morag

    2012-01-01

    The effect of mild acidic and alkaline pretreatments of various plant biomasses on their enzymatic hydrolysis has been studied. The yield of reducing sugars and utilization rate of the biomass were used as reliable characteristics of enzymatic digestibility of the biomasses. The experiments showed that alkaline pretreatment was more efficient than acidic pretreatment. As a result of alkaline pretreatment, a more efficient delignification of the biomasses and considerable improvement of the di...

  15. Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis

    OpenAIRE

    Engel Philip; Hein Lea; Spiess Antje C

    2012-01-01

    Abstract Background The analysis of cellulose molecular weight distributions by gel permeation chromatography (GPC) is a powerful tool to obtain detailed information on enzymatic cellulose hydrolysis, supporting the development of economically viable biorefinery processes. Unfortunately, due to work and time consuming sample preparation, the measurement of cellulose molecular weight distributions has a limited applicability until now. Results In this work we present a new method to analyze ce...

  16. A thermomechanical pretreatment to improve enzymatic hydrolysis of wheat straw

    OpenAIRE

    Maache-Rezzoug, Zoulikha; Maugard, Thierry; Nouviaire, Armelle; Goude, Romain; Geoffroy, Stanley; Rezzoug, Sid-Ahmed

    2009-01-01

    International audience Wheat straw was pretreated with a thermomechanical process developed in our laboratory to increase the enzymatic hydrolysis extent of potentially fermentable sugars. This process involves subjecting the lignocellulosic biomass for a short time to saturated steam pressure, followed by an instantaneous decompression to vacuum at 50 mbar. Increasing of the heat induced by the saturated steam result in intensive vapour formation in the capillary porous structure of the p...

  17. Ultrasound-enhanced enzymatic hydrolysis of poly(ethylene terephthalate).

    Science.gov (United States)

    Pellis, Alessandro; Gamerith, Caroline; Ghazaryan, Gagik; Ortner, Andreas; Herrero Acero, Enrique; Guebitz, Georg M

    2016-10-01

    The application of ultrasound was found to enhance enzymatic hydrolysis of poly(ethylene terephthalate) (PET). After a short activation phase up to 6.6times increase in the amount of released products was found. PET powder with lower crystallinity of 8% was hydrolyzed faster when compared to PET with 28% crystallinity. Ultrasound activation was found to be around three times more effective on powders vs. films most likely due to a larger surface area accessible to the enzyme. PMID:27481467

  18. Enzyme Recovery from Enzymatic Hydrolysis Reaction of Natural Cellulosic Materials

    OpenAIRE

    Raz, A; K. Movagharnejad

    2010-01-01

    In this paper a simple enzyme recovery method was investigated. Enzymatic hydrolysis of natural celluletic material was evaluated. Experiments were conducted using rise husk as a raw celluletic material. Addition of fresh raw material in to a solution contained free enzyme may enhance the enzymatic reaction. Comparing the experimental result with shrinking core model showed suitable compatibility of theoretical model with the existing experimental data

  19. Allergenicity of Peanut Proteins is Retained Following Enzymatic Hydrolysis

    Science.gov (United States)

    Rationale: Hydrolysis of peanut proteins by food-grade enzymes may reduce allergenicity and could lead to safer forms of immunotherapy. Methods: Light roasted peanut flour extracts were digested with pepsin (37°C, pH 2), Alcalase (60°C pH 8), or Flavourzyme (50°C, pH 7) up to 1 hr, or sequentially w...

  20. Effect of hydrolysis on identifying prenatal cannabis exposure

    OpenAIRE

    Gray, Teresa R.; Barnes, Allan J.; Huestis, Marilyn A.

    2010-01-01

    Identification of prenatal cannabis exposure is important due to potential cognitive and behavioral consequences. A two-dimensional gas chromatography–mass spectrometry method for cannabinol, Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 8β,11-dihydroxy-THC, and 11-nor-9-carboxy-THC (THCCOOH) quantification in human meconium was developed and validated. Alkaline, enzymatic, and enzyme–alkaline tandem hydrolysis conditions were optimized with THC- and THCCOOH-glucuronide reference...

  1. Conditions for enzymatic hydrolysis of egg white proteins

    Institute of Scientific and Technical Information of China (English)

    迟玉杰; 田波; 郭明若

    2003-01-01

    The study on condition for enzymic hydrolysis of in egg white proteins using a dual quadratic rotary,orthogonal and regressive design shows that the optimum temperature was 68.5 ℃, and the optimum pH is 8.21at the substrate concentration of 5.5%. Mathematic model has been established to reveal the relationship be-tween enzyme concentration and hydrolytic time with respect to the same NR.

  2. Synthesis of zirconia colloidal dispersions by forced hydrolysis

    Directory of Open Access Journals (Sweden)

    JELENA P. MARKOVIC

    2006-06-01

    Full Text Available Different zirconia colloidal dispersions (sols were prepared from zirconyl oxynitrate and zirconyl oxychloride solutions by forced hydrolysis. Vigorously stirred acidic solutions of these salts were refluxed at 102 oC for 24 h. Characterization of the obtained sols (pH, solid phase content, crystal structure was performed by potentiometric, XRD, TGA/DTA and SEM measurements. The prepared sols contained almost spherical monoclinic hydrated zirconia particles 7–10 nm in diameter.

  3. β-cyclodextrin assistant flavonoid glycosides enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Xin Jin

    2013-01-01

    Full Text Available Background: The content of icaritin and genistein in herba is very low, preparation with relatively large quantities is an important issue for extensive pharmacological studies. Objective: This study focuses on preparing and enzymic hydrolysis of flavonoid glycosides /β-cyclodextrin inclusion complex to increase the hydrolysis rate. Materials and Methods: The physical property of newly prepared inclusion complex was tested by differential scanning calorimetry (DSC. The conditions of enzymatic hydrolysis were optimized for the bioconversion of flavonoid glycosides /β-cyclodextrin inclusion complex by mono-factor experimental design. The experiments are using the icariin and genistein as the model drugs. Results: The solubility of icariin and genistein were increased almost 17 times from 29.2 μg/ml to 513.5 μg/ml at 60˚ C and 28 times from 7.78 μg/ml to 221.46 μg/ml at 50˚ C, respectively, demonstrating that the inclusion complex could significantly increase the solubility of flavonoid glycosides. Under the optimal conditions, the reaction time of icariin and genistin decreased by 68% and 145%, when compared with that without β-CD inclusion. By using this enzymatic condition, 473 mg icaritin (with the purity of 99.34% and 567 mg genistein(with the purity of 99.46%, which was finally determined by melt point, ESI-MS, UV, IR, 1 H NMR and 13 C NMR, was obtained eventually by transforming the inclusion complex(contains 1.0 g substrates. Conclusion: This study can clearly indicate a new attempt to improve the speed of enzyme-hydrolysis of poorly water-soluble flavonoid glycosides and find a more superior condition which is used to prepare icaritin and genistein.

  4. Plutonium disproportionation. Hydrolysis and local oxidation-state maxima

    International Nuclear Information System (INIS)

    Local maxima in the fractions of the trivalent and hexavalent oxidation states are inherent in the algebra of Pu disproportionation reactions. A new method predicts the pH and the oxidation-state fractions at maximum. Tabulated results illustrate the effects of the Pu oxidation number and Pu(IV) hydrolysis on the maxima. This method suggests a new laboratory approach for discovering Pu oxidation-state maxima. (author)

  5. An Unexpected Hydrolysis Product from Strobilurin Fungicide: Azoxystrobin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Gong; RUAN Lu-Lu; ZHAO Jin-Hao; ZHU Guo-Nian

    2011-01-01

    The hydrolysis reaction of azoxystrobin in a methanol solution was studied, obtaining a novel compound 3,3-dimethoxy-2-(2-(6-methoxy pyrimidin-4-yloxy)phenyl) propanoic acid. The hydrolysis reaction may be helpful to explaining the degradation mechanism of azoxystrobin in soil or plant, which is also a method for further study on metabolism in vitro. The crystal structure was confirmed by 1H NMR and MS and determined by single-crystal X-ray diffraction. The crystal belongs to the triclinic system, space group P1 with a = 8.5662(2), b = 10.5074(6), c = 10.9849(7), α = 62.8370(10), β = 73.2170(10), γ = 73.3100(2)o, C16H18N2O6, Mr = 334.32, V = 828.09(9)3, Z = 2, Dc = 1.341 g/cm3, F(000) = 352, μ = 0.104 mm-1, S = 1.075, the final R = 0.0665 and wR = 0.1593 for 2083 observed reflections with I 2σ(I) and 220 variable parameters. The crystal analysis shows that the hydrolysis product contains two rings, and a one- dimensional chain structure is formed via the intermolecular hydrogen bond O(1)–H(101)···N(2).

  6. Treatment of heterotopic ossification through remote ATP hydrolysis.

    Science.gov (United States)

    Peterson, Jonathan R; De La Rosa, Sara; Eboda, Oluwatobi; Cilwa, Katherine E; Agarwal, Shailesh; Buchman, Steven R; Cederna, Paul S; Xi, Chuanwu; Morris, Michael D; Herndon, David N; Xiao, Wenzhong; Tompkins, Ronald G; Krebsbach, Paul H; Wang, Stewart C; Levi, Benjamin

    2014-09-24

    Heterotopic ossification (HO) is the pathologic development of ectopic bone in soft tissues because of a local or systemic inflammatory insult, such as burn injury or trauma. In HO, mesenchymal stem cells (MSCs) are inappropriately activated to undergo osteogenic differentiation. Through the correlation of in vitro assays and in vivo studies (dorsal scald burn with Achilles tenotomy), we have shown that burn injury enhances the osteogenic potential of MSCs and causes ectopic endochondral heterotopic bone formation and functional contractures through bone morphogenetic protein-mediated canonical SMAD signaling. We further demonstrated a prevention strategy for HO through adenosine triphosphate (ATP) hydrolysis at the burn site using apyrase. Burn site apyrase treatment decreased ATP, increased adenosine 3',5'-monophosphate, and decreased phosphorylation of SMAD1/5/8 in MSCs in vitro. This ATP hydrolysis also decreased HO formation and mitigated functional impairment in vivo. Similarly, selective inhibition of SMAD1/5/8 phosphorylation with LDN-193189 decreased HO formation and increased range of motion at the injury site in our burn model in vivo. Our results suggest that burn injury-exacerbated HO formation can be treated through therapeutics that target burn site ATP hydrolysis and modulation of SMAD1/5/8 phosphorylation. PMID:25253675

  7. Enzymatic Hydrolysis of Defatted Mackerel Protein with Low Bitter Taste

    Institute of Scientific and Technical Information of China (English)

    HOU Hu; LI Bafang; ZHAO Xue

    2011-01-01

    Ultrasound-assisted solvent extraction was confirmed as a novel, effective method for separating lipid from mackerel protein, resulting in a degreasing rate (DR) of 95% and a nitrogen recovery (NR) of 88.6%. To obtain protein hydrolysates with high nitrogen recovery and low bitter taste, enzymatic hydrolysis was performed using eight commercially available proteases. It turned out that the optimum enzyme was the 'Mixed enzymes for animal proteolysis'. An enzyme dosage of 4%, a temperature of 50℃, and a hydrolysis time of 300 min were found to be the optimum conditions to obtain high NR (84.28%) and degree of hydrolysis (DH,16.18%) by orthogonal experiments. Glutamic acid was the most abundant amino acid of MDP (defatted mackerel protein) and MDPH (defatted mackerel protein hydrolysates). Compared with the FAO/WHO reference protein, the essential amino acid chemical scores (CS) were greater than 1.0(1.0-1.7) in MDPH, which is reflective of high nutritional value. This, coupled with the light color and slight fishy odor, indicates that MDPH would potentially have a wide range of applications such as nutritional additives, functional ingredients, and so on.

  8. Dilute Acid Hydrolysis of Cowpea Hulls: A Kinetic Study

    Directory of Open Access Journals (Sweden)

    Chioma M. Onyelucheya

    2016-08-01

    Full Text Available In this study, dilute acid hydrolysis of cowpea hulls was carried out in two stages under the following conditions: pre-hydrolysis (4%v/v H2SO4, 121˚C, 30 minutes and hydrolysis ( at 10% and 15% v/v H2SO4,varied at different temperatures 150 oC, 160 oC, 170 oC and 180 oC for 2.5 hrs.. The substrate was characterized using both Fourier transform infrared spectroscopy and proximate analysis. The percentage lignocellulosic composition of the substrate was obtained for cellulose, hemicellulose and lignin as 34%, 14% and 4.7% respectively. Maximum glucose concentration of 8.09g was obtained using 10%v/v acid concentration at 170˚C after a reaction time of 90min. Saeman’s model gave a good fit for the experimental data. Activation energy for glucose formation using 10%v/v and 15%v/v H2SO4 was obtained as 38.28KJ and 82.204KJ respectively. From the results obtained it can be concluded that cowpea hulls can be converted to a useful product.

  9. Gastric protein hydrolysis of raw and roasted almonds in the growing pig.

    Science.gov (United States)

    Bornhorst, Gail M; Drechsler, Krista C; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J; Singh, R Paul

    2016-11-15

    Gastric protein hydrolysis may influence gastric emptying rate and subsequent protein digestibility in the small intestine. This study examined the gastric hydrolysis of dietary protein from raw and roasted almonds in the growing pig as a model for the adult human. The gastric hydrolysis of almond proteins was quantified by performing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent image analysis. There was an interaction between digestion time, stomach region, and almond type for gastric protein hydrolysis (pGastric emptying rate of protein was a significant (pgastric protein hydrolysis. In general, greater gastric protein hydrolysis was observed in raw almonds (compared to roasted almonds), hypothesized to be related to structural changes in almond proteins during roasting. Greater gastric protein hydrolysis was observed in the distal stomach (compared to the proximal stomach), likely related to the lower pH in the distal stomach. PMID:27283660

  10. Formation of hydroxyapatite by hydrolysis of alpha-tricalcium phosphate

    Science.gov (United States)

    Durucan, Caner

    Low-temperature cement-type formation of hydroxyapatite [Ca10(PO4)6(OH)2 or HAp) has value in terms of developing synthetic compounds similar in compositions to those formed by natural mineralization of bone. Understanding the in vitro kinetics of formation of the synthetic composition could produce insights into developing hard tissue analogs. The kinetics and chemistry of cement-type formation of HAp by hydrolysis of particulate alpha-tricalcium phosphate (alpha-Ca 3(PO4)2 or alpha-TCP) were examined. In particular, the effects of reaction temperature, synthesis route, inorganic salt additives and presence of biodegradable polymers (poly(alpha-hydroxyl acids) on the hydrolysis rate and microstructural/mechanical properties of HAp were determined using the following analytical techniques: isothermal calorimetry, x-ray diffraction, scanning electron microscsopy (SEM), fourier transform infrared spectroscopy (FTIR), solution chemistry, diametrical compression and 3-point bending tests. For the phase-pure alpha-TCP/water system the complete reaction times and morphologies of the resultant HAp were found to be strongly dependent on reaction temperature over a range of 37°C to 56°C. Isothermal calorimetry analyses revealed a thermally activated hydrolysis mechanism, leading to higher reaction rates with an increase in hydrolysis temperature. The microstructure of the resultant HAp typically had entangled, flake-like morphology, with HAp formed at 37°C having a smaller crystalline size than that formed at 45°C and 56°C. The cement hardening contributed to entanglement at the microstructural level. In all cases the hydrated product was phase pure calcium-deficient hydroxyapatite [Ca10-x(HPO4) x(PO4)6-x(OH)2-x], and no other intermediates or by-products were formed through the complete transformation. According to the proposed kinetic model, a two-step mechanism was found to control the overall hydrolysis reaction and thereby HAp formation at 37°C. During the first

  11. Hydrolysis of Dipeptide Heptyl Esters with Newlase F

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Newlase F is a rude enzyme which contains triacylglycerol lipase and acid protease. Hydrolysis of dipeptide heptyl esters with Newlase F was studied in phosphate buffer-organic solvent by HPLC. When the Newlase F's level reached 5 mg/mL under mild condition (pH 7.0, 30°C), the lipase had the highest activity. The reaction was also affected greatly by organic solvents and their concentrations. It is found that protease in Newlase F does not hydrolyze amide bond under this condition (pH 7.0, r.t.).

  12. Extracellular Hydrolysis of Starch in Sugarcane Cell Suspensions 12

    Science.gov (United States)

    Maretzki, A.; dela Cruz, A.; Nickell, L. G.

    1971-01-01

    Evidence is presented for the increased excretion of amylolytic enzymes into a sugarcane cell culture medium when starch was substituted for sucrose as an energy source. The excretion was further enhanced by the inclusion of 1 μm gibberellic acid in the nutrient medium. The growth rate of the cells increased after they became adapted to starch relative to cells grown on sucrose, but the rate of amylolytic enzyme excretion remained unaltered. Amylolytic enzymes in the medium included α-amylase but the identity of one or more other enzymes related to starch hydrolysis remains in doubt. PMID:16657831

  13. Enzymatic hydrolysis of whey protein concentrates : peptide HPLC profiles

    OpenAIRE

    Mota, M. V. T.; Ferreira, I. M. P. L. V. O.; Oliveira, M. B. P.; Rocha, Cristina M. R.; J. A. Teixeira; Torres, D; M. P. Gonçalves

    2004-01-01

    Hydrolysis of whey protein concentrates (WPCs) at different temperatures and pHs, using three enzymes: pepsin, trypsin, and Alcalase®, was monitored during more than 5 hr by reversed phase HPLC/UV, using a column containing a polystyrene-divinylbenzene copolymer-based packing, and an elution gradient from 8% to 80% acetonitrile containing 0.1% TFA. Peptides were separated according to their polarity and size, and degradation of α-lactalbumin (α-la) and β-lactoglobulin (β-lg) ...

  14. A comparative study of the hydrolysis of gamma irradiated lignocelluloses

    Directory of Open Access Journals (Sweden)

    E. Betiku

    2009-06-01

    Full Text Available The effect of high-dose irradiation as a pretreatment method on two common lignocellulosic materials; hardwood (Khaya senegalensis and softwood (Triplochiton scleroxylon were investigated by assessing the potential of cellulase enzyme derived from Aspergillus flavus Linn isolate NSPR 101 to hydrolyse the materials. The irradiation strongly affected the materials, causing the enzymatic hydrolysis to increase by more than 3 fold. Maximum digestibility occurred in softwood at 40kGy dosage of irradiation, while in hardwood it was at 90kGy dosage. The results also showed that, at the same dosage levels (p < 0.05, hardwood was hydrolysed significantly better compared to the softwood.

  15. Preparation of activated carbons from Chinese coal and hydrolysis lignin

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.; Han, B.X. [Tuskegee University, Tuskegee, AL (USA). School of Engineering, Dept. of Chemical Engineering

    2001-07-01

    Activated carbons from Chinese coal and Chinese hydrolysis lignin have been prepared by chemical activation with potassium hydroxide. The following aspects of these activated materials have been analyzed: raw material; pre-treatment of raw material; activation agent, activation temperature and time, acid the activation agent/raw material ratio. Activated carbons with BET specific surface areas of the order of 2400-2600 m{sup 2}/g which exhibited substantial microporosity, a total pore volume of over 1.30 cm{sup 3}/g and a Methylene Blue adsorption capacity of over 440 mg/g were obtained.

  16. Ester Prodrugs of Ketoprofen: Synthesis, Hydrolysis Kinetics and Pharmacological Evaluation.

    Science.gov (United States)

    Dhokchawle, B V; Tauro, S J; Bhandari, A B

    2016-01-01

    The ester prodrugs of ketoprofen with various naturally available antioxidants; menthol, thymol, eugenol, guiacol, vanillin and sesamol have been synthesized by the dicyclohexyl carbodiimide (DCC) coupling method, purified and characterized by spectral data. Further, their, partition coefficients have been determined as well as, hydrolytic studies performed. The synthesized compounds are more lipophilic compared to the parent moieties and are stable in acidic environment, which is a prerequisite for their oral absorption. Under gastric as well as intestinal pH conditions these prodrugs showed variable susceptibility towards hydrolysis. The title compounds when evaluated for anti-inflammatory, analgesic activities and ulcerogenicity, showed improvement over the parent drug. PMID:25894087

  17. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl

    Institute of Scientific and Technical Information of China (English)

    LIU Liying; CHEN Hongzhang

    2006-01-01

    A new cellulose solvent ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was used to treat wheat straw and steam-exploded wheat straw (SEWS) in order to improve the enzymatic hydrolysis rates, while the water was used as the control. The enzymatic hydrolysis results showed that the hydrolysis rates of materials treated with [BMIM]Cl were improved. The hydrolysis rate of treated wheat straw could reach 70.37% and the SEWS could be completely hydrolyzed, while hydrolysis rates of the wheat straw and SEWS treated with water were 42.78% and 68.78% under the same conditions, respectively. The FTIR analysis and polymerization degree measurement indicated that the hydrolysis rates improvement was attributed to the decrease of the polymerization degrees of cellulose and hemicellulose, the absolute crystallinity degree of cellulose and the increase of its reaction accessibility.

  18. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  19. Study of Enzymatic Hydrolysis of Fructans from Agave salmiana Characterization and Kinetic Assessment

    Directory of Open Access Journals (Sweden)

    Christian Michel-Cuello

    2012-01-01

    Full Text Available Fructans were extracted from Agave salmiana juice, characterized and subjected to hydrolysis process using a commercial inulinase preparation acting freely. To compare the performance of the enzymatic preparation, a batch of experiments were also conducted with chicory inulin (reference. Hydrolysis was performed for 6 h at two temperatures (50, 60∘C and two substrate concentrations (40, 60 mg/ml. Hydrolysis process was monitored by measuring the sugars released and residual substrate by HPLC. A mathematical model which describes the kinetics of substrate degradation as well as fructose production was proposed to analyze the hydrolysis assessment. It was found that kinetics were significantly influenced by temperature, substrate concentration, and type of substrate (P<0.01. The extent of substrate hydrolysis varied from 82 to 99%. Hydrolysis product was mainly constituted of fructose, obtaining from 77 to 96.4% of total reducing sugars.

  20. Mechanistic investigation in ultrasound induced enhancement of enzymatic hydrolysis of invasive biomass species.

    Science.gov (United States)

    Borah, Arup Jyoti; Agarwal, Mayank; Poudyal, Manisha; Goyal, Arun; Moholkar, Vijayanand S

    2016-08-01

    This study has assessed four invasive weeds, viz. Saccharum spontaneum (SS), Mikania micrantha (MM), Lantana camara (LC) and Eichhornia crassipes (EC) for enzymatic hydrolysis prior to bioalcohol fermentation. Enzymatic hydrolysis of pretreated biomasses of weeds has been conducted with mechanical agitation and sonication under constant (non-optimum) conditions. Profiles of total reducible sugar release have been fitted to HCH-1 model of enzymatic hydrolysis using Genetic Algorithm. Trends in parameters of this model reveal physical mechanism of ultrasound-induced enhancement of enzymatic hydrolysis. Sonication accelerates hydrolysis kinetics by ∼10-fold. This effect is contributed by several causes, attributed to intense micro-convection generated during sonication: (1) increase in reaction velocity, (2) increase in enzyme-substrate affinity, (3) reduction in product inhibition, and (4) enhancement of enzyme activity due to conformational changes in its secondary structure. Enhancement effect of sonication is revealed to be independent of conditions of enzymatic hydrolysis - whether optimum or non-optimum. PMID:26898160

  1. Hydrolysis of tanned leather wastes under alkaline, acidic and oxidative conditions

    Directory of Open Access Journals (Sweden)

    Botić Tatjana

    2006-01-01

    Full Text Available Different wastes in large quantities are the outcome or the by-product of processes in the tanning industry. The largest part of solid wastes is collagen based and obtained in the reprocessing steps of tanned and non-tanned products. The quality collagen substance obtained from wastes of the leather industry used as a supporting material in many reprocessing industries. Hydrolysis is the basic step of collagen processing, namely the shortening of its polypeptide chain. The main goal of this investigation was to examine the influence of the following parameters on the extent of collagen hydrolysis: type and quantity of reagent used for hydrolysis temperature of hydrolysis, pH, duration of hydrolysis as well as the dimensions of the "shavings" samples. The change of molar mass during hydrolysis was monitored by UV-spectroscopy. Special attention was paid to the dechroming process of the collagen hydrolysate.

  2. Validation of Inhibition Effect in the Cellulose Hydrolysis: a Dynamic Modelling Approach

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Tsai, Chien-Tai; Meyer, Anne S.;

    2011-01-01

    Enzymatic hydrolysis is one of the main steps in the processing of bioethanol from lignocellulosic raw materials. However, complete understanding of the underlying phenomena is still under development. Hence, this study has focused on validation of the inhibition effects in the cellulosic biomass...... hydrolysis employing a dynamic mathematical model. A systematic framework for parameter estimation is used for model validation, which helps overcome the problem of parameter correlation. Data sets obtained from carefully designed enzymatic cellulose and cellobiose hydrolysis experiments, were used for...

  3. Study of Enzymatic Hydrolysis of Fructans from Agave salmiana Characterization and Kinetic Assessment

    OpenAIRE

    Christian Michel-Cuello; Imelda Ortiz-Cerda; Lorena Moreno-Vilet; Alicia Grajales-Lagunes; Mario Moscosa-Santillán; Johanne Bonnin; Marco Martín González-Chávez; Miguel Ruiz-Cabrera

    2012-01-01

    Fructans were extracted from Agave salmiana juice, characterized and subjected to hydrolysis process using a commercial inulinase preparation acting freely. To compare the performance of the enzymatic preparation, a batch of experiments were also conducted with chicory inulin (reference). Hydrolysis was performed for 6 h at two temperatures (50, 60°C) and two substrate concentrations (40, 60 mg/ml). Hydrolysis process was monitored by measuring the sugars released and residual substrate by HP...

  4. Glucose obtained from rice bran by ultrasound-assisted enzymatic hydrolysis

    OpenAIRE

    Raquel Cristine Kuhn; Marcio Antonio Mazutti; Edson Luiz Foletto; Valéria Dal Prá; Eduardo Zimmermann; Matheus Souza; Vitória Segabinazzi Foletto; Tanisa Paula Silveira Maleski; Felipe Cavalheiro Lunelli; Pâmela Sfalcin

    2015-01-01

    In this work ultrasound-assisted solid-state enzymatic hydrolysis of rice bran to obtain fermentable sugars was investigated. For this purpose, process variables such as temperature, enzyme concentration and moisture content were evaluated during the enzymatic hydrolysis with and without ultrasound irradiation. The enzyme used is a blend of amylases derived from genetically modified strains of Trichoderma reesei. Kinetic of the enzymatic hydrolysis of rice bran at the constant-reaction rate p...

  5. Continuous monitoring of enzymatic whey protein hydrolysis. Correlation of base consumption with soluble nitrogen content.

    OpenAIRE

    Margot, A; Flaschel, E.; Renken, A.

    1994-01-01

    The optimization of enzymatic protein hydrolysis often represents a tedious task due to complicated analytical methods. The simplest system of continuous analysis consists of monitoring the base consumption during a pH-controlled reactor operation. However, there are other criteria commonly used for characterizing the extent of protein hydrolysis, comprising the degree of hydrolysis (DH) and the SN-TCA index, that is the fraction of nitrogen soluble in trichloroacetic acid under well-defined ...

  6. A study of the enzymatic hydrolysis of fish frames using model systems

    OpenAIRE

    Himonides, Aristotelis T.; Taylor, Anthony K. D.; Morris, Anne J.

    2011-01-01

    A model system was employed to study the operating conditions and primary parameters of enzymic hydrolysis of cod proteins. Pancreatin, papain, and bromelain were used to hydrolyse minced cod fillets under controlled conditions and with the rate of hydrolysis being continually monitored via both the pH-stat and TNBS method. The two methods were compared and evaluated. The rate of protein solubilisation was plotted against the degree of hydrolysis (DH). Dry fish protein hydrolysate (FPH) powde...

  7. Regulation of CFTR Cl− channel gating by ATP binding and hydrolysis

    OpenAIRE

    Ikuma, Mutsuhiro; Welsh, Michael J.

    2000-01-01

    Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel is regulated by the interaction of ATP with its two cytoplasmic nucleotide-binding domains (NBD). Although ATP hydrolysis by the NBDs is required for normal gating, the influence of ATP binding versus hydrolysis on specific steps in the gating cycle remains uncertain. Earlier work showed that the absence of Mg2+ prevents hydrolysis. We found that even in the absence of Mg2+, ATP could support cha...

  8. Kinetics of Sawdust Hydrolysis with Dilute Hydrochloric Acid and Ferrous Chloride

    Institute of Scientific and Technical Information of China (English)

    袁传敏; 颜涌捷; 任铮伟; 李庭琛; 曹建勤

    2004-01-01

    With dilute hydrochloric acid as catalyst and promoted by ferrous chloride, hydrolysis of waste sawdust to produce monosaccharides was conducted by using an one-step method in a batch-wise operation reactor. Based on the model of first order consecutive irreversible reactions, the kinetics equation incorporating the term of catalyst concentration was obtained that is suitable for describing the hydrolysis of sawdust. Activation energies were calculated for hydrolysis of sawdust and decomposition of monosaccharides.

  9. The dietary effect of milk sphingomyelin on the lipid metabolism of obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice.

    Science.gov (United States)

    Yamauchi, Ippei; Uemura, Mariko; Hosokawa, Masashi; Iwashima-Suzuki, Ai; Shiota, Makoto; Miyashita, Kazuo

    2016-09-14

    Purified milk sphingomyelin (SM) was obtained from lipid concentrated butter serum (LC-BS) by successive separations involving solvent fractionation, selective saponification, and silicic acid column chromatography. The SM obtained was given to obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice. SM supplementation significantly increased fecal lipids paralleled with a decrease in non-HDL cholesterol levels in the serum and neutral lipids and in cholesterol levels in the livers of KK-A(y) mice. The reduction of liver lipid levels also resulted in a decrease in the total fatty acid content of the KK-A(y) mice livers, while n-3 fatty acids derived from the conversion of α-linolenic acid (18:3n-3) increased due to SM supplementation. In contrast to the KK-A(y) mice, little change in the serum and liver lipids was observed in wild-type C57BL/6J mice. The present study suggests that SM may be effective only in subjects with metabolic disorders. PMID:27501823

  10. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian;

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...... approach, partial least squares regression, was used to see if it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by Trichoderma reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed...

  11. Base hydrolysis kinetics of HMX-based explosives using sodium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, R.L.; Skidmore, C.; Flesner, R.L.; Dell`orco, P.C.; Spontarelli, T.; Uher, K.J.; Kramer, J.F. [Los Alamos National Lab., NM (United States); Bell, D.A. [Wyoming Univ., Laramie, WY (United States)

    1996-07-01

    Sodium carbonate has been identified as a possible hydrolysis reagent for decomposing HMX-based explosives to water soluble, non-energetic products. In this study, the reaction kinetics of sodium carbonate hydrolysis are examined and a reaction model is developed. The rate of hydrolysis is reaction rate limited, opposed to mass transfer limited, up to 150{degrees}C. Greater than 99% of the explosive solids in powder form are destroyed in less than 10 minutes at a temperature of 150{degrees}C. The primary products from sodium carbonate hydrolysis are sodium nitrite, formate, nitrate, acetate, glycolate, hexamine, nitrogen gas, nitrous oxide, and ammonia.

  12. Hydrolysis of particulate substrate by activated sludge under aerobic, anoxic and anaerobic conditions

    DEFF Research Database (Denmark)

    Henze, Mogens; Mladenovski, C.

    1991-01-01

    An investigation of hydrolysis of particulate organic substrate by activated sludge has been made. Raw municipal wastewater was used as substrate. It was mixed with activated sludge from a high loaded activated sludge plant with pure oxygen aeration. During 4 days batch experiments under aerobic......, anoxic and anaerobic conditions, the hydrolysis was following through the production of ammonia. The hydrolysis rate of nitrogeneous compounds is significantly affected by the electron donor available. The rate is high under aerobic conditions, medium under anaerobic conditions and low under anoxic...... conditions. The ratio between the hydrolysis rates under aerobic and under anoxic conditions are very similar to the respiration rates measured as electron equivalents....

  13. The Crystalline Changes of Starch from Rhizoma Dioscorea by Acid Hydrolysis

    Institute of Scientific and Technical Information of China (English)

    Shu Jun WANG; Wen Yuan GAO; Jing Lin YU; Pei Gen XIAO

    2006-01-01

    The changes in crystalline properties of starch from Rhizoma Dioscorea by acid hydrolysis was characterized by X-Ray diffractometry (XRD). The results revealed that the crystalline type of Rhizoma Dioscorea starch changed from C-type to A-type after 16 days of the acid hydrolysis. This phenomenon was different from that of other starches subjected to the acid hydrolysis. The results revealed that the B-polymorphs of C-type starch constituted the amorphous regions while the crystalline areas were mainly composed of A-polymorphs. The degree of crystallinity of the acid-thinned starch increased gradually with the time of acid hydrolysis.

  14. Simulation of acid hydrolysis of lignocellulosic residues to fermentable sugars for bioethanol production

    Science.gov (United States)

    Sidiras, Dimitris

    2012-12-01

    The dilute acid hydrolysis of fir sawdust with sulfuric acid was undertaken in a batch reactor system (autoclave). The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemicelluloses hydrolysis, due to a rapid hydrolysis reaction for acid concentration 0.045 N at 160-180°C. It was found that significant sugar degradation occurred at these conditions. The optimum conditions gave a yield of 38% total fermentable sugars. The kinetics of dilute acid hydrolysis of cellulose and hemicelluloses (polysaccharides) were simulated using four pseudo-kinetic models. The reaction rate constants were calculated in each case.

  15. Evaluation of the Ser-His Dipeptide, a Putative Catalyst of Amide and Ester Hydrolysis.

    Science.gov (United States)

    MacDonald, Melissa J; Lavis, Luke D; Hilvert, Donald; Gellman, Samuel H

    2016-08-01

    Efficient hydrolysis of amide bonds has long been a reaction of interest for organic chemists. The rate constants of proteases are unmatched by those of any synthetic catalyst. It has been proposed that a dipeptide containing serine and histidine is an effective catalyst of amide hydrolysis, based on an apparent ability to degrade a protein. The capacity of the Ser-His dipeptide to catalyze the hydrolysis of several discrete ester and amide substrates is investigated using previously described conditions. This dipeptide does not catalyze the hydrolysis of amide or unactivated ester groups in any of the substrates under the conditions evaluated. PMID:27400366

  16. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  17. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  18. Hydrolysis by Alcalase Improves Hypoallergenic Properties of Goat Milk Protein.

    Science.gov (United States)

    Jung, Tae-Hwan; Yun, Sung-Seob; Lee, Won-Jae; Kim, Jin-Wook; Ha, Ho-Kyung; Yoo, Michelle; Hwang, Hyo-Jeong; Jeon, Woo-Min; Han, Kyoung-Sik

    2016-01-01

    Goat milk is highly nutritious and is consumed in many countries, but the development of functional foods from goat milk has been slow compared to that for other types of milk. The aim of this study was to develop a goat milk protein hydrolysate (GMPH) with enhanced digestibility and better hypoallergenic properties in comparison with other protein sources such as ovalbumin and soy protein. Goat milk protein was digested with four commercial food-grade proteases (separately) under various conditions to achieve the best hydrolysis of αs -casein and β-lactoglobulin. It was shown that treatment with alcalase (0.4%, 60℃ for 30 min) effectively degraded these two proteins, as determined by SDS-PAGE, measurement of nonprotein nitrogen content, and reverse-phase high-performance liquid chromatography. Hydrolysis with alcalase resulted in a significant decrease in β-lactoglobulin concentration (almost to nil) and a ~40% reduction in the level of αs-casein. Quantification of histamine and TNF-α released from HMC-1 cells (human mast cell line) showed that the GMPH did not induce an allergic response when compared to the control. Hence, the GMPH may be useful for development of novel foods for infants, the elderly, and convalescent patients, to replace cow milk. PMID:27621693

  19. [Municipal biowaste thermal-hydrolysis and ASBR anaerobic digestion].

    Science.gov (United States)

    Hou, Hua-hua; Wang, Wei; Hu, Song; Xu, Yi-xian

    2010-02-01

    Thermal-hydrolysis can remarkably improve the solid organics dissolving efficiency of urban biomass waste, and anaerobic sequencing batch reactor (ASBR) was used to improve the efficiency of urban biomass waste anaerobic digestion. The optimum thermal-hydrolysis temperature and holding time was 175 degrees C and 60 min, the volatile suspended solid (VSS) dissolving ratio of kitchen waste, fruit-and-vegetable waste and sludge were 31.3%, 31.9% and 49.7%, respectively. Two ASBR and one continuous-flow stirred tank reactor (CSTR) were started at hydraulic retention time (HRT) = 20 d, COD organic loading rate (OLR) = 3.2-3.6 kg/(m3 x d). The biogas production volumes were 5656 mL/d(A1), 6335 mL/d(A2) and 3 103 mL/d(CSTR), respectively; VSS degradation ratios were 45.3% (A1), 50.87% (A2), 20.81% (CSTR), and the total COD (TCOD) removal rates were 88.1% (A1), 90% (A2), 72.6% (CSTR). In ASBR, organic solid and anaerobic microorganism were remained in the reactor during settling period. When HRT was 20 d, the solid retention time (SRT) was over 130 d, which made ASBR higher efficiency than CSTR.

  20. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  1. High-risk biodegradable waste processing by alkaline hydrolysis.

    Science.gov (United States)

    Kalambura, Sanja; Voća, Neven; Krička, Tajana; Sindrak, Zoran; Spehar, Ana; Kalambura, Dejan

    2011-09-01

    Biodegradable waste is by definition degraded by other living organisms. Every day, meat industry produces large amounts of a specific type of biodegradable waste called slaughterhouse waste. Traditionally in Europe, this waste is recycled in rendering plants which produce meat and bone meal and fat. However, feeding animals with meat and bone meal has been banned since the outbreaks of bovine spongiform encephalopathy (BSE). In consequence, new slaughterhouse waste processing technologies have been developed, and animal wastes have now been used for energy production. Certain parts of this waste, such as brains and spinal cord, are deemed high-risk substances, because they may be infected with prions. Their treatment is therefore possible only in strictly controlled conditions. One of the methods which seems to bear acceptable health risk is alkaline hydrolysis. This paper presents the results of an alkaline hydrolysis efficiency study. It also proposes reuse of the obtained material as organic fertiliser, as is suggested by the analytical comparison between meat and bone meal and hydrolysate. PMID:21971109

  2. Hydrolysis by Alcalase Improves Hypoallergenic Properties of Goat Milk Protein

    Science.gov (United States)

    Yun, Sung-Seob; Lee, Won-Jae; Kim, Jin-Wook; Ha, Ho-Kyung; Yoo, Michelle

    2016-01-01

    Goat milk is highly nutritious and is consumed in many countries, but the development of functional foods from goat milk has been slow compared to that for other types of milk. The aim of this study was to develop a goat milk protein hydrolysate (GMPH) with enhanced digestibility and better hypoallergenic properties in comparison with other protein sources such as ovalbumin and soy protein. Goat milk protein was digested with four commercial food-grade proteases (separately) under various conditions to achieve the best hydrolysis of αs -casein and β-lactoglobulin. It was shown that treatment with alcalase (0.4%, 60℃ for 30 min) effectively degraded these two proteins, as determined by SDS-PAGE, measurement of nonprotein nitrogen content, and reverse-phase high-performance liquid chromatography. Hydrolysis with alcalase resulted in a significant decrease in β-lactoglobulin concentration (almost to nil) and a ~40% reduction in the level of αs-casein. Quantification of histamine and TNF-α released from HMC-1 cells (human mast cell line) showed that the GMPH did not induce an allergic response when compared to the control. Hence, the GMPH may be useful for development of novel foods for infants, the elderly, and convalescent patients, to replace cow milk. PMID:27621693

  3. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    Science.gov (United States)

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars. PMID:26899601

  4. Hydrolysis by Alcalase Improves Hypoallergenic Properties of Goat Milk Protein

    Science.gov (United States)

    Yun, Sung-Seob; Lee, Won-Jae; Kim, Jin-Wook; Ha, Ho-Kyung; Yoo, Michelle

    2016-01-01

    Goat milk is highly nutritious and is consumed in many countries, but the development of functional foods from goat milk has been slow compared to that for other types of milk. The aim of this study was to develop a goat milk protein hydrolysate (GMPH) with enhanced digestibility and better hypoallergenic properties in comparison with other protein sources such as ovalbumin and soy protein. Goat milk protein was digested with four commercial food-grade proteases (separately) under various conditions to achieve the best hydrolysis of αs -casein and β-lactoglobulin. It was shown that treatment with alcalase (0.4%, 60℃ for 30 min) effectively degraded these two proteins, as determined by SDS-PAGE, measurement of nonprotein nitrogen content, and reverse-phase high-performance liquid chromatography. Hydrolysis with alcalase resulted in a significant decrease in β-lactoglobulin concentration (almost to nil) and a ~40% reduction in the level of αs-casein. Quantification of histamine and TNF-α released from HMC-1 cells (human mast cell line) showed that the GMPH did not induce an allergic response when compared to the control. Hence, the GMPH may be useful for development of novel foods for infants, the elderly, and convalescent patients, to replace cow milk.

  5. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production.

    Science.gov (United States)

    Brethauer, Simone; Wyman, Charles E

    2010-07-01

    Ethanol made biologically from a variety of cellulosic biomass sources such as agricultural and forestry residues, grasses, and fast growing wood is widely recognized as a unique sustainable liquid transportation fuel with powerful economic, environmental, and strategic attributes, but production costs must be competitive for these benefits to be realized. Continuous hydrolysis and fermentation processes offer important potential advantages in reducing costs, but little has been done on continuous processing of cellulosic biomass to ethanol. As shown in this review, some continuous fermentations are now employed for commercial ethanol production from cane sugar and corn to take advantage of higher volumetric productivity, reduced labor costs, and reduced vessel down time for cleaning and filling. On the other hand, these systems are more susceptible to microbial contamination and require more sophisticated operations. Despite the latter challenges, continuous processes could be even more important to reducing the costs of overcoming the recalcitrance of cellulosic biomass, the primary obstacle to low cost fuels, through improving the effectiveness of utilizing expensive enzymes. In addition, continuous processing could be very beneficial in adapting fermentative organisms to the wide range of inhibitors generated during biomass pretreatment or its acid catalyzed hydrolysis. If sugar generation rates can be increased, the high cell densities in a continuous system could enable higher productivities and yields than in batch fermentations. PMID:20006926

  6. Hydrolysis kinetics of tulip tree xylan in hot compressed water.

    Science.gov (United States)

    Yoon, Junho; Lee, Hun Wook; Sim, Seungjae; Myint, Aye Aye; Park, Hee Jeong; Lee, Youn-Woo

    2016-08-01

    Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more. PMID:27208738

  7. Enzymatic hydrolysis: a method in alleviating legume allergenicity.

    Science.gov (United States)

    Kasera, Ramkrashan; Singh, A B; Lavasa, S; Prasad, Komarla Nagendra; Arora, Naveen

    2015-02-01

    Legumes are involved in IgE mediated food allergy in many countries. Avoidance of allergenic food is the only way to avoid symptomatic reaction. The present study investigated the effect of enzymatic hydrolysis on the allergenicity of three legumes - kidney bean (Phaseolus vulgaris), black gram (Vigna mungo) and peanut (Arachis hypogaea). Soluble protein extracts of the study legumes were sequentially treated by Alcalase(®) and Flavourzyme(®). Allergenicity of hydrolysates was then determined by ELISA, immunoblot, stripped basophil histamine release and skin prick test (SPT). Hydrolysis resulted in the loss of all IgE binding fractions determined by immunoblot in the three legumes. Specific IgE binding in ELISA was reduced by 62.2 ± 7.7%, 87.1 ± 9.6% and 91.8 ± 7.2% in the hydrolysates of kidney bean, black gram and peanut, respectively (p hypoallergenic food extracts.

  8. Hydrolysis by Alcalase Improves Hypoallergenic Properties of Goat Milk Protein.

    Science.gov (United States)

    Jung, Tae-Hwan; Yun, Sung-Seob; Lee, Won-Jae; Kim, Jin-Wook; Ha, Ho-Kyung; Yoo, Michelle; Hwang, Hyo-Jeong; Jeon, Woo-Min; Han, Kyoung-Sik

    2016-01-01

    Goat milk is highly nutritious and is consumed in many countries, but the development of functional foods from goat milk has been slow compared to that for other types of milk. The aim of this study was to develop a goat milk protein hydrolysate (GMPH) with enhanced digestibility and better hypoallergenic properties in comparison with other protein sources such as ovalbumin and soy protein. Goat milk protein was digested with four commercial food-grade proteases (separately) under various conditions to achieve the best hydrolysis of αs -casein and β-lactoglobulin. It was shown that treatment with alcalase (0.4%, 60℃ for 30 min) effectively degraded these two proteins, as determined by SDS-PAGE, measurement of nonprotein nitrogen content, and reverse-phase high-performance liquid chromatography. Hydrolysis with alcalase resulted in a significant decrease in β-lactoglobulin concentration (almost to nil) and a ~40% reduction in the level of αs-casein. Quantification of histamine and TNF-α released from HMC-1 cells (human mast cell line) showed that the GMPH did not induce an allergic response when compared to the control. Hence, the GMPH may be useful for development of novel foods for infants, the elderly, and convalescent patients, to replace cow milk.

  9. Hydrolysis of bamboo fiber cellulose in formic acid

    Institute of Scientific and Technical Information of China (English)

    Yong SUN; Lu LIN; Haibo DENG; Hong PENG; Jiazhe LI; Runchang SUN; Shijie LIU

    2008-01-01

    Bamboo fiber dissolution and hydrolysis in formic acid were studied. After hydrolysis, formic acid can be recovered in a clean state and reused. Solid water-soluble sugars were obtained. After being dipped into the formic acid solution for 30 min, the bamboo fibers started to swell. After one hour, the bamboo fibers gradually started to dissolve in the formic acid solution. The color of the liquor/solution turned green and dark. In the end, the bamboo fibers became thoroughly dissolved in the liquor after four hours. There was a clear hierarch-ical tissue structure on the fiber surface, as observed by AFM before treatment. The differential structure disap-peared after 30 min of treatment. The fiber surface became plump and glossy. After six hours reaction at 60℃, the solid sugar mixture recovered contained glu-cose, cellobiose, cellotriose, cellotetrose, cellopentose and cellohexaose. A significant fraction of the sugar pro-ducts consisted of monomeric glucose. More than 54.5% of the bamboo fiber mass had been transformed into monomeric glucose.

  10. Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase.

    Science.gov (United States)

    Chandak, Prakash G; Radovic, Branislav; Aflaki, Elma; Kolb, Dagmar; Buchebner, Marlene; Fröhlich, Eleonore; Magnes, Christoph; Sinner, Frank; Haemmerle, Guenter; Zechner, Rudolf; Tabas, Ira; Levak-Frank, Sanja; Kratky, Dagmar

    2010-06-25

    Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of lipid droplet-associated triacylglycerol (TG) in many tissues. Here, we demonstrate that Atgl(-/-) macrophages fail to efficiently hydrolyze cellular TG stores leading to decreased cellular FFA concentrations and concomitant accumulation of lipid droplets, even in the absence of exogenous lipid loading. The reduced availability of FFAs results in decreased cellular ATP concentrations and impaired phagocytosis suggesting that fatty acids must first go through a cycle of esterification and re-hydrolysis before they are available as energy substrate. Exogenously added glucose cannot fully compensate for the phagocytotic defect in Atgl(-/-) macrophages. Hence, phagocytosis was also decreased in vivo when Atgl(-/-) mice were challenged with bacterial particles. These findings imply that phagocytosis in macrophages depends on the availability of FFAs and that ATGL is required for their hydrolytic release from cellular TG stores. This novel mechanism links ATGL-mediated lipolysis to macrophage function in host defense and opens the way to explore possible roles of ATGL in immune response, inflammation, and atherosclerosis.

  11. Investigation of a Submerged Membrane Reactor for Continuous Biomass Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi [Univ. of Arkansas, Fayetteville, AR (United States); Stickel, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wickramasinghe, S. Ranil [Univ. of Arkansas, Fayetteville, AR (United States)

    2015-07-10

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  12. Alkali hydrolysis experiment of organic materials such as cement additives

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, M. [Japan Nuclear Cycle Development Inst., Tokai Works, Waste Management and Fuel Cycle Research Center, Tokai, Ibaraki (Japan); Nishikawa, Y. [Inspection Development Company Ltd., Tokai, Ibaraki (Japan)

    2001-03-01

    The alkali hydrolysis experiments which seem to be important from the view point of the alteration mechanism using the following seven organic materials was performed as a part of the evaluation of the influence on the disposal of the organic materials contained in the TRU wastes. As a result of the alkali hydrolysis experiments (90degC and 91d), each organic materials became those of lower molecular weight. The degradation products were able to be detected in the solution. The organic materials seem to be degraded to the organic matters which were confirmed in this study in a long term of disposal. The degradation products were shown below. Therefore, the evaluation of the influence on the migration of radionuclides by degradation products becomes important in the future. 1) Cement additives of Naphthalenesulfonic acid and Ligninsulfonic acid ({yields} Naphthalenedisulfonic acid etc.). 2) Cement additives of polycarboxylic acid ({yields} Oligomer of distal methoxypoly ethylene glycol.) 3) Ethylenediamine-N,N,N',N'-tetraacetic acid disodium salt ({yields} Acetic acid desorbed and cyclized organic matters from EDTA). 4) Tributyl phosphate ({yields} Dibutyl phthalate, n-butanol). 5) Poly vinyl acetate ({yields} Acetic acid). 6) Nylon66 ({yields} Adipic acid, Hexamethylenediamine). 7) Cured epoxy resin ({yields} Glycerol poly glycidyl ether, Carboxylic acid). (author)

  13. Parameter and Process Significance in Mechanistic Modeling of Cellulose Hydrolysis

    Science.gov (United States)

    Rotter, B.; Barry, A.; Gerhard, J.; Small, J.; Tahar, B.

    2005-12-01

    The rate of cellulose hydrolysis, and of associated microbial processes, is important in determining the stability of landfills and their potential impact on the environment, as well as associated time scales. To permit further exploration in this field, a process-based model of cellulose hydrolysis was developed. The model, which is relevant to both landfill and anaerobic digesters, includes a novel approach to biomass transfer between a cellulose-bound biofilm and biomass in the surrounding liquid. Model results highlight the significance of the bacterial colonization of cellulose particles by attachment through contact in solution. Simulations revealed that enhanced colonization, and therefore cellulose degradation, was associated with reduced cellulose particle size, higher biomass populations in solution, and increased cellulose-binding ability of the biomass. A sensitivity analysis of the system parameters revealed different sensitivities to model parameters for a typical landfill scenario versus that for an anaerobic digester. The results indicate that relative surface area of cellulose and proximity of hydrolyzing bacteria are key factors determining the cellulose degradation rate.

  14. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production.

    Science.gov (United States)

    Brethauer, Simone; Wyman, Charles E

    2010-07-01

    Ethanol made biologically from a variety of cellulosic biomass sources such as agricultural and forestry residues, grasses, and fast growing wood is widely recognized as a unique sustainable liquid transportation fuel with powerful economic, environmental, and strategic attributes, but production costs must be competitive for these benefits to be realized. Continuous hydrolysis and fermentation processes offer important potential advantages in reducing costs, but little has been done on continuous processing of cellulosic biomass to ethanol. As shown in this review, some continuous fermentations are now employed for commercial ethanol production from cane sugar and corn to take advantage of higher volumetric productivity, reduced labor costs, and reduced vessel down time for cleaning and filling. On the other hand, these systems are more susceptible to microbial contamination and require more sophisticated operations. Despite the latter challenges, continuous processes could be even more important to reducing the costs of overcoming the recalcitrance of cellulosic biomass, the primary obstacle to low cost fuels, through improving the effectiveness of utilizing expensive enzymes. In addition, continuous processing could be very beneficial in adapting fermentative organisms to the wide range of inhibitors generated during biomass pretreatment or its acid catalyzed hydrolysis. If sugar generation rates can be increased, the high cell densities in a continuous system could enable higher productivities and yields than in batch fermentations.

  15. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch.

    Science.gov (United States)

    Li, Hongyan; Zhu, Yanqiao; Jiao, Aiquan; Zhao, Jianwei; Chen, Xiaoming; Wei, Benxi; Hu, Xiuting; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi

    2013-04-01

    The structure and in vitro digestibility of native waxy rice starch by the combined hydrolysis of α-amylase and hydrochloric acid were investigated in this study. The combined hydrolysis technique generated higher hydrolysis rate and extent than the enzymatic hydrolysis. The granular appearance and chromatograph profile demonstrated that α-amylase and hydrochloric acid exhibited different patterns of hydrolysis. The rise in the ratio of absorbance 1047/1022cm(-1), the melting temperature range (Tc-To), and the melting enthalpy (ΔH) were observed during the combined hydrolysis. These results suggest that α-amylase simultaneously cleaves the amorphous and crystalline regions, whereas the amorphous regions of starch granules are preferentially hydrolyzed during the acid hydrolysis. Furthermore, the combined hydrolysis increased rapidly digestible starch (RDS) while decreased slowly digestible starch (SDS) and resistant starch (RS), indicating that the hydrolysis mode affected the digestion property of native waxy rice starch.

  16. Oxygen-18 leaving group kinetic isotope effects on the hydrolysis of nitrophenyl glycosides. 1. beta-galactosidease-catalyzed hydrolysis.

    Science.gov (United States)

    Rosenberg, S; Kirsch, J F

    1981-05-26

    Oxygen-18 leaving group kinetic isotope effects (KIEs) have been determined on both Vmax (V) and Vmax/Km (V/K) for the beta-galactosidase-catalyzed hydrolysis of p-nitrophenyl beta-D-galactoside (I) and 2,4-dinitrophenyl beta-D-galactoside (II). The former substrate exhibits KIEs of 1.022 +/- 0.002 and 1.014 +/- 0.003 on V and V/K, respectively, while corresponding KIEs for the latter are 1.002 +/- 0.0009 and 1.030 +/- 0.003. These results indicate that bond scission is largely rate determining for I but not for II at substrate saturation. The first irreversible step for both substrates must involve cleavage of the bond to the nitrophenyl leaving group. The mechanism proposed for this reaction is characterized by two parallel pathways for substrate hydrolysis. The predominant route for all but the most reactive substrates involves a SN2 nucleophilic displacement of aglycon by the enzyme to yield a covalent galactosyl-enzyme which in turn is hydrolyzed via a nucleophilic attach by water. The most reactive substrates (e.g., II) from transiently an enzyme-bound galactosyl oxo-carbonium ion which partitions between enzyme to give the covalent galactosyl-enzyme and H2O to yield galactose. PMID:6788082

  17. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U;

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...... ion binding sites, one of which is occupied in the mononuclear species. In this work it is assumed that catalysis takes place at zinc site 1, which is modeled by the metal ion, three imidazole rings, and a hydroxide ion. The lactam ring, a minimal model of beta-lactam antibiotics, is initially...... coordinating to the zinc ion. Potential proton shuttles from the second (unoccupied) metal-binding site (water, Asp, or Cys) are included in some calculations. The calculated reaction barrier for formation of the tetrahedral intermediate is 13 kcal/mol, close to what is observed experimentally for the rate...

  18. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  19. Enzymatic hydrolysis of sugarcane bagasse pretreated with acid or alkali

    Directory of Open Access Journals (Sweden)

    Vivian Cristina Pietrobon

    2011-04-01

    Full Text Available The aim of this study was to evaluate the performance of enzymatic hydrolysis of acid or alkali pretreated sugarcane bagasse for the production of fermentable sugars. The first step consisted of selection of commercial enzymes presenting the highest cellulolytic activities. After selection of four enzymes: HPL, CL, P1 and P4, their performances were tested in the bagasse pretreated with acid and alkali. The sugar content of the hydrolysates was analyzed by anion exchange liquid chromatography. Data showed that the joint action of 0.5% acid pretreatment, 121ºC, 30 minutes and enzyme CL provides the best results, 67.25 g of hexose and 148.13g of pentose per kg of dry bagasse.

  20. Oscillations Produced From Acidity Hydrolysis of Triglyceride inEmulsion

    Institute of Scientific and Technical Information of China (English)

    HE, Zhan-Bo; QI, Gang

    2001-01-01

    A new type of oscillating reaction was found from the systematic cesign of the chemical oscillator in water in oil (W/O)emulsions. It is an acidity hydrolysis reaction of long chaintriglyceride in W/O emulsion at 25.0 ± 0. I°C in a bath stirring reactor. During the proeess of reaction, there were periodic and semi-periodic changes lasting more than 10 hoursboth in electrolytic conductivity and electric potential. Microscope also revealed that the emulsion structure changed regularly and puikly. Became of the large differnce in the solubility of the hydrolyzed products, it could be thought, that thediffernt redistribution in the two phases of water and oil induces the regular changes. Marangoni effect of interfacemembrane made oscillation to form. TITne oscillating reactioncan be used to explain the periodic change in the living systemprodrced from coupling between reaction and diffusion.

  1. Synthesis and Application of Easy Hydrolysis Degradable Polyester

    Institute of Scientific and Technical Information of China (English)

    张大省; 李燕立; 陈英; 付中玉; 王锐; 李梅

    2001-01-01

    An easy hydrolysis degradable polyester (EHDP) is synthesized; the fiber produced from which can be hydrolyzed by dilute basic solution easily. The properties of these kind polyesters are measured. The results show that this kind polymer is suitable to be spun into filament The EHDP can be spun into staple fiber and manufactured into non-woven fabric. This fabric is used as disposable clothes. In composite spinning, the PET (polyethylen glycol terephthalate) or PA (polyamide) is used as continuous phase, and EHDP used as dispersed phase. Then the fabric of this kind fiber is treated by basic solution; the ultra-fine fiber fabric is obtained.The fineness of the fiber is about 0.045 dtex. In blend spinning, EHDP is mixed with polypropylene (PP) to produce hollow fiber with micro-holes in radical direction. This fiber is a usable material in filter especially in medical use.

  2. Enzymatic hydrolysis of pretreated barley and wheat straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa

    2007-01-01

    that there was indeed potential to boost the enzyme activities in Celluclast (arising from Trichoderma reesei) by addition of small amounts of fermentation broth from fungal sources other than T. reesei at optimal reaction conditions for Celluclast, pH 5, 50 °C. The activity(ies) related to the boosting effect were...... consistently lower viscosity. The low level of viscosity was thought suggest that mixing of substrate and enzyme would be more efficient. The work showed that the commercial cellulase product Celluclast can be improved with enzyme activities from other fungal sources and suggested that supplementation....... The work involved evaluation of 1) possible ways to increase the glucose release from the commercial cellulase product Celluclast by boosting with other enzyme activities to increase the enzymatic hydrolysis, 2) comparing differently pretreated feedstock substrates and 3) evaluating a fed-batch substrate...

  3. Analysis of Hydrolysis Reaction of N-Phosphoryl Phenylalanine by HPLC-ESI-MS/MS

    Institute of Scientific and Technical Information of China (English)

    Shu Xia CAO; Jian Chen ZHANG; Jun XU; Xin Cheng LIAO; Yu Fen ZHAO

    2004-01-01

    Hydrolysis procedure of N-phosphoryl phenylalanine (DIPP-Phe) was studied by HPLC-ESI-MS/MS. The results showed that (HO)(i-PrO)P(O)Phe was the main intermediate and the hydrolysis of DIPP-Phe also occurred through a penta-coordinate transition state.

  4. Protonation, Hydrolysis, and Condensation of Mono- and Trifunctional Silanes at the Air/Water Interface

    OpenAIRE

    Britt, David W; Hlady, Vladimir

    1999-01-01

    The protonation, hydrolysis, and condensation kinetics of octadecyldimethylmethoxysilane (OMMS) and octadecyltrimethoxysilane (OTMS) at the air/water interface were investigated using a monolayer trough. OTMS chemical condensation within physically condensed phases was observed in transferred monolayers using fluorescence microscopy. Molecular area increases and decreases attributed to protonation and hydrolysis, respectively, of silane methoxy groups were measured by a surface balance. These...

  5. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater tratment - A review

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Kommedal, Roald; Harremoës, Poul

    2002-01-01

    Carbon cycling and the availability of organic carbon for nutrient removal processes are in most wastewater treatment systems restricted by the rate of hydrolysis of slowly biodegradable (particulate) organic matter. To date, the mechanisms of hydrolysis are not well understood for complex...

  6. Enzymatic hydrolysis of rice protein with papain and antioxidation activity of hydrolysate

    Science.gov (United States)

    The enzymatic hydrolysis technology of rice protein and the antioxidant activity of the hydrolysate were studied. Substrate concentration,enzyme dose,pH value and temperature were selected as factors to optimize the hydrolysis parameters with single—factor and orthogonal tests. Results show the opti...

  7. Simultaneous hydrolysis and hydrogenation of cellobiose to sorbitol in molten salt hydrate media

    NARCIS (Netherlands)

    Li, J.; Soares, H.S.M.P.; Moulijn, J.A.; Makkee, M.

    2013-01-01

    The hydrolysis and hydrogenation of cellobiose (4-O-b-D-glucopyranosyl-D-glucose) in ZnCl2_4H2O solvent was studied to optimize the conditions for conversion of lignocellulose (the most abundant renewable resource) into sorbitol (D-glucitol). Water at neutral pH does not allow hydrolysis of cellobio

  8. Mechanisms of laccase-mediator treatments improving the enzymatic hydrolysis of pre-treated spruce

    OpenAIRE

    Moilanen, Ulla; Kellock, Miriam; Varnai, Aniko; Andberg, Martina; Viikari, Liisa

    2014-01-01

    Abstract Background The recalcitrance of softwood to enzymatic hydrolysis is one of the major bottlenecks hindering its profitable use as a raw material for platform sugars. In softwood, the guaiacyl-type lignin is especially problematic, since it is known to bind hydrolytic enzymes non-specifically, rendering them inactive towards cellulose. One approach to improve hydrolysis yi...

  9. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J.

    2007-01-01

    A variety of interesting bulk chemicals is accessible by the acid-catalyzed hydrolysis of cellulose. An interesting example is levulinic acid, a versatile precursor for fuel additives, polymers, and resins. A detailed kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid is r

  10. Modeling peptide formation during the hydrolysis of beta-casein by Lactococcus lactis

    NARCIS (Netherlands)

    Munoz-Tamayo, R.; Groot, de J.; Wierenga, P.A.; Gruppen, H.; Zwietering, M.H.; Sijtsma, L.

    2012-01-01

    Hydrolysis of milk proteins by lactic acid bacteria leads to the formation of a large number of peptides. In this work, the hydrolysis of ß-casein by the protease PrtPI of Lactococcus lactis was studied. Experiments were carried out at different initial enzyme/substrate ratios. Identification and qu

  11. Combination effect of pH and acetate on enzymatic cellulose hydrolysis

    Institute of Scientific and Technical Information of China (English)

    ROMSAIYUD Angsana; SONGKASIRI Warinthom; NOPHARATANA Annop; CHAIPRASERT Pawinee

    2009-01-01

    The productivity and efficiency of cellulase are significant in cellulose hydrolysis. With the accumulation of volatile fatty acids (VFAs), the pH value in anaerobic digestion system is reduced. Therefore, this study will find out how the pH and the amount of acetate influence the enzymatic hydrolysis of cellulose. The effects of pH and acetate on cellulase produced from Bacillus coagulans were studied at various pH 5-8, and acetate concentrations (0-60 mmol/L). A batch kinetic model for enzymatic cellulose hydrolysis was constructed from experimental data and performed. The base hypothesis was as follows: the rates of enzymatic cellulose hydrolysis rely on pH and acetate concentration. The results showed that the suitable pH range for cellulase production and cellulose hydrolysis (represents efficiency of cellulase) was 2.6-7.5, and 5.3-8.3, respectively. Moreover, acetate in the culture medium had an effect on cellulase production (K1= 49.50 mmol/L, n=1.7) less than cellulose hydrolysis (K1=37.85 mmol/L, n=2.0). The results indicated that both the pH of suspension and acidogenic products influence the enzymatic hydrolysis of cellulose in an anaerobic environment. To enhance the cellulose hydrolysis rate, the accumulated acetate concentration should be lower than 25 mmol/L, and pH should be maintained at 7.

  12. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Directory of Open Access Journals (Sweden)

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  13. WOOD CELLULOSE REMOVAL BY MEANS OF SELF- HYDROLYSIS TREATMENT

    Directory of Open Access Journals (Sweden)

    Dalton Longue Júnior

    2011-09-01

    Full Text Available The objective of this study was to assess the impact of removing hemicelluloses from chips of eucalyptus wood by self-hydrolysis treatment (H2O and on the subsequent ‘kraft’ process behavior and pulps bleachability and quality. The self-hydrolysis treatments were conducted at temperatures of 152°C (30, 45 and 60 minutes; 160°C (15, 30 and 45 minutes; and 170°C (5, 10, 15, 20 and 30 minutes; water: wood ratio of 4:1 m3/t. Normal chips (reference and self-hydrolyzed chips at 170°C during 5, 15 and 30 minutes were submitted to ‘kraft’ cooking up to kappa number 16 – 18 and the resulting pulp was bleached using the O/OD (EPO DD sequence. According to the results obtained, self-hydrolyzing the chips at 170°C for 30 minutes allowed the removal of up to 60% hemicelluloses. Cooking yield of the self-hydrolyzed chips for 30 minutes was around 6% smaller and pentosan content 88% lower than that of the regular chips. The efficiency of delignification with oxygen of the pulp derived from self-hydrolyzed chips for 30 minutes was of 75%, compared to 43.6% of the reference-pulp, and the bleaching cost using the O/OD (EPO DD sequence was US$ 7/adt per pulp, lower that that of the reference-pulp. The effluent originated from bleaching the pulp derived from the self-hydrolyzed chips presented lower values of COD (39.6%, color (21.3% and AOX (51.6%, compared to that of the reference-pulp.

  14. Kinetic study of enzymatic hydrolysis of potato starch

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Castellanos Domínguez

    2010-04-01

    Full Text Available This article describes the kinetic study of potato starch enzymatic hydrolysis using soluble enzymes (Novo Nordisk. Different assays divided into four groups were used: reaction time (with which it was possible to reduce the 48-72 hour duration reported in the literature to 16 hours with comparable productivity levels; selecting the set of enzymes to be used (different types were evaluated - BAN and Termamyl as alfa-amylases during dextrinisation stage, and AMG, Promozyme and Fungamyl for sacarification reaction- identifying those presenting the best performance during hydrolysis. Reaction conditions were optimised for the process's two stages (destrinisation and sacarification. Enzyme dose, calcium cofactor concentration, pH, temperature and agitation speed were studied for the first stage. Enzyme ratio, pH and agitation speed were studied for sacarification; the latter parameter reported values having no antecedents in the literature (60 rpm and 30 rpm for first and second reactions, respectively. Michaelis Menten kinetics were calculated once conditions had been optimised, varying substrate from 10-50% P/V, obtaining km and Vmax kinetic parameters for each reaction. A kinetic model was found according to local working conditions which was able to explain potato starch conversion to glucose syrup, achieving 96 dextrose equivalents by the end of the reaction, being well within the maximum range reported in the literature (94-98. Laboratory equipment was constructed prior to carrying out assays which was able to reproduce and improve the conditions reported in the literature, making it a useful, reliable tool for use in assays returning good results.

  15. VLDL hydrolysis by hepatic lipase regulates PPARδ transcriptional responses.

    Directory of Open Access Journals (Sweden)

    Jonathan D Brown

    Full Text Available BACKGROUND: PPARs (α,γ,δ are a family of ligand-activated transcription factors that regulate energy balance, including lipid metabolism. Despite these critical functions, the integration between specific pathways of lipid metabolism and distinct PPAR responses remains obscure. Previous work has revealed that lipolytic pathways can activate PPARs. Whether hepatic lipase (HL, an enzyme that regulates VLDL and HDL catabolism, participates in PPAR responses is unknown. METHODS/PRINCIPAL FINDINGS: Using PPAR ligand binding domain transactivation assays, we found that HL interacted with triglyceride-rich VLDL (>HDL≫LDL, IDL to activate PPARδ preferentially over PPARα or PPARγ, an effect dependent on HL catalytic activity. In cell free ligand displacement assays, VLDL hydrolysis by HL activated PPARδ in a VLDL-concentration dependent manner. Extended further, VLDL stimulation of HL-expressing HUVECs and FAO hepatoma cells increased mRNA expression of canonical PPARδ target genes, including adipocyte differentiation related protein (ADRP, angiopoietin like protein 4 and pyruvate dehydrogenase kinase-4. HL/VLDL regulated ADRP through a PPRE in the promoter region of this gene. In vivo, adenoviral-mediated hepatic HL expression in C57BL/6 mice increased hepatic ADRP mRNA levels by 30%. In ob/ob mice, a model with higher triglycerides than C57BL/6 mice, HL overexpression increased ADRP expression by 70%, demonstrating the importance of triglyceride substrate for HL-mediated PPARδ activation. Global metabolite profiling identified HL/VLDL released fatty acids including oleic acid and palmitoleic acid that were capable of recapitulating PPARδ activation and ADRP gene regulation in vitro. CONCLUSIONS: These data define a novel pathway involving HL hydrolysis of VLDL that activates PPARδ through generation of specific monounsaturated fatty acids. These data also demonstrate how integrating cell biology with metabolomic approaches provides insight

  16. Studies on PNPP Hydrolysis Catalyzed by Schiff Base Cobalt(Ⅱ) Complexes

    Institute of Scientific and Technical Information of China (English)

    HU Wei; LI Jian-Zhang; WANG Ying; LI Ci; DU Juana; MENG Xiang-Guang; HU Chang-Wei; ZENG Xian-Cheng

    2006-01-01

    Two cobalt(Ⅱ) complexes of the Schiff base with morpholino or aza-crown ether pendants, CoL1 and CoL2, as mimic hydrolytic metalloenzyme, were used in catalytic hydrolysis of carboxylic ester (PNPP). The analysis of specific absorption spectra of the hydrolytic reaction systems indicates that key intermediates, made up of PNPP and Co(Ⅱ)complexes, have been formed in reaction processes of the PNPP catalytic hydrolysis. The mechanism of PNPP catalytic hydrolysis has been proposed based on the analytic result of specific absorption spectrum. A kinetic mathematical model, applied to the calculation of the kinetic parameter of PNPP catalytic hydrolysis, has been established based on the mechanism proposed. The acid effect of buffer solution, structural effect of the complexes,and effect of temperature on the rate of PNPP hydrolysis catalyzed by the complexes have been also discussed.

  17. Effect of acid hydrolysis on starch structure and functionality: a review.

    Science.gov (United States)

    Wang, Shujun; Copeland, Les

    2015-01-01

    Acid hydrolysis is an important chemical modification that can significantly change the structural and functional properties of starch without disrupting its granular morphology. A deep understanding of the effect of acid hydrolysis on starch structure and functionality is of great importance for starch scientific research and its industrial applications. During acid hydrolysis, amorphous regions are hydrolyzed preferentially, which enhances the crystallinity and double helical content of acid hydrolyzed starch. This review discusses current understanding of the effect of acid hydrolysis on starch structure and functionality. The effects of acid hydrolysis on amylose content, chain length distribution of amylopectin molecules, molecular and crystalline organization (including lamellar structure) and granular morphology are considered. Functional properties discussed include swelling power, gelatinization, retrogradation, pasting, gel texture, and in vitro enzyme digestibility. The paper also highlights some promising applications of acid hydrolyzed starch (starch nanocrystals) in the preparation of biodegradable nanocomposites, bio-hydrogen, and slowly digestible starch-based healthy foods.

  18. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng

    2013-11-01

    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.

  19. CFD simulation of transient stage of continuous countercurrent hydrolysis of canola oil

    KAUST Repository

    Wang, Weicheng

    2012-08-01

    Computational Fluid Dynamic (CFD) modeling of a continuous countercurrent hydrolysis process was performed using ANSYS-CFX. The liquid properties and flow behavior such as density, specific heats, dynamic viscosity, thermal conductivity, and thermal expansivity as well as water solubility of the hydrolysis components triglyceride, diglyceride, monoglyceride, free fatty acid, and glycerol were calculated. Chemical kinetics for the hydrolysis reactions were simulated in this model by applying Arrhenius parameters. The simulation was based on actual experimental reaction conditions including temperature and water-to-oil ratio. The results not only have good agreement with experimental data but also show instantaneous distributions of concentrations of every component in hydrolysis reaction. This model provided visible insight into the continuous countercurrent hydrolysis process. © 2012 Elsevier Ltd.

  20. ATP hydrolysis assists phosphate release and promotes reaction ordering in F1-ATPase

    Science.gov (United States)

    Li, Chun-Biu; Ueno, Hiroshi; Watanabe, Rikiya; Noji, Hiroyuki; Komatsuzaki, Tamiki

    2015-12-01

    F1-ATPase (F1) is a rotary motor protein that can efficiently convert chemical energy to mechanical work of rotation via fine coordination of its conformational motions and reaction sequences. Compared with reactant binding and product release, the ATP hydrolysis has relatively little contributions to the torque and chemical energy generation. To scrutinize possible roles of ATP hydrolysis, we investigate the detailed statistics of the catalytic dwells from high-speed single wild-type F1 observations. Here we report a small rotation during the catalytic dwell triggered by the ATP hydrolysis that is indiscernible in previous studies. Moreover, we find in freely rotating F1 that ATP hydrolysis is followed by the release of inorganic phosphate with low synthesis rates. Finally, we propose functional roles of the ATP hydrolysis as a key to kinetically unlock the subsequent phosphate release and promote the correct reaction ordering.

  1. Lipase applications in oil hydrolysis with a case study on castor oil: a review.

    Science.gov (United States)

    Goswami, Debajyoti; Basu, Jayanta Kumar; De, Sirshendu

    2013-03-01

    Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

  2. A Dynamic Model for Cellulosic Biomass Hydrolysis: a Comprehensive Analysis and Validation of Hydrolysis and Product Inhibition Mechanisms

    DEFF Research Database (Denmark)

    Tsai, Chien Tai; Morales Rodriguez, Ricardo; Sin, Gürkan;

    2014-01-01

    of cellulose hydrolysis behaviour over a broad range of substrate concentrations (50–150 g/L) and enzyme loadings (15.8–31.6 and 1–5.9 mg protein/g cellulose for Celluclast and Novozyme 188, respectively) was possible. This is the first study introducing transglycosylation into the semimechanistic model....... As long as these type of models are used within the boundary of their validity (substrate type, enzyme source and substrate concentration), they can support process design and technology improvement efforts at pilot and full-scale studies....... Renewable Energy Laboratory (Kadam et al., Biotechnol Prog 20(3):698–705, 2004) and its variations proposed in this work. A number of dedicated experiments were carried out under a range of initial conditions (Avicel® versus pretreated barley straw as substrate, different enzyme loadings and different...

  3. The effect of pressure and temperature on aluminium hydrolysis: Implications to trace metal scavenging in natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    Removal of aluminium through precipitation/scavenging in natural waters was evaluated based on its hydrolysis at different temperatures and pressures. In general, pH for the occurrence of cation hydrolysis was lowered with hike in temperature which...

  4. Myosin catalyzed ATP hydrolysis elucidated by 31P NMR kinetic studies and 1H PFG-diffusion measurements

    OpenAIRE

    Song, Zhiyan; Parker, Kari J.; Enoh, Idorenyin; Zhao, Hua; Olubajo, Olarongbe

    2009-01-01

    We conducted 31P NMR kinetic studies and 1H-diffusion measurements on myosin-catalyzed hydrolysis of adenosine triphosphate (ATP) under varied conditions. The data elucidate well the overall hydrolysis rate and various factors that significantly impact the reaction. We found that the enzymatic hydrolysis of ATP to adenosine diphosphate (ADP) was followed by ADP hydrolysis, and different nucleotides such as ADP and guanosine triphosphate (GTP) acted as competitors of ATP. Increasing ATP or Mg2...

  5. Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production.

    Science.gov (United States)

    Subhedar, Preeti B; Babu, Narmadha R; Gogate, Parag R

    2015-01-01

    An effective conversion of lignocellulose into fermentable sugars is a key step in producing bioethanol in an eco-friendly and cost effective manner. In this study, the effect of ultrasound on enzymatic hydrolysis of newspaper, a potential feedstock for bioethanol production due to its high cellulosic content, was investigated. The effect of substrate loading, enzyme loading, temperature, ultrasonic power and duty cycle on the hydrolysis has been studied. Optimum conditions for conventional enzymatic hydrolysis were substrate loading of 5% (w/v), enzyme loading of 0.14% (w/v), temperature of 323K, and under these conditions and 72h of hydrolysis, reducing sugar yield of 11.569g/L was obtained. In case of ultrasound-assisted enzymatic hydrolysis approach, optimum conditions obtained were substrate loading of 3% (w/v), enzyme loading of 0.8% (w/v), sonication power of 60W, duty cycle of 70%, hydrolysis time of 6.5h and the reducing sugar yield obtained under these conditions was 27.6g/L. Approximately 2.4 times increase in the release of reducing sugar concentration was obtained by the ultrasound-assisted enzymatic hydrolysis approach. Results indicate that there is a synergistic effect obtained from the combination of ultrasound and enzymes which lowers the diffusion-limiting barrier to enzyme/substrate binding and results in an increase in reaction rate. The experimental data were also fitted in a simple three parameter kinetic model. PMID:25060116

  6. Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study

    Directory of Open Access Journals (Sweden)

    Woiciechowski Adenise Lorenci

    2002-01-01

    Full Text Available The objective of this work was to study the acid and enzymatic hydrolysis of cassava bagasse for the recovery of reducing sugars and to establish the operational costs. A statistical program "Statistica", based on the surface response was used to optimize the recovery of reducing sugars in both the processes. The process economics was determined considering the values of reducing sugars obtained at laboratory scale, and the operations costs of a cylindrical reactor of 1500 L, with flat walls at the top and bottom. The reactor was operated with 150 kg of cassava bagasse and 1350 kg of water. The yield of the acid hydrolysis was 62.4 g of reducing sugars from 100 g of cassava bagasse containing 66% starch. It represented 94.5% of reducing sugar recovery. The yield of the enzymatic hydrolysis was 77.1 g of reducing sugars from 120 g of cassava bagasse, which represented 97.3% of reducing sugars recovery. Concerning to the time, a batch of acid hydrolysis required 10 minutes, plus the time to heat and cool the reactor, and a batch of the enzymatic hydrolysis needed 25 hours and 20 minutes, plus the time to heat and to cool the reactor. Thus, the acid hydrolysis of 150 kg of cassava bagasse required US$ 34.27, and the enzymatic hydrolysis of the same amount of cassava bagasse required US$ 2470.99.

  7. Kinetics of the hydrolysis of polysaccharide galacturonic acid and neutral sugars chains from flaxseed mucilage

    Directory of Open Access Journals (Sweden)

    Happi Emaga, T.

    2012-01-01

    Full Text Available Different hydrolysis procedures of flaxseed polysaccharides (chemical and enzymatic were carried out with H2SO4, HCl and TFA at different acid concentrations (0.2, 1 and 2 M and temperatures (80 and 100°C. Enzymatic and combined chemical and enzymatic hydrolyses of polysaccharide from flaxseed mucilage were also studied. Acid hydrolysis conditions (2 M H2SO4, 4 h, 100°C are required to quantify total monosaccharide content of flaxseed mucilage. The enzymatic pathway (Pectinex™ Ultra SP limits sugar destruction during hydrolysis, but it is also insufficient for complete depolymerization. The combination of the two treatments, i.e. moderate chemical hydrolysis (0.2 M H2SO4, 80°C, 48 h combined with enzymatic hydrolysis is not more effective compared to chemical hydrolysis in drastic conditions (2 M H2SO4 at 100°C. The strong interaction between the neutral and acid fractions of flaxseed mucilage may hinder total release of sugar residues. Physical treatment prior to the hydrolysis could be necessary to achieve complete depolymerisation of flaxseed mucilage.

  8. Enhanced xylose recovery from oil palm empty fruit bunch by efficient acid hydrolysis.

    Science.gov (United States)

    Tan, Hooi Teng; Dykes, Gary A; Wu, Ta Yeong; Siow, Lee Fong

    2013-08-01

    Oil palm empty fruit bunch (EFB) is abundantly available in Malaysia and it is a potential source of xylose for the production of high-value added products. This study aimed to optimize the hydrolysis of EFB using dilute sulfuric acid (H2SO4) and phosphoric acid (H3PO4) via response surface methodology for maximum xylose recovery. Hydrolysis was carried out in an autoclave. An optimum xylose yield of 91.2 % was obtained at 116 °C using 2.0 % (v/v) H2SO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. A lower optimum xylose yield of 24.0 % was observed for dilute H3PO4 hydrolysis at 116 °C using 2.4 % (v/v) H3PO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. The optimized hydrolysis conditions suggested that EFB hydrolysis by H2SO4 resulted in a higher xylose yield at a lower acid concentration as compared to H3PO4. PMID:23709290

  9. Urea hydrolysis and recovery of nitrogen and phosphorous as MAP from stale human urine

    Institute of Scientific and Technical Information of China (English)

    LIU Zhigang; ZHAO Qingliang; WANG Kun; LEE Duujong; QIU Wei; WANG Jianfang

    2008-01-01

    Laboratory-scale tests for magnesium ammonium phosphate (MAP) precipitation following urea hydrolysis of human urine were conducted using orthogonal experiment design. The effects of initial pH, temperature and the volumetric ratios of stale urine to fresh urine, on urea hydrolysis in urine were studied to determine the final hydrolysis time to recover most nitrogen from separated human urine by MAP. With a volumetric ratio of stale to fresh urine >10% and at temperature of 20℃ and above, urea hydrolysis could be completed in two days. Alkaline pH inhibited urea hydrolysis progress. The final pHs were all around 9.0 following urine hydrolysis, while the suspension pH might act as an indicator to detect the start and extent of urea hydrolysis. Over 95% of ammonium nitrogen and over 85% of phosphorus from hydrolyzed urine as MAP precipitate were obtained using MgCl2·6H2O and Na2HPO4·12H2O as precipitation agents at pH 8.5, molar ratio of Mg2+:NH4+-N:PO43--P at (1.2--1.3):1:1, mixing speed of 120 r/min, and precipitation time and reaction time of 3 h and 15 min, respectively. The precipitate has a structure resembling pure MAP crystal.

  10. Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production.

    Science.gov (United States)

    Subhedar, Preeti B; Babu, Narmadha R; Gogate, Parag R

    2015-01-01

    An effective conversion of lignocellulose into fermentable sugars is a key step in producing bioethanol in an eco-friendly and cost effective manner. In this study, the effect of ultrasound on enzymatic hydrolysis of newspaper, a potential feedstock for bioethanol production due to its high cellulosic content, was investigated. The effect of substrate loading, enzyme loading, temperature, ultrasonic power and duty cycle on the hydrolysis has been studied. Optimum conditions for conventional enzymatic hydrolysis were substrate loading of 5% (w/v), enzyme loading of 0.14% (w/v), temperature of 323K, and under these conditions and 72h of hydrolysis, reducing sugar yield of 11.569g/L was obtained. In case of ultrasound-assisted enzymatic hydrolysis approach, optimum conditions obtained were substrate loading of 3% (w/v), enzyme loading of 0.8% (w/v), sonication power of 60W, duty cycle of 70%, hydrolysis time of 6.5h and the reducing sugar yield obtained under these conditions was 27.6g/L. Approximately 2.4 times increase in the release of reducing sugar concentration was obtained by the ultrasound-assisted enzymatic hydrolysis approach. Results indicate that there is a synergistic effect obtained from the combination of ultrasound and enzymes which lowers the diffusion-limiting barrier to enzyme/substrate binding and results in an increase in reaction rate. The experimental data were also fitted in a simple three parameter kinetic model.

  11. Hydrolysis of whey lactose by immobilized β-Galactosidase

    Directory of Open Access Journals (Sweden)

    Marcela Panaro Mariotti

    2008-12-01

    Full Text Available Hydrolysis of whey lactose to glucose and galactose by immobilized galactosidase comes as an alternative to enlarge the possibilities of commercial use of this feedstock. To be applied at industrial scale, the process should be performed continuously .This work aimed to study the hydrolysis of whey lactose by an immobilized enzyme reactor. b-Galactosidase from Aspergillus oryzae was immobilized on silica and activity and stability were evaluated. The best immobilization results were attained by using glutaraldehyde as support's activator and enzyme stabilizer. The optimized enzyme proportion for immobilization was 15-20 mg g-1 of support. Treatments of whey were performed (microfiltration, thermal treatment and ultrafiltration, seeking the elimination of sludge, and the effects on operating the fixed bed reactor were evaluated. Ultrafiltration was the best treatment towards a proper substrate solution for feeding the reactor.A hidrólise de lactose de soro de leite, resultando em glicose e galactose, apresenta-se como uma alternativa para ampliar as possibilidades de uso comercial deste insumo. Para ser aplicado em escala industrial, o processo deve ser operado de modo contínuo. Reporta-se o estudo de um sistema objetivando hidrólise de lactose de soro de leite através de um reator com enzima imobilizada. b-Galactosidase de Aspergillus oryzae foi imobilizada em sílica, sendo avaliadas a estabilidade e atividade. Os melhores resultados de imobilização foram obtidos usando glutaraldeído como ativante do suporte e estabilizador da enzima. A proporção otimizada entre enzima e suporte foi 15-20 mg.g-1. Foram estudadas formas de tratamento do soro (microfiltração, tratamento térmico e ultrafiltração, objetivando eliminação de material suspenso, e avaliando os efeitos na operação de reator de leito fixo. A ultrafiltração foi o melhor tratamento, na busca de uma solução de substrato apropriada para o reator contínuo.

  12. Ultrasound-assisted dilute acid hydrolysis of tea processing waste for production of fermentable sugar.

    Science.gov (United States)

    Germec, Mustafa; Tarhan, Kübra; Yatmaz, Ercan; Tetik, Nedim; Karhan, Mustafa; Demirci, Ali; Turhan, Irfan

    2016-03-01

    Lignocellulosic materials that are the most abundant plant biomass in the world have the potential to become sustainable sources of the produced value added products. Tea processing waste (TPW) is a good lignocellulosic source to produce the value added products from fermentable sugars (FSs). Therefore, the present study is undertaken to produce FSs by using ultrasound-assisted dilute acid (UADA) and dilute acid (DA) hydrolysis of TPW followed by enzymatic hydrolysis. UADA hydrolysis of TPW was optimized by response surface methodology (RSM) at maximum power (900 W) for 2 h. The optimum conditions were determined as 50°C, 1:6 (w/v) solid:liquid ratio, and 1% (w/v) DA concentration, which yielded 20.34 g/L FS concentration. Furthermore, its DA hydrolysis was also optimized by using RSM for comparison and the optimized conditions were found as 120°C, 1:8 solid:liquid ratio, and 1% acid concentration, which produced 25.3 g/L FS yield. Even though the produced sugars with UADA hydrolysis are slightly less, but it can provide significant cost saving due to the lower temperature requirement and less liquid consumption. Besides, enzymatic hydrolysis applied after pretreatments of TPW were very more economic than the conventional enzymatic hydrolysis in the literature due to shorter time requiring. In conclusion, ultrasound-assisted is a promising technology that can be successfully applied for hydrolysis of biomass and can be an alternative to the other hydrolysis procedures and also TPW can be considered as suitable carbon source for the production of value-added products like biofuels, organic acids, and polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:393-403, 2016. PMID:26749037

  13. The europium and praseodymium hydrolysis in a 2M NaCl environment

    International Nuclear Information System (INIS)

    It was studied the europium and praseodymium hydrolysis in a 2M NaCl ion force environment at 303 K, through two methods: this one extraction with dissolvents (lanthanide-water-NaCl-dibenzoylmethane) in presence of a competitive ligand (diglycolic acid) and that one direct potentiometric titration, of soluble species, followed by a computer refining. The values of one or another techniques of the first hydrolysis constants obtained were similar, which demonstrates that the results are reliable. The set of data obtained on the stability constants of hydrolysis products allowed to draw up the distribution diagrams of chemical species, as europium as praseodymium in aqueous environment. (Author)

  14. Fungal cellulase/xylanase production and corresponding hydrolysis using pretreated corn stover as substrates.

    Science.gov (United States)

    Zhang, Liang; Wang, Xiaoqing; Ruan, Zhenhua; Liu, Ying; Niu, Xiaorui; Yue, Zhengbo; Li, Zhimin; Liao, Wei; Liu, Yan

    2014-01-01

    Three pretreated corn stover (ammonia fiber expansion, dilute acid, and dilute alkali) were used as carbon source to culture Trichoderma reesei Rut C-30 for cellulase and xylanase production. The results indicated that the cultures on ammonia fiber expansion and alkali pretreated corn stover had better enzyme production than the acid pretreated ones. The consequent enzymatic hydrolysis was performed applying fungal enzymes on pretreated corn stover samples. Tukey's statistical comparisons exhibited that there were significant differences on enzymatic hydrolysis among different combination of fungal enzymes and pretreated corn stover. The higher sugar yields were achieved by the enzymatic hydrolysis of dilute alkali pretreated corn stover.

  15. Study on the Technologic Optimization for Hydrolysis of Silver carp By-products

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yu-hong; KONG Bao-hua; ZHANG Li-gang

    2005-01-01

    The hydrolysis process for Silver carp by-products was studied. Protein hydrolysate was prepared with proteolytic enzyme, Alcalase. Hydrolysis conditions were optimized by the regression model of three factors five levels quadratic rotation perpendicular regressive design. The optimum hydrolysis conditions of hydrolyzing the protein of Silver carp by-products were determined to be concentration of enzyme (E/S) 3.33%, pH 8.54, hydrolyzing temperature 58 ℃, reaction time 90 min, concentration of substrate 8%. Nitrogen recovery was more than 75%.

  16. Catalytic hydrolysis of phosphate diester (BNPP) and plasmid DNA by mononuclear macrocyclic polyamine metal complexes

    Institute of Scientific and Technical Information of China (English)

    Qing Xiang Xiang; Li Qun Zhang; Xiao Qi Yu; Ru Gang Xie

    2009-01-01

    The activities of the catalytic hydrolysis of phosphate diester (BNPP) [bis(p-nitrophenyl)phosphate diester]and plasmid DNA (pUC 18) by mononuclear macrocyclic polyamine metal complexes have been investigated in this paper.The results showed that the highest activity in hydrolysis of BNPP was obtained with le-Zn(II) complex (composed of lipophilic group) as catalyst.The hydrolysis rate enhancement is up to 3.64 × 104 fold.These metal complexes could effectively promote the cleavage of plasmid DNA (pUC18) at physiological conditions.

  17. Hydrolysis of Carbonyl Sulfide in Binary Mixture of Diethylene Glycol Diethyl Ether and Water

    Institute of Scientific and Technical Information of China (English)

    李新学; 刘迎新; 魏雄辉

    2005-01-01

    The solubility and hydrolysis of carbonyl sulfide in binary mixture of diethylene glycol diethyl ether and water are studied as a function of composition. The use of an aqueous solution of diethylene glycol diethyl ether enhances the solubility and hydrolysis rate of carbonyl sulfide compared with that in pure water. The composition of the mixture with maximum hydrolysis rate varies with temperature. The thermophysical properties including density, viscosity, and surface tension as a function of composition at 20℃ under atmospheric pressure as well as liquid-liquid equilibrium (LLE) data over the temperature range from 28℃ to 90℃ are also measured for the binary mixture.

  18. Glass transition of oxygen plasma treated enzymatic hydrolysis lignin

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhou

    2012-11-01

    Full Text Available This study investigated the effect of oxygen plasma treatment on the glass transition temperature of enzymatic hydrolysis lignin (EHL derived from the production of bio-ethanol. Differential scanning calorimetry (DSC was used to obtain the glass transition temperature (Tg of EHL. The results showed that the Tg value of EHL under different heating rates ranged from 160 to 200 °C, and there was a strong linear correlation between heating rate and Tg. The Tg value of oxygen plasma treated EHL decreased when compared with the untreated samples. The apparent Tg of the untreated sample was 168.2 °C, while the value of the treated sample was 161.5 °C. Distinct chain scission and introduction of oxygen-based functional groups on the surface of EHL were detected by XPS analysis. These changes may occur mainly on the bulky side chain and thus enhance molecular mobility of EHL. This indicates that oxygen plasma treatment can modify the structure and improve the reactivity of EHL efficiently.

  19. Microbial production of levanase for specific hydrolysis of levan.

    Science.gov (United States)

    Dahech, Imen; Ben Ayed, Hanen; Belghith, Karima Srih; Belghith, Hafedh; Mejdoub, Hafedh

    2013-09-01

    A newly isolated bacterial strain from Tunisian thermal source was selected for its ability to produce extracellular levanase when grown on levan substrate. The optimization of carbon source, nitrogen source, temperature and initial pH of the growth medium in submerged liquid cultures were investigated. In fact, levan was found to be a good inducer of levanase enzymes. The optimal temperature and pH of the levanase activity were 40 °C and 6.4, respectively. This enzyme exhibited a remarkable stability and retained 75% of its original activity at 55 °C for more than 1 h at pH 6.4. Crude enzyme of the strain rich in levanase was established for the hydrolysis of levan in order to produce fructooligosaccharides with variable degrees of polymerization which could be used in important fields such medicine, food-processing industry and cosmetic. The extracellular levanase of the strain was then, partially purified as determined by SDS-PAGE. The purification was achieved by ammonium sulfate precipitation, gel filtration and DEAE cellulose chromatographies. PMID:23732333

  20. Radiolysis and hydrolysis of magnetically assisted chemical separation particles

    International Nuclear Information System (INIS)

    The magnetically assisted chemical separation (MACS) process is designed to separate transuranic (TRU) elements out of high-level waste (HLW) or TRU waste. Magnetic microparticles (1--25 μm) were coated with octyl (phenyl)N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in tributyl phosphate (TBP) and tested for removing TRU elements from acidic nitrate solutions. The particles were contacted with nitric acid solutions and Hanford plutonium finishing plant (PFP) simulant, irradiated with a high intensity 60Co γ-ray source, and evaluated for effectiveness in removing TRU elements from 2m HNO3 solutions. The resistance of the coatings and magnetic cores to radiolytic damage and hydrolytic degradation was investigated by irradiating samples of particles suspended in a variety of solutions with doses of up to 5 Mrad. Transmission electron microscopy (TEM), magnetic susceptibility measurements, and physical observations of the particles and suspension solutions were used to assess physical changes to the particles. Processes that affect the surface of the particles dramatically alter the binding sites for TRU in solution. Hydrolysis played a larger role than radiolysis in the degradation of the extraction capacity of the particles

  1. Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose

    Energy Technology Data Exchange (ETDEWEB)

    Rahikainen, J.

    2013-11-01

    Today, the production of transportation fuels and chemicals is heavily dependent on fossil carbon sources, such as oil and natural gas. Their limited availability and the environmental concerns arising from their use have driven the search for renewable alternatives. Lignocellulosic plant biomass is the most abundant, but currently underutilised, renewable carbon-rich resource for fuel and chemical production. Enzymatic degradation of structural polysaccharides in lignocellulose produces soluble carbohydrates that serve as ideal precursors for the production of a vast amount of different chemical compounds. The difficulty in full exploitation of lignocellulose for fuel and chemical production lies in the complex and recalcitrant structure of the raw material. Lignocellulose is mainly composed of structural polysaccharides, cellulose and hemicellulose, but also of lignin, which is an aromatic polymer. Enzymatic degradation of cellulose and hemicellulose is restricted by several substrate- and enzyme-related factors, among which lignin is considered as one of the most problematic issues. Lignin restricts the action of hydrolytic enzymes and enzyme binding onto lignin has been identified as a major inhibitory mechanism preventing efficient hydrolysis of lignocellulosic feedstocks. In this thesis, the interactions between cellulase enzymes and lignin-rich compounds were studied in detail and the findings reported in this work have the potential to help in controlling the harmful cellulase-lignin interactions, and thus improve the biochemical processing route from lignocellulose to fuels and chemicals.

  2. Metal alkoxides as starting materials for hydrolysis processes

    International Nuclear Information System (INIS)

    In this thesis the preparation of some metal alkoxides and their hydrolysis products were studied. The characteristic of each prepared alkoxides and their hydrolyzates were determined. Tetra ethoxysilane was prepared by the elemental route (the reaction of silicon powder with liquid ethanol) in the presence of tin ethoxide as a catalyst. The use of tin alkoxide is considered one of the most developed ways used recently in chemistry, compared to the usage of acids and bases as catalyst previously. It had been confirmed by the usage of (infrared) IR spectroscopy, the structure of the prepared material. Also tin isopropoxide had been prepared and hydrolyzed. Ethoxides of aluminium, magnesium and tin had been prepared by the elemental route. The gelation product had been analyzed. tetraethoxysilane had been also prepared by the halosilane route. Isopropoxide of each aluminium, magnesium and tin had been synthesized, hydrolyzed, allowed to gel and analyzed by IR (infrared) spectroscopy and gas-liquid chromatography. However, results obtained indicated that tin ethoxide is an effective catalyst in the direct synthesis of tetraethoxysilane from silicon powder and liquid ethanol. Gas-liquid chromatography, infra-red (IR) analysis showed that the final reaction product was tetraethoxysilane. (Author)

  3. Chemical and Enzymatic Hydrolysis of Polyurethane/Polylactide Blends

    Directory of Open Access Journals (Sweden)

    Joanna Brzeska

    2015-01-01

    Full Text Available Polyether-esterurethanes containing synthetic poly[(R,S-3-hydroxybutyrate] (R,S-PHB and polyoxytetramethylenediol in soft segments and polyesterurethanes with poly(ε-caprolactone and poly[(R,S-3-hydroxybutyrate] were blended with poly([D,L]-lactide (PLA. The products were tested in terms of their oil and water absorption. Oil sorption tests of polyether-esterurethane revealed their higher response in comparison to polyesterurethanes. Blending of polyether-esterurethanes with PLA caused the increase of oil sorption. The highest water sorption was observed for blends of polyether-esterurethane, obtained with 10% of R,S-PHB in soft segments. The samples mass of polyurethanes and their blends were almost not changed after incubation in phosphate buffer and trypsin and lipase solutions. Nevertheless the molecular weight of polymers was significantly reduced after degradation. It was especially visible in case of incubation of samples in phosphate buffer what suggested the chemical hydrolysis of polymer chains. The changes of surface of polyurethanes and their blends, after incubation in both enzymatic solutions, indicated on enzymatic degradation, which had been started despite the lack of mass lost. Polyurethanes and their blends, contained more R,S-PHB in soft segments, were degraded faster.

  4. Recent trends in the modeling of cellulose hydrolysis

    Directory of Open Access Journals (Sweden)

    R. Sousa Jr.

    2011-12-01

    Full Text Available This work reviews recent trends in the modeling of cellulose hydrolysis, within the perspective of application of kinetic models in a bioreactor engineering framework, including scale-up, design and process optimization. From this point of view, despite the phenomenological insight that mechanistic models can provide, the expectation that more detailed approaches could be a basis for extrapolations to different substrates and/or enzymatic pools is still not fulfilled. The complexity of the lignocellulosic matrix, the different mechanisms of catalytic action, the role of mass transfer limitations and the deviations from ideal mixing are important difficulties for the modeler, which will continue to impose more conservative approaches for scale-up. Nevertheless, the search for more robust models is a very important task, provided that the engineer is aware of their limitations. Data-driven, non-mechanistic models such as artificial neural networks, perhaps in combination with other approaches in the so-called hybrid models, is also a promising alternative.

  5. Intestinal hydrolysis of aspartylphenylalanine--the metabolic product of aspartame.

    Science.gov (United States)

    Tobey, N A; Heizer, W D

    1986-10-01

    Aspartame [Nutrasweet, Equal (Searle Consumer Products, Chicago, Ill.)] is the methyl ester of the dipeptide aspartylphenylalanine (Asp-Phe). After hydrolysis of the ester bond in the intestinal lumen, the dipeptide is apparently absorbed and digested in the same manner as dipeptides derived from protein digestion. We observed that Asp-Phe is hydrolyzed approximately equally well by three previously reported brush border dipeptidases. However, these enzymes have very low affinity for Asp-Phe, and a substantial amount of the dipeptide may be transported intact and hydrolyzed in the cytosol. Starch gel electrophoresis and ion-exchange chromatography of the cytosol of intestinal mucosa and of red blood cell lysate revealed only one peak with Asp-Phe hydrolase activity. This activity was distinct from the seven cytosolic peptidases that have been described previously. The reduction in Asp-Phe hydrolase activity in the brush border and cytosol of diseased intestinal mucosa was similar to the reduction in levels of other brush border and cytosol enzyme activities. If double-blind studies confirm that some people have symptoms caused by aspartame ingestion, it would be appropriate to test such individuals for deficiency of cytosolic Asp-Phe hydrolase activity.

  6. Jet milling effect on wheat flour characteristics and starch hydrolysis.

    Science.gov (United States)

    Angelidis, Georgios; Protonotariou, Styliani; Mandala, Ioanna; Rosell, Cristina M

    2016-01-01

    The interest for producing wheat flour with health promoting effect and improved functionality has led to investigate new milling techniques that can provide finer flours. In this study, jet milling treatment was used to understand the effect of ultrafine size reduction onto microstructure and physicochemical properties of wheat flour. Three different conditions of jet milling, regarding air pressure (4 or 8 bars) feed rate and recirculation, were applied to obtain wheat flours with different particle size (control, F1, F2 and F3 with d50 127.45, 62.30, 22.94 and 11.4 μm, respectively). Large aggregates were gradually reduced in size, depending on the intensity of the process, and starch granules were separated from the protein matrix. Damaged starch increased while moisture content decreased because of milling intensity. Notable changes were observed in starch hydrolysis kinetics, which shifted to higher values with milling. Viscosity of all micronized samples was reduced and gelatinization temperatures (To, Tp, Tc) for F2 and F3 flours increased. Controlling jet milling conditions allow obtaining flours with different functionality, with greater changes at higher treatment severity that induces large particle reduction.

  7. Minimum energy reaction profiles for ATP hydrolysis in myosin.

    Science.gov (United States)

    Grigorenko, Bella L; Kaliman, Ilya A; Nemukhin, Alexander V

    2011-11-01

    The minimum energy reaction profiles corresponding to two possible reaction mechanisms of adenosine triphosphate (ATP) hydrolysis in myosin are computed in this work within the framework of the quantum mechanics-molecular mechanics (QM/MM) method by using the same partitioning of the model system to the QM and MM parts and the same computational protocol. On the first reaction route, one water molecule performs nucleophilic attack at the phosphorus center P(γ) from ATP while the second water molecule in the closed protein cleft serves as a catalytic base assisted by the Glu residue from the myosin salt bridge. According to the present QM/MM calculations consistent with the results of kinetic studies this reaction pathway is characterized by a low activation energy barrier about 10 kcal/mol. The computed activation energy barrier for the second mechanism, which assumes the penta-coordinated oxyphosphorane transition state upon involvement of single water molecule in the reaction, is considerably higher than that for the two-water mechanism. PMID:21839658

  8. Pequi cake composition, hydrolysis and fermentation to bioethanol

    Directory of Open Access Journals (Sweden)

    A. L. Macedo

    2011-03-01

    Full Text Available Pequizeiro (Caryocar brasiliense Camb fruits have been evaluated as a potential raw material for the newly established biodiesel industry. This scenario demands applications using the solid co-product derived from the extraction of pequi oil, called cake or meal. This study analyses the acid hydrolysis of carbohydrates present in the pequi meal in order to obtain fermentable sugars and evaluates their conversion to bioethanol. There was 27% starch in the pequi meal. The use of a CCRD experimental design type to study the acid saccharification of pequi meal results in 61.6% conversion of its starch content to reducing sugars. Positive and significant linear effects were observed for H2SO4 concentration and temperature factors, while the quadratic effect of H2SO4 concentration and the linear effect of solid-liquid ratio were negative. Even, with non-optimized fermentative condition using 1% of dried baker's yeast in conical flasks, it was possible to obtain a value equivalent to 53 L of ethanol per ton of hydrolyzed pequi meal.

  9. Microwave assisted hydrolysis of aluminium metal and preparation of high surface area Al2O3 powder

    Indian Academy of Sciences (India)

    A K Sivadasan; I Packia Selvam; Sankara Narayanan Potty

    2010-12-01

    Phase pure boehmite particles were prepared by microwave assisted hydrolysis of aluminium sheets. These particles were calcined in air to produce Al2O3 particles with specific surface area of ∼210 m2/g. The alumina particles were characterized by studying X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy. For comparison, the aluminium hydroxide particles were also prepared by normal hydrolysis of aluminium metal. Normal hydrolysis yielded a mixture of boehmite and bayerite particles whereas microwave assisted hydrolysis produced phase pure boehmite particles. The importance of using microwave radiation for the hydrolysis of aluminium metal is also manifested in a shorter reaction time.

  10. Hydrolysis of Cellulose Using Mono-Component Enzymes Shows Synergy during Hydrolysis of Phosphoric Acid Swollen Cellulose (PASC), but Competition on Avicel

    DEFF Research Database (Denmark)

    Andersen, Natalija; Johansen, Katja S.; Michelsen, Michael Locht;

    2008-01-01

    To study the synergy between the three groups of cellulolytic enzymes, 20 mixtures of different mole percentage of Humicola insolens Cel45A (EG V) and Cel6A (CBH II), and Penicillium brasilianuin Cel3A (O-glucosidase) were used to hydrolyze Avicel and phosphoric acid swollen cellulose/Avicel (PASC...... the enzymes), increasing as the hydrolysis proceeded. DS of binary exo-/endo-glucanase mixtures, decreased as the mol% of Cel45A increased. In contrast to hydrolysis of PASC, DS values during degradation of Avicel were less then 1, indicating inhibition of the involved enzymes. Thus, our data point...

  11. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Beeftink, H.H.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    The efficiencies of fumaric, maleic, and sulfuric acid in wheat straw pretreatment were compared. As a measure for pretreatment efficiency, enzymatic digestibility of the lignocellulose was determined. Monomeric glucose and xylose concentrations were measured after subsequent enzymatic hydrolysis, a

  12. Hydrolysis of tRNA(sup Phe) on Suspensions of Amino Acids

    Science.gov (United States)

    Gao, Kui; Orgel, Leslie E.

    2001-01-01

    RNA is adsorbed strongly on suspensions of many moderately soluble organic solids. In some cases, the hydrolysis of tRNA(sup Phe) is greatly accelerated by adsorption, and the major sites of hydrolysis are changed from those that are important in homogeneous solution. Here we show that the hydrolysis is greatly accelerated by suspensions of aspartic acid and beta-glutamic acid but not by suspensions of alpha-glutamic acid, asparagine, or glutamine. The non-enzymatic hydrolysis of RNA has been studied extensively, especially because of its relevance to the mechanisms of action of ribozymes and to biotechnology and therapy. Many ribonucleases, ribozymes, and non-biological catalysts function via acid-base catalysis of an intramolecular transesterification mechanism in which the 2'-OH group attacks the adjacent phosphate group. The pentacoordinated phosphorane intermediate may collapse back to starting material, or yield isomerized or cleaved products.

  13. The Acid Hydrolysis Mechanism of Acetals Catalyzed by a Supramolecular Assembly in Basic Solution

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-09-24

    A self-assembled supramolecular host catalyzes the hydrolysis of acetals in basic aqueous solution. The mechanism of hydrolysis is consistent with the Michaelis-Menten kinetic model. Further investigation of the rate limiting step of the reaction revealed a negative entropy of activation ({Delta}S{double_dagger} = -9 cal mol{sup -1}K{sup -1}) and an inverse solvent isotope effect (k(H{sub 2}O)/k(D{sub 2}O) = 0.62). These data suggest that the mechanism of hydrolysis that takes place inside the assembly proceeds through an A-2 mechanism, in contrast to the A-1 mechanism operating in the uncatalyzed reaction. Comparison of the rates of acetal hydrolysis in the assembly with the rate of the reaction of unencapsulated substrates reveals rate accelerations of up to 980 over the background reaction for the substrate diethoxymethane.

  14. TL and ESR based identification of gamma-irradiated frozen fish using different hydrolysis techniques

    Science.gov (United States)

    Ahn, Jae-Jun; Akram, Kashif; Shahbaz, Hafiz Muhammad; Kwon, Joong-Ho

    2014-12-01

    Frozen fish fillets (walleye Pollack and Japanese Spanish mackerel) were selected as samples for irradiation (0-10 kGy) detection trials using different hydrolysis methods. Photostimulated luminescence (PSL)-based screening analysis for gamma-irradiated frozen fillets showed low sensitivity due to limited silicate mineral contents on the samples. Same limitations were found in the thermoluminescence (TL) analysis on mineral samples isolated by density separation method. However, acid (HCl) and alkali (KOH) hydrolysis methods were effective in getting enough minerals to carry out TL analysis, which was reconfirmed through the normalization step by calculating the TL ratios (TL1/TL2). For improved electron spin resonance (ESR) analysis, alkali and enzyme (alcalase) hydrolysis methods were compared in separating minute-bone fractions. The enzymatic method provided more clear radiation-specific hydroxyapatite radicals than that of the alkaline method. Different hydrolysis methods could extend the application of TL and ESR techniques in identifying the irradiation history of frozen fish fillets.

  15. Study on enzymatic hydrolysis of steam exploded straw by using shaking ball

    Institute of Scientific and Technical Information of China (English)

    Zhanwei SUN; Xiaoguo FU; Hongzhang CHEN; Yanhui WANG; Runyu MA

    2008-01-01

    A novel method of enzymatic hydrolysis was developed in this paper to produce a high conversion yield and hydrolysis rate. A comparison was described by using three methods of enzymatic hydrolysis and adsorption of steam exploded straw (SEWS): shaking ball in the regime, shaking with stirrer bed, and static state. The most adequate filter-paper activity, speed and reaction time were 3.6 × 10-7 mol/(s·mL), 150 r/min and 24 h, respectively, with the reducing sugar yield of 0.43. The results showed that the method of shaking ball produced the highest adsorption, conversion yields and hydrolysis rate of the enzyme. This might be due to the continuous frequency increase of enzyme adsorption and desorption on the substrate surface as well as the relieved end-product inhibition. The morphological variation of SEWS was characterized by environmental scanning electron microscopy (ESEM).

  16. Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soo-Jeong [Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Sung, Yong Joo [KT and G Central Research Institute, 302 Shinseong-Dong, Yuseong-Gu, Daejeon 305-805 (Korea, Republic of)], E-mail: yosung17@yahoo.co.kr

    2008-09-15

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.

  17. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content

    DEFF Research Database (Denmark)

    Cannella, David; Hsieh, Chia-Wen; Felby, Claus;

    2012-01-01

    conversion yields. When using pure cellulose substrates it has been determined that both oxidized and unoxidized cellodextrin products are formed. We report the effect of oxidative activity in a commercial enzyme mix (Cellic CTec2) upon overall hydrolysis, formation of oxidized products and impact on ß......-glucosidase than glucose. The formation of oxidized products decreased as the hydrolysis temperature was increased from 33° to 50°C. Despite end-product inhibition, the oxidative cleavage of the cellulose chains has a synergistic effect upon the overall hydrolysis of cellulose as the sugar yield increased compared...... hydrolysis of pretreated wheat straw at 30% WIS. Up to 4% of released glucose was oxidized into gluconic acid using Cellic CTec2, whereas no oxidized products were detected when using an earlier cellulase preparation Celluclast/Novozym188. However, the cellulose conversion yield was 25% lower using...

  18. Synthesis of Ge-imogolite: influence of the hydrolysis ratio on the structure of the nanotubes.

    Science.gov (United States)

    Levard, C; Masion, A; Rose, J; Doelsch, E; Borschneck, D; Olivi, L; Chaurand, P; Dominici, C; Ziarelli, F; Thill, A; Maillet, P; Bottero, J Y

    2011-08-28

    The synthesis protocol for Ge-imogolite (aluminogermanate nanotubes) consists of 3 main steps: base hydrolysis of a solution of aluminum and germanium monomers, stabilization of the suspension and heating at 95 °C. The successful synthesis of these nanotubes was found to be sensitive to the hydrolysis step. The impact of the hydrolysis ratio (from n(OH)/n(Al) = 0.5 to 3) on the final product structure was examined using a combination of characterization tools. Thus, key hydrolysis ratios were identified: n(OH)/n(Al) = 1.5 for the formation of nanotubes with structural defects, n(OH)/n(Al) = 2 for the synthesis of a well crystallized Ge imogolite and n(OH)/n(Al) > 2.5 where nanotube formation is hindered. The capability of controlling the degree of the nanotube's crystallinity opens up interesting opportunities in regard to new potential applications.

  19. Combined steam pretreatment and enzymatic hydrolysis of starch-free wheat fibers.

    Science.gov (United States)

    Palmarola-Adrados, Beatriz; Galbe, Mats; Zacchi, Guido

    2004-01-01

    Steam treatment of an industrial process stream, denoted starch-free wheat fiber, was investigated to improve the formation of monomeric sugars in subsequent enzymatic hydrolysis for further bioconversion into ethanol. The solid fraction in the process stream, derived from a combined starch and ethanol factory, was rich in arabinose (21.1%), xylose (30.1%), and glucose (18.6%), in the form of polysaccharides. Various conditions of steam pretreatment (170-220 degrees C for 5-30 min) were evaluated, and their effect was assessed by enzymatic hydrolysis with 2 g of Celluclast + Ultraflo mixture/100 g of starch-free fiber (SFF) slurry at 5% dry matter (DM). The highest overall sugar yield for the combined steam pretreatment and enzymatic hydrolysis, 52 g/100 g of DM of SFF, corresponding to 74% of the theoretical, was achieved with pretreatment at 190 degrees C for 10 min followed by enzymatic hydrolysis.

  20. Combined enzymatic hydrolysis and fermentation of aspenwood using enzymes derived from Trichoderma harzianum E58

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    Energy, Mines and Resources Canada supported a project with Forintek Canada Corp. directed toward the conversion of aspenwood to ethanol. This conversion is carried out through three sequential steps, steam explosion/extraction, hydrolysis and fermentation. This investigation involved study of the factors which governed the rate and extent of cellulose hydrolysis. The physical and chemical state of the material to be hydrolysed, enzyme concentation and adsorption onto residue, end-product characterization and inhibition, recycling of enzymes and cellulose, and growth media for the fungus were among the variables examined. The research demonstrated the interdependency between pretreatment, cellulose hydrolysis, hemicellulose fermentation and enzyme production. It was also determined that because of the amount of cellulose required for enzyme production and the difficulties encountered in recovering/recycling the celluloses, further work is required in order to commercialize an enzymatic hydrolysis process based on Trichoderma harzianum E58.

  1. Dynamic Simulation, Sensitivity and Uncertainty Analysis of a Demonstration Scale Lignocellulosic Enzymatic Hydrolysis Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2014-01-01

    This study presents the uncertainty and sensitivity analysis of a lignocellulosic enzymatic hydrolysis model considering both model and feed parameters as sources of uncertainty. The dynamic model is parametrized for accommodating various types of biomass, and different enzymatic complexes...

  2. Lipase-catalyzed hydrolysis of linseed oil: optimization using response surface methodology.

    Science.gov (United States)

    Chen, Weiwei; Sun, Shangde; Liang, Shaohua; Peng, Le; Wang, Yadong; Shen, Mi

    2014-01-01

    Lipase-catalyzed hydrolysis of linseed oil was investigated. Four commercially available microbial lipases of Lipase AY, Lipozyme RMIM, Lipozyme TLIM, and Novozym 435 were used. Among these tested lipases, Lipase AY exhibited the best hydrolysis effeciency to linseed oil. The effect of reaction variables was also evaluated and optimized using response surface methodology. A second-order regression for the Box-Behken design was used to study the effect of five independent variables, such as, temperature, pH, oil-aqueous phase ratio, enzyme load, and reaction time, on the hydrolysis of linseed oil. The optimal conditions were as follows: temperature 33°C, pH 5.80, oil-aqueous phase ratio 0.90 (w/w), enzyme load 1.20% (relative to the weight of total substrates), and reaction time 3.33 h. Under these conditions, the hydrolysis ratio of linseed oil was 93.92±0.54%.

  3. Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach

    Science.gov (United States)

    Jamil, N. M.; Wang, Q.

    2016-06-01

    Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.

  4. Study on the Hydrolysis Kinetics of Xylan on Different Acid Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byeong-Il; Lee, Jae-Won [Chonnam National University, Gwangju (Korea, Republic of)

    2014-04-15

    In this study, we investigated kinetic model for the acid-catalyzed xylan hydrolysis at temperature 120-150 .deg. C. Also, we analyzed the kinetic parameters for xylose production and furfural decomposition. The hydrolysis of xylan and the degradation of xylose were promoted by high reaction temperature and acid concentration. The optimal hydrolysis condition for the highest reaction rate constants (k{sub 1}) was different depending on the acid catalysts. Among sulfuric, oxalic and maleic acid, the xylan reaction rate constants (k{sub 1}) to xylose had the highest value of 0.0241 min{sup -1} when 100 mM sulfuric acid was used at 120 .deg. C. However, sulfuric acid induced more xylose degradation compared to oxalic and maleic acid hydrolysis. The activation energy for xylan degradation was the highest when sulfuric acid was used.

  5. ENZYMATIC HYDROLYSIS OF SWITCHGRASS AND COASTAL BERMUDA GRASS PRETREATED USING DIFFERENT CHEMICAL METHODS

    Directory of Open Access Journals (Sweden)

    Jiele Xu

    2011-06-01

    Full Text Available To investigate the effects of biomass feedstock and pretreatment method on the enzyme requirement during hydrolysis, swichgrass and coastal Bermuda grass pretreated using H2SO4, NaOH, and Ca(OH2 at the optimal conditions were subjected to enzymatic hydrolysis using two enzyme combinations: NS 50013 + NS 50010 and Cellic CTec + Cellic HTec. The enzyme loadings were optimized, and correlations between feedstock property, pretreatment strategy, and enzyme usage were evaluated. The results show that pretreatment methods resulting in greater lignin contents in the pretreated biomass were generally associated with higher enzyme requirements. More sugars could be recovered from alkaline-pretreated biomass during enzymatic hydrolysis due to the better carbohydrate preservation achieved at mild pretreatment temperatures. The cellulase enzyme, Cellic CTec, was more efficient in catalyzing the hydrolysis of coastal Bermuda grass, a feedstock more digestible than the pretreated swichgrass, following pretreatment with NaOH or Ca(OH2.

  6. Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation

    International Nuclear Information System (INIS)

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose

  7. Hydrolysis of Olive Oil with Immobilized Lipase in a Tapered Column Reactor

    Institute of Scientific and Technical Information of China (English)

    杨伯伦; 赵国胜; 林宏业

    2003-01-01

    Lipase was immobilized in ion exchange resin and then used in the hydrolysis of olive oil to produce fatty acids and glycerol. The time course of hydrolysis of olive oil was investigated in a stirred tank reactor using both of the free and immobilized lipases to find the yield of activity of immobilized enzyme. Continuous hydrolysis of olive oil was also carried out in a tapered column reactor and a cylindrical column reactor with a bottom ID of 10 mm at different upward flow rates. It can be known from experimental results that the degree of hydrolysis of olive oil in the tapered column reactor is moderately better than that in the cylindrical column reactor, the pressure drop in the tapered column reactor is much smaller than that in the cylindrical column reactor.

  8. Decrease in Sphingomyelin (d18:1/16:0 in Stem Villi and Phosphatidylcholine (16:0/20:4 in Terminal Villi of Human Term Placentas with Pathohistological Maternal Malperfusion.

    Directory of Open Access Journals (Sweden)

    Kaori Yamazaki

    Full Text Available Placental villi play pivotal roles in feto-maternal transportation and phospholipids constitute a major part of the villous membrane. We have been developing and optimizing an imaging system based on a matrix-assisted laser desorption/ionization (MALDI-based mass spectrometer, which provides clear two-dimensional molecular distribution patterns using highly sensitive mass spectrometry from mixtures of ions generated on tissue surfaces. We recently applied this technology to normal human uncomplicated term placentas and detected the specific distribution of sphingomyelin (SM (d18:1/16:0 in stem villi and phosphatidylcholine (PC (16:0/20:4 in terminal villi. In the present study, we applied this technology to nine placentas with maternal or fetal complications, and determined whether a relationship existed between these specific distribution patterns of phospholipid molecules and the six representative pathological findings of placentas, i.e., villitis of unknown etiology (VUE, thrombus, atherosis, chorioamnionitis (CAM, immature terminal villi, and multiple branched terminal villi. In two placentas with the first and second largest total number of positive pathological findings, i.e., five and three positive findings, the specific distribution of SM (d18:1/16:0 in stem villi and PC (16:0/20:4 in terminal villi disappeared. The common pathological findings in these two placentas were atherosis, immature terminal villi, and multiple branched terminal villi, suggesting the possible involvement of the underperfusion of maternal blood into the intervillous space. On the other hand, the number of pathological findings were two or less in the seven other placentas, in which no specific relationships were observed between the differential expression patterns of these two phospholipids in stem and terminal villi and the pathological findings of the placentas; however, the specific distribution pattern of SM (d18:1/16:0 in stem villi disappeared in four

  9. Separating Octadecyltrimethoxysilane Hydrolysis and Condensation at the Air/Water Interface through Addition of Methyl Stearate

    OpenAIRE

    Britt, David W; Hlady, Vladimir

    1999-01-01

    The hydrolysis and condensation of octadecyltrimethoxysilane (OTMS) at the air/water interface were monitored through molecular area changes at a constant surface pressure of 10 mN/m. The onset of condensation was delayed through the addition of methyl stearate (SME) acting as an inert filler molecule. In the absence of SME, complete gelation of OTMS required 30 h, during which time OTMS condensation occurred concomitantly with hydrolysis. In the presence of SME, the OTMS monolayer gelation r...

  10. On the Brønsted acid-catalyzed homogeneous hydrolysis of furans.

    Science.gov (United States)

    Nikbin, Nima; Caratzoulas, Stavros; Vlachos, Dionisios G

    2013-11-01

    Furan affairs: Electronic structure calculations of the homogeneous Brønsted acid-catalyzed hydrolysis of 2,5-dimethylfuran show that proton transfer to the β-position is rate-limiting and provides support that the hydrolysis follows general acid catalysis. By means of projected Fukui indices, we show this to be the case for unsubstituted, 2-, and 2,5-substituted furans with electron-donating groups.

  11. Spectrophotometric determination of paracetamol in pharmaceuticals using microwave-assisted hydrolysis and a micellar medium

    OpenAIRE

    Sequinel, Rodrigo; José L. Rufino; Pezza, Helena; Pezza, Leonardo

    2011-01-01

    A new spectrophotometric method employing a micellar medium is proposed for the determination of paracetamol in pharmaceuticals. The method is based on the acid hydrolysis of paracetamol to p-aminophenol (PAP), which under acidic conditions reacts with p-dimethylaminocinnamaldehyde (pDAC), producing a red compound (λmax = 530 nm). This reaction can be enhanced five-fold in the presence of sodium dodecyl sulfate (SDS). The effects of all the parameters involved in both the hydrolysis step...

  12. Hydrolysis behavior of various crystalline celluloses treated by cellulase of Tricoderma viride

    OpenAIRE

    Abdullah, Rosnah; Saka, Shiro

    2014-01-01

    Cellobiose and glucose are valuable products that can be obtained from enzymatic hydrolysis of cellulose. This study discusses changes in the crystalline form of celluloses to enhance the production of sugars and examines the effect on structural properties during enzymatic hydrolysis. Various crystalline celluloses consisting of group I (cell I, cell III[I], cell IV[I]) and group II (cell II, cell III[II], cell IV[II]) of similar DPs were prepared as starting materials. The similar DP values...

  13. Optimization of Hydrolysis Conditions for the Production of Iron-Binding Peptides from Mackerel Processing Byproducts

    OpenAIRE

    Pan-Feng Wang; Guang-Rong Huang; Jia-Xin Jiang

    2013-01-01

    The aim of this study was focused on optimization of enzymatic hydrolysis conditions for the production of iron-binding peptides from marine mackerel processing byproducts. The marine mackerel processing byproducts protein were hydrolyzed using trypsin, Protamex, Flavourzyme, Alcalase and Neutrase. Alcalase and Protamex proteolytic hydrolysates exhibited the highest iron-binding capacity; however, Alcalase proteolytic hydrolysate had higher degree of hydrolysis than that of Protamex. A four-f...

  14. Kinetic model for whey protein hydrolysis by alcalase multipoint-immobilized on agarose gel particles

    OpenAIRE

    Sousa Jr R.; Lopes G. P.; Tardioli P. W.; Giordano R.L.C.; Almeida P. I. F.; Giordano R. C.

    2004-01-01

    Partial hydrolysis of whey proteins by enzymes immobilized on an inert support can either change or evidence functional properties of the produced peptides, thereby increasing their applications. The hydrolysis of sweet cheese whey proteins by alcalase, which is multipoint-immobilized on agarose gel, is studied here. A Michaelis-Menten model that takes into account competitive inhibition by the product was fitted to experimental data. The influence of pH on the kinetic parameters in the range...

  15. Production of Fish Hydrolysates Protein from Waste of Fish Carp (Cyprinus Carpio) By Enzymatic Hydrolysis

    OpenAIRE

    Dede Saputra; Tati Nurhayati3)

    2016-01-01

    Fish Protein Hydrolysates (FPH) is the mixed products of polypeptide, dipeptides, and amino acid. It can be produced from materials that contained of protein by acid reaction, base reaction or enzymatic hydrolysis. The objectives of this study were to study the production of FPH from fish carp meat at post rigor phase and viscera by enzymatic hydrolysis, to determine the specific activity of papain enzyme, and to determine the solubility of FPH. Capacity of fish hydrolyzing can be...

  16. Recycle of enzymes and substrate following enzymatic hydrolysis of steam-pretreated aspenwood

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1987-09-01

    The commercial production of chemicals and fuels from lignocellulosic residues by enzymatic means still requires considerable research on both the technical and economic aspects. Two technical problems that have been identified as requiring further research are the recycle of the enzymes used in hydrolysis and the reuse of the recalcitrant cellulose remaining after incomplete hydrolysis. Enzyme recycle is required to lower the cost of the enzymes, while the reuse of the spent cellulose will lower the feedstock cost. The conversion process studied was a combined enzymatic hydrolysis and fermentation (CHF) procedure that utilized the cellulolytic enzymes derived from the fungus Trichoderma harzianum E58 and the yeast Saccharomyces cerevisiae. The rate and extent of hydrolysis and ethanol production was monitored as was the activity and hydrolytic potential of the enzymes remaining in the filtrate after the hydrolysis period. When a commercial cellulose was used as the substrate for a routine 2-day CHF process, 60% of the original filter paper activity could be recovered. When steam-treated, water-extracted aspenwood was used as the substrate, only 13% of the original filter paper activity was detected after a similar procedure. The combination of 60% spent enzymes with 40% fresh enzymes resulted in the production of 30% less reducing sugars than the original enzyme mixture. Since 100% hydrolysis of the cellulose portion is seldom accomplished in an enzymatic hydrolysis process, the residual cellulose was used as a substrate for the growth of T. harzianum E58 and production of cellulolytic enzymes. The residue remaining after the CHF process was used as a substrate for the production of the cellulolytic enzymes. The production of enzymes from the residue of the Solka Floc hydrolysis was greater than the production of enzymes from the original Solka Floc. (Refs. 14).

  17. Effect of initial pH on mesophilic hydrolysis and acidification of swine manure

    OpenAIRE

    Lin, Lin; Wan, Chunli; Liu, Xiang; Lee, Duu-Jong; Lei, Zhongfang; Zhang, Yi; Hwa, Tay Joo

    2013-01-01

    Effects of initial pH (3–12) on mesophilic hydrolysis and acidification reactions of swine manure was studied. The initial pH changed the microbial community in the suspension so as to affect hydrolysis and acidification reactions on swine manure. At pH 10–12 the Clostridium alkalicellum and/or Corynebacterium humireducens were enriched and the soluble chemical oxygen demand (SCOD), total volatile fatty acids (VFAs), proteins and carbohydrates from manure were increased in quantities. In part...

  18. Improving hydrolysis of food waste in a leach bed reactor

    International Nuclear Information System (INIS)

    Highlights: • This paper assesses leaching of food waste in a two phase digestion system. • Leaching is assessed with and without an upflow anaerobic sludge blanket (UASB). • Without the UASB, low pH reduces hydrolysis, while increased flows increase leaching. • Inclusion of the UASB increases pH to optimal levels and greatly improves leaching. • The optimal conditions are suggested as low flow with connection to the UASB. - Abstract: This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four different operating conditions. The effects of leachate recirculation at a low and high flow rate are examined with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost 60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day with connection to the UASB

  19. Hydrolysis behavior of tofu waste in hot compressed water

    International Nuclear Information System (INIS)

    Tofu waste (TW) is a typical high water-containing biomass; and the hydrothermal process is preferred to utilize it with low energy cost. TW is also a special biomass characterized by high proportion of proteins and fatty acids, which will lead to a different hydrolysis result. In this work, TW was hydrolyzed by hot compressed water below 390 °C in a batch reactor heated by a salt bath. Four parameters including water density, reaction time, the ratio of TW to water and reaction temperature were investigated. Results showed that CO2 was the major component of the produced gas, a measurable fraction of H2 was produced above 300 °C and 65–75% or more of TW can be transformed into water-soluble fraction. It was found that the influence of the treatment temperature on TW conversion was the most significant. Based on the product distribution (gases, water-insolubles, oils, and water-solubles) along with temperature, a four-stage hydrothermal conversion mechanism was put forward in macroscopic view. In combination with the evolution of gas composition and infrared spectrum, the understanding about the conversion of TW in hot compressed water was further improved. -- Highlights: ► The conversion of high water content biomass in hot compressed water is investigated with Tofu waste as model biomass. ► TW conversion was seriously dependent on the reaction temperature. ► The conversion process can be divided into four stages. ► 200–250 °C, no oil but gas is generated; 250–300 °C, oil begin to be yielded. ► 300–350 °C, water-insoluble product decreases; above 350 °C oil product decreases.

  20. Isolation and characterization of a mucosal triacylglycerol pool undergoing hydrolysis

    International Nuclear Information System (INIS)

    Absorbed and processed mucosal neutral lipid has been shown to be composed of at least two pools of triacylglycerol. One is likely to subserve chylomicron formation, and the other appears to be transported from the intestine via a nonlymphatic route. In the present study, 50 +/- 5% of the mucosal lipid pellets was centrifuged at 75,000 g.min [low-speed pellet (LSP)]. Discontinuous sucrose density gradient centrifugation of LSP showed that 61 +/- 7% of the lipid banded at the 0.25-0.86 M sucrose interface. Neutral lipid analysis showed that this subfraction was only 58% triacylglycerol, suggesting it was undergoing hydrolysis. Active lipolytic activity in vitro was found on incubation. The lipase had an alkaline pH optimum (pH 8.5) and persisted despite pancreatic ductular diversion. Lipolysis in vivo in a LSP fraction was shown by infusing [14C]glyceryltrioleate for 3.5 h followed by [3H]glyceryltrioleate for 30 min. Discontinuous sucrose density centrifugation of the LSP followed by an analysis of the lipids at the 0.25-0.86 M sucrose interface showed that 14C-neutral lipids were only 70 +/- 6% triacylglycerol, whereas 3H-neutral lipids were 88 +/- 2% triacylglycerol. 3H entered LSP slowly compared with the floating lipid in the same centrifuge tube. These studies suggest both in vivo and in vitro mucosal lipolysis by a specific, alkaline-active lipase. The turnover rate of LSP is likely to be slow by comparison with neutral lipid floating to the top of the centrifuge tube

  1. Enzymatic Synthesis of Rhamnose Containing Chemicals by Reverse Hydrolysis.

    Directory of Open Access Journals (Sweden)

    Lili Lu

    Full Text Available Rhamnose containing chemicals (RCCs are widely occurred in plants and bacteria and are known to possess important bioactivities. However, few of them were available using the enzymatic synthesis method because of the scarcity of the α-L-rhamnosidases with wide acceptor specificity. In this work, an α-L-rhamnosidase from Alternaria sp. L1 was expressed in Pichia pastroris strain GS115. The recombinant enzyme was purified and used to synthesize novel RCCs through reverse hydrolysis in the presence of rhamnose as donor and mannitol, fructose or esculin as acceptors. The effects of initial substrate concentrations, reaction time, and temperature on RCC yields were investigated in detail when using mannitol as the acceptor. The mannitol derivative achieved a maximal yield of 36.1% by incubation of the enzyme with 0.4 M L-rhamnose and 0.2 M mannitol in pH 6.5 buffers at 55°C for 48 h. In identical conditions except for the initial acceptor concentrations, the maximal yields of fructose and esculin derivatives reached 11.9% and 17.9% respectively. The structures of the three derivatives were identified to be α-L-rhamnopyranosyl-(1→6'-D-mannitol, α-L-rhamnopyranosyl-(1→1'-β-D-fructopyranose, and 6,7-dihydroxycoumarin α-L-rhamnopyranosyl-(1→6'-β-D-glucopyranoside by ESI-MS and NMR spectroscopy. The high glycosylation efficiency as well as the broad acceptor specificity of this enzyme makes it a powerful tool for the synthesis of novel rhamnosyl glycosides.

  2. Improving hydrolysis of food waste in a leach bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Browne, James D.; Allen, Eoin; Murphy, Jerry D., E-mail: jerry.murphy@ucc.ie

    2013-11-15

    Highlights: • This paper assesses leaching of food waste in a two phase digestion system. • Leaching is assessed with and without an upflow anaerobic sludge blanket (UASB). • Without the UASB, low pH reduces hydrolysis, while increased flows increase leaching. • Inclusion of the UASB increases pH to optimal levels and greatly improves leaching. • The optimal conditions are suggested as low flow with connection to the UASB. - Abstract: This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four different operating conditions. The effects of leachate recirculation at a low and high flow rate are examined with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost 60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day with connection to the UASB.

  3. STRATEGIES TO RECYCLE ENZYMES AND THEIR IMPACT ON ENZYMATIC HYDROLYSIS FOR BIOETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Ying Xue,

    2011-12-01

    Full Text Available Enzymes still exhibit activities after hydrolysis of biomass according to previous studies. Recycling the enzymes and use them in subsequent hydrolysis cycles can further utilize their remaining activities. Previous studies have mainly discussed enzyme recycling processes up to three cycles, in which the processes did not reach steady state. Steady state investigation is essential for the guidance of the real life process. Four cycles of processing have usually been considered enough to bring the system to steady state in process engineering. In this work, hydrolysate was used as the source of recycled enzymes to fresh substrate for five cycles. Because a large amount of enzymes remained on the pulp, surfactant was introduced to recycle the enzymes that remained with the residue. Recycled hydrolysate from previous enzymatic hydrolysis usually carries a high concentration of sugars, which can inhibit the new round of hydrolysis. To remove sugar from the recycling stream, a wash with fresh buffer was performed. Sugars were removed, while enzymes still remain on the fresh substrates. Six recycling strategies were evaluated for enzyme recycling percentage and enzymatic hydrolysis efficiency with both green-liquor pretreated softwood and hardwood in this investigation. Hydrolysis efficiency increased by about 40% for softwood at 30 mg/g enzyme dosage and about 25% for hardwood at 7.5 mg/g when a washing stage was applied with addition of surfactant.

  4. Kinetic study of alkaline protease 894 for the hydrolysis of the pearl oyster Pinctada martensii

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin; CHEN Hua; CAI Bingna; LIU Qingqin; SUN Huili

    2013-01-01

    A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity,even at low temperature,but the characteristics of the hydrolysis with this enzyme are still unclear.The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties ofprotease 894.After investigating the intrinsic relationship between the degree of hydrolysis and several factors,including initial reaction pH,temperature,substrate concentration,enzyme concentration,and hydrolysis time,the kinetics model was established.This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0,temperature of 30℃,substrate concentration of 10% (w/v),enzyme concentration of 2 500 U/g,and hydrolysis time of 160 min.The kinetic characteristics of the protease for the hydrolysis of P.martensii were obtained.The inactivation constant was found to be 15.16/min,and the average relative error between the derived kinetics model and the actual measurement was only 3.04%,which indicated a high degree of fitness.Therefore,this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease,which has potential applications in the food industry.

  5. Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents.

    Science.gov (United States)

    Wei, Benxi; Hu, Xiuting; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-11-01

    The effect of defatting on the physiochemical properties and the acid hydrolysis rate of maize starch with different amylose contents was evaluated in this study. The increase in the number of pores and the stripping of starch surface layers were observed after defatting by scanning electron microscopy. X-ray diffraction spectrum showed that the peaks attributing to the amylose-lipid complex disappeared. The relative crystallinity increased by 19% for high-amylose maize starch (HMS) on defatting, while the other tested starches virtually unchanged. Differential scanning calorimetry study indicated an increase in the thermal stability for the defatted starches. Compared with native waxy maize starch, the acid hydrolysis rate of the defatted one increased by 6% after 10 days. For normal maize starch (NMS) and HMS, the higher rate of hydrolysis was observed during the first 5 days. Thereafter, the hydrolysis rate was lower than that of their native counterpart. The increase in susceptibility to acid hydrolysis (in the first 5 days) was mainly attributed to the defective and porous structures formed during defatting process, while the decrease of hydrolysis rate for NMS and HMS samples (after the first 5 days) probably resulted from the increase in the relative crystallinity.

  6. Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview.

    Science.gov (United States)

    Vavilin, V A; Fernandez, B; Palatsi, J; Flotats, X

    2008-01-01

    The applicability of different kinetics to the hydrolysis of particulate organic material in anaerobic digestion is discussed. Hydrolysis has traditionally been modelled according to the first-order kinetics. For complex substrate, the first-order kinetics should be modified in order to take into account hardly degradable material. It has been shown that models in which hydrolysis is coupled to the growth of hydrolytic bacteria work well at high or at fluctuant organic loading. In particular, the surface-related two-phase and the Contois models showed good fits to experimental data from a wide range of organic waste. Both models tend to the first-order kinetics at a high biomass-to-waste ratio and, for this reason, they can be considered as more general models. Examples on different inhibition processes that might affect the degradation of solid waste are reported. Acetogenesis or methanogenesis might be the rate-limiting stages in complex waste. In such cases, stimulation of hydrolysis (mechanically, chemically or biologically) may lead to a further inhibition of these stages, which ultimately affects hydrolysis as well. Since the hydrolysis process is characterized by surface and transport phenomena, new developments in spatially distributed models are considered fundamental to provide new insights in this complex process.

  7. Combined enzymatic hydrolysis and fermentation of hemicellulose to 2,3-butanediol

    Energy Technology Data Exchange (ETDEWEB)

    Yu, E.K.C.; Deschatelets, L.; Saddler, J.N.

    1984-06-01

    Hemicellulose-rich fractions from several agricultural residues were converted to 2,3-butanediol by a combined enzymatic hydrolysis and fermentation process. Culture filtrates from Trichoderma harzianum E58 were used to hydrolyze the substrates while Klebsiella pneumoniae fermented the liberated sugars to 2,3-butanediol. Approximately 50-60% of a 5% (w/v) xylan preparation could be hydrolyzed and quantitatively converted to 2,3-butanediol using this procedure. Although enzymatic hydrolysis was optimal at pH 5.0 and 50/sup 0/C, the combined hydrolysis and fermentation was most efficient at pH 6.5 and 30/sup 0/C. Combined hydrolysis and fermentation resulted in butanediol levels that were 20-40% higher than could be obtained with a separate hydrolysis and fermentation process. The hemicellulose-rich water-soluble fractions obtained from a variety of steam-exploded agricultural residues could be readily used by the combined hydrolysis and fermentation approach resulting in butanediol yields of 0.4-0.5 g/g of reducing sugar utilized.

  8. Partial Hydrolysis of the Fucosylated Chondroitin Sulfate from Sea Cucumber Isostichopus badionotus and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi-Guo; LI Guo-Yun; YE Xing-Qian; XUE Chang-Hu

    2012-01-01

    The method for preparing low molecular weight fucosylated chondroitin sulfate from sea cucumber lsostichopus badionotus using partial acid hydrolysis was reported, and its hydrolysis mechanism was also investigated. The sea cucumber chondroitin sulfate FCS was hydrolyzed under different conditions (80℃3 h and 6 h), then isolated and purified on a Bio-P-4 geltration to prepare low molecular weight fractions (LMWF-FCS). The chemical compositions of LMWF-FCS showed the branched fucose (Fuc) was cleaved during acid hydrolysis process, whereas the mole ratio of acetyl-galactosamine (GalNAc) and glucuronic acid (GlcA) in the backbone remained the same, which indicated the backbone was a typical chondroitin sulfate structure. The disaccharide composition analysis of LMWF-FCS suggested that the sulfation patterns of GalNAc in the backbone chain changed and the substitution value was reduced. Furthermore, the 1D NMR analysis illustrated the branched-Fuc was cleaved during acid hydrolysis, but their substitution patterns were not influenced, which was distinct from the previous reports that the substitutions of branched-Fuc in FCS were easy to change. Simultaneously, the sulfation pattern of GalNAc in backbone chain changed obviously in the acid hydrolysis process. The anticoagulant activity in vitro illuminated the anticoagulant activity of the degradation products over time in the acid hydrolysis are gradually declined, but still kept good. Therefore, the LMWF-FCS prepared could be developed as a new anticoagulant and antithrombotic drug like low molecular weight heparin.

  9. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis.

    Science.gov (United States)

    Sereewatthanawut, Issara; Prapintip, Surawit; Watchiraruji, Katemanee; Goto, Motonobu; Sasaki, Mitsuru; Shotipruk, Artiwan

    2008-02-01

    This study investigated the production of value-added protein and amino acids from deoiled rice bran by hydrolysis in subcritical water (SW) in the temperature range between 100 and 220 degrees C for 0-30 min. The results suggested that SW could effectively be used to hydrolyze deoiled rice bran to produce useful protein and amino acids. The amount of protein and amino acids produced are higher than those obtained by conventional alkali hydrolysis. The yields generally increased with increased temperature and hydrolysis time. However, thermal degradation of the product was observed when hydrolysis was carried out at higher temperature for extended period of time. The highest yield of protein and amino acids were 219 +/- 26 and 8.0 +/- 1.6 mg/g of dry bran, and were obtained at 200 degrees C at hydrolysis time of 30 min. Moreover, the product obtained at 200 degrees C after 30 min of hydrolysis exhibited high antioxidant activity and was shown to be suitable for use as culture medium for yeast growth. PMID:17320384

  10. Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily.

    Science.gov (United States)

    Daumke, Oliver; Praefcke, Gerrit J K

    2016-08-01

    Dynamin superfamily proteins are multidomain mechano-chemical GTPases which are implicated in nucleotide-dependent membrane remodeling events. A prominent feature of these proteins is their assembly- stimulated mechanism of GTP hydrolysis. The molecular basis for this reaction has been initially clarified for the dynamin-related guanylate binding protein 1 (GBP1) and involves the transient dimerization of the GTPase domains in a parallel head-to-head fashion. A catalytic arginine finger from the phosphate binding (P-) loop is repositioned toward the nucleotide of the same molecule to stabilize the transition state of GTP hydrolysis. Dynamin uses a related dimerization-dependent mechanism, but instead of the catalytic arginine, a monovalent cation is involved in catalysis. Still another variation of the GTP hydrolysis mechanism has been revealed for the dynamin-like Irga6 which bears a glycine at the corresponding position in the P-loop. Here, we highlight conserved and divergent features of GTP hydrolysis in dynamin superfamily proteins and show how nucleotide binding and hydrolysis are converted into mechano-chemical movements. We also describe models how the energy of GTP hydrolysis can be harnessed for diverse membrane remodeling events, such as membrane fission or fusion. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 580-593, 2016. PMID:27062152

  11. Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry

    Science.gov (United States)

    Marshall-Bowman, Karina; Ohara, Shohei; Sverjensky, Dimitri A.; Hazen, Robert M.; Cleaves, H. James

    2010-10-01

    The abiotic polymerization of amino acids may have been important for the origin of life, as peptides may have been components of the first self-replicating systems. Though amino acid concentrations in the primitive oceans may have been too dilute for significant oligomerization to occur, mineral surface adsorption may have provided a concentration mechanism. As unactivated amino acid polymerization is thermodynamically unfavorable and kinetically slow in aqueous solution, we studied mainly the reverse reaction of polymer degradation to measure the impact of mineral surface catalysis on peptide bonds. Aqueous glycine (G), diglycine (GG), diketopiperazine (DKP), and triglycine (GGG) were reacted with minerals (calcite, hematite, montmorillonite, pyrite, rutile, or amorphous silica) in the presence of 0.05 M, pH 8.1, KHCO 3 buffer and 0.1 M NaCl as background electrolyte in a thermostatted oven at 25, 50 or 70 °C. Below 70 °C, reaction kinetics were too sluggish to detect catalytic activity over amenable laboratory time-scales. Minerals were not found to have measurable effects on the degradation or elongation of G, GG or DKP at 70 °C in solution. At 70 °C pyrite was the most catalytic mineral with detectible effects on the degradation of GGG, although several others also displayed catalytic behavior. GGG degraded ˜1.5-4 times faster in the presence of pyrite than in control reactions, depending on the ratio of solution concentration to mineral surface area. The rate of pyrite catalysis of GGG hydrolysis was found to be saturable, suggesting the presence of discrete catalytic sites on the mineral surface. The mineral-catalyzed degradation of GGG appears to occur via a GGG → DKP + G mechanism, rather than via GGG → GG + G, as in solution-phase reactions. These results are compatible with many previous findings and suggest that minerals may have assisted in peptide synthesis in certain geological settings, specifically by speeding the approach to equilibrium

  12. Enzymatic production of ceramide from sphingomyelin

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2006-01-01

    Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potentials in cosmetic and pharmaceutical industries such as in hair and skin care products. Chemical synthesis of ceramide is a costly process, and developments of alternative cost...

  13. Effect of Varying Acid Hydrolysis Condition in Gracilaria Sp. Fermentation Using Sasad

    Science.gov (United States)

    Mansuit, H.; Samsuri, M. D. C.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.; Mansa, R.

    2015-04-01

    Macroalgae or seaweed is being considered as promising feedstock for bioalcohol production due to high polysaccharides content. Polysaccharides can be converted into fermentable sugar through acid hydrolysis pre-treatment. In this study, the potential of using carbohydrate-rich macroalgae, Gracilaria sp. as feedstock for bioalcohol production via various acid hydrolysis conditions prior to the fermentation process was investigated and evaluated. The seaweed used in this research was from the red algae group, using species of Gracilaria sp. which was collected from Sg. Petani Kedah, Malaysia. Pre-treatment of substrate was done using H2SO4 and HCl with molarity ranging from 0.2M to 0.8M. The pretreatment time were varied in the range of 15 to 30 minutes. Fermentation was conducted using Sasad, a local Sabahan fermentation agent as a starter culture. Alcohol extraction was done using a distillation unit. Reducing sugar analysis was done by Benedict test method. Alcohol content analysis was done using specific gravity test. After hydrolysis, it was found out that acid hydrolysis at 0.2M H2SO4 and pre-treated for 20 minutes at 121°C has shown the highest reducing sugar content which has yield (10.06 mg/g) of reducing sugar. It was followed by other samples hydrolysis using 0.4M HCl with 30 minutes pre-treatment and 0.2M H2SO4, 15 minutes pre-treatment with yield of 8.06 mg/g and 5.75 mg/g reducing sugar content respectively. In conclusion, acid hydrolysis of Gracilaria sp. can produce higher reducing sugar yield and thus it can further enhance the bioalcohol production yield. Hence, acid hydrolysis of Gracilaria sp. should be studied more as it is an important step in the bioalcohol production and upscaling process.

  14. Hydrolysis of Aluminum Ions in Kaolinite and Oxisol Suspensions as Influenced by Organic Anions

    Institute of Scientific and Technical Information of China (English)

    XU Ren-Kou; XIAO Shuang-Cheng; LI Jiu-Yu; D. TIWARI; JI Guo-Liang

    2007-01-01

    To evaluate the role of kaolinite and variable charge soils on the hydrolytic reaction of Al, the hydrolysis of Al ions in suspensions of a kaolinite and an Oxisol influenced by organic anions was investigated using changes of pH, Al adsorption, and desorption of pre-adsorbed Al. Kaolinite and the Oxisol promoted the hydrolytic reaction of Al above a certain initial Al concentration (0.1 mmol L-1 for kaolinite and 0.3 mmol L-1 for the Oxisol). The Al hydrolysis accelerated by kaolinite and the Oxisol increased with an increase in initial concentration of Al and was observed in the range of pH from 3.7 to 4.7 for kaolinite and 3.9 to 4.9 for the Oxisol. The acceleration of Al hydrolysis also increased with the increase of solution pH, reached a maximum value at pH 4.5, and then decreased sharply. Al hydrolysis was promoted mainly through selective adsorption for hydroxy-Al. Soil free iron oxides compensated a portion of the soil negative charge or masked some soil surface negative sites leading to a decrease in Al adsorption, which retarded acceleration to some extent. For the Oxisol organic anions increased the proportion of adsorbed Al3+ in total adsorbed Al with the increase in soil negative surface charge and eliminated or reduced the acceleration of Al hydrolysis. Different organic anions inhibited the hydrolysis of Al in the order:citrate > oxalate > acetate (under initial pH of 4.5). The formation of Al-organic complexes in solution also inhibited the hydrolysis of Al.

  15. Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Although organosolv pretreatment removed substantial amounts of lignin and xylan, the yield of glucan which is a major sugar source for fermentation to ethanol is more than 90% in most conditions of the organosolv pretreatment. Relative lignin contents of all pretreated biomass were more than 200 g kg−1, however enzymatic conversions were increased dramatically comparing to untreated biomass. Therefore the correlation between lignin and enzymatic hydrolysis could not be explained just by lignin content, and other changes resulting from lignin removal affected enzymatic hydrolysis. Results on enzymatic conversion and sugar recovery suggested that the critical temperature improving enzymatic hydrolysis significantly was between 120 °C and 130 °C. Microscopic analysis using Field emission scanning electron microscopy (FE-SEM) showed that structural lignin changes happened through organosolv pretreatment. Lignins were isolated from lignin carbohydrate complex (LCC) at the initial stage and then migrated to the surface of biomass. The isolated and migrated lignins were finally redistributed onto surface. These structural changes formed droplets on surface and increased pore volume in pretreated biomass. The increase in pore volume also increased available surface area and enzyme adsorption at initial stage, and thus enzymatic conversion increased significantly through organosolv pretreatment. It was verified that the droplets were mainly composed of lignin and the lignin droplets inhibited enzymatic hydrolysis through adsorption with cellulase. -- Highlights: ► Just lignin contents cannot explain a correlation with enzymatic hydrolysis. ► Several changes resulted from lignin removal must affect enzymatic hydrolysis. ► Droplets are formed by structural changes in lignin during organosolv pretreatment. ► Formation of the lignin droplet increases the pore volume in biomass. ► The increase in pore volume enhances the enzymatic hydrolysis.

  16. Partial least square modeling of hydrolysis: analyzing the impacts of pH and acetate

    Institute of Scientific and Technical Information of China (English)

    L(U) Fan; HE Pin-jing; SHAO Li-ming

    2006-01-01

    pH and volatile fatty acids both might affect the further hydrolysis of particulate solid waste, which is the limiting-step of anaerobic digestion. To clarify the individual effects of pH and volatile fatty acids, batch experiments were conducted at fixed pH value (pH 5-9) with or without acetate (20 g/L). The hydrolysis efficiencies of carbohydrate and protein were evaluated by carbon and nitrogen content of solids, amylase activity and proteinase activity. The trend of carbohydrate hydrolysis with pH was not affected by the addition of acetate, following the sequence of pH 7>pH 8>pH 9>pH 6>pH 5; but the inhibition of acetate (20 g/L) was obvious by 10%-60 %. The evolution of residual nitrogen showed that the effect of pH on protein hydrolysis was minor, while the acetate was seriously inhibitory especially at alkali condition by 45%-100 %. The relationship between the factors (pH and acetate) and the response variables was evaluated by partial least square modeling (PLS). The PLS analysis demonstrated that the hydrolysis of carbohydrate was both affected by pH and acetate, with pH the more important factor. Therefore, the inhibition by acetate on carbohydrate hydrolysis was mainly due to the corresponding decline of pH, but the presence of acetate species, while the acetate species was the absolutely important factor for the hydrolysis of protein.

  17. Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids.

    Directory of Open Access Journals (Sweden)

    Yoan Ah-Seng

    Full Text Available Hydrolysis of ATP by partition ATPases, although considered a key step in the segregation mechanism that assures stable inheritance of plasmids, is intrinsically very weak. The cognate centromere-binding protein (CBP, together with DNA, stimulates the ATPase to hydrolyse ATP and to undertake the relocation that incites plasmid movement, apparently confirming the need for hydrolysis in partition. However, ATP-binding alone changes ATPase conformation and properties, making it difficult to rigorously distinguish the substrate and cofactor roles of ATP in vivo. We had shown that mutation of arginines R36 and R42 in the F plasmid CBP, SopB, reduces stimulation of SopA-catalyzed ATP hydrolysis without changing SopA-SopB affinity, suggesting the role of hydrolysis could be analyzed using SopA with normal conformational responses to ATP. Here, we report that strongly reducing SopB-mediated stimulation of ATP hydrolysis results in only slight destabilization of mini-F, although the instability, as well as an increase in mini-F clustering, is proportional to the ATPase deficit. Unexpectedly, the reduced stimulation also increased the frequency of SopA relocation over the nucleoid. The increase was due to drastic shortening of the period spent by SopA at nucleoid ends; average speed of migration per se was unchanged. Reduced ATP hydrolysis was also associated with pronounced deviations in positioning of mini-F, though time-averaged positions changed only modestly. Thus, by specifically targeting SopB-stimulated ATP hydrolysis our study reveals that even at levels of ATPase which reduce the efficiency of splitting clusters and the constancy of plasmid positioning, SopB still activates SopA mobility and plasmid positioning, and sustains near wild type levels of plasmid stability.

  18. The effect of natural antioxidants on haemoglobin-mediated lipid oxidation during enzymatic hydrolysis of cod protein.

    Science.gov (United States)

    Halldorsdottir, Sigrun M; Kristinsson, Hordur G; Sveinsdottir, Holmfridur; Thorkelsson, Gudjon; Hamaguchi, Patricia Y

    2013-11-15

    Heating and changes in pH often practised during fish protein hydrolysis can cause lipid oxidation. The effect of natural antioxidants towards haemoglobin-mediated lipid oxidation during enzymatic hydrolysis of cod proteins was investigated. Different variants of a washed cod model system, containing different combinations of haemoglobin and natural antioxidants (l-ascorbic acid and Fuscus vesiculosus extract), were hydrolysed using Protease P "Amano" 6 at pH 8 and 36°C to achieve 20% degree of hydrolysis. Lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS) were analysed periodically during the hydrolysis process. The in vitro antioxidant activity of the final products was investigated. Results indicate that oxidation can develop rapidly during hydrolysis and antioxidant strategies are preferable to produce good quality products. Oxidation products did not have an impact on the in vitro antioxidant activity of the hydrolysates. The natural antioxidants inhibited oxidation during hydrolysis and contributed to the antioxidant activity of the final product. PMID:23790867

  19. Durability and reutilization capabilities of a Ni-Ru catalyst for the hydrolysis of sodium borohydride in batch reactors

    OpenAIRE

    Pinto, A.M.F.R.; M.J.F. Ferreira; Fernandes, V. R.; Rangel, C. M.

    2011-01-01

    The study of catalyst durability and reutilization on catalyzed hydrolysis of sodium borohydride is essential from an application point of view. Few works on this topic are available in the literature. In the present work, a powder nickel-ruthenium based catalyst, unsupported, used in two different schemes of NaBH 4 hydrolysis (alkaline and alkali free hydrolysis), performed in batch reactors with different volumes and bottom geometries (flat and conical), was investigated in terms of durabil...

  20. Effects of sonication and high-pressure carbon dioxide processing on enzymatic hydrolysis of egg white proteins

    OpenAIRE

    Knežević-Jugović Zorica D.; Stefanović Andrea B.; Žuža Milena G.; Milovanović Stoja L.; Jakovetić Sonja M.; Manojlović Verica B.; Bugarski Branko M.

    2012-01-01

    The objectives of this study were to examine the effect of sonication and high-pressure carbon dioxide processing on proteolytic hydrolysis of egg white proteins and antioxidant activity of the obtained hydrolysates. It appeared that the ultrasound pretreatment resulted in an increase in the degree of hydrolysis of the enzymatic reaction while the high-pressure carbon dioxide processing showed an inhibition effect on the enzymatic hydrolysis of egg white proteins to some extent. The ant...

  1. EFFECT OF STRUCTURAL CHANGES ON ENZYMATIC HYDROLYSIS OF EUCALYPTUS, SWEET SORGHUM BAGASSE, AND SUGARCANE BAGASSE AFTER LIQUID HOT WATER PRETREATMENT

    OpenAIRE

    Wen Wang; Xinshu Zhuang,; Zhenhong Yuan; Qiang Yu; Wei Qi; Qiong Wang; Xuesong Tan

    2012-01-01

    A woody (eucalyptus (Eu)) and two herbaceous materials (sweet sorghum bagasse (SSB) and sugarcane bagasse (SCB)) were used to evaluate the effect of liquid hot water (LHW) pretreatment on enzymatic hydrolysis of various lignocelluloses. The results showed that enzymatic hydrolysis efficiency of pretreated materials was SCB>SSB>Eu at 5% solids loading, while SSB>SCB>Eu was at 10% and 20% solids loadings. This indicated the enzymatic hydrolysis efficiency of SCB could be influenced by solids co...

  2. Untreated Chlorella homosphaera biomass allows for high rates of cell wall glucan enzymatic hydrolysis when using exoglucanase-free cellulases

    OpenAIRE

    Rodrigues, Marcoaurélio Almenara; Teixeira, Ricardo Sposina Sobral; Ferreira-Leitão, Viridiana Santana; da Silva Bon, Elba Pinto

    2015-01-01

    Background Chlorophyte microalgae have a cell wall containing a large quantity of cellulose Iα with a triclinic unit cell hydrogen-bonding pattern that is more susceptible to hydrolysis than that of the cellulose Iβ polymorphic form that is predominant in higher plants. This study addressed the enzymatic hydrolysis of untreated Chlorella homosphaera biomass using selected enzyme preparations, aiming to identify the relevant activity profile for the microalgae cellulose hydrolysis. Enzymes fro...

  3. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates

    OpenAIRE

    Melissa Ferreira SBROGGIO; Marina Silveira MONTILHA; Vitória Ribeiro Garcia de FIGUEIREDO; Sandra Regina GEORGETTI; Louise Emy KUROZAWA

    2016-01-01

    Abstract The objective of this work was to evaluate the antioxidant activity of protein hydrolysates obtained by the enzymatic hydrolysis of okara using an endopeptidase (Alcalase) and exopeptidase (Flavourzyme). The reaction was monitored by the pH-stat procedure in which five aliquots were collected during the hydrolysis by each enzyme, corresponding to different degrees of hydrolysis (DH). The antioxidant activities of the aliquots were evaluated by the ABTS, DPPH and FRAP methods. For the...

  4. Hydrolysis of Ammonia-pretreated Sugar Cane Bagasse with Cellulase, β-Glucosidase, and Hemicellulase Preparations

    Science.gov (United States)

    Prior, Bernard A.; Day, Donal F.

    Sugar cane bagasse consists of hemicellulose (24%) and cellulose (38%), and bioconversion of both fractions to ethanol should be considered for a viable process. We have evaluated the hydrolysis of pretreated bagasse with combinations of cellulase, β-glucosidase, and hemicellulase. Ground bagasse was pretreated either by the AFEX process (2NH3: 1 biomass, 100 °C, 30 min) or with NH4OH (0.5 g NH4OH of a 28% [v/v] per gram dry biomass; 160 °C, 60 min), and composition analysis showed that the glucan and xylan fractions remained largely intact. The enzyme activities of four commercial xylanase preparations and supernatants of four laboratory-grown fungi were determined and evaluated for their ability to boost xylan hydrolysis when added to cellulase and β-glucosidase (10 filter paper units [FPU]: 20 cellobiase units [CBU]/g glucan). At 1% glucan loading, the commercial enzyme preparations (added at 10% or 50% levels of total protein in the enzyme preparations) boosted xylan and glucan hydrolysis in both pretreated bagasse samples. Xylanase addition at 10% protein level also improved hydrolysis of xylan and glucan fractions up to 10% glucan loading (28% solids loading). Significant xylanase activity in enzyme cocktails appears to be required for improving hydrolysis of both glucan and xylan fractions of ammonia pretreated sugar cane bagasse.

  5. Inhibition of cellulose enzymatic hydrolysis by laccase-derived compounds from phenols.

    Science.gov (United States)

    Oliva-Taravilla, Alfredo; Tomás-Pejó, Elia; Demuez, Marie; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-01-01

    The presence of inhibitors compounds after pretreatment of lignocellulosic materials affects the saccharification and fermentation steps in bioethanol production processes. Even though, external addition of laccases selectively removes the phenolic compounds from lignocellulosic prehydrolysates, when it is coupled to saccharification step, lower hydrolysis yields are attained. Vanillin, syringaldehyde and ferulic acid are phenolic compounds commonly found in wheat-straw prehydrolysate after steam-explosion pretreatment. These three phenolic compounds were used in this study to elucidate the inhibitory mechanisms of laccase-derived compounds after laccase treatment. Reaction products derived from laccase oxidation of vanillin and syringaldehyde showed to be the strongest inhibitors. The presence of these products causes a decrement on enzymatic hydrolysis yield of a model cellulosic substrate (Sigmacell) of 46.6 and 32.6%, respectively at 24 h. Moreover, a decrease in more than 50% of cellulase and β-glucosidase activities was observed in presence of laccase and vanillin. This effect was attributed to coupling reactions between phenoxyl radicals and enzymes. On the other hand, when the hydrolysis of Sigmacell was performed in presence of prehydrolysate from steam-exploded wheat straw a significant inhibition on enzymatic hydrolysis was observed independently of laccase treatment. This result pointed out that the other components of wheat-straw prehydrolysate are affecting the enzymatic hydrolysis to a higher extent than the possible laccase-derived products. PMID:25740593

  6. Preparations and mechanism of hydrolysis of ([8]annulene)actinide compounds

    International Nuclear Information System (INIS)

    The mechanism of hydrolysis for bis[8]annulene actinide and lanthanide complexes has been studied in detail. The uranium complex, uranocene, decomposes with good pseudo-first order kinetics (in uranocene) in 1 M degassed solutions of H2O in THF. Decomposition of a series of aryl-substituted uranocenes demonstrates that the hydrolysis rate is dependent on the electronic nature of the substituent (Hammett rho value = 2.1, r2 = 0.999), with electron-withdrawing groups increasing the rate. When D2O is substituted for H2O, kinetic isotope effects of 8 to 14 are found for a variety of substituted uranocenes. These results suggest a pre-equilibrium involving approach of a water molecule to the central metal, followed by rate determining proton transfer to the eight membered ring and rapid decomposition to products. Each of the four protonations of the complex has a significant isotope effect. The product ratio of cyclooctatriene isomers formed in the hydrolysis varies, depending on the central metal of the complex. However, the general mechanism of hydrolysis, established for uranocene, can be extended to the hydrolysis and alcoholysis of all the [8]annulene complexes of the lanthanides and actinides

  7. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    Science.gov (United States)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  8. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    Science.gov (United States)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-01

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.

  9. Study on Optimal Conditions of Alcalase Enzymatic Hydrolysis of Soybean Protein Isolate

    Directory of Open Access Journals (Sweden)

    Yongsheng Ma

    2015-08-01

    Full Text Available Soybean protein isolate was hydrolyzed to obtain soybean polypeptide solution using Alcalase as hydrolase. Degree of hydrolysis and the recovery rate of protein were used to characterize the soybean protein hydrolysis reaction result. Influence factors of soybean protein hydrolysis reaction including the substrate concentration, temperature, pH, enzyme concentration characterized by E/S (ratio of Enzyme and Substrate and hydrolysis time were systematically studied with single factor and multi-level experimental. The optimal reaction conditions of soybean protein isolate hydrolyzed by Alcalase were that the substrate concentration was 8%; E/S was 3.6 AU/100 g substrate; pH was 8.0; temperature was 60°C and hydrolysis time was 2 h. The study also showed that the hydrolytic activity of the Alcalase to soybean protein isolate was stronger in the front 1 h; the hydrolytic activity of Alcalase weakened gradually with time when reaction time was longer than 2 h.

  10. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure.

    Science.gov (United States)

    Wang, Kaiqiang; Luo, Shuizhong; Cai, Jing; Sun, Qiaoqiao; Zhao, Yanyan; Zhong, Xiyang; Jiang, Shaotong; Zheng, Zhi

    2016-04-15

    The rheological behavior and thermal properties of wheat gluten following partial hydrolysis using Alcalase and subsequent microbial transglutaminase (MTGase) cross-linking were investigated. The wheat gluten storage modulus (G') and thermal denaturation temperature (Tg) were significantly increased from 2.26 kPa and 54.43°C to 7.76 kPa and 57.69°C, respectively, by the combined action of partial hydrolysis (DH 0.187%) and cross-linking. The free SH content, surface hydrophobicity, and secondary structure analysis suggested that an appropriate degree of Alcalase-based hydrolysis allowed the compact wheat gluten structure to unfold, increasing the β-sheet content and surface hydrophobicity. This improved its molecular flexibility and exposed additional glutamine sites for MTGase cross-linking. SEM images showed that a compact 3D network formed, while SDS-PAGE profiles revealed that excessive hydrolysis resulted in high-molecular-weight subunits degrading to smaller peptides, unsuitable for cross-linking. It was also demonstrated that the combination of Alcalase-based partial hydrolysis with MTGase cross-linking might be an effective method for modifying wheat gluten rheological behavior and thermal properties. PMID:26616937

  11. Preparations and mechanism of hydrolysis of ((8)annulene)actinide compounds. [Uranocene

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.M. Jr.

    1985-07-01

    The mechanism of hydrolysis for bis(8)annulene actinide and lanthanide complexes has been studied in detail. The uranium complex, uranocene, decomposes with good pseudo-first order kinetics (in uranocene) in 1 M degassed solutions of H/sub 2/O in THF. Decomposition of a series of aryl-substituted uranocenes demonstrates that the hydrolysis rate is dependent on the electronic nature of the substituent (Hammett rho value = 2.1, r/sup 2/ = 0.999), with electron-withdrawing groups increasing the rate. When D/sub 2/O is substituted for H/sub 2/O, kinetic isotope effects of 8 to 14 are found for a variety of substituted uranocenes. These results suggest a pre-equilibrium involving approach of a water molecule to the central metal, followed by rate determining proton transfer to the eight membered ring and rapid decomposition to products. Each of the four protonations of the complex has a significant isotope effect. The product ratio of cyclooctatriene isomers formed in the hydrolysis varies, depending on the central metal of the complex. However, the general mechanism of hydrolysis, established for uranocene, can be extended to the hydrolysis and alcoholysis of all the (8)annulene complexes of the lanthanides and actinides.

  12. Monitoring of soluble starch hydrolysis induced by α-amylase from Aspergillus oryzae using ultrasonic spectroscopy

    Science.gov (United States)

    Sierra, Carlos; Resa, Pablo; Buckin, Vitaly; Elvira, Luis

    2012-05-01

    The online monitoring of enzymatic starch hydrolysis is an important issue for several industrial sectors, mainly in the alimentary industry. Ultrasonic non-invasive methods based on the detection of wave velocity and amplitude changes can be used to study this enzymatic reaction. These wave propagating changes are result of physicalchemical modifications produced in the media by the starch hydrolysis. In this work the starch hydrolysis induced by the enzyme α-amylase from Aspergillus oryzae is studied. This biochemical reaction has been monitored using a high-resolution ultrasonic spectroscopy (HR-US) which is non-invasive and nondestructive. The measured time profiles o of ultrasonic velocity are explained in terms of the starch hydrolysis and the subsequent production of oligosaccharides as a consequence of the enzymatic action. The obtained results have been compared to a conventional off-line technique used in biochemistry, the iodine-starch reaction, a spectrophotometric method to quantify the amount of starch remaining in the medium. The combination of these two types of measurement provides more complete information about the biochemical processes occurred during hydrolysis.

  13. [3H] glycogen hydrolysis in brain slices: responses to meurotransmitters and modulation of noradrenaline receptors

    International Nuclear Information System (INIS)

    Different agents have been investigated for their effects on [3H] glycogen synthesized in mouse cortical slices. Of these noradrenaline, serotonin and histamine induced clear concentration-dependent glycogenesis. [3H] glycogen hydrolysis induced by noradrenaline appears to be mediated by beta-adrenergic receptors because it is completely prevented by timolol, while phentolamine is ineffective. It seems to involve cyclic AMP because it is potentiated in the presence of isobutylmethylxanthine; in addition dibutyryl cyclic AMP (but not dibutyryl cyclic GMP) promotes glycogenolysis. Lower concentrations of noradrenaline were necessary for [3H] glycogen hydrolysis (ECsub(50) 0.5μM) than for stimulation of cyclic AMP accumulation (ECsub(50) = 8μM). After subchronic reserpine treatment the concentration-response curve to noradrenaline was significantly shifted to the left (ECsub(50) = 0.09 +- 0.02 μM as compared with 0.49 +- 0.08μM in saline-pretreated mice) without modifications of either the basal [3H] glycogen level, maximal glycogenolytic effect, or the dibutyryl cAMP-induced glycogenolytic response. In addition to noradrenaline, clear concentration-dependent [3H] glycogen hydrolysis was observed in the presence of histamine or serotonin. In contrast to the partial [3H] glycogen hydrolysis elicited by these biogenic amines, depolarization of the slices by 50 mM K+ provoked a nearly total [3H] glycogen hydrolysis. (author)

  14. [Research of input water ratio's impact on the quality of effluent water from hydrolysis reactor].

    Science.gov (United States)

    Liang, Kang-Qiang; Xiong, Ya; Qi, Mao-Rong; Lin, Xiu-Jun; Zhu, Min; Song, Ying-Hao

    2012-11-01

    Based on high SS/BOD and low C/N ratio of waste water of municipal wastewater treatment plant, the structure of currently existing hydrolysis reactor was reformed to improve the influent quality. In order to strengthen the sludge hydrolysis and improve effluent water quality, two layers water distributors were set up so that the sludge hydrolysis zone was formed between the two layers distribution. For the purpose of the hydrolysis reactor not only plays the role of the primary sedimentation tank but also improves the effluent water biodegradability, input water ratios of the upper and lower water distributor in the experiment were changed to get the best input water ratio to guide the large-scale application of this sort hydrolysis reactor. Results show, four kinds of input water ratio have varying degrees COD and SS removal efficiency, however, input water ratio for 1 : 1 can substantially increase SCOD/COD ratio and VFA concentration of effluent water compared with the other three input water ratios. To improve the effluent biodegradability, input water ratio for 1 : 1 was chosen for the best input water ratio. That was the ratio of flow of upper distributor was 50%, and the ratio of the lower one was 50%, at this case it can reduce the processing burden of COD and SS for follow-up treatment, but also improve the biodegradability of the effluent. PMID:23323418

  15. Kinetic study of the thermal hydrolysis of Agave salmiana for mezcal production.

    Science.gov (United States)

    Garcia-Soto, M J; Jimenez-Islas, H; Navarrete-Bolanos, J L; Rico-Martinez, R; Miranda-Lopez, R; Botello-Alvarez, J E

    2011-07-13

    The kinetics of the thermal hydrolysis of the fructans of Agave salmiana were determined during the cooking step of mezcal production in a pilot autoclave. Thermal hydrolysis was achieved at different temperatures and cooking times, ranging from 96 to 116 °C and from 20 to 80 h. A simple kinetic model of the depolymerization of fructans to monomers and other reducing sugars and of the degradation of reducing sugars to furans [principally 5-(hydroxymethyl)furfural, HMF] was developed. From this model, the rate constants of the reactions were calculated, as well as the pre-exponential factors and activation energies of the Arrhenius equation. The model was found to fit the experimental data well. The tradeoff between a maximum fructan hydrolysis and a critical furan concentration in allowing for the best ethanol yield during fermentation was investigated. The results indicated that the thermal hydrolysis of agave was optimal, from the point of view of ethanol yield in the ensuing fermentation, in the temperature range of 106-116 °C and the cooking range time of 6-14 h. The optimal conditions corresponded to a fructan hydrolysis of 80%, producing syrups with furan and reducing sugar concentrations of 1 ± 0.1 and 110 ± 10 g/L, respectively.

  16. Hydrolysis kinetics of astaxanthin esters and stability of astaxanthin of Haematococcus pluvialis during saponification.

    Science.gov (United States)

    Yuan, J P; Chen, F

    1999-01-01

    The reaction kinetics for the hydrolysis of astaxanthin esters and the degradation of astaxanthin during saponification of the pigment extract from the microalga Haematococcus pluvialis were investigated. Different concentrations of sodium hydroxide in methanol were used for the saponification under nitrogen in darkness at ambient temperature (22 degrees C) followed by the analysis of astaxanthins and other carotenoids using an HPLC method. The concentration of methanolic NaOH solution was important for promoting the hydrolysis of astaxanthin esters and minimizing the degradation of astaxanthin during saponification. With a higher concentration of methanolic NaOH solution, the reaction rate of hydrolysis was high, but the degradation of astaxanthin occurred significantly. The rate constants of the hydrolysis reaction (first order) of astaxanthin esters and the degradation reaction (zero-order) of astaxanthin were directly proportional to the concentration of sodium hydroxide in the saponified solution. Although the concentration of sodium hydroxide in the saponified solution was 0.018 M, complete hydrolysis of astaxanthin esters was achieved in 6 h for different concentrations (10-100 mg/L) of pigment extracts. Results also indicated that a higher temperature should be avoided to minimize the degradation of astaxanthin. In addition, during saponification, no loss of lutein, beta-carotene, and canthaxanthin was found.

  17. Assessment of methods to determine minimal cellulase concentrations for efficient hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, C.M.; Mes-Hartree, M.; Saddler, J.N. (Forintek Canada Corp., Ottawa, ON (Canada). Biotechnology and Chemistry Dept.); Kushner, D.J. (Toronto Univ., Ontario (Canada). Dept. of Microbiology)

    1990-02-01

    The enzyme loading needed to achieve substrate saturation appeared to be the most economical enzyme concentration to use for hydrolysis, based on percentage hydrolysis. Saturation was reached at 25 filter paper units per gram substrate on Solka Floc BW300, as determined by studying (a) initial adsorption of the cellulase preparation onto the substrate, (b) an actual hydrolysis or (c) a combined hydrolysis and fermentation (CHF) process. Initial adsorption of the cellulases onto the substrate can be used to determine the minimal cellulase requirements for efficient hydrolysis since enzymes initially adsorbed to the substrate have a strong role in governing the overall reaction. Trichoderma harzianum E58 produces high levels of {beta}-glucosidase and is able to cause high conversion of Solka Floc BW300 to glucose without the need for exogenous {beta}-glucosidase. End-product inhibition of the cellulase and {beta}-glucosidase can be more effectively reduced by employing a CHF process than by supplemental {beta}-glucosidase. (orig.).

  18. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases

    Science.gov (United States)

    Dutra Rosolen, Michele; Gennari, Adriano; Volpato, Giandra; Volken de Souza, Claucia Fernanda

    2015-01-01

    This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C) and Kluyveromyces lactis (at temperatures of 10 and 37°C) β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis β-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis β-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C), at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of β-galactosidases in the food industry. PMID:26587283

  19. Enhancement of anaerobic biodegradability of flower stem wastes with vegetable wastes by co-hydrolysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; HE Pinjing; L(U) Fan; SHAO Liming

    2008-01-01

    The vegetable wastes and flower stems were co-digested to evaluate the anaerobic hydrolysis performance of difficultly biodegradable organic wastes by introducing readily biodegradable organic wastes.The experiments were carried out in batches.When the vegetable wastes were mixed with the flower stems at the dry weight ratio of 1 to 13,the overall hydrolysis rate increased by 8%,12%,and 2%according to the carbon,nitrogen,and total solid (TS) conversion rate,respeetively.While the dry weight ratio was designed as 1 to 3,there was a respective rise of 5%,15%,and 4% in the conversion rate of carbon,nitrogen,and TS.The enhancement of anaerobic hydrolysis from the mixed vegetable wastes and flower stems can be attributed to the formation of volatile fatty acids (VFA) and nutrient supplement like nitrogen content.The maximum VFA concentration can achieve 1.7 g/L owing to the rapid acidification of vegetable wastes,loosing the structure of lignocellulose materials.The statistic bivariate analysis revealed that the hydrolysis performance was significantly related to the physical and biochemical compositions of the feeding substrate.Especially,the soluble carbon concentration in the liquid was significantly positively correlated to the concentration of nitrogen and bemicellulose,and negatively correlated to the concentration of carbon and lignocellulose in the feeding substrate,suggesting that the regulation and control of feedstock can have an important influence on the anaerobic hydrolysis of organic wastes.

  20. THE ROLE OF THE ACTIVITY COEFFICIENT OF THE HYDROGEN ION IN THE HYDROLYSIS OF GELATIN.

    Science.gov (United States)

    Northrop, J H

    1921-07-20

    1. The hydrolysis of gelatin at a constant hydrogen ion concentration follows the course of a monomolecular reaction for about one-third of the reaction. 2. If the hydrogen ion concentration is not kept constant the amount of hydrolysis in certain ranges of acidity is proportional to the square root of the time (Schütz's rule). 3. The velocity of hydrolysis in strongly acid solution (pH less than 2.0) is directly proportional to the hydrogen ion concentration as determined by the hydrogen electrode i.e., the "activity;" it is not proportional to the hydrogen ion concentration as determined by the conductivity ratio. 4. The addition of neutral salts increases the velocity of hydrolysis and the hydrogen ion concentration (as determined by the hydrogen electrode) to approximately the same extent. 5. The velocity in strongly alkaline solutions (pH greater than 10) is directly proportional to the hydroxyl ion concentration. 6. Between pH 2.0 and pH 10.0 the rate of hydrolysis is approximately constant and very much greater than would be calculated from the hydrogen and hydroxyl ion concentration. This may be roughly accounted for by the assumption that the uncombined gelatin hydrolyzes much more rapidly than the gelatin salt.

  1. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.

    Science.gov (United States)

    Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-06-01

    Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. PMID:26950757

  2. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases

    Directory of Open Access Journals (Sweden)

    Michele Dutra Rosolen

    2015-01-01

    Full Text Available This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C and Kluyveromyces lactis (at temperatures of 10 and 37°C β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis β-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis β-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C, at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of β-galactosidases in the food industry.

  3. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology.

    Science.gov (United States)

    Canettieri, Eliana Vieira; de Moraes Rocha, George Jackson; de Carvalho, João Andrade; de Almeida e Silva, João Batista

    2007-01-01

    Biotechnological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically and with dilute or concentrate mineral acids. The present study used dilute sulfuric acid as a catalyst for hydrolysis of Eucalyptus grandis residue. The purpose of this paper was to optimize the hydrolysis process in a 1.4 l pilot-scale reactor and investigate the effects of the acid concentration, temperature and residue/acid solution ratio on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). This study was based on a model composition corresponding to a 2(3) orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of residue. The considered optimum conditions were: H(2)SO(4) concentration of 0.65%, temperature of 157 degrees C and residue/acid solution ratio of 1/8.6 with a reaction time of 20 min. Under these conditions, 79.6% of the total xylose was removed and the hydrolysate contained 1.65 g/l glucose, 13.65 g/l xylose, 1.55 g/l arabinose, 3.10 g/l acetic acid, 1.23 g/l furfural and 0.20 g/l 5-hydroxymethylfurfural. PMID:16473004

  4. Hydrolysis of Virgin Coconut Oil Using Immobilized Lipase in a Batch Reactor

    Directory of Open Access Journals (Sweden)

    Lee Suan Chua

    2012-01-01

    Full Text Available Hydrolysis of virgin coconut oil (VCO had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v. Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v of enzyme loading. The optimum water content for VCO hydrolysis was 7% (v/v. A relatively high content of water was required because water was one of the reactants in the hydrolysis. The progress curve and the temperature profile of the enzymatic hydrolysis also showed that Lipozyme could be used for free fatty acid production at the temperature up to 50°C. However, the highest initial reaction rate and the highest yield of free fatty acid production were at 45 and 40°C, respectively. A 100 hours of initial reaction time has to be compensated in order to obtain the highest yield of free fatty acid production at 40°C.

  5. TL and ESR based identification of gamma-irradiated frozen fish using different hydrolysis techniques

    International Nuclear Information System (INIS)

    Frozen fish fillets (walleye Pollack and Japanese Spanish mackerel) were selected as samples for irradiation (0–10 kGy) detection trials using different hydrolysis methods. Photostimulated luminescence (PSL)-based screening analysis for gamma-irradiated frozen fillets showed low sensitivity due to limited silicate mineral contents on the samples. Same limitations were found in the thermoluminescence (TL) analysis on mineral samples isolated by density separation method. However, acid (HCl) and alkali (KOH) hydrolysis methods were effective in getting enough minerals to carry out TL analysis, which was reconfirmed through the normalization step by calculating the TL ratios (TL1/TL2). For improved electron spin resonance (ESR) analysis, alkali and enzyme (alcalase) hydrolysis methods were compared in separating minute-bone fractions. The enzymatic method provided more clear radiation-specific hydroxyapatite radicals than that of the alkaline method. Different hydrolysis methods could extend the application of TL and ESR techniques in identifying the irradiation history of frozen fish fillets. - Highlights: • Irradiation has potential to improve hygienic quality of raw and processed seafood. • Detection of irradiated food is important to enforce the applied regulations. • Different techniques were compared to separate silicate minerals from frozen fish. • Limitations were observed in TL analysis on minerals isolated by density separation. • Hydrolysis methods provided more clear identification using TL and ESR techniques

  6. Characteristic Studies of Micron Zinc Particle Hydrolysis in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Lv Ming

    2015-09-01

    Full Text Available Zinc fuel is considered as a kind of promising energy sources for marine propeller. As one of the key steps for zinc marine energy power system, zinc hydrolysis process had been studied experimentally in a fixed bed reactor. In this study, we focus on the characteristics of micron zinc particle hydrolysis. The experimental results suggested that the steam inner diffusion is the controlling step of accumulative zinc particles hydrolysis reaction at a relative lower temperature and a relative higher water partial pressure. In other conditions, the chemical reaction kinetics was the controlling step. And two kinds of chemical reaction kinetics appeared in experiments: the surface reaction and the gas-gas reaction. The latter one occurs usually for larger zinc particles and high reaction temperature. Temperature seems to be one of the most important parameters for the dividing of different reaction mechanisms. Several parameters of the hydrolysis process including heating rate, water partial pressure, the particle size and temperature were also studied in this paper. Results show that the initial reaction temperature of zinc hydrolysis in fixed bed is about 410°C. And the initial reaction temperature increases as the heating rate increases and as the water partial pressure decreases. The total hydrogen yield increases as the heating rate decreases, as the water partial pressure increases, as the zinc particle size decreases, and as the reaction temperature increases. A hydrogen yield of more than 81.5% was obtained in the fixed bed experiments.

  7. Hydrolysis of Cephanone in SDS/n-C5H11OH/H2O System

    Institute of Scientific and Technical Information of China (English)

    QIAN, Jun-Hong; GUO, Rong

    2003-01-01

    The hydrolysis of cephanone in SDS micelle and SDS/n-C5H11OH/H2O O/W microemulsion was studied through Uv-vis absorption spectroscopy. The change of pH value in the hydrolysis of cephanone was determined. The result shows that pH value decreases in the process of the hydrolysis, and that the SDS micelle and SDS/n-CsH11OH/H2O O/W microemulsion accelerate the hydrolysis of cephanone compared with water.

  8. Lipase pre-hydrolysis enhance anaerobic biodigestion of soap stock from an oil refining industry.

    Science.gov (United States)

    Cherif, Slim; Aloui, Fathi; Carrière, Frédéric; Sayadi, Sami

    2014-01-01

    A novel alcalophilic Staphylococcus haemolyticus strain with the lipolytic activity was used to perform enzymatic hydrolysis pretreatment of soap stock: a lipid rich solid waste from an oil refining industry. The culture liquid of the selected bacteria and an enzymatic preparation obtained by precipitation with ammonium sulphate from a filtrate of the same culture liquid were used for enzymatic pretreatment. The hydrolysis was carried with different incubation concentrations (10, 20 and 30%) of soap stock and the pretreatment efficiency was verified by running comparative biodegradability tests (crude and treated lipid waste). All pretreated assays showed higher reaction rate compared to crude lipid waste, which was confirmed by the increased levels of biogas production. The pretreatment of solutions containing 10% emulsified soap stock was optimized for 24 h hydrolysis time, enabling high-biogaz formation (800 ml). The use of enzymatic pre-treatment seemed to be a very promising alternative for treating soap stock having high fat contents. PMID:24500101

  9. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    Science.gov (United States)

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery. PMID:25690683

  10. Experimental study and product analysis of lignocellulosic biomass hydrolysis under extremely low acids

    Institute of Scientific and Technical Information of China (English)

    Shurong WANG; Xinshu ZHUANG; Zhongyang LUO; Kefa CEN

    2008-01-01

    Using our self-designed facility for lignocellulo-sic biomass hydrolysis under extremely low acid, and under the optimal reaction conditions of hemicellulose and cel-lulose determined by xylan and quantitative filter paper as the model, two-step dilute acid hydrolysis was carried out in detail on pine, fast-growing poplar and maize straw. The corresponding conversion ratio is 41.78%, 57.84% and 53.44% and the total reducing sugar conversion ratio is 39.28%, 42.83% and 23.82% respectively. Simultaneously, sugar component analysis of the products was performed by high performance liquid chromatography (HPLC) and monosaccharide and oligosaccharide content were com-pared. Finally, poplar hydrolysis residues were analyzed by proximate and ultimate analysis.

  11. Screw extrude steam explosion: a promising pretreatment of corn stover to enhance enzymatic hydrolysis.

    Science.gov (United States)

    Chen, Jingwen; Zhang, Wengui; Zhang, Hongman; Zhang, Qiuxiang; Huang, He

    2014-06-01

    A screw extrude steam explosion (SESE) apparatus was designed and introduced to pretreat corn stover continuously for its following enzymatic hydrolysis. SESE parameters temperature (100, 120, 150°C) and residence time (1, 2, 3min) were investigated. The enzymatic hydrolysis of corn stover pretreated by SESE and steam explosion (SE) process was carried out and analyzed systematically. A serial of analysis methods were established, and the corn stover before/after the pretreatment were characterized by scanning electron microscope (SEM), X-ray Diffraction (XRD) and Thermal Gravity/Derivative Thermal Gravity Analysis (TG/DTG). After treated by SESE pretreatment at the optimum condition (150°C, 2min), the pretreated corn stover exhibited highest enzymatic hydrolysis yield (89%), and rare fermentation inhibitors formed. Characterization results indicated that the highest yield could be attributed to the effective removal of lignin/hemicellulose and destruction of cellulose structure by SESE pretreatment.

  12. Analysis of particle size reduction on overall surface area and enzymatic hydrolysis yield of corn stover.

    Science.gov (United States)

    Li, Hanjie; Ye, Chenlin; Liu, Ke; Gu, Hanqi; Du, Weitao; Bao, Jie

    2015-01-01

    Particle size of lignocellulose materials is an important factor for enzymatic hydrolysis efficiency. In this study, corn stover was milled and sieved into different size fractions from 1.42, 0.69, 0.34, to 0.21 mm, and the corresponding enzymatic hydrolysis yields were 24.69, 23.96, 25.34, and 26.97 %, respectively. The results indicate that the hydrolysis yield is approximately constant with changing corn stover particle sizes in the experimental range. The overall surface area and the inner pore size measurement show that the overall specific surface area was less than 2 % with the half reduction of particle size due to the greater inner pore surface area. The scanning electron microscope photographs gave direct evidence of the much greater inner pore surface area of corn stover particles. This result provided a reference when a proper size reduction of lignocellulose materials is considered in biorefining operations.

  13. MODELLING AND OPTIMISATION OF DILUTE ACID HYDROLYSIS OF CORN STOVER USING BOX-BEHNKEN DESIGN

    Directory of Open Access Journals (Sweden)

    AMENAGHAWON NOSAKHARE ANDREW

    2014-08-01

    Full Text Available Response surface methodology (RSM was employed for the analysis of the simultaneous effect of acid concentration, hydrolysis time and temperature on the total reducing sugar concentration obtained during acid hydrolysis of corn stover. A three-variable, three-level Box-Behnken design (BBD was used to develop a statistical model for the optimisation of the process variables. The optimal hydrolysis conditions that resulted in the maximum total reducing sugar concentration were acid concentration; 1.72% (w/w, temperature; 169.260C and pretreatment time; 48.73 minutes. Under these conditions, the total reducing sugar concentration was obtained to be 23.41g/L. Validation of the model indicated no difference between predicted and observed values.

  14. Effect of gamma Irradiation on the acidic hydrolysis of free-hemi cellulose thistle

    International Nuclear Information System (INIS)

    The effect of gamma-irradiation on the subsequent acidic hydrolysis of free-hemi cellulose Onopordum Nervosum Boiss thistle Ls determined. Its shown the influence of gamma-irradiation on the yield of sugar obtained flora the batch wise hydrol isis of the call ulose (1% H2SO4 and 180 degree centigree at increasing doses. At all irradiation levels studied, the rate of hydrolysis of thistle samples was higher than the rate of hydrolysis of the cellulose from paper treated similarly. The maximum over-all yield of sugar in the irradiated lignocellulose material was about 66o at 100 MRad, less than two times the yield obtainable from the control. The corresponding yield from papel was 53%, 2'3 times that of the control. Irradiation under 1% H2SO4 doesn't enhance the yield anyway. (Author) 21 refs

  15. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    Science.gov (United States)

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery.

  16. The hydrolysis of geminal ethers: a kinetic appraisal of orthoesters and ketals.

    Science.gov (United States)

    Repetto, Sonia L; Costello, James F; Butts, Craig P; Lam, Joseph K W; Ratcliffe, Norman M

    2016-01-01

    A novel approach to protecting jet fuel against the effects of water contamination is predicated upon the coupling of the rapid hydrolysis reactions of lipophilic cyclic geminal ethers, with the concomitant production of a hydrophilic acyclic hydroxyester with de-icing properties (Fuel Dehydrating Icing Inhibitors - FDII). To this end, a kinetic appraisal of the hydrolysis reactions of representative geminal ethers was undertaken using a convenient surrogate for the fuel-water interface (D2O/CD3CN 1:4). We present here a library of acyclic and five/six-membered cyclic geminal ethers arranged according to their hydroxonium catalytic coefficients for hydrolysis, providing for the first time a framework for the development of FDII. A combination of (1)H NMR, labelling and computational studies was used to assess the effects that may govern the observed relative rates of hydrolyses. PMID:27559399

  17. High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes.

    Science.gov (United States)

    Kim, Se Won; Hong, Chae-Hwan; Jeon, Sung-Wan; Shin, Hyun-Jae

    2015-11-01

    Gracilaria verrucosa, the red alga, is a suitable feedstock for biosugar production. This study analyzes biosugar production by the hydrolysis of G. verrucosa conducted under various conditions (i.e., various acid concentrations, substrate concentrations, reaction times, and enzyme dosages). The acid hydrolysates of G. verrucosa yielded a total of 7.47g/L (37.4%) and 10.63g/L (21.26%) of reducing sugars under optimal small (30mL) and large laboratory-scale (1L) hydrolysis processes, respectively. Reducing sugar obtained from acid and enzymatic hydrolysates were 10% higher, with minimum by-products, than those reported in other studies. The mass balance for the small laboratory-scale process showed that the acid and enzymatic hydrolysates had a carbohydrate conversion of 57.2%. The mass balance approach to the entire hydrolysis process of red seaweed for biosugar production can be applied to other saccharification processes.

  18. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw

    DEFF Research Database (Denmark)

    Rosgaard, L.; Andric, Pavle; Dam-Johansen, Kim;

    2007-01-01

    glucose concentration, 78 g/l, after 72 h of reaction, was obtained with an initial, full substrate loading of 15% dry matter weight/weight (w/w DM). Conversely, the glucose yields, in grams per gram of DM, were highest at lower substrate concentrations, with the highest glucose yield being 0.53 g/g DM...... for the reaction with a substrate loading of 5% w/w DM after 72 h. The reactions subjected to gradual loading of substrate or substrate plus enzymes to increase the substrate levels from 5 to 15% w/w DM, consistently provided lower concentrations of glucose after 72 h of reaction; however, the initial rates......In this study, the applicability of a "fed-batch" strategy, that is, sequential loading of substrate or substrate plus enzymes during enzymatic hydrolysis was evaluated for hydrolysis of steam-pretreated barley straw. The specific aims were to achieve hydrolysis of high substrate levels, low...

  19. Air Oxidation of Activated Carbon to Synthesize a Biomimetic Catalyst for Hydrolysis of Cellulose.

    Science.gov (United States)

    Shrotri, Abhijit; Kobayashi, Hirokazu; Fukuoka, Atsushi

    2016-06-01

    Oxygenated carbon catalyzes the hydrolysis of cellulose present in lignocellulosic biomass by utilizing the weakly acidic functional groups on its surface. Here we report the synthesis of a biomimetic carbon catalyst by simple and economical air-oxidation of a commercially available activated carbon. Air- oxidation at 450-500 °C introduced 2000-2400 μmol g(-1) of oxygenated functional groups on the material with minor changes in the textural properties. Selectivity towards the formation of carboxylic groups on the catalyst surface increased with the increase in oxidation temperature. The degree of oxidation on carbon catalyst was found to be proportional to its activity for hydrolysis of cellulose. The hydrolysis of eucalyptus in the presence of carbon oxidized at 475 °C afforded glucose yield of 77 % and xylose yield of 67 %.

  20. The hydrolysis of geminal ethers: a kinetic appraisal of orthoesters and ketals

    Science.gov (United States)

    Repetto, Sonia L; Butts, Craig P; Lam, Joseph K W; Ratcliffe, Norman M

    2016-01-01

    Summary A novel approach to protecting jet fuel against the effects of water contamination is predicated upon the coupling of the rapid hydrolysis reactions of lipophilic cyclic geminal ethers, with the concomitant production of a hydrophilic acyclic hydroxyester with de-icing properties (Fuel Dehydrating Icing Inhibitors - FDII). To this end, a kinetic appraisal of the hydrolysis reactions of representative geminal ethers was undertaken using a convenient surrogate for the fuel–water interface (D2O/CD3CN 1:4). We present here a library of acyclic and five/six-membered cyclic geminal ethers arranged according to their hydroxonium catalytic coefficients for hydrolysis, providing for the first time a framework for the development of FDII. A combination of 1H NMR, labelling and computational studies was used to assess the effects that may govern the observed relative rates of hydrolyses. PMID:27559399

  1. Dissolution and enzymatic hydrolysis of casein micelles studied by dynamic light scattering

    Institute of Scientific and Technical Information of China (English)

    LIU Rui; QI Wei; SU Rongxin; ZHANG Yubin; JIN Fengmin; HE Zhimin

    2007-01-01

    The effects of temperature,ionic strength,and enzymatic hydrolysis on the average hydrodynamic radius (Rh) of casein micelles in phosphate buffer were studied by using dynamic light scattering.The results showed that the average Rh value of casein mieelles decreased irreversibly during the heating,decreased with the increase of ionic strength in lower ionic strength solution (less than 0.05 tool/L),but opposite in higher ionic strength solution (above 0.1 tool/L).The Rh value of casein increased rapidly during the process of enzymatic hydrolysis,and the structural model of casein micelles in the enzymatic hydrolysis process was also proposed,i.e.the casein micelle changed from compact sphere into unfolded and regularly flocky peptides.

  2. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    Science.gov (United States)

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run.

  3. Understanding oscillatory phenomena in molecular hydrogen generation via sodium borohydride hydrolysis.

    Science.gov (United States)

    Budroni, M A; Biosa, E; Garroni, S; Mulas, G R C; Marchettini, N; Culeddu, N; Rustici, M

    2013-11-14

    The hydrolysis of borohydride salts represents one of the most promising processes for the generation of high purity molecular hydrogen under mild conditions. In this work we show that the sodium borohydride hydrolysis exhibits a fingerprinting periodic oscillatory transient in the hydrogen flow over a wide range of experimental conditions. We disproved the possibility that flow oscillations are driven by supersaturation phenomena of gaseous bubbles in the reactive mixture or by a nonlinear thermal feedback according to a thermokinetic model. Our experimental results indicate that the NaBH4 hydrolysis is a spontaneous inorganic oscillator, in which the hydrogen flow oscillations are coupled to an "oscillophor" in the reactive solution. The discovery of this original oscillator paves the way for a new class of chemical oscillators, with fundamental implications not only for testing the general theory on oscillations, but also with a view to chemical control of borohydride systems used as a source of hydrogen based green fuel. PMID:24084866

  4. Influence of protein composition and hydrolysis method on intestinal absorption of protein in man.

    Science.gov (United States)

    Keohane, P P; Grimble, G K; Brown, B; Spiller, R C; Silk, D B

    1985-09-01

    An intestinal perfusion technique has been used in normal human subjects to investigate the influence that starter protein composition and hydrolysis procedure have on absorption of amino acid residues from partial enzymic hydrolysates of whole protein. Five starter proteins were studied. Three (egg albumin, casein/soy/lactalbumin, and lactalbumin) were hydrolysed by papain, a second lactalbumin starter protein, and a meat/soy/lactalbumin blend were hydrolysed by a porcine pancreatic enzyme system. Irrespective of starter protein composition or hydrolysis method used, four amino acid residues (threonine, glutamic acid, phenylalanine, and histidine) were absorbed significantly faster from all hydrolysates compared with absorption from their equivalent free amino acid mixtures. In contrast, both starter protein composition and hydrolysis method influenced absorption characteristics of up to nine other amino acid residues. PMID:4029718

  5. Production of agaro- and carra-oligosaccharides by partial acid hydrolysis of galactans

    Directory of Open Access Journals (Sweden)

    Diogo R. B. Ducatti

    2011-04-01

    Full Text Available Agaro- and carra-oligosaccharides were produced by partial acid hydrolysis of commercial agarose and kappa-carrageenan. Di- and tetrasaccharides were purified by gel filtration chromatography and characterized by NMR (1D and 2D spectroscopy and ESIMS. The following oligosaccharides were obtained: agarobiose, agarotetraose, kappa-carrabiose and kappa-carratetraose. Agarobiose and agarotetraose were used as standards to develop a high performance size exclusion chromatography (HPSEC method which was utilized to study the hydrolysis rate of agarose and oligosaccharide production. Six hours of hydrolysis (0.1 M TFA, 65 ºC produced mainly di- and tetrasaccharides. The methodology for oligosaccharide production and evaluation developed in the present work shows good potential for the production of bioactive oligosaccharides.

  6. Lipase pre-hydrolysis enhance anaerobic biodigestion of soap stock from an oil refining industry.

    Science.gov (United States)

    Cherif, Slim; Aloui, Fathi; Carrière, Frédéric; Sayadi, Sami

    2014-01-01

    A novel alcalophilic Staphylococcus haemolyticus strain with the lipolytic activity was used to perform enzymatic hydrolysis pretreatment of soap stock: a lipid rich solid waste from an oil refining industry. The culture liquid of the selected bacteria and an enzymatic preparation obtained by precipitation with ammonium sulphate from a filtrate of the same culture liquid were used for enzymatic pretreatment. The hydrolysis was carried with different incubation concentrations (10, 20 and 30%) of soap stock and the pretreatment efficiency was verified by running comparative biodegradability tests (crude and treated lipid waste). All pretreated assays showed higher reaction rate compared to crude lipid waste, which was confirmed by the increased levels of biogas production. The pretreatment of solutions containing 10% emulsified soap stock was optimized for 24 h hydrolysis time, enabling high-biogaz formation (800 ml). The use of enzymatic pre-treatment seemed to be a very promising alternative for treating soap stock having high fat contents.

  7. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    International Nuclear Information System (INIS)

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. The 2nd year Research scope includes: 1) Optimization of pre-treatment conditions for enzymatic hydrolysis of lignocellulosic biomass and 2) Demonstration of enzymatic hydrolysis by recombinant enzymes. To optimize the pretreatment, we applied two processes: a wet process (wet milling + popping), and dry process (popping + dry milling). Out of these, the wet process presented the best glucose yield with a 93.1% conversion, while the dry process yielded 69.6%, and the unpretreated process yielded <20%. The recombinant cellulolytic enzymes showed very high specific activity, about 80-1000 times on CMC and 13-70 times on filter paper at pH 3.5 and 55 .deg. C

  8. Hydrolyzability of xylan after adsorption on cellulose: Exploration of xylan limitation on enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Wang, Xiao; Li, Kena; Yang, Ming; Zhang, Junhua

    2016-09-01

    During pretreatment of lignocellulosic materials, the dissolved xylan would re-adsorb on cellulose, and then inhibits the cellulose hydrolysis by cellulases. However, the hydrolyzability of xylan adsorbed on cellulose is not clear. In this work, the adsorption behavior of xylans on celluloses and the hydrolysis of adsorbed xylan by xylanase (XYL) were investigated. The results indicated that the adsorption of beechwood xylan (BWX) and oat spelt xylan (OSX) on Avicel was conformed to Langmuir-type adsorption isotherm. Higher ion strength increased the adsorption of BWX on Avicel, but not that of OSX. Both BWX and OSX adsorbed on Avicel and corn stover after dilute acid pretreatment (CS-DA) could be hydrolyzed by XYL. Compared to OSX, BWX adsorbed on cellulosic materials could be more easily hydrolyzed by XYL. Thus, supplementation of XYL could hydrolyze the xylan adsorbed on cellulose and potentially improved hydrolysis efficiency of lignocelluloses. PMID:27185150

  9. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    Science.gov (United States)

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. PMID:27233094

  10. Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation.

    Science.gov (United States)

    Waghmare, Pankajkumar R; Kadam, Avinash A; Saratale, Ganesh D; Govindwar, Sanjay P

    2014-09-01

    Sugarcane bagasse (SCB) adsorbes 60% Reactive Blue172 (RB172). Providensia staurti EbtSPG able to decolorize SCB adsorbed RB172 up to 99% under solid state fermentation (SSF). The enzymatic saccharification efficiency of waste biomass after bioremediation of RB172 process (ddSCB) has been evaluated. The cellulolyitc crude enzyme produced by Phanerochaete chrysosporium used for enzymatic hydrolysis of native SCB and ddSCB which produces 0.08 and 0.3 g/L of reducing sugars respectively after 48 h of incubation. The production of hexose and pentose sugars during hydrolysis was confirmed by HPTLC. The effect of enzymatic hydrolysis on SCB and ddSCB has been evaluated by FTIR, XRD and SEM analysis. Thus, during dye biodegradation under SSF causes biological pretreatment of SCB which significantly enhanced its enzymatic saccharification. Adsorption of dye on SCB, its bioremediation under SSF produces wastes biomass and which further utilized for enzymatic saccharification for biofuel production.

  11. Cellulose whiskers from sisal fibers: a study about the variable of extraction by acid hydrolysis

    International Nuclear Information System (INIS)

    The incorporation of cellulosic nanostructures in polymeric matrices has been studied due to their properties of biodegradation, and expected higher mechanical performance than the traditional composites. In this work, cellulose nanofibers were obtained from sisal bleached with reagents without chlorine, where it was used an acid mixture, with acetic acid and nitric acid, and after the bleached fibers were submitted to acid hydrolysis. The influence of the temperature and time of hydrolysis on the morphology and dimensions, crystallinity and thermal stability were analyzed by scanning transmission electronic microscopy (TEM), x-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. The hydrolysis condition of 60 deg C and 15 minutes showed to be the most effective condition to obtain whiskers from sisal fibers, resulting in nanostructures with higher crystallinity and thermal. (author)

  12. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    Science.gov (United States)

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter ( 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment. PMID:26841606

  13. Upgrading of a co-digestion plant by implementation of a hydrolysis stage.

    Science.gov (United States)

    Blank, Andreas; Hoffmann, Erhard

    2011-11-01

    An existing co-digestion plant needed to be rehabilitated after a 20 year operational period. This was planned to be done in sequence by halving the digester volume for a period of 1.5 years. The aim of the present study was to improve the performance of the halved co-digestion capacity by implementing an upstream thermal hydrolysis reactor or an ultrasonic pre-treatment of the substrates. The results of the ultrasonic bench-scale batch experiments showed that an ultrasonic pre-treatment of the co-substrates 'municipal bio-waste suspension and excess activated sludge led to disintegration efficiencies of up to 51%. However, treating kitchen-waste and primary sludge in the same manner was not promising as the disintegration yields were rather low. The results of the hydrolysis bench-scale batch experiments showed that the optimal boundary conditions for the hydrolysis reactor were a hydrolysis temperature of about 42 °C at a retention time of 24 h. The results of the continuous two-stage experiments showed that it was possible to reduce the retention time in the second stage to about 24% and to increase the biogas yield to about 12.8 %, and the methane yield to about 28% as a result of the implementation of the hydrolysis reactor in the existing system. After the rehabilitation of the existing digesters it was possible to raise the daily substrate input to the two existing digesters from 312 to 495 m³ day(-1) with an upstream hydrolysis reactor volume of only 474 m³.

  14. Lactose hydrolysis potential and thermal stability of commercial β-galactosidase in UHT and skimmed milk

    Directory of Open Access Journals (Sweden)

    Alessandra BOSSO

    2016-03-01

    Full Text Available Abstract The commercial enzyme (E.C. = 3.2.1.23 from Kluyveromyces lactis (liquid and Aspergillus oryzae(lyophilized was investigated for its hydrolysis potential in lactose substrate, UHT milk, and skimmed milk at different concentrations (0.7; 1.0 and 1.5%, pH values (5.0; 6.0; 6.5 and 7.0, and temperature (30; 35; 40 and 55 ºC. High hydrolysis rates were observed for the enzyme from K. lactis at pH 7.0 and 40 ºC, and from A. oryzae at pH 5.0 and 55 ºC. The enzyme from K. lactis showed significantly higher hydrolysis rates when compared to A. oryzae. The effect of temperature and β-galactosidase concentration on the lactose hydrolysis in UHT milk was higher than in skimmed milk, for all temperatures tested. With respect to the thermal stability, a decrease in hydrolysis rate was observed at pH 6.0 at 35 ºC for K. lactisenzyme, and at pH 6.0 at 55 ºC for the enzyme from A. oryzae. This study investigate the hydrolysis of β-galactosidase in UHT and skimmed milk. The knowledge about the characteristics of the β-galactosidase fromK. lactis and A. oryzae enables to use it most efficiently to control the enzyme concentration, temperature, and pH in many industrial processes and product formulations.

  15. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  16. Assessing Reliability of Cellulose Hydrolysis Models to Support Biofuel Process Design – Identifiability and Uncertainty Analysis

    DEFF Research Database (Denmark)

    Sin, Gürkan; Meyer, Anne S.; Gernaey, Krist

    2010-01-01

    The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done in the ori...... to analyze the uncertainty of model predictions. This allows judging the fitness of the model to the purpose under uncertainty. Hence we recommend uncertainty analysis as a proactive solution when faced with model uncertainty, which is the case for biofuel process development research....

  17. Batch sodium borohydride hydrolysis systems: Effect of sudden valve opening on hydrogen generation rate

    OpenAIRE

    M. J. F. Ferreira; Coelho, F; Rangel, C. M.; Pinto, A. M. F. R.

    2012-01-01

    A study was undertaken in order to investigate the potential of hydrogen (H 2) generation by hydrolysis of sodium borohydride solution (10 wt% NaBH 4 and 7 wt% NaOH), in batch reactors, operating at moderate pressures (up to #8764;1.2 MPa), in the presence of a powdered nickel-ruthenium based catalyst, reused between 311 and 316 times, to feed on-demand a proton exchange membrane fuel cell. A different approach to the testing of the performance of the batch NaBH 4 hydrolysis system is explore...

  18. Microwave-assisted hydrolysis of Zymomonas mobilis levan envisaging oligofructan production.

    Science.gov (United States)

    de Paula, Valdemir Cordeiro; Pinheiro, Irapuan Oliveira; Lopes, Carlos Edison; Calazans, Gli Cia Maria Torres

    2008-05-01

    Levan, a polysaccharide from Zymomonas mobilis, was hydrolyzed to obtain oligofructans or fructooligosaccharides with a degree of polymerization varying from 4 to 14. Fructooligosaccharides (FOS) are short chain fructans that beneficially affects the host by selective stimulation of growth and activity of one or a number of bacteria including probiotic bacteria in the colon. The hydrolysis was performed in a microwave oven to shorten the reaction time. The experiments showed that it is possible to maximize selected oligomers by interrupting the hydrolysis at the due time. The results allow one to infer that the procedure may also be useful for production of oligomers from other polysaccharides. PMID:17604160

  19. Analysis of species-dependent hydrolysis and protein binding of esmolol enantiomers

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The stereoselective hydrolysis of esmolol in whole blood and in its separated components from rat,rabbit and human was investigated.Blood esterase activities were variable in different species in the order of rat>rabbit>human.Rat plasma showed the high esterase activity and had no stereoselectivity to enantiomers.Rabbit red blood cell(RBC) membrane,RBC cytosol and plasma all hydrolyzed esmolol but with different esterase activity,whereas the hydrolysis in RBC membrane and cytosol showed significant stereose...

  20. Effect of β-cyclodextrin complexation on solubility and enzymatic hydrolysis rate of icariin

    OpenAIRE

    Cui, Li; Zhang, Zhenhai; E Sun; Jia, Xiaobin; QIAN, QIAN

    2013-01-01

    Objective: The aim of this work was to investigate the effect of β-cyclodextrin complexation on the solubility and hydrolysis rate of icariin. Material and Methods: The inclusion complex of icariin at the molar ratio of 1:1 was obtained by the dropping method and was characterized by differential scanning calorimetry. The solubility of icariin complex in water at 37°C was 36 times greater than that of free icariin. Enzymatic hydrolysis conditions were tested for the bioconversion of icariin b...

  1. Kinetics of the hydrolysis of polysaccharide galacturonic acid and neutral sugars chains from flaxseed mucilage

    OpenAIRE

    Happi Emaga, T.; Rabetafika, N.; Blecker, CS.; Paquot, M.

    2012-01-01

    Different hydrolysis procedures of flaxseed polysaccharides (chemical and enzymatic) were carried out with H2SO4, HCl and TFA at different acid concentrations (0.2, 1 and 2 M) and temperatures (80 and 100°C). Enzymatic and combined chemical and enzymatic hydrolyses of polysaccharide from flaxseed mucilage were also studied. Acid hydrolysis conditions (2 M H2SO4, 4 h, 100°C) are required to quantify total monosaccharide content of flaxseed mucilage. The enzymatic pathway (Pectinex™ Ultra SP) l...

  2. High pressure pre-treatments promote higher rate and degree of enzymatic hydrolysis of cellulose

    OpenAIRE

    Ferreira, Ana R. F. C.; Figueiredo, Andreia B.; Evtuguin, Dmitry V.; Saraiva, Jorge A.

    2011-01-01

    The effect of high pressure (HP) pre-treatments on the subsequent enzymatic hydrolysis of cellulose from bleached kraft Eucalyptus globulus pulp by cellulase from Tricoderma viride was evaluated. Pressure pre-treatments of 300 and 400 MPa during 5–45 min, lead to both an increased rate and degree of hydrolysis, reaching values ranging from 1.5- to 1.9-fold, quantified by the formation of reducing sugars. Both the pressure and time under pressure influenced the enzymatic hydrosability of the c...

  3. Optimisation of the Enzymatic Hydrolysis of Blood Cells with a Neutral Protease

    OpenAIRE

    Yanbin Zheng; Qiushi Chen; Anshan Shan; Hao Zhang

    2012-01-01

    For utilizing the blood cells (BCs) effectively, enzymatic hydrolysis was applied to produce the enzymatically hydrolyzed blood cells (EHBCs) by using a neutral protease as a catalyst. The results of the single-factor experiments showed optimal substrate concentration, enzyme to substrate ratio (E/S), pH, temperature, and incubation period were 1.00%, 0.10, 7.00, 50.00°C, and 12.00 h, respectively. The optimized hydrolysis conditions from response surface methodology (RSM) were pH 6.50, E/S 0...

  4. Statistical Evaluation of HTS Assays for Enzymatic Hydrolysis of β-Keto Esters

    OpenAIRE

    Buß, O.; Jager, S.; S-M Dold; S. Zimmermann; Hamacher, K.; Schmitz, K.; J Rudat

    2016-01-01

    β-keto esters are used as precursors for the synthesis of β-amino acids, which are building blocks for some classes of pharmaceuticals. Here we describe the comparison of screening procedures for hydrolases to be used for the hydrolysis of β-keto esters, the first step in the preparation of β-amino acids. Two of the tested high throughput screening (HTS) assays depend on coupled enzymatic reactions which detect the alcohol released during ester hydrolysis by luminescence or absorption. The th...

  5. Fabrication of hollow N-doped TiO2 photocatalyst by sprayinduced hydrolysis

    OpenAIRE

    NAGAMINE, Shinsuke; TOHYAMA, Satoshi; Ohshima, Masahiro; Iwamoto, Hiroyuki; Konishi,Yasuhiro; TSUKUI, Shigeki

    2009-01-01

    Hollow particles of nitrogen doped TiO2 were fabricated by a newly developed method based on the spray-induced hydrolysis. An aqueous solution of urea was sprayed into a titanium tetraisopropoxide (TTIP) / hexane solution, inducing the rapid hydrolysis of TTIP at the interface between the droplets of urea solution and TTIP solution. The resultant hollow particles were converted to N-doped TiO2 with anatase crystal structure by heat treatment. The absorption ability of visible light was remark...

  6. Hydrolysis of carboxylate ester catalyzed by a new artificial abzyme based on molecularly imprinted polymer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new kind of artificial abzyme MIP-3, which contains N-phenyl benzonic amide group and “nanochannel” formed by embedded ZnO nano materials, and is imprinted by a transition-state analogue of p-nitrophenyl methyphosphonate in the hydrolysis of p-nitrophenyl acetate, was prepared by radical co-polymerization. Hydrolytic kinetics of p-nitrophenyl carboxylate catalyzed by MIP-3 was investigated. The results showed that the artificial abzyme exhibited notable substructure selectivity and strong catalytic ability in hydrolysis of p-nitrophenyl acetate

  7. Catalytic Hydrolysis of Phosphate Diester with Metal Complexesof Macrocyclic Tetraamine in Comicellar Solution

    Institute of Scientific and Technical Information of China (English)

    XIANG Qing-Xiang; YU Xiao-Qi; YOU Jing-Song; YAN Qian-Shun; XIE Ru-Gang

    2001-01-01

    Four novel pyridine or benzene ring-containing pendant macrocyclic dioxotetraanines 2,6-dioxo-1,4,7,10-tetraazacy-clododeane ligands have been synthesized.Their metal com-plexes have been investigated as catalysts for the hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) in aqueous comicellar solution.The results indicate that the hydrophobic interaction between substrate and metal complex, the nature of transition metal ion, and the micellar microenvironment are important factors for the hydrolysis, of BNPP.Large rate enhancement (up to over two-three orders magnitude) employing 5 hasbeen observed.

  8. Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p

    OpenAIRE

    Gladfelter, Amy S.; Bose, Indrani; Zyla, Trevin R.; Bardes, Elaine S.G.; Lew, Daniel J.

    2002-01-01

    At the beginning of the budding yeast cell cycle, the GTPase Cdc42p promotes the assembly of a ring of septins at the site of future bud emergence. Here, we present an analysis of cdc42 mutants that display specific defects in septin organization, which identifies an important role for GTP hydrolysis by Cdc42p in the assembly of the septin ring. The mutants show defects in basal or stimulated GTP hydrolysis, and the septin misorganization is suppressed by overexpression of a Cdc42p GTPase-act...

  9. Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry

    DEFF Research Database (Denmark)

    Olsen, Søren Nymand; Rasmussen, Erik Lumby; McFarland, K.C.;

    2011-01-01

    . In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis...... rate with a detection limit of about 500 pmol glucose s−1. Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose–response experiments with a typical cellulase cocktail enabled a multidimensional...

  10. SIMULTANEOUS PRETREATMENT OF LIGNOCELLULOSE AND HYDROLYSIS OF STARCH IN MIXTURES TO SUGARS

    OpenAIRE

    Hamzeh Hoseinpour; Keikhosro Karimi; Hamid Zilouei; Taherzadeh, Mohammad J.

    2010-01-01

    Mixtures of starch and lignocelluloses are available in many industrial, agricultural, and municipal wastes and residuals. In this work, dilute sulfuric acid was used for simultaneous pretreatment of lignocellulose and hydrolysis of starch, to obtain a maximum amount of fermentable sugar after enzymatic hydrolysis with cellulase and β-glucosidase. The acid treatment was carried out at 70-150°C with 0-1% (v/v) acid concentration and 5-15% (w/v) solids concentration for 0-40 minutes. Under the ...

  11. A note on starch hydrolysis and beta-glucuronidase activity among flavobacteria.

    Science.gov (United States)

    Petzel, J P; Hartman, P A

    1986-11-01

    Most flavobacteria tested with the fluorogenic substrate 4-methylumbelliferyl-beta-D-glucuronide possessed beta-glucuronidase (GUD), but when some of the same strains were tested with the API ZYM gallery, all were negative for GUD. Conflicting reports also appear in the literature about starch hydrolysis among flavobacteria. We observed that the results obtained can depend on the medium used and the length of incubation. Our results indicate that GUD activity and starch hydrolysis are more widely distributed in the genus Flavobacterium than previously reported. PMID:3804862

  12. DMSO/base hydrolysis method for the disposal of high explosives and related energetic materials

    Science.gov (United States)

    Desmare, Gabriel W.; Cates, Dillard M.

    2002-05-14

    High explosives and related energetic materials are treated via a DMSO/base hydrolysis method which renders them non-explosive and/or non-energetic. For example, high explosives such as 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX), 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), or mixtures thereof, may be dissolved in a polar, aprotic solvent and subsequently hydrolyzed by adding the explosive-containing solution to concentrated aqueous base. Major hydrolysis products typically include nitrite, formate, and nitrous oxide.

  13. Effects of process variables and additives on mustard oil hydrolysis by porcine pancreas lipase

    OpenAIRE

    D. Goswami; De, S.; Basu, J. K.

    2012-01-01

    Selective hydrolysis of brown mustard oil (from Brassica juncea) with regioselective porcine pancreas lipase was studied in this work. Buffer and oil phase were considered as the continuous and dispersed phases, respectively. Effects of speed of agitation, pH of the buffer phase, temperature, buffer-oil ratio and enzyme concentration on hydrolysis were observed. The best combination of process variables was: 900 rpm, pH 9, 35 ºC, buffer-oil ratio of 1:1 and enzyme concentration of 10 mg/g oil...

  14. Weak acid hydrolysis of wood CTH. Final report; Svagsyrahydrolys av trae CTH. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Linner, J.; Lundquist, K.; Ohlsson, Brita; Simonson, R. [Chalmers Univ. of Technology, Goeteborg (Sweden). Forest Products and Chemical Engineering

    1998-08-01

    Spruce wood meal was extracted with dichloromethane and used for production of holocellulose by standard delignification with sodium chlorite. The holocellulose as well as wood meal were used as substrate on hydrolysis with 0.1 or 0.5 M sulfuric acid at a substrate concentration of 5%. The hydrolysis trials were carried out in teflon containers that were rapidly heated to the reaction temperature (100 - 170 deg C) by means of microwaves. Reaction times of up to 4 hrs were used. The results showed that 80% of the polysaccharides in spruce wood meal and spruce holocellulose can be hydrolyzed to soluble products within 30 min under relatively mild conditions (160-170 deg C, 0.5 M sulfuric acid). The hydrolysates contained relatively small amounts of hydroximethylfurfural and its degradation product levulinic acid. Formed xylose was rapidly converted to furfural which in its turn was rapidly further reacted to condensation products. A maximum yield of hexose amounting to about 30 g/100 g substrate was obtained after about 15 min. This amount corresponds to about one third of the available hexoses in the holocellulose. Compared to the hemicellulose, the cellulose and especially the crystalline part is difficult to hydrolyze and the hemicellulose originating monosaccharides formed at an early stage seem to be destroyed to a large extent on prolonged hydrolysis. A two-step reaction at mild conditions should therefore be examined. Residues from the wood hydrolysis experiments were examined by IR spectroscopy. The spectra clearly showed that lignin accumulated in the residues. Several of the hydrolysis residues were dark-coloured (almost black). The strongly coloured constituents originate primarily from the carbohydrates. Dark-coloured precipitates were also obtained in hydrolysis experiments with carbohydrates. The IR spectra of these precipitates exhibited strong bands in the carbonyl region. Chloroform extracts of wood hydrolysates consisted mainly of conversion

  15. Oxygen-18 leaving group kinetic isotope effects on the hydrolysis of nitrophenyl glycosides. 2. Lysozyme and beta-glucosidase: acid and alkaline hydrolysis.

    Science.gov (United States)

    Rosenberg, S; Kirsch, J F

    1981-05-26

    Oxygen-18 leaving group kinetic isotope effects (KIEs) have been measured for a set of glycosyl transfer reactions with p-nitrophenyl beta-D-glycosides as substrates. Acid-catalyzed hydrolysis and alkaline hydrolysis exhibit KIEs of K16/k18 = 1.0355 +/- 0.0015 and 1.0386 +/- 0.0032, respectively. Lysozyme and beta-glucosidase A show KIEs on Vmax/Km (V/K) of (V/KI)16/(V/K)18 = 1.0467 +/- 0.0015 and 1.0377 +/0 0.0061, respectively. The large magnitude of these KIEs requires that carbon-oxygen bond scission be far advanced in the transition states for these reactions; therefore in the transition states for the first irreversible steps in these reaction sequences, scission of the glycosidic bond must be essentially complete for the reactions catalyzed by lysozyme and beta-glucosidase A, which are thought to proceed via SN1 and SN2 mechanisms, respectively. Acid-catalyzed hydrolysis is shown to proceed through a transition state involving at least 80% C-O bond cleavage and only partially proton transfer to the leaving p-nitrophenyl oxygen atom. PMID:6788083

  16. Hydrolysis of ATP at only one GyrB subunit is sufficient to promote supercoiling by DNA gyrase

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1998-01-01

    Mutation of Glu42 to Ala in the B subunit of DNA gyrase abolishes ATP hydrolysis but not nucleotide binding. Gyrase complexes that contain one wild-type and one Ala42 mutant B protein were formed, and the ability of such complexes to hydrolyze ATP was investigated. We found that ATP hydrolysis wa...

  17. Application of the pM'-pCH diagrams in the determination of hydrolysis constants of the lanthanides

    International Nuclear Information System (INIS)

    The pM'-pCH diagrams allowed to determine the saturation and non-saturation zones of Lu(OH)3 in solid phase and those were applied for determining the hydrolysis and lutetium solubility constants, using the radioactive isotope Lu-177. The first constant of hydrolysis was also determined by the potentiometric method in absence of solid phase. (Author)

  18. Introducing enzyme selectivity as a quantitative parameter to describe the effects of substrate concentration on protein hydrolysis

    NARCIS (Netherlands)

    Butré, C.I.

    2014-01-01

    To understand the differences in peptide composition that result from variations in the conditions of enzymatic hydrolysis of proteins (e.g. substrate concentration) the mechanism of hydrolysis needs to be understood in detail. Therefore, methods and tools were developed to characterize and quantify

  19. Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one- and two-step hydrolysis

    OpenAIRE

    Yarnpakdee, Suthasinee; Benjakul, Soottawat; Kristinsson, Hordur G.; Kishimura, Hideki

    2014-01-01

    Antioxidant and sensory properties of Nile tilapia protein hydrolysates prepared by one- and two-step hydrolysis using commercial proteases were investigated. Hydrolysates prepared using single protease including Alcalase (HA), Flavourzyme (HF), Protamex (HPr) and papain (HPa) had increases in antioxidant activities as the degree of hydrolysis (DH) increased up to 40 % (P 

  20. Influence of the degree of hydrolysis of poly(styrene-alt-maleic anhydride) on miscibility with poly(vinyl acetate)

    NARCIS (Netherlands)

    Bosma, M.; Vorenkamp, E.J.; Brinke, G. ten; Challa, G.

    1988-01-01

    The influence of the hydrolysis of anhydride groups in poly(styrene-alt-maleic anhydride) (PSMA) on its miscibility with poly(vinyl acetate) (PVAc) is investigated. The cloudpoint curves of these blends are determined as a function of the degree of hydrolysis. The miscibility is shown to improve wit

  1. Catalytic Kinetics of the Schiff Base Metal Complexes Bearing Side Chain of Cyclic morpholine in Carboxylic Ester Hydrolysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Shu-Lin; LI,Min-Jiao; OU,Zhong-Wen; CHEN,Guo-Xu; LIU,Fu-An; XIE,Jia-Qing

    2007-01-01

    It has been reported that two Schiff base transition metal complexes bearing the side chain of the morpholine ring were synthesized and characterized, and two complexes with the same base agent but different metal ions were used as a simulant hydrolase in the catalytic hydrolysis of p-nitrophenyl picolinate in this paper. The mechanism of PNPP catalytic hydrolysis is proposed and supported by the results of the spectral analysis and the kinetic calculation. A kinetic mathematical model, applied to the calculation of the kinetic and thermodynamics parameters of PNPP catalytic hydrolysis, has been established on the foundation of the mechanism proposed. The result of the study shows that the two complexes have a good catalytic activity in PNPP catalytic hydrolysis, and the rate of the PNPP catalytic hydrolysis was increased with the increase of the pH values in the buffer solution and affected by the polarization effect of metal ion of the complexes.

  2. Hydrolysis of p-Nitrophenyl Picolinate Catalyzed by Mono-and Binuclear Transition Metal Complexes with Polyether Bridged Dihydroxamic Acid

    Institute of Scientific and Technical Information of China (English)

    李建章; 李鸿波; 冯发美; 谢家庆; 李慎新; 周波; 秦圣英

    2005-01-01

    Two polyether bridged dihydroxamic acids and their mono-and binuclear manganese(Ⅱ), zinc(Ⅱ) complexes have been synthesized and employed as models to mimic hydrolase in catalytic hydrolysis of p-nitrophenyl picolinate (PNPP). The reaction kinetics and the mechanism of hydrolysis of PNPP have been investigated. The kinetic mathematical model for PNPP cleaved by the complexes has been proposed. The effects of the different central metal ion, mono-and binuclear metal, the pseudo-macrocyclic polyether constructed by polyethoxy group of the complexes, and reactive temperature on the rate for catalytic hydrolysis of PNPP have been examined. The results showed that the transition metal dthydroxamates exhibited high catalytic activity to the hydrolysis of PNPP, the catalytic activity of binuclear complexes was higher than that of mononuclear ones, and the pseudo-macrocyclic polyether might synergetically activate H20 coordinated to metal ion with central metal ion together and promote the catalytic hydrolysis of PNPP.

  3. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. PMID:26496216

  4. Two stage hydrolysis of corn stover at high solids content for mixing power saving and scale-up applications.

    Science.gov (United States)

    Liu, Ke; Zhang, Jian; Bao, Jie

    2015-11-01

    A two stage hydrolysis of corn stover was designed to solve the difficulties between sufficient mixing at high solids content and high power input encountered in large scale bioreactors. The process starts with the quick liquefaction to convert solid cellulose to liquid slurry with strong mixing in small reactors, then followed the comprehensive hydrolysis to complete saccharification into fermentable sugars in large reactors without agitation apparatus. 60% of the mixing energy consumption was saved by removing the mixing apparatus in large scale vessels. Scale-up ratio was small for the first step hydrolysis reactors because of the reduced reactor volume. For large saccharification reactors in the second step, the scale-up was easy because of no mixing mechanism was involved. This two stage hydrolysis is applicable for either simple hydrolysis or combined fermentation processes. The method provided a practical process option for industrial scale biorefinery processing of lignocellulose biomass. PMID:26253418

  5. Enhancing fermentable sugar yield from cassava pulp for bioethanol production: microwave-coupled enzymatic hydrolysis approach.

    Science.gov (United States)

    Sudha, A; Sivakumar, V; Sangeetha, V; Devi, K S Priyenka

    2015-08-01

    Cassava pulp, a potential biological feedstock for ethanol production has been subjected to microwave-assisted alkali pretreatment and microwave-coupled enzymatic hydrolysis. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. Liquid to solid ratio for the pretreatment of cassava pulp was found to be 20:1. Cassava pulp was pretreated at various NaOH concentration, microwave temperature and gave maximum yield of reducing sugar with 1.5% NaOH at 90 °C in 30 min than conventional alkali pretreatment after enzymatic hydrolysis. The subsequent enzymatic saccharification of pretreated cassava pulp using α amylase dosage of 400 IU at microwave temperature of 90 °C resulted in highest reducing sugar yield of 723 mg/g pulp. Microwave-assisted alkali pretreatment improved the enzymatic saccharification of cassava pulp by increasing its accessibility to hydrolytic enzymes. Microwave-assisted alkali pretreatment and microwave-coupled enzymatic hydrolysis are found to be efficient for improving the yield of reducing sugar. PMID:25832789

  6. The DNA gyrase-quinolone complex. ATP hydrolysis and the mechanism of DNA cleavage

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1998-01-01

    , S. C., and Maxwell, A. (1998) J. Biol. Chem. 269, 22606-22614). The kinetics of ATP hydrolysis via this pathway have been studied and found to differ from those of the reaction of the drug-free enzyme. The quinolone-characteristic ATPase rate is DNA-dependent and can be induced in the presence...

  7. Two-stage Hydrolysis of Invasive Algal Feedstock for Ethanol Fermentation

    Institute of Scientific and Technical Information of China (English)

    Xin Wang; Xianhua Liu; Guangyi Wang

    2011-01-01

    The overall goal of this work was to develop a saccharification method for the production of third generation biofuel(i.e.bioethanol) using feedstock of the invasive marine macroalga Gracilaria salicornia.Under optimum conditions(120℃ and 2% sulfuric acid for 30 min), dilute acid hydrolysis of the homogenized invasive plants yielded a low concentration of glucose(4.1mM or 4.3g glucose/kg fresh algal biomass). However, two-stage hydrolysis of the homogenates (combination of dilute acid hydrolysis with enzymatic hydrolysis) produced 13.8g of glucose from one kilogram of fresh algal feedstock. Batch fermentation analysis produced 79.1g EtOH from one kilogram of dried invasive algal feedstock using the ethanologenic strain Escherichia coli K011. Furthermore, ethanol production kinetics indicated that the invasive algal feedstock contained different types of sugar, including C5-sugar. This study represents the first report on third generation biofuel production from invasive macroalgae, suggesting that there is great potential for the production of renewable energy using marine invasive biomass.

  8. Identification of strong aggregating regions in soy glycinin upon enzymatic hydrolysis

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Gruppen, H.

    2008-01-01

    Upon hydrolysis with chymotrypsin, soy glycinin has a strong tendency to aggregate. The regions of glycinin from which the aggregating peptides originate were identified by accumulative-quantitative peptide mapping. To this end, the aggregating peptides were further hydrolyzed with trypsin to obtain

  9. Production of reducing sugar from oil palm empty fruit bunch (EFB cellulose fibres via acid hydrolysis

    Directory of Open Access Journals (Sweden)

    Siew Xian Chin

    2013-02-01

    Full Text Available Cellulosic fibre of oil palm empty fruit bunches (EFB were used as a raw material for acid hydrolysis using mineral acids (H2SO4 and HCl to produce reducing sugar at moderate temperature and atmospheric pressure. Experiments were carried out to investigate the effect of the hydrolysis parameters, including acid concentration, temperature, and reaction time, on the total reducing sugar (TRS yield with the aid of response surface methodology (RSM. The preliminary hydrolysis studies of the EFB fibres showed that the presence of lignin in the fibres significantly affected the TRS yield. The maximum predicted TRS yield using H2SO4 was 30.61% under optimal conditions: acid concentration of 5 N, temperature of 139.65 oC, and reaction time of 4.16 h. For the hydrolysis using HCl, the maximum predicted TRS yield is 39.81% under optimal conditions: acid concentration of 4.63 N, temperature of 133.7 oC, reaction time of 2.05 h.

  10. Non-isothermal cephalexin hydrolysis by penicillin G acylase immobilized on grafted nylon membranes

    NARCIS (Netherlands)

    Mohy Eldin, M.S.; Santucci, M.; Rossi, S.; Tramper, J.; Janssen, A.E.M.; Schroën, C.G.P.H.; Mita, D.G.

    2000-01-01

    A new catalytic membrane has been prepared using a nylon membrane grafted by -radiation with methylmethacrylate (MMA) and using hexamethylenediamine (HMDA) as spacer. Penicillin G acylase (PGA) and cephalexin were employed as catalyst and substrate, respectively. Cephalexin hydrolysis was studied in

  11. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins.

    Science.gov (United States)

    Nakazawa, Yuta; Wang, Ya-Jane

    2003-11-21

    Eight commercial starches, including common corn, waxy corn, wheat, tapioca, potato, Hylon V, Hylon VII, and mung bean starch, were annealed by a multiple-step process, and their gelatinization characteristics were determined. Annealed starches had higher gelatinization temperatures, reduced gelatinization ranges, and increased gelatinization enthalpies than their native starches. The annealed starches with the highest gelatinization enthalpies were subjected to acid hydrolysis with 15.3% H2SO4, and Naegeli dextrins were prepared after 10 days' hydrolysis. Annealing increased the acid susceptibility of native starches in the first (rapid) and the second (slow) phases with potato starch showing the greatest and high amylose starches showing the least changes. Starches with a larger shift in onset gelatinization temperature also displayed a greater percent hydrolysis. The increase in susceptibility to acid hydrolysis was proposed to result from defective and porous structures that resulted after annealing. Although annealing perfected the crystalline structure, it also produced void space, which led to porous structures and possible starch granule defects. The molecular size distribution and chain length distribution of Naegeli dextrins of annealed and native starches were analyzed. The reorganization of the starch molecule during annealing occurred mainly within the crystalline lamellae. Imperfect double helices in the crystalline lamellae improved after annealing, and the branch linkages at the imperfect double helices became protected by the improved crystalline structure. Therefore, more long chains were observed in the Naegeli dextrins of annealed starches than in native starches.

  12. Involvement of Colonizing Bacillus Isolates in Glucovanillin Hydrolysis during the Curing of Vanilla planifolia Andrews.

    Science.gov (United States)

    Chen, Yonggan; Gu, Fenglin; Li, Jihua; He, Shuzhen; Xu, Fei; Fang, Yiming

    2015-08-01

    Vanilla beans were analyzed using biochemical methods, which revealed that glucovanillin disperses from the inner part to the outer part of the vanilla bean during the curing process and is simultaneously hydrolyzed by β-d-glucosidase. Enzymatic hydrolysis was found to occur on the surface of the vanilla beans. Transcripts of the β-d-glucosidase gene (bgl) of colonizing microorganisms were detected. The results directly indicate that colonizing microorganisms are involved in glucovanillin hydrolysis. Phylogenetic analysis based on 16S rRNA gene sequences showed that the colonizing microorganisms mainly belonged to the Bacillus genus. bgl was detected in all the isolates and presented clustering similar to that of the isolate taxonomy. Furthermore, inoculation of green fluorescent protein-tagged isolates showed that the Bacillus isolates can colonize vanilla beans. Glucovanillin was metabolized as the sole source of carbon in a culture of the isolates within 24 h. These isolates presented unique glucovanillin degradation capabilities. Vanillin was the major volatile compound in the culture. Other compounds, such as α-cubebene, β-pinene, and guaiacol, were detected in some isolate cultures. Colonizing Bacillus isolates were found to hydrolyze glucovanillin in culture, indirectly demonstrating the involvement of colonizing Bacillus isolates in glucovanillin hydrolysis during the vanilla curing process. Based on these results, we conclude that colonizing Bacillus isolates produce β-d-glucosidase, which mediates glucovanillin hydrolysis and influences flavor formation.

  13. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis

    Science.gov (United States)

    Biological pretreatment of lignocellulosic biomass by white-rot fungus can represent a low-cost and eco-friendly alternative to harsh physical, chemical or physico-chemical pretreatment methods to facilitate enzymatic hydrolysis. However, fungal pretreatment can cause carbohydrate loss and it is, th...

  14. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After pre-

  15. Absolute quantitation of proteins by Acid hydrolysis combined with amino Acid detection by mass spectrometry

    DEFF Research Database (Denmark)

    Mirgorodskaya, Olga A; Körner, Roman; Kozmin, Yuri P;

    2012-01-01

    Amino acid analysis is among the most accurate methods for absolute quantification of proteins and peptides. Here, we combine acid hydrolysis with the addition of isotopically labeled standard amino acids and analysis by mass spectrometry for accurate and sensitive protein quantitation....... Quantitation of less than 10 fmol of protein standards with errors below 10% has been demonstrated using this method (1)....

  16. Involvement of Colonizing Bacillus Isolates in Glucovanillin Hydrolysis during the Curing of Vanilla planifolia Andrews.

    Science.gov (United States)

    Chen, Yonggan; Gu, Fenglin; Li, Jihua; He, Shuzhen; Xu, Fei; Fang, Yiming

    2015-08-01

    Vanilla beans were analyzed using biochemical methods, which revealed that glucovanillin disperses from the inner part to the outer part of the vanilla bean during the curing process and is simultaneously hydrolyzed by β-d-glucosidase. Enzymatic hydrolysis was found to occur on the surface of the vanilla beans. Transcripts of the β-d-glucosidase gene (bgl) of colonizing microorganisms were detected. The results directly indicate that colonizing microorganisms are involved in glucovanillin hydrolysis. Phylogenetic analysis based on 16S rRNA gene sequences showed that the colonizing microorganisms mainly belonged to the Bacillus genus. bgl was detected in all the isolates and presented clustering similar to that of the isolate taxonomy. Furthermore, inoculation of green fluorescent protein-tagged isolates showed that the Bacillus isolates can colonize vanilla beans. Glucovanillin was metabolized as the sole source of carbon in a culture of the isolates within 24 h. These isolates presented unique glucovanillin degradation capabilities. Vanillin was the major volatile compound in the culture. Other compounds, such as α-cubebene, β-pinene, and guaiacol, were detected in some isolate cultures. Colonizing Bacillus isolates were found to hydrolyze glucovanillin in culture, indirectly demonstrating the involvement of colonizing Bacillus isolates in glucovanillin hydrolysis during the vanilla curing process. Based on these results, we conclude that colonizing Bacillus isolates produce β-d-glucosidase, which mediates glucovanillin hydrolysis and influences flavor formation. PMID:25979899

  17. Implications of reactor type and conditions on first-order hydrolysis rate assessment of maize

    NARCIS (Netherlands)

    Pabon Pereira, C.P.; Zeeman, G.; Zhao, R.; Ekmekci, B.; Lier, van J.B.

    2009-01-01

    The biodegradability and first-order hydrolysis coefficient of maize silage have been assessed from batch experiments using different types of inoculum and substrate to inocula (S/I) ratios, and from CSTRs working at different hydraulic retention times (HRTs). In the batch experiments, the assessed

  18. Equilibrium position, kinetics, and reactor concepts for the adipyl-7-ADCA-hydrolysis process

    NARCIS (Netherlands)

    Schroën, C.G.P.H.; Wiel, van de S.; Kroon, P.J.; Vroom, de E.; Janssen, A.E.M.; Tramper, J.

    2000-01-01

    One of the building blocks of cephalosporin antibiotics is 7-amino-deacetoxycephalosporanic acid (7-ADCA). It is currently produced from penicillin G using an elaborate chemical ring-expansion step followed by an enzyme-catalyzed hydrolysis. However, 7-ADCA-like components can also be produced by di

  19. Understanding the fundamental mechanism behind accumulation of oligosaccharides during high solids loading enzymatic hydrolysis

    Science.gov (United States)

    During enzymatic hydrolysis of biomass, polysaccharides are cleaved by glycosyl hydrolases to soluble oligosaccharides and further hydrolyzed by ß-glucosidase, ß-xylosidase and other enzymes to monomeric sugars. However, commercial enzyme mixtures do not hydrolyze all of these oligosaccharides and v...

  20. Selective enzymatic hydrolysis of C-terminal tert-butyl esters of peptides

    OpenAIRE

    Eggen, I.F.; Boeriu, C.G.

    2007-01-01

    The present invention relates to a process for the selective enzymatic hydrolysis of C-terminal esters of peptide substrates in the synthesis of peptides, comprising hydrolysing C-terminal tert-butyl esters using the protease subtilisin. This process is useful in the production of protected or unprotected peptides.