WorldWideScience

Sample records for c-60 molecule adsorbed

  1. Controlled contact to a C-60 molecule

    DEFF Research Database (Denmark)

    Neel, N.; Kröger, J.; Limot, L.

    2007-01-01

    The tip of a low-temperature scanning tunneling microscope is approached towards a C-60 molecule adsorbed at a pentagon-hexagon bond on Cu(100) to form a tip-molecule contact. The conductance rapidly increases to approximate to 0.25 conductance quanta in the transition region from tunneling to co...

  2. Hindered rotation of a copper phthalocyanine molecule on C60 : Experiments and molecular mechanics calculations

    NARCIS (Netherlands)

    Fendrich, M.; Wagner, Th.; Stöhr, M.; Möller, R.

    2006-01-01

    If copper phthalocyanine (CuPc) molecules are deposited on a Au(111) surface covered with a monolayer of C60, the molecules are found to adsorb individually onto the close-packed layer of C60. As the adsorption site of the CuPc is not symmetric with respect to the underlying C60 layer, the CuPc

  3. Effect of substrate thickness on ejection of phenylalanine molecules adsorbed on free-standing graphene bombarded by 10 keV C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, M. [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland); Verkhoturov, S.V.; Verkhoturov, D.S.; Schweikert, E.A. [Department of Chemistry, Texas A& M University, College Station, TX 77840 (United States); Postawa, Z., E-mail: zbigniew.postawa@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland)

    2017-02-15

    Highlights: • Substrate thickness has a prominent effect on the molecular ejection mechanism. • Collisions with projectile atoms leads to molecular ejection at thin substrates. • Interactions with deforming graphene sheet ejects molecules from thicker substrates. • Probability of fragmentation process decreases with the graphene substrate thickness. - Abstract: Molecular dynamics computer simulations have been employed to investigate the effect of substrate thickness on the ejection mechanism of phenylalanine molecules deposited on free-standing graphene. The system is bombarded from the graphene side by 10 keV C{sub 60} projectiles at normal incidence and the ejected particles are collected both in transmission and reflection directions. It has been found that the ejection mechanism depends on the substrate thickness. At thin substrates mostly organic fragments are ejected by direct collisions between projectile atoms and adsorbed molecules. At thicker substrates interaction between deforming topmost graphene sheet and adsorbed molecules becomes more important. As this process is gentle and directionally correlated, it leads predominantly to ejection of intact molecules. The implications of the results to a novel analytical approach in Secondary Ion Mass Spectrometry based on ultrathin free-standing graphene substrates and a transmission geometry are discussed.

  4. Effective intermolecular potential and critical point for C60 molecule

    Science.gov (United States)

    Ramos, J. Eloy

    2017-07-01

    The approximate nonconformal (ANC) theory is applied to the C60 molecule. A new binary potential function is developed for C60, which has three parameters only and is obtained by averaging the site-site carbon interactions on the surface of two C60 molecules. It is shown that the C60 molecule follows, to a good approximation, the corresponding states principle with n-C8H18, n-C4F10 and n-C5F12. The critical point of C60 is estimated in two ways: first by applying the corresponding states principle under the framework of the ANC theory, and then by using previous computer simulations. The critical parameters obtained by applying the corresponding states principle, although very different from those reported in the literature, are consistent with the previous results of the ANC theory. It is shown that the Girifalco potential does not correspond to an average of the site-site carbon-carbon interaction.

  5. Using the graphene Moiré pattern for the trapping of C60 and homoepitaxy of graphene.

    Science.gov (United States)

    Lu, Jiong; Yeo, Pei Shan Emmeline; Zheng, Yi; Yang, Zhiyong; Bao, Qiaoliang; Gan, Chee Kwan; Loh, Kian Ping

    2012-01-24

    The graphene Moiré superstructure offers a complex landscape of humps and valleys to molecules adsorbing and diffusing on it. Using C(60) molecules as the classic hard sphere analogue, we examine its assembly and layered growth on this corrugated landscape. At the monolayer level, the cohesive interactions of C(60) molecules adsorbing on the Moiré lattice freeze the molecular rotation of C(60) trapped in the valley sites, resulting in molecular alignment of all similarly trapped C(60) molecules at room temperature. The hierarchy of adsorption potential well on the Moiré lattice causes diffusion-limited dendritic growth of C(60) films, as opposed to isotropic growth observed on a smooth surface like graphite. Due to the strong binding energy of the C(60) film, part of the dentritic C(60) films polymerize at 850 K and act as solid carbon sources for graphene homoepitaxy. Our findings point to the possibility of using periodically corrugated graphene in molecular spintronics due to its ability to trap and align organic molecules at room temperature. © 2011 American Chemical Society

  6. Implanting very low energy atomic ions into surface adsorbed cage molecules: the formation/emission of Cs/C60+

    International Nuclear Information System (INIS)

    Kolodney, Eli; Kaplan, Andrey; Manor, Yoni; Bekkerman, Anatoly; Tsipinyuk, Boris

    2004-01-01

    Full Text: We demonstrate the formation of an endo-complex via a collision of energetic ions with molecular overlayers on a surface. An incoming atomic ion is encapsulated inside a very large molecule or cluster by implanting the primary ion into the target species, which then recovers its original structure or rearrange itself around the implanted ion in some stable configuration. Here we describe an experiment resulting in the formation and ejection of an endo-complex, within a single collision. We study the formation and emission of endohedral fullerenes, Cs/C 60 + and Cs/C 70 + , following a single collision of Cs + ion with a sub-monolayer of C 60 (steady state coverage) on gold and silicon surfaces and with a sub-monolayer of C 70 on gold. A continuous low energy (E 0 =35-220 eV) Cs + ion beam hit the Cs + covered surface and the collisional formation and ejection of the endohedral Cs/Cs 60 + complex, within a single Cs + /C 60 collision was observed and characterized. Several experimental observations clearly demonstrate the single collision nature of the combined atom penetration endo-complex ejection event. The fullerene molecule is actually being picked up off the surface by the penetrating Cs + ion. The evidence for the trapping of the Cs + ion inside the fullerene cage is given both by the appearance of the Cs/Cs (602-2n) + (n=1-5) sequence and its termination at Cs/Cs 50 + . Kinetic Energy Distributions (KEDs) of the outgoing Cs/Cs 60 + were measured for two different Cs + impact energies under field-free conditions. The most striking observation is the near independence of the KEDs on the impact energy. Both KEDs peak around 1.2 eV with similar line shapes. A simple model for the formation/ejection/fragmentation dynamics of the endohedral complex is proposed and is found to be in good agreement with the experimental results

  7. STM study of C60F18 high dipole moment molecules on Au(111)

    Science.gov (United States)

    Bairagi, K.; Bellec, A.; Chumakov, R. G.; Menshikov, K. A.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Repain, V.; Lebedev, A. M.; Sukhanov, L. P.; Svechnikov, N. Yu.; Stankevich, V. G.

    2015-11-01

    Scanning tunneling microscopy and spectroscopy studies of C60F18 molecules deposited on Au(111) are reported and compared to C60 molecules both at liquid helium temperature and room temperature (RT). Whereas adsorption and electronic properties of C60F18 single molecules were studied at low temperature (LT), self-assemblies were investigated at RT. In both cases, the fluorine atoms of the C60F18 molecules are pointed towards the surface. Individual C60F18 molecules on Au(111) have a HOMO-LUMO gap of 2.9 eV. The self-assembled islands exhibit a close-packed hexagonal lattice with amorphous borders. The comparison with C60 molecules clearly demonstrates the influence of the C60F18 electric dipole moment (EDM) on the electronic properties of single molecules and on the thermodynamics of self-assembled islands. Besides, the apparent height value of a separate molecule increases in a self-assembly environment as a result of a depolarization phenomenon.

  8. Hydrogen molecules inside fullerene C70: quantum dynamics, energetics, maximum occupancy, and comparison with C60.

    Science.gov (United States)

    Sebastianelli, Francesco; Xu, Minzhong; Bacić, Zlatko; Lawler, Ronald; Turro, Nicholas J

    2010-07-21

    Recent synthesis of the endohedral complexes of C(70) and its open-cage derivative with one and two H(2) molecules has opened the path for experimental and theoretical investigations of the unique dynamic, spectroscopic, and other properties of systems with multiple hydrogen molecules confined inside a nanoscale cavity. Here we report a rigorous theoretical study of the dynamics of the coupled translational and rotational motions of H(2) molecules in C(70) and C(60), which are highly quantum mechanical. Diffusion Monte Carlo (DMC) calculations were performed for up to three para-H(2) (p-H(2)) molecules encapsulated in C(70) and for one and two p-H(2) molecules inside C(60). These calculations provide a quantitative description of the ground-state properties, energetics, and the translation-rotation (T-R) zero-point energies (ZPEs) of the nanoconfined p-H(2) molecules and of the spatial distribution of two p-H(2) molecules in the cavity of C(70). The energy of the global minimum on the intermolecular potential energy surface (PES) is negative for one and two H(2) molecules in C(70) but has a high positive value when the third H(2) is added, implying that at most two H(2) molecules can be stabilized inside C(70). By the same criterion, in the case of C(60), only the endohedral complex with one H(2) molecule is energetically stable. Our results are consistent with the fact that recently both (H(2))(n)@C(70) (n = 1, 2) and H(2)@C(60) were prepared, but not (H(2))(3)@C(70) or (H(2))(2)@C(60). The ZPE of the coupled T-R motions, from the DMC calculations, grows rapidly with the number of caged p-H(2) molecules and is a significant fraction of the well depth of the intermolecular PES, 11% in the case of p-H(2)@C(70) and 52% for (p-H(2))(2)@C(70). Consequently, the T-R ZPE represents a major component of the energetics of the encapsulated H(2) molecules. The inclusion of the ZPE nearly doubles the energy by which (p-H(2))(3)@C(70) is destabilized and increases by 66% the

  9. Formation of clusters composed of C60 molecules via self-assembly in critical fluids

    International Nuclear Information System (INIS)

    Fukuda, Takahiro; Ishii, Koji; Kurosu, Shunji; Whitby, Raymond; Maekawa, Toru

    2007-01-01

    Fullerenes are promising candidates for intelligent, functional nanomaterials because of their unique mechanical, electronic and chemical properties. However, it is necessary to invent some efficient but relatively simple methods of producing structures composed of fullerenes for the development of nanomechatronic, nanoelectronic and biochemical devices and sensors. In this paper, we show that various structures such as straight fibres, networks formed by fibres, wide sheets and helical structures, which are composed of C 60 molecules, are created by placing C 60 -crystals in critical ethane, carbon dioxide and xenon even though C 60 molecules do not dissolve or disperse in the above fluids. It is supposed, judging by the intermolecular potentials between C 60 and C 60 , between C 60 and ethane, and between ethane and ethane, that C 60 -clusters grow with the assistance of solvent molecules, which are trapped between C 60 molecules under critical conditions. This room-temperature self-assembly cluster growth process in critical fluids may open up a new methodology of forming structures built up with fullerenes without the need for any ultra-fine processing technologies

  10. Self-Assembly of Individually Addressable Complexes of C-60 and Phthalocyanines on a Metal Surface : Structural and Electronic Investigations

    NARCIS (Netherlands)

    Samuely, Tomas; Liu, Shi-Xia; Haas, Marco; Decurtins, Silvio; Jung, Thomas A.; Stoehr, Meike

    2009-01-01

    The hosting properties of a close-packed layer of phenoxy-substituted phthalocyanine derivatives adsorbed on Ag(III) were investigated for the adsorption of C-60 molecules. The C-60 molecules bind to two clearly distinguishable sites, namely, to the underlying metal substrate in between two adjacent

  11. Material properties and purity of C60

    International Nuclear Information System (INIS)

    Werner, H.; Bublak, D.; Goebel, U.; Henschke, B.; Bensch, W.; Schloegl, R.

    1992-01-01

    The fullerenes can be described as molecular analogues of activated charcoal with a large inner surface. Accordingly, in the solid state, C 60 adsorbs organic molecules and oxygen from the air. The conditions of the production, purification, and storage therefore dictate the electronic and dynamic properties of the van der Waals crystals. Obtaining fullerene samples with defined and reproducible properties is more difficult than previously thought. (orig.) [de

  12. Electron stimulated desorption of cations from C sub 6 H sub 6 and C sub 6 H sub 1 sub 2 molecules adsorbed on Pt(1 1 1) and Ar spacer layer

    CERN Document Server

    Kawanowa, H; Hanatani, K; Gotoh, Y; Souda, R

    2003-01-01

    Mechanisms of electron stimulated cation desorption have been investigated for adsorbed C sub 6 H sub 6 and C sub 6 H sub 1 sub 2 molecules on the Pt(1 1 1) surface and the Ar spacer layer formed on it. The ion yields from the molecules adsorbed on the Ar spacer layer are highly enhanced at the smallest coverage and decay steeply with increasing coverage. No such enhancement was observed when they are adsorbed directly on the Pt(1 1 1) substrate. This behavior is explained in terms of the Coulombic repulsion of cations confined in nanoclusters, together with the delocalization of valence holes on the Pt(1 1 1) substrate as well as in the multilayer hydrocarbons. The holes in the C sub 6 H sub 6 molecule are more delocalized than those in the C sub 6 H sub 1 sub 2 molecule due to the overlap of pi orbitals.

  13. sup(60)Co hot atom chemistry of tris(acetylacetonato) cobalt(III) adsorbed on silica gel

    International Nuclear Information System (INIS)

    Nishioji, H.; Sakai, Y.; Tominaga, T.

    1985-01-01

    The sup(60)Co hot atom reactions were studied in tris(acetylacetonato)cobalt(III) adsorbed on silica gel surface. sup(57)Fe Moessbauer spectra of tris(acetylacetonato)iron(III) in the corresponding system were also measured in order to examine the state of dispersion of complex molecules on silica gel. The retention formation processes were discussed in terms of the dependence of sup(60)Co retention on the adsorbed amount (concentration) of cobalt(III) complexes. (author)

  14. Direct observation of hindered eccentric rotation of an individual molecule : Cu-phthalocyanine on C60

    NARCIS (Netherlands)

    Stöhr, Meike; Wagner, T; Gabriel, M; Weyers, B; Moller, R

    2002-01-01

    Individual Cu-phthalocyanine molecules have been investigated by scanning tunnel microscopy on a closed packed film of C-60 at various temperatures. The molecules are found to bind asymmetrically to one C-60. While they remain in one position at low temperature, they can hop between six equivalent

  15. Calculations on the Nonlinear Second—Order Optical Polarizabilities for Series of Donor—C60 Molecules

    Institute of Scientific and Technical Information of China (English)

    刘孝娟; 封继康; 任爱民

    2003-01-01

    The equilibrium geometries and UV-visible spectra of a series of donor-C60 molecules were obtained by means of the AM1 and INDO/CI method,on the basis of accurate geometric and electronic structures.The nonlinear second-order optical polarizabilities were calculated using the method INDO/SDCI combined with the Sum-Over-States(SOS) expression.The calculatedβ(λ=1.34μm) values are 28.81,48.56,57.33,66.99,70.85,85.84,and 142.14(×10-30 esu) for the molecules A,B,C,D,E,F and G,respectively.The frontier orbitals were plot for the representative molecules in order to exhibit the intramolecular charge transfer.The results indicate the introduction of thienylethylene can enhance the NLO response and the dimethylaniline-substituted dithienyl-ethylene-C60 (molecule G) possesses the largest NLO second-order optical polarizability.The large β values can be attributed to the charge transfer between the substituents and C60,as well as within the three-dimensional conjugated sphere of C60.

  16. Simulations of the Static Friction Due to Adsorbed Molecules

    OpenAIRE

    He, Gang; Robbins, Mark O.

    2001-01-01

    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potenti...

  17. Functionalization of [60] fullerene with butadienes: A DFT study

    International Nuclear Information System (INIS)

    Beheshtian, Javad; Peyghan, Ali Ahmadi; Bagheri, Zargham

    2012-01-01

    Highlights: ► Reaction of C 60 with 2,3-dimethylbutadiene (DMB) is theoretically investigated. ► The HOMO of DMB interacts with the LUMO of C 60 via a Diels Alder reaction. ► Work function of C 60 is decreased by increasing the number of DMB molecules. ► The reaction may facilitate the field electron emission from C 60 surface. - Abstract: We have performed a density functional study on the reaction of C 60 fullerene with one to six 2,3-dimethylbutadiene (DMB) molecule(s) which has previously been investigated by experimental researchers. Based on the obtained results, it has been found that (1) the reaction is regioselective, so that the DMB molecule prefers to be adsorbed atop a C-C bond which is shared between two hexagonal rings of C 60 (in good agreement with the experimental results) with reaction energy of −0.98 eV; (2) the HOMO of DMB interacts with the LUMO of C 60 via a Diels Alder reaction; (3) the energy of reaction and work function of C 60 are decreased by increasing the number of adsorbed DMB molecules; (4) the HOMO–LUMO energy gap of C 60 is slightly changed upon the reaction; (5) the reaction reduces the potential barrier of the field electron emission of C 60 surface.

  18. Kelvin probe force microscopy studies of the charge effects upon adsorption of carbon nanotubes and C60 fullerenes on hydrogen-terminated diamond

    Science.gov (United States)

    Kölsch, S.; Fritz, F.; Fenner, M. A.; Kurch, S.; Wöhrl, N.; Mayne, A. J.; Dujardin, G.; Meyer, C.

    2018-01-01

    Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.

  19. Controlled enzymatic cutting of DNA molecules adsorbed on surfaces using soft lithography

    Science.gov (United States)

    Auerbach, Alyssa; Budassi, Julia; Shea, Emily; Zhu, Ke; Sokolov, Jonathan

    2013-03-01

    The enzyme DNase I was applied to adsorbed and aligned DNA molecules (Lamda, 48.5 kilobase pairs (kbp), and T4, 165.6 kbp), stretched linearly on a surface, by stamping with a polydimethylsiloxane (PDMS) grating. The DNAs were cut by the enzyme into separated, micron-sized segments along the length of the molecules at positions determined by the grating dimensions (3-20 microns). Ozone-treated PDMS stamps were coated with DNase I solutions and placed in contact with surface-adsorbed DNA molecules deposited on a 750 polymethylmethacrylate (PMMA) film spun-cast onto a silicon substrate. The stamps were applied under pressure for times up to 15 minutes at 37 C. The cutting was observed by fluorescence microscopy imaging of DNA labeled with YOYO dye. Cutting was found to be efficient despite the steric hindrance due to surface attachment of the molecules. Methods for detaching and separating the cut segments for sequencing applications will be discussed. Supported by NSF-DMR program.

  20. Functionalization of [60] fullerene with butadienes: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box: 16875-163, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi, E-mail: ahmadi.iau@gmail.com [Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of); Bagheri, Zargham [Physics group, Science department, Islamic Azad University, Islamshahr Branch, P.O. Box: 33135-369, Islamshahr, Tehran (Iran, Islamic Republic of)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Reaction of C{sub 60} with 2,3-dimethylbutadiene (DMB) is theoretically investigated. Black-Right-Pointing-Pointer The HOMO of DMB interacts with the LUMO of C{sub 60} via a Diels Alder reaction. Black-Right-Pointing-Pointer Work function of C{sub 60} is decreased by increasing the number of DMB molecules. Black-Right-Pointing-Pointer The reaction may facilitate the field electron emission from C{sub 60} surface. - Abstract: We have performed a density functional study on the reaction of C{sub 60} fullerene with one to six 2,3-dimethylbutadiene (DMB) molecule(s) which has previously been investigated by experimental researchers. Based on the obtained results, it has been found that (1) the reaction is regioselective, so that the DMB molecule prefers to be adsorbed atop a C-C bond which is shared between two hexagonal rings of C{sub 60} (in good agreement with the experimental results) with reaction energy of -0.98 eV; (2) the HOMO of DMB interacts with the LUMO of C{sub 60} via a Diels Alder reaction; (3) the energy of reaction and work function of C{sub 60} are decreased by increasing the number of adsorbed DMB molecules; (4) the HOMO-LUMO energy gap of C{sub 60} is slightly changed upon the reaction; (5) the reaction reduces the potential barrier of the field electron emission of C{sub 60} surface.

  1. Translocation mechanism of C{sub 60} and C{sub 60} derivations across a cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Lijun, E-mail: michael.lijunl@gmail.com [Hangzhou Dianzi University, College of Life Information Science and Instrument Engineering (China); Kang, Zhengzhong [Zhejiang University, Department of Chemistry (China); Shen, Jia-Wei, E-mail: shen.jiawei@hotmail.com [Hangzhou Normal University, School of Medicine (China)

    2016-11-15

    Carbon-based nanoparticles (NPs) such as fullerenes and nanotubes have been extensively studied for drug delivery in recent years. The permeation process of fullerene and its derivative molecules through membrane is essential to the utilization of fullerene-based drug delivery system, but the mechanism and the dynamics of permeation through cell membrane are still unclear. In this study, coarse-grained molecular dynamics simulations were performed to investigate the permeation process of functionalized fullerene molecules (ca. 0.72 nm) through the membrane. Our results show that single functionalized fullerene molecule in such nanoscale could permeate the lipid membrane in micro-second time scale. Pristine C{sub 60} molecules prefer to aggregate into several small clusters while C{sub 60}OH{sub 15} molecules could aggregate into one big cluster to permeate through the lipid membrane. After permeation of C{sub 60} or its derivatives into membrane, all C{sub 60} and C{sub 60}OH{sub 15} molecules disaggregated and monodispersed in the lipid membrane.

  2. Nanoelectromechanical switch operating by tunneling of an entire C-60 molecule

    DEFF Research Database (Denmark)

    Danilov, Andrey V.; Hedegård, Per; Golubev, Dimitrii S.

    2008-01-01

    (i) the relative contribution of tunneling, current induced heating and thermal fluctuations to the switching mechanism, (ii) the voltage dependent energy barrier (similar to 100-200 meV) separating the two states of the switch and (iii) the switching attempt frequency, omega(0) corresponding to a 2......We present a solid state single molecule electronic device where switching between two states with different conductance happens predominantly by tunneling of an entire C-60 molecule. This conclusion is based on a novel statistical analysis of similar to 10(5) switching events. The analysis yields...

  3. Nanoscale control of reversible chemical reaction between fullerene C60 molecules using scanning tunneling microscope.

    Science.gov (United States)

    Nakaya, Masato; Kuwahara, Yuji; Aono, Masakazu; Nakayama, Tomonobu

    2011-04-01

    The nanoscale control of reversible chemical reactions, the polymerization and depolymerization between C60 molecules, has been investigated. Using a scanning tunneling microscope (STM), the polymerization and depolymerization can be controlled at designated positions in ultrathin films of C60 molecules. One of the two chemical reactions can be selectively induced by controlling the sample bias voltage (V(s)); the application of negative and positive values of V(s) results in polymerization and depolymerization, respectively. The selectivity between the two chemical reactions becomes extremely high when the thickness of the C60 film increases to more than three molecular layers. We conclude that STM-induced negative and positive electrostatic ionization are responsible for the control of the polymerization and depolymerization, respectively.

  4. The dependence of electronic transport on compressive deformation of C{sub 60} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University (China)], E-mail: lihuilmy@hotmail.com; Zhang, X.Q. [Physics Department, Ocean University of China, Qingdao (China)

    2008-06-02

    The dependence of electronic transport on compressive deformation of C{sub 60} molecule is studied theoretically in this work. Brenner's 'second generation' empirical potential is used to describe the many-body short-range interatomic interactions for C{sub 60} in the molecular dynamics simulations. Our results demonstrate that C{sub 60} can be compressed up to a strain {epsilon}=0.31 before collapsing. Electronic transport under an applied bias is calculated by using a self-consistent field approach coupled with non-equilibrium Green's function (NEGF) formalism. The transmission probability, conductance gap, and conductance spectrum are found to be sensitive to the compression. The peak value of conductance decreases with the increase of strain until the C{sub 60} is compressed up to a strain {epsilon}=0.31.

  5. Origin of the Surface-Induced First Hyperpolarizability in the C60/SiO2 System: SCC-DFTB Insight.

    Science.gov (United States)

    Nénon, Sébastien; Champagne, Benoît

    2014-01-02

    Using the self-consistent charge density functional tight binding (SCC-DFTB) method, C60 molecules physisorbed on an α-quartz slab are shown to display a first hyperpolarizability, whereas, owing to their symmetry, both the α-quartz slab and C60 molecule have no first hyperpolarizabilities. A larger first hyperpolarizability is achieved when the lowest-lying (five- or six-membered) ring is situated in between two hydroxyl rows, rather than on top, because this situation favors orbital overlaps and charge transfer. Further analysis has demonstrated that (i) the first hyperpolarizability originates from the MO overlap and field-induced charge transfers from the neighboring substrate/adsorbate moieties but not to geometric relaxation of the C60 molecules at the interface and that (ii) larger first hyperpolarizabilities are associated with low surface coverage and with small distances between C60 and the surface. This contribution is a clear illustration of the emergence of second-order nonlinear optical responses (first hyperpolarizability) as a result of breaking the centrosymmetry.

  6. Simulation of the soft-landing and adsorption of C{sub 60} molecules on a graphite substrate and computation of their scanning-tunnelling-microscopy-like images

    Energy Technology Data Exchange (ETDEWEB)

    Rafii-Tabar, H. [Computational Nano-Science Research Group, Centre for Numerical Modelling and Process Analysis, School of Computing and Mathematical Sciences, University of Greenwich, Greenwich, London (United Kingdom); Jurczyszyn, L.; Stankiewicz, B. [Institute of Experimental Physics, University of Wroclaw, Wroclaw (Poland)

    2000-07-03

    A constant-temperature molecular dynamics (MD) simulation was performed to model the soft-landing and adsorption of C{sub 60} molecules on a graphite substrate with the C{sub 60}s treated as soft molecules and released individually towards the substrate. The intra-molecular and intra-planar covalently bonding interactions were modelled by very accurate many-body potentials, and the non-bonding forces were derived from various pairwise potentials. The simulation extended over 1.6 million time steps covering a significant period of 160 picoseconds. The final alignment of the molecules on the surface agrees closely with that observed in an experiment based on scanning tunnelling microscopy (STM) on the same system, performed at room temperature and under ultrahigh-vacuum (UHV) conditions. Using a tungsten tip in a constant-current mode of imaging, we have also computed the STM-like images of one of the adsorbed molecules using a formulation of the STM tunnelling current based on Keldysh's non-equilibrium Green function formalism. Our aim has been to search for tip-induced states, which were speculated, on the basis of another STM-based experiment, performed in air, to form one of the possible origins of the extra features purported to have been observed in that experiment. We have not obtained any such states. (author)

  7. Precise Orientation of a Single C60 Molecule on the Tip of a Scanning Probe Microscope

    Science.gov (United States)

    Chiutu, C.; Sweetman, A. M.; Lakin, A. J.; Stannard, A.; Jarvis, S.; Kantorovich, L.; Dunn, J. L.; Moriarty, P.

    2012-06-01

    We show that the precise orientation of a C60 molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C60 cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C60C60 pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)JPCHAX0022-365410.1021/j100167a002].

  8. Scattering of atoms by molecules adsorbed at solid surfaces

    International Nuclear Information System (INIS)

    Parra, Zaida.

    1988-01-01

    The formalism of collisional time-correlation functions, appropriate for scattering by many-body targets, is implemented to study energy transfer in the scattering of atoms and ions from molecules adsorbed on metal surfaces. Double differential cross-sections for the energy and angular distributions of atoms and ions scattered by a molecule adsorbed on a metal surface are derived in the limit of impulsive collisions and within a statistical model that accounts for single and double collisions. They are found to be given by the product of an effective cross-section that accounts for the probability of deflection into a solid angle times a probability per unit energy transfer. A cluster model is introduced for the vibrations of an adsorbed molecule which includes the molecular atoms, the surface atoms binding the molecule, and their nearest neighbors. The vibrational modes of CO adsorbed on a Ni(001) metal surface are obtained using two different cluster models to represent the on-top and bridge-bonding situations. A He/OC-Ni(001) potential is constructed from a strongly repulsive potential of He interacting with the oxygen atom in the CO molecule and a van der Waals attraction accounting for the He interaction with the free Ni(001) surface. A potential is presented for the Li + /OC-Ni(001) where a coulombic term is introduced to account for the image force. Trajectory studies are performed and analyzed in three dimensions to obtain effective classical cross-sections for the He/OC-Ni(001) and Li + /OC-Ni(001) systems. Results for the double differential cross-sections are presented as functions of scattering angles, energy transfer and collisional energy. Temperature dependence results are also analyzed. Extensions of the approach and inclusion of effects such as anharmonicity, collisions at lower energies, and applications of the approach to higher coverages are discussed

  9. Nonadiabatic effects on surfaces: Kohn anomaly, electronic damping of adsorbate vibrations, and local heating of single molecules

    International Nuclear Information System (INIS)

    Kroeger, J

    2008-01-01

    Three aspects of electron-phonon coupling at metal surfaces are reviewed. One aspect is the Kohn effect, which describes an anomalous dispersion relation of surface phonons due to quasi-one-dimensional nesting of Fermi surface contours. The combination of electron energy loss spectroscopy and angle-resolved photoelectron spectroscopy allows us to unambiguously characterize Kohn anomaly systems. A second aspect is the nonadiabatic damping of adsorbate vibrations. Characteristic spectroscopic line shapes of vibrational modes allow us to estimate the amount of energy transfer between the vibrational mode and electron-hole pairs. Case studies of a Kohn anomaly and nonadiabatic damping are provided by the hydrogen- and deuterium-covered Mo(110) surface. As a third aspect of interaction between electrons and phonons, local heating of a C 60 molecule adsorbed on Cu(100) and in contact with the tip of a scanning tunnelling microscope is covered

  10. Packing C60 in Boron Nitride Nanotubes

    Science.gov (United States)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  11. Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: Tribo-polymers from α-pinene, pinane, and n-decane

    Science.gov (United States)

    He, Xin; Barthel, Anthony J.; Kim, Seong H.

    2016-06-01

    The mechanochemical reactions of adsorbed molecules at sliding interfaces were studied for α-pinene (C10H16), pinane (C10H18), and n-decane (C10H22) on a stainless steel substrate surface. During vapor phase lubrication, molecules adsorbed at the sliding interface could be activated by mechanical shear. Under the equilibrium adsorption condition of these molecules, the friction coefficient of sliding steel surfaces was about 0.2 and a polymeric film was tribochemically produced. The synthesis yield of α-pinene tribo-polymers was about twice as much as pinane tribo-polymers. In contrast to these strained bicyclic hydrocarbons, n-decane showed much weaker activity for tribo-polymerization at the same mechanical shear condition. These results suggested that the mechanical shear at tribological interfaces could induce the opening of the strained ring structure of α-pinene and pinane, which leads to polymerization of adsorbed molecules at the sliding track. On a stainless steel surface, such polymerization reactions of adsorbed molecules do not occur under typical surface reaction conditions. The mechanical properties and boundary lubrication efficiency of the produced tribo-polymer films are discussed.

  12. The nano-science of C60 molecule

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of this molecule on a variety of substrates. We review the field of nano-scale nucleation and growth of C 6 0 molecules on some of the technologically important substrates. In addition to experimental results, the results of a set of highly accurate computational simulations are also reported

  13. Alignment of paired molecules of C60 within a hexagonal platform networked through hydrogen-bonds.

    Science.gov (United States)

    Hisaki, Ichiro; Nakagawa, Shoichi; Sato, Hiroyasu; Tohnai, Norimitsu

    2016-07-28

    We demonstrate, for the first time, that a hydrogen-bonded low-density organic framework can be applied as a platform to achieve periodic alignment of paired molecules of C60, which is the smallest example of a finite-numbered cluster of C60. The framework is a layered assembly of a hydrogen-bonded 2D hexagonal network (LA-H-HexNet) composed of dodecadehydrotribenzo[18]annulene derivatives.

  14. Comparative computational study of interaction of C60-fullerene and tris-malonyl-C60-fullerene isomers with lipid bilayer: relation to their antioxidant effect.

    Directory of Open Access Journals (Sweden)

    Marine E Bozdaganyan

    Full Text Available Oxidative stress induced by excessive production of reactive oxygen species (ROS has been implicated in the etiology of many human diseases. It has been reported that fullerenes and some of their derivatives-carboxyfullerenes-exhibits a strong free radical scavenging capacity. The permeation of C60-fullerene and its amphiphilic derivatives-C3-tris-malonic-C60-fullerene (C3 and D3-tris-malonyl-C60-fullerene (D3-through a lipid bilayer mimicking the eukaryotic cell membrane was studied using molecular dynamics (MD simulations. The free energy profiles along the normal to the bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC for C60, C3 and D3 were calculated. We found that C60 molecules alone or in clusters spontaneously translocate to the hydrophobic core of the membrane and stay inside the bilayer during the whole period of simulation time. The incorporation of cluster of fullerenes inside the bilayer changes properties of the bilayer and leads to its deformation. In simulations of the tris-malonic fullerenes we discovered that both isomers, C3 and D3, adsorb at the surface of the bilayer but only C3 tends to be buried in the area of the lipid headgroups forming hydrophobic contacts with the lipid tails. We hypothesize that such position has implications for ROS scavenging mechanism in the specific cell compartments.

  15. Interaction of multicharged ions with molecules (CO2, C60) by coincident electron spectroscopy

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.

    2001-01-01

    First results for the investigation of electron capture processes in collisions between multicharged ions and molecule targets using electron spectroscopy in coincidence with charged fragments, are presented. It is shown that a much more detailed investigation of the capture reaction can be achieved using molecular instead of heavy atomic targets provided that an analysis of the target dissociation is made. The collisional systems 18 O 8+ +Ar, CO 2 and C 60 have been studied at 80 keV. Non coincident electron spectra as well as first results of double or triple coincidence experiments are discussed. Kinetic energy distributions of the C n + fragments (n=1 to 8) produced in multiple capture processes from C 60 target are given. A detailed investigation of the double capture process with CO 2 molecule allows the measurement of kinetic energy release distributions (KERD) which characterize the dissociation of CO 2 2+ molecular ions; our results are found to be very similar to those measured in double photoionisation experiments. (orig.)

  16. STM topographical images of C60

    International Nuclear Information System (INIS)

    Wang, Z.; Zhang, P.; Moskovits, M.

    1991-01-01

    In this paper STM topographical images of C 60 are reported. The images are consistent with a molecule approximately 9 Angstrom in diameter possessing the now-famous soccer ball structure. With the molecule deposited on gold, its atomic structure is not resolved. On graphite the structure of the within the borders of the C 60 molecule is dominated by that of the graphite forming a moire-like pattern. Some evidence of atomic structure is seen in multilayers of C 60 where some five- and six-membered rings are visible. These may, however, be features of fragments of the fullerene rather than whole molecules

  17. Studies of ethylene hydrogenation and of adsorbed C/sub 2/H/sub 4/ and H/sub 2/ on chromia and lanthana catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Khodakov, Y.S.; Makarov, P.A.; Delzer, G.; Minachev, K.M.

    1980-01-01

    Temperature-programed desorption of ethylene or hydrogen adsorbed at -78/sup 0/, -68/sup 0/, and +20/sup 0/C on chromic oxide, a 1:7 chromic oxide/alumina catalyst prepared by impregnation, alumina, and lanthanum oxide pretreated at 400/sup 0/-900/sup 0/C in vacuo showed that ethylene adsorbed on these oxides on three different sites from which it desorbed at -40/sup 0/ to +10/sup 0/C, at 50/sup 0/-100/sup 0/C, and at 350/sup 0/-400/sup 0/C; and that hydrogen adsorbed only on the latter two sites. One preadsorbed ethylene molecule was displaced at room temperature by 16 molecules of carbon monoxide, 79 molecules of carbon dioxide, or 135 molecules of water. Hydrogen was displaced at lower temperature. The nature of the surface sites and of the adsorbed species, and their reactivities are discussed.

  18. Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules

    International Nuclear Information System (INIS)

    Pederson, Mark R.; Baruah, Tunna; Basurto, Luis; Kao, Der-you

    2016-01-01

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C 60 , and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexity of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C 60 molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.

  19. Nuclear magnetic resonance study of the structure of simple molecules adsorbed on metal surfaces: acetylene on platinum

    International Nuclear Information System (INIS)

    Wang, P.K.

    1984-01-01

    We have used NMR to determine the structure of acetylene (HC - CH) adsorbed at room temperature on small platinum particles by studying the 13 C- 13 C, 13 C- 1 H, and 1 H- 1 H dipolar interactions among the nuclei in the adsorbed molecules. We find a model of 77% CCH 2 and 23% HCCH to be the only one consistent with all of our data. The C-C bond length of the majority species, CCH 2 , is determined as 1.44 +- 0.02 A, midway between a single and double bond, suggesting that both carbon atoms bond to the surface. 36 references, 29 figures, 1 table

  20. Fullerene C[sub 60

    Energy Technology Data Exchange (ETDEWEB)

    Koruga, D; Hameroff, S; Sundareshan, M [Univ. of Arizona, Tucson, AZ (United States); Withers, J; Loutfy, R [MER Corp., Tucson, AZ (United States)

    1993-01-01

    This book, one of the first to be published in the exciting field of fullerenes, includes a short history of scientific discovery, as well as one possible answer to the question: for what purposes can C[sub 60] be utilized. The book opens with a review of the life of Buckminster Fuller. Modern history of fivefold symmetry and the icosahedron began between 1984 and 1985, when Shechtman and his research team opened a new branch in crystallography (fivefold symmetry) and when the Kroto/Smalley research team discovered the C[sub 60] molecule (truncated icosahedron). Production of solid C[sub 60] by the Huffman/Kraeschner research team in 1990 provided a new stimulus for research by producing C[sub 60] in macroscopic amounts for use by the scientific and technological community. This achievement led to developments such as Koruga's August 1992 creation of the dimer C[sub 116] using scanning tunneling engineering and Loutfy's hydrogenation of C[sub 60] and construction of the first Ni/C[sub 60] rechargeable batteries in December 1992. New inventions based on C[sub 60] will continue to be forthcoming, particularly in the areas of superconductivity, quantum devices, and molecular electronic devices. Discovery of the C[sub 60] molecule (Kroto/Smalley), production of solid C[sub 60] (Huffman/Kraeschmer) and technological inventions such as C[sub 116] (Koruga) have been chance discoveries. A short history of these discoveries is detailed in the book along with the results of the authors' Fullerene research efforts, including atomic resolution images of Fullerene C[sub 60], Ni/C[sub 60] batteries, nanotechnology of C[sub 60], comparison of C[sub 60] with biological systems, and others. As Fullerene C[sub 60] will require control engineering, an overview of control systems, in particular, general and optimal control of the Schroedinger equation, is contained. Some experimental and theoretical work of other researchers are also presented. 140 figs., 4 tabs., 342 refs.

  1. Ion collision-induced chemistry in pure and mixed loosely bound clusters of coronene and C60 molecules.

    Science.gov (United States)

    Domaracka, Alicja; Delaunay, Rudy; Mika, Arkadiusz; Gatchell, Michael; Zettergren, Henning; Cederquist, Henrik; Rousseau, Patrick; Huber, Bernd A

    2018-05-23

    Ionization, fragmentation and molecular growth have been studied in collisions of 22.5 keV He2+- or 3 keV Ar+-projectiles with pure loosely bound clusters of coronene (C24H12) molecules or with loosely bound mixed C60-C24H12 clusters by using mass spectrometry. The heavier and slower Ar+ projectiles induce prompt knockout-fragmentation - C- and/or H-losses - from individual molecules and highly efficient secondary molecular growth reactions before the clusters disintegrate on picosecond timescales. The lighter and faster He2+ projectiles have a higher charge and the main reactions are then ionization by ions that are not penetrating the clusters. This leads mostly to cluster fragmentation without molecular growth. However, here penetrating collisions may also lead to molecular growth but to a much smaller extent than with 3 keV Ar+. Here we present fragmentation and molecular growth mass distributions with 1 mass unit resolution, which reveals that the same numbers of C- and H-atoms often participate in the formation and breaking of covalent bonds inside the clusters. We find that masses close to those with integer numbers of intact coronene molecules, or with integer numbers of both intact coronene and C60 molecules, are formed where often one or several H-atoms are missing or have been added on. We also find that super-hydrogenated coronene is formed inside the clusters.

  2. Self-interaction corrections applied to Mg-porphyrin, C{sub 60}, and pentacene molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, Mark R. [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Baruah, Tunna; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Kao, Der-you [Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052 (United States)

    2016-04-28

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C{sub 60}, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexity of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C{sub 60} molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.

  3. Evaluation of the Electronic Structure of Single-Molecule Junctions Based on Current-Voltage and Thermopower Measurements: Application to C60 Single-Molecule Junction.

    Science.gov (United States)

    Komoto, Yuki; Isshiki, Yuji; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-02-16

    The electronic structure of molecular junctions has a significant impact on their transport properties. Despite the decisive role of the electronic structure, a complete characterization of the electronic structure remains a challenge. This is because there is no straightforward way of measuring electron spectroscopy for an individual molecule trapped in a nanoscale gap between two metal electrodes. Herein, a comprehensive approach to obtain a detailed description of the electronic structure in single-molecule junctions based on the analysis of current-voltage (I-V) and thermoelectric characteristics is described. It is shown that the electronic structure of the prototypical C 60 single-molecule junction can be resolved by analyzing complementary results of the I-V and thermoelectric measurement. This combined approach confirmed that the C 60 single-molecule junction was highly conductive with molecular electronic conductances of 0.033 and 0.003 G 0 and a molecular Seebeck coefficient of -12 μV K -1 . In addition, we revealed that charge transport was mediated by a LUMO whose energy level was located 0.5≈0.6 eV above the Fermi level of the Au electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrogen molecule on lithium adsorbed graphene: A DFT study

    International Nuclear Information System (INIS)

    Kaur, Gagandeep; Gupta, Shuchi; Gaganpreet; Dharamvir, Keya

    2016-01-01

    Electronic structure calculations for the adsorption of molecular hydrogen on lithium (Li) decorated and pristine graphene have been studied systematically using SIESTA code [1] within the framework of the first-principle DFT under the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA)[2], including spin polarization. The energy of adsorption of hydrogen molecule on graphene is always enhanced by the presence of co-adsorbed lithium. The most efficient adsorption configuration is when H 2 is lying parallel to lithium adsorbed graphene which is in contrast to its adsorption on pristine graphene (PG) where it prefers perpendicular orientation.

  5. Growth of C60 thin films on Al2O3/NiAl(100) at early stages

    Science.gov (United States)

    Hsu, S.-C.; Liao, C.-H.; Hung, T.-C.; Wu, Y.-C.; Lai, Y.-L.; Hsu, Y.-J.; Luo, M.-F.

    2018-03-01

    The growth of thin films of C60 on Al2O3/NiAl(100) at the earliest stage was studied with scanning tunneling microscopy and synchrotron-based photoelectron spectroscopy under ultrahigh-vacuum conditions. C60 molecules, deposited from the vapor onto an ordered thin film of Al2O3/NiAl(100) at 300 K, nucleated into nanoscale rectangular islands, with their longer sides parallel to direction either [010] or [001] of NiAl. The particular island shape resulted because C60 diffused rapidly, and adsorbed and nucleated preferentially on the protrusion stripes of the crystalline Al2O3 surface. The monolayer C60 film exhibited linear protrusions of height 1-3 Å, due to either the structure of the underlying Al2O3 or the lattice mismatch at the boundaries of the coalescing C60 islands; such protrusions governed also the growth of the second layer. The second layer of the C60 film grew only for a C60 coverage >0.60 ML, implying a layer-by-layer growth mode, and also ripened in rectangular shapes. The thin film of C60 was thermally stable up to 400 K; above 500 K, the C60 islands dissociated and most C60 desorbed.

  6. Novel Crystal Structure C60 Nanowire

    Science.gov (United States)

    Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex

    2003-03-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.

  7. Interaction of multicharged ions with molecules (CO{sub 2}, C{sub 60}) by coincident electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Universite Paul Sabatier, Toulouse (France). Lab. CAR-IRSAMC

    2001-07-01

    First results for the investigation of electron capture processes in collisions between multicharged ions and molecule targets using electron spectroscopy in coincidence with charged fragments, are presented. It is shown that a much more detailed investigation of the capture reaction can be achieved using molecular instead of heavy atomic targets provided that an analysis of the target dissociation is made. The collisional systems {sup 18}O{sup 8+}+Ar, CO{sub 2} and C{sub 60} have been studied at 80 keV. Non coincident electron spectra as well as first results of double or triple coincidence experiments are discussed. Kinetic energy distributions of the C{sub n}{sup +} fragments (n=1 to 8) produced in multiple capture processes from C{sub 60} target are given. A detailed investigation of the double capture process with CO{sub 2} molecule allows the measurement of kinetic energy release distributions (KERD) which characterize the dissociation of CO{sub 2}{sup 2+} molecular ions; our results are found to be very similar to those measured in double photoionisation experiments. (orig.)

  8. Structure of C60: Partial orientational order in the room-temperature modification of C60

    International Nuclear Information System (INIS)

    Buergi, H.B.; Restori, R.; Schwarzenbach, D.

    1993-01-01

    Using published synchrotron X-ray data, the room-temperature scattering density distribution of pure C 60 has been parametrized in terms of a combination of eight oriented symmetry-related images of the molecule, and of a freely spinning molecule. Corresponding populations are 61 and 39%. The oriented part of the model is obtained, in good approximation, by imposing m anti 3m symmetry on the energetically more favourable major orientation in the low-temperature structure of C 60 . The model was refined using angle restraints to impose the icosahedral molecular symmetry and displacement-factor restraints to restrict thermal movements to rigid-body translations and librations. Translational displacement factors are in the range 0.017-0.023 A 2 . The orientational probability density distribution obtained from the model shows maxima for C 60 orientations possessing anti 3m crystallographic site symmetry. It is also relatively large for the C 60 orientations with cubic site symmetry m anti 3. The smallest energy barrier for reorientation between different anti 3m orientations via an m anti 3 orientation appears to be less than 2 kJ mol -1 . On average, 75% of the intermolecular contacts of the oriented molecules are longer than those observed in the low-temperature structure, the other 25% are less favourable. The second orientation of C 60 found in the low-temperature structure could not be identified at room temperature. (orig.)

  9. In situ STM imaging of the structures of pentacene molecules adsorbed on Au(111).

    Science.gov (United States)

    Pong, Ifan; Yau, Shuehlin; Huang, Peng-Yi; Chen, Ming-Chou; Hu, Tarng-Shiang; Yang, Yawchia; Lee, Yuh-Lang

    2009-09-01

    In situ scanning tunneling microscope (STM) was used to examine the spatial structures of pentacene molecules adsorbed onto a Au(111) single-crystal electrode from a benzene dosing solution containing 16-400 microM pentacene. Molecular-resolution STM imaging conducted in 0.1 M HClO(4) revealed highly ordered pentacene structures of ( radical31 x radical31)R8.9 degrees , (3 x 10), ( radical31 x 10), and ( radical7 x 2 radical7)R19.1 degrees adsorbed on the reconstructed Au(111) electrode dosed with different pentacene solutions. These pentacene structures and the reconstructed Au(111) substrate were stable between 0.2 and 0.8 V [vs reversible hydrogen electrode, RHE]. Increasing the potential to E > 0.8 V lifted the reconstructed Au(111) surface and disrupted the ordered pentacene adlattices simultaneously. Ordered pentacene structures could be restored by applying potentials negative enough to reinforce the reconstructed Au(111). At potentials negative of 0.2 V, the adsorption of protons became increasingly important to displace adsorbed pentacene admolecules. Although the reconstructed Au(111) structure was not essential to produce ordered pentacene adlayers, it seemed to help the adsorption of pentacene molecules in a long-range ordered pattern. At room temperature (25 degrees C), approximately 100 pentacene molecules seen in STM images could rotate and align themselves to a neighboring domain in 10 s, suggesting that pentacene admolecules could be mobile on Au(111) under the STM imaging conditions of -150 mV in bias voltage and 1 nA in feedback current.

  10. Symmetry-selected spin-split hybrid states in C-60/ferromagnetic interfaces

    DEFF Research Database (Denmark)

    Li, Dongzhe; Barreteau, Cyrille; Kawahara, Seiji Leo

    2016-01-01

    ferromagnetic surfaces: bcc-Cr(001), bcc-Fe(001), bcc-Co(001), fcc-Co(001), and hcp-Co(0001). We show that the adsorption geometry of the molecule with respect to the surface crystallographic orientation of the magnetic substrate as well as the strength of the interaction play a crucial role in the spin...... tunneling spectroscopy measurements on single C60 adsorbed on Cr(001) and Co/Pt(111) also confirm that the symmetry both of the substrate and of the molecular conformation has a strong influence on the induced spin polarization. Our finding may give valuable insights for further engineering of spin...

  11. Diffraction symmetry in crystalline, close-packed C60

    International Nuclear Information System (INIS)

    Fleming, R.M.; Siegrist, T.; Marsh, P.M.; Hessen, B.; Kortan, A.R.; Murphy, D.W.; Haddon, R.C.; Tycko, R.; Dabbagh, G.; Mujsce, A.M.

    1991-01-01

    The authors have grown crystals of the carbon structure C 60 by sublimation. In contrast to solution-grown crystals, the sublimed crystals have long range order with no evidence of solvent inclusions. Sublimed C 60 forms three dimensional, faceted crystals with a close-packed, face centered cubic unit cell. The authors have refined a crystal structure using the soccer ball model of the C 60 molecule. The results from this paper indicate that the C 60 molecule has the expected spherical shape, however the data are not sufficiently accurate to unambiguously determine atomic positions

  12. He/Ar-atom scattering from molecular monolayers: C{sub 60}/Pt(111) and graphene/Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y; Sugawara, C; Satake, Y; Yokoyama, Y; Okada, R; Nakayama, T; Sasaki, M [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki (Japan); Kondo, T; Oh, J; Nakamura, J [Institute of Material Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki (Japan); Hayes, W W [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States)

    2010-08-04

    Supersonic He and Ar atomic beam scattering from C{sub 60} and graphene monolayers adsorbed on a Pt(111) surface are demonstrated in order to obtain detailed insight into a gas-molecule collision that has not been studied in detail so far. The effective masses and phonon spectral densities of the monolayers seen by different projectiles are discussed based on classical models such as the hard cube model and the recently developed smooth surface model. Large effective masses are deduced for both the monolayers, suggesting collective effects of surface atoms in the single collision event. The effective Debye temperature of graphene was found to be similar to that reported in highly oriented pyrolytic graphite (HOPG), indicating that the graphene is decoupled well from the Pt substrate. A much smaller Debye-Waller factor was found for the C{sub 60} layer, probably reflecting the strong C{sub 60}-Pt(111) interaction.

  13. Nanocomposite Materials of Alternately Stacked C60 Monolayer and Graphene

    International Nuclear Information System (INIS)

    Ishikawa, M.; Miura, K.; Kamiya, S.; Yoshimoto, S.; Suzuki, M.; Kuwahara, D.; Sasaki, N.

    2010-01-01

    We synthesized the novel nanocomposite consisting alternately of a stacked single graphene sheet and a C 60 monolayer by using the graphite intercalation technique in which alkylamine molecules help intercalate large C 60 molecules into the graphite. Moreover, it is found that the intercalated C 60 molecules can rotate in between single graphene sheets by using C 13 NMR measurements. This preparation method provides a general way for intercalating huge fullerene molecules into graphite, which will lead to promising materials with novel mechanical, physical, and electrical properties.

  14. Development of adsorbent for C-14 Gas trapping and characteristics evaluation

    International Nuclear Information System (INIS)

    Park, Geun Il; Kim, I. T.; Kim, K. W.

    2006-08-01

    Desorption characteristics of C-14 adsorbed on spent resin as H 14 CO 3 ion type by applying various stripping solutions were analyzed, and some experiments for gasification of C-14 to CO 2 gas with were also performed. Based on these results, the process concept for spent resin treatment was suggested. Real spent resin was prepared from sampling in storage tank in site 1 of Wolseung Nuclear Power Plant. Desorption characteristics of C-14 and cations of Cs, Co from spent IRN-150 resin was evaluated. Desorption efficiency of C-14 from spent resin by using H 3 PO 4 desorption solution was over 96% regardless of C-14 amount on initial spent resin when comparing a activity of C-14 on initial spent resin. Also, desorption percent of cation of Cs, Co from anion ion-exchange resin (IRN-77) showed that Co-60 was below 1%, Cs-134, 137 was in a range of 2 ∼ 5%. Fundamental studies include an development of adsorbent manufacturing technology and its performance evaluation for C-14 gas trapping, the adsorption process by adopting gas circulation method was suggested for the design of 14 CO 2 gas treatment system generated from spent resin treatment process. In order to predict adsorbent performance of CO 2 trapping, modelling was carried out to verify the breakthrough curves of CO 2 trapping by using soda lime adsorbent. The effect of humidity on CO 2 trapping by using soda lime adsorbent was modelled via chemical reaction in porous media. Assessment of the state-of-the-arts on the solidification of the used adsorbent showed that the cement matrix would be the best-available binder from the view points of the matrix compatibility, properties of the final waste form, simplicity of the process and relatively low cost

  15. Reducing HAuCl4 by the C60 dianion: C60-directed self-assembly of gold nanoparticles into novel fullerene bound gold nanoassemblies

    International Nuclear Information System (INIS)

    Liu Wei; Gao Xiang

    2008-01-01

    The C 60 dianion is used to reduce tetrachloroauric acid (HAuCl 4 ) for the first time; three-dimensional C 60 bound gold (Au-C 60 ) nanoclusters are obtained from C 60 -directed self-assembly of gold nanoparticles due to the strong affinities of Au-C 60 and C 60 -C 60 . The process was monitored in situ by UV-vis-NIR spectroscopy. The resulting Au-C 60 nanoclusters were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive spectroscopy (EDS), x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and FT-IR and Raman spectroscopies. TEM demonstrates the formation of 3D nanonetwork aggregates, which are composed of discrete gold nanocores covered with a C 60 monolayer. The SAED and XRD patterns indicate that the gold nanocores inside the capped C 60 molecules belong to the face-centred cubic crystal structure, while the C 60 molecules are amorphous. The EDS and XPS measurements validate that the Au-C 60 nanoclusters contain only Au and C elements and Au 3+ is reduced to Au 0 . FT-IR spectroscopy shows the chemiadsorption of C 60 to the gold nanocores, while Raman spectroscopy demonstrates the electron transfer from the gold nanocores to the chemiadsorbed C 60 molecules. Au-C 60 nanoclusters embedded in tetraoctyl-n-ammonium bromide (TOAB) on glassy carbon electrodes (GCEs) have been fabricated and have shown stable and well-defined electrochemical responses in aqueous solution

  16. Nanocomposite Materials of Alternately Stacked C60 Monolayer and Graphene

    Directory of Open Access Journals (Sweden)

    Makoto Ishikawa

    2010-01-01

    Full Text Available We synthesized the novel nanocomposite consisting alternately of a stacked single graphene sheet and a C60 monolayer by using the graphite intercalation technique in which alkylamine molecules help intercalate large C60 molecules into the graphite. Moreover, it is found that the intercalated C60 molecules can rotate in between single graphene sheets by using C13 NMR measurements. This preparation method provides a general way for intercalating huge fullerene molecules into graphite, which will lead to promising materials with novel mechanical, physical, and electrical properties.

  17. Interaction between poly(vinyl pyrrolidone) PVP and fullerene C60 at the interface in PVP-C60 nanofluids–A spectroscopic study

    Science.gov (United States)

    Behera, M.; Ram, S.

    2018-03-01

    Fourier transform infrared and Raman bands shows a discernible enhancement in band intensity of C–H stretching, C=O stretching, C–N stretching, C–H2 bending, and C–H2 in-plane bending in PVP molecules in the presence of C60 molecules. Amplification in intensity is ascribed to microscopic interactions results when a donation of nonbonding electron (n) occurs from a “>N–C=O” entity of PVP into a lowest unoccupied molecular orbital of the C60 molecule in PVP-C60 charge transfer (CT) complex. The C=O stretching band intensity (integrated) Vs C60 content plot exhibits a peak near a critical 13.9 μM C60 value owing to percolation effect. Light emission spectra show that even a small addition of 4.63 μM C60 able to suppress the band intensity by ~23% as a result of an energy loss. The integrated band intensity also decreases through a peak near 13.9 μM when plotted against the C60-content. In correlation to the vibration spectra, the maximum effect observed both in light emission and excitation spectra suggests a percolation effect in the CT complex. Exhibition of percolation threshold in C60-PVP donor-acceptor complex will be helpful in optimizing the photovoltaic properties vital for solar cell applications.

  18. Electrical bistabilities and memory stabilities of nonvolatile bistable devices fabricated utilizing C60 molecules embedded in a polymethyl methacrylate layer

    International Nuclear Information System (INIS)

    Cho, Sung Hwan; Lee, Dong Ik; Jung, Jae Hun; Kim, Tae Whan

    2009-01-01

    Current-voltage (I-V) measurements on Al/fullerene (C 60 ) molecules embedded in polymethyl methacrylate/Al devices at 300 K showed a current bistability due to the existence of the C 60 molecules. The on/off ratio of the current bistability for the memory devices was as large as 10 3 . The retention time of the devices was above 2.5 x 10 4 s at room temperature, and cycling endurance tests on these devices indicated that the ON and OFF currents showed no degradation until 50 000 cycles. Carrier transport mechanisms for the nonvolatile bistable devices are described on the basis of the I-V experimental and fitting results.

  19. Interaction of protons with the C{sub 60} molecule: calculation of deposited energies and electronic stopping cross sections (v{sub {<=}}5 au)

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P. [Laboratoire CAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)]. E-mail: pmc@irsamc.ups-tlse.fr; Bordenave-Montesquieu, D.; Rentenier, A.; Bordenave-Montesquieu, A. [Laboratoire CAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)

    2001-09-28

    The energy deposited by a proton in a C{sub 60} molecule is calculated over a broad collision velocity range from 0.1 to 5 au, using the free-electron gas model of Lindhard and Winther (1964 Mat. Fys. Medd. K Dan. Vidensk. Selsk. 34) and the C{sub 60} electron density distribution calculated by Puska and Nieminen. The energy lost by the proton is maximum near 1.8 au collision velocity in contrast with the saturation found in the low-velocity regime, in the 0.25-0.5 au velocity range, by Kunert and Schmidt. From the impact parameter dependence we deduce the distributions of deposited energies, the averaged energy losses and the C{sub 60} electronic stopping cross sections. It is found that the C{sub 60} molecule behaves as a carbon foil giving very similar absolute stopping cross sections per atom. (author). Letter-to-the-editor.

  20. Electronic structure of single crystal C60

    International Nuclear Information System (INIS)

    Wu, J.; Shen, Z.X.; Dessau, D.S.; Cao, R.; Marshall, D.S.; Pianetta, P.; Lindau, I.; Yang, X.; Terry, J.; King, D.M.; Wells, B.O.; Elloway, D.; Wendt, H.R.; Brown, C.A.; Hunziker, H.; Vries, M.S. de

    1992-01-01

    We report angle-resolved photoemission data from single crystals of C 60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C 60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C 60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C 60 . We assert that the width of the photoemission peak of C 60 does not reflect the intrinsic band width because it is broadened by the non 0-0 transitions via the Franck-Condon principle. Our view point provides a possible reconciliation between these photoemission data and those measured by other techniques. (orig.)

  1. Effects of inter-fullerene π-band mixings in the photoexcitation of hybrid plasmons in the C60@C240 molecule

    Science.gov (United States)

    de, Rume; Madjet, Mohamed; Chakraborty, Himadri

    2013-05-01

    We perform a detailed study of the ground state electronic structure of a two-layer fullerene onion molecule C60@C240. Calculations are carried out in a quantum mechanical framework of local density approximation (LDA) where the onion's ion-core of sixty C4+ ions from C60 and two hundred and forty of those from C240 is smeared into a classical jellium distribution. Significant inter-fullerene mixing between the bands of single-node radial symmetry, the π-bands, is found. We then compute the photoionization from all the levels of the system using a time-dependent version of LDA at photon energies where the ionization is dominated by the inter-layer hybridization of collective plasmon resonances. It is determined, by comparing the isolated fullerene cross sections with the cross section of the onion system for both π and σ (having nodeless radial waves) symmetry, that the π-band mixing is predominantly responsible for the production of plasmon hybrids. Supported by NSF and DOE.

  2. Electronic structures of spinterface for thiophene molecule adsorbed at Co, Fe, and Ni electrode: First principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Linlin; Tian, Yanli; Yuan, Xiaobo; Hu, Guichao; Ren, Junfeng, E-mail: renjf@sdnu.edu.cn

    2016-12-15

    Highlights: • Thiophene molecule could be spin polarized when adsorbed at Co(001), Fe(100), and Ni(111) surfaces. • The biggest spin polarization will be obtained when the thiophene molecule adsorbed at the Fe(100) surface. • The spin polarization is originated from the interfacial orbital hybridizations between the 3d orbital of ferromagnetic electrodes and the 2p orbital of the thiophene molecule. - Abstract: First principles calculations are adopted to study the spin polarization properties of thiophene molecule which adsorbed at the Co, Fe, and Ni electrode surfaces. The density of states, spin-polarized density distributions as well as the differential charge density distributions are obtained. It is found that the p orbital of the thiophene molecule will interact with the d orbital of the ferromagnetic electrodes, which will generate new spin coupling states and lead to obvious spin polarization in the thiophene molecule. Different electrodes induce different spin polarization properties, and in which the Fe electrode will bring the biggest spin polarization of the thiophene molecule. People can selectively and efficiently inject spin polarized electrons into molecules by choosing suitable ferromagnetic electrodes in organic spintronic devices.

  3. C60 as an Atom Trap to Capture Co Adatoms

    DEFF Research Database (Denmark)

    Yang, Peng; Li, Dongzhe; Repain, Vincent

    2015-01-01

    C60 molecules were used to trap Co adatoms and clusters on a Au(111) surface using atomic/molecular manipulation with a scanning tunneling microscope. Two manipulation pathways (successive integration of single Co atoms in one molecule or direct integration of a Co cluster) were found...... to efficiently allow the formation of complexes mixing a C60 molecule with Co atoms. Scanning tunneling spectroscopy reveals the robustness of the pi states of C60 that are preserved after Co trapping. Scanning tunneling microscopy images and density functional theory calculations reveal that dissociated Co...... clusters of up to nine atoms can be formed at the molecule-substrate interface. These results open new perspectives in the interactions between metal adatoms and molecules, for applications in metal-organic devices...

  4. Polarizability of KC60: Evidence for Potassium Skating on the C60 Surface

    Science.gov (United States)

    Rayane, D.; Antoine, R.; Dugourd, Ph.; Benichou, E.; Allouche, A. R.; Aubert-Frécon, M.; Broyer, M.

    2000-02-01

    We present the first measurement of the polarizability and the permanent dipole moment of isolated KC60 molecules by molecular beam deflection technique. We have obtained a value of 2506+/-250 Å3 for the polarizability at room temperature. The addition of a potassium atom enhances by more than a factor of 20 the polarizability of a pure C60 molecule. This very high polarizability and the lack of observed permanent dipole show that the apparent polarizability of KC60 is induced by the free skating of the potassium atom on the C60 surface, resulting in a statistical orientation of the dipole. The results are interpreted with a simple model similar to the Langevin theory for paramagnetic systems.

  5. An ab initio study of the field-induced position change of a C60 molecule adsorbed on a gold tip

    DEFF Research Database (Denmark)

    Stadler, Robert; Kubatkin, S.; Bjørnholm, Thomas

    2007-01-01

    lightning rod effect which might explain the switching between configurations found in experiments. We also analyse our results for the adsorption energetics in terms of an electrostatic expression for the total energy, where the dependence of the polarizability of the junction on the position of the C60...

  6. Quick synthesis of highly aligned or randomly oriented nanofibrous structures composed of C60 molecules via self-assembly

    International Nuclear Information System (INIS)

    Kurosu, Shunji; Fukuda, Takahiro; Maekawa, Toru

    2013-01-01

    Assemblies, which are composed of nanoparticles such as nanofibres, have been intensively studied in recent years. This has particularly been the case in the field of biomedicine, where the aim is to develop efficient methodologies for capturing and separating target biomolecules and cells and/or encouraging bio-chemical reactions, utilizing the extremely high surface area to volume ratio of assemblies. There is an urgent need for the development of a quick synthesis method of forming nanofibrous structures on the surface of biomedical microchips and devices for the investigation of the interactions between biomolecules/cells and the nanostructures. Here, we produce nanofibrous structures composed of C 60 molecules, which are aligned in one direction or randomly oriented, by dissolving C 60 molecules and sulphur in benzene and evaporating a droplet of the solution on a glass substrate under appropriate conditions. The synthesis time is as short as 30 s. Sulphur is extracted and nanofibres are crystallized by leaving them in supercritical carbon dioxide. (paper)

  7. A Pictorial Visualization of Normal Mode Vibrations of the Fullerene (C[subscript 60]) Molecule in Terms of Vibrations of a Hollow Sphere

    Science.gov (United States)

    Dunn, Janette L.

    2010-01-01

    Understanding the normal mode vibrations of a molecule is important in the analysis of vibrational spectra. However, the complicated 3D motion of large molecules can be difficult to interpret. We show how images of normal modes of the fullerene molecule C[subscript 60] can be made easier to understand by superimposing them on images of the normal…

  8. Electronically excited C 2 from laser photodissociated C 60

    Science.gov (United States)

    Arepalli, S.; Scott, C. D.; Nikolaev, P.; Smalley, R. E.

    2000-03-01

    Spectral and transient emission measurements are made of radiation from products of laser excitation of buckminsterfullerene (C 60) vapor diluted in argon at 973 K. The principal radiation is from the Swan band system of C 2 and, at early times, also from a black-body continuum. Transient measurements indicate two characteristic periods of decay 2 and 50 μs long, with characteristic decay times of ˜0.3 and 5 μs, respectively. The first period is thought to be associated with decomposition and radiative cooling of C 60 molecules or nano-sized carbon particles and the second period continues with decomposition products of laser excited C 60, C 58, C 56, etc.

  9. Analysis of fragment size distributions in collisions of monocharged ions with the C{sub 60} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Rentenier, A; Moretto-Capelle, P; Bordenave-Montesquieu, D; Bordenave-Montesquieu, A [LCAR-IRSAMC, UMR 5589 Universite Paul Sabatier-CNRS, 118 rte de Narbonne, 31062 Toulouse Cedex (France)

    2005-04-14

    Fragmentation of the C{sub 60} molecule is investigated using a multicorrelation technique. We first focus on the transition from asymmetrical dissociation (AD) to multifragmentation (MF). These processes are studied in collisions between H{sup +}{sub x}(x = 1-3) hydrogenic projectiles and C{sub 60} fullerene in the gas phase, in the 2-130 keV collisional energy range. A rather sharp transition from pure AD to predominant MF is observed when plotting the AD/(AD + MF) ratio against the average deposited energy E{sub dep}; it occurs in the 80-240 eV E{sub dep} range; this ratio is also found to be independent of the projectile species (scaling law). The evolution of the size distribution shape is also discussed and compared with other data available in the literature. A pure power law is never reached in the present experimental conditions. Finally, an event-by-event analysis of the fragmentation data is developed for the first time in the study of the C{sub 60} molecule fragmentation and discussed in terms of the predictions of the percolation model near a critical behaviour. Moments of order 2, 3 and 5 are determined for each correlation event. Moments of order 3 and 5 follow a linear behaviour when plotted against the moment of order 2, as predicted, and the exponent {tau} that is extracted takes a value near 2. The Campi scatter plot is also determined and discussed for total and multiplicity-selected events. Both slopes of the two branches in the Campi plots and {tau} value are near those that are expected in the percolation of a 2D lattice.

  10. Destruction of C60 films by boron ion bombardment

    International Nuclear Information System (INIS)

    Ren Zhongmin; Du Yuancheng; Ying Zhifeng; Xiong Xiaxing; Li Fuming

    1995-01-01

    C 60 films are bombarded by 100 keV boron ion beams at doses ranging from 3x10 14 to 1x10 16 /cm 2 . The bombarded films are analyzed using Fourier transform infrared spectroscopy (FTIR), Raman spectra and X-ray diffraction (XRD) measurements. Most C 60 soccer-balls in the implanted region in the films are found to be broken at a dose over 1x10 15 /cm 2 , while at a dose less than 6x10 14 /cm 2 a few C 60 molecules remain undestroyed and maintain some crystal structure. The results of the analyses suggest a complete disintegration of a C 60 molecule under B + bombardment. ((orig.))

  11. First-principles study of pollutant molecules absorbed on polymeric adsorbents using the vdW-DF2 functional

    Science.gov (United States)

    Zhu, Jinguo; Wang, Yapeng; Tian, Ting; Zhang, Qianfan

    2018-03-01

    Polymeric adsorbents have been attracting increasing attention because of their favorable structrual properties and effectiveness of solving small molecules contaminants. However, due to the absence of deep insight into the adsorption mechanism of polymeric adsorbents, researches on new polymeric adsorbents can only be carried out by repeated experiments and tests, which is extremely inefficient. Therefore, investigating the adsorption process of polymeric adsorbents, especially the mechanism of adsorbing various air pollutant molecules by materials modelling and simulation, is of great significance. Here in this work, we systematically studied the adsorption mechanism by first-principles computation with van der Waals interaction. It demonstrates that the adsorption between them was pure physisorption originating from the hydrogen bond and intermolecular forces consisting of Keesom force, Debye force and London dispersion force. The proportions of these forces varied according to different adsorption systems. The adsorption effects were determined by the polymers’ dipole moment and polarizability. The adsorption performance of some polymers with special structures was also investigated to explore their possibility as potential adsorbents. The results of our simulation can provide some guidance for developing new polymeric adsorbents with better performance.

  12. Formation of buckminsterfullerene (C60) in interstellar space

    Science.gov (United States)

    Berné, Olivier; Tielens, Alexander G. G. M.

    2012-01-01

    Buckminsterfullerene (C60) was recently confirmed to be the largest molecule identified in space. However, it remains unclear how, and where this molecule is formed. It is generally believed that C60 is formed from the build up of small carbonaceous compounds, in the hot and dense envelopes of evolved stars. Analyzing infrared observations, obtained by Spitzer and Herschel, we found that C60 is efficiently formed in the tenuous and cold environment of an interstellar cloud illuminated by strong ultraviolet (UV) radiation fields. This implies that another formation pathway, efficient at low densities, must exist. Based on recent laboratory and theoretical studies, we argue that Polycyclic Aromatic Hydrocarbons are converted into graphene, and subsequently C60, under UV irradiation from massive stars. This shows that alternative - top-down - routes are key to understanding the organic inventory in space.

  13. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

    DEFF Research Database (Denmark)

    Schnadt, Joachim; Xu, Wei; Vang, Ronnie Thorbjørn

    2010-01-01

    a large tolerance to monatomic surface steps on the Ag(110) surface. The observed behaviour is explained in terms of strong intermolecular hydrogen bonding and a strong surface-mediated directionality, assisted by a sufficient degree of molecular backbone flexibility. In contrast, the same kind of step......-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent...... bonds to the surface, a situation which is also achieved on Ag(110) by annealing to 200 degrees C. These results show that the formation of particular self-assembled molecular nanostructures depends significantly on a subtle balance between the adsorbate-adsorbate and adsorbate-substrate interactions...

  14. Bioapplication and activity of fullerenol C60(OH)24

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... represent a class of sphere-shaped molecules made entirely of .... 4942 Afr. J. Biotechnol. fullerenes. ... C60 and fullerenols C60(OH)x apparently employ different ... Alzheimer's and Parkinson's diseases, type-C hepatitis.

  15. Fabrication of C60/amorphous carbon superlattice structures

    International Nuclear Information System (INIS)

    Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2001-01-01

    The nitrogen doping effects in C 60 films by RF plasma source was investigated, and it was found that the nitrogen ion bombardment broke up C 60 molecules and changed them into amorphous carbon. Based on these results, formation of C 60 /amorphous carbon superlattice structure was proposed. The periodic structure of the resulted films was confirmed by XRD measurements, as the preliminary results of fabrication of the superlattice structure

  16. Fulereno[C60]: química e aplicações Fullerene C60: chemistry and applications

    Directory of Open Access Journals (Sweden)

    Leandro José dos Santos

    2010-01-01

    Full Text Available Fullerene chemistry has become a very active research field in the two last decades, largely because of the exceptional properties of the C60 molecule and the variety of fullerene derivatives that appear to be possible. In this review, a general analysis of fullerene C60 reactivity is performed. The principal methods for the covalent modification of this fascinating carbon cage are presented. The prospects of using fullerene derivatives as medicinal drugs and photoactive materials in light converting devices are demonstrated.

  17. C60-pentacene network formation by 2-D co-crystallization.

    Science.gov (United States)

    Jin, Wei; Dougherty, Daniel B; Cullen, William G; Robey, Steven; Reutt-Robey, Janice E

    2009-09-01

    We report experiments highlighting the mechanistic role of mobile pentacene precursors in the formation of a network C(60)-pentacene co-crystalline structure on Ag(111). This co-crystalline arrangement was first observed by low temperature scanning tunneling microscopy (STM) by Zhang et al. (Zhang, H. L.; Chen, W.; Huang, H.; Chen, L.; Wee, A. T. S. J. Am. Chem. Soc. 2008, 130, 2720-2721). We now show that this structure forms readily at room temperature from a two-dimensional (2-D) mixture. Pentacene, evaporated onto Ag(111) to coverages of 0.4-1.0 ML, produces a two-dimensional (2-D) gas. Subsequently deposited C(60) molecules combine with the pentacene 2-D gas to generate a network structure, consisting of chains of close-packed C(60) molecules, spaced by individual C(60) linkers and 1 nm x 2.5 nm pores containing individual pentacene molecules. Spontaneous formation of this stoichiometric (C(60))(4)-pentacene network from a range of excess pentacene surface coverage (0.4 to 1.0 ML) indicates a self-limiting assembly process. We refine the structure model for this phase and discuss the generality of this co-crystallization mechanism.

  18. Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules

    KAUST Repository

    Chambers, Stuart D.; Holcombe, Thomas W.; Švec, František; Frechet, Jean

    2011-01-01

    been prepared and their chromatographic performance have been tested for the separation of small molecules in the reversed phase. While addition of the C60-fullerene monomer to the glycidyl methacrylate-based monolith enhanced column efficiency 18-fold

  19. High resolution spectroscopy on adsorbed molecules on a Ni (110)-surface: vibrational states and electronic levels

    International Nuclear Information System (INIS)

    Kardinal, I.

    1998-01-01

    The complementary techniques of HR-XPS and HREELS have been applied to two distinct problems. The first studies adsorption and dissociation of C 2 N 2 on Ni (110) at room temperature (RT) and at 90 K and its co-adsorption with CO. At RT C 2 N 2 dissociates and forms a c(2x2)-CN structure. The resulting CN is found to be bound in the grooves of the (110) surface yielding the lowest C-N vibrational energy yet observed. C 2 N 2 was found to dissociate even at 90 K however the resulting CN overlayer after warming to RT showed remarkable differences to that of the RT adsorption. As well as the in-groove species a number of adsorption sites on the ridges with a bond order higher have been identified. Preadsorbed CO is completely driven of the Ni (110) surface by co-adsorption of CN at RT. HREELS indicates that first CO is desorbed from the on-top-sites and then from the bridge-sites of the (110)-ridges involving a considerable increase of the HREELS cross section for the CO on the bridge-sites. Also the signal intensity of the coadsorbed CN is suppressed by the CO present on the surface. The second study investigated the adsorption of bithiophene (BiT) on clean Ni (110) and the S-modified c(2x2)-S-Ni (110) and p(4x1)-S-Ni (110). The latter provided a strongly structured substrate which forced the assembly of the adsorbed BiT-molecules. The high degree of order of this adsorbate/substrate system was obvious in both the HR-XPS results and the BREELS results with strong azimuthal anisotropy. This system was used to asses the ability to use the HREELS impact selection rules to determine molecular orientation of a reasonably complex adsorbate overlayer. (author)

  20. Conductance of single atoms and molecules studied with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Neel, N; Kroeger, J; Limot, L; Berndt, R

    2007-01-01

    The conductance of single atoms and molecules is investigated with a low-temperature scanning tunnelling microscope. In a controlled and reproducible way, clean Ag(111) surfaces, individual silver atoms on Ag(111) as well as individual C 60 molecules adsorbed on Cu(100) are contacted with the tip of the microscope. Upon contact the conductance changes discontinuously in the case of the tip-surface junction while the tip-atom and tip-molecule junctions exhibit a continuous transition from the tunnelling to the contact regime

  1. Resonance energy transfer from solid to adsorbed molecules under radiolysis of the N2O-MgO system

    International Nuclear Information System (INIS)

    Volkov, A.I.

    1986-01-01

    The radiolysis mechanism of nitrous oxide adsorbed on magnesia has been studied at 77 K using e.s.r. spectroscopy and chromatography. The radiative decomposition of nitrous oxide is shown to take place not only during the dissociative capture of electrons, but also during the interaction of its molecules with magnesia exitons. At a monolayer coverage theta 2 O molecules and exitons to a molecular one as a result of raising the irradiation temperature of nitrous oxide adsorbed on magnesia (theta=0.5) has been revealed. (author)

  2. Ca-Embedded C2N: an efficient adsorbent for CO2 capture.

    Science.gov (United States)

    Liu, Yuzhen; Meng, Zhaoshun; Guo, Xiaojian; Xu, Genjian; Rao, Dewei; Wang, Yuhui; Deng, Kaiming; Lu, Ruifeng

    2017-10-25

    Carbon dioxide as a greenhouse gas causes severe impacts on the environment, whereas it is also a necessary chemical feedstock that can be converted into carbon-based fuels via electrochemical reduction. To efficiently and reversibly capture CO 2 , it is important to find novel materials for a good balance between adsorption and desorption. In this study, we performed first-principles calculations and grand canonical Monte Carlo (GCMC) simulations, to systematically study metal-embedded carbon nitride (C 2 N) nanosheets for CO 2 capture. Our first-principles results indicated that Ca atoms can be uniformly trapped in the cavity center of C 2 N structure, while the transition metals (Sc, Ti, V, Cr, Mn, Fe, Co) are favorably embedded in the sites off the center of the cavity. The determined maximum number of CO 2 molecules with strong physisorption showed that Ca-embedded C 2 N monolayer is the most promising CO 2 adsorbent among all considered metal-embedded materials. Moreover, GCMC simulations revealed that at room temperature the gravimetric density for CO 2 adsorbed on Ca-embedded C 2 N reached 50 wt% at 30 bar and 23 wt% at 1 bar, higher than other layered materials, thus providing a satisfactory system for the CO 2 capture and utilization.

  3. Miscibility and interaction between 1-alkanol and short-chain phosphocholine in the adsorbed film and micelles.

    Science.gov (United States)

    Takajo, Yuichi; Matsuki, Hitoshi; Kaneshina, Shoji; Aratono, Makoto; Yamanaka, Michio

    2007-09-01

    The miscibility and interaction of 1-hexanol (C6OH) and 1-heptanol (C7OH) with 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in the adsorbed films and micelles were investigated by measuring the surface tension of aqueous C6OH-DHPC and aqueous C7OH-DHPC solutions. The surface density, the mean molecular area, the composition of the adsorbed film, and the excess Gibbs energy of adsorption g(H,E), were estimated. Further, the critical micelle concentration of the mixtures was determined from the surface tension versus molality curves; the micellar composition was calculated. The miscibility of the 1-alkanols and DHPC molecules in the adsorbed film and micelles was examined using the phase diagram of adsorption (PDA) and that of micellization (PDM). The PDA and the composition dependence of g(H,E) indicated the non-ideal mixing of the 1-alkanols and DHPC molecules due to the attractive interaction between the molecules in the adsorbed film, while the PDM indicated that the 1-alkanol molecules were not incorporated in the micelles within DHPC rich region. The dependence of the mean molecular area of the mixtures on the surface composition suggested that the packing property of the adsorbed film depends on the chain length of 1-alkanol: C6OH expands the DHPC adsorbed film more than C7OH.

  4. Structural transformation of biochar black carbon by C60 superstructure: Environmental implications

    Science.gov (United States)

    Aqueous fullerene C60 nanoparticles (nC60) are frequently considered within the environmental engineering community as the aggregate of 60-carbon molecules. This study employed transmission electron microscopy (TEM) and x-ray diffraction (XRD) to demonstrate that nC60 formed via prolonged stirring ...

  5. Highly Stable [C60AuC60]+/- Dumbbells.

    Science.gov (United States)

    Goulart, Marcelo; Kuhn, Martin; Martini, Paul; Chen, Lei; Hagelberg, Frank; Kaiser, Alexander; Scheier, Paul; Ellis, Andrew M

    2018-05-17

    Ionic complexes between gold and C 60 have been observed for the first time. Cations and anions of the type [Au(C 60 ) 2 ] +/- are shown to have particular stability. Calculations suggest that these ions adopt a C 60 -Au-C 60 sandwich-like (dumbbell) structure, which is reminiscent of [XAuX] +/- ions previously observed for much smaller ligands. The [Au(C 60 ) 2 ] +/- ions can be regarded as Au(I) complexes, regardless of whether the net charge is positive or negative, but in both cases, the charge transfer between the Au and C 60 is incomplete, most likely because of a covalent contribution to the Au-C 60 binding. The C 60 -Au-C 60 dumbbell structure represents a new architecture in fullerene chemistry that might be replicable in synthetic nanostructures.

  6. Quantum fluctuations of D5d polarons on C60 molecules

    International Nuclear Information System (INIS)

    Wang Chui-Lin; Wang Wenzheng; Liu Yuliang; Su Zhaobin; Yu Lu.

    1994-06-01

    The dynamic Jahn-Teller splitting of the six equivalent D 5d polarons due to quantum fluctuations is studied in the framework of the Bogoliubov-de Gennes formalism. The tunneling induced level splittings are determined to be 2 T 1u + 2 T 2u and 1 A g + 1 H g for C 1- 60 and C -2 60 , respectively, which should give rise to observable effects in experiments. (author). 17 refs, 2 tabs

  7. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    Science.gov (United States)

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  8. DFT calculations of the charged states of N@C60 and Fe4 single molecule magnets investigated in tunneling spectroscopy

    Science.gov (United States)

    Nossa, Javier; Islam, Fhokrul; Canali, Carlo; Pederson, Mark

    2012-02-01

    For device applications of single molecule magnets (SMMs) in high-density information storage and quantum-state control it is essential that the magnetic properties of the molecules remain stable under the influence of metallic contacts or surface environment. Recent tunneling experiments [1, 2] on N@C60 and Fe4 SMM have shown that these molecules preserve their magnetic characteristics when they are used as the central island of single-electron transistors. Although quantum spin models have been used extensively to study theoretically tunneling spectroscopy of SMMs, it has been shown recently that the orbital degrees of freedom, which is absent in spin models, can significantly affect the tunneling conductance [3]. In this work we present first-principles calculations of the neutral and charged states of N@C60 and Fe4 SMMs, and discuss a strategy to include their properties into a theory of quantum transport. We also present results of the magnetic anisotropy for the different charge states of Fe4 and discuss their relevance for experiments [2] in the sequential tunneling and cotunnelling regimes. [4pt] [1]. N. Roch et al., Phys. Rev. B 83, 081407 (2011). [0pt] [2]. A.S. Zyazin et al., Nano Lett. 10, 3307 (2010). [0pt] [3]. L. Michalak et al., Phys. Rev. Lett. 104, 017202 (2010).

  9. Order-disorder transitions in C60 and C70

    International Nuclear Information System (INIS)

    Ramasesha, S.K.

    1995-01-01

    In recent years enormous effort has been put in understanding the chemical and physical properties of C 60 and C 70 . Order-disorder transition in C 60 occurs around 250 K at ambient pressure. At the transition freely rotating molecules get orientationally ordered in a simple cubic lattice. Application of pressure increases the transition temperature at a rate of ≅ 10 K kbar -1 , indicating that pressure favours the ordered state. The DSC and x-ray studies on C 70 indicate two phase transitions, one around 270 K and the other around 340 K at room pressure. These transitions also occur at higher temperatures at higher pressures. Application of pressure is found to lift the degeneracy of the energetically equivalent rotational configurations. The high pressure studies are reviewed in the light of existing literature. (author)

  10. Contrasting bonding behavior of thiol molecules on carbon fullerene structures

    International Nuclear Information System (INIS)

    Mixteco-Sanchez, J.C.; Guirado-Lopez, R.A.

    2003-01-01

    We have performed semiempirical as well as ab initio density-functional theory (DFT) calculations at T=0 to analyze the equilibrium configurations and electronic properties of spheroidal C 60 as well as of cylindrical armchair (5,5) and (8,8) fullerenes passivated with SCH 3 and S(CH 2 ) 2 CH 3 thiols. Our structural results reveal that the lowest-energy configurations of the adsorbates strongly depend on their chain length and on the structure of the underlying substrate. In the low-coverage regime, both SCH 3 and S(CH 2 ) 2 CH 3 molecules prefer to organize into a molecular cluster on one side of the C 60 surface, providing thus a less protective organic coating for the carbon structure. However, with increasing the number of adsorbed thiols, a transition to a more uniform distribution is obtained, which actually takes place for six and eight adsorbed molecules when using S(CH 2 ) 2 CH 3 and SCH 3 chains, respectively. In contrast, for the tubelike arrangements at the low-coverage regime, a quasi-one-dimensional zigzag organization of the adsorbates along the tubes is always preferred. The sulfur-fullerene bond is considerably strong and is at the origin of outward and lateral displacements of the carbon atoms, leading to the stabilization of three-membered rings on the surface (spheroidal structures) as well as to sizable nonuniform radial deformations (cylindrical configurations). The electronic spectrum of our thiol-passivated fullerenes shows strong variations in the energy difference between the highest occupied and lowest unoccupied molecular orbitals as a function of the number and distribution of adsorbed thiols, opening thus the possibility to manipulate the transport properties of these compounds by means of selective adsorption mechanisms

  11. Sensitivity of photoelectron diffraction to conformational changes of adsorbed molecules: Tetra-tert-butyl-azobenzene/Au(111

    Directory of Open Access Journals (Sweden)

    A. Schuler

    2017-01-01

    Full Text Available Electron diffraction is a standard tool to investigate the atomic structure of surfaces, interfaces, and adsorbate systems. In particular, photoelectron diffraction is a promising candidate for real-time studies of structural dynamics combining the ultimate time resolution of optical pulses and the high scattering cross-sections for electrons. In view of future time-resolved experiments from molecular layers, we studied the sensitivity of photoelectron diffraction to conformational changes of only a small fraction of molecules in a monolayer adsorbed on a metallic substrate. 3,3′,5,5′-tetra-tert-butyl-azobenzene served as test case. This molecule can be switched between two isomers, trans and cis, by absorption of ultraviolet light. X-ray photoelectron diffraction patterns were recorded from tetra-tert-butyl-azobenzene/Au(111 in thermal equilibrium at room temperature and compared to patterns taken in the photostationary state obtained by exposing the surface to radiation from a high-intensity helium discharge lamp. Difference patterns were simulated by means of multiple-scattering calculations, which allowed us to determine the fraction of molecules that underwent isomerization.

  12. Radiolysis of alanine adsorbed in a clay mineral

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-543, Deleg. Coyoacan, C.P. 04510 (Mexico)

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  13. Radiolysis of alanine adsorbed in a clay mineral

    International Nuclear Information System (INIS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-01-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine

  14. Spectroscopy of transmission resonances through a C60 junction

    DEFF Research Database (Denmark)

    Schneider, N. L.; Néel, N.; Andersen, Nick Papior

    2015-01-01

    Electron transport through a single C60 molecule on Cu(1 1 1) has been investigated with a scanning tunnelling microscope in tunnelling and contact ranges. Single-C60 junctions have been fabricated by establishing a contact between the molecule and the tip, which is reflected by a down......-shift in the lowest unoccupied molecular orbital resonance. These junctions are stable even at elevated bias voltages enabling conductance measurements at high voltages and nonlinear conductance spectroscopy in tunnelling and contact ranges. Spectroscopy and first principles transport calculations clarify...

  15. The non-exponential relaxation of the C60 crystal around glass transition temperature

    International Nuclear Information System (INIS)

    Yan, F; Wang, Y.N.

    1999-01-01

    A model of the energy barrier of a molecule between two orientational states in the C 60 crystal, which depends on the neighboring molecules, is first proposed. Based on this model, the orientational relaxation of C 60 molecules around 90 K was simulated with the Monte Carlo method. The simulation results show that the relaxation is slightly non-exponential and can fit the Kohlrausch-Williams-Watts function with the non-exponential factor β = 0.962 ± 0.002, which is equal to the experimental data that has not been explained before. (orig.)

  16. Self-consistent field theory of polymer-ionic molecule complexation

    OpenAIRE

    Nakamura, Issei; Shi, An-Chang

    2010-01-01

    A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C_(i)^(a)(kΔ)(= 0 or 1), whose average determines the number of adsorbed molecules, nBI. Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for nBI are obtained, depending...

  17. Total internal reflection sum-frequency generation spectroscopy and dense gold nanoparticles monolayer: a route for probing adsorbed molecules

    International Nuclear Information System (INIS)

    Tourillon, Gerard; Dreesen, Laurent; Volcke, Cedric; Sartenaer, Yannick; Thiry, Paul A; Peremans, Andre

    2007-01-01

    We show that sum-frequency generation spectroscopy performed in the total internal reflection configuration (TIR-SFG) combined with a dense gold nanoparticles monolayer allows us to study, with an excellent signal to noise ratio and high signal to background ratio, the conformation of adsorbed molecules. Dodecanethiol (DDT) was used as probe molecules in order to assess the potentialities of the approach. An enhancement of more than one order of magnitude of the SFG signals arising from the adsorbed species is observed with the TIR geometry compared to the external reflection one while the SFG non-resonant contribution remains the same for both configurations. Although further work is required to fully understand the origin of the SFG process on nanoparticles, our work opens new possibilities for studying nanostructures

  18. Binary molecular layers of C-60 and copper phthalocyanine on Au(111) : Self-organized nanostructuring

    NARCIS (Netherlands)

    Stöhr, Meike; Wagner, Thorsten; Gabriel, Markus; Weyers, Bastian; Möller, Rolf

    The binary molecular system of C-60 and copper phthalocyanine(CuPc) molecules has been investigated by scanning tunneling microscopy (STM) at room temperature and at 50 K. As substrate Au(111) was chosen. When C-60 and CuPc molecules are sequentially deposited, it is found that well-ordered domains

  19. Mechanism of melting in submonolayer films of nitrogen molecules adsorbed on the basal planes of graphite

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter; Taub, H.

    1995-01-01

    The melting mechanism in submonolayer films of N-2 molecules adsorbed on the basal planes of graphite is studied using molecular-dynamics simulations. The melting is strongly correlated with the formation of vacancies in the films. As the temperature increases, the edges of the submonolayer patch...

  20. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  1. π plasmon modes in C60 clusters

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Lipparini, E.

    1992-07-01

    RPA correlations and collective excitations of π electrons in the C 60 cluster, the fullerene molecule are studied, by using the sum rule approach and linear response theory. The results for the excitation spectrum are discussed in relation to experimental data and to other theoretical approaches. (K.A.) 17 refs.; 4 figs

  2. Extending the range of low energy electron diffraction (LEED) surface structure determination: Co-adsorbed molecules, incommensurate overlayers and alloy surface order studied by new video and electron counting LEED techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogletree, D.F.

    1986-11-01

    LEED multiple scattering theory is briefly summarized, and aspects of electron scattering with particular significance to experimental measurements such as electron beam coherence, instrument response and phonon scattering are analyzed. Diffuse LEED experiments are discussed. New techniques that enhance the power of LEED are described, including a real-time video image digitizer applied to LEED intensity measurements, along with computer programs to generate I-V curves. The first electron counting LEED detector using a ''wedge and strip'' position sensitive anode and digital electronics is described. This instrument uses picoampere incident beam currents, and its sensitivity is limited only by statistics and counting times. Structural results on new classes of surface systems are presented. The structure of the c(4 x 2) phase of carbon monoxide adsorbed on Pt(111) has been determined, showing that carbon monoxide molecules adsorb in both top and bridge sites, 1.85 +- 0.10 A and 1.55 +- 0.10 A above the metal surface, respectively. The structure of an incommensurate graphite overlayer on Pt(111) is analyzed. The graphite layer is 3.70 +- 0.05 A above the metal surface, with intercalated carbon atoms located 1.25 +- 0.10 A above hollow sites supporting it. The (2..sqrt..3 x 4)-rectangular phase of benzene and carbon monoxide coadsorbed on Pt(111) is analyzed. Benzene molecules adsorb in bridge sites parallel to and 2.10 +- 0.10 A above the surface. The carbon ring is expanded, with an average C-C bond length of 1.72 +- 0.15 A. The carbon monoxide molecules also adsorb in bridge sites. The structure of the (..sqrt..3 x ..sqrt..3) reconstruction on the (111) face of the ..cap alpha..-CuAl alloy has been determined.

  3. Extending the range of low energy electron diffraction (LEED) surface structure determination: Co-adsorbed molecules, incommensurate overlayers and alloy surface order studied by new video and electron counting LEED techniques

    International Nuclear Information System (INIS)

    Ogletree, D.F.

    1986-11-01

    LEED multiple scattering theory is briefly summarized, and aspects of electron scattering with particular significance to experimental measurements such as electron beam coherence, instrument response and phonon scattering are analyzed. Diffuse LEED experiments are discussed. New techniques that enhance the power of LEED are described, including a real-time video image digitizer applied to LEED intensity measurements, along with computer programs to generate I-V curves. The first electron counting LEED detector using a ''wedge and strip'' position sensitive anode and digital electronics is described. This instrument uses picoampere incident beam currents, and its sensitivity is limited only by statistics and counting times. Structural results on new classes of surface systems are presented. The structure of the c(4 x 2) phase of carbon monoxide adsorbed on Pt(111) has been determined, showing that carbon monoxide molecules adsorb in both top and bridge sites, 1.85 +- 0.10 A and 1.55 +- 0.10 A above the metal surface, respectively. The structure of an incommensurate graphite overlayer on Pt(111) is analyzed. The graphite layer is 3.70 +- 0.05 A above the metal surface, with intercalated carbon atoms located 1.25 +- 0.10 A above hollow sites supporting it. The (2√3 x 4)-rectangular phase of benzene and carbon monoxide coadsorbed on Pt(111) is analyzed. Benzene molecules adsorb in bridge sites parallel to and 2.10 +- 0.10 A above the surface. The carbon ring is expanded, with an average C-C bond length of 1.72 +- 0.15 A. The carbon monoxide molecules also adsorb in bridge sites. The structure of the (√3 x √3) reconstruction on the (111) face of the α-CuAl alloy has been determined

  4. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    Science.gov (United States)

    Naito, K.; Matsuishi, K.

    2009-04-01

    Well-uniformed C60 nanotubes were grown at -20 °C with irradiation of red light using C60-saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 °C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  5. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    International Nuclear Information System (INIS)

    Naito, K; Matsuishi, K

    2009-01-01

    Well-uniformed C 60 nanotubes were grown at -20 deg. C with irradiation of red light using C 60 -saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C 60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 deg. C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C 60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  6. Rotational dynamics of C60 in Na2RbC60

    International Nuclear Information System (INIS)

    Christides, C.; Prassides, K.; Neumann, D.A.; Copley, J.R.D.; Mizuki, J.; Tanigaki, K.; Hirosawa, I.; Ebbesen, T.W.

    1993-01-01

    We have measured the low-energy neutron inelastic-scattering (NIS) spectra of superconducting Na 2 RbC 60 in the temperature range 50-350 K. Well-defined librational peaks are observed at 50 K at 2.83(17) meV (FWHM = 1.7(5) meV). They soften and broaden with increasing temperature. Their behaviour mimics that found in solid C 60 and differs markedly from K 3 C 60 . The rotational barrier for C 60 reorientations in Na 2 RbC 60 is somewhat higher than in pristine C 60 and approximately half as large as in K 3 C 60 . An order-disorder transition is anticipated at a temperature higher than that found in C 60 . (orig.)

  7. Is C60 fullerite harder than diamond?

    International Nuclear Information System (INIS)

    Blank, V.; Popov, M.; Buga, S.; Davydov, V.; Denisov, V.N.; Ivlev, A.N.; Mavrin, B.N.; Agafonov, V.; Ceolin, R.; Szwarc, H.; Rassat, A.

    1994-01-01

    Raman spectra of C 60 fullerite at pressures up to 37 GPa with shear deformation are studied. We have found two states at high pressures, that persist after pressure release and have various transparencies in the near IR region. The nontransparent state is formed at 6-18 GPa and has a Raman spectrum with broadened bands at frequencies close to those of the initial fullerite. The transparent state was obtained at pressures higher than 18 GPa, and the Raman bands are broadened and overlapping in comparison with those of the nontransparent state. We suppose that C 60 molecules persist in both states. The transparent state of fullerite shows a hardness higher than that of diamond. ((orig.))

  8. Laser-assisted deposition of thin C60 films

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Fæster, Søren

    Metal and metal oxide films with controlled thickness from a fraction of a monolayer up more than 1000 nm and known stoichiometry can be produced by pulsed laser deposition (PLD) relatively easily, and (PLD) is now a standard technique in all major research laboratories within materials science...... of the matrix material, anisole, with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. High-resolution SEM images of MAPLE deposited films reveal large circular features on the surface...

  9. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).

    Science.gov (United States)

    Maurer, Reinhard J; Reuter, Karsten

    2013-07-07

    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

  10. Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges

    CERN Document Server

    Baba, Y H

    2003-01-01

    This article reviews our recent works on the ion desorption from adsorbed and condensed molecules at low temperature following the core-level photoexcitations using synchrotron soft x-rays. The systems investigated here are adsorbed molecules with relatively heavy molecular weight containing third-row elements such as Si, P, S, and Cl. Compared with molecules composed of second-row elements, the highly element-specific and site-specific fragment-ion desorption were observed when we tune the photon energy at the dipole-allowed 1s -> sigma sup * (3p sup *) resonance. On the basis of the resonance Auger decay spectra around the 1s ionization thresholds, the observed highly specific ion desorption is interpreted by the localization of the excited electrons (here we call as 'spectator electrons') in the antibonding sigma sup * orbital. In order to separate the direct photo-induced process from the indirect processes triggered by the secondary electrons, the photon-stimulated ion desorption was also investigated in...

  11. Ecological applications of the irradiated adsorbents

    International Nuclear Information System (INIS)

    Tusseyev, T.

    2004-01-01

    Full text: In our previous works it was shown that after irradiation some adsorbents gain new interesting properties such as increasing (or decreasing) of their adsorption capacity, selectivity in relation to some gases, change of chemical bounds of gas molecules with adsorbent surface as well as other properties. We investigated a lot of adsorbents with semiconducting and dielectric properties. A high temperature superconductor was investigated also. Adsorbents were irradiated by ultraviolet (UV) and gamma - radiation, reactor (n.γ) - radiation, α-particles (E=40-50 MeV), protons ( E=30 MeV), and also He-3 ions (E-29-60 MeV). The following techniques were used: volumetric (manometrical), mass-spectrometer and IR spectroscopic methods, and also method of electronic - paramagnetic resonance (spin paramagnetic resonance) The obtained results allow to speak about creation of new adsorbents for gas purification (clearing) from harmful impurities, gas selection into components, an increasing of adsorbing surface. Thus one more advantage of the irradiated adsorbents is that they have 'memory effect', i.e. they can be used enough long time after irradiation. In laboratory conditions we built the small-sized adsorptive pump on the basis of the irradiated zeolites which are capable to work in autonomous conditions. It was found, that some of adsorbents after irradiation gain (or lose) selectivity in relation to definite gases. So, silica gel, which one in initial state does not adsorb hydrogen, after gamma irradiation it becomes active in relation to hydrogen. Some of rare earths oxides also show selectivity in relation to hydrogen and oxygen depending on a type of irradiation. Thus, it is possible to create different absorbents, depending on a solved problem, using a way or selection of adsorbents, either of radiation type and energy, as a result obtained adsorbents can be used for various ecological purposes

  12. Thermodynamic characteristics of the adsorption of organic molecules on modified MCM-41 adsorbents

    Science.gov (United States)

    Gus'kov, V. Yu.; Sukhareva, D. A.; Salikhova, G. R.; Karpov, S. I.; Kudasheva, F. Kh.; Roessner, F.; Borodina, E. V.

    2017-07-01

    The adsorption of a number of organic molecules on samples of MCM-41 adsorbent modified with dichloromethylphenylsilane and subsequently treated with sulfuric acid (MDCS) and N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride (MNM) is studied. Specific retention volumes equal to the Henry constant are determined by means of inverse gas chromatography at infinite dilution. The thermodynamic characteristics of adsorption, the dispersive and specific components of the Helmholtz energy of adsorption, and the increment of the methyl group to the heat of adsorption are calculated. It is shown that the grafting of aminosilane and phenylsilane groups enhances the forces of dispersion and reduces specific interactions. A greater drop in polarity is observed for MDCS than for MNM, due to the stronger polarity of amoinosilane; the enthalpy factor makes the main contribution to the adsorption of organic compounds on the investigated adsorbents. It is found that the MNM sample is capable of the irreversible adsorption of alcohols.

  13. Spins of adsorbed molecules investigated by the detection of Kondo resonance

    Science.gov (United States)

    Komeda, Tadahiro

    2014-12-01

    Surface magnetism has been one of the platforms to explore the magnetism in low dimensions. It is also a key component for the development of quantum information processes, which utilizes the spin degree of freedom. The Kondo resonance is a phenomenon that is caused by an interaction between an isolated spin and conduction electrons. First observed in the 1930s as an anomalous increase in the low-temperature resistance of metals embedded with magnetic atoms, the Kondo physics mainly studied the effects of bulk magnetic impurities in the resistivity. In the last 15 years it has undergone a revival by a scanning tunneling microscope (STM) which enables the measurement of the Kondo resonance at surfaces using an atomic scale point contact. The detection of the Kondo resonance can be a powerful tool to explore surface magnetism. In this article, I review recent studies of the surface spin of adsorbed molecules by the detection of the Kondo resonance. Researches on metal phthalocyanine (MPc) and porphyrin molecules will be examined. In addition, the Kondo resonance for double-decker lanthanoide Pc molecules will be discussed. Some of the double-decker Pc molecules show single-molecule magnet (SMM) behavior, which attracts attention as a material for electronic devices. For both classes, the ligand plays a crucial role in determining the parameters of the Kondo resonance, such as the Kondo temperature and the change of the shape from peak to Fano-dip. In addition, the spin in delocalized molecular orbital forms the Kondo resonance, which shows significant differences from the Kondo resonance formed by the metal spins. Since molecular orbital can be tuned in a flexible manner by the design of the molecule, the Kondo resonance formed by delocalized molecular orbital might expand the knowledge of this field.

  14. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, A.; Nilsson, A.; Martensson, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  15. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    Science.gov (United States)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  16. Computationally derived rules for persistence of C60 nanowires on recumbent pentacene bilayers.

    Science.gov (United States)

    Cantrell, Rebecca A; James, Christine; Clancy, Paulette

    2011-08-16

    The tendency for C(60) nanowires to persist on two monolayers of recumbent pentacene is studied using molecular dynamics (MD) simulations. A review of existing experimental literature for the tilt angle adopted by pentacene on noble metal surfaces shows that studies cover a limited range from 55° to 90°, motivating simulation studies of essentially the entire range of tilt angles (10°-90°) to predict the optimum surface tilt angle for C(60) nanowire formation. The persistence of a 1D nanowire depends sensitively on this tilt angle, the amount of initial tensile strain, and the presence of surface step edges. At room temperature, C(60) nanowires oriented along the pentacene short axes persist for several nanoseconds and are more likely to occur if they reside between, or within, pentacene rows for ϕ ≤ ∼60°. The likelihood of this persistence increases the smaller the tilt angle. Nanowires oriented along the long axes of pentacene molecules are unlikely to form. The limit of stability of nanowires was tested by raising the temperature to 400 K. Nanowires located between pentacene rows survived this temperature rise, but those located initially within pentacene rows are only stable in the range ϕ(1) = 30°-50°. Flatter pentacene surfaces, that is, tilt angles above about 60°, are subject to disorder caused by C(60) molecules "burrowing" into the pentacene surface. An initial strain of 5% applied to the C(60) nanowires significantly decreases the likelihood of nanowire persistence. In contrast, any appreciable surface roughness, even by half a monolayer in height of a third pentacene monolayer, strongly enhances the likelihood of nanowire formation due to the strong binding energy of C(60) molecules to step edges.

  17. Detection of C60 and C70 in a young planetary nebula.

    Science.gov (United States)

    Cami, Jan; Bernard-Salas, Jeronimo; Peeters, Els; Malek, Sarah Elizabeth

    2010-09-03

    In recent decades, a number of molecules and diverse dust features have been identified by astronomical observations in various environments. Most of the dust that determines the physical and chemical characteristics of the interstellar medium is formed in the outflows of asymptotic giant branch stars and is further processed when these objects become planetary nebulae. We studied the environment of Tc 1, a peculiar planetary nebula whose infrared spectrum shows emission from cold and neutral C60 and C70. The two molecules amount to a few percent of the available cosmic carbon in this region. This finding indicates that if the conditions are right, fullerenes can and do form efficiently in space.

  18. Surface Chemistry Dependence of Mechanochemical Reaction of Adsorbed Molecules-An Experimental Study on Tribopolymerization of α-Pinene on Metal, Metal Oxide, and Carbon Surfaces.

    Science.gov (United States)

    He, Xin; Kim, Seong H

    2018-02-20

    Mechanochemical reactions between adsorbate molecules sheared at tribological interfaces can induce association of adsorbed molecules, forming oligomeric and polymeric products often called tribopolymers). This study revealed the role or effect of surface chemistry of the solid substrate in mechanochemical polymerization reactions. As a model reactant, α-pinene was chosen because it was known to readily form tribopolymers at the sliding interface of stainless steel under vapor-phase lubrication conditions. Eight different substrate materials were tested-palladium, nickel, copper, stainless steel, gold, silicon oxide, aluminum oxide, and diamond-like carbon (DLC). All metal substrates and DLC were initially covered with surface oxide species formed naturally in air or during the oxidative sample cleaning. It was found that the tribopolymerization yield of α-pinene is much higher on the substrates that can chemisorb α-pinene, compared to the ones on which only physisorption occurs. From the load dependence of the tribopolymerization yield, it was found that the surfaces capable of chemisorption give a smaller critical activation volume for the mechanochemical reaction, compared to the ones capable of physisorption only. On the basis of these observations and infrared spectroscopy analyses of the adsorbed molecules and the produced polymers, it was concluded that the mechanochemical reaction mechanisms might be different between chemically reactive and inert surfaces and that the chemical reactivity of the substrate surface greatly influences the tribochemical polymerization reactions of adsorbed molecules.

  19. Nucleation and growth of C60 overlayers on the Ag/Pt(111) dislocation network surface

    International Nuclear Information System (INIS)

    Ait-Mansour, K; Ruffieux, P; Xiao, W; Fasel, R; Groening, P; Groening, O

    2007-01-01

    We have investigated the room temperature growth of C 60 overlayers on the strainrelief dislocation network formed by two monolayers of Ag on Pt(111) by means of scanning tunneling microscopy. Extended domains of highly ordered dislocation networks with a typical superlattice parameter of 6.8 nm have been prepared, serving as templates for subsequent C 60 depositions. For low C 60 coverages, the molecules decorate the step-edges, where also the first islands nucleate. This indicates that at room temperature the C 60 molecules are sufficiently mobile to cross the dislocation lines and to diffuse to the step-edges. For C 60 coverages of 0.4 monolayer, besides the islands nucleated at the step-edges, C 60 islands also grow in the middle of terraces. The C 60 islands typically extend over several unit cells of the dislocation network and show an unusual orientation of the hexagonally close-packed C 60 lattice as compared to that found on the bare Ag(111) surface. Whereas C 60 grows preferentially in a (2 √3 x 2 √3) R30 0 structure on Ag(111), on the Ag/Pt(111) dislocation network the C 60 lattice adopts an orientation rotated by 30 0 , with the close-packed C 60 rows aligned along the dislocations which themselves are aligned along the Ag(1-10) directions. For higher coverages in the range of 1-2 monolayers, the growth of C 60 continues in a layer-by-layer fashion

  20. Sputtering of thin benzene and polystyrene overlayers by keV Ga and C60 bombardment

    International Nuclear Information System (INIS)

    Czerwinski, B.; Delcorte, A.; Garrison, B.J.; Samson, R.; Winograd, N.; Postawa, Z.

    2006-01-01

    The mechanisms of ion-stimulated desorption of thin organic overlayers deposited on metal substrates by mono- and polyatomic projectiles are examined using molecular dynamics (MD) computer simulations. A monolayer of polystyrene tetramers (PS4) physisorbed on Ag{1 1 1} is irradiated by 15 keV Ga and C 60 projectiles at normal incidence. The results are compared with the data obtained for a benzene overlayer to investigate the differences in sputtering mechanisms of weakly and strongly bound organic molecules. The results indicate that the sputtering yield decreases with the increase of the binding energy and the average kinetic energy of parent molecules is shifted toward higher kinetic energy. Although the total sputtering yield of organic material is larger for 15 keV C 60 , the impact of this projectile leads to a significant fragmentation of ejected species. As a result, the yield of the intact molecules is comparable for C 60 and Ga projectiles. Our data indicate that chemical analysis of the very thin organic films performed by detection of sputtered neutrals will not benefit from the use of C 60 projectiles

  1. Theoretical modelling of tip effects in the pushing manipulation of C60 on the Si(001) surface

    International Nuclear Information System (INIS)

    Martsinovich, N; Kantorovich, L

    2008-01-01

    We present the results of our theoretical studies on the repulsive (pushing) manipulation of a C 60 molecule on the Si(001) surface with several scanning tunnelling microscopy tips. We show that, for silicon tips, tip-C 60 bonds are formed even with tips that do not initially have dangling bonds, and this tip-C 60 interaction drives the manipulation of the molecule. The details of the atomic structure of the tip and its position relative to the molecule do not have a significant effect on the mechanism and the sequence of adsorption configurations during the pushing manipulation of C 60 along the trough, where the trough itself provides a guiding effect. The pushing manipulation is thus a very robust process that occurs largely independently of the tip structure. On the other hand, the pushing manipulation across an Si-Si dimer row into the neighbouring trough proceeds in a more complex way, with tip deformation and detachment more likely to occur. We demonstrate the role of tip deformation and tip-molecule bond rearrangement in the continuous manipulation of the molecule. Finally, we calculate and analyse the forces acting on the tip during manipulation and identify characteristic patterns

  2. C-60 as a Faraday cage

    OpenAIRE

    Delaney, Paul; Greer, J.C.

    2004-01-01

    Endohedral fullerenes have been proposed for a number of technological uses, for example, as a nanoscale switch, memory bit and as qubits for quantum computation. For these technology applications, it is important to know the ease with which the endohedral atom can be manipulated using an applied electric field. We find that the Buckminsterfullerene (C-60) acts effectively as a small Faraday cage, with only 25% of the field penetrating the interior of the molecule. Thus influencing the atom i...

  3. Stability, structural and electronic properties of benzene molecule adsorbed on free standing Au layer

    Energy Technology Data Exchange (ETDEWEB)

    Katoch, Neha, E-mail: nehakatoch2@gmail.com; Kapoor, Pooja; Sharma, Munish; Ahluwalia, P. K. [Physics Department, Himachal Pradesh University, Shimla, Himachal Pradesh, India 171005 (India); Kumar, Ashok [Center for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India, 151001 (India)

    2016-05-23

    We report stability and electronic properties of benzene molecule adsorbed on the Au atomic layer within the framework of density function theory (DFT). Horizontal configuration of benzene on the top site of Au monolayer prefers energetically over other studied configurations. On the adsorption of benzene, the ballistic conductance of Au monolayer is found to decrease from 4G{sub 0} to 2G{sub 0} suggesting its applications for the fabrications of organic sensor devices based on the Au atomic layers.

  4. Studies of C60 in fossil of dinosaur egg shell

    International Nuclear Information System (INIS)

    Wang Zhenxia; Li Xuepeng; Wang Wenmin; Xu Xunjiang; Tang Zichao; Huang Rongbin; Zheng Lansun

    1998-01-01

    The occurrence of C 60 in unearthed fossil of dinosaur egg shell about 70 million years ago was reported. The results are discussed considering possible effects of the conceivable atmosphere pollution on the growth of fullerene molecules

  5. Influence of the aggregate state on band structure and optical properties of C60 computed with different methods

    Science.gov (United States)

    Pal, Amrita; Arabnejad, Saeid; Yamashita, Koichi; Manzhos, Sergei

    2018-05-01

    C60 and C60 based molecules are efficient acceptors and electron transport layers for planar perovskite solar cells. While properties of these molecules are well studied by ab initio methods, those of solid C60, specifically its optical absorption properties, are not. We present a combined density functional theory-Density Functional Tight Binding (DFTB) study of the effect of solid state packing on the band structure and optical absorption of C60. The valence and conduction band edge energies of solid C60 differ on the order of 0.1 eV from single molecule frontier orbital energies. We show that calculations of optical properties using linear response time dependent-DFT(B) or the imaginary part of the dielectric constant (dipole approximation) can result in unrealistically large redshifts in the presence of intermolecular interactions compared to available experimental data. We show that optical spectra computed from the frequency-dependent real polarizability can better reproduce the effect of C60 aggregation on optical absorption, specifically with a generalized gradient approximation functional, and may be more suited to study effects of molecular aggregation.

  6. Direct comparison of the electronic coupling efficiency of sulfur and selenium alligator clips for molecules adsorbed onto gold electrodes

    International Nuclear Information System (INIS)

    Patrone, L.; Palacin, S.; Bourgoin, J.P.

    2003-01-01

    Scanning tunneling microscopy experiments have been performed to compare the electronic coupling provided by S and by Se used as alligator clips for bisthiol- and biselenol-terthiophene molecules adsorbed onto gold. The molecules were inserted in a dodecanethiol (DT) self-assembled monolayer. Their apparent height above the dodecanethiol matrix was used as a measure of the electronic coupling strength corresponding to S and Se, respectively. We show that the insertion behaviors of the two molecules are qualitatively the same, and that Se provides systematically a better coupling link than S, whatever the tunneling conditions

  7. Surfactant-free fabrication of fullerene C{sub 60} nanotubules under shear

    Energy Technology Data Exchange (ETDEWEB)

    Vimalanathan, Kasturi; Raston, Colin L. [Flinders Centre for NanoScale Science Technology (CNST) Chemical and Physical Sciences, Flinders University, Adelaide (Australia); Shrestha, Rekha Goswami [International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki (Japan); Zhang, Zhi; Zou, Jin [Materials Engineering and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD (Australia); Nakayama, Tomonobu [International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki (Japan)

    2017-07-10

    A method for controlling the self-assembly of fullerene C{sub 60} molecules into nanotubules in the fcc phase, devoid of entrapped solvent, has been established in a thin film microfluidic device. The micron length C{sub 60} nanotubules, with individual hollow diameters of 100 to 400 nm, are formed under continuous flow processing during high shear micromixing of water and a toluene solution of the fullerene, in the absence of surfactant, and without the need for further down-stream processing. TEM revealed pores on the surface of the nanotubes, and the isolated material has a much higher response to small molecule sensing than that for analogous material formed using multistep batch processing. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Structural stability of C60 films under irradiation with swift heavy ions

    International Nuclear Information System (INIS)

    Jin Yunfan; Yao Cunfeng; Wang Zhiguang; Xie Erqing; Song Yin; Sun Youmei; Zhang Chonghong; Liu Jie; Duan Jinglai

    2005-01-01

    In order to investigate the structural stability of fullerene (C 60 ) under swift heavy ion irradiation, the irradiation experiments of thin C 60 films were performed with 22 MeV/amu Fe 56 ions delivered by HIRFL at Lanzhou in China. The irradiated C 60 films were analyzed by means of Raman scattering and Fourier transform infrared (FTIR) spectroscopes. The analysis results indicated that the damage cross-sections σ of the C 60 molecule deduced from the data of the Raman spectra are between 1.1 and 4.5 x 10 -14 cm 2 for the electronic energy loss from 3.5 to 8.7 keV/nm and electronic energy transfer dominates the damage process of C 60 films. The partial recovery of the damage in irradiated C 60 films at certain electronic energy loss is attributed to an annealing effect of strong electronic excitation

  9. C{sub 60} fullerene decoration of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Demin, V. A., E-mail: victordemin88@gmail.com [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation); Blank, V. D.; Karaeva, A. R.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Parkhomenko, Yu. N. [National University of Science and Technology MISiS (Russian Federation); Perezhogin, I. A.; Popov, M. Yu. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Skryleva, E. A. [National University of Science and Technology MISiS (Russian Federation); Urvanov, S. A. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Chernozatonskii, L. A. [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation)

    2016-12-15

    A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C{sub 60} molecule to a defect on the nanotube surface.

  10. Confined Catalysis in the g-C3N4/Pt(111) Interface: Feasible Molecule Intercalation, Tunable Molecule-Metal Interaction, and Enhanced Reaction Activity of CO Oxidation.

    Science.gov (United States)

    Wang, Shujiao; Feng, Yingxin; Yu, Ming'an; Wan, Qiang; Lin, Sen

    2017-09-27

    The deposition of a two-dimensional (2D) atomic nanosheet on a metal surface has been considered as a new route for tuning the molecule-metal interaction and surface reactivity in terms of the confinement effect. In this work, we use first-principles calculations to systematically explore a novel nanospace constructed by placing a 2D graphitic carbon nitride (g-C 3 N 4 ) nanosheet over a Pt(111) surface. The confined catalytic activity in this nanospace is investigated using CO oxidation as a model reaction. With the inherent triangular pores in the g-C 3 N 4 overlayer being taken advantage of, molecules such as CO and O 2 can diffuse to adsorb on the Pt(111) surface underneath the g-C 3 N 4 overlayer. Moreover, the mechanism of intercalation is also elucidated, and the results reveal that the energy barrier depends mainly on the properties of the molecule and the channel. Importantly, the molecule-catalyst interaction can be tuned by the g-C 3 N 4 overlayer, considerably reducing the adsorption energy of CO on Pt(111) and leading to enhanced reactivity in CO oxidation. This work will provide important insight for constructing a promising nanoreactor in which the following is observed: The molecule intercalation is facile; the molecule-metal interaction is efficiently tuned; the metal-catalyzed reaction is promoted.

  11. Core Level Spectra of Organic Molecules Adsorbed on Graphene

    Directory of Open Access Journals (Sweden)

    Abhilash Ravikumar

    2018-03-01

    Full Text Available We perform first principle calculations based on density functional theory to investigate the effect of the adsorption of core-excited organic molecules on graphene. We simulate Near Edge X-ray absorption Fine Structure (NEXAFS and X-ray Photoemission Spectroscopy (XPS at the N and C edges for two moieties: pyridine and the pyridine radical on graphene, which exemplify two different adsorption characters. The modifications of molecular and graphene energy levels due to their interplay with the core-level excitation are discussed. We find that upon physisorption of pyridine, the binding energies of graphene close to the adsorption site reduce mildly, and the NEXAFS spectra of the molecule and graphene resemble those of gas phase pyridine and pristine graphene, respectively. However, the chemisorption of the pyridine radical is found to significantly alter these core excited spectra. The C 1s binding energy of the C atom of graphene participating in chemisorption increases by ∼1 eV, and the C atoms of graphene alternate to the adsorption site show a reduction in the binding energy. Analogously, these C atoms also show strong modifications in the NEXAFS spectra. The NEXAFS spectrum of the chemisorbed molecule is also modified as a result of hybridization with and screening by graphene. We eventually explore the electronic properties and magnetism of the system as a core-level excitation is adiabatically switched on.

  12. The birth of C60: buckminsterfullerene

    International Nuclear Information System (INIS)

    Kroto, H.

    1993-01-01

    Almost exactly five years after C 60 : Buckminsterfullerene (fullerene-60) was discovered serendipitously during a series of graphite laser vaporization experiments which were designed to simulate the chemistry in a red giant carbon star, the molecule has been isolated in macroscopic amounts. This breakthrough has triggered an explosion of research into its chemical and physical properties. The molecule has already exhibited a wide range of novel phenomena which promise exciting applications. Whether or not applications arise Buckminsterfullerene has a beauty and elegance that has excited the imaginations of scientists and laymen alike. It seems almost impossible to comprehend how the existence of the third well-characterised allotropic form of carbon could have evaded discovery until almost the end of the twentieth century. New fields of chemistry, physics and materials scince have been born and the articles contained in this volume cover some of the fascinating properties that have been uncovered and which pressage exciting implications for the future. This article surveys some of the key events which led to the birth of these new field and serves as an introduction to this volume. (orig.)

  13. C{sub 60} AS A PROBE FOR ASTROPHYSICAL ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Brieva, A. C.; Jäger, C.; Huisken, F. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gredel, R.; Henning, T., E-mail: aab01@alumni.aber.ac.uk [Max Planck Institute for Astronomy (MPIA), Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-08-01

    The C{sub 60} molecule has been recently detected in a wide range of astrophysical environments through its four active intramolecular vibrational modes ( T {sub 1u}) near 18.9, 17.4, 8.5, and 7.0 μ m. The strengths of the mid-infrared emission bands have been used to infer astrophysical conditions in the fullerene-rich regions. Widely varying values of the relative intrinsic strengths (RIS) of these four bands are reported in laboratory and theoretical papers, which impedes the derivation of the excitation mechanism of C{sub 60} in the astrophysical sources. The spectroscopic analysis of the C{sub 60} samples produced with our method delivers highly reproducible RIS values of 100, 25 ± 1, 26 ± 1 and 40 ± 4. A comparison of the inferred C{sub 60} emission band strengths with the astrophysical data shows that the observed strengths cannot be explained in terms of fluorescent or thermal emission alone. The large range in the observed 17.4 μ m/18.9 μ m emission ratios indicates that either the emission bands contain significant contributions from emitters other than C{sub 60}, or that the population distribution among the C{sub 60} vibrational modes is affected by physical processes other than thermal or UV excitation, such as chemo-luminescence from nascent C{sub 60} or possibly Poincaré fluorescence resulting from an inverse internal energy conversion. We have carefully analyzed the effect of the weakly active fundamental modes and second order modes in the mid-infrared spectrum of C{sub 60}, and propose that neutral C{sub 60} is the carrier of the unidentified emission band at 6.49 μ m which has been observed in fullerene-rich environments.

  14. Chemical potential pinning due to equilibrium electron transfer at metal/C60-doped polymer interfaces

    Science.gov (United States)

    Heller, C. M.; Campbell, I. H.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1997-04-01

    We report electroabsorption measurements of the built-in electrostatic potential in metal/C60-doped polymer/metal structures to investigate chemical potential pinning due to equilibrium electron transfer from a metal contact to the electron acceptor energy level of C60 molecules in the polymer film. The built-in potentials of a series of structures employing thin films of both undoped and C60-doped poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were measured. For undoped MEH-PPV, which has an energy gap of about 2.4 eV, the maximum built-in potential is about 2.1 eV, whereas for C60-doped MEH-PPV the maximum built-in potential decreases to 1.5 eV. Electron transfer to the C60 molecules close to the metal interface pins the chemical potential of the metal contact near the electron acceptor energy level of C60 and decreases the built-in potential of the structure. From the systematic dependence of the built-in potential on the metal work function we find that the electron acceptor energy level of C60 in MEH-PPV is about 1.7 eV above the hole polaron energy level of MEH-PPV.

  15. Proximity effect and Andreev reflection in single-C{sub 60} junctions

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Jonathan; Neel, Nicolas; Kroeger, Joerg [Institut fuer Physik, Technische Universitaet Ilmenau, D-98693 Ilmenau (Germany)

    2016-07-01

    Single C{sub 60} molecules deposited on an ultrathin oxide film on Nb(110) were investigated using a low-temperature scanning tunnelling microscope. Spectroscopy of the differential conductance (dI/dV) in the tunnelling range indicates proximity-induced superconductivity in junctions comprising the oxide layer as well as single C{sub 60} molecules. Andreev reflection is enhanced upon controlled fabrication of tip-surface contacts. With decreasing electrode separation the Bardeen-Cooper-Schrieffer energy gap gradually evolves into a zero-bias peak in dI/dV spectra reflecting the spectroscopic signature of Andreev reflection. The current-voltage characteristics of the tunnelling and contact junctions are well described by the Blonder-Tinkham-Klapwijk theory. Our spectroscopic data evidence the influence of the electrodes' atomic-scale structure on electron transport across normal metal-superconductor interfaces.

  16. Thermal properties of polyfurfuryl alcohol absorbed/adsorbed on arylated soy protein films

    CSIR Research Space (South Africa)

    Kumar, R

    2012-02-01

    Full Text Available In this study, polyfurfuryl alcohol was absorbed/adsorbed on soy protein isolate films by immersing the SPI films in acid-catalysed furfuryl alcohol solution for 60 h followed by complete curing at 145–150 -C for 2 h. PFA absorbed/adsorbed soy...

  17. Adsorption configurations of hydrocarbon ring molecules on GaAs(001)-c(4 x 4)

    Energy Technology Data Exchange (ETDEWEB)

    Passmann, R.; Bruhn, T.; Esser, N.; Vogt, P. [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); ISAS, Institute for Analytical Sciences, Department Berlin, Berlin (Germany); Nilsen, T.A.; Fimland, B.O. [Department of Electronics and Telecomunications, Norwegian University of Science and Technology, Trondheim (Norway); Kneissl, M. [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany)

    2009-07-15

    The understanding of self-assembly and bonding mechanisms of organic molecules on semiconductor surfaces represents a central research aspect in the investigation of novel organic/inorganic interfaces and their technological applicability. Here, we investigated the adsorption and bond formation of cyclopentene and 1,4-cyclohexadiene on a GaAs(001)-c(4 x 4) surface in order to clarify the influence of the number of intra-molecular C=C double bonds on the respective adsorption sites. For a determination of the adsorption configuration, the interfaces were characterized electronically and optically by synchrotron based X-ray photoelectron spectroscopy (SXPS), low energy electron diffraction (LEED) and reflectance anisotropy spectroscopy (RAS). The results reveal significantly different adsorption configurations for the two molecules. While cyclopentene bonds with a single covalent bond to the surface, 1,4-cyclohexadiene adsorbs onto the surface by the formation of multiple covalent bonds, e.g. bridge bonds. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Transfer of chirality from adsorbed chiral molecules to the substrates highlighted by circular dichroism in angle-resolved valence photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Contini, G.; Turchini, S.; Sanna, Simone

    2012-01-01

    Studies of self-assembled chiral molecules on achiral metallic surfaces have mostly focused on the determination of the geometry of adsorbates and their electronic structure. The aim of this paper is to provide direct information on the chirality character of the system and on the chirality...... transfer from molecules to substrate by means of circular dichroism in the angular distribution of valence photoelectrons for the extended domain of the chiral self-assembled molecular structure, formed by alaninol adsorbed on Cu(100). We show, by the dichroic behavior of a mixed molecule–copper valence...... state, that the presence of molecular chiral domains induces asymmetry in the interaction with the substrate and locally transfers the chiral character to the underlying metal atoms participating in the adsorption process; combined information related to the asymmetry of the initial electronic state...

  19. Influences of atom Ar on Ar at C60 + Ar at C60 collisions

    International Nuclear Information System (INIS)

    Zhao Qiang; Zhou Hongyu; Zhang Fengshou

    2007-01-01

    A semi-emperical molecular dynamics model was developed. The central collisions of C 60 + C 60 and Ar at C 60 + Ar at C 60 at the same incident energy were investigated within this model. The fullerene dimers could be formed by a self-assembly of C 60 fullerene, and the new fullerene structure like 'peanut' could be formed by a self-assembly of Ar at C 60 . It was found that atom Ar had a great effect on the collision of Ar at C 60 + Ar at C 60 . (authors)

  20. Optimization of the elaboration conditions of an adsorber for the hydrogen storage; Optimisation des conditions d'elaboration d'un adsorbant pour le stockage d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Fierro, V.; Mareche, J.F.; Furdin, G. [Nancy-1 Univ. Henri Poincare, UMR - CNRS 7555, Laboratoire de Chimie du Solide Mineral, 54 - Vandoeuvre-les-Nancy (France); Szczurek, A.; Albiniak, A. [Wroclaw Univ. of Technology, Laboratory for Lignites and Carbon Adsorbents, Institute of Chemistry and Technology of Petroleum and Coal (Poland); Latroche, M. [Chimie Metallurgique des Terres Rares, ICMPE, UMR 7182, CNRS, 94 - Thiais (France); Celzard, A. [Nancy-Univ., ENSTIB, Laboratoire de Chimie du Solide Mineral, UMR CNRS 7555, 88 - Epinal (France)

    2008-07-01

    The microporous carbon are very efficient adsorbents for the hydrogen storage, because of pores size under 2 nm. This study describes the optimization of the elaboration conditions for a carbon adsorbent for the hydrogen storage by adsorption. The storage capacity has been measured at 25 C for 20 MPa and also at 77 K for pressures between 6 and 9 MPa. the porous texture characterization has been realized by four molecule probes of increasing diameter: CO{sub 2}, N{sub 2}, C{sub 6}H{sub 6} and CCl{sub 4}. (A.L.B.)

  1. Strain Lattice Imprinting in Graphene by C60 Intercalation at the Graphene/Cu Interface

    NARCIS (Netherlands)

    Monazami, Ehsan; Bignardi, Luca; Rudolf, Petra; Reinke, Petra

    2015-01-01

    Intercalation of C60 molecules at the graphene-substrate interface by annealing leads to amorphous and crystalline intercalated structures. A comparison of topography and electronic structure with wrinkles and moiré patterns confirms intercalation. The intercalated molecules imprint a local

  2. Orientational Phase Transition Around 274 K in C60 Single Crystal

    Institute of Scientific and Technical Information of China (English)

    徐亚伯; 何丕模; 杨宏顺; 郑萍; 余朝文; 陈兆甲; 张宣嘉; 李文铸

    1994-01-01

    The electrical conductivity of a C60 single crystal around 274 K and the specific heat of C60 crystals from 150 to 340 K have been measured.The delta-like specific heat peak at about 251 K related to the first-order phase transition has been reported.The activation energy change around 274 K and the lambda-like specific heat peak beginning at 270 K and ending at 310 K show that there is an orientational phase transition in fcc C60 crystals above 251 K.By taking the symmetry into consideration and further analyzing lambda-like specific heat peak and the activation energy change around 274 K,the conclusion has been reached that this new phase transition is an orientational structure transition from the merohedral twinning fcc to the orientationally disordered fcc.The temperature of free rotation of C60 molecules is about 281 K.

  3. Ejecting intact large molecular structures by C{sub 60} ion impact upon bio-organic solids; Ejection de tres grandes structures moleculaires intactes par impact de C{sub 60} sur des solides bioorganiques

    Energy Technology Data Exchange (ETDEWEB)

    Brunelle, A.; Della Negra, S.; Deprun, C.; Depauw, J.; Jacquet, D.; Le Beyec, Y.; Pautrat, N. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Haakansson, P. [Division of Ion Physics, Angstrom Laboratory, Uppsala Univ. Uppsala (Sweden)

    1999-11-01

    C{sub 60} molecules accelerated to MeV energies (20 MeV) have been used to induce the desorption-ionization of large bio-molecules from solid samples. In the case of the trypsin molecules, the secondary molecular ion emission yield is about two orders of magnitude larger than with MeV atomic ions. This is a consequence of the very high energy density deposited in solids by 20 MeV C{sub 60} projectiles that gives rise to a large amount of matter ejected after each impact. Although time-of-flight mass spectra can be recorded within a few seconds, it is more the mechanistic aspects in comparison with other particle induced desorption methods, which are the objective of these first results with energetic fullerenes. (authors) 1 fig.

  4. Strong spin-filtering and spin-valve effects in a molecular V-C-60-V contact

    DEFF Research Database (Denmark)

    Koleini, Mohammad; Brandbyge, Mads

    2012-01-01

    Motivated by the recent achievements in the manipulation of C-60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C-60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111) surface using first-principles calculations....... For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C-60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%). Moreover, we find a significant change...... in the conductance between parallel and anti-parallel spin polarizations in the junction (86%) which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems....

  5. Second-harmonic generation from sub-monolayer molecular adsorbates using a c-w diode laser: Maui surface experiment

    International Nuclear Information System (INIS)

    Boyd, G.T.; Shen, Y.R.; Hansch, T.W.

    1985-06-01

    Optical second-harmonic generation (SHG) can be an extremely sensitive tool for surface studies. The technique is capable of probing adsorbed molecules at various interfaces. It is based on the idea that SHG is forbidden in a medium with inversion symmetry, but necessarily allowed at a surface. To see such a surface nonlinear optical effect, high laser intensity is often needed. Thus, in the experiments reported so far, pulsed lasers were used exclusively. From the consideration for practical applications, however, the technique would look much more attractive if the bulky pulsed laser can be replaced by a simple inexpensive c-w diode laser. This paper describes the first demonstration of surface SHG with a c-w laser. 3 refs., 1 fig

  6. Self-consistent field theory of polymer-ionic molecule complexation.

    Science.gov (United States)

    Nakamura, Issei; Shi, An-Chang

    2010-05-21

    A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained.

  7. The H_6_0Si_6C_5_4 heterofullerene as high-capacity hydrogen storage medium

    International Nuclear Information System (INIS)

    Yong, Yongliang; Zhou, Qingxiao; Li, Xiaohong; Lv, Shijie

    2016-01-01

    With the great success in Si atoms doped C_6_0 fullerene and the well-established methods for synthesis of hydrogenated carbon fullerenes, this leads naturally to wonder whether Si-doped fullerenes are possible for special applications such as hydrogen storage. Here by using first-principles calculations, we design a novel high-capacity hydrogen storage material, H_6_0Si_6C_5_4 heterofullerene, and confirm its geometric stability. It is found that the H_6_0Si_6C_5_4 heterofullerene has a large HOMO-LUMO gap and a high symmetry, indicating it is high chemically stable. Further, our finite temperature simulations indicate that the H_6_0Si_6C_5_4 heterofullerene is thermally stable at 300 K. H_2 molecules would enter into the cage from the Si-hexagon ring because of lower energy barrier. Through our calculation, a maximum of 21 H_2 molecules can be stored inside the H_6_0Si_6C_5_4 cage in molecular form, leading to a gravimetric density of 11.11 wt% for 21H_2@H_6_0Si_6C_5_4 system, which suggests that the hydrogenated Si_6C_5_4 heterofullerene could be suitable as a high-capacity hydrogen storage material.

  8. Chemical potential pinning due to equilibrium electron transfer at metal/C{sub 60}-doped polymer interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heller, C.M.; Campbell, I.H.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    1997-04-01

    We report electroabsorption measurements of the built-in electrostatic potential in metal/C{sub 60}-doped polymer/metal structures to investigate chemical potential pinning due to equilibrium electron transfer from a metal contact to the electron acceptor energy level of C{sub 60} molecules in the polymer film. The built-in potentials of a series of structures employing thin films of both undoped and C{sub 60}-doped poly[2-methoxy, 5-(2{sup {prime}}-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were measured. For undoped MEH-PPV, which has an energy gap of about 2.4 eV, the maximum built-in potential is about 2.1 eV, whereas for C{sub 60}-doped MEH-PPV the maximum built-in potential decreases to 1.5 eV. Electron transfer to the C{sub 60} molecules close to the metal interface pins the chemical potential of the metal contact near the electron acceptor energy level of C{sub 60} and decreases the built-in potential of the structure. From the systematic dependence of the built-in potential on the metal work function we find that the electron acceptor energy level of C{sub 60} in MEH-PPV is about 1.7 eV above the hole polaron energy level of MEH-PPV. {copyright} {ital 1997 American Institute of Physics.}

  9. C60 as a Faraday cage

    Science.gov (United States)

    Delaney, P.; Greer, J. C.

    2004-01-01

    Endohedral fullerenes have been proposed for a number of technological uses, for example, as a nanoscale switch, memory bit and as qubits for quantum computation. For these technology applications, it is important to know the ease with which the endohedral atom can be manipulated using an applied electric field. We find that the Buckminsterfullerene (C60) acts effectively as a small Faraday cage, with only 25% of the field penetrating the interior of the molecule. Thus influencing the atom is difficult, but as a qubit the endohedral atom should be well shielded from environmental electrical noise. We also predict how the field penetration should increase with the fullerene radius.

  10. Perspective: C60+ and laboratory spectroscopy related to diffuse interstellar bands

    Science.gov (United States)

    Campbell, E. K.; Maier, J. P.

    2017-04-01

    In the last 30 years, our research has focused on laboratory measurements of the electronic spectra of organic radicals and ions. Many of the species investigated were selected based on their potential astrophysical relevance, particularly in connection with the identification of appealing candidate molecules for the diffuse interstellar absorptions. Notably, carbon chains and derivatives containing hydrogen and nitrogen atoms in their neutral and ionic forms were studied. These data could be obtained after developing appropriate techniques to record spectra at low temperatures relevant to the interstellar medium. The measurement of gas phase laboratory spectra has enabled direct comparisons with astronomical data to be made and though many species were found to have electronic transitions in the visible where the majority of diffuse bands are observed, none of the absorptions matched the prominent interstellar features. In 2015, however, the first carrier molecule was identified: C60 + . This was achieved after the measurement of the electronic spectrum of C60 + -He at 6K in a radiofrequency ion trap.

  11. Strong spin-filtering and spin-valve effects in a molecular V–C60–V contact

    Directory of Open Access Journals (Sweden)

    Mohammad Koleini

    2012-08-01

    Full Text Available Motivated by the recent achievements in the manipulation of C60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111 surface using first-principles calculations. For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%. Moreover, we find a significant change in the conductance between parallel and anti-parallel spin polarizations in the junction (86% which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems.

  12. The influence of oxygen adsorption on the NEXAFS and core-level XPS spectra of the C60 derivative PCBM

    International Nuclear Information System (INIS)

    Brumboiu, Iulia Emilia; Eriksson, Olle; Brena, Barbara; Ericsson, Leif; Hansson, Rickard; Moons, Ellen

    2015-01-01

    Fullerenes have been a main focus of scientific research since their discovery due to the interesting possible applications in various fields like organic photovoltaics (OPVs). In particular, the derivative [6,6]-phenyl-C 60 -butyric acid methyl ester (PCBM) is currently one of the most popular choices due to its higher solubility in organic solvents compared to unsubstituted C 60 . One of the central issues in the field of OPVs is device stability, since modules undergo deterioration (losses in efficiency, open circuit voltage, and short circuit current) during operation. In the case of fullerenes, several possibilities have been proposed, including dimerization, oxidation, and impurity related deterioration. We have studied by means of density functional theory the possibility of oxygen adsorption on the C 60 molecular moiety of PCBM. The aim is to provide guidelines for near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) measurements which can probe the presence of atomic or molecular oxygen on the fullerene cage. By analysing several configurations of PCBM with one or more adsorbed oxygen atoms, we show that a joint core level XPS and O1s NEXAFS investigation could be effectively used not only to confirm oxygen adsorption but also to pinpoint the bonding configuration and the nature of the adsorbate

  13. Total electron scattering cross sections of molecules containing H, C, N, O and F in the energy range 0.2–6.0 keV

    Energy Technology Data Exchange (ETDEWEB)

    Gurung, Meera Devi; Ariyasinghe, W.M., E-mail: wickram_ariyasinghe@baylor.edu

    2017-03-15

    Based on the effective atomic total electron scattering cross sections (EATCS) of atoms in a molecular environment, a simple model is proposed to predict the total electron scattering cross sections (TCS) of H, C, N, O, and F containing molecules. The EATCS for these five atoms are reported for 0.2–6.0 keV energies. The predicted TCS by this model are compared with experimental TCS in the literature. The experimental TCS of CHF{sub 3}, C{sub 2}F{sub 4}, C{sub 2}F{sub 2}H{sub 2}, C{sub 4}F{sub 6}, and c-C{sub 4}F{sub 8} have been obtained for 0.2–4.5 keV electrons by measuring the attenuation of the electron beam through a gas cell.

  14. Effect of Polarization on the Mobility of C60

    DEFF Research Database (Denmark)

    Volpi, Riccardo; Kottravel, Sathish; Nørby, Morten Steen

    2016-01-01

    We present a study of mobility field and temperature dependence for C60 with Kinetic Monte Carlo simulations. We propose a new scheme to take into account polarization effects in organic materials through atomic induced dipoles on nearby molecules. This leads to an energy correction for the singl...

  15. Advanced carbon-based material C60 modification using partially ionized cluster and energetic beams

    International Nuclear Information System (INIS)

    Du Yuancheng; Ren Zhongmin; Ning Zhifeng; Xu Ning; Li Fuming

    1997-01-01

    Two processes have been undertaken using Partially ionized cluster deposition (PICBD) and energetic ion bombardment beams deposition (IBD) respectively. C 60 films deposited by PICBD at V=0 and 65 V, which result in highly textured close-packed structure in orientation (110) and being more polycrystalline respectively, the resistance of C 60 films to oxygen diffusion contamination will be improved. In the case of PICBD, the ionized C 60 soccer-balls molecules in the evaporation beams will be fragmented in collision with the substrate under the elevated accelerating fields Va. As a new synthetic IBD processing, two low energy (400 and 1000 eV) nitrogen ion beams have been used to bombard C 60 films to synthesize the carbon nitride films

  16. The existence of a plastic phase and a solid-liquid dynamical bistability region in small fullerene cluster (C60)7: molecular dynamics simulation

    International Nuclear Information System (INIS)

    Piatek, A; Dawid, A; Gburski, Z

    2006-01-01

    We have simulated (by the molecular dymanics (MD) method) the dynamics of fullerenes (C 60 ) in an extremely small cluster composed of only as many as seven C 60 molecules. The interaction is taken to be the full 60-site pairwise additive Lennard-Jones (LJ) potential which generates both translational and anisotropic rotational motions of each molecule. Our atomically detailed MD simulations discover the plastic phase (no translations but active reorientations of fullerenes) at low energies (temperatures) of the (C 60 ) 7 cluster. We provide the in-depth evidence of the dynamical solid-liquid bistability region in the investigated cluster. Moreover, we confirm the existence of the liquid phase in (C 60 ) 7 , the finding of Gallego et al (1999 Phys. Rev. Lett. 83 5258) obtained earlier on the basis of Girifalco's model, which assumes single-site only and spherically symmetrical interaction between C 60 molecules. We have calculated the translational and angular velocity autocorrelation functions and estimated the diffusion coefficient of fullerene in the liquid phase

  17. MODIFICATION OF KELUD VOLCANIC ASH 2014 AS SELECTIVE ADSORBENT MATERIAL FOR COPPER(II METAL ION

    Directory of Open Access Journals (Sweden)

    Susila Kristianingrum

    2017-01-01

      This research aims to prepare an adsorbent from Kelud volcanic ash for better Cu(II adsorption efficiency than Kiesel gel 60G E'Merck. Adsorbent synthesis was done by dissolving 6 grams of volcanic ash activated 700oC 4 hours and washed with HCl 0.1 M into 200 ml of 3M sodium hydroxide with stirring and heating of 100 °C for 1 hour. The filtrate sodium silicate was then neutralized using sulfuric acid. The mixture was allowed to stand for 24 hours then filtered and washed with aquaDM, then dried and crushed. The procedure is repeated for nitric acid, acetic acid and formic acid with a contact time of 24 hours. The products were then characterized using FTIR and XRD, subsequently determined acidity, moisture content, and tested for its adsorption of the ion Cu (II with AAS. The results showed that the type of acid that produced highest rendemen is AK-H2SO4-3M ie 36.93%, acidity of the adsorbent silica gel synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-CH3COOH-3M and the water content of the silica gel adsorbent synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-H2SO4-2 M. The character of the functional groups of silica gel synthesized all have similarities with Kiesel gel 60G E'Merck as a comparison. Qualitative analysis by XRD for all modified adsorbent showed a dominant peak of SiO2 except adsorbent AK-H2SO4 amorphous and chemical bonds with FTIR indicates that it has formed a bond of Si-O-Si and Si-OH. The optimum adsorption efficiency of the metal ions Cu(II obtained from AK-H2SO4-5M adsorbent that is equal to 93.2617% and the optimum adsorption capacity of the Cu(II metal ions was obtained from the adsorbent AK-CH3COOH-3M is equal to 2.4919 mg/ g.   Keywords: adsorbents, silica gel, adsorption, kelud volcanic ash

  18. Iron ion implantation into C60 layer

    International Nuclear Information System (INIS)

    Racz, R.; Biri, S.; Csik, A.; Vad, K.

    2011-01-01

    Complete text of publication follows. The soccer ball shaped carbon molecule consisting of 60 carbon atoms (C 60 , fullerene) was discovered in 1985. Since that time the fullerene has become intensively studied. This special molecule has much potential in medical care, biotechnology and nanotechnology. We are motivated to produce special type fullerenes, so called endohedral fullerenes (some alien atoms are encapsulated inside the fullerene cage). The spring of our motivation is that the Fe at C 60 could be applied as a contrast material for MRI (Magnetic Resonance Imaging) or microwave heat therapy. One way to make X at C 60 is the surface production using an ECRIS (Electron Cyclotron Resonance Ion Source). An evaporated or preprepared fullerene layer is irradiated by ions to form a new material during the implantation. By this method several kinds of atomic species, such as Li, Na, K, Rb, Xe were encapsulated into the fullerenes. However evidence for the Fe at C 60 has not been found yet. During the analysis of the irradiated samples three questions must be answered. 1. Are there iron atoms in the layer and where? 2. Does the iron bond to the fullerene? 3. How does the iron bond to the fullerene, inside or outside? Using different investigation tools, SNMS (Secondary Neural Mass Spectrometer), MALDI-TOF (Matrix Assisted Laser Desorption Ionization Time of Flight), XPS (Xray Photoelectron Spectroscopy) or HPLC (High-Performance Liquid Chromatography), all these questions could be clarified step by step. In this paper we made the first steps to answer the first question: fullerene layers irradiated by iron ion beam delivered by the ATOMKI-ECRIS have been analyzed by the ATOMKI-SNMS. The evaporated 90 - 120 nm thick fullerene layers on Si holder were irradiated by Fe 5+ and Fe + ion beams produced from Ferrocene vapor. Samples were irradiated with two different doses (5 10 18 ion/cm 3 and 10 22 ion/cm 3 ) at four ion energies (65 keV, 6.5 keV, 0.2 keV and two of

  19. Molecular dynamics investigations on the interfacial energy and adhesive strength between C{sub 60}-filled carbon nanotubes and metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Jenn-Kun [Department of Greenergy, National University of Tainan, Tainan 70005, Taiwan (China); Huang, Pei-Hsing, E-mail: phh@mail.npust.edu.tw [Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan (China); Wu, Wei-Te; Hsu, Yi-Cheng [Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan (China)

    2014-01-15

    The mechanical and adhesive properties of C{sub 60}@(10,10) carbon nanopeapods (CNPs) adhering to gold surfaces are investigated by atomistic simulations. The effects of C{sub 60} fill density, tube length, surrounding temperature, and peeling velocity on the adhesion behavior are studied. Results show that the interfacial binding energy of CNPs (which depends on the C{sub 60} fill density and temperature) is 2.0∼4.4% higher than that of (10,10) single-walled CNTs and 3.4∼4.7% lower than that of (5,5)@(10,10) double-walled CNTs (DWCNTs). Despite their lower interfacial binding energy, CNPs have a higher adhesive strength than that of DWCNTs (1.53 nN vs. 1.4 nN). Distinct from the inner tubes of DWCNTs, which have continuum mechanical properties, the discrete C{sub 60} molecules that fill CNPs exhibit unique composite mechanical properties, with high flexibility and bend-buckling resistance. The bend-buckling forces for CNPs filled with a low/medium fill density of C{sub 60} are approximately constant. When the fill density is 1 C{sub 60} molecule per nanometer length, the bend-buckling force dramatically increases. - Highlights: • Adhesion and peeling behaviors of CNPs on metallic substrates are investigated. • Effects of C60 density, CNP length, temperature, and peeling velocity are studied. • CNPs have a higher adhesive strength than that of DWCNTs (1.53 nN vs. 1.4 nN). • Discrete C{sub 60} molecules that fill CNPs exhibit unique composite mechanical properties.

  20. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C60 Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Dowgiallo, Anne-Marie; Mistry, Kevin S.; Johnson, Justin C.; Reid, Obadiah G.; Blackburn, Jeffrey L.

    2016-05-19

    The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorption measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT 'reporter layer'. In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.

  1. Molecular dynamics simulation of carbon nanostructures: The C60 buckminsterfullerene

    International Nuclear Information System (INIS)

    Laszlo, Istvan; Zsoldos, Ibolya

    2012-01-01

    Molecular dynamics calculations can reveal the physical and chemical properties of various carbon nanostructures or can help to devise the possible formation pathways. In our days the most well-known carbon nanostructures are the fullerenes, the nanotubes, and the graphene. The fullerenes and nanotubes can be thought of as being formed from graphene sheets, i.e., single layers of carbon atoms arranged in a honeycomb lattice. Usually the nature does not follow the mathematical constructions. Although the first time the C 60 and the C 70 were produced by laser irradiated graphite, the fullerene formation theories are based on various fragments of carbon chains and networks of pentagonal and hexagonal rings. In the present article various formation pathways for the buckminsterfullerene C 60 molecule will be presented. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Adsorbates in a Box: Titration of Substrate Electronic States

    Science.gov (United States)

    Cheng, Zhihai; Wyrick, Jonathan; Luo, Miaomiao; Sun, Dezheng; Kim, Daeho; Zhu, Yeming; Lu, Wenhao; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2010-08-01

    Nanoscale confinement of adsorbed CO molecules in an anthraquinone network on Cu(111) with a pore size of ≈4nm arranges the CO molecules in a shell structure that coincides with the distribution of substrate confined electronic states. Molecules occupy the states approximately in the sequence of rising electron energy. Despite the sixfold symmetry of the pore boundary itself, the adsorbate distribution adopts the threefold symmetry of the network-substrate system, highlighting the importance of the substrate even for such quasi-free-electron systems.

  3. The H{sub 60}Si{sub 6}C{sub 54} heterofullerene as high-capacity hydrogen storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Yongliang, E-mail: ylyong@haust.edu.cn [College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471003 (China); Department of Physics, Zhejiang University, Hangzhou 310027 (China); Zhou, Qingxiao; Li, Xiaohong; Lv, Shijie [College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471003 (China)

    2016-07-15

    With the great success in Si atoms doped C{sub 60} fullerene and the well-established methods for synthesis of hydrogenated carbon fullerenes, this leads naturally to wonder whether Si-doped fullerenes are possible for special applications such as hydrogen storage. Here by using first-principles calculations, we design a novel high-capacity hydrogen storage material, H{sub 60}Si{sub 6}C{sub 54} heterofullerene, and confirm its geometric stability. It is found that the H{sub 60}Si{sub 6}C{sub 54} heterofullerene has a large HOMO-LUMO gap and a high symmetry, indicating it is high chemically stable. Further, our finite temperature simulations indicate that the H{sub 60}Si{sub 6}C{sub 54} heterofullerene is thermally stable at 300 K. H{sub 2} molecules would enter into the cage from the Si-hexagon ring because of lower energy barrier. Through our calculation, a maximum of 21 H{sub 2} molecules can be stored inside the H{sub 60}Si{sub 6}C{sub 54} cage in molecular form, leading to a gravimetric density of 11.11 wt% for 21H{sub 2}@H{sub 60}Si{sub 6}C{sub 54} system, which suggests that the hydrogenated Si{sub 6}C{sub 54} heterofullerene could be suitable as a high-capacity hydrogen storage material.

  4. Bridging C60 by silicon: Towards non-Van der Waals C60-based materials

    International Nuclear Information System (INIS)

    Tournus, F.; Masenelli, B.; Melinon, P.; Blase, X.; Perez, A.; Pellarin, M.; Broyer, M.; Flank, A.M.; Lagarde, P.

    2002-01-01

    We report the three-dimensional packing of C 60 clusters stabilized by the addition of Si. X-ray absorption spectroscopy reveals that Si atoms are in an unusual environment: between two C 60 , with ten or more carbon neighbors. According to ab initio calculations, the cohesive energy is about 2 eV per Si atom, much higher than the Van der Waals binding energy between two C 60 . Experiment and calculations both indicate a charge transfer from Si to C 60 . Eventually, the film may have a local decahedral symmetry

  5. The development of an adsorbent for corrosion products in high-temperature water

    International Nuclear Information System (INIS)

    Kim, Yong Ik; Sung, Ki Woung; Kim, Kwang Rag; Kim, Yu Hwan; Koo, Jae Hyoo

    1996-08-01

    In order to use as adsorbent for removal of the soluble corrosion products, mainly Co 60 under PWR reactor coolant conditions (300 deg C, 160 kg/cm 2 ), stable ZrO 2 adsorbent was prepared using sol-gel process from zirconyl nitrate, AlO adsorbent was prepared by hydrolysis of aluminum isopropoxide, and titanium tetraisopropoxide, respectively. The prepared adsorbents were calcined at various temperature and analyzed by physical properties and the Co 2+ adsorption capacity. And it was shown that the Co 2+ adsorption capacity of the TiO 2 -Al 2 O 3 adsorbents were found to have larger than that of ZrO 2 and Al 2 O 3 adsorbents in high-temperature water. ZrO 2 , Al 2 O 3 and TiO 2 -Al 2 O 3 adsorbents were found to be suitable high-temperature adsorbents for the removal of dissolved corrosion products, mainly Co in PWR reactor coolant conditions. 15 tabs., 51 figs., 55 refs. (Author)

  6. Effect of the structure distortion on the high photocatalytic performance of C{sub 60}/g-C{sub 3}N{sub 4} composite

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojuan; Li, Xinru; Li, Mengmeng; Ma, Xiangchao; Yu, Lin, E-mail: yu-lin@sdu.edu.cn; Dai, Ying, E-mail: daiy60@sina.com

    2017-08-31

    Highlights: • The adsorption of C{sub 60} can induce an irreversible structure distortion for g-C{sub 3}N{sub 4} from flat to wrinkle. • The structure distortion of g-C{sub 3}N{sub 4} plays a crucial role in enhancing photocatalytic performances. • Stability, optical absorption and band edge all have positive correlations with wrinkle degree for g-C{sub 3}N{sub 4} monolayers. - Abstract: C{sub 60}/g-C{sub 3}N{sub 4} composite was reported experimentally to be of high photocatalytic activity in degrading organics. To investigate the underlying mechanism of high photocatalytic performance, the structural and electronic properties of g-C{sub 3}N{sub 4} monolayers with adsorbing and removing fullerene C{sub 60} are studied by means of density functional theory calculations. After 25 possible configurations examination, it is found that C{sub 60} prefers to stay upon the “junction nitrogen” with the carbon atom of fullerene being nearest to monolayers. Correspondingly, a type-I band alignment appears. Our results further demonstrate that the adsorption of C{sub 60} can lead to an irreversible structure distortion for g-C{sub 3}N{sub 4} from flat to wrinkle, which plays a crucial role in improving photocatalytic performance other than the separation of carriers at interface due to the formation of type-II heterojunctions as previous report. Compared to flat one, the light absorption of wrinkled structure shows augmented, the valence band maximum shifts towards lower position along with a stronger photo-oxidation capability. Interestingly, the results indicate that the energy, light absorption and band edge all have a particular relationship with wrinkle degree. The work presented here can be helpful to understand the mechanism behind the better photocatalytic performance for C{sub 60} modified g-C{sub 3}N{sub 4}.

  7. Direct observation of interfacial C60 cluster formation in polystyrene-C60 nanocomposite films

    International Nuclear Information System (INIS)

    Han, Joong Tark; Lee, Geon-Woong; Kim, Sangcheol; Lee, Hae-Jeong; Douglas, Jack F; Karim, Alamgir

    2009-01-01

    Large interfacial C 60 clusters were directly imaged at the supporting film-substrate interface in physically detached polystyrene-C 60 nanocomposite films by atomic force microscopy, confirming the stabilizing mechanism previously hypothesized for thin polymer films. Additionally, we found that the C 60 additive influences basic thermodynamic film properties such as the interfacial energy and the film thermal expansion coefficient.

  8. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Horng-Bin [Department of Chemistry, University of Idaho, Moscow, Idaho 83844 USA; Wai, Chien M. [Department of Chemistry, University of Idaho, Moscow, Idaho 83844 USA; Kuo, Li-Jung [Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington 98382 USA; Gill, Gary [Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington 98382 USA; Tian, Guoxin [Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA; Rao, Linfeng [Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA; Das, Sadananda [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA; Mayes, Richard T. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA; Janke, Christopher J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA

    2017-05-02

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10-3 M) in seawater. In real seawater experiments, the bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent. Using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.

  9. Preparation of theoretical scanning tunneling microscope images of adsorbed molecules: a theoretical study of benzene on the Cu(110) surface

    International Nuclear Information System (INIS)

    Shapter, J.G.; Rogers, B.L.; Ford, M.J.

    2003-01-01

    Full text: Since its development in 1982, the Scanning Tunneling Microscope (STM) has developed into a powerful tool for the study of surfaces and adsorbates. However, the utility of the technique can be further enhanced through the development of techniques for generating theoretical STM images. This is particularly true when studying molecules adsorbed on a substrate, as the results are often interpreted superficially due to an inadequate understanding of the orbital overlap probed in the experiment. A method of preparing theoretical scanning tunneling microscope (STM) images using comparatively inexpensive desktop computers and the commercially available CRYSTAL98 package is presented through a study of benzene adsorbed on the Cu(110) surface. Density Functional Theory (DFT) and Hartree-Fock (HF) methods are used to model clean Cu(110) slabs of various thicknesses and to simulate the adsorption of benzene onto these slabs. Eight possible orientations of benzene on the Cu(110) surface are proposed, and the optimum orientation according to the calculations is presented. Theoretical STM images of the Cu(110) surface and benzene adsorbed on the Cu(110) surface are compared with experimental STM images of the system from a published study. Significant differences are observed and are examined in detail

  10. C{sub 60}{sup 3-} versus C{sub 60}{sup 4-} /C{sub 60}{sup 2-} - synthesis and characterization of five salts containing discrete fullerene anions

    Energy Technology Data Exchange (ETDEWEB)

    Boeddinghaus, M. Bele; Klein, Wilhelm; Wahl, Bernhard; Faessler, Thomas F. [Department of Chemistry, Technische Universitaet Muenchen, Garching (Germany); Jakes, Peter; Eichel, Ruediger A. [Institut fuer Energie- und Klimaforschung (IEK-9), Forschungszentrum Juelich (Germany)

    2014-04-15

    Five new compounds, [Rb(18crown-6)]{sub 3}[C{sub 60}] (1), [Rb(18crown-6)]{sub 6}[C{sub 60}]{sub 2}(C{sub 3}H{sub 7}NO){sub 2}(C{sub 4}H{sub 8}O){sub 2} (2), [Rb(benzo18crown-6)]{sub 6}[C{sub 60}]{sub 2}(C{sub 2}H{sub 8}N{sub 2}){sub 5} (3), [Cs(benzo18crown-6)]{sub 3}C{sub 60}(C{sub 2}H{sub 8}N{sub 2}){sub 2} (4), and [Cs{sub 3}(benzo18crown-6){sub 5}]C{sub 60}(C{sub 2}H{sub 8}N{sub 2}){sub (4.5+x)} (5) were synthesized and characterized by single-crystal X-ray structure determination. All compounds contain discrete C{sub 60} anions, which are ordered in 1, 2, and 4, where direct cation-anion contacts occur. The unit cells of 1 and 2 contain two independent fullerides, which coordinate to the rubidium atoms either of two or of four [Rb(18crown-6)] units. Owing to the presence of differently coordinated fullerene units in compounds 1 and 2, a possible disproportionation of C{sub 60}{sup 3-} into C{sub 60}{sup 2-} and C{sub 60}{sup 4-} anions is discussed. In 3 and 4 the C{sub 60} anions are coordinated by three Rb and Cs atoms, respectively. In all compounds the average charge of the anion is -3. Magnetic data reveal a doublet spin state for 3. The EPR spectra are discussed for compounds 3 and 5. The role of a dynamic Jahn-Teller distortion is discussed, and we report the first IR spectroscopic data of fullerene trianions, which have been obtained in solution. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Determination of the displacement cross-section in C-60 fullerene exposed to the gamma rays

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Leyva, D.; Cruz, C.; Abreu, Y.

    2011-01-01

    Using the threshold energy values reported in literature for spherical fullerene C-60 molecules and taking into account the McKinley-Feshbach approach, the effective atomic displacement cross-section in C-60 nanostructures exposed to the gamma rays was estimated. The Kinchin-Pease approximation for the damage function was also considered. These calculations were performed using MCCM code system developed by the authors for the study of gamma radiation damage in solid materials. (Author)

  12. Van der Waals cohesion and plasmon excitations in C60 fullerite

    International Nuclear Information System (INIS)

    Lambin, P.; Lucas, A.A.

    1993-01-01

    The Van der Waals cohesive energy of C 60 fullerite is evaluated from the zero-point energy of multipole plasmons fluctuating on the highly-polarizable Bucky balls. These hollow molecules are treated as dielectric shells. The shell material is an isotropic continuum with a dielectric function designed to exhibit the plasmon resonances observed in other forms of solid carbon in the ultraviolet. (orig.)

  13. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    International Nuclear Information System (INIS)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C 2 H 2 and C 2 H 4 adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals

  14. Growth and Potential Damage of Human Bone-Derived Cells Cultured on Fresh and Aged C60/Ti Films

    Science.gov (United States)

    Kopova, Ivana; Lavrentiev, Vasily; Vacik, Jiri; Bacakova, Lucie

    2015-01-01

    Thin films of binary C60/Ti composites, with various concentrations of Ti ranging from ~ 25% to ~ 70%, were deposited on microscopic glass coverslips and were tested for their potential use in bone tissue engineering as substrates for the adhesion and growth of bone cells. The novelty of this approach lies in the combination of Ti atoms (i.e., widely used biocompatible material for the construction of stomatological and orthopedic implants) with atoms of fullerene C60, which can act as very efficient radical scavengers. However, fullerenes and their derivatives are able to generate harmful reactive oxygen species and to have cytotoxic effects. In order to stabilize C60 molecules and to prevent their possible cytotoxic effects, deposition in the compact form of Ti/C60 composites (with various Ti concentrations) was chosen. The reactivity of C60/Ti composites may change in time due to the physicochemical changes of molecules in an air atmosphere. In this study, we therefore tested the dependence between the age of C60/Ti films (from one week to one year) and the adhesion, morphology, proliferation, viability, metabolic activity and potential DNA damage to human osteosarcoma cells (lines MG-63 and U-2 OS). After 7 days of cultivation, we did not observe any negative influence of fresh or aged C60/Ti layers on cell behavior, including the DNA damage response. The presence of Ti atoms resulted in improved properties of the C60 layers, which became more suitable for cell cultivation. PMID:25875338

  15. Friction and diffusion dynamics of adsorbates at surfaces

    NARCIS (Netherlands)

    Fusco, C.

    2005-01-01

    A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it

  16. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingling, E-mail: lasier_wang@hotmail.com [College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, Fujian (China); Environmental Engineering and Science Program, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Han, Changseok [ORISE Post-doctoral Fellow, The U.S. Environmental Protection Agency, ORD, NRMRL, STD, CPB, 26 W. Martin Luther King Jr. Drive, Cincinnati, OH 45268 (United States); Nadagouda, Mallikarjuna N. [The U.S. Environmental Protection Agency, ORD, NRMRL, WSWRD, WQMB, 26 W. Martin Luther King Jr. Drive, Cincinnati, OH 45268 (United States); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Nireas-International Water Research Centre, School of Engineering, University of Cyprus, PO Box 20537, 1678, Nicosia (Cyprus)

    2016-08-05

    Highlights: • An innovative adsorbent was successfully synthesized to remove humic acid. • The adsorbent possessed high adsorption capacity for humic acid. • The adsorption capacity remarkably increased after an acid modification. • The adsorption capacity was proportional to the amount of ZnO coated on zeolite. • Electrostatic interactions are a major factor at the first stage of the process. - Abstract: Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO{sub 3}){sub 2}·6H{sub 2}O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21 ± 1 °C was about 60 mgC g{sup −1}. The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents.

  17. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    International Nuclear Information System (INIS)

    Wang, Lingling; Han, Changseok; Nadagouda, Mallikarjuna N.; Dionysiou, Dionysios D.

    2016-01-01

    Highlights: • An innovative adsorbent was successfully synthesized to remove humic acid. • The adsorbent possessed high adsorption capacity for humic acid. • The adsorption capacity remarkably increased after an acid modification. • The adsorption capacity was proportional to the amount of ZnO coated on zeolite. • Electrostatic interactions are a major factor at the first stage of the process. - Abstract: Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO_3)_2·6H_2O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21 ± 1 °C was about 60 mgC g"−"1. The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents.

  18. Excimer-laser-induced permanent electrical conductivity in solid C60 films

    International Nuclear Information System (INIS)

    Ning, D.; Lou, Q.H.; Dong, J.X.; Wei, Y.R.

    1996-01-01

    After being irradiated in air by a XeCl (308 nm) excimer laser, the electrical conductivity of solid thin-film C 60 has been improved by more than six orders of magnitudes. The products resulting from laser irradiation of C 60 films have been investigated by Raman scattering and the onset of conductivity can be attributed to laser-induced oxygenation and disintegration of the fullerene. Irradiated by ∼40 ns laser pulses with different fluence, products with different microstructure were observed. At lower fluence, the Raman features of microcrystalline graphite and fullerene polymer were observed. At a fluence just below the ablation threshold (36 mJ/cm 2 ), the fullerene molecules in the film were disintegrated completely and transformed to amorphous graphite. (orig.). With 5 figs

  19. Temperature-dependent chemisorption of C60 on Mo(110) : precursors to cage destruction

    NARCIS (Netherlands)

    Hunt, Michael R.C.; Rajogopal, Aparna; Caudano, Roland; Rudolf, Petra

    2000-01-01

    The catalytically promoted decomposition of C60 has recently been observed on a variety of surfaces upon which the molecule can chemisorb strongly. It is now becoming clear that destruction occurs via conversion of a relatively weakly bound state arising from room-temperature adsorption into a

  20. Structure formation in bis(terpyridine) derivative adlayers: molecule-substrate versus molecule-molecule interactions.

    Science.gov (United States)

    Hoster, Harry E; Roos, Matthias; Breitruck, Achim; Meier, Christoph; Tonigold, Katrin; Waldmann, Thomas; Ziener, Ulrich; Landfester, Katharina; Behm, R Jürgen

    2007-11-06

    The influence of the substrate and the deposition conditions-vapor deposition versus deposition from solution-on the structures formed upon self-assembly of deposited bis(terpyridine) derivative (2,4'-BTP) monolayers on different hexagonal substrates, including highly oriented pyrolytic graphite (HOPG), Au(111), and (111)-oriented Ag thin films, was investigated by high-resolution scanning tunneling microscopy and by model calculations of the intermolecular energies and the lateral corrugation of the substrate-adsorbate interaction. Similar quasi-quadratic network structures with almost the same lattice constants obtained on all substrates are essentially identical to the optimum configuration expected from an optimization of the adlayer structure with C-H...N-type bridging bonds as a structure-determining factor, which underlines a key role of the intermolecular interactions in adlayer order. Slight distortions from the optimum values to form commensurate adlayer structures on the metal substrates and the preferential orientation of the adlayer with respect to the substrate are attributed to the substrate-adsorbate interactions, specifically, the lateral corrugation in the substrate-adsorbate interaction upon lateral displacement and rotation of the adsorbed BTP molecules. The fact that similar adlayer structures are obtained on HOPG under ultrahigh vacuum conditions (solid|gas interface) and on HOPG in trichlorobenzene (solid|liquid interface) indicates that the intermolecular interactions are not severely affected by the solvent.

  1. Interaction of atomic hydrogen with ethylene adsorbed on nickel films

    International Nuclear Information System (INIS)

    Korchak, V.N.; Tret'yakov, I.I.; Kislyuk, M.U.

    1976-01-01

    The reactivity of ethylene adsorbed on the pure films of nickel at various temperatures was studied with respect to hydrogen atoms generated in the gaseous phase. The experiments were conducted in a glass vacuum apparatus enabling one to obtain the highest vacuum up to 2x20 -10 torr. The catalyst, nickel films, was produced by their deposition onto the walls of the glass reactor at a pressure of the residual gas of 10 -9 torr and a temperature of the walls of 25 deg C. Gas purity was analyzed by the mass spectrometric method. The ethylene adsorbed at the temperatures below 173 deg K reacted readily with the hydrogen atoms to yield ethane. The process ran without practically any activation energy involved and was limited by the attachment of the first hydrogen atom to the ethylene molecule. The efficiency of this interaction was 0.02 of the number of the hydrogen atoms collisions against the surface occupied by the ethylene. The adsorption of the ethylene at room and higher temperatures was accompanied by its disproportioning with the release of the hydrogen into the gaseous phase and a serious destruction of the ethylene molecules adsorbed to produce hydrogen residues interacting with neither molecular nor atomic hydrogen [ru

  2. The development of an adsorbent for corrosion products in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Ik; Sung, Ki Woung; Kim, Kwang Rag; Kim, Yu Hwan; Koo, Jae Hyoo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-08-01

    In order to use as adsorbent for removal of the soluble corrosion products, mainly Co{sup 60} under PWR reactor coolant conditions (300 deg C, 160 kg/cm{sup 2}), stable ZrO{sub 2} adsorbent was prepared using sol-gel process from zirconyl nitrate, AlO adsorbent was prepared by hydrolysis of aluminum isopropoxide, and titanium tetraisopropoxide, respectively. The prepared adsorbents were calcined at various temperature and analyzed by physical properties and the Co{sup 2+} adsorption capacity. And it was shown that the Co{sup 2+} adsorption capacity of the TiO{sub 2}-Al{sub 2}O{sub 3} adsorbents were found to have larger than that of ZrO{sub 2} and Al{sub 2}O{sub 3} adsorbents in high-temperature water. ZrO{sub 2}, Al{sub 2}O{sub 3} and TiO{sub 2}-Al{sub 2}O{sub 3} adsorbents were found to be suitable high-temperature adsorbents for the removal of dissolved corrosion products, mainly Co in PWR reactor coolant conditions. 15 tabs., 51 figs., 55 refs. (Author).

  3. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  4. Ionization, evaporation and fragmentation of C{sub 60} in collisions with highly charged C, O and F ions-effect of projectile charge state

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Misra, D; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai -5 (India)

    2007-09-15

    We study the various inelastic processes such ionization, fragmentation and evaporation of C{sub 60} molecule in collisions with fast heavy ions. We have used 2.33 MeV/u C, O and F projectile ion beams. Various ionization and fragmentation products were detected using time-of-flight mass spectrometer. The multiply charged C{sub 60}{sup r+} ions were detected for maximum r = 4. The projectile charge state (q{sub p}) dependence of the single and double ionization cross sections is well reproduced by a model based on the giant dipole plasmon resonance (GDPR). The q{sub p}-dependence of the fragmentation yields, was found to be linear. Variation of relative yields of the evaporation products of C{sub 60}{sup 2+} (i.e. C{sub 58}{sup 2+}, C{sub 56}{sup 2+} etc) and C{sub 60}{sup 3+} (i.e. C{sub 58}{sup 3+}, C{sub 56}{sup 3+} etc) with q{sub p} has also been investigated for various projectiles.

  5. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C/sub 2/H/sub 2/ and C/sub 2/H/sub 4/ adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals.

  6. Volume properties and refraction of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids lysine, threonine, and oxyproline (C60(C6H13N2O2)2, C60(C4H8NO3)2, and C60(C5H9NO2)2) at 25°C

    Science.gov (United States)

    Semenov, K. N.; Ivanova, N. M.; Charykov, N. A.; Keskinov, V. A.; Kalacheva, S. S.; Duryagina, N. N.; Garamova, P. V.; Kulenova, N. A.; Nabieva, A.

    2017-02-01

    Concentration dependences of the density of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids are studied by pycnometry. Concentration dependences of the average molar volumes and partial volumes of components (H2O and corresponding bisadducts) are calculated for C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems at 25°C. Concentration dependences of the indices of refraction of C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems are determined at 25°C. The concentration dependences of specific refraction and molar refraction of bisadducts and aqueous solutions of them are calculated.

  7. The Adsorption of Cr(VI Using Chitosan-Alumina Adsorbent

    Directory of Open Access Journals (Sweden)

    Darjito Darjito

    2013-12-01

    Full Text Available Chitosan as adsorbent has been used widely, however it was not effective yet for metal ions adsorption in industrial scale. In acidic condition, chitosan’s active site tends to decrease. This drawback can was solved by coating of chitosan active site on alumina. This paper discloses to overcome that limitation. The charateristic of the active side was analysed by FTIR spectrometry toward vibration N-H group at 1679.15 cm-1, C=O group of oxalate at 1703.30 cm-1, and Al-O group of alumina at 924.07 cm-1. The adsorption capacity of the developed adsorbent was tester to adsorb Cr(VI ions under various of pH value such as 1, 2, 3, 4, 5, 6, and 7. The contact time affect toward the adsorption was also reported in 20, 30, 40 50, 60, 70, and 80 minute. In addition, the concentration effects (100, 200, 300, 400, 500, and 600 ppm was also studied. Chromium (VI was measured using spectronic-20. Adsorption capacity was obtained at 66.90 mg/g under optimum conditions pH 2, and contact time 60 minute, respectively.

  8. Stable Au–C bonds to the substrate for fullerene-based nanostructures

    Directory of Open Access Journals (Sweden)

    Taras Chutora

    2017-05-01

    Full Text Available We report on the formation of fullerene-derived nanostructures on Au(111 at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111, bright spots appear at the herringbone corner sites when measured using a scanning tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an adsorption energy on the Au(111 surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature.

  9. Auger electron spectroscopy of the surface of a pipe-like solid C60+18n

    International Nuclear Information System (INIS)

    Khvostov, V.V.; Chernozatonskij, L.A.; Kosakovskaya, Z.Ya.; Babaev, V.V.; Guseva, M.B.

    1992-01-01

    Auger and electron energy loss spectra obtained when probing the surface of nanofiber carbon material by an electron beam point out to C 60 football-type of covers with the outlet to the surface of nanopipe carbon molecules

  10. Photoionization of bonding and antibonding-type atom-fullerene hybrid states in Cd@C60 vs Zn@C60

    International Nuclear Information System (INIS)

    Javani, Mohammad H; Manson, Steven T; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E

    2014-01-01

    Powerful hybridization of the Cd 4d state with the d-angular momentum state of C 60 π symmetry is found in the local density approximation (LDA) structure of Cd@C 60 ground state. The photoionization of the resulting symmetric and antisymmetric levels are computed using the time dependent LDA method to include electron correlations. Cross sections exhibit effects of the C 60 plasmonic motion coherently coupled to the diffraction-type cavity oscillations induced by local emissions from C 60 . The Cd@C 60 results exhibit a substantial difference from our previous results for Zn@C 60 . (paper)

  11. C60H- an intermediate in the photochemical reduction of C60 fullerene with triethylamine

    International Nuclear Information System (INIS)

    Stasko, A.; Brezova, V.; Neudeck, A.; Bartl, A.; Dunsch, L.

    1999-01-01

    The systematic investigations on the photo reduction of C 60 fullerene and its derivatives using triethylamine and TiO 2 donors, and also other techniques, verified the formation of C 60 .- . Formation of the mono-anion a narrow EPR line (pp A = 0.1 mT) was observed. During a continuous irradiation line A is replaced with line B having g B - 2.0006 and pp B = 0.04 mT which also vanished under prolonged irradiation. But lines A and B repeated after stopping irradiation. This unusual behaviour was re-investigated in analogous EPR-NIR experiments using now a rapid NIR spectrometer. The band at 996 nm was assigned to C 60 H - . The mechanism of C 60 H - formation is discussed

  12. Organic adsorbates on metal surfaces. PTCDA and NTCDA on AG(110)

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Afshin

    2010-02-22

    Polyaromatic molecules functionalized with carboxylic groups have served as model systems for the growth of organic semiconducting films on a large variety of substrates. Most non-reactive substrates allow for a growth mode compatible with the bulk phase of the molecular crystal with two molecules in the unit cell, but some more reactive substrates including Ag(111) and Ag(110) can induce substantial changes in the first monolayer (ML). In the specific case of Ag(110), the adsorbate unit cell of both NTCDA and PTCDA resembles a brickwall structure, with a single molecule in the unit cell. From this finding, it can be concluded that the adsorbate-substrate interaction is stronger than typical inter-molecular binding energies in the respective bulk phases. In the present work, the interactions between small Ag(110) clusters and a single NTCDA or PTCDA molecule are investigated with different ab initio techniques. Four major ingredients contribute to the binding between adsorbate and substrate: Directional bonds between Ag atoms in the topmost layer and the oxygen atoms of the molecule, Pauli repulsion between filled orbitals of molecule and substrate, an attractive van-der-Waals interaction, and a negative net charge on the molecule inducing positive image charges in the substrate, resulting therefore in an attractive Coulomb interaction between these opposite charges. As both Hartree-Fock theory and density functional theory with typical gradient-corrected density functional do not contain any long range correlation energy required for dispersion interactions, we compare these approaches with the fastest numerical technique where the leading term of the van-der-Waals interaction is included, i.e. second order Moeller-Plesset theory (MP2). Both Hartree-Fock and density functional theory result in bended optimized geometries where the adsorbate is interacting mainly via the oxygen atoms, with the core of the molecule repelled from the substrate. Only at the MP2 level

  13. Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology

    Science.gov (United States)

    Hong, Gui-Bing; Wang, Yi-Kai

    2017-11-01

    Rice bran is a major by-product of the rice milling industry and is abundant in Taiwan. This study proposed a simple method for modifying rice bran to make it a low-cost adsorbent to remove reactive blue 4 (RB4) from aqueous solutions. The effects of independent variables such as dye concentration (100-500 ppm), adsorbent dosage (20-120 mg) and temperature (30-60 °C) on the dye adsorption capacity of the modified rice bran adsorbent were investigated by using the response surface methodology (RSM). The results showed that the dye maximum adsorption capacity of the modified rice bran adsorbent was 151.3 mg g-1 with respect to a dye concentration of 500 ppm, adsorbent dosage of 65.36 mg, and temperature of 60 °C. The adsorption kinetics data followed the pseudo-second-order kinetic model, and the isotherm data fit the Langmuir isotherm model well. The maximum monolayer adsorption capacity was 178.57-185.19 mg g-1, which was comparable to that of other agricultural waste adsorbents used to remove RB4 from aqueous solutions in the literature. The thermodynamics analysis results indicated that the adsorption of RB4 onto the modified rice bran adsorbent is an endothermic, spontaneous monolayer adsorption that occurs through a physical process.

  14. Enantioanalysis of S-deprenyl using enantioselective, potentiometric membrane electrodes based on C60 derivatives

    International Nuclear Information System (INIS)

    Stefan-van Staden, Raluca-Ioana

    2010-01-01

    Enantioselective, potentiometric membrane electrodes based on (1,2-methanofullerene C 60 )-61-carboxylic acid, diethyl (1,2-methanofullerene C 60 )-61-61-dicarboxylate and tert-butyl (1,2-methanofullerene C 60 )-61-carboxylic acid were proposed for the enantioanalysis of S-deprenyl in pharmaceutical compounds. Molecular modeling calculations were performed to prove the reliability of the proposed electrodes. The different characteristics involved in this analysis were explained, namely (i) the stability of each molecule using total energy, hardness and dipole moment, and (ii) the explanation of the mechanism of interaction using intermolecular forces (moderate hydrogen bond interactions), atomic charges and electrostatic potential. Electronic structures as well as molecular interaction have been investigated using Hartree-Fock theory, 3-21G(*) basis set. Stability and feasibility of all the generated structures were supported by their respective energy minima and fundamental frequencies.

  15. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry.

    Science.gov (United States)

    Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-30

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.

  16. Kinetics of conformational changes of fibronectin adsorbed onto model surfaces.

    Science.gov (United States)

    Baujard-Lamotte, L; Noinville, S; Goubard, F; Marque, P; Pauthe, E

    2008-05-01

    Fibronectin (FN), a large glycoprotein found in body fluids and in the extracellular matrix, plays a key role in numerous cellular behaviours. We investigate FN adsorption onto hydrophilic bare silica and hydrophobic polystyrene (PS) surfaces using Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) in aqueous medium. Adsorption kinetics using different bulk concentrations of FN were followed for 2h and the surface density of adsorbed FN and its time-dependent conformational changes were determined. When adsorption occurs onto the hydrophilic surface, FN molecules keep their native conformation independent of the adsorption conditions, but the amount of adsorbed FN increases with time and the bulk concentration. Although the protein surface density is the same on the hydrophobic PS surface, this has a strong impact on the average conformation of the adsorbed FN layer. Indeed, interfacial hydration changes induced by adsorption onto the hydrophobic surface lead to a decrease in unhydrated beta-sheet content and cause an increase in hydrated beta-strand and hydrated random domain content of adsorbed FN. This conformational change is mainly dependent on the bulk concentration. Indeed, at low bulk concentrations, the secondary structures of adsorbed FN molecules undergo strong unfolding, allowing an extended and hydrated conformation of the protein. At high bulk concentrations, the molecular packing reduces the unfolding of the stereoregular structures of the FN molecules, preventing stronger spreading of the protein.

  17. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4 He adsorbed on metallic films. In contrast to measurements of 4 He adsorbed on all other insulating substrates, we have shown that 4 He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4 He adsorbed on sapphire and on Ag films and H 2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  18. Theoretical and experimental study of the vibrational excitations in ethane monolayers adsorbed on graphite (0001) surfaces

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1987-01-01

    The collective vibrational excitations of two different crystalline monolayer phases of ethane (C2H6) adsorbed on the graphite (0001) surface have been investigated theoretically and experimentally. The monolayer phases studied are the commensurate 7/8 ×4 structure in which the ethane molecules lie...

  19. Asymmetric fission and evaporation of C60r+ (r = 2-4) fullerene ions in ion-C60 collisions: I. Proton results

    International Nuclear Information System (INIS)

    Rentenier, A; Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D

    2004-01-01

    A quantitative description of the asymmetric fission (AF) of C 60 r+ fullerene ions (r = 2-4), using a multistop coincidence technique between both fragment ions, is presented. Charged light fragment (LF) and heavy fragment (HF) size distributions are discussed together with the corresponding averaged sizes. Complete AF distributions are reported for the first time for C 60 2+ ions. Simple dependences of the more probable channels and averaged fragment sizes on the partner size are found and discussed. The LF ones are not very sensitive to the parent fullerene ion charge r and vary linearly with the HF size at least for the largest ones. On the other hand the HF ones present an oscillating dependence against the LF size, the odd-numbered LFs being correlated to a smaller HF size, and depend on r. In the comparison of branching ratios between AF and the competing pure neutral evaporation channel, some emphasis is given to the behaviour of the unimolecular processes with r which are compared with the evolution of the activation energies and fission barriers. From a close examination of the individual HF distributions the production mechanisms of odd-n fragments are discussed, and the most probable dissociation channels of even-numbered C n + excited carbon clusters identified. Finally, an analysis of the neutral channels is also presented for the first time, the total neutral mass N (in carbon units) being deduced from the mass conservation law. Surprising similarities between the charged LF- and N-distributions are found. AF processes are also identified where light neutrals and ions play a symmetrical role. These findings lead us to suggest that a concerted emission of ions and heavy neutrals is probably a fission mechanism to be considered to understand the AF process of the C 60 molecule in addition to the often assumed multistep fragmentation cascade scheme

  20. Infrared spectroscopic and voltammetric study of adsorbed CO on stepped surfaces of copper monocrystalline electrodes

    International Nuclear Information System (INIS)

    Koga, O.; Teruya, S.; Matsuda, K.; Minami, M.; Hoshi, N.; Hori, Y.

    2005-01-01

    Voltammetric and infrared (IR) spectroscopic measurements were carried out to study adsorbed CO on two series of copper single crystal electrodes n(111)-(111) and n(111)-(100) in 0.1M KH 2 PO 4 +0.1M K 2 HPO 4 at 0 o C. Reversible voltammetric waves were observed below -0.55V versus SHE for adsorption of CO which displaces preadsorbed phosphate anions. The electric charge of the redox waves is proportional to the step atom density for both single crystal series. This fact indicates that phosphate anions are specifically adsorbed on the step sites below -0.55V versus SHE. Voltammetric measurements indicated that (111) terrace of Cu is covered with adsorbed CO below -0.5V versus SHE. Nevertheless, no IR absorption band of adsorbed CO is detected from (111) terrace. Presence of adsorbed CO on (111) terrace is presumed which is not visible by the potential difference spectroscopy used in the present work. IR spectroscopic measurements showed that CO is reversibly adsorbed with an on-top manner on copper single crystal electrodes of n(111)-(111) and n(111)-(100) with approximately same wavenumber of C?O stretching vibration of 2070cm -1 . The IR band intensity is proportional to the step atom density. Thus CO is adsorbed on (111) or (100) steps on the single crystal surfaces. An analysis of the IR band intensity suggested that one CO molecule is adsorbed on every two or more Cu step atom of the monocrystalline surface. The spectroscopic data were compared with those reported for uhv system. The C-O stretching wavenumber of adsorbed CO in the electrode-electrolyte system is 30-40cm -1 lower than those in uhv system

  1. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    International Nuclear Information System (INIS)

    Pascal, Mathieu

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed azimuth. The tilt of the molecule with respect to the surface and the degree to which the surface is relaxed have also been investigated. The adsorption of methyl on Cu(111) was studied using either azomethane or methyl iodide to prepare the surface layers. At saturation coverage the preferred adsorption site is the fcc threefold hollow site, whereas at half saturation coverage ∼ 30 % of the methyl species occupy the hop threefold hollow sites. Best agreement between theory and experiment corresponded to a methyl group adsorbed with C 3v symmetry. The height of the C above the surface in a pure methyl layer was 1.66 ± 0.02 A, but was reduced to 1.62 ± 0.02 A in the presence of co-adsorbed iodine, suggesting that iodine increases the strength of adsorption. Iodine was also found to occupy the fee threefold hollow sites with a Cu-l bondlength of 2.61 ± 0.02 A. (author)

  2. Asymmetric fission and evaporation of C60r+ (r = 2-4) fullerene ions in ion-C60 collisions: II. Dependence on collisional processes?

    International Nuclear Information System (INIS)

    Rentenier, A; Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D

    2004-01-01

    In this paper, a quantitative comparison of our experimental data for the asymmetrical fission (AF) and neutral evaporation of the C 60 molecule under proton impact (part I) is made with data published by other authors and often obtained in rather different collisional systems. The comparison with multicharged ions for which more quantitative data are available is focused on. It is demonstrated that size distributions of fragments, averaged fragment sizes, branching ratios between AF and evaporation or between AF channels, are common to all the collisional systems. Differences only appear when the comparison includes the undissociated stable fullerene ion signals

  3. Assembly of individual TiO2-C60/porphyrin hybrid nanoparticles for enhancement of photoconversion efficiency

    International Nuclear Information System (INIS)

    Jang, Jae Kwon; Park, Se Ho; Song, Hyunjoon; Park, Joon T; Kim, Chulwoo; Ko, Jaejung; Seo, Won Seok

    2011-01-01

    Rational organization of porphyrin and C 60 on the electrode surface in photovoltaic structures is essential to yield high quantum efficiency. In the present work, individual TiO 2 nanoparticles were modified by introducing C 60 and porphyrin units on the surface, and then electrophoretically deposited on an ITO/SnO 2 electrode. The morphology of the photoactive layer on the electrode was significantly different from that of the layer produced as a result of separate deposition of C 60 and porphyrin. The maximum incident photon to current efficiency of the resulting electrode approached 88% at 410 nm, which is the highest value among molecule-based photovoltaic cells reported to date. This indicates that molecular assembly of the C 60 and porphyrin units on the individual nanoparticles through strong chemical attachment is a key factor in improving effective electron transfer between the photoactive units and the electrodes.

  4. Growth of α-sexithiophene nanostructures on C60 thin film layers

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Madsen, Morten; Balzer, Frank

    2014-01-01

    Organic molecular beam grown -sexithiophene (-6T) forms nanostructured thin films on buckminsterfullerene (C60) thin film layers. At substrate temperatures of 300K during growth a rough continuous film is observed, which develop to larger elongated islands and dendritic- as well as needle like ...... fluorescence polarimetry measurements the in-plane orientation of the crystalline sites within the needle like structures is determined. The polarimetry investigations strongly indicate that the needle like structures consist of lying molecules....

  5. Ultrasound aided in situ transesterification of crude palm oil adsorbed on spent bleaching clay

    International Nuclear Information System (INIS)

    Boey, Peng-Lim; Ganesan, Shangeetha; Maniam, Gaanty Pragas; Ali, Dafaalla Mohamed Hag

    2011-01-01

    Research highlights: → Crude palm oil adsorbed on spent bleaching clay converted to biodiesel. → Ultrasound dislodges adsorbed oil from spent bleaching clay into reaction mixture. → Co-solvents promotes miscibility of the reactants. -- Abstract: Adsorbed crude palm oil on spent bleaching clay (SBC) was in situ transesterified to methyl esters (biodiesel) by the aid of ultrasound and organic co-solvents (petroleum ether (PE) or ethyl methyl ketone (EMK)). The SBC under study was found to contain 24.2-27.0% of crude oil with free fatty acids (FFA) of 3.01% and moisture content of 0.29%. The optimized reaction conditions were as follows: methanol to oil molar ratio of 150:1; catalyst (KOH), 20%; reaction temperature, 60 ± 2 o C; reaction time, 2 h. Using PE as a co-solvent, highest conversion of 75.2% was achieved while 60% was recorded with EMK.

  6. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice

    International Nuclear Information System (INIS)

    Park, Eun-Jung; Kim, Hero; Kim, Younghun; Yi, Jongheop; Choi, Kyunghee; Park, Kwangsik

    2010-01-01

    Fullerenes (C60s) occur in the environment due to natural and anthropogenic sources such as volcanic eruptions, forest fires, and the combustion of carbon-based materials. Recently, production and application of engineered C60s have also rapidly increased in diverse industrial fields and biomedicine due to C60' unique physico-chemical properties, so toxicity assessment on environmental and human health is being evaluated as a valuable work. However, data related to the toxicity of C60s have not been abundant up to now. In this study, we studied the immunotoxic mechanism and change of gene expression caused by the instillation of C60s. As a result, C60s induced an increase in sub G1 and G1 arrest in BAL cells, an increase in pro-inflammatory cytokines such as IL-1, TNF-α, and IL-6, and an increase of Th1 cytokines such as IL-12 and IFN-r in BAL fluid. In addition, IgE reached the maximum at 1 day after treatment in both BAL fluid and the blood, and decreased in a time-dependent manner. Gene expression of the MHC class II (H2-Eb1) molecule was stronger than that of the MHC class I (H2-T23), and an increase in T cell distribution was also observed during the experiment period. Furthermore, cell infiltration and expression of tissue damage related genes in lung tissue were constantly observed during the experiment period. Based on this, C60s may induce inflammatory responses in the lung of mice.

  7. Crystallinity of the epitaxial heterojunction of C60 on single crystal pentacene

    Science.gov (United States)

    Tsuruta, Ryohei; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Ishii, Hisao; Nakayama, Yasuo

    2017-06-01

    The structure of pn heterojunctions is an important subject in the field of organic semiconductor devices. In this work, the crystallinity of an epitaxial pn heterojunction of C60 on single crystal pentacene is investigated by non-contact mode atomic force microscopy and high-resolution grazing incidence x-ray diffraction. Analysis shows that the C60 molecules assemble into grains consisting of single crystallites on the pentacene single crystal surface. The in-plane mean crystallite size exceeds 0.1 μm, which is at least five time larger than the size of crystallites deposited onto polycrystalline pentacene thin films grown on SiO2. The results indicate that improvement in the crystal quality of the underlying molecular substrate leads to drastic promotion of the crystallinity at the organic semiconductor heterojunction.

  8. Characterization of Adsorbents for Cytokine Removal from Blood in an In Vitro Model.

    Science.gov (United States)

    Harm, Stephan; Gabor, Franz; Hartmann, Jens

    2015-01-01

    Cytokines are basic targets that have to be removed effectively in order to improve the patient's health status in treating severe inflammation, sepsis, and septic shock. Although there are different adsorbents commercially available, the success of their clinical use is limited. Here, we tested different adsorbents for their effective removal of cytokines from plasma and the resulting effect on endothelial cell activation. The three polystyrene divinylbenzene (PS-DVB) based adsorbents Amberchrom CG161c and CG300m and a clinically approved haemoperfusion adsorbent (HAC) were studied with regard to cytokine removal in human blood. To induce cytokine release from leucocytes, human blood cells were stimulated with 1 ng/ml LPS for 4 hours. Plasma was separated and adsorption experiments in a dynamic model were performed. The effect of cytokine removal on endothelial cell activation was evaluated using a HUVEC-based cell culture model. The beneficial outcome was assessed by measuring ICAM-1, E-selectin, and secreted cytokines IL-8 and IL-6. Additionally the threshold concentration for HUVEC activation by TNF-α and IL-1β was determined using this cell culture model. CG161c showed promising results in removing the investigated cytokines. Due to its pore size the adsorbent efficiently removed the key factor TNF-α, outperforming the commercially available adsorbents. The CG161c treatment reduced cytokine secretion and expression of cell adhesion molecules by HUVEC which underlines the importance of effective removal of TNF-α in inflammatory diseases. These results confirm the hypothesis that cytokine removal from the blood should approach physiological levels in order to reduce endothelial cell activation.

  9. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  10. Synthesis of mesogenic phthalocyanine-C60 donor–acceptor dyads designed for molecular heterojunction photovoltaic devices

    Directory of Open Access Journals (Sweden)

    Yves Henri Geerts

    2009-10-01

    Full Text Available A series of phthalocyanine-C60 dyads 2a–d was synthesized. Key steps in their synthesis are preparation of the low symmetry phthalocyanine intermediate by the statistical condensation of two phthalonitriles, and the final esterification of the fullerene derivative bearing a free COOH group. Structural characterization of the molecules in solution was performed by NMR spectroscopy, UV–vis spectroscopy and cyclic voltammetry. Preliminary studies suggest formation of liquid crystalline (LC mesophases for some of the prepared dyads. To the best of our knowledge, this is the first example of LC phthalocyanine-C60 dyads.

  11. Asymmetric fission and evaporation of C{sup r+}{sub 60} (r = 2-4) fullerene ions in ion-C{sub 60} collisions: III. Universal behaviour of fission

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, D; Bordenave-Montesquieu, A; Rentenier, A; Moretto-Capelle, P [LCAR-IRSAMC, UMR 5589 Universite Paul Sabatier-CNRS, 118 rte de Narbonne, 31062 Toulouse Cedex (France)

    2005-04-14

    The behaviour of the asymmetrical fission (AF) scheme (correlated ion distributions) against the collision conditions is investigated using H{sup +}{sub x} (x = 1-3) and He{sup +} projectiles in the 1-130 keV collision energy range. The present work is an extension of our recent publications on this topic using 11 keV protons (Rentenier et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2429 and 2455). The threshold for AF is observed at 2 keV proton energy corresponding to a maximum deposited energy equal to about 41 eV. The main result concerns the fragment distributions resulting from AF of C{sup r+}{sub 60} ions, and secondary dissociation of even-n C{sup +}{sub n} fragments, which are both found to remain independent of the projectile species and collision velocity. These findings indicate that they are insensitive to the internal energy distributions of the parent ions. In addition, a contribution of binary collisions between the projectile and individual carbon atoms of the C{sub 60} molecule to AF is identified in the C{sup +}{sub 1} production at the lowest collision velocities, the so-called impulsive fragmentation.

  12. Electronic structure and static dipole polarizability of C60-C240

    International Nuclear Information System (INIS)

    Zope, Rajendra R

    2008-01-01

    The electronic structure of C 60 -C 240 and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C 240 shell almost completely shields the inner C 60 as inferred from the practically identical values of dipole polarizability of the C 60 -C 240 onion (449 A 3 ) and that of the isolated C 240 fullerene (441 A 3 ). The C 60 -C 240 is thus a near-perfect Faraday cage

  13. Carbon 1s photoemission line analysis of C-based adsorbate on (111)In{sub 2}O{sub 3} surface: The influence of reducing and oxidizing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brinzari, V., E-mail: vbrinzari@mail.ru [State University of Moldova, Chisinau, str. Mateevich 60A, MD-2009, Republic of Moldova (Moldova, Republic of); Cho, B.K. [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Korotcenkov, G., E-mail: ghkoro@yahoo.com [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2016-12-30

    Highlights: • C 1s PE line of (111)In{sub 2}O{sub 3} layer after cleaning and gas probing in HV was studied. • C 1s line fine structure is formed by various residual C-based adsorbates. • Some C 1s line features were interpreted as CO adsorption and dissociation. • Redox properties of surface determine either adsorption or dissociation of CO. • Dissociation of CO on oxidized surface is responsible for acceptor-like effect. - Abstract: Synchrotron radiation photoemission study of C 1s line of (111) In{sub 2}O{sub 3} surface was carried out under HV (high vacuum) doses of oxygen, carbon monoxide and water. Gas interaction with the surface was activated by heating of In{sub 2}O{sub 3} monocrystalline film at temperatures of 160 or 250 °C. The study of complex structure of C 1 s line and evolution of its fine components allowed to establish their nature and to propose possible surface adsorbed species and reactions, including a direct chemisorption and dissociation of CO molecules. Reduction or oxidation of the surface determines whether the first (chemisorption) or the second (dissociation) process takes place. The latter is responsible for additional formation of ionosorbed oxygen. Both processes have not been previously reported for In{sub 2}O{sub 3} and for conductive metal oxides.

  14. Detailed low-energy electron diffraction analysis of the (4×4) surface structure of C60 on Cu(111): Seven-atom-vacancy reconstruction

    Science.gov (United States)

    Xu, Geng; Shi, Xing-Qiang; Zhang, R. Q.; Pai, Woei Wu; Jeng, H. T.; Van Hove, M. A.

    2012-08-01

    A detailed and exhaustive structural analysis by low-energy electron diffraction (LEED) is reported for the C60-induced reconstruction of Cu(111), in the system Cu(111) + (4 × 4)-C60. A wide LEED energy range allows enhanced sensitivity to the crucial C60-metal interface that is buried below the 7-Å-thick molecular layer. The analysis clearly favors a seven-Cu-atom vacancy model (with Pendry R-factor Rp = 0.376) over a one-Cu-atom vacancy model (Rp = 0.608) and over nonreconstructed models (Rp = 0.671 for atop site and Rp = 0.536 for hcp site). The seven-Cu-atom vacancy forms a (4 × 4) lattice of bowl-like holes. In each hole, a C60 molecule can nestle by forming strong bonds (shorter than 2.30 Å) between 15 C atoms of the molecule and 12 Cu atoms of the outermost and second Cu layers.

  15. Insights into the stability and thermal degradation of P3HT:C60 blended films for solar cell applications

    CSIR Research Space (South Africa)

    Motaung, DE

    2011-03-01

    Full Text Available This paper demonstrates the changes in the nanoscale morphology of the blended films induced by a diffusion of C60 molecules and degradation during longer thermal treatment above the glass transition temperature (130 °C). The results showed...

  16. C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.

    Science.gov (United States)

    Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng

    2018-01-24

    Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.

  17. Irradiation Degradation of Adsorbents for Minor Actinides Recovery

    International Nuclear Information System (INIS)

    Watanabe, S.; Sano, Y.; Kofuji, H.; Takeuchi, M.; Koizumi, T.

    2015-01-01

    Extraction chromatography is one of the promising technologies for minor actinides (MA: Am and Cm) recovery from high-level liquid waste. The degradation behaviour of the organic species in the adsorbents under radiation exposure is important to discuss the safety and durability of the adsorbent in the extraction chromatography process. In this study, gamma-ray irradiation experiments on TODGA/SiO 2 -P adsorbent were carried out to investigate the degradation products from radiolysis of the adsorbent. The degraded organic species eluted from the adsorbent and those remaining inside the adsorbent were thoroughly identified by GC/MS, FT-IR and NMR analyses. The species suspected as hydrolysis products of TODGA were mainly detected from the analyses. Since some radicals such as.H or.OH are generated by the gamma-ray irradiation on water molecules, it was discussed that the radicals products from radiolysis of HNO 3 solution are related to the degradation reaction of the extractants. (authors)

  18. Physical properties of C60 intercalated graphite films

    International Nuclear Information System (INIS)

    Nakahara, T; Hosomi, N; Taniguchi, J; Suzuki, M; Sato, T; Abe, K; Kuwahara, D; Ishikawa, M; Kato, M; Miura, K

    2007-01-01

    Recently, Miura and Tsuda have synthesized C 60 intercalated graphite film (C 60 /Gr) and reported that the C 60 /Gr consists of alternating close-packed C 60 monolayers and graphite layers. They also found that its frictional force is minimal up to the loading force of 100 nN using AFM [Miura K and Tsuda D 2005 e-J. Surf. Sci. Nanotech. 3 21] Thus, we have started to study the physical properties of C 60 /Gr and carried out NMR, Raman scattering and specific heat measurements. These results suggest that C 60 in C 60 /Gr rotates at room temperature

  19. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  20. Dynamics of copper-phthalocyanine molecules on Au/Ge(001)

    NARCIS (Netherlands)

    Sotthewes, Kai; Heimbuch, Rene; Zandvliet, Henricus J.W.

    2015-01-01

    Spatially resolved current-time scanning tunneling spectroscopy combined with current-distance spectroscopy has been used to characterize the dynamic behavior of copper-phthalocyanine (CuPc) molecules adsorbed on a Au-modified Ge(001) surface. The analyzed CuPc molecules are adsorbed in a “molecular

  1. Aggregate development in C 60/N-methyl-2-pyrrolidone solution and its mixture with water as revealed by extraction and mass spectroscopy

    Science.gov (United States)

    Kyzyma, O. A.; Korobov, M. V.; Avdeev, M. V.; Garamus, V. M.; Snegir, S. V.; Petrenko, V. I.; Aksenov, V. L.; Bulavin, L. A.

    2010-06-01

    The aggregate development in C 60/N-methyl-2-pyrrolidone (C 60/NMP) solution with time is studied by the extraction (hexane) and mass spectroscopy. It is shown that only molecular C 60 in NMP is extracted in hexane, which makes it possible to follow a change in the concentration of non-aggregated fullerene in C 60/NMP during the aggregate growth. It is concluded that almost all fullerene dissolved in NMP is in the aggregates after one month. The reorganization of the aggregates is detected when water is added to the aggregated solution C 60/NMP. Both methods prove that in this case individual fullerene molecules are detached from the aggregates, which contradicts somewhat to complete insolubility of C 60 in water.

  2. C60 fullerenes from combustion of common fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Andrea J., E-mail: ajtiwari@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States); Ashraf-Khorassani, Mehdi, E-mail: mashraf@vt.edu [Department of Chemistry, Virginia Tech, 480 Davidson Hall, 900 West Campus Drive, Virginia Tech, Blacksburg, VA 24061 (United States); Marr, Linsey C., E-mail: lmarr@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States)

    2016-03-15

    Releases of C{sub 60} fullerenes to the environment will increase with the growth of nanotechnology. Assessing the potential risks of manufactured C{sub 60} requires an understanding of how its prevalence in the environment compares to that of natural and incidental C{sub 60}. This work describes the characterization of incidental C{sub 60} present in aerosols generated by combustion of five common fuels: coal, firewood, diesel, gasoline, and propane. C{sub 60} was found in exhaust generated by all five fuels; the highest concentrations in terms of mass of C{sub 60} per mass of particulate matter were associated with diesel and coal. Individual aerosols from these combustion processes were examined by transmission electron microscopy. No relationship was found between C{sub 60} content and either the separation of graphitic layers (lamellae) within the particles, nor the curvature of those lamellae. Estimated global emissions of incidental C{sub 60} to the atmosphere from coal and diesel combustion range from 1.6 to 6.3 t yr{sup −1}, depending upon combustion conditions. These emissions may be similar in magnitude to the total amount of manufactured C{sub 60} produced on an annual basis. Consequent loading of incidental C{sub 60} to the environment may be several orders of magnitude higher than has previously been modeled for manufactured C{sub 60}. - Highlights: • Exhaust of common fuels (coal, diesel, etc.) analyzed via chromatography for C{sub 60.} • All five fuels tested produced C{sub 60} in aerosols in mass fractions up to several ppm. • Emissions of incidental C{sub 60} may be comparable to the total amount manufactured.

  3. Photodetachment of negative C60- ions

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Baltenkov, A.S.; Krakov, B.G.

    1998-01-01

    A model that describes the electron structure of negative fullerene C 60 - ions is proposed. The model contains only two experimentally observed parameters, namely the fullerene radius and the affinity energy of the electron to neutral C 60 . In the frame of this model, cross sections are calculated of elastic scattering of slow electrons on neutral fullerene, of C 60 - photodetachment near the threshold of this process and of radiative recombination of slow electrons with neutral fullerenes. (orig.)

  4. Surface-Enhanced Raman Spectroscopy of Dye and Thiol Molecules Adsorbed on Triangular Silver Nanostructures: A Study of Near-Field Enhancement, Localization of Hot-Spots, and Passivation of Adsorbed Carbonaceous Species

    Directory of Open Access Journals (Sweden)

    Manuel R. Gonçalves

    2012-01-01

    Full Text Available Surface-enhanced Raman spectroscopy (SERS of thiols and dye molecules adsorbed on triangular silver nanostructures was investigated. The SERS hot-spots are localized at the edges and corners of the silver triangular particles. AFM and SEM measurements permit to observe many small clusters formed at the edges of triangular particles fabricated by nanosphere lithography. Finite-element calculations show that near-field enhancements can reach values of more than 200 at visible wavelengths, in the gaps between small spherical particles and large triangular particles, although for the later no plasmon resonance was found at the wavelengths investigated. The regions near the particles showing strong near-field enhancement are well correlated with spatial localization of SERS hot-spots done by confocal microscopy. Silver nanostructures fabricated by thermal evaporation present strong and fast fluctuating SERS activity, due to amorphous carbon contamination. Thiols and dye molecules seem to be able to passivate the undesired SERS activity on fresh evaporated silver.

  5. NMR diffusion and relaxation measurements of organic molecules adsorbed in porous media

    International Nuclear Information System (INIS)

    Gjerdaaker, Lars

    2002-01-01

    The work in this thesis can be divided into two parts. The first part is focused on dynamic investigations of plastic crystals, both in bulk phases but also confined in porous materials (paper 1-3). This part was done together with professor Liudvikas Kimtys, Vilnius, Lithuania. The second part, with emphasis on diffusion, employed PFG NMR to measure the true intra-crystalline diffusivity, including development of a new pulse sequence with shorter effective diffusion time. This work was performed in collaboration with Dr. Geir H. Soerland, Trondheim, Norway and has resulted in three papers (paper 4-6). Paper 1-3: In these papers the dynamics of three organic compounds confined within mesoporous silica have been studied, and the results are discussed with reference to the bulk material. The three investigated compounds form disordered (plastic) phases of high symmetry on solidification (solid I). Thus, bulk cyclohexane exhibits a disordered phase between the solid-solid phase transition at 186 K and the melting point at 280 K. X-ray diffraction measurements have shown that solid I is face-centred cubic (Z=4, a=0.861 nm at 195 K), while the ordered solid II is monoclinic. Tert-butyl cyanide exhibits a plastic phase between the solid-solid transition point at 233 K and the melting point at 292 K. Neutron scattering techniques have established that solid I is tetragonal (Z=2, a=b=0.683 nm, c=0.674 nm, beta=90 deg at 234 K), while solid II is monoclinic. Finally, the disordered phase of pivalic acid melts at 310 K and undergoes a solid-solid phase transition at 280 K. The disordered phase is face-centred cubic, (Z=4, a=0.887 nm), while the low temperature phase (solid II) is triclinic. Paper 4-6; If one is aiming to measure true intra-crystallite diffusivities in porous media the distance travelled by the molecules during the pulse must be shorter than the size of the crystallite. The length of the diffusion time is therefore important. Working with heterogeneous media

  6. 40 CFR 60.32c - Designated facilities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Designated facilities. 60.32c Section 60.32c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Solid Waste Landfills § 60.32c Designated facilities. (a) The designated facility to which the...

  7. Modeling adsorption of brominated, chlorinated and mixed bromo/chloro-dibenzo-p-dioxins on C60 fullerene using Nano-QSPR

    Directory of Open Access Journals (Sweden)

    Piotr Urbaszek

    2017-03-01

    Full Text Available Many technological implementations in the field of nanotechnology have involved carbon nanomaterials, including fullerenes such as the buckminsterfullerene, C60. The unprecedented properties of such organic nanomaterials (in particular their large surface area gained extensive attention for their potential use as organic pollutant sorbents. Sorption interactions can be very hazardous and useful at the same time. This work investigates the influence of halogenation by bromine and/or chlorine in dibenzo-p-dioxins on their sorption ability on the C60 fullerene surface. Halogenated dibenzo-p-dioxins (PXDDs, where X = Br or Cl are ever-present in the environment and accidently produced in many technological processes in only approximately known quantities. If all combinatorial Br and/or Cl dioxin substitution possibilities are present in the environment, the experimental characterization and investigation of sorbent effectiveness is more than difficult. In this work, we have developed a quantitative structure–property relationship (QSPR model (R2 = 0.998, predicting the adsorption energy [kcal/mol] for 1,701 PXDDs adsorbed on C60 (PXDD@C60. Based on the QSPR model reported herein, we concluded that the lowest energy PXDD@C60 complexes are those that the World Health Organization (WHO considers to be less dangerous with respect to the aryl hydrocarbon receptor (AhR toxicity mechanism. Therefore, the effectiveness of fullerenes as sorbent agents may be underestimated as sorption could be less effective for toxic congeners than previously believed.

  8. Passing Current through Touching Molecules

    DEFF Research Database (Denmark)

    Schull, G.; Frederiksen, Thomas; Brandbyge, Mads

    2009-01-01

    The charge flow from a single C-60 molecule to another one has been probed. The conformation and electronic states of both molecules on the contacting electrodes have been characterized using a cryogenic scanning tunneling microscope. While the contact conductance of a single molecule between two...

  9. Structures of adsorbed CO on atomically smooth and on stepped sngle crystal surfaces

    International Nuclear Information System (INIS)

    Madey, T.E.; Houston, J.E.

    1980-01-01

    The structures of molecular CO adsorbed on atomically smooth surfaces and on surfaces containing monatomic steps have been studied using the electron stimulated desorption ion angular distribution (ESDIAD) method. For CO adsorbed on the close packed Ru(001) and W(110) surfaces, the dominant bonding mode is via the carbon atom, with the CO molecular axis perpendicular to the plane of the surface. For CO on atomicaly rough Pd(210), and for CO adsorbed at step sites on four different surfaces vicinal to W(110), the axis of the molecule is tilted or inclined away from the normal to the surface. The ESDIAD method, in which ion desorption angles are related to surface bond angles, provides a direct determination of the structures of adsorbed molecules and molecular complexes on surfaces

  10. Electronic Correlations, Jahn-Teller Distortions and Mott Transition to Superconductivity in Alkali-C60 Compounds

    Directory of Open Access Journals (Sweden)

    Alloul H.

    2012-03-01

    Full Text Available The discovery in 1991 of high temperature superconductivity (SC in A3C60 compounds, where A is an alkali ion, has been rapidly ascribed to a BCS mechanism, in which the pairing is mediated by on ball optical phonon modes. While this has lead to consider that electronic correlations were not important in these compounds, further studies of various AnC60 with n=1, 2, 4 allowed to evidence that their electronic properties cannot be explained by a simple progressive band filling of the C60 six-fold degenerate t1u molecular level. This could only be ascribed to the simultaneous influence of electron correlations and Jahn-Teller Distortions (JTD of the C60 ball, which energetically favour evenly charged C60 molecules. This is underlined by the recent discovery of two expanded fulleride Cs3C60 isomeric phases which are Mott insulators at ambient pressure. Both phases undergo a pressure induced first order Mott transition to SC with a (p, T phase diagram displaying a dome shaped SC, a common situation encountered nowadays in correlated electron systems. NMR experiments allowed us to study the magnetic properties of the Mott phases and to evidence clear deviations from BCS expectations near the Mott transition. So, although SC involves an electron-phonon mechanism, the incidence of electron correlations has an importance on the electronic properties, as had been anticipated from DMFT calculations.

  11. Topological edge properties of C60+12n fullerenes

    Directory of Open Access Journals (Sweden)

    A. Mottaghi

    2013-06-01

    Full Text Available A molecular graph M is a simple graph in which atoms and chemical bonds are the vertices and edges of M, respectively. The molecular graph M is called a fullerene graph, if M is the molecular graph of a fullerene molecule. It is well-known that such molecules exist for even integers n ≥ 24 or n = 20. The aim of this paper is to investigate the topological properties of a class of fullerene molecules containing 60 + 12n carbon atoms.

  12. Excess electron is trapped in a large single molecular cage C60F60.

    Science.gov (United States)

    Wang, Yin-Feng; Li, Zhi-Ru; Wu, Di; Sun, Chia-Chung; Gu, Feng-Long

    2010-01-15

    A new kind of solvated electron systems, sphere-shaped e(-)@C60F60 (I(h)) and capsule-shaped e(-)@C60F60 (D6h), in contrast to the endohedral complex M@C60, is represented at the B3LYP/6-31G(d) + dBF (diffusive basis functions) density functional theory. It is proven, by examining the singly occupied molecular orbital (SOMO) and the spin density map of e(-)@C60F60, that the excess electron is indeed encapsulated inside the C60F60 cage. The shape of the electron cloud in SOMO matches with the shape of C60F60 cage. These cage-like single molecular solvated electrons have considerably large vertical electron detachment energies VDE of 4.95 (I(h)) and 4.67 eV (D6h) at B3LYP/6-31+G(3df) + dBF level compared to the VDE of 3.2 eV for an electron in bulk water (Coe et al., Int Rev Phys Chem 2001, 20, 33) and that of 3.66 eV for e(-)@C20F20 (Irikura, J Phys Chem A 2008, 112, 983), which shows their higher stability. The VDE of the sphere-shaped e(-)@C60F60 (I(h)) is greater than that of the capsule-shaped e(-)@C60F60 (D6h), indicating that the excess electron prefers to reside in the cage with the higher symmetry to form the more stable solvated electron. It is also noticed that the cage size [7.994 (I(h)), 5.714 and 9.978 A (D6h) in diameter] is much larger than that (2.826 A) of (H2O)20- dodecahedral cluster (Khan, Chem Phys Lett 2005, 401, 85). Copyright 2009 Wiley Periodicals, Inc.

  13. Antimicrobial activity of nisin adsorbed to surfaces commonly used in the food industry.

    Science.gov (United States)

    Guerra, Nelson P; Araujo, Ana Belén; Barrera, Ana M; Agrasar, Ana Torrado; Macías, Cristina López; Carballo, Julia; Pastrana, Lorenzo

    2005-05-01

    The adsorption isotherms of nisin to three food contact surfaces, stainless steel, polyethyleneterephthalate (PET), and rubber at 8, 25, 40, and 60 degrees C, were calculated. For all surfaces, the increase in temperature led to a decrease in the affinity between nisin and the surface. The rubber adsorbed a higher amount of nisin (0.697 microg/cm2) in comparison with PET (0.665 microg/cm2) and stainless steel (0.396 microg/cm2). Adsorption of nisin to the stainless steel surface described L-2 type curves for all temperatures assayed. However, for PET and rubber surfaces, the isotherms were L-2 type (at 40 and 60 degrees C) and L-4 type curves (at 8 and 25 degrees C). Nisin retained its antibacterial activity once adsorbed to the food contact surfaces and was able to inhibit the growth of Enterococcus hirae CECT 279 on Rothe agar medium. The attachment of three Listeria monocytogenes strains to the three surfaces was found to be dependent on the surface, the strain, and the initial bacterial suspension in contact with the surface. The adsorption of Nisaplin on surfaces reduced the attachment of all L. monocytogenes strains tested. The effect of PET-based bioactive packaging in food was very encouraging. When applied to a food system, nisin-adsorbed PET bottles reduced significantly (P < 0.05) the levels of the total aerobic plate counts in skim milk by approximately 1.4 log units after 24 days of refrigerated storage (4 degrees C), thus extending its shelf life.

  14. Theory and simulation of epitaxial rotation. Light particles adsorbed on graphite

    DEFF Research Database (Denmark)

    Vives, E.; Lindgård, P.-A.

    1993-01-01

    We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise to frustra...... found a modulated 4 x 4 structure. Energy, structure-factor intensities, peak positions, and epitaxial rotation angles as a function of temperature and coverage have been determined from the simulations. Good agreement with theory and experimental data is found.......We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise...... between the commensurate and incommensurate phase for the adsorbed systems. From our simulations and our theory, we are, able to understand the gamma phase of D2 as an ordered phase stabilized by disorder. It can be described as a 2q-modulated structure. In agreement with the experiments, we have also...

  15. On the possibility of considering the fullerene shell C{sub 60} as a conducting sphere

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Baltenkov, A.S. [Arifov Institute of Electronics, Tashkent 700125 (Uzbekistan)]. E-mail: arkbalt@mail.ru

    2006-12-25

    The dynamical and static dipole polarizabilities of the C{sub 60} molecule have been calculated on the basis of the experimental data on the cross section of the fullerene photoabsorption. It has been shown that the fullerene shell in the static electric field behaves most likely as a set of separate carbon atoms rather than as a conducting sphere.

  16. Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals

    International Nuclear Information System (INIS)

    Nikolic, Nadezda; Vranjes-Duric, Sanja; Jankovic, Drina; Dokic, Divna; Mirkovic, Marija; Bibic, Natasa; Trajkovic, Vladimir

    2009-01-01

    The present study describes for the first time a procedure for the radiolabeling of fullerene (C 60 ) nanocrystals (nanoC 60 ) with Na 125 I, as well as the biodistribution of radiolabeled nanoC 60 ( 125 I-nanoC 60 ). The solvent exchange method with tetrahydrofuran was used to make colloidal water suspensions of radiolabeled nanoC 60 particles. The radiolabeling procedure with the addition of Na 125 I to tetrahydrofuran during dissolution of C 60 gave a higher radiochemical yield of radiolabeled nanoC 60 particles in comparison to the second option, in which Na 125 I was added after C 60 was dissolved. Using photon correlation spectroscopy and transmission electron microscopy, 125 I-nanoC 60 particles were found to have a crystalline structure and a mean diameter of 200-250 nm. The 125 I-nanoC 60 had a particularly high affinity for human serum albumin, displaying 95% binding efficiency after 1 h. Biodistribution studies of 125 I-nanoC 60 in rats indicated significant differences in tissue accumulation of 125 I-nanoC 60 and the radioactive tracer Na 125 I. The higher accumulation of radiolabeled nanoC 60 was observed in liver and spleen, while accumulation in thyroid, stomach, lungs and intestines was significantly lower in comparison to Na 125 I. In addition to being useful for testing the biological distribution of nanoC 60 , the described radiolabeling procedure might have possible applications in cancer radiotherapy.

  17. Asymmetric fission and evaporation of C{sub 60}{sup r+} (r = 2-4) fullerene ions in ion-C{sub 60} collisions: II. Dependence on collisional processes?

    Energy Technology Data Exchange (ETDEWEB)

    Rentenier, A; Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D [LCAR-IRSAMC, UMR 5589 Universite Paul Sabatier-CNRS, 118 rte de Narbonne, 31062 Toulouse Cedex (France)

    2004-06-28

    In this paper, a quantitative comparison of our experimental data for the asymmetrical fission (AF) and neutral evaporation of the C{sub 60} molecule under proton impact (part I) is made with data published by other authors and often obtained in rather different collisional systems. The comparison with multicharged ions for which more quantitative data are available is focused on. It is demonstrated that size distributions of fragments, averaged fragment sizes, branching ratios between AF and evaporation or between AF channels, are common to all the collisional systems. Differences only appear when the comparison includes the undissociated stable fullerene ion signals.

  18. Disintegration of C60 by Xe ion irradiation

    International Nuclear Information System (INIS)

    Kalish, R.; Samoiloff, A.; Hoffman, A.; Uzan-Saguy, C.

    1993-01-01

    The Changes in resistivity of fullerene (C 60 ) films subject to 320 keV Xe ion irradiation are investigated as a function of ion dose. From a comparison of this dependence with similar data on other Xe irradiated C containing insulating materials and with data on C implanted fused quartz, it is concluded that upon ion impact C 60 clusters completely disintegrate. This disintegration releases about 60 C atoms which disperse amongst the remaining intact C 60 spheres giving rise to hopping conductivity between isolated C atoms. 16 refs., 3 figs

  19. Electronic Structure of Eu6C60

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Xiong; LI Hong-Nian; XU Ya-Bo; WANG Peng; ZHANG Wen-Hua; XU Fa-Qiang

    2009-01-01

    We study the valence band of Eu-intercalated C60 by synchrotron radiation photoelectron spectroscopy to un-derstand the ferromagnetism (FM) and the giant magnetoresistance (GMR) of Eu6C60. The results reveal the semiconducting property and the remarkable 5d6s-π hybridization. Eu-C60 bonding has both ionic and covalent contributions. No more than half the 5d6s electrons transfer from Eu to the LUMO derived band of C60, and the LUMO+1 derived band is not filled. The remaining valence electrons of Eu, together with some π (LUMO, HOMO and HOMO-1) electrons, constitute the covalent bond. The electronic structure implies that the magnetic coupling in Eu6C60 should be through the intra-atomic f-sd exchange and the medium of the π electrons. The possibility of the GMR being tunnelling magnetoresistance is ruled out.

  20. Water Assisted Growth of C60 Rods and Tubes by Liquid–Liquid Interfacial Precipitation Method

    Directory of Open Access Journals (Sweden)

    Cheuk-Wai Tai

    2012-06-01

    Full Text Available C60 nanorods with hexagonal cross sections are grown using a static liquid–liquid interfacial precipitation method in a system of C60/m-dichlorobenzene solution and ethanol. Adding water to the ethanol phase leads instead to C60 tubes where both length and diameter of the C60 tubes can be controlled by the water content in the ethanol. Based on our observations we find that the diameter of the rods/tubes strongly depends on the nucleation step. We propose a liquid-liquid interface growth model of C60 rods and tubes based on the diffusion rate of the good C60 containing solvent into the poor solvent as well as on the size of the crystal seeds formed at the interface between the two solvents. The grown rods and tubes exhibit a hexagonal solvate crystal structure with m-dichlorobenzene solvent molecules incorporated into the crystal structure, independent of the water content. An annealing step at 200 °C at a pressure < 1 kPa transforms the grown structures into a solvent-free face centered cubic structure. Both the hexagonal and the face centered cubic structures are very stable and neither morphology nor structure shows any signs of degradation after three months of storage.

  1. Investigations on the uptake of 14C-labelled chlorhexidine diglutonate through dental enamel

    International Nuclear Information System (INIS)

    Stary, W.

    1981-01-01

    In this dissertation it was shown using radioactively labelled 14 C tracer molecules that chlorhexidine is adsorbed on the dental surface of extracted teeth. Evidence for this was provided by the three following methods: a) back diffusion and release in rinses; b) thin layer chromatography of the adsorbed substance, and c) autoradiography. (orig./MG) [de

  2. Structural, electronic, and magnetic properties of pristine and oxygen-adsorbed graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, R.H.; Veiga, R.G.A. [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, CEP 38400-902, Uberlandia, MG (Brazil); Srivastava, G.P., E-mail: gps@excc.ex.ac.uk [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2010-07-15

    The structural, electronic and magnetic properties of pristine and oxygen-adsorbed (3,0) zigzag and (6,1) armchair graphene nanoribbons have been investigated theoretically, by employing the ab initio pseudopotential method within the density functional scheme. The zigzag nanoribbon is more stable with antiferromagnetically coupled edges, and is semiconducting. The armchair nanoribbon does not show any preference for magnetic ordering and is semiconducting. The oxygen molecule in its triplet state is adsorbed most stably at the edge of the zigzag nanoribbon. The Stoner metallic behaviour of the ferromagnetic nanoribbons and the Slater insulating (ground state) behaviour of the antiferromagnetic nanoribbons remain intact upon oxygen adsorption. However, the local magnetic moment of the edge carbon atom of the ferromagnetic zigzag ribbon is drastically reduced, due to the formation of a spin-paired C-O bond.

  3. Relativistic electronic structure calculations on endohedral Gd rate at C60, La rate at C60, Gd rate at C74, and La rate at C74

    International Nuclear Information System (INIS)

    Lu, J.; Zhang, X.; Zhao, X.

    2000-01-01

    Relativistic discrete-variational local density functional calculations on endohedral Gd rate at C 60 , La rate at C 60 ,Gd rate at C 74 , and La rate at C 74 are performed. All the C 60 - and C 74 -derived levels are lowered upon endohedral Gd and La doping. Both the Gd (4f 7 5d 1 6s 2 ) and La (5d 1 6s 2 ) atoms only donate their two 6s valence electrons to the cages, leaving behind their 5d electrons when they are placed at the cage centers. Compared with large-band-gap C 60 , small-band-gap C 74 and Gd (La)-metallofullerenes have strong both electron-donating and electron-accepting characters, and the calculated ionization potentials and electron affinities for them agree well with the available experimental data. (orig.)

  4. Electrodynamical forbiddance of a strong quadrupole interaction in surface enhanced optical processes. Experimental confirmation of the existence in fullerene C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Polubotko, A. M., E-mail: alex.marina@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Chelibanov, V. P., E-mail: Chelibanov@gmail.com [State University of Information Technologies, Mechanics and Optics (Russian Federation)

    2017-02-15

    It is demonstrated that in the SERS and SEIRA spectra of the fullerene C{sub 60}, the lines, which are forbidden in usual Raman and IR spectra and allowed in SERS and SEIRA, are absent. In addition the enhancement SERS coefficient in a single molecule detection regime is ~10{sup 8} instead of the value 10{sup 14}–10{sup 15}, characteristic for this phenomenon. These results are explained by the existence of so-called electrodynamical forbiddance of a strong quadrupole light-molecule interaction, which arises because of belonging of C{sup 60} to the icosahedral symmetry group and due to the electrodynamical law divE = 0.

  5. Design, construction and test run of a solid adsorption solar refrigerator using activated carbon/methanol, as adsorbent/adsorbate pair

    International Nuclear Information System (INIS)

    Anyanwu, E.E.; Ezekwe, C.I.

    2003-01-01

    The design, construction and test run of a solid adsorption solar refrigerator are presented. It used activated carbon/methanol as the adsorbent/adsorbate pair. The refrigerator has three major components: collector/generator/adsorber, condenser and evaporator. Its flat plate type collector/generator/adsorber used clear plane glass sheet of effective exposed area of 1.2 m 2 . The steel condenser tube with a square plan view was immersed in pool of stagnant water contained in a reinforced sandcrete tank. The evaporator is a spirally coiled copper tube immersed in stagnant water. Adsorbent cooling during the adsorption process is both by natural convection of air over the collector plate and tubes and night sky radiation facilitated by removing the collector box end cover plates. Ambient temperatures during the adsorbate generation and adsorption process varied over 18.5-34 deg. C. The refrigerator yielded evaporator temperatures ranging over 1.0-8.5 deg. C from water initially in the temperature range 24-28 deg. C. Accordingly, the maximum daily useful cooling produced was 266.8 kJ/m 2 of collector area

  6. 13C NMR and XPS characterization of anion adsorbent with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse

    Science.gov (United States)

    Cao, Wei; Wang, Zhenqian; Zeng, Qingling; Shen, Chunhua

    2016-12-01

    Despite amino groups modified crop straw has been intensively studied as new and low-cost adsorbent for removal of anionic species from water, there is still a lack of clear characterization for amino groups, especially quaternary ammonium groups in the surface of crop straw. In this study, we used 13C NMR and XPS technologies to characterize adsorbents with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. 13C NMR spectra clearly showed the presence of quaternary ammonium groups in lignocelluloses structure of modified crop straw. The increase of nitrogen observed in XPS survey spectra also indicated the existence of quaternary ammonium group in the surface of the adsorbents. The curve fitting of high-resolution XPS N1s and C1s spectra were conducted to probe the composition of nitrogen and carbon contained groups, respectively. The results showed the proportion of quaternary ammonium group significantly increased in the prepared adsorbent's surface that was dominated by methyl/methylene, hydroxyl, quaternary ammonium, ether and carbonyl groups. This study proved that 13C NMR and XPS could be successfully utilized for characterization of quaternary ammonium modified crop straw adsorbents.

  7. Femtosecond Dynamics of Photoexcited C60 Films.

    Science.gov (United States)

    Causa', Martina; Ramirez, Ivan; Martinez Hardigree, Josue F; Riede, Moritz; Banerji, Natalie

    2018-04-19

    The well known organic semiconductor C 60 is attracting renewed attention due to its centimeter-long electron diffusion length and high performance of solar cells containing 95% fullerene, yet its photophysical properties remain poorly understood. We elucidate the dynamics of Frenkel and intermolecular (inter-C 60 ) charge-transfer (CT) excitons in neat and diluted C 60 films from high-quality femtosecond transient absorption (TA) measurements performed at low fluences and free from oxygen or pump-induced photodimerization. We find from preferential excitation of either species that the CT excitons give rise to a strong electro-absorption (EA) signal but are extremely short-lived. The Frenkel exciton relaxation and triplet yield strongly depend on the C 60 aggregation. Finally, TA measurements on full devices with applied electric field allow us to optically monitor the dissociation of CT excitons into free charges for the first time and to demonstrate the influence of cluster size on the spectral signature of the C 60 anion.

  8. Photochemical reactivity of aqueous fullerene clusters: C{sub 60} versus C{sub 70}

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wen-Che, E-mail: whou@mail.ncku.edu.tw; Huang, Shih-Hong

    2017-01-15

    Highlights: • Aqueous C{sub 60} and C{sub 70} clusters (nC{sub 60} and nC{sub 70}) formed through direct mixing with water adopted a face-centered cubic crystal structure. • The AQYs of nC{sub 60} were greater than those of nC{sub 70}. • Both nC{sub 60} and nC{sub 70} lost considerable organic carbon contents (>80%) after ∼8 months of outdoor sunlight irradiation. • The intermediate photoproducts of nC{sub 60} and nC{sub 70} exhibited an increased content of oxygen-containing functionalities. - Abstract: Over the past few years, there has been a strong interest in exploring the potential impact of fullerenes in the environment. Despite that both C{sub 60} and C{sub 70} have been detected in environmental matrices, the research on the impact of higher fullerenes, such as C{sub 70,} has been largely missing. This study evaluated and compared the phototransformation of aqueous C{sub 60} and C{sub 70} clusters (nC{sub 60} and nC{sub 70}) and their {sup 1}O{sub 2} production under sunlight and lamp light irradiation (315 nm, 360 nm and 420 nm). The nC{sub 60} and nC{sub 70} samples formed by direct mixing with water adopted a face-centered cubic (FCC) crystal structure. The apparent quantum yields (AQYs) of fullerene phototransformed were relatively constant over the examined wavelengths, while {sup 1}O{sub 2} production AQYs decreased with increased wavelengths. The long-term fate studies with outdoor sunlight indicated that both nC{sub 60} and nC{sub 70} lost considerable organic carbon contents (>80%) in water after ∼8 months of irradiation and that the intermediate photoproducts of nC{sub 60} and nC{sub 70} exhibited a progressively increased level of oxygen-containing functionalities. Overall, the study indicates that nC{sub 70} can be photochemically removed under sunlight conditions and that the photoreactivity of nC{sub 60} based on AQYs is greater than that of nC{sub 70}.

  9. Yeast cytochrome c integrated with electronic elements: a nanoscopic and spectroscopic study down to single-molecule level

    International Nuclear Information System (INIS)

    Delfino, I; Bonanni, B; Andolfi, L; Baldacchini, C; Bizzarri, A R; Cannistraro, S

    2007-01-01

    Various aspects of redox protein integration with nano-electronic elements are addressed by a multi-technique investigation of different yeast cytochrome c (YCC)-based hybrid systems. Three different immobilization strategies on gold via organic linkers are explored, involving either covalent bonding or electrostatic interaction. Specifically, Au surfaces are chemically modified by self-assembled monolayers (SAMs) exposing thiol-reactive groups, or by acid-oxidized single-wall carbon nanotubes (SWNTs). Atomic force microscopy and scanning tunnelling microscopy are employed to characterize the morphology and the electronic properties of single YCC molecules adsorbed on the modified gold surfaces. In each hybrid system, the protein molecules are stably assembled, in a native configuration. A standing-up arrangement of YCC on SAMs is suggested, together with an enhancement of the molecular conduction, as compared to YCC directly assembled on gold. The electrostatic interaction with functionalized SWNTs allows several YCC adsorption geometries, with a preferential high-spin haem configuration, as outlined by Raman spectroscopy. Moreover, the conduction properties of YCC, explored in different YCC nanojunctions by conductive atomic force microscopy, indicate the effectiveness of electrical conduction through the molecule and its dependence on the electrode material. The joint employment of several techniques confirms the key role of a well-designed immobilization strategy, for optimizing biorecognition capabilities and electrical coupling with conductive substrates at the single-molecule level, as a starting point for advanced applications in nano-biotechnology

  10. Chemically modified Moringa oleifera seed husks as low cost adsorbent for removal of copper from aqueous solution

    Science.gov (United States)

    Ghafar, Faridah; Mohtar, Aminullah; Sapawe, Norzahir; Hadi, Norulakmal Nor; Salleh, Marmy Roshaidah Mohd

    2017-12-01

    Moringa oleifera husks (MOH) are an agricultural byproduct that may have potential as adsorbent for removal of heavy metal ions in wastewater such as copper (Cu2+). The release of Cu2+ to the environment by the mining and electroplating industries cause a major problem because it is toxic and can cause liver and kidney problems. Hence, it is important to remove copper before the wastewater can be discharged to the environment. In order to increase the adsorption capacity, the MOH was chemically modified using citric acid. The raw and modified MOH were analyzed using Fourier Transform Infra-Red (FTIR) for identification of functional groups present at the adsorbent surface. The adsorption study was carried out using the batch technique in water bath shaker investigating different parameters; adsorbent dosage (30 - 70 g/L), initial concentration of copper (30 - 150 mg/L), contact time (2 - 90 min), temperature (27 - 60 °C) at constant agitation of 100 rpm. The concentrations of copper in aqueous solution before and after the adsorption process was analyzed using Atomic Absorption Spectrum (AAS). The highest percentage removal of copper was found at 10g/L of adsorbent dosage with 30 mg/L of initial concentration and temperature 30 °C. It was also observed that the adsorption of copper by MOH was approaching to equilibrium at 60 min of reaction time. From the FTIR analysis, it was found that the MOH contains hydroxyl, carboxyl and amine groups. The high adsorption capacity of modified MOH to remove copper from aqueous solution makes it preferable and attractive alternative to commercial adsorbent.

  11. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    . Elastic neutron diffraction measurements, determining the two-dimensional structural ordering of the adsorbed films, have been performed on layers of N2, Ar, H2, D2, O2, Kr, and He. Measurements on layers of larger molecules such as CD4 and ND3 have also been reported. Inelastic neutron scattering...... measurements, studying the dynamics of the adsorbed films are only possible in a few especially favourable cases such as 36Ar and D2 films, where the coherent phonon scattering cross-sections are very large. In other cases incoherent scattering from hydrogen can give information about e.g. the mobility...

  12. Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules

    KAUST Repository

    Chambers, Stuart D.

    2011-12-15

    Monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) and poly(butyl methacrylate-co-ethylene dimethacrylate) capillary columns, which incorporate the new monomer [6,6]-phenyl-C 61-butyric acid 2-hydroxyethyl methacrylate ester, have been prepared and their chromatographic performance have been tested for the separation of small molecules in the reversed phase. While addition of the C60-fullerene monomer to the glycidyl methacrylate-based monolith enhanced column efficiency 18-fold, to 85 000 plates/m at a linear velocity of 0.46 mm/s and a retention factor of 2.6, when compared to the parent monolith, the use of butyl methacrylate together with the carbon nanostructured monomer afforded monolithic columns with an efficiency for benzene exceeding 110 000 plates/m at a linear velocity of 0.32 mm/s and a retention factor of 4.2. This high efficiency is unprecedented for separations using porous polymer monoliths operating in an isocratic mode. Optimization of the chromatographic parameters affords near baseline separation of 6 alkylbenzenes in 3 min with an efficiency of 64 000 plates/m. The presence of 1 wt % or more of water in the polymerization mixture has a large effect on both the formation and reproducibility of the monoliths. Other factors such as nitrogen exposure, polymerization conditions, capillary filling method, and sonication parameters were all found to be important in producing highly efficient and reproducible monoliths. © 2011 American Chemical Society.

  13. Vibrational properties of water molecules adsorbed in different zeolitic frameworks

    International Nuclear Information System (INIS)

    Crupi, V; Longo, F; Majolino, D; Venuti, V

    2006-01-01

    The perturbation of water 'sorbed' in samples of zeolites of different structural type, genesis, and cation composition (K-, Na-, Mg- and Ca-rich zeolites), namely the CHA framework of a synthetic K-chabazite, the LTA framework of synthetic Na-A and Mg50-A zeolites, and the NAT framework of a natural scolecite, has been studied by FTIR-ATR spectroscopy, in the -10 to +80 o C temperature range. The aim was to show how differences in the chemical composition and/or in the topology of the zeolite framework and, in particular, the possibility for the guest water molecules to develop guest-guest and/or host-guest interactions, lead to substantial differences in their vibrational dynamical properties. The spectra, collected in the O-H stretching and H 2 O bending mode regions, are complex, with multiple bands being observed. As far as water in the CHA and LTA frameworks is concerned, whose behaviour is governed by the balance of water-water, water-framework and water-extra-framework cations interactions, the assignment of the resolved components of the O-H stretching band has been discussed by fitting the band shapes into individual components attributed to H 2 O molecules engaged in different degrees of hydrogen bonding. A detailed quantitative picture of the connectivity pattern of water, as a function of temperature and according to the chemical and topological properties of the environment, is furnished. The H 2 O bending vibrational bands give additional information that perfectly agrees with the results obtained from the analysis of the O-H stretching spectral region. In the case of scolecite, a small-pored zeolite where water-water interactions are eliminated, the increased complexity observed in the infrared spectra in the O-H stretching and H 2 O bending regions was explained as due to the hydrogen bonding between the water molecules and the network, and also with the extra-framework cation. Furthermore, these observations have been correlated with the different

  14. Degradability of aged aquatic suspensions of C60 nanoparticles

    DEFF Research Database (Denmark)

    Hartmann, B.; Buendia, Inmaculada M.; Baun, Anders

    2011-01-01

    While studies of the potential human and environmental effects of C60 and its derivatives are emerging in the scientific literature, the environmental fate of C60 is still largely unknown. In this study, aged aqueous suspensions of C60 (nC60) were investigated in the respirometric OECD test...... for ready biodegradability. Two suspensions of nC60 were prepared by stirring and aged under indirect exposure to sunlight for 36 months, which resulted in relatively stable suspensions with a dark-brown colour. The suspended nC60 could not be extracted into toluene and indicating that the particles were...... no longer present as underivatised nC60 but had undergone a transformation. TEM images and particle tracking analysis showed that the suspension consisted of particle aggregates with a size of 156 nm (SD=54nm) and 139nm (Sd=49), respectively, but also contained smaller aggregates. Samples of the nC60...

  15. Effect of cuprous halide interlayers on the device performance of ZnPc/C60 organic solar cells

    International Nuclear Information System (INIS)

    Lee, Jinho; Park, Dasom; Heo, Ilsu; Yim, Sanggyu

    2014-01-01

    Highlights: • Effect of CuX interlayers on subsequently deposited films and devices was studied. • CuI is the most effective for the performance of ZnPc/C 60 -based solar cells. • Results were related to the molecular geometry of ZnPc and HOMO level of interlayers. - Abstract: The effect of various cuprous halide (CuX) interlayers introduced between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer and zinc phthalocyanine (ZnPc) layer on the physical properties of the ZnPc thin films and device performances of ZnPc/C 60 -based small-molecule organic solar cells was studied. Strong substrate–molecule interaction between the CuX and ZnPc partly converted surface-perpendicular stacking geometry of ZnPc molecules into surface-parallel one. This flat-lying geometry led to an enhancement in electronic absorption and charge transport within the ZnPc films. As a result, the overall power conversion efficiency of the cell with CuI interlayer increased by ∼37%. In the case of the cells with CuBr and CuCl interlayer, however, the enhancement in device performances was limited because of the reduced conversion of the molecular geometry and increased energy barrier for hole extraction due to the low highest occupied molecular orbital level of the interlayer

  16. 13C NMR and XPS characterization of anion adsorbent with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse

    International Nuclear Information System (INIS)

    Cao, Wei; Wang, Zhenqian; Zeng, Qingling; Shen, Chunhua

    2016-01-01

    Highlights: • 13 C NMR and XPS were successfully used to characterize quaternary ammonium groups in the surface of crop straw based anion adsorbents. • The results obtained from different kinds of crop straw material clearly confirmed the presence of quaternary ammonium groups. • The composition of C-groups and N-groups also were determined by curving fitting of high-resolution XPS C1 and N1 spectra. - Abstract: Despite amino groups modified crop straw has been intensively studied as new and low-cost adsorbent for removal of anionic species from water, there is still a lack of clear characterization for amino groups, especially quaternary ammonium groups in the surface of crop straw. In this study, we used 13 C NMR and XPS technologies to characterize adsorbents with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. 13 C NMR spectra clearly showed the presence of quaternary ammonium groups in lignocelluloses structure of modified crop straw. The increase of nitrogen observed in XPS survey spectra also indicated the existence of quaternary ammonium group in the surface of the adsorbents. The curve fitting of high-resolution XPS N1s and C1s spectra were conducted to probe the composition of nitrogen and carbon contained groups, respectively. The results showed the proportion of quaternary ammonium group significantly increased in the prepared adsorbent’s surface that was dominated by methyl/methylene, hydroxyl, quaternary ammonium, ether and carbonyl groups. This study proved that 13 C NMR and XPS could be successfully utilized for characterization of quaternary ammonium modified crop straw adsorbents.

  17. Surface-Enhanced Raman Spectroscopy of Dye and Thiol Molecules Adsorbed on Triangular Silver Nano structures: A Study of Near-Field Enhancement, Localization of Hot-Spots, and Passivation of Adsorbed Carbonaceous Species

    International Nuclear Information System (INIS)

    Goncalves, M.R.; Marti, O.; Fabian Enderle, F.

    2012-01-01

    Surface-enhanced Raman spectroscopy (SERS) of thiols and dye molecules adsorbed on triangular silver nanostructures was investigated. The SERS hot-spots are localized at the edges and corners of the silver triangular particles. AFM and SEM measurements permit to observe many small clusters formed at the edges of triangular particles fabricated by nanosphere lithography. Finite-element calculations show that near-field enhancements can reach values of more than 200 at visible wavelengths, in the gaps between small spherical particles and large triangular particles, although for the later no plasmon resonance was found at the wavelengths investigated. The regions near the particles showing strong near-field enhancement are well correlated with spatial localization of SERS hot-spots done by confocal microscopy. Silver nanostructures fabricated by thermal evaporation present strong and fast fluctuating SERS activity, due to amorphous carbon contamination. Thiols and dye molecules seem to be able to passivate the undesired SERS activity on fresh evaporated silver. excitation: by far-field illumination of metal nanostructures or rough metal Raman scattering cross-section of gold-palladium target Temporal Fluctuation in SERS Temporal and spectral fluctuations.

  18. Degradability of aged aquatic suspensions of C60 nanoparticles

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Buendia, Inmaculada M.; Bak, Jimmy

    2011-01-01

    In this study, aged aqueous suspensions of C(60) (nC(60)) were investigated in the respirometric OECD test for ready biodegradability. Two suspensions of nC(60) were prepared by stirring and aged under indirect exposure to sunlight for 36 months. ATR-FTIR analyses confirmed the presence of C(60)-...

  19. Electronic structure and static dipole polarizability of C{sub 60}-C{sub 240}

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R [Department of Physics, University of Texas at El Paso, El Paso, TX 79958 (United States)

    2008-04-28

    The electronic structure of C{sub 60}-C{sub 240} and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C{sub 240} shell almost completely shields the inner C{sub 60} as inferred from the practically identical values of dipole polarizability of the C{sub 60}-C{sub 240} onion (449 A{sup 3}) and that of the isolated C{sub 240} fullerene (441 A{sup 3}). The C{sub 60}-C{sub 240} is thus a near-perfect Faraday cage.

  20. Asymmetric fission and evaporation of Cr+60 (r = 2-4) fullerene ions in ion-C60 collisions: III. Universal behaviour of fission

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, D; Bordenave-Montesquieu, A; Rentenier, A; Moretto-Capelle, P

    2005-01-01

    The behaviour of the asymmetrical fission (AF) scheme (correlated ion distributions) against the collision conditions is investigated using H + x (x = 1-3) and He + projectiles in the 1-130 keV collision energy range. The present work is an extension of our recent publications on this topic using 11 keV protons (Rentenier et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2429 and 2455). The threshold for AF is observed at 2 keV proton energy corresponding to a maximum deposited energy equal to about 41 eV. The main result concerns the fragment distributions resulting from AF of C r+ 60 ions, and secondary dissociation of even-n C + n fragments, which are both found to remain independent of the projectile species and collision velocity. These findings indicate that they are insensitive to the internal energy distributions of the parent ions. In addition, a contribution of binary collisions between the projectile and individual carbon atoms of the C 60 molecule to AF is identified in the C + 1 production at the lowest collision velocities, the so-called impulsive fragmentation

  1. Electronic properties of adsorbates and clean surfaces of metals and semiconductors

    International Nuclear Information System (INIS)

    Lecante, J.

    1980-01-01

    This paper surveys recent progress in experimental studies on electronic properties of adsorbates and clean metal surfaces. Electron spectroscopy and particularly angle resolved photoelectron spectroscopy appears to be a very powerful tool to get informations on electronic levels of adsorbates or clean surfaces. Moreover this technique may also give informations about the atomic geometry of the surface. Experimental investigation about surface plasmons, surface states, core level shifts are presented for clean surfaces. As examples of adsorbate covered surfaces two typical cases are chosen: two dimensional band structure and oriented molecules. Finally the photoelectron diffraction may be used for surface structure determination either in the case of an adsorbate or a clean metal surface [fr

  2. Photoelectron Diffraction Imaging for C2H2 and C2H4 Chemisorbed on Si(100) Reveals a New Bonding Configuration

    International Nuclear Information System (INIS)

    Xu, S. H.; Keeffe, M.; Yang, Y.; Chen, C.; Yu, M.; Lapeyre, G. J.; Rotenberg, E.; Denlinger, J.; Yates, J. T. Jr.

    2000-01-01

    A new adsorption site for adsorbed acetylene on Si(100) is observed by photoelectron imaging based on the holographic principle. The diffraction effects in the carbon 1s angle-resolved photoemission are inverted (including the small-cone method) to obtain an image of the atom's neighboring carbon. The chemisorbed acetylene molecule is bonded to four silicon surface atoms. In contrast to the C 2 H 2 case, the image for adsorbed C 2 H 4 shows it bonded to two Si surface atoms. (c) 2000 The American Physical Society

  3. First-principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe

    International Nuclear Information System (INIS)

    Shi, Li Bin; Wang, Yong Ping; Dong, Hai Kuan

    2015-01-01

    Graphical abstract: - Highlights: • Cr, Mn and Fe doped graphene is more active to adsorb HCN molecule than pristine graphene. • The conductivity of Fe and Mn doped graphene hardly changes after adsorption HCN molecule. • The conductivity of Cr doped graphene can be affected significantly due to HCN adsorption. • The Cr, Mn and Fe may destroy the long range order in graphene. • Phonon density of states suggests that Cr doped graphene is stable. - Abstract: The adsorption energy, electronic structure, lattice vibration and magnetic properties of Cr, Mn and Fe doped graphene with and without HCN adsorption are investigated by the first principles based on density functional theory. The physisorption and chemisorption have been identified. In the paper, Cr-NG, Mn-NG and Fe-NG denote HCN adsorption on Cr, Mn and Fe doped graphene with N atom toward the adsorption site. It is found that the adsorption energy is −1.36 eV for Fe-NG, −0.60 eV for Mn-NG and −0.86 eV for Cr-NG. The Cr-NG will convert from half-metallic behavior to semiconductor after adsorbing HCN molecule, which indicates that the conductivity changes significantly. Phonon density of states (PDOS) shows that the long range order in graphene can be destroyed by doping Fe, Mn and Cr. The imaginary frequency mode in PDOS suggests that Fe and Mn doped graphene is unstable, while Cr doped graphene is stable. The electronic properties are sensitive toward adsorbing HCN, indicating that Cr doped graphene is a promising sensor for detecting HCN molecule. This study provides a useful basis for understanding of a wide variety of physical properties on graphene

  4. SFG investigation of adsorbed CO and NO on NiO(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, Athula; Dobashi, Shinsaku; Kubota, Jun; Onda, Ken; Wada, Akihide; Domen, Kazunari; Hirose, Chiaki [Tokyo Inst. of Tech., Yokohama (Japan). Research Lab. of Resources Utilization; Kano, S.S.

    1997-07-01

    Adsorption structures of CO and NO on the NiO(111) film grown on Ni(111) crystal have been investigated by sum frequency generation (SFG) spectroscopy and infrared reflection absorption spectroscopy (IRAS). The CO stretching band of adsorbed CO on NiO(111) was observed at 2144 cm{sup -1} on the SFG spectra for both p- and s-polarized visible light. However, adsorbed NO on NiO(111) was observed at 1805 cm{sup -1} on the SFG spectra only for the p-polarized visible light. The results suggest that the adsorbed CO molecule was tilted from the surface normal but the NO molecule was perpendicular to the surface. These orientations of CO and NO reflect the surface structure of NiO(111) which has (2 x 2)-reconstructed microfacets. Adsorption of CO on Ni(111) instead of NiO(111) was also examined by SFG and IRAS. Absorption bands due to linear and bridged CO were observed at 2076 and 1918 cm{sup -1}, respectively, by IRAS. On the other hand, the linear CO molecules on Ni(111) gave an SFG peak at 2076 cm{sup -1} only for the p-polarized visible light indicating the CO molecules are perpendicular to the surface, and bridged CO molecules did not give any SFG signal. The absence of the bridged CO signal is believed to be due to the smaller Raman tensor of bridged CO. (author)

  5. SFG investigation of adsorbed CO and NO on NiO(111) surface

    International Nuclear Information System (INIS)

    Bandara, Athula; Dobashi, Shinsaku; Kubota, Jun; Onda, Ken; Wada, Akihide; Domen, Kazunari; Hirose, Chiaki; Kano, S.S.

    1997-01-01

    Adsorption structures of CO and NO on the NiO(111) film grown on Ni(111) crystal have been investigated by sum frequency generation (SFG) spectroscopy and infrared reflection absorption spectroscopy (IRAS). The CO stretching band of adsorbed CO on NiO(111) was observed at 2144 cm -1 on the SFG spectra for both p- and s-polarized visible light. However, adsorbed NO on NiO(111) was observed at 1805 cm -1 on the SFG spectra only for the p-polarized visible light. The results suggest that the adsorbed CO molecule was tilted from the surface normal but the NO molecule was perpendicular to the surface. These orientations of CO and NO reflect the surface structure of NiO(111) which has (2 x 2)-reconstructed microfacets. Adsorption of CO on Ni(111) instead of NiO(111) was also examined by SFG and IRAS. Absorption bands due to linear and bridged CO were observed at 2076 and 1918 cm -1 , respectively, by IRAS. On the other hand, the linear CO molecules on Ni(111) gave an SFG peak at 2076 cm -1 only for the p-polarized visible light indicating the CO molecules are perpendicular to the surface, and bridged CO molecules did not give any SFG signal. The absence of the bridged CO signal is believed to be due to the smaller Raman tensor of bridged CO. (author)

  6. Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry.

    Science.gov (United States)

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C(60) heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C(60) complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C(60)-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C(60) interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C(60) bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices.

  7. Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C 60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry

    KAUST Repository

    Yi, Yuanping

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C60 heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C60 complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C60-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C60 interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C60 bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices. © 2009 American Chemical Society.

  8. Effect of Polarization on the Mobility of C60: A Kinetic Monte Carlo Study.

    Science.gov (United States)

    Volpi, Riccardo; Kottravel, Sathish; Nørby, Morten Steen; Stafström, Sven; Linares, Mathieu

    2016-02-09

    We present a study of mobility field and temperature dependence for C60 with Kinetic Monte Carlo simulations. We propose a new scheme to take into account polarization effects in organic materials through atomic induced dipoles on nearby molecules. This leads to an energy correction for the single site energies and to an external reorganization happening after each hopping. The inclusion of polarization allows us to obtain a good agreement with experiments for both mobility field and temperature dependence.

  9. Preparation of amidoxime-fiber adsorbents based on poly(methacrylonitrile) for recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Kabay, N.

    1994-01-01

    Polymerization of methacrylonitrile was performed with anionic initiators as reported in the literature. The molecular weight of the polymer produced using BuLi as initiator at 0 ± 2 degrees C was on the order of 10 5 . Maximum conversion was 97% with BuLi initiator. For comparison, methacrylonitrile was polymerized with diethylmagnesium in dioxane at 70 degrees C. High-molecular weight polymers with 50-60% conversions were produced by diethylmagnesium initiator. The polymethacrylonitrile obtained by BuLi initiator was used for the fiber production process. The conversion of nitrile was performed by treatment with 3% NH 2 OH in MeOH at 80 degrees C. The amidoxime-fiber adsorbent gave a large adsorption rate, such as 176 μg of U/g of adsorbent/day, in a batchwise seawater adsorption test. 36 refs., 1 fig., 3 tabs

  10. Structural and electronic properties of the adsorbed and defected Cu nanowires: A density-functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Ying-Ni [College of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi (China); Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Zhang, Jian-Min, E-mail: jianm_zhang@yahoo.com [College of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi (China); Fan, Xiao-Xi [Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Xu, Ke-Wei [College of Physics and Mechanical and Electronic Engineering, Xian University of Arts and Science, Xian 710065, Shaanxi (China)

    2014-12-01

    Using first-principles calculations based on density-functional theory, we systematically investigate the influence of adsorbates (CO molecule and O atom) and defects (adsorb one extra Cu atom and monovacancy) on the structural and electronic properties of Cu{sub 5-1}NW and Cu{sub 6-1}NW. For both nanowires, CO molecule prefers to adsorb on the top site, while O atom prefers to adsorb on the center site. The hybridization between the CO and Cu states is dominated by the donation–backdonation process, which leads to the formation of bonding/antibonding pairs, 5σ{sub b}/5σ{sub a} and 2π{sub b}{sup ⁎}/2π{sub a}{sup ⁎}. The larger adsorption energies, larger charge transfers to O adatom and larger decrease in quantum conductance 3G{sub 0} for an O atom adsorbed on the Cu{sub 5-1}NW and Cu{sub 6-1}NW show both Cu{sub 5-1}NW and Cu{sub 6-1}NW can be used as an O sensor. Furthermore, the decrease in quantum conductance 1G{sub 0} for a CO molecule adsorbed on the Cu{sub 6-1}NW also shows the Cu{sub 6-1}NW can be used to detect CO molecule. So we expect these results may have implications for CuNW based chemical sensing. High adsorption energy of one extra Cu atom and relatively low formation energy of a monovacancy suggest that these two types of defects are likely to occur in the fabrication of CuNWs. One extra Cu atom does not decrease the quantum conductance, while a Cu monovacancy leads to a drop of the quantum conductance.

  11. Photophysics of C60 Colloids

    Science.gov (United States)

    2012-11-28

    nonlinear-optical properties and excited-state dynamics of pristine, oxygen- doped , and photopolymerized C-60 in the solid-state," Physical Review B...C45 (2009). 139. E. A. Brujan, "Numerical investigation on the dynamics of cavitation nanobubbles," Microfluidics and Nanofluidics 11(5), 511-517

  12. Asymmetric fission and evaporation of C{sub 60}{sup r+} (r = 2-4) fullerene ions in ion-C{sub 60} collisions: I. Proton results

    Energy Technology Data Exchange (ETDEWEB)

    Rentenier, A; Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D [LCAR-IRSAMC, UMR 5589 Universite Paul Sabatier-CNRS, 118 rte de Narbonne, 31062 Toulouse Cedex (France)

    2004-06-28

    A quantitative description of the asymmetric fission (AF) of C{sub 60}{sup r+} fullerene ions (r = 2-4), using a multistop coincidence technique between both fragment ions, is presented. Charged light fragment (LF) and heavy fragment (HF) size distributions are discussed together with the corresponding averaged sizes. Complete AF distributions are reported for the first time for C{sub 60}{sup 2+} ions. Simple dependences of the more probable channels and averaged fragment sizes on the partner size are found and discussed. The LF ones are not very sensitive to the parent fullerene ion charge r and vary linearly with the HF size at least for the largest ones. On the other hand the HF ones present an oscillating dependence against the LF size, the odd-numbered LFs being correlated to a smaller HF size, and depend on r. In the comparison of branching ratios between AF and the competing pure neutral evaporation channel, some emphasis is given to the behaviour of the unimolecular processes with r which are compared with the evolution of the activation energies and fission barriers. From a close examination of the individual HF distributions the production mechanisms of odd-n fragments are discussed, and the most probable dissociation channels of even-numbered C{sub n}{sup +} excited carbon clusters identified. Finally, an analysis of the neutral channels is also presented for the first time, the total neutral mass N (in carbon units) being deduced from the mass conservation law. Surprising similarities between the charged LF- and N-distributions are found. AF processes are also identified where light neutrals and ions play a symmetrical role. These findings lead us to suggest that a concerted emission of ions and heavy neutrals is probably a fission mechanism to be considered to understand the AF process of the C{sub 60} molecule in addition to the often assumed multistep fragmentation cascade scheme.

  13. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.

    2007-01-01

    their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D......The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along...... temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When...

  14. Estimation of the parameters of cytotoxicity of fullerene C60 and C60-containing composites in vitro

    International Nuclear Information System (INIS)

    Priluts'ka, S.V.; Grinyuk, Yi.Yi.; Golub, O.A.; Matishevs'ka, O.P.

    2006-01-01

    The influence of fullerene C 60 and C 60 -containing composites (on the basis of aminopropylaerosyl (ApA)) on the stability of erythrocytes to acid haemolysis and the viability of thymocytes, ascite forms of Erlich and leucosis L1210 cells is studied. The obtained results indicate the possibility to use ApA as a matrix for conjugation with other elements and for the further biological studies of composites photosensitizing the effect

  15. Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size

    Science.gov (United States)

    Sellaoui, Lotfi; Mechi, Nesrine; Lima, Éder Cláudio; Dotto, Guilherme Luiz; Ben Lamine, Abdelmottaleb

    2017-10-01

    Based on statistical physics elements, the equilibrium adsorption of diclofenac (DFC) and nimesulide (NM) on activated carbon was analyzed by a multilayer model with saturation. The paper aimed to describe experimentally and theoretically the adsorption process and study the effect of adsorbate size using the model parameters. From numerical simulation, the number of molecules per site showed that the adsorbate molecules (DFC and NM) were mostly anchored in both sides of the pore walls. The receptor sites density increase suggested that additional sites appeared during the process, to participate in DFC and NM adsorption. The description of the adsorption energy behavior indicated that the process was physisorption. Finally, by a model parameters correlation, the size effect of the adsorbate was deduced indicating that the molecule dimension has a negligible effect on the DFC and NM adsorption.

  16. First-principles investigations of electronic and magnetic properties of SrTiO3 (001) surfaces with adsorbed ethanol and acetone molecules

    Science.gov (United States)

    Adeagbo, Waheed A.; Fischer, Guntram; Hergert, Wolfram

    2011-05-01

    First-principles methods based on density functional theory are used to investigate the electronic and magnetic properties of molecular interaction of the TiO2 terminated SrTiO3 (100) surface with ethanol or acetone. Both the perfect surface and the surface with an oxygen or a titanium vacancy in the top layer are considered. Ethanol and acetone are preferentially adsorbed molecularly via their respective oxygen atom on top of the Ti atom on the perfect surface. In case of an oxygen vacancy the adsorption of ethanol or acetone occurs directly on top of the vacancy and does not significantly affect the magnetism caused by the vacancy. In the case of a titanium vacancy both adsorbates occupy positions above Ti atoms. During this adsorption process the ethanol molecule dissociates into a CH3CO radical and three hydrogen atoms. The latter form hydroxide bonds with three of the four dangling oxygen bonds around the Ti vacancy and any magnetic moment induced by the Ti vacancy is annihilated. Thus the ethanol and acetone have a different impact on the surface magnetism of the SrTiO3 (100) surface.

  17. Effect of cuprous halide interlayers on the device performance of ZnPc/C{sub 60} organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jinho; Park, Dasom; Heo, Ilsu; Yim, Sanggyu, E-mail: sgyim@kookmin.ac.kr

    2014-10-15

    Highlights: • Effect of CuX interlayers on subsequently deposited films and devices was studied. • CuI is the most effective for the performance of ZnPc/C{sub 60}-based solar cells. • Results were related to the molecular geometry of ZnPc and HOMO level of interlayers. - Abstract: The effect of various cuprous halide (CuX) interlayers introduced between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer and zinc phthalocyanine (ZnPc) layer on the physical properties of the ZnPc thin films and device performances of ZnPc/C{sub 60}-based small-molecule organic solar cells was studied. Strong substrate–molecule interaction between the CuX and ZnPc partly converted surface-perpendicular stacking geometry of ZnPc molecules into surface-parallel one. This flat-lying geometry led to an enhancement in electronic absorption and charge transport within the ZnPc films. As a result, the overall power conversion efficiency of the cell with CuI interlayer increased by ∼37%. In the case of the cells with CuBr and CuCl interlayer, however, the enhancement in device performances was limited because of the reduced conversion of the molecular geometry and increased energy barrier for hole extraction due to the low highest occupied molecular orbital level of the interlayer.

  18. Detection of fullerenes (C60 and C70) in commercial cosmetics

    International Nuclear Information System (INIS)

    Benn, Troy M.; Westerhoff, Paul; Herckes, Pierre

    2011-01-01

    Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C 60 and C 70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C 60 . Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27-42%. C 60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C 70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C 60 , demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. - Highlights: → Fullerenes were detected in cosmetics up to 1.1 μg/g. → Liquid-liquid extraction efficiently recovers fullerenes in cosmetic matrices. → Solid-phase extraction reduces LC-MS detection interferences for C60. → Cosmetics can increase human and environmental fullerene exposures. - Fullerenes were detected in cosmetics with liquid chromatography-mass spectrometry up to 1.1 μg/g, demonstrating a source for human/environmental exposure.

  19. 40 CFR 60.57c - Monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... 60.57c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... defined in § 60.50c(a)(3) and (4) that uses selective noncatalytic reduction technology shall install... date, time, and duration. (d) The owner or operator of an affected facility using an air pollution...

  20. Energy level alignment at C{sub 60}/DTDCTB/PEDOT:PSS interfaces in organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jisu; Jung, Kwanwook; Jeong, Junkyeong; Hyun, Gyeongho [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Hyunbok, E-mail: hyunbok@kangwon.ac.kr [Department of Physics, Kangwon National University, Chuncheon-si, Gangwon-do 24341 (Korea, Republic of); Yi, Yeonjin, E-mail: yeonjin@yonsei.ac.kr [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of)

    2017-04-30

    Highlights: • The interfacial energy level alignment of C{sub 60}/DTDCTB/PEDOT:PSS was determined via in situ UPS and IPES measurements. • A large photovoltaic gap of 1.30 eV was evaluated between the DTDCTB donor and C{sub 60} acceptor. • A low hole extraction barrier of 0.42 eV from DTDCTB to PEDOT:PSS was evaluated. • The excellent electronic properties of DTDCTB with a narrow band gap were the source of its high OPV power conversion efficiencies. - Abstract: The electronic structure of a narrow band gap small molecule ditolylaminothienyl–benzothiadiazole–dicyanovinylene (DTDCTB), possessing a donor-acceptor-acceptor configuration, was investigated with regard to its application as an efficient donor material in organic photovoltaics (OPVs). The interfacial orbital alignment of C{sub 60}/DTDCTB/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was determined using in situ ultraviolet photoelectron and inverse photoelectron spectroscopic methods. The ionization energy and electron affinity values of DTDCTB were measured to be 5.27 eV and 3.65 eV, respectively, and thus a very small transport gap of 1.62 eV was evaluated. Large band bending of DTDCTB on PEDOT:PSS was observed, resulting in a low hole extraction barrier. Additionally, the photovoltaic gap between the highest occupied molecular orbital level of the DTDCTB donor and the lowest unoccupied molecular orbital level of the C{sub 60} acceptor was estimated to be 1.30 eV, which is known to be the theoretical maximum open-circuit voltage in OPVs employing the C{sub 60}/DTDCTB active layer. The unique electronic structures of DTDCTB contributed toward the recently reported excellent power conversion efficiencies of OPVs containing a DTDCTB donor material.

  1. Probing the dynamics of 3He atoms adsorbed on MCM-41 with pulsed NMR

    Science.gov (United States)

    Huan, C.; Masuhara, N.; Adams, J.; Lewkowitz, M.; Sullivan, N. S.

    2018-03-01

    We report measurements of the nuclear spin-spin and spin-lattice relaxation times for 3He adsorbed on MCM-41 for temperatures 0.08 < T < 1.2 K. Deviations from Curie behavior are observed at low temperatures. The relaxation times exhibit a two-component behavior representing the differing dynamics of the mobile quasi-free molecules in the center of the tubes compared to the adsorbed layer on the walls. The amplitudes of the two components provide an accurate measure of the number of fluid-like molecules traveling in the center of the nanotubes.

  2. Group lattices with applications to the molecule C60

    International Nuclear Information System (INIS)

    Stuart, S.

    1993-01-01

    A brief introduction to group lattices and their application to the electronic structure of C 6 0 is presented. Group lattice methods with experimental results yield a fairly clear picture of the electronic energy levels. (Author) 7 refs

  3. Ultrafast electron dynamics at alkali/ice structures adsorbed on a metal surface

    International Nuclear Information System (INIS)

    Meyer, Michael

    2011-01-01

    The goal of this work is to study the interaction between excess electrons in water ice structures adsorbed on metal surfaces and other charged or neutral species, like alkali ions, or chemically reactive molecules, like chlorofluorocarbons (CFC), respectively. The excess electrons in the ice can interact with the ions directly or indirectly via the hydrogen bonded water molecules. In both cases the presence of the alkali influences the population, localization, and lifetime of electronic states of excess electrons in the ice adlayer. These properties are of great relevance when considering the highly reactive character of the excess electrons, which can mediate chemical reactions by dissociative electron attachment (DEA). The influence of alkali adsorption on electron solvation and transfer dynamics in ice structures is investigated for two types of adsorption configurations using femtosecond time-resolved two-photon photoelectron spectroscopy. In the first system alkali atoms are coadsorbed on top of a wetting amorphous ice film adsorbed on Cu(111). At temperatures between 60 and 100 K alkali adsorption leads to the formation of positively charged alkali ions at the ice/vacuum interface. The interaction between the alkali ions at the surface and the dipole moments of the surrounding water molecules results in a reorientation of the water molecules. As a consequence new electron trapping sites, i.e. at local potential minima, are formed. Photoinjection of excess electrons into these alkali-ion covered amorphous ice layers, results in the trapping of a solvated electron at an alkali-ion/water complex. In contrast to solvation in pure amorphous ice films, where the electrons are located in the bulk of the ice layer, solvated electrons at alkali-ion/water complexes are located at the ice/vacuum interface. They exhibit lifetimes of several picoseconds and show a fast energetic stabilization. With ongoing solvation, i.e. pump-probe time delay, the electron transfer is

  4. Single molecule analysis of c-myb alternative splicing reveals novel classifiers for precursor B-ALL.

    Directory of Open Access Journals (Sweden)

    Ye E Zhou

    Full Text Available The c-Myb transcription factor, a key regulator of proliferation and differentiation in hematopoietic and other cell types, has an N-terminal DNA binding domain and a large C-terminal domain responsible for transcriptional activation, negative regulation and determining target gene specificity. Overexpression and rearrangement of the c-myb gene (MYB has been reported in some patients with leukemias and other types of cancers, implicating activated alleles of c-myb in the development of human tumors. Alternative RNA splicing can produce variants of c-myb with qualitatively distinct transcriptional activities that may be involved in transformation and leukemogenesis. Here, by performing a detailed, single molecule assay we found that c-myb alternative RNA splicing was elevated and much more complex in leukemia samples than in cell lines or CD34+ hematopoietic progenitor cells from normal donors. The results revealed that leukemia samples express more than 60 different c-myb splice variants, most of which have multiple alternative splicing events and were not detectable by conventional microarray or PCR approaches. For example, the single molecule assay detected 21 and 22 splice variants containing the 9B and 9S exons, respectively, most of which encoded unexpected variant forms of c-Myb protein. Furthermore, the detailed analysis identified some splice variants whose expression correlated with poor survival in a small cohort of precursor B-ALL samples. Our findings indicate that single molecule assays can reveal complexities in c-myb alternative splicing that have potential as novel biomarkers and could help explain the role of c-Myb variants in the development of human leukemia.

  5. Computational study for the circular redox reaction of N2O with CO catalyzed by fullerometallic cations C60Fe+ and C70Fe.

    Science.gov (United States)

    Anafcheh, Maryam; Naderi, Fereshteh; Khodadadi, Zahra; Ektefa, Fatemeh; Ghafouri, Reza; Zahedi, Mansour

    2017-03-01

    We applied density functional calculations to study the circular redox reaction mechanism of N 2 O with CO catalyzed by fullerometallic cations C 60 Fe + and C 70 Fe + . The on-top sites of six-membered rings (η 6 ) of fullerene cages are the most preferred binding sites for Fe + cation, and the hexagon to pentagon migration of Fe + is unlikely under ambient thermodynamic conditions. The initial ion/molecule reaction, N 2 O rearrangement and N 2 abstraction on the considered fullerometallic cations are easier than those on the bare Fe + cation in the gas phase. Generally, our results indicate that fullerometallic ions, C 60 Fe + and C 70 Fe + , are more favorable substrates for redox reaction of N 2 O with CO in comparison to the other previously studied carbon nanostructures such as graphene and nanotubes. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. γ Radiolysis of C60 fullerene in water and water/ammonia mixtures: relevance of fullerene fate in ices of interstellar medium

    International Nuclear Information System (INIS)

    Iglesias-Groth, S.; Angelini, G.; Cataldo, F.

    2013-01-01

    The γ radiolysis of fullerene C 60 dispersed in H 2 O, H 2 O/NH 3 , H 2 O/methanol and H 2 O/NH 3 /methanol was studied at 250 and 500 kGy. It was found that C 60 originally insoluble in the above mentioned hosting matrix became soluble as a consequence of multiple hydroxylation and oxidation reaction produced by the free radicals generated by the radiolysis of the hosting matrix. The changes undergone by C 60 were studied by infrared spectroscopy (FT-IR) and by electronic absorption spectroscopy. The astrochemical consequences of the present study are that C 60 ejected in the interstellar medium for instance from protoplanetary and planetary nebulae can condense together with water and other ices in dense molecular clouds. Under the action of high energy radiation C 60 reacts with the free radicals generated from the matrix where it is embedded it is solubilized and consequently its carbon content becomes available for further abiotic processes of synthesis of molecules of astrobiological interest. The behavior of C 60 appears comparable to that of common PAHs which are also hydroxylated and oxidized under similar conditions. (author)

  7. Affine Fullerene C60 in a GS-Quasigroup

    Directory of Open Access Journals (Sweden)

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  8. a.c. conductance study of polycrystal C60

    International Nuclear Information System (INIS)

    Yan Feng; Wang Yening; Huang Yineng; Gu Min; Zhang Qingming; Shen Huimin

    1995-01-01

    The a.c. (1 60 polycrystal (grain size 30 nm) has been studied from 100 to 350 K. Below 150 K, the a.c. conductance is nearly proportional to the temperature and frequency. This is proposed to be due to the hopping of localized states around the Fermi level. Above 200 K, the a.c. conductance exhibits a rapid increase with temperature, and shows a thermally activated behaviour with an activation energy of 0.389 eV below a certain temperature and 0.104 eV above it. A frequency dependent conductance at a fixed temperature is also obtained with a power law σ similar ω s (s∼0.8). For a sample of normal grain size, we have measured a peak near 250 K and a much smaller conductance. These results indicate that the defective na ture of our sample (small grain size, disorder or impurities) plays an important role for the transport properties. The existence of nanocrystals in the sample may give rise to localized states and improve its a.c. conductance. The two activation energies can be attributed to the coexistence of the crystalline and amorphous phases of C 60 . ((orig.))

  9. The electronic structure of C60 and its derivatives

    International Nuclear Information System (INIS)

    Lichtenberger, D.L.; Rempe, M.E.; Gruhn, N.E.; Wright, L.L.

    1993-01-01

    Molecular orbital calculations are used to examine the electronic structure of C 60 and its interaction with metals and some other atoms. The bonding capabilities of the η 5 , η 6 , and the two possible η 2 sites of C 60 to metals are probed with Fenske-Hall calculations of a silver cation bound in those positions. These results are compared to the bonding capabilities of cyclopentadiene, benzene and ethylene, respectively. It is found that the silver cation bonding to C 60 is favored at the η 2 that is shared between five-membered rings, but that the silver cation bonds more favorably to ethylene than to the η 2 site of C 60 . The electronic structure of the known platinum compound, C 60 Pt(phosphine) 2 , where the bonding is also to this η 2 site, is investigated and compared to the electronic structure of the corresponding ethylene complex. In this more electron-rich metal case, the bonding of the C 60 and ethylene are very similar. A calculation on C 60 OsO 4 (NH 3 ) 2 , where C 60 is bound to two oxygens, shows that the orbital composition correlates with the observed NMR shifts of the carbon atoms. The calculations are used to clarify the interpretations of experimental data obtained from STM, NMR, PES and reactivity. The latest results of these electronic studies will be presented

  10. Role of adsorbates on current fluctuations in DC field emission

    International Nuclear Information System (INIS)

    Luong, M.; Bonin, B.; Long, H.; Safa, H.

    1996-01-01

    Field emission experiments in DC regime usually show important current fluctuations for a fixed electric field. These fluctuations are attributed to adsorbed layers (molecules or atoms), liable to affect the work function, height and shape of the potential barrier binding the electron in the metal. The role of these adsorbed species is investigated by showing that the field emission from a well desorbed sample is stable and reproducible and by comparing the emission from the same sample before and after desorption. (author)

  11. {sup 13}C NMR and XPS characterization of anion adsorbent with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Wei, E-mail: weicao@hqu.edu.cn; Wang, Zhenqian; Zeng, Qingling; Shen, Chunhua

    2016-12-15

    Highlights: • {sup 13}C NMR and XPS were successfully used to characterize quaternary ammonium groups in the surface of crop straw based anion adsorbents. • The results obtained from different kinds of crop straw material clearly confirmed the presence of quaternary ammonium groups. • The composition of C-groups and N-groups also were determined by curving fitting of high-resolution XPS C1 and N1 spectra. - Abstract: Despite amino groups modified crop straw has been intensively studied as new and low-cost adsorbent for removal of anionic species from water, there is still a lack of clear characterization for amino groups, especially quaternary ammonium groups in the surface of crop straw. In this study, we used {sup 13}C NMR and XPS technologies to characterize adsorbents with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. {sup 13}C NMR spectra clearly showed the presence of quaternary ammonium groups in lignocelluloses structure of modified crop straw. The increase of nitrogen observed in XPS survey spectra also indicated the existence of quaternary ammonium group in the surface of the adsorbents. The curve fitting of high-resolution XPS N1s and C1s spectra were conducted to probe the composition of nitrogen and carbon contained groups, respectively. The results showed the proportion of quaternary ammonium group significantly increased in the prepared adsorbent’s surface that was dominated by methyl/methylene, hydroxyl, quaternary ammonium, ether and carbonyl groups. This study proved that {sup 13}C NMR and XPS could be successfully utilized for characterization of quaternary ammonium modified crop straw adsorbents.

  12. Effect of He pressure on the superconducting transition temperatures of Na2CsC60 and (NH3)4Na2CsC60

    International Nuclear Information System (INIS)

    Schirber, J.E.; Bayless, W.R.; Rosseinsky, M.J.; Zhou, O.; Fleming, R.M.; Murphy, D.; Fischer, J.E.

    1994-01-01

    The Na based mixed alkali doped C 60 superconductors show anomalous behavior with respect to the ''universal'' superconducting transition temperature T c vs lattice constant a 0 relation followed by most of the fcc A 3 C 60 superconductors. We have measured dt c /dP for Na 2 CsC 60 and (NH 3 ) 4 Na 2 CsC 60 using solid He as the pressure medium to ∼ 6 kbar finding dT c /dP equal to -0.8±(0.01) K/kbar and -1.0(±0.1)K/kbar for Na 2 CsC 60 and Na 2 (NH 3 ) 4 C 60 respectively. Our value for Na 2 CsC 60 differs markedly from that obtained by Mizuki et al of about -1.3 K/kbar. However, using N 2 or Ar, we obtain values for dT c /dP in substantial agreement with Mizuki et al who used fluorinert to generate their pressure. This work emphasizes the need for compressibility measurements with the same pressure medium in the appropriate temperature range so that meaningful comparisons can be made between various pressure measurements and models which are based on lattic spacing

  13. From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water.

    Science.gov (United States)

    Wang, Wenbo; Tian, Guangyan; Zong, Li; Zhou, Yanmin; Kang, Yuru; Wang, Qin; Wang, Aiqin

    2017-01-01

    A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline (CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite (IS) clay, sodium silicate and magnesium sulfate as the starting materials. In this process, IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52m 2 /g (about 8.7 folds higher than that of IS clay) and very negative Zeta potential (-34.5mV). The inert SiOSi (Mg, Al) bonds in crystal framework of IS were broken to form Si(Al) O - groups with good adsorption activity, which greatly increased the adsorption sites served for holding much CTC molecules. Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81mg/g of CTC (only 159.7mg/g for raw IS clay) and remove 99.3% (only 46.5% for raw IS clay) of CTC from 100mg/L initial solution (pH3.51; adsorption temperature 30°C; adsorbent dosage, 3g/L). The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model, Temkin equation and pseudo second-order kinetic model. The mesopore adsorption, electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties. As a whole, the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC. Copyright © 2016. Published by Elsevier B.V.

  14. Atomic-Scale Control of Electron Transport through Single Molecules

    DEFF Research Database (Denmark)

    Wang, Y. F.; Kroger, J.; Berndt, R.

    2010-01-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...

  15. Adsorbed layers on (111)InAs faces in contact with In-As-Cl-H gas phase, and the possibility of phase transitions in the adsorbed layers

    Science.gov (United States)

    Chernov, A. A.; Ruzaikin, M. P.

    1981-04-01

    Adsorption of various species existing in the In-As-Cl-H CVD gaseous system on both InAs (111) faces is considered. Arsenic is supposed to be adsorbed in the form of triangles As 3 and tetrahedrons As 4, each of them occupying 3 atomic sites above In or As atoms on (111)In or (111)As, respectively. The system of polyatomic adsorption equations was used to find the coverages of the faces by various species. Admolecule-surface bond strengths are taken to be equal to the ones for the single bonds in molecules. Pauling electronegativities were used to find the effective charges of the atoms in the adsorption layer. Thus, the dipole moments of adsorbed molecules which arise are directed along the In-As bonds in the InAs lattice. With this geometry, the calculated electrostatic dipole-dipole attraction between InCl molecules forming a dense layer on (111)As exceeds 12 kcal/mol. Thus, condensation of the two-dimensional gas of adsorbed InCl molecules should be expected. Corresponding S-shape isotherms θ( P) are calculated for different As 3 vapor pressures, θ and P being the surface coverage and bulk vapor pressure of InCl. Intervals of {InCl 3}/{H 2} ratios at different temperatures where the two-dimensional condensation may occur, are presented for realistic CVD conditions. Two-dimensional condensation may result in sharp changes in kinetic coefficient and thus in autho-oscillations in growth rate and doping level creating periodic superstructures. Nucleation and CVD growth processes are discussed.

  16. Electron Impact Ionization of C60

    International Nuclear Information System (INIS)

    Duenser, B.; Lezius, M.; Scheier, P.; Deutsch, H.; Maerk, T.D.

    1995-01-01

    Absolute partial and total cross sections for the electron impact ionization of C 60 have been measured using a novel approach for the absolute calibration. The results obtained reveal not only an anomalous large parent ion cross section (as compared to the other ionization channels), but also anomalies for the production of multiply charged parent and fragment ions. This special behavior has its origin in the specific electronic and geometric structure of C 60 . Semiclassical calculations for singly charged ions support the measured data

  17. Toluene and acetaldehyde removal from air on to graphene-based adsorbents with microsized pores.

    Science.gov (United States)

    Kim, Ji Min; Kim, Ji Hoon; Lee, Chang Yeon; Jerng, Dong Wook; Ahn, Ho Seon

    2018-02-15

    Volatile organic compound (VOC) gases can cause harm to the human body with exposure over the long term even at very low concentrations (ppmv levels); thus, effective absorbents for VOC gas removal are an important issue. In this study, accordingly, graphene-based adsorbents with microsized pores were used as adsorbents to remove toluene and acetaldehyde gases at low concentrations (30ppm). Sufficient amounts of the adsorbents were prepared for use on filters and were loaded uniformly at 0.1-0.5g on a 50×50mm 2 area, to evaluate their adsorption features with low gas concentrations. The morphology and chemical composition of the adsorbents were characterized using scanning electron microscopy, N 2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and Raman spectroscopy. Microwave irradiation and heat treatment near 800°C under KOH activation resulted in enlargement of the pristine graphene surface and its specific surface area; maximum volume capacities of 3510m 3 /g and 630m 3 /g were observed for toluene and acetaldehyde gas. The high removal efficiency for toluene (98%) versus acetaldehyde (30%) gas was attributed to π-π interactions between the pristine graphene surface and toluene molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Orientation of rod molecules in selective slits: a density functional theory

    International Nuclear Information System (INIS)

    Xu Xiaofei; Cao Dapeng; Wang Wenchuan

    2008-01-01

    A density functional theory (DFT) is used to investigate molecular orientation of rod fluids in selective slits. The DFT approach combines a modified fundamental measure theory (MFMT) for excluded-volume effect, the first-order thermodynamics perturbation theory for chain connectivity and the mean-field approximation for van der Waals (vdW) attraction. To study the molecular orientation, the intramolecular bonding orientation function is introduced into the DFT. First, we investigate the orientation of the surfactant-like rod molecule of AB 6 (i.e. ABBBBBB) in a nanoslit of H 20σ, where the walls selectively adsorb segment 'A'. It is observed that, with the increase of the surface energy of the wall to head segment (i.e. 'A' segment) of the rod molecule, the rod molecules adsorbed on the wall present the perpendicular orientation gradually, and assemble into a smectic-A-like monolayer finally. In addition, we also explore the molecular orientation of the rods with both end segments preferring to the wall, i.e. AB 8 A and AB 7 A, in a nanoslit of H = 10σ. Interestingly, the AB 8 A rod monolayer is compatible with either a smectic-A-like or a smectic-C-like organization, but AB 7 A rod molecules exhibit the smectic-A-like organization. The orientation factor of the AB 7 A rod molecule reaches 1, suggesting that AB 7 A rod molecules self-assemble into an ordered structure with perfectly perpendicular orientation to the wall.

  19. Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; He, Maofang; Wang, Chaozhan; Wei, Yinmao, E-mail: ymwei@nwu.edu.cn

    2015-07-30

    Boronate affinity materials have been widely used for specific separation and preconcentration of cis-diol molecules, but most do not have sufficient capacity due to limited binding sites on the material surface. In this work, we prepared a phenylboronic acid-functionalized adsorbent with a high binding capacity via the combination of surface-initiated atom transfer radical polymerization (SI-ATRP) and chain-end functionalization. With this method, the terminal chlorides of the polymer chains were used fully, and the proposed adsorbent contains dense boronic acid polymers chain with boronic acid on the chain end. Consequently, the proposed adsorbent possesses excellent selectivity and a high binding capacity of 513.6 μmol g{sup −1} for catechol and 736.8 μmol g{sup −1} for fructose, which are much higher than those of other reported adsorbents. The dispersed solid-phase extraction (dSPE) based on the prepared adsorbent was used for extraction of three cis-diol drugs (i.e., epinephrine, isoprenaline and caffeic acid isopropyl ester) from plasma; the eluates were analyzed by HPLC-UV. The reduced amount of adsorbent (i.e., 2.0 mg) could still eliminate interferences efficiently and yielded a recovery range of 85.6–101.1% with relative standard deviations ranging from 2.5 to 9.7% (n = 5). The results indicated that the proposed strategy could serve as a promising alternative to increase the density of surface functional groups on the adsorbent; thus, the prepared adsorbent has the potential to effectively enrich cis-diol substances in real samples. - Highlights: • Boronate adsorbent is prepared via ATRP and chain-end functionalization. • The adsorbent has quite high binding capacity for cis-diols. • Binding capacity is easily manipulated by ATRP condition. • Chain-end functionalization can improve binding capacity significantly. • Reduced adsorbent is consumed in dispersed solid-phase extraction of cis-diols.

  20. Fast heavy ion collisions with C60: Collective excitation

    International Nuclear Information System (INIS)

    Kadhane, Umesh; Kelkar, A.H.; Misra, D.; Kumar, Ajay; Tribedi, L.C.

    2006-01-01

    Ionization and fragmentation of C 60 in collision with 5 MeV/μm O 6+ ions are studied using recoil ion ToF method. Relative ionization cross sections up to C 60 4+ are determined. The qualitative trend for different C 60 charge states was compared against simple plasmon excitation model

  1. Distribution of metal and adsorbed guest species in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  2. Distribution of metal and adsorbed guest species in zeolites

    International Nuclear Information System (INIS)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes 129 Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of 129 Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, 129 Xe NMR is insensitive to fine structural details at room temperature

  3. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    Mario Enrique Santander Muñoz

    2015-01-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic poly-acrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  4. Photodetachment of negative C{sub 60}{sup -} ions

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Baltenkov, A.S.; Krakov, B.G. [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation)]|[U.A. Arifov Institute of Electronics, Tashkent, 700143 (Uzbekistan)

    1998-06-15

    A model that describes the electron structure of negative fullerene C{sub 60}{sup -} ions is proposed. The model contains only two experimentally observed parameters, namely the fullerene radius and the affinity energy of the electron to neutral C{sub 60}. In the frame of this model, cross sections are calculated of elastic scattering of slow electrons on neutral fullerene, of C{sub 60}{sup -} photodetachment near the threshold of this process and of radiative recombination of slow electrons with neutral fullerenes. (orig.) 21 refs.

  5. Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.M.; Xu, Z.W.; Pan, B.C.; Hong, C.H.; Jia, K.; Jiang, P.J.; Zhang, Q.J.; Pan, B.J. [Nanjing University, Nanjing (China)

    2008-09-15

    Removal of phthalate esters from water has been of considerable concern recently. In the present study, the adsorptive removal performance of diethyl phthalate (DEP) from water was investigated with the aminated polystyrene resin (NDA-101) and oxidized polystyrene resin (NDA-702). In addition, the commercial homogeneous polystyrene resin (XAD-4) and acrylic ester resin (Amberlite XAD-7) as well as coal-based granular activated carbon (AC-750) were chosen for comparison. The corresponding equilibrium isotherms are well described by the Freundlich equation and the adsorption capacities for DEP followed the order NDA-702 > NDA-101 > AC-750 > XAD-4 > XAD-7. Analysis of adsorption mechanisms suggested that these adsorbents spontaneously adsorb DEP molecules driven mainly by enthalpy change, and the adsorption process was derived by multiple adsorbent-adsorbate interactions such as hydrogen bonding, {pi}-{pi} stacking, and micropore filling. The information related to the adsorbent surface heterogeneity and the adsorbate-adsorbate interaction was obtained by Do's model. All the results indicate that heterogeneous resins NDA-702 and NDA-101 have excellent potential as an adsorption material for the removal of DEP from the contaminated water.

  6. James C. McGroddy Prize Talk: Superconductivity in alkali-metal doped Carbon-60

    Science.gov (United States)

    Hebard, Arthur

    2008-03-01

    Carbon sixty (C60), which was first identified in 1985 in laser desorption experiments, is unquestionably an arrestingly beautiful molecule. The high symmetry of the 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball like structure invites special attention and continues to stimulate animated speculation. The availability in 1990 of macroscopic amounts of purified C60 derived from carbon-arc produced soot allowed the growth and characterization of both bulk and thin-film samples. Crystalline C60 is a molecular solid held together by weak van der Waals forces. The fcc structure has a 74% packing fraction thus allowing ample opportunity (26% available volume) for the intercalation of foreign atoms into the interstitial spaces of the three dimensional host. This opportunity catalyzed much of the collaborative work amongst chemists, physicists and materials scientists at Bell Laboratories, and resulted in the discovery of superconductivity in alkali-metal doped C60 with transition temperatures (Tc) in the mid-30-kelvin range. In this talk I will review how the successes of this initial team effort stimulated a worldwide collaboration between experimentalists and theorists to understand the promise and potential of an entirely new class of superconductors containing only two elements, carbon and an intercalated alkali metal. Although the cuprates still hold the record for the highest Tc, there are still open scientific questions about the mechanism that gives rise to such unexpectedly high Tc's in the non-oxide carbon-based superconductors. The doped fullerenes have unusual attributes (e.g., narrow electronic bands, high disorder, anomalous energy scales, and a tantalizing proximity to a metal-insulator Mott transition), which challenge conventional thinking and at the same time provide useful insights into new directions for finding even higher Tc materials. The final chapter of the `soot to superconductivity' story has yet to be written.

  7. A Method for Field Calibration of the PA260 Phosphorus Analyzer Using Solid Adsorbent Materials

    Science.gov (United States)

    1989-12-01

    plant environment. The solid adsorbent approach has two major advantages over other traditional air sampling devices such as bubblers or impingers...GC (60/80 mesh) or Chromosorb 106 (80/100 mesh). Both adsorbents were supplied by Alltech Associates (Deerfield, IL). The adsorbents were packed in

  8. Synthesis of Fe–C{sub 60} complex by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Minezaki, Hidekazu, E-mail: dn1000012@toyo.jp [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Oshima, Kosuke [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Uchida, Takashi; Mizuki, Toru [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, Richard [Institute of Nuclear Research (ATOMKI), H-4026, Debrecen, Bem tér 18/C (Hungary); Muramatsu, Masayuki [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Asaji, Toyohisa [Oshima National College of Maritime Technology, 1091-1 Komatsu Suou Oshima City, Oshima, Yamaguchi 742-2193 (Japan); Kitagawa, Atsushi [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Kato, Yushi [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Biri, Sandor [Institute of Nuclear Research (ATOMKI), H-4026, Debrecen, Bem tér 18/C (Hungary); Yoshida, Yoshikazu [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2013-09-01

    Highlights: •The Fe{sup +} beam was irradiated to the C{sub 60} thin films. •The Fe{sup +}-irradiated C{sub 60} thin films were analyzed by LDI-TOF-MS and by HPLC. •The peak with mass/charge of 776 was observed in the Fe{sup +}-irradiated C{sub 60} thin film. •We could synthesize the Fe–C{sub 60} complex as a new material. -- Abstract: In order to synthesize the Fe@C{sub 60} complex, iron ion beam irradiated to C{sub 60} thin films. The energy of the irradiated iron ions was controlled from 50 eV to 250 eV. The dose of that was controlled from 6.67 × 10{sup 12} to 6.67 × 10{sup 14} ions/cm{sup 2}. By the analysis of the surface of the iron ion irradiated C{sub 60} thin films using laser desorption/ionization time-of-flight mass spectrometry, we could confirm the peak with mass/charge of 776. The mass/charge of 776 corresponds to Fe + C{sub 60}. We obtained the maximum intensity of the peak with mass/charge of 776 under the irradiation iron ion energy and the dose were 50 eV and 3.30 × 10{sup 13} ions/cm{sup 2}, respectively. Then, the separation of the material with mass of 776 was performed by using high performance liquid chromatography. We could separate the Fe + C{sub 60} from the iron ion irradiated C{sub 60} thin film. As a result, we could synthesize the Fe + C{sub 60} complex as a new material.

  9. Density Functional Investigation of Graphene Doped with Amine-Based Organic Molecules

    Directory of Open Access Journals (Sweden)

    Yeun Hee Hwang

    2015-01-01

    Full Text Available To improve the electronic properties of graphene, many doping techniques have been studied. Herein, we investigate the electronic and molecular structure of doped graphene using density functional theory, and we report the effects of amine-based benzene dopants adsorbed on graphene. Density functional theory (DFT calculations were performed to determine the role of amine-based aromatic compounds in graphene doping. These organic molecules bind to graphene through long-range interactions such as π-π interactions and C-H⋯π hydrogen bonding. We compared the electronic structures of pristine graphene and doped graphene to understand the electronic structure of doped graphene at the molecular level. Also, work functions of doped graphene were obtained from electrostatic potential calculations. A decrease in the work function was observed when the amine-based organic compounds were adsorbed onto graphene. Because these systems are based on physisorption, there was no obvious band structure change at point K at the Fermi level after doping. However, the amine-based organic dopants did change the absolute Fermi energy levels. In this study, we showed that the Fermi levels of the doped graphene were affected by the HOMO energy level of the dopants and by the intermolecular charge transfer between the adsorbed molecules and graphene.

  10. Modification of the Xe 4d giant resonance by the C60 shell in molecular Xe at C60

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.; Felfli, Z.; Msezane, A. Z.

    2006-01-01

    It is demonstrated that in photoabsorption of the 4d 10 subshell of a Xe atom in molecular Xe at C 60 , the 4d giant resonance that characterizes the isolated Xe atom is distorted significantly. The reflection of photoelectron waves by the C 60 shell leads to profound oscillations in the photoionization cross section such that the Xe giant resonance is transformed into four strong peaks. Similarly, the angular anisotropy parameters, both dipole and nondipole, are also modified. The method of calculation is based on the approximation of the C 60 shell by an infinitely thin bubble potential that leaves the sum rule for the 4d-electrons almost unaffected, but noticeably modifies the dipole polarizability of the 4d-shell

  11. Transport through a Single Octanethiol Molecule

    NARCIS (Netherlands)

    Kockmann, D.; Poelsema, Bene; Zandvliet, Henricus J.W.

    2009-01-01

    Octanethiol molecules adsorbed on Pt chains are studied with scanning tunneling microscopy and spectroscopy at 77 K. The head of the octanethiol binds to a Pt atom and the tail is lying flat down on the chain. Open-loop current time traces reveal that the molecule wags its tail and attaches to the

  12. Electric-dipole-coupled H2O@C60 dimer: Translation-rotation eigenstates from twelve-dimensional quantum calculations.

    Science.gov (United States)

    Felker, Peter M; Bačić, Zlatko

    2017-02-28

    We report on variational solutions to the twelve-dimensional (12D) Schrödinger equation appertaining to the translation-rotation (TR) eigenstates of H 2 O@C 60 dimer, associated with the quantized "rattling" motions of the two encapsulated H 2 O molecules. Both H 2 O and C 60 moieties are treated as rigid and the cage-cage geometry is taken to be fixed. We consider the TR eigenstates of H 2 O@C 60 monomers in the dimer to be coupled by the electric dipole-dipole interaction between water moieties and develop expressions for computing the matrix elements of that interaction in a dimer basis composed of products of monomer 6D TR eigenstates reported by us recently [P. M. Felker and Z. Bačić, J. Chem. Phys. 144, 201101 (2016)]. We use these expressions to compute TR Hamiltonian matrices of H 2 O@C 60 dimer for two values of the water dipole moment and for various dimer geometries. 12D TR eigenstates of the dimer are then obtained by filter diagonalization. The results reveal two classes of eigenstates, distinguished by the leading order (first or second) at which dipole-dipole coupling contributes to them. The two types of eigenstates differ in the general magnitude of their dipole-induced energy shifts and in the dependence of those shifts on the value of the water dipole moment and on the distance between the H 2 O@C 60 monomers. The dimer results are also found to be markedly insensitive to any change in the orientations of the C 60 cages. Finally, the results lend some support for the interpretation that electric dipole-dipole coupling is at least partially responsible for the apparent reduced-symmetry environment experienced by H 2 O in the powder samples of H 2 O@C 60 [K. S. K. Goh et al., Phys. Chem. Chem. Phys. 16, 21330 (2014)], but only if the water dipole is taken to have a magnitude close to that of free water. The methodology developed in the paper is transferable directly to the calculation of TR eigenstates of larger H 2 O@C 60 assemblies, that will

  13. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Reinhard J. [Department of Chemistry, Yale University, New Haven, Connecticut 06520 (United States); Ruiz, Victor G.; Tkatchenko, Alexandre [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic–inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate–surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.

  14. Electronic transitions and band offsets in C60:SubPc and C60:MgPc on MoO3 studied by modulated surface photovoltage spectroscopy

    International Nuclear Information System (INIS)

    Fengler, S.; Dittrich, Th.; Rusu, M.

    2015-01-01

    Electronic transitions at interfaces between MoO 3 layers and organic layers of C 60 , SubPc, MgPc, and nano-composite layers of SubPc:C 60 and MgPc:C 60 have been studied by modulated surface photovoltage (SPV) spectroscopy. For all systems, time dependent and modulated SPV signals pointed to dissociation of excitons at the MoO 3 /organic layer interfaces with a separation of holes towards MoO 3 . The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps (E HL ) of C 60 , SubPc, and MgPc and the effective E HL of SubPc:C 60 and MgPc:C 60 were measured. The offsets between the LUMO (ΔE L ) or HOMO (ΔE H ) bands were obtained with high precision and amounted to 0.33 or 0.73 eV for SubPc:C 60 , respectively, and to −0.33 or 0.67 eV for MgPc:C 60 , respectively. Exponential tails below E HL and most pronounced sub-bandgap transitions were characterized and ascribed to disorder and transitions from HOMO bands to unoccupied defect states

  15. Rb-intercalated C60 compounds studied by Inverse Photoemission Spectroscopy

    International Nuclear Information System (INIS)

    Finazzi, M.; Brambilla, A; Biagioni, P.; Cattoni, A.; Duo, L.; Ciccacci, F.; Braicovich, L.; Giovanelli, L.; Goldoni, A.

    2004-01-01

    Full text: Since the discovery of superconductivity in alkali-doped solid C 60 , the electronic structure of the host material (C 60 ) and the doped compounds (A x C 60 , where A is an alkali metal), has been the subject of a considerable amount of work, both theoretical and experimental. The spectroscopic investigations of the alkali-doped C 60 compounds has been mainly focussed on the valence states, while much less information is available on the unoccupied states. In particular, inverse photoemission data on the complete set of stable Rb x C 60 compounds was, so far, still missing. We have performed Inverse Photoemission (IPE) spectroscopy on Rb x C 60 compounds (x = 1, 3, 4, 6). IPE spectra were obtained using a band-pass photon detector (hv = 9.4 eV, FWHM = 0.7 eV) and scanning the kinetic energy of the electrons impinging on the sample. Rb was evaporated on C 60 films (thickness = 6-12 atomic layers) grown in situ on a Cu(100) substrate. The temperature of the substrate was kept equal to T = 100 deg C, which is lower than the C 60 sublimation temperature. The amount of Rb was checked by measuring the intensity of the C1s and Rb3d photoemission lines. After the required amount of Rb had been deposited, the samples were annealed to distillate the desired stable phase

  16. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  17. Structure of solid surfaces and of adsorbates by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1977-01-01

    LEED theory has developed to the point where the diffraction beam intensities can be computed using the locations of the surface atoms as the only adjustable parameters. The position of atoms in many clean monatomic solid surfaces and the surface structures of ordered monolayers of adsorbed atoms have been determined this way. Surface crystallography studies are now extended to small hydrocarbon molecules that are adsorbed on metal surfaces. These studies are reviewed

  18. New type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. III. Recycle use of adsorbent

    International Nuclear Information System (INIS)

    Omichi, H.; Katakai, A.; Sugo, T.; Okamoto, J.

    1986-01-01

    An amidoxime-group adsorbent for recovering uranium from seawater was made by radiation-induced graft polymerization of acrylonitrile onto polymeric fiber, followed by amidoximation. Uranium adsorption of the adsorbent contacted with seawater in a column increased with the increase in flow rate, then leveled off. The relationship between uranium adsorption in a batch process and the ratio of the amount of seawater to that of adsorbent was found to be effective in evaluating adsorbent contacted with any amount of seawater. The conditioning of the adsorbent with an alkaline solution at higher temperature (∼80 0 C) after the acid desorption recovered the adsorption ability to the original level. This made it possible to apply the adsorbent to recycle use. On the other hand, the adsorbent conditioned at room temperature or that without conditioning lost adsorption ability during recycle use. The increase in water uptake was observed as one of the physical changes produced during recycle use of the alkaline-conditioned adsorbent, while the decrease in water uptake was observed with the unconditioned adsorbent. The IR spectra of the adsorbent showed a probability of reactions of amidoxime groups with acid and alkaline solutions, which can explain the change in uranium adsorption during the adsorption-desorption cycle

  19. Stop C. difficile Infections PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    This 60 second PSA is based on the March 2012 CDC Vital Signs report. C. difficile is a germ that causes diarrhea linked to 14,000 deaths in the US each year. This podcast helps health care professionals learn how to prevent C. difficile infections.

  20. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1982-01-01

    An experimental laboratory program was conducted to develop economical solid adsorbents for the retention of krypton from a dissolver off-gas stream. The study indicates that a solid adsorbent system is feasible and competitive with other developing systems which utilize fluorocarbon absorption nd cryogenic distillation. This technology may have potential applications not only in nuclear fuel reprocessing plants, but also in nuclear reactors and in environmental monitoring. Of the 13 prospective adsorbents evaluated with respect to adsorption capacity and cost, the commercially available hydrogen mordenite was the most cost-effective material at subambient temperatures (-40 0 to -80 0 C). Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite

  1. Potential energy and dipole moment surfaces for HF@C60: Prediction of spectral and electric response properties

    Science.gov (United States)

    Kalugina, Yulia N.; Roy, Pierre-Nicholas

    2017-12-01

    We present a five-dimensional potential energy surface (PES) for the HF@C60 system computed at the DF-LMP2/cc-pVTZ level of theory. We also calculated a five-dimensional dipole moment surface (DMS) based on DFT(PBE0)/cc-pVTZ calculations. The HF and C60 molecules are considered rigid with bond length rHF = 0.9255 Å (gas phase ground rovibrational state geometry). The C60 geometry is of Ih symmetry. The ab initio points were fitted to obtain a PES in terms of bipolar spherical harmonics. The minimum of the PES corresponds to a geometry where the center of mass of HF is located 0.11 Å away from the center of the cage with an interaction energy of -6.929 kcal/mol. The DMS was also represented in terms of bipolar spherical harmonics. The PES was used to calculate the rotation-translation bound states of HF@C60, and good agreement was found relative to the available experimental data [A. Krachmalnicoff et al., Nat. Chem. 8, 953 (2016)] except for the splitting of the first rotational excitation levels. We propose an empirical adjustment to the PES in order to account for the experimentally observed symmetry breaking. The form of that effective PES is additive. We also propose an effective Hamiltonian with an adjusted rotational constant in order to quantitatively reproduce the experimental results including the splitting of the first rotational state. We use our models to compute the molecular volume polarizability of HF confined by C60 and obtain good agreement with experiment.

  2. Kinetic energies of charged fragments resulting from multifragmentation and asymmetric fission of the C60 molecule in collisions with monocharged ions (2-130 keV)

    International Nuclear Information System (INIS)

    Rentenier, A; Bordenave-Montesquieu, D; Moretto-Capelle, P; Bordenave-Montesquieu, A

    2003-01-01

    Multifragmentation and asymmetric fission (AF) of the C 60 molecule induced by H + , H 2 + , H 3 + and He + ions at medium collision energies (2-130 keV) are considered. Momenta and kinetic energies of C n + fragment ions (n = 1- 12) are deduced from an analysis of time-of-flight spectra. In multifragmentation processes, momenta are found to be approximately constant when n > 2, a behaviour which explains that the most probable kinetic energy, as well as the width of the kinetic energy distributions, is found to be inversely proportional to the fragment size n; both momenta and kinetic energies are independent of the velocity and nature of the projectile, and hence of the energy deposit. A specific study of the AF shows that the kinetic energies of C 2 + , C 4 + and C 6 + fragments are also independent of the collision velocity and projectile species; a quantitative agreement is found with values deduced from kinetic energy release measurements by another group in electron impact experiments, and the observed decrease when the mass of the light fragment increases is also reproduced. A quantitative comparison of AF and multifragmentation for the n = 2, 4 and 6 fragment ions shows that kinetic energies in AF exceed that in multifragmentation, a result which explains the oscillations observed when momenta or kinetic energies of fragments are plotted against the n-value. The AF yield is also found to scale with the energy deposit in the collision velocity range extending below the velocity at the maximum of the electronic stopping power; except for protons, it remains negligible with respect to multifragmentation as soon as the total energy deposit exceeds about 100 eV

  3. Continuum modeling investigation of gigahertz oscillators based on a C60 fullerene inside cyclic peptide nanotubes

    Science.gov (United States)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-02-01

    Research concerning the fabrication of nano-oscillators with operating frequency in the gigahertz (GHz) range has become a focal point in recent years. In this paper, a new type of GHz oscillators is introduced based on a C60 fullerene inside a cyclic peptide nanotube (CPN). To study the dynamic behavior of such nano-oscillators, using the continuum approximation in conjunction with the 6-12 Lennard-Jones (LJ) potential function, analytical expressions are derived to determine the van der Waals (vdW) potential energy and interaction force between the two interacting molecules. Employing Newton's second law, the equation of motion is solved numerically to arrive at the telescopic oscillatory motion of a C60 fullerene inside CPNs. It is shown that the fullerene molecule exhibits different kinds of oscillation inside peptide nanotubes which are sensitive to the system parameters. Furthermore, for the precise evaluation of the oscillation frequency, a novel semi-analytical expression is proposed based on the conservation of the mechanical energy principle. Numerical results are presented to comprehensively study the effects of the number of peptide units and initial conditions (initial separation distance and velocity) on the oscillatory behavior of C60 -CPN oscillators. It is found out that for peptide nanotubes comprised of one unit, the maximum achievable frequency is obtained when the inner core oscillates with respect to its preferred positions located outside the tube, while for other numbers of peptide units, such frequency is obtained when the inner core oscillates with respect to the preferred positions situated in the space between the two first or the two last units. It is further found out that four peptide units are sufficient to obtain the optimal frequency.

  4. Characterisation of lignite as an industrial adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ying Qi; Andrew F.A. Hoadley; Alan L. Chaffee; Gil Garnier [Monash University, Clayton, Vic. (Australia). Department of Chemical Engineering

    2011-04-15

    An alternative use of the abundant and inexpensive lignite (also known as brown coal) as an industrial adsorbent has been characterised. The adsorptive properties of two Victorian lignite without any pre-treatment were investigated using the cationic methylene blue dye as a model compound in aqueous solutions. Two commercial activated carbon products were also studied for comparison. The adsorption equilibrium of the four adsorbents was better described by the Langmuir isotherm model than the Freundlich model. The adsorption capacities of the two untreated lignite adsorbents, Loy Yang and Yallourn, calculated using Langmuir isotherms were 286 and 370 mg/g, respectively, higher than a coconut shell-based activated carbon (167 mg/g), but lower than a coal-based activated carbon (435 mg/g). Surface area results suggested that larger micropores and mesopores were important for achieving good methylene blue adsorption by the activated carbons. However, FTIR and cation exchange capacity analyses revealed that, for the lignite, chemical interactions between lignite surface functional groups and methylene blue molecules occurred, thereby augmenting its adsorption capacity. 63 refs., 3 figs., 7 tabs.

  5. A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes

    Science.gov (United States)

    Parlak, Cemal; Alver, Özgür

    2017-06-01

    Amantadine is a well-known drug for its treatment effect on Parkinson's disease and influenza infection or hepatitis. Heteroatom doped fullerenes have been extensively examined for their possible usage in sensor technology and medical applications as drug delivery vehicles. In this research, pristine and B, Al, Si, Ga, Ge doped C60 fullerenes and their interaction with amantadine drug molecule were investigated based on the density functional theory calculations. Findings suggest that doped C60 fullerenes might be used to detect the presence of amantadine and they might be used as drug delivery vehicles because of their moderately high adsorption energies with amantadine.

  6. 40 CFR 60.55c - Waste management plan.

    Science.gov (United States)

    2010-07-01

    ... management plan shall identify both the feasibility and the approach to separate certain components of solid... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Waste management plan. 60.55c Section 60.55c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...

  7. In situ XRD study of C60 polymerisation above pressures of 9 GPa and temperatures up to 830K

    International Nuclear Information System (INIS)

    Talyzin, A.V.; Jansson, U.; Dubrovinsky, L.S.; Oden, M.; Le Bihan, T.

    2002-01-01

    The C60 polymerization was studied by X-ray diffraction in situ in the pressure range 13-18 GPa and at temperatures up to 830 K. The results of the high pressure high temperature treatment are strongly dependent from the history of the sample and stress. At certain conditions no elliptical diffraction patterns were observed at 13 GPa and 830K. Samples with a relatively low internal stress showed a transformation to new phase. It is suggested that this phase is three-dimensional polymer with each C60 molecule bonded to eight neighbors. This phase showed an increased hardness (about 37 GPa) and a Raman spectrum distinctly different from previously known polymeric phases

  8. Transporting method for adsorbing tower and the adsorbing tower

    International Nuclear Information System (INIS)

    Shimokawa, Nobuhiro.

    1996-01-01

    A cylindrical plastic bag is disposed to the upper surface of an adsorbing tower so as to surround a suspending piece. One opening of the bag is sealed, and other opening is secured in a sealed state to a bag holding portion disposed to glove box at a gate for the adsorbing tower box. The adsorbing tower is transported into the glove box, and after the completion of the operation of the adsorbing tower, the adsorbing tower is taken out in a state that the bag is restricted and sealed at a portion below the adsorbing tower. The bag may be made of a vinyl plastic, the bag holding portion may be a short-cylindrical protrusion, and may have an O-ring groove at the outer surface. Even if the adsorbing tower is heavy, the adsorbing tower can be carried out easily in a state where it is sealed gas tightly. (N.H.)

  9. The effect of water on the stability of C60 fullerene nanowhiskers

    International Nuclear Information System (INIS)

    Miyazawa, Kun’ichi; Hotta, Kayoko

    2011-01-01

    The morphology of C 60 precipitates synthesized by using isopropyl alcohol (IPA) added with water was investigated in order to know the effect of water on the growth of C 60 nanowhiskers (C 60 NWs) in C 60 –toluene–IPA solution systems. The stability of C 60 NWs decreased and granular crystals of C 60 were formed in the solutions when IPA added with an excess amount of water was used in the liquid–liquid interfacial precipitation method. The C 60 NWs were found to be destabilized with time in the solutions added with water. The C 60 NWs dried in air showed similar Raman profiles irrespective of the use of IPA with and without water addition. The Raman profiles of granular C 60 single crystals showed the base lines much flatter than those of C 60 NWs, indicating that C 60 NWs possess a disordered crystal structure. By optimizing the growth condition, short C 60 NWs with aspect ratios ranging from 3 to 10 and an average length of about 1.8 μm were successfully fabricated. The short C 60 NWs are expected to be applicable for electrodes of organic thick film solar cells.

  10. Kinetics of the homogeneous exchange of alpha-lactalbumin adsorbed on titanium oxide surface.

    Science.gov (United States)

    Bentaleb, A; Haïkel, Y; Voegel, J C; Schaaf, P

    1998-06-05

    The homogeneous exchange process whereby alpha-lactalbumine molecules adsorbed on hydrophilic titanium oxide particles are replaced by alpha-lactalbumine molecules in solution has been investigated by means of a 125I radio-labeling technique, alpha-lactalbumine is a compact and highly negatively charged protein, making this study complementary to previous work devoted to the general understanding of the exchange mechanisms of adsorbed proteins on solid surfaces. The isotherm of alpha-lactalbumine exhibits bimodal adsorption shape, and the exchange process whereby adsorbed proteins are replaced by new incoming ones from the bulk solution has been studied at both the upper and the lower plateau of the isotherm. In the upper plateau the exchange process was found to be of first order with respect to the bulk molecules, and the release rate constant was equal to 0.914 L. mol-1.s-1. This behavior is identical to what has been observed with other proteinic systems. In the lower plateau domain, in contrast, the protein release process is independent of the concentration of proteins in the bulk, but the release rates are higher than the pure desorption rates. This constitutes, to our knowledge, a behavior that never before has been observed and that remains to be explained.

  11. Metallofullerenes as fuel cell electrocatalysts: a theoretical investigation of adsorbates on C59Pt.

    Science.gov (United States)

    Gabriel, Margaret A; Genovese, Luigi; Krosnicki, Guillaume; Lemaire, Olivier; Deutsch, Thierry; Franco, Alejandro A

    2010-08-28

    Nano-structured electrode degradation in state-of-the-art polymer electrolyte membrane fuel cells (PEMFCs) is one of the main shortcomings that limit the large-scale development and commercialization of this technology. During normal operating conditions of the fuel cell, the PEMFC lifetime tends to be limited by coarsening of the cathode's Pt-based catalyst and by corrosion of the cathode's carbon black support. Because of their chemical properties, metallofullerenes such as C(59)Pt may be more electrochemically stable than the Pt/C mixture. In this paper we investigate, by theoretical methods, the stability of oxygen reduction reaction (ORR) adsorbates on the metallofullerene C(59)Pt and evaluate its potential as a PEMFC fuel cell catalyst.

  12. a.c. conductance study of polycrystal C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Yan Feng [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Wang Yening [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Huang Yineng [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Gu Min [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Zhang Qingming [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Shen Huimin [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure

    1995-06-05

    The a.c. (1C{sub 60} polycrystal (grain size 30 nm) has been studied from 100 to 350 K. Below 150 K, the a.c. conductance is nearly proportional to the temperature and frequency. This is proposed to be due to the hopping of localized states around the Fermi level. Above 200 K, the a.c. conductance exhibits a rapid increase with temperature, and shows a thermally activated behaviour with an activation energy of 0.389 eV below a certain temperature and 0.104 eV above it. A frequency dependent conductance at a fixed temperature is also obtained with a power law {sigma} similar {omega}{sup s} (s{approx}0.8). For a sample of normal grain size, we have measured a peak near 250 K and a much smaller conductance. These results indicate that the defective na ture of our sample (small grain size, disorder or impurities) plays an important role for the transport properties. The existence of nanocrystals in the sample may give rise to localized states and improve its a.c. conductance. The two activation energies can be attributed to the coexistence of the crystalline and amorphous phases of C{sub 60}. ((orig.)).

  13. Density functional study the interaction of oxygen molecule with defect sites of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Qi Xuejun [State Key Laboratory of Coal Combustion, Wuhan 430074 (China); Guo Xin, E-mail: guoxin@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Wuhan 430074 (China); Zheng Chuguang [State Key Laboratory of Coal Combustion, Wuhan 430074 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The defect sites existed on the graphite surface create active sites and enhance the reactivity of carbonaceous material. Black-Right-Pointing-Pointer Oxygen molecule more favor chemisorbed on the graphene surface contains defect sites than the perfect surface. Black-Right-Pointing-Pointer The single active oxygen atom adsorbed on the defect surfaces, it completely insert into the surface. - Abstract: The present article reports a theoretical study of oxygen interacted with graphene surface containing defect sites on the atomic level by employing the density functional theory combined with the graphene cluster model. It was founded that oxygen molecule prefers to be chemisorbed on the graphene surface containing defect sites compared to the perfect surface. The adsorption energy of O{sub 2} on the double defect site is about 2.5 times as large as that on the perfect graphene surface. Moreover, the oxygen molecule interacts with S-W defect site gives rise to stable epoxy structure, which pulling the carbon atom outward from the original site in the direction perpendicular to the surface. If the oxygen molecule is adsorbed on the single vacancy site, two C-O bonds are formed on the graphene surface. However, when the oxygen molecule is chemisorbed on the double vacancy site, the oxygen atoms substitute the missing carbon atom's position in the carbon plane and form a hexagonal structure on the graphene network. The results indicate that single active oxygen atom approaches the defect site, it's completely adsorbed in the plane and high energy is released. In all cases, the interaction of an oxygen atom with defect surface involves an exothermic process. The defect site creates active sites on the surface of graphene and produces catalytic effects during the process of oxidation of carbonaceous materials.

  14. Quantitative relationship between adsorbed amount of solute and solvent composition

    International Nuclear Information System (INIS)

    Wang Yan; Geng Xindu; Zebolsky, Don M.

    2003-01-01

    A new adsorption isotherm that relates the amount of solute adsorbed to the solvent concentration is proposed. The new equation is derived from Geng and Shi's stoichiometric displacement model for adsorption (SDM-A). The obtained equation may be simplified to an expression containing two parameters. The equation with two parameters, valid for low concentrations of solute, is a logarithmically linear relationship. The intercept contains a thermodynamic equilibrium constant of the solute displacing solvent from the adsorbent. The slope is the negative value of the stoichiometric displacement parameter (Z), the average total number of solvent molecules displaced from an active site on the adsorbent and from the solute. Tests with a homologous series of aromatic alcohols by frontal analysis in reversed phase liquid chromatography demonstrate that experimental results fit the equation well

  15. Photochemical dynamics of surface oriented molecules

    International Nuclear Information System (INIS)

    Ho, W.

    1992-01-01

    The period 8/01/91-7/31/92 is the first year of a new project titled ''Photochemical Dynamics of Surface Oriented Molecules'', initiated with DOE Support. The main objective of this project is to understand the dynamics of elementary chemical reactions by studying photochemical dynamics of surface-oriented molecules. In addition, the mechanisms of photon-surface interactions need to be elucidated. The strategy is to carry out experiments to measure the translational energy distribution, as a function of the angle from the surface normal, of the photoproducts by time-of-flight (TOF) technique by varying the photon wavelength, intensity, polarization, and pulse duration. By choosing adsorbates with different bonding configuration, the effects of adsorbate orientation on surface photochemical dynamics can be studied

  16. Graphene symmetry-breaking with molecular adsorbates: modeling and experiment

    Science.gov (United States)

    Groce, M. A.; Hawkins, M. K.; Wang, Y. L.; Cullen, W. G.; Einstein, T. L.

    2012-02-01

    Graphene's structure and electronic properties provide a framework for understanding molecule-substrate interactions and developing techniques for band gap engineering. Controlled deposition of molecular adsorbates can create superlattices which break the degeneracy of graphene's two-atom unit cell, opening a band gap. We simulate scanning tunneling microscopy and spectroscopy measurements for a variety of organic molecule/graphene systems, including pyridine, trimesic acid, and isonicotinic acid, based on density functional theory calculations using VASP. We also compare our simulations to ultra-high vacuum STM and STS results.

  17. Adsorption behavior of sulfur-containing amino acid molecule on transition metal surface studied by S K-edge NEXAFS

    International Nuclear Information System (INIS)

    Yagi, S.; Matsumura, K.; Nakano, Y.; Ikenaga, E.; Sardar, S.A.; Syed, J.A.; Soda, K.; Hashimoto, E.; Tanaka, K.; Taniguchi, M.

    2003-01-01

    Adsorption behavior of a sulfur-containing amino acid L-cysteine molecule on transition metal surface have been investigated by S K-edge near-edge X-ray absorption fine structure. The L-cysteine molecule for first adsorption layer was found to dissociate on polycrystalline nickel surface, whereas molecularly adsorbed on copper surface at room temperature. Most of the L-cysteine molecules have been dissociated on nickel surface in annealing condition up to 353 K. On the other hand, the L-cysteine molecule did not dissociate on copper surface and the elongation of the S-C bonding occurred at 353 K

  18. A new alternative adsorbent for the removal of cationic dyes from aqueous solution

    Directory of Open Access Journals (Sweden)

    T. Santhi

    2016-09-01

    Full Text Available Adsorption of Malachite green (MG and Methylene blue (MB from aqueous solutions on low cost adsorbent prepared from Annona squmosa seed (CAS is studied experimentally. Results obtained indicate that the removal efficiency of Malachite green and Methylene blue at 27 ± 2 °C exceeds 75.66% and 24.33% respectively, and that the adsorption process is highly pH-dependent. Results showed that the optimum pH for dye removal is 6.0. The amount of dye adsorbed from aqueous solution increases with the increase of the initial dye concentration. Smaller adsorbent particle adds to increase the percentage removal of Malachite green and Methylene blue. The equilibrium data fitted well to the Langmuir model (R2 > 0.97 and the adsorption kinetic followed the pseudo-second-order equation (R2 > 0.99. The maximum adsorption capacities of MG, MB on CAS are 25.91 mg g−1 and 08.52 mg g−1 respectively. These results suggest that A. squmosa seed is a potential low-cost adsorbent for the dye removal from industrial wastewater. The adsorption capacity of CAS on MG is greater than MB.

  19. Band mapping of surface states vs. adsorbate coverage

    International Nuclear Information System (INIS)

    Rotenberg, E.; Kevan, S.D.; Denlinger, J.D.; Chung, Jin-Wook

    1997-01-01

    The theory of electron bands, which arises from basic quantum mechanical principles, has been the cornerstone of solid state physics for over 60 years. Simply put, an energy band is an electron state in a solid whose energy varies with its momentum (similar to, but with a more complicated dependence than, how a free electron's energy is proportional to its momentum squared). Much attention over the last 15 years has been given to the study of band structure of surfaces and interfaces, especially as the applications of these two-dimensional systems have become increasingly important to industry and science. The ultraESCA endstation at beamline 7.01 at the Advanced Light Source was developed for very high-energy - (∼50 meV) and angular - ( 12 photons/sec) makes the detailed study of the evolution of bands possible. The authors are interested in learning how, when one forms a chemical bond between a metal and an overlaying atom or molecule, the resulting charge transfer to or from the adsorbate affects the surface bands. In some cases of interest, intermediate coverages lead to different band structure than at the extremes of clean and saturated surfaces. Surfaces of tungsten are particularly interesting, as their atomic geometry has been shown to be exquisitely sensitive to both the surface vibrational and electronic properties. In this study, the authors looked at the surface bands of tungsten ((110) surface), as a function both of coverage and mass of overlaying atoms. The adsorbed atoms were hydrogen and the alkali atoms lithium and cesium

  20. Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents

    Directory of Open Access Journals (Sweden)

    Guangyan Tian

    2018-01-01

    Full Text Available Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT composite adsorbents by a one-step in-situ carbonization process with natural starch (St as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB, methyl violet (MV, and malachite green (MG dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT–Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste.

  1. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  2. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    Science.gov (United States)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-09-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu2+ and Ni2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu2+ is four times higher than Ni2+ ions.

  3. On interface dipole layers between C60 and Ag or Au

    NARCIS (Netherlands)

    Veenstra, Sjoerd; Heeres, A.; Hadziioannou, G.; Sawatzky, G.A.; Jonkman, H.T.

    2002-01-01

    C60 layers on polycrystalline Ag and Au are studied by photoelectron spectroscopy. At these metal/C60 interfaces an electron transfer occurs from the metal to the lowest unoccupied orbital of C60. We found in the case of the polycrystalline Ag/C60 interface a dipolar layer with its associated

  4. Black molecular adsorber coatings for spaceflight applications

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  5. The interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation

    International Nuclear Information System (INIS)

    Purtov, K V; Burakova, L P; Puzyr, A P; Bondar, V S

    2008-01-01

    Nanodiamonds synthesized by detonation have been found not to immobilize the ring form of pUC19 plasmid DNA. Linear pUC19 molecules with blunt ends, prepared by restriction of the initial ring form of pUC19 DNA, and linear 0.25-10 kb DNA fragments are adsorbed on nanodiamonds. The amount of adsorbed linear DNA molecules depends on the size of the molecules and the size of the nanodiamond clusters

  6. Epitaxial growth of 3C-SiC by using C{sub 60} as a carbon source; Untersuchungen zum epitaktischen Wachstum von 3C-SiC bei Verwendung einer C{sub 60}-Kohlenstoffquelle

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Sascha

    2006-01-15

    Within this work epitaxial 3C-SiC-films were grown on Si(001) substrates and on ion beam synthesized 3C-SiC(001) pseudo substrates. A rather new process was used which is based on the simultaneous deposition of C60 and Si. In order to set up the necessary experimental conditions an ultra-high vacuum chamber has been designed and built. A RHEED system was used to examine SiC film growth in-situ. Using the described technique 3C-SiC films were grown void-free on Si(001) substrates. Deposition rates of C60 and Si were chosen adequately to maintain a Si:C ratio of approximately one during the deposition process. It was shown that stoichiometric and epitaxial 3C-SiC growth with the characteristic relationship (001)[110]Si(001)[110]3C-SiC could be achieved. TEM investigations revealed that the grown 3C-SiC films consist of individual grains that extend from the Si substrate to the film surface. Two characteristic grain types could be identified. The correlation between structure and texture of void-free grown 3C-SiC films and film thickness was studied by X-ray diffraction (XRD). Pole figure measurements showed that thin films only contain first-order 3C-SiC twins. With higher film thickness also second-order twins are found which are located as twin lamellae in grain type 2. Improvement of polar texture with increasing film thickness couldn't be observed in the investigated range of up to 550 nm. On ion beam synthesized 3C-SiC pseudo substrates homoepitaxial 3C-SiC growth could be demonstrated for the first time by using a C{sub 60} carbon source. In respect to the crystalline quality of the grown films the surface quality of the used substrates was identified as a crucial factor. Furthermore a correlation between the ratio of deposition rates of C{sub 60} and Si and 3C-SiC film quality could be found. Under silicon-rich conditions, i.e. with a Si:C ratio of slightly greater one, homoepitaxial 3C-SiC layer-by-layer growth can be achieved. Films grown under these

  7. C59N+ and C69N+: isoelectronic heteroanalogues of C60 and C70

    International Nuclear Information System (INIS)

    Lamparth, I.; Nuber, B.; Schick, G.; Skiebe, A.; Groesser, T.; Hirsch, A.

    1995-01-01

    Fragmentation reactions in the mass spectrometer were used to generate the first characterized nitrogen heterofullerene ions C 59 N + and C 69 N + from regioselectively synthesized oligoiminofullerenes. During this process one carbon atom in the fullerene core is removed and replaced with a nitrogen atom. C 59 N + has almost the same structure as the isoelectronic C 60 . (orig.)

  8. Beyond PCBM: understanding the photovoltaic performance of blends of indene-C{sub 60} multiadducts with poly(3-hexylthiophene)

    Energy Technology Data Exchange (ETDEWEB)

    Nardes, Alexandre M.; Ferguson, Andrew J.; Larsen, Ross E.; Maturova, Klara; Graf, Peter A.; Kopidakis, Nikos [National Renewable Energy Laboratory, Golden, CO (United States); Whitaker, James B.; Larson, Bryon W.; Boltalina, Olga V.; Strauss, Steven H. [Department of Chemistry, Colorado State University, Fort Collins, CO (United States)

    2012-10-10

    The effect of functionalization of the C{sub 60} cage with multiple indene groups in relation to the dynamics of photogenerated species in blends with poly(3-hexylthiophene) (P3HT) and the performance of P3HT:indene-C{sub 60} photovoltaic devices is reported. Despite the systematic decrease of the electron affinity of the acceptor with the number of additions, exciton dissociation is efficient in blends of P3HT with all three indene-C{sub 60} derivatives. By replacing the prototypical acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) with mono-indene-C{sub 60} (ICMA) or a sample of a mixture of bis-indene-C{sub 60} regioisomers (ICBA) the power conversion efficiency is enhanced, predominantly due to an increase in the open-circuit voltage that originates from the lower electron affinity of the indene-C{sub 60} acceptor. The use of an acceptor sample that represents a mixture of tris-indene-C{sub 60} (ICTA) regioisomers results in a reduction of the short-circuit current density, fill factor, and open-circuit voltage of the photovoltaic device. The electron mobility in ICTA domains is ca. a factor 10 lower than in ICMA and ICBA. Density functional theory calculations of the LUMO energies in ICTA isomers demonstrate that energetic disorder caused by the presence of regioisomers is unlikely to be responsible for the low electron mobility in ICTA. The observed deterioration in device performance is attributed to the formation of small ICTA clusters ''coated'' in insulating indene units that reduce electronic coupling between the molecules and cause the low electron mobility in ICTA domains. These findings indicate that while multiple additions to a fullerene cage provide a facile methodology for controlling the energy levels, they may have limited success in improving OPV device performance. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Exohedral M–C{sub 60} and M{sub 2}–C{sub 60} (M = Pt, Pd) systems as tunable-gap building blocks for nanoarchitecture and nanocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Özdamar, Burak; Boero, Mauro, E-mail: mauro.boero@ipcms.unistra.fr; Massobrio, Carlo; Felder-Flesch, Delphine; Le Roux, Sébastien, E-mail: sebastien.leroux@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, University of Strasbourg and CNRS, UMR 7504, 23 Rue du Loess, BP43, F-67034 Strasbourg (France)

    2015-09-21

    Transition metal–fullerenes complexes with metal atoms bound on the external surface of C{sub 60} are promising building blocks for next-generation fuel cells and catalysts. Yet, at variance with endohedral M@C{sub 60}, they have received a limited attention. By resorting to first principles simulations, we elucidate structural and electronic properties for the Pd–C{sub 60}, Pt–C{sub 60}, PtPd–C{sub 60}, Pd{sub 2}–C{sub 60}, and Pt{sub 2}–C{sub 60} complexes. The most stable structures feature the metal atom located above a high electron density site, namely, the π bond between two adjacent hexagons (π-66 bond). When two metal atoms are added, the most stable configuration is those in which metal atoms still stand on π-66 bonds but tends to clusterize. The electronic structure, rationalized in terms of localized Wannier functions, provides a clear picture of the underlying interactions responsible for the stability or instability of the complexes, showing a strict relationship between structure and electronic gap.

  10. The state of physically adsorbed substances in microporous adsorbents

    International Nuclear Information System (INIS)

    Fomkin, A.A.

    1987-01-01

    Xe, Kr, Ar, CF 3 Cl, CH 4 adsorption in NaX microporous zeolite of 0.98 Na 2 OxAl 2 O 3 x2.36SiO 2 x0.02H 2 O is studied. Some properties of adsorbates (density, coefficients of expansion, enthalpy, heat capacity) are determined and discussed. The adsorbate in the microporous adsorbent is shown to be a particular state of a substance. Liniarity of adsorption isosteres and sharp changes during isosteric heat capacity of the adsorbate points to the fact that in microporous adsorbents phase transformations of the second type are possible

  11. Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix

    International Nuclear Information System (INIS)

    Xu Xin; Tian Bozhi; Zhang Song; Kong Jilie; Zhao Dongyuan; Liu Baohong

    2004-01-01

    The highly ordered mesoporous niobium oxides fabricated by self-adjusted synthesis have been used as immobilization matrices of heme proteins including Cytochrome c (Cyt C) and horseradish peroxidase (HRP) for their large surface areas, narrow pore size distributions and good biocompatibility. The assembling process was investigated by cyclic voltammetry, amperometry and potential step chronoamperometry in details. Niobium oxide matrices with different structural features were templated with the surfactants and the selectivity of these hosts to specific protein characteristics was determined. It was observed that proteins could be readily assembled onto the mesoporous films with detectable retention of bioactivity. The Nb 2 O 5 matrix with a tailored pore size and counterpoised surface charge to that of hemes allowed for a maximum adsorption capacity of biomolecules. The adsorbed redox molecules exhibited direct electrochemical behavior and gave a pair of well-defined quasi-reversible cyclic voltammetric peaks, indicating that the mesoporous niobium oxide matrix could effectively promote the direct electron transfer between the protein redox site adsorbed and the electrode surface. The midpoint redox potentials of adsorbed Cyt-c and HRP were 14 and -122 mV versus SCE, respectively. Furthermore, the immobilized HRP onto Nb 2 O 5 derived electrode presented good bioactivity and thus was fabricated as an amperometric biosensor for the response of hydrogen peroxide in the range from 0.1 μM to 0.1 mM

  12. Magnetic susceptibility of oxygen adsorbed on the surface of spherical and fibrous activated carbon.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Kawamura

    2009-02-01

    Full Text Available The magnetic susceptibilities of oxygen adsorbed on the surface of bead-shaped activated carbon and activated carbon fibers were evaluated as a function of temperature between 4.2 K and 300 K, and found to exhibit a sharp peak at around 50 K. This implies that the adsorbed oxygen molecules form an antiferromagnetic state. The relation between the susceptibility and the adsorbed mass suggest that the thickness of the adsorbed oxygen is thin enough to consider a two-dimensional structure for bead–shaped activated carbon and carbon fibers across the fiber axis but thick enough to regard it as three-dimensional along the fiber axis. The result is discussed with reference to the study on one-dimensional oxygen array.

  13. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-01-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu 2+ and Ni 2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu 2+ is four times higher than Ni 2+ ions. - Highlights: • An amine type adsorbent from abaca/polyester nonwoven fabric was synthesized. • Pre-irradiation method was used in grafting glycidyl methacrylate on nonwoven fabric. • Radiation-induced grafting was performed with monomer in emulsion state. • The calculated adsorption capacity for Cu 2+ is four times higher than Ni 2+ ions. • Grafted adsorbent can remove Cu 2+ faster than a chemically similar commercial resin

  14. Crystal and molecular structure of new fullerides (Ph4P)2C60Hal (Hal = Br, I) and (Ph4As)2C60Cl

    International Nuclear Information System (INIS)

    Gritsenko, V.V.; D'yachenko, O.A.; Shilov, G.V.; Spitsyn, N.G.; Yagubskij, E h.B.

    1997-01-01

    New stable on air fullerides (Ph 4 P) 2 C 60 Hal (Hal = Br, I) and (Ph 4 As) 2 C 60 Cl were synthesized and their crystal structure were determined. On the basis of their relative crystallochemical analysis fullerides obtained were shown to be isostructural. They are described by general formula (Ph 4 X) 2 C 60 Hal (X = H, As; Hal = Cl, Br, I) and crystallized in triclinic system. Anions C 60 - and Hal - occupy the centre-symmetrical positions, cations (PH 4 P) + and (Ph 4 As) + occupy the general positions. The main parameters of molecular structure are presented

  15. Influence of intraperitoneal therapy with mitomycin C adsorbed on activated carbon on anastomotic and wound healing in rats

    NARCIS (Netherlands)

    Jansen, M; Jansen, PL; Fass, J; Langejurgen, E; Forsch, S; Tietze, L; Schumpelick, [No Value

    In an effort to prevent intraperitoneal dissemination of gastric carcinoma, local chemotherapy with mitomycin C adsorbed to activated carbon (MMC-CH) has been implemented. Results of clinical studies showed improved survival and a reduced systemic toxicity after the use of prophylactic treatment

  16. Low energy electron-initiated ion-molecule reactions of ribose analogues

    International Nuclear Information System (INIS)

    Mozejko, P.

    2003-01-01

    Recent experiments in which plasmid DNA samples were bombarded with low energy ( 2 O, DNA bases, and sugar-phosphate backbone analogues. To this end, the cyclic molecule tetrahydrofuran, and its derivatives, provide useful models for the sugar-like molecules contained in the backbone of DNA. In addition to LEE induced dissociation by processes such as dissociative electron attachment (DEA), molecules may be damaged by ions and neutral species of non-thermal energies created by LEE in the surrounding environment. In this contribution, we investigate with electron stimulated desorption techniques, LEE damage to films of desoxy-ribose analogues in the presence of various molecular coadsorbates, that simulate changes in local molecular environment. In one type of experiments tetrahydrofuran is deposited onto multilayer O2. A desorbed signal of OH - indicates ion-molecule reactions of the type O - + C 4 H 8 O -> OH - + C 4 H 7 O, where the O - was formed initially by DEA to O 2 . Further electron stimulated desorption measurements for tetrahydrofuran and derivatives adsorbed on H 2 O, Kr, N 2 O and CH 3 OH will be presented and discussed

  17. In the search of an electron transfer between π-donors and C60: the bis-linking of tetrathiafulvalene (TTF) to C60

    International Nuclear Information System (INIS)

    Hudhomme, P.; Rabreau, J.M.; Cariou, M.; Jubault, M.; Gorgues, A.

    1998-01-01

    In order to realize the bis-linking of tetrathiafulvalene (TTF) to one or two C 60 , and to reach the dyad compounds 1 and 2, the [4+2] Diels-Alder reactions of C 60 with orthoquinodimethanic derivatives of 1,3-dithioles 5a,b or TTF 9 are studied. (orig.)

  18. Third-order nonlinearities and structural features in Langmuir-Blodgett films of 1-benzyl-9-hydrofullerene-60

    International Nuclear Information System (INIS)

    Shihong Ma; Liying Liu; Xingze Lu

    1995-01-01

    Third-order nonlinear susceptibilities χ xxxx (3) (-3ω; ω, ω, ω) have been deduced by measuring third-harmonic generation in Langmuir-Blodgett (LB) films of 1-benzyl-9-hydrofullerene-60 (C 60 -Be). The structural features of the condensed layer at the air-water interface and LB films of the C 60 -Be were investigated by small angle x-ray diffraction (SAXD) and optical measurements. The third-order nonlinear susceptibilities (χ (3) ) were obtained by measuring the THG intensities in LB films of C 60 -Be and comparing with that of CS 2 used as the reference. The value of χ xxxx (3) (2.1 x 10 -11 esu) was deduced at a 65 nm thick films. The χ (3) is attributed to a three-photon near resonance at the energy level of 29410 cm -1 . A new-type of two-chain amphiphilic molecule 1,10-bistearyl-4,6,13, 15-tetra-18-nitrogencrown-6 (NC) was used as insert material to construct mixed C 60 -Be/NC LB films. Our π-A, UV-visible absorption and SAXD measurements showed that the structural improvement in the mixed C 60 -Be/NC LB films was realized by insertion of the C 60 -Be molecules between the two hydrophobic chains of the NC molecules

  19. Synthesis and enhanced neuroprotective activity of C60-based ebselen derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.-F. [Huazhong Univ. of Science and Technology, Dept. of Chemistry, Wuhan (China); Hubei Univ., Ministry of Education Key Lab. for the Synthesis and Application of Organic Functional Molecules, Wuhan (China); Guan, W.-C. [Huazhong Univ. of Science and Technology, Dept. of Chemistry, Wuhan (China)], E-mail: wcguan04@yahoo.com.cn; Ke, W.-S. [Hubei Univ., College of Life Science, Wuhan (China)

    2007-03-15

    A C{sub 60}-based ebselen derivative 4 was synthesized through the cycloaddition of C{sub 60} with the azide (3) containing the ebselen component. It was obtained in a four-step synthesis starting from 2-(chloroseleno)benzoyl chloride and 2-(2-aminoethoxy)ethanol in 53% yield (based on consumed C{sub 60}). Its structure was characterized by {sup 1}H NMR, {sup 13}C NMR, IR, UV, and FAB-MS. To verify that the C{sub 60}-based ebselen derivative 4 had enhanced antioxidative and neuroprotective activity, the C{sub 60} derivative 5 and the ebselen derivative 6 were selected to treat cortical neuronal cells using the same procedures as with the C{sub 60}-based ebselen derivative 4. The cellular viability of different derivative treatment groups was estimated by LDH leakage assay and MTT assay. At the same final concentration (30 {mu}mol/L), the results showed that the antioxidative and protective potencies of the C{sub 60}-based ebselen derivative 4 (MTT (OD) 0.340 {+-} 0.035, LDH release (UL{sup -1}) 4.80 {+-} 0.16) against H{sub 2}O{sub 2}-mediated neuronal injury have an advantage over those of C{sub 60} derivative 5 (MTT (OD) 0.297 {+-} 0.036, LDH release (UL{sup -1}) 5.37 {+-} 0.31) and ebselen derivative 6 (MTT (OD) 0.267 {+-} 0.027, LDH release (UL{sup -1}) 5.85 {+-} 0.26). Correspondingly, the GPX activity of 4 (1.62 U/{mu}mol) was higher than that of 5 (0.77 U/{mu}mol) and 6 (1.24 U/{mu}mol). These findings demonstrate that the incorporation of two components with similar biological activity (C{sub 60} component and ebselen component) may be a desirable way of obtaining a new and more biologically effective C{sub 60}-based compound. (author)

  20. Synthesis and enhanced neuroprotective activity of C60-based ebselen derivatives

    International Nuclear Information System (INIS)

    Liu, X.-F.; Guan, W.-C.; Ke, W.-S.

    2007-01-01

    A C 60 -based ebselen derivative 4 was synthesized through the cycloaddition of C 60 with the azide (3) containing the ebselen component. It was obtained in a four-step synthesis starting from 2-(chloroseleno)benzoyl chloride and 2-(2-aminoethoxy)ethanol in 53% yield (based on consumed C 60 ). Its structure was characterized by 1 H NMR, 13 C NMR, IR, UV, and FAB-MS. To verify that the C 60 -based ebselen derivative 4 had enhanced antioxidative and neuroprotective activity, the C 60 derivative 5 and the ebselen derivative 6 were selected to treat cortical neuronal cells using the same procedures as with the C 60 -based ebselen derivative 4. The cellular viability of different derivative treatment groups was estimated by LDH leakage assay and MTT assay. At the same final concentration (30 μmol/L), the results showed that the antioxidative and protective potencies of the C 60 -based ebselen derivative 4 (MTT (OD) 0.340 ± 0.035, LDH release (UL -1 ) 4.80 ± 0.16) against H 2 O 2 -mediated neuronal injury have an advantage over those of C 60 derivative 5 (MTT (OD) 0.297 ± 0.036, LDH release (UL -1 ) 5.37 ± 0.31) and ebselen derivative 6 (MTT (OD) 0.267 ± 0.027, LDH release (UL -1 ) 5.85 ± 0.26). Correspondingly, the GPX activity of 4 (1.62 U/μmol) was higher than that of 5 (0.77 U/μmol) and 6 (1.24 U/μmol). These findings demonstrate that the incorporation of two components with similar biological activity (C 60 component and ebselen component) may be a desirable way of obtaining a new and more biologically effective C 60 -based compound. (author)

  1. Solvent-free functionalization of fullerene C{sub 60} and pristine multi-walled carbon nanotubes with aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Calera, Itzel J. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico); Meza-Laguna, Victor [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Gromovoy, Taras Yu. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Chávez-Uribe, Ma. Isabel [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico)

    2015-02-15

    Highlights: • Pristine multi-walled carbon nanotubes were functionalized with aromatic amines. • The amines add onto nanotube defects, likewise they add onto fullerene C{sub 60}. • The addition takes place at elevated temperature and without organic solvents. • Functionalized nanotubes were characterized by a number of instrumental techniques. - Abstract: We employed a direct one-step solvent-free covalent functionalization of solid fullerene C{sub 60} and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180–250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, {sup 13}C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C{sub 60} molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C{sub 60}, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  2. Physical properties of superconducting and ferromagnetic materials based on C60

    International Nuclear Information System (INIS)

    Thompson, J.D.; Sparn, G.; Diederich, F.; Gruener, G.; Holczer, K.; Kaner, R.B.; Whetten, R.L.; Allemand, P.M.; Chen, Q.; Wudl, F.

    1991-01-01

    We present results of magnetization and pressure measurements on recently discovered superconductors K 3 C 60 and Rb 3 C 60 , as well as ferromagnetic C 60 TDAE, and discuss the nature of the ground state suggested by these studies

  3. Rb-intercalated C{sub 60} compounds studied by Inverse Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Finazzi, M; Brambilla, A; Biagioni, P; Cattoni, A; Duo, L; Ciccacci, F; Braicovich, L [INFM and Dip di Fisica del Politecnico di Milano, Milano (Italy); Giovanelli, L; Goldoni, A [ELETTRA Basovizza (Italy)

    2004-07-01

    Full text: Since the discovery of superconductivity in alkali-doped solid C{sub 60}, the electronic structure of the host material (C{sub 60}) and the doped compounds (A{sub x}C{sub 60}, where A is an alkali metal), has been the subject of a considerable amount of work, both theoretical and experimental. The spectroscopic investigations of the alkali-doped C{sub 60} compounds has been mainly focussed on the valence states, while much less information is available on the unoccupied states. In particular, inverse photoemission data on the complete set of stable Rb{sub x}C{sub 60} compounds was, so far, still missing. We have performed Inverse Photoemission (IPE) spectroscopy on Rb{sub x}C{sub 60} compounds (x = 1, 3, 4, 6). IPE spectra were obtained using a band-pass photon detector (hv = 9.4 eV, FWHM = 0.7 eV) and scanning the kinetic energy of the electrons impinging on the sample. Rb was evaporated on C{sub 60} films (thickness = 6-12 atomic layers) grown in situ on a Cu(100) substrate. The temperature of the substrate was kept equal to T = 100 deg C, which is lower than the C{sub 60} sublimation temperature. The amount of Rb was checked by measuring the intensity of the C1s and Rb3d photoemission lines. After the required amount of Rb had been deposited, the samples were annealed to distillate the desired stable phase.

  4. The adsorption effect of C6H5 on density of states for double wall carbon nanotubes by tight binding model

    International Nuclear Information System (INIS)

    Fathalian, A.

    2012-01-01

    A theoretical approach based on a tight-binding model is developed to study the effects of the adsorption of finite concentrations of C 6 H 5 gas molecules on double-walled carbon nanotube (DWCNT) electronic properties. To obtain proper hopping integrals and random on-site energies for the case of one molecule adsorption, the local density of states for various hopping integrals and random on-site energies are calculated. Since C 6 H 5 molecule is a donor with respect to the carbon nanotubes and their states should appear near the conduction band of the system, effects of various hopping integral deviations and on-site energies for one molecule adsorption are considered to find proper hopping and on-site energies consistent with expected n-type semiconductor. We found that adsorption of C 6 H 5 gas molecules could lead to a (8.0)-(20.0) DWCNT n-type semiconductor. The width of impurity adsorbed gas states in the density of states could be controlled by adsorbed gas concentration.

  5. Adsorption of alcohols and fatty acids onto hydrogenated (a-C:H) DLC coatings

    Science.gov (United States)

    Simič, R.; Kalin, M.; Kovač, J.; Jakša, G.

    2016-02-01

    Information about the interactions between lubricants and DLC coatings is scarce, despite there having been many studies over the years. In this investigation we used ToF-SIMS, XPS and contact-angle analyses to examine the adsorption ability and mechanisms with respect to two oiliness additives, i.e., hexadecanol and hexadecanoic acid, on an a-C:H coating. In addition, we analyzed the resistance of the adsorbed films to external influences like solvent cleaning. The results show that both molecules adsorb onto surface oxides and hydroxides present on the initial DLC surface and shield these structures with their hydrocarbon tails. This makes the surfaces less polar, which is manifested in a smaller polar component of the surface energy. We also showed that ultrasonic cleaning in heptane has no significant effect on the quantity of adsorbed molecules or on their chemical state. This not only shows the relatively strong adsorption of these molecules, but also provides useful information for future experimental work. Of the two examined molecules, the acid showed a greater adsorption ability than the alcohol, which explains some of the previously reported better tribological properties in the case of the acid with respect to the alcohol.

  6. In-Silico Study Of Water Soluble C60-Fullerene Derivatives And Different Drug Targets

    Directory of Open Access Journals (Sweden)

    Mohammad Teimouri

    2015-08-01

    Full Text Available Fullerene C60 is a unique carbon molecule that adopts a sphere shape. It has been proved that fullerene and some of its derivatives several disease targets. Fullerene itself is insoluble in water. So fullerene application is hindered in medical field. In this study a literature search was performed and all derivatives were collected. The fullerene binding protein previously reported in literature were also retrieved from protein databank. The docking study were performed with fullerene derivatives and its binding proteins. The selected proteins include Voltage-Gated Potassium Channel estrogenic 17beta-hydroxysteroid dehydrogenase and monoclonal anti-progesterone antibody. The binding affinity and binding free energy were computed for these proteins and fullerene derivatives complexes. The binding affinity and binding free energy calculation of the co-crystal ligands were also carried out. The results show the good fitting of fullerene derivatives in the active site of different proteins. The binding affinities and binding free energies of fullerene derivatives are better. The present study gives a detail information about the binding mode of C60 derivatives. The finding will be helpful in fullerene-based drug discovery and facilitate the efforts of fighting many diseases.

  7. Improved spectrophotometric analysis of fullerenes C60 and C70 in high-solubility organic solvents.

    Science.gov (United States)

    Törpe, Alexander; Belton, Daniel J

    2015-01-01

    Fullerenes are among a number of recently discovered carbon allotropes that exhibit unique and versatile properties. The analysis of these materials is of great importance and interest. We present previously unreported spectroscopic data for C60 and C70 fullerenes in high-solubility solvents, including error bounds, so as to allow reliable colorimetric analysis of these materials. The Beer-Lambert-Bouguer law is found to be valid at all wavelengths. The measured data were highly reproducible, and yielded high-precision molar absorbance coefficients for C60 and C70 in o-xylene and o-dichlorobenzene, which both exhibit a high solubility for these fullerenes, and offer the prospect of improved extraction efficiency. A photometric method for a C60/C70 mixture analysis was validated with standard mixtures, and subsequently improved for real samples by correcting for light scattering, using a power-law fit. The method was successfully applied to the analysis of C60/C70 mixtures extracted from fullerene soot.

  8. Heat transfer between adsorbate and laser-heated hot electrons

    International Nuclear Information System (INIS)

    Ueba, H; Persson, B N J

    2008-01-01

    Strong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e.g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy (heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough

  9. Stop C. difficile Infections PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2012-03-06

    This 60 second PSA is based on the March 2012 CDC Vital Signs report. C. difficile is a germ that causes diarrhea linked to 14,000 deaths in the US each year. This podcast helps health care professionals learn how to prevent C. difficile infections.  Created: 3/6/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 3/6/2012.

  10. Aromatic C-nitrosation of a bioactive molecule. Nitrosation of minoxidil.

    Science.gov (United States)

    González-Jiménez, Mario; Arenas-Valgañón, Jorge; Calle, Emilio; Casado, Julio

    2011-10-26

    Minoxidil (2,4-diamino-6-(piperidin-1'-yl)pyrimidine N(3)-oxide; CASRN 38304-91-5) is a bioactive molecule with several nitrosatable groups widely used as an antihypertensive and antialopecia agent. Here the nitrosation of minoxidil was investigated. The conclusions drawn are as follows: (i) In the pH = 2.3-5.0 range, the minoxidil molecule undergoes aromatic C-nitrosation by nitrite. The dominant reaction was C-5 nitrosation through a mechanism that appears to consist of an electrophilic attack on the nitrosatable substrate by H(2)NO(2)(+)/NO(+), followed by a slow proton transfer; (ii) the reactivity of minoxidil as a C-nitrosatable substrate proved to be 7-fold greater than that of phenol, this being attributed to the preferred para- and ortho-orientations of the two -NH(2) groups at positions 2 and 4 of the minoxidil molecule, which activate electrophilic substitution in the C-5 position through their mesomeric effect. The N-nitrosominoxidil resulting from the nitrosation could be potentially harmful to the minoxidil users.

  11. Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel

    2009-05-07

    Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.

  12. The synthesis of a new type adsorbent for the removal of toxic gas by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Okamoto, Jiro; Sugo, Takanobu

    1990-01-01

    A new type of adsorbent containing sulfuric acid group for the removal of ammonia gas was synthesized by radiation-induced graft polymerization of styrene onto fibrous and nonwoven type polypropylene followed by sulufonation with chlorosulfonic acid. The rate of the adsorption of ammonia gas by H-type adsorbent is independent of the ion-exchange capacity. The amount of ammonia gas adsorbed by the chemical adsorption was dependent on the ion-exchange capacity of H-type fibrous adsorbent and was kept constant value in spite of the equilibrium pressure of ammonia gas. Cu(II)- and Ni(II)-types fibrous adsorbent were prepared by the ion exchange reaction of Na-type fibrous adsorbent with metal nitrate solutions. Although, the rate of adsorption of ammonia gas by metal-type fibrous adsorbent is lower than that of H-type adsorbent, the amount of ammonia gas adsorbed increases compared to H-type adsorbent with the same ion exchange capacity. It was related to the highest coordination number of metal ion. The ratio of the number of ammonia molecules adsorbed chemically and the number of metal ion adsorbed in fibrous adsorbent was 4 for Cu-type and 6 for Ni-type fibrous adsorbent, respectively. (author)

  13. Extraction and Determination of Pb(II by Organic Functionalisation of Graphenes Adsorbed on Surfactant Coated C18 in Environmental Sample

    Directory of Open Access Journals (Sweden)

    A. Moghimi

    2013-11-01

    Full Text Available A novel, simple, sensitive and effective method has been developed for preconcentration of lead. This solid-phase extraction adsorbent was synthesized by functionalization of graphenes with covalently linked N-methyl-glycine and 3, 4-dihydroxybenzaldehyde onto the surfaces of graphite. The method is based on selective chelation of Pb (II on surfactant coated C18, modified with functionalization of graphenes (graphene-f-OH. The adsorbed ions were then eluted with 4 ml of 4 M nitric acid and determined by flame atomic absorption spectrometry (FAAS at 283.3 for Pb. The influence of flow rates of sample and eluent solutions, pH, breakthrough volume, effect of foreign ions were investigated on chelation and recovery. 1.5 g of surfactant coated C18 adsorbs 40 mg of the functionalization of graphenes (graphene-f-OH base which in turn can retain15.2±0.8mg of each of the two ions. The limit of detection (3σ for Pb(II was found to be 3.20 ng l -1. The enrichment factor for both ions is 100. The mentioned method was successfully applied on the determination of Pb in different water samples.

  14. Extraction and Determination of Pb(II by Organic Functionalisation of Graphenes Adsorbed on Surfactant Coated C18 in Environmental Sample

    Directory of Open Access Journals (Sweden)

    A. Moghimi

    2014-05-01

    Full Text Available A novel, simple, sensitive and effective method has been developed for preconcentration of lead. This solidphase extraction adsorbent was synthesized by functionalization of graphenes with covalently linked N-methyl-glycine and 3, 4-dihydroxybenzaldehyde onto the surfaces of graphite. The method is based on selective chelation of Pb (II on surfactant coated C18, modified with functionalization of graphenes (graphene-f-OH. The adsorbed ions were then eluted with 4 ml of 4 M nitric acid and determined by flame atomic absorption spectrometry (FAAS at 283.3 for Pb. The influence of flow rates of sample and eluent solutions, pH, breakthrough volume, effect of foreign ions were investigated on chelation and recovery. 1.5 g of surfactant coated C18 adsorbs 40 mg of the functionalization of graphenes (graphene-f-OH base which in turn can retain15.2±0.8mg of each of the two ions. The limit of detection (3σ for Pb(II was found to be 3.20 ng l -1. The enrichment factor for both ions is 100. The mentioned method was successfully applied on the determination of Pb in different water samples

  15. Spectra of elementary excitations of fullerenes C60 and electron irradiation effect

    International Nuclear Information System (INIS)

    Gordeev, Yu.S.; Mikushkin, V.M.; Shnitov, V.V.

    2000-01-01

    The electron-stimulated changes in the spectra of the fullerenes C 60 elementary excitations are determined. They are manifested in decreasing the π-plasmon energy, the forbidden zone width, the HOMO-LUMO transition energy and also in smoothing the corresponding peculiarities of the spectra. The observed red shifts are connected with collectivization of the part of the π-electrons, formation of chemically-bound neighbouring molecules (polymerization) and with the corresponding increase in the part of the sp 3 -hybridized electrons. The spectra of the characteristic energy losses of the fullerene electrons, unperturbed by the polymerization process, are measured. The multipole structure of the (σ + π) plasmon and the exciton peculiarity, which manifests high sensitivity to the electron impact and may be used for the fullerene initial structure characterization, is identified [ru

  16. Kinetic energies of charged fragments resulting from multifragmentation and asymmetric fission of the C{sub 60} molecule in collisions with monocharged ions (2-130 keV)

    Energy Technology Data Exchange (ETDEWEB)

    Rentenier, A; Bordenave-Montesquieu, D; Moretto-Capelle, P; Bordenave-Montesquieu, A [Laboratoire CAR-IRSAMC, UMR 5589 CNRS - Universite Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex (France)

    2003-04-28

    Multifragmentation and asymmetric fission (AF) of the C{sub 60} molecule induced by H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +} and He{sup +} ions at medium collision energies (2-130 keV) are considered. Momenta and kinetic energies of C{sub n}{sup +} fragment ions (n = 1- 12) are deduced from an analysis of time-of-flight spectra. In multifragmentation processes, momenta are found to be approximately constant when n > 2, a behaviour which explains that the most probable kinetic energy, as well as the width of the kinetic energy distributions, is found to be inversely proportional to the fragment size n; both momenta and kinetic energies are independent of the velocity and nature of the projectile, and hence of the energy deposit. A specific study of the AF shows that the kinetic energies of C{sub 2}{sup +}, C{sub 4}{sup +} and C{sub 6}{sup +} fragments are also independent of the collision velocity and projectile species; a quantitative agreement is found with values deduced from kinetic energy release measurements by another group in electron impact experiments, and the observed decrease when the mass of the light fragment increases is also reproduced. A quantitative comparison of AF and multifragmentation for the n = 2, 4 and 6 fragment ions shows that kinetic energies in AF exceed that in multifragmentation, a result which explains the oscillations observed when momenta or kinetic energies of fragments are plotted against the n-value. The AF yield is also found to scale with the energy deposit in the collision velocity range extending below the velocity at the maximum of the electronic stopping power; except for protons, it remains negligible with respect to multifragmentation as soon as the total energy deposit exceeds about 100 eV.

  17. Transmission properties of C60 ions through micro- and nano-capillaries

    International Nuclear Information System (INIS)

    Tsuchida, Hidetsugu; Majima, Takuya; Tomita, Shigeo; Sasa, Kimikazu; Narumi, Kazumasa; Saitoh, Yuichi; Chiba, Atsuya; Yamada, Keisuke; Hirata, Koichi; Shibata, Hiromi; Itoh, Akio

    2013-01-01

    We apply the capillary beam-focusing method for the C 60 fullerene projectiles in the velocity range between 0.14 and 0.2 a.u. We study the C 60 transmission properties through two different types of capillaries: (1) borosilicate glass microcapillary with an outlet diameter of 5.5 μm, and (2) Al 2 O 3 multi-capillary foil with a pore size of about 70 nm and a high aspect ratio of about 750. We measured the transmitted particle composition by using the electrostatic deflection method combined with the microchannel plate imaging technique. For the experiments with the single microcapillary, the main transmission component is found to be primary C 60 beams that are focused in the area equal to the capillary outlet diameter. Minor components are charge-exchanged C 60 ions and charged or neutral fragments (fullerene-like C 60-2m and small C n particles), and their fractions decrease with decreasing the projectile velocity. It is concluded that the C 60 transmission fraction is considerably high for both types of the capillaries in the present velocity range

  18. Imaging and manipulation of a polar molecule on Ag(111)

    DEFF Research Database (Denmark)

    Lin, R.; Braun, K.F.; Tang, H.

    2001-01-01

    A scanning tunneling microscope (STM) was applied to image and laterally manipulate isolated phosphangulene molecules on Ag(111) at 6 K. Atomic-resolution images clearly revealed three characteristic types of appearances (three-lobed, fish and bump shape) for the adsorbed molecules, which could...

  19. Observing single molecule chemical reactions on metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Emory, S. R. (Steven R.); Ambrose, W. Patrick; Goodwin, P. M. (Peter M); Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  20. Optical and photoelectrical studies of gold nanoparticle-decorated C{sub 60} films

    Energy Technology Data Exchange (ETDEWEB)

    Dmitruk, N.L., E-mail: dmitruk@isp.kiev.u [Institute for Physics of Semiconductors, National Academy of Sciences of Ukraine, 45 Nauki Prospect, Kyiv 03028 (Ukraine); Borkovskaya, O.Yu.; Mamykin, S.V.; Naumenko, D.O. [Institute for Physics of Semiconductors, National Academy of Sciences of Ukraine, 45 Nauki Prospect, Kyiv 03028 (Ukraine); Meza-Laguna, V. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, A. P. 70-186, C. P. 04510 Mexico D.F. (Mexico); Basiuk Golovataya-Dzhymbeeva, E.V. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico (UNAM), Circuito exterior S/N Ciudad Universitaria, A. P. 70-186, C. P. 04510 Mexico D.F. (Mexico); Lee, I. Puente [Facultad de Quimica, UNAM, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2010-01-01

    Optical and photoelectrical studies were performed on octane-1,8-dithiol cross-linked fullerene films, with supported gold nanoparticles (C{sub 60}-DT-Au). According to high-resolution transmission electron microscopy observations, the average size of obtained gold nanoparticles was about 5 nm, and the shape was spherical. The comparative investigation of optical properties of pristine and cross-linked with octane-1,8-dithiol C{sub 60} films, decorated with gold nanoparticles, found the difference in the extinction coefficient spectra, which was observed also in the photocurrent spectra of barrier heterostructure Au/C{sub 60}/Si. The analysis of dark current-voltage characteristics for Au/C{sub 60}/Si heterostructures showed that the model for them includes the barrier at the C{sub 60}/Si interface and internal barriers in the C{sub 60} layer, caused by the trapping centers. The hopping mechanism of the current transport in the C{sub 60} layer was supplemented with the Poole-Frenkel emission process on these centers, with the barrier height greater for the fullerene C{sub 60} film cross-linked with octane-1,8-dithiol.

  1. DC Characterisation of C60 Whiskers and Nanowhiskers

    DEFF Research Database (Denmark)

    Larsson, Michael; Kjelstrup-Hansen, Jakob; Lucyszyn, Stepan

    2007-01-01

    C60 whiskers exhibit increasing conductivity with decreasing diameter. At diameters of 1 mm and below, a single-crystal structure predominates, and enhanced electrical characteristics are expected; however, no supporting data exists in the literature. Here, results of four-point probe measurements......, indicating strong potential for use in organic electronic applications of the future. Repeated current cycling in air is observed to promote sample degradation, possibly due to progressive oxidation of the carbon structure. A micromachined four-point probe is also used to try to establish non...... on C60 whiskers and nanowhiskers with diameters in the range 650 nm to 1.3 mm are reported for the first time. Samples are attached to pre-patterned planar and raised electrodes using FIB-deposited tungsten. A low resistivity of 3 Wcm is measured in air, on a C60 whisker having a diameter of 650 nm...

  2. Effects of carboxylic acids on nC60 aggregate formation

    International Nuclear Information System (INIS)

    Chang Xiaojun; Vikesland, Peter J.

    2009-01-01

    The discovery that negatively charged aggregates of C 60 fullerene (nC 60 ) are stable in water has raised concerns regarding the potential environmental and health effects of these aggregates. In this work, we show that nC 60 aggregates produced by extended mixing in the presence of environmentally relevant carboxylic acids (acetic acid, tartaric acid, citric acid) have surface charge and morphologic properties that differ from those produced by extended mixing in water alone. In general, aggregates formed in the presence of these acids have a more negative surface charge and are more homogeneous than those produced in water alone. Carboxylic acid identity, solution pH, and sodium ion concentration, which are all intricately coupled, play an important role in setting the measured surface charge. Comparisons between particle sizes determined by analysis of TEM images and those obtained by dynamic light scattering (DLS) indicate that DLS results require careful evaluation when used to describe nC 60 aggregates. - The effects of carboxylic acids on the formation of nC 60 aggregates are discussed

  3. Biodistribution and tumor uptake of C60(OH)x in mice

    International Nuclear Information System (INIS)

    Ji Zhiqiang; Sun Hongfang; Wang Haifang; Xie Qunying; Liu Yuangfang; Wang Zheng

    2006-01-01

    Radiolabeling of fullerol, 125 I-C 60 (OH) x , was performed by the traditional chloramine-T method. The C-I covalent bond in I-C 60 (OH) x was characterized by X-ray photoelectron spectroscopy (XPS) that was sufficiently stable for in vivo study. Laser light scattering spectroscopy clearly showed that C 60 (OH) x aggregated to large nanoparticle clumps with a wide range of distribution. The clumps formed were also visualized by transmission electron microscope (TEM). We examined the biodistribution and tumor uptake of C 60 (OH) x in five mouse bearing tumor models, including mouse H22 hepatocarcinoma, human lung giantcellcarcinoma PD, human colon cancer HCT-8, human gastric cancer MGC803, and human OS732 osteosarcoma. The accumulation ratios of 125 I-C 60 (OH) x in mouse H22 hepatocarcinoma to that in normal muscle tissue (T/N) and blood (T/B) at 1, 6, 24 and 72 h, reveal that 125 I-C 60 (OH) x gradually accumulates in H22 tumor, and retains for a quite long period (e.g., T/N 3.41, T/B 3.94 at 24 h). For the other four tumor models, the T/N ratio at 24 h ranges within 1.21-6.26, while the T/B ratio ranges between 1.23 and 4.73. The accumulation of C 60 (OH) x in tumor is mostly due to the enhanced permeability and retention effect (EPR) and the phagocytosis of mononuclear phagocytes. Hence, C 60 (OH) x might serve as a photosensitizer in the photodynamic therapy of some kinds of tumor

  4. Electronic States of IC60BA and PC71BM

    International Nuclear Information System (INIS)

    Sheng Chun-Qi; Wang Peng; Shen Ying; Li Wen-Jie; Li Hong-Nian; Zhang Wen-Hua; Zhu Jun-Fa; Lai Guo-Qiao

    2013-01-01

    We investigate the electronic states of IC 60 BA and PC 71 BM using first-principles calculations and photoelectron spectroscopy (PES) measurements. The energy level structures for all possible isomers are reported and compared with those of C 60 , C 70 and PC 61 BM. The attachment of the side chains can raise the LUMO energies and decrease the HOMO-LUMO gaps, and thus helps to increase the power-conversion efficiency of bulk heterojunction solar cells. In the PES studies, we prepared IC 60 BA and PC 71 BM films on Si:H(111) substrates to construct adsorbate/substrate interfaces describable with the integer charge-transfer (ICT) model. Successful measurements then revealed that one of the most important material properties for an electron acceptor, the energy of the negative integer charge-transfer state (E ICT− ), is 4.31 eV below the vacuum level for PC 71 BM. The E ICT− of IC 60 BA is smaller than 4.14 eV

  5. Solution and solid state NMR studies of the structure and dynamics of C60 and C70

    International Nuclear Information System (INIS)

    Johnson, R.D.; Yannoni, C.S.; Salem, J.; Meijer, G.; Bethune, D.S.

    1991-01-01

    This paper investigates the structure and dynamics of C 60 and C 70 with 13 C NMR spectroscopy. In solution, high-resolution spectra reveal that C 60 has a single resonance at 143 ppm, indicating a strained, aromatic system with high symmetry. This is strong evidence for a C 60 soccer ball geometry. A 2D NMR INADEQUATE experiment on 13 C-enriched C 70 reveals the bonding connectivity to be a linear string, in firm support of the proposed rugby ball structure with D 5h symmetry, and furnishes resonance assignments. Solid state NMR spectra of C 60 at ambient temperatures yield a narrow resonance, indicative of rapid molecular reorientation. Variable temperature T 1 measurements show that the rotational correlation time is ∼ 10 - 9 s at 230 K. At 77 K, this time increases to more than 1 ms, and the 13 C NMR spectrum of C 60 is a powder pattern due to chemical shift anisotropy (tensor components 220, 186, 40 ppm). At intermediate temperatures a narrow peak is superimposed on the powder pattern, suggesting a distribution of barriers to molecular motion in the sample, or the presence of an additional phase in the solid state. A Carr-Purcell dipolar experiment on C 60 in the solid state allows the first precise determination of the C 60 bond lengths: 1.45 and 1.40 Angstrom

  6. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1981-08-01

    Over a dozen prospective adsorbents for krypton were studied and evaluated with respect to adsorption capacity and cost for dissolver off-gas streams from nuclear reprocessing plants. Results show that, at subambient temperature (-40 0 to -80 0 C), the commercially available hydrogen mordenite has sufficient adsorptive capacity to be the most cost-effective material studied. Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite. The results indicate that a solid adsorbent system is feasible and competitive with other developing systems whih utilize fluorocarbon absorption and cryogenic distillation

  7. New Identifications of the CCH Radical in Planetary Nebulae: A Connection to C60?

    Science.gov (United States)

    Schmidt, D. R.; Ziurys, L. M.

    2017-12-01

    New detections of CCH have been made toward nine planetary nebulae (PNe), including K4-47, K3-58, K3-17, M3-28, and M4-14. Measurements of the N = 1 → 0 and N = 3 → 2 transitions of this radical near 87 and 262 GHz were carried out using the new 12 m and the Sub-Millimeter Telescope (SMT) of the Arizona Radio Observatory (ARO). The presence of fine and/or hyperfine structure in the spectra aided in the identification. CCH was not observed in two PNe which are sources of C60. The planetary nebulae with positive detections represent a wide range of ages and morphologies, and all had previously been observed in HCN and HNC. Column densities for CCH in the PNe, determined from radiative transfer modeling, were N tot(CCH) ˜ 0.2-3.3 × 1015 cm-2, corresponding to fractional abundances with respect to H2 of f ˜ 0.2-47 × 10-7. The abundance of CCH was found to not vary significantly with kinematic age across a time span of ˜10,000 years, in contrast to predictions of chemical models. CCH appears to be a fairly common constituent of PNe that are carbon-rich, and its distribution may anti-correlate with that of C60. These results suggest that CCH may be a product of C60 photodestruction, which is known to create C2 units. The molecule may subsequently survive the PN stage and populate diffuse clouds. The distinct, double-horned line profiles for CCH observed in K3-45 and M3-28 indicate the possible presence of a bipolar flow oriented at least partially toward the line of sight.

  8. Nucleation of C60 on ultrathin SiO2

    Science.gov (United States)

    Conrad, Brad; Groce, Michelle; Cullen, William; Pimpinelli, Alberto; Williams, Ellen; Einstein, Ted

    2012-02-01

    We utilize scanning tunneling microscopy to characterize the nucleation, growth, and morphology of C60 on ultrathin SiO2 grown at room temperature. C60 thin films are deposited in situ by physical vapor deposition with thicknesses varying from <0.05 to ˜1 ML. Island size and capture zone distributions are examined for a varied flux rate and substrate deposition temperature. The C60 critical nucleus size is observed to change between monomers and dimers non-monotonically from 300 K to 500 K. Results will be discussed in terms of recent capture zone studies and analysis methods. Relation to device fabrication will be discussed. doi:10.1016/j.susc.2011.08.020

  9. Removal of VOCs from air stream with corrugated sheet as adsorbent

    Directory of Open Access Journals (Sweden)

    Rabia Arshad

    2016-10-01

    Full Text Available A large proportional of volatile organic compounds (VOCs are released into the environment from various industrial processes. The current study elucidates an application of a simple adsorption phenomenon for removal of three main types of VOCs, i.e., benzene, xylene and toluene, from an air stream. Two kinds of adsorbents namely acid digested adsorbent and activated carbon are prepared to assess the removal efficiency of each adsorbent in the indoor workplace environment. The results illustrate that the adsorbents prepared from corrugated sheets were remarkably effective for the removal of each pollutant type. Nevertheless, activated carbon showed high potential of adsorbing the targeted VOC compared to the acid digested adsorbent. The uptake by the adsorbents was in the following order: benzene > xylene > toluene. Moreover, maximum adsorption of benzene, toluene and xylene occurred at 20 °C and 1.5 cm/s for both adsorbents whereas minimum success was attained at 30 °C and 1.0 cm/s. However, adsorption pattern are found to be similar for each of the the three aromatic hydrocarbons. It is concluded that the corrugated sheets waste can be a considered as a successful and cost-effective solution towards effective removal of targeted pollutants in the air stream.

  10. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Science.gov (United States)

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  11. Searching for Bio-Precursors and Complex Organic Molecules in Space using the GBT

    Science.gov (United States)

    Cordiner, M.; Charnley, S.; Kisiel, Z.

    2012-01-01

    Using the latest microwave receiver technology, large organic molecules with abundances as low as approx. 10(exp -11) times that of molecular hydrogen are detectable in cold interstellar clouds via their rotational emission line spectra. We report new observations to search for complex molecules, including molecules of possible pre-biotic importance, using the newly-commissioned Kband focal plane array (KFPA) of the NRAO Robert C. Byrd Green Bank Telescope. Spectra are presented of the dense molecular cloud TMC-1, showing strict upper limits on the level of emission from nitrogen-bearing rings pyrimidine, quinoline and iso-quinoline, carbon-chain oxides C60, C70, HC60 and HC70, and the carbon-chain anion C4H-. The typical RMS brightness temperature noise levels we achieved are approx. 1 mK at around 20 GHz.

  12. The T1u x 8 hg Jahn-Teller system - an improved model for the C60-molecule

    International Nuclear Information System (INIS)

    Rough, S.M.; Dunn, J.L.; Bates, C.A.

    1997-01-01

    The ground state of C 60 - gives rise to a T 1u x 8 h g Jahn-Teller (JT) system. A proof is presented showing that the presence of eight active h g modes rather than one makes little difference to the mathematical complexity of this problem compared to the simpler single-mode variant. After showing that the T 1u x 8 h g Jahn-Teller system has the same electronic eigenstates as the T 1u x h g Jahn-Teller system, the inversion splitting and first-order reduction factors are derived. (orig.)

  13. C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects

    Directory of Open Access Journals (Sweden)

    Carroll David L

    2006-12-01

    Full Text Available Abstract We have developed a new method of application of C60 to cultured cells that does not require water-solubilization techniques. Normal and malignant cells take-up C60 and the inherent photoluminescence of C60 is detected within multiple cell lines. Treatment of cells with up to 200 μg/ml (200 ppm of C60 does not alter morphology, cytoskeletal organization, cell cycle dynamics nor does it inhibit cell proliferation. Our work shows that pristine C60 is non-toxic to the cells, and suggests that fullerene-based nanocarriers may be used for biomedical applications.

  14. Adsorption of different amphiphilic molecules onto polystyrene latices.

    Science.gov (United States)

    Jódar-Reyes, A B; Ortega-Vinuesa, J L; Martín-Rodríguez, A

    2005-02-15

    In order to know the influence of the surface characteristics and the chain properties on the adsorption of amphiphilic molecules onto polystyrene latex, a set of experiments to study the adsorption of ionic surfactants, nonionic surfactants and an amphiphilic synthetic peptide on different latex dispersions was performed. The adsorbed amount versus the equilibrium surfactant concentration was determined. The main adsorption mechanism was the hydrophobic attraction between the nonpolar tail of the molecule and the hydrophobic regions of the latex surface. This attraction overcame the electrostatic repulsion between chains and latex surface with identical charge sign. However, the electrostatic interactions chain-surface and chain-chain also played a role. General patterns for the adsorption of ionic chains on charged latex surfaces could be established. Regarding the shape, the isotherms presented different plateaus corresponding to electrostatic effects and conformational changes. The surfactant size also affects the adsorption results: the higher the hydrophilic moiety in the surfactant molecule the lower the adsorbed amount.

  15. Study of Flux Ratio of C60 to Ar Cluster Ion for Hard DLC Film deposition

    International Nuclear Information System (INIS)

    Miyauchi, K.; Toyoda, N.; Kanda, K.; Matsui, S.; Kitagawa, T.; Yamada, I.

    2003-01-01

    To study the influence of the flux ratio of C60 molecule to Ar cluster ion on (diamond like carbon) DLC film characteristics, DLC films deposited under various flux ratios were characterized with Raman spectrometry and Near Edge X-ray Absorption Fine Structure (NEXAFS). From results of these measurements, hard DLC films were deposited when the flux ratio of C60 to Ar cluster ion was between 0.7 and 4. Furthermore the DLC film with constant sp2 content was obtained in the range of the ratio from 0.7 to 4, which contents are lower values than that of conventional films such as RF plasma. DLC films deposited under the ratio from 1 to 4 had hardness from 40 to 45GPa. It was shown that DLC films with stable properties of low sp2 content and high hardness were formed even when the fluxes were varied from 1 to 4 during deposition. It was indicated that this process was useful in the view of industrial application

  16. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    International Nuclear Information System (INIS)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W.P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-01-01

    -flow natural seawater at the Pacific Northwest National Laboratory (PNNL). Fourier Transform Infrared (FTIR) spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, Scanning Electron Microscopy (SEM), and elemental analysis were used to characterize the adsorbent at different stages of adsorbent preparation and treatment. The study can be divided into two parts: (A) investigation of optimal parameters for KOH adsorbent conditioning and (B) investigation of other possible agents for alkali conditioning, including cost analysis on the basis of uranium production. In the first part of the study, tests with simulated seawater containing 8 ppm uranium showed that the uranium adsorption capacity increased with an increase in the KOH concentration and conditioning time and temperature at each of the KOH concentrations used. FTIR and solid state NMR studies indicated that KOH conditioning converts the amidoxime functional groups into more hydrophilic carboxylate. The longer the KOH conditioning time, up to three hours, the higher was the loading capacity from the simulated seawater solution which is composed of only uranyl, sodium, chloride, and carbonate ions. Marine testing with natural seawater, on the other hand, showed that the uranium adsorption capacity of the adsorbent increased with KOH conditioning temperature, and gradually decreased with increasing KOH conditioning time from one hour to three hours at 80 C. This behavior is due to the conversion of amidoxime to carboxylate. The carboxylate groups are needed to increase the hydrophilicity of the adsorbent; however, conversion of a significant amount of amidoxime to carboxylate leads to loss in selectivity toward uranyl ions. Thus, there is an optimum KOH conditioning time for each temperature at which an optimum ratio between amidoxime and carboxylate is reached. For the case of base conditioning with 0.44 M KOH at 80 C, the optimal conditioning time is 1 hour, with respect to the highest uranium loading capacity from

  17. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    -flow natural seawater at the Pacific Northwest National Laboratory (PNNL). Fourier Transform Infrared (FTIR) spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, Scanning Electron Microscopy (SEM), and elemental analysis were used to characterize the adsorbent at different stages of adsorbent preparation and treatment. The study can be divided into two parts: (A) investigation of optimal parameters for KOH adsorbent conditioning and (B) investigation of other possible agents for alkali conditioning, including cost analysis on the basis of uranium production. In the first part of the study, tests with simulated seawater containing 8 ppm uranium showed that the uranium adsorption capacity increased with an increase in the KOH concentration and conditioning time and temperature at each of the KOH concentrations used. FTIR and solid state NMR studies indicated that KOH conditioning converts the amidoxime functional groups into more hydrophilic carboxylate. The longer the KOH conditioning time, up to three hours, the higher was the loading capacity from the simulated seawater solution which is composed of only uranyl, sodium, chloride, and carbonate ions. Marine testing with natural seawater, on the other hand, showed that the uranium adsorption capacity of the adsorbent increased with KOH conditioning temperature, and gradually decreased with increasing KOH conditioning time from one hour to three hours at 80 C. This behavior is due to the conversion of amidoxime to carboxylate. The carboxylate groups are needed to increase the hydrophilicity of the adsorbent; however, conversion of a significant amount of amidoxime to carboxylate leads to loss in selectivity toward uranyl ions. Thus, there is an optimum KOH conditioning time for each temperature at which an optimum ratio between amidoxime and carboxylate is reached. For the case of base conditioning with 0.44 M KOH at 80 C, the optimal conditioning time is 1 hour, with respect to the highest uranium loading capacity from

  18. C-188 cobalt-60 sealed source integrity: source monitoring

    International Nuclear Information System (INIS)

    Defalco, G.M.; Shah, V.

    1995-01-01

    The integrity of C-188 cobalt-60 sealed sources used for radiation processing will be a key factor in the continued industrial acceptance and growth of gamma irradiation technology. Given the public's relatively poor understanding of most nuclear topics and the news media's tendency to sensationalize events, it is appropriate for suppliers and users of gamma technology to be vigilant and conservative regarding the application of cobalt-60 sources to industrial purposes. Nordion's recent decision to extend the optional warranty on its C-188 cobalt-60 sealed source from 15 years to 20 years is based on over 30 years of data generated from its on-going SOURCE SURVEILLANCE PROGRAM. This paper presents an overview of the C-188 SOURCE SURVEILLANCE PROGRAM. (author)

  19. Effect of γ-ray irradiation on adsorbents used in organic waste treatment

    International Nuclear Information System (INIS)

    Unsworth, T.J.; Krishma, R.; Pimblott, S.M.

    2015-01-01

    Radioactive organic liquids (ROLs) are waste that require specific treatment. The Arvia process, developed by Arvia Technology Ltd., combines adsorption of organic material with electrochemical oxidation. This work focuses on the effect of γ-rays on the performance of adsorbents used in the Arvia process. Adsorbents used in this experimental study were provided by Arvia Technology Ltd. Specifically, Nyex 1000, a flake like carbon-based adsorbent, and Nyex 2105, a carbon-based adsorbent with a granular morphology. The γ-ray irradiation experiments were carried out using a Co-60 irradiator. The impact of irradiation on the microstructure, the adsorption capacity and the leaching of the 2 adsorbents were studied. The results show that no significant changes were detected in terms of structure, adsorption capacity and leaching of ions. The results of this paper are promising for the use of Nyex 1000 and Nyex 2105 as adsorbents in electrochemical waste treatment processes which involve high levels of γ-rays. The article is followed by the slides of the presentation

  20. A new polymeric adsorbent developing for uranium recovering and richment from aqueous media

    International Nuclear Information System (INIS)

    Gueler, H.; Aycik, G. A.; Sahiner, N.; Gueven, O.

    1997-01-01

    Using adsorbents is thought to be the most effective method for recovering the low concentrations of uranium in the aqueous media because of their fast and selective uptake of uranium, a sufficient adsorption capacity and high physical and chemical stability against the media. In this study, a new polymeric adsorbent bearing both hydrophilic groups providing swelling in water and amidoxime groups for chelating with uranyl ions (UO 2 ''2+) has been developed and its adsorptive ability for uranium from aqueous media has been investigated. The polymers obtained by irradiating the solution of polyethylene glycol (PEG) in acrylonitrile (AN) are defined as Interpenetrating Polymer Networks (IPNs) and the adsorbent has been obtained by applying the amidoximation reaction to the IPNs with a conversion of % 60 approximately. Kinetics of the conversion reaction of nitrile (CN) group to amidoxime (HONCNH 2 ) group has been studied by reacting with hydroxylamine (NH 2 OH) solution at a molar ratio of NH 2 OH/CN=1.25 in aqueous media at different temperatures, 30,40,50''0C, for 3-4 days. The degree of amidoximation was determined by UO 2 ''2+ ion adsorption and FTIR spectrometer and the UO 2 ''2+ ion adsorption values were found by both UV and gamma spectrometry and also by gravimetry. It was found that the polymeric adsorbent has a very high adsorption ability for uranium (∼ 540 mg U/g IPN/day)

  1. Effect of heavy ion irradiation on C 60

    Science.gov (United States)

    Lotha, S.; Ingale, A.; Avasthi, D. K.; Mittal, V. K.; Mishra, S.; Rustagi, K. C.; Gupta, A.; Kulkarni, V. N.; Khathing, D. T.

    1999-06-01

    Thin films of C 60 were subjected to swift heavy ion irradiation spanning the region from 2 to 11 keV/nm of electronic excitation. Studies of the irradiated films by Raman spectroscopy indicated polymerization and damage of the film with an ion fluence. The ion track radii are estimated for various ions using the Raman data. Photoluminescence spectroscopy of the irradiated film indicated a decrease in the C 60 phase with a dose, and an increase in the intensity at the 590 nm wavelength, which is attributed to an increase in the oxygen content.

  2. Electrical transport through a metal-molecule-metal junction; Transport electrique a travers une jonction metal-molecule-metal

    Energy Technology Data Exchange (ETDEWEB)

    Kergueris, Ch

    1998-12-17

    We investigate the electrical transport through a very few molecules connected to metallic electrodes at room temperature. First, the state of the art in molecular electronics is outlined. We present the most convincing molecular devices reported so far in the literature and the theoretical tools available to analyze the electron transport mechanism through a molecular junction. Second, we describe the use of mechanically controllable break junctions to investigate the electron transport properties through a metal-molecule-metal junction. Two kindsof molecules were adsorbed on the two facing gold electrodes, dodecane-thiol (DT) and bis-thiol-ter-thiophene ({alpha},{omega} T3), that are basically expected to behave as an insulator and as a molecular wire, respectively. In the latter case, we study the chemical reactivity of the molecule and show that {alpha},{omega} T3 is chemically adsorbed on gold electrodes. Current-voltage characteristics of the junction were observed at room temperature. The Gold-DT-Gold junction behaves as a simple metal-insulator-metal junction. On the other hand, the electron transport through a Gold-{alpha},{omega} T3-Gold junction explicitly involves the electronic structure of the molecule which gives rise to step-like features in the current-voltage characteristics. The measured zero bias conductance is interpreted using the scattering theory. At high bias, we discuss two different models: a coherent model where the electron has no time to be completely re-localized in the molecule and a sequential model where the electron is localized in the molecule during the transfer. Finally, we show that the mechanical action of decreasing the inter-electrodes spacing can be used to induce a strong modification of the current-voltage characteristics. (author)

  3. The environmental effect on the radial breathing mode of carbon nanotubes. II. Shell model approximation for internally and externally adsorbed fluids

    Science.gov (United States)

    Longhurst, M. J.; Quirke, N.

    2006-11-01

    We have previously shown that the upshift in the radial breathing mode (RBM) of closed (or infinite) carbon nanotubes in solution is almost entirely due to coupling of the RBM with an adsorbed layer of fluid on the nanotube surface. The upshift can be modeled analytically by considering the adsorbed fluid as an infinitesimally thin shell, which interacts with the nanotube via a continuum Lennard-Jones potential. Here we extend the model to include internally as well as externally adsorbed waterlike molecules, and find that filling the nanotubes leads to an additional upshift of two to six wave numbers. We show that using molecular dynamics, the RBM can be accurately reproduced by replacing the fluid molecules with a mean field harmonic shell potential, greatly reducing simulation times.

  4. Tunneling anisotropic magnetoresistance in C60-based organic spintronic systems

    NARCIS (Netherlands)

    Wang, Kai; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2014-01-01

    C 60 fullerenes are interesting molecular semiconductors for spintronics since they exhibit weak spin-orbit and hyperfine interactions, which is a prerequisite for long spin lifetimes. We report spin-polarized transport in spin-valve-like structures containing ultrathin (<10 nm) C 60 layers,

  5. FLI-1 Flightless-1 and LET-60 Ras control germ line morphogenesis in C. elegans

    Directory of Open Access Journals (Sweden)

    Dentler William L

    2008-05-01

    Full Text Available Abstract Background In the C. elegans germ line, syncytial germ line nuclei are arranged at the cortex of the germ line as they exit mitosis and enter meiosis, forming a nucleus-free core of germ line cytoplasm called the rachis. Molecular mechanisms of rachis formation and germ line organization are not well understood. Results Mutations in the fli-1 gene disrupt rachis organization without affecting meiotic differentiation, a phenotype in C. elegans referred to here as the germ line morphogenesis (Glm phenotype. In fli-1 mutants, chains of meiotic germ nuclei spanned the rachis and were partially enveloped by invaginations of germ line plasma membrane, similar to nuclei at the cortex. Extensions of the somatic sheath cells that surround the germ line protruded deep inside the rachis and were associated with displaced nuclei in fli-1 mutants. fli-1 encodes a molecule with leucine-rich repeats and gelsolin repeats similar to Drosophila flightless 1 and human Fliih, which have been shown to act as cytoplasmic actin regulators as well as nuclear transcriptional regulators. Mutations in let-60 Ras, previously implicated in germ line development, were found to cause the Glm phenotype. Constitutively-active LET-60 partially rescued the fli-1 Glm phenotype, suggesting that LET-60 Ras and FLI-1 might act together to control germ line morphogenesis. Conclusion FLI-1 controls germ line morphogenesis and rachis organization, a process about which little is known at the molecular level. The LET-60 Ras GTPase might act with FLI-1 to control germ line morphogenesis.

  6. Structure determination by photoelectron diffraction of small molecules on surfaces

    International Nuclear Information System (INIS)

    Booth, N.A.

    1998-05-01

    The synchrotron radiation based technique of Photoelectron Diffraction (PhD) has been applied to three adsorption systems. Structure determinations, are presented for each system which involve the adsorption of small molecules on the low index {110} plane of single crystal Cu and Ni substrates. For the NH 3 -Cu(110) system PhD was successful in determining a N-Cu bondlength of 2.05 ± 0.03 A as well as values for the anisotropic vibrational amplitudes of the N and an expansion of the 1st to 2nd Cu substrate layer spacing from the bulk value of 0.08 ± 0.08 A. The most significant and surprising structural parameter determined for this system was that the N atom occupies an asymmetric adsorption site. Rather than being situated in the expected high symmetry atop site the N atom was found to be offset parallel to the surface by 0.37 ± 0.12 A in the [001] azimuth. In studying the glycine-Cu(110) system the adsorption structure of an amino-acid has been quantified. The local adsorption geometries of all the atoms involved in the molecule to surface bond have been determined. The glycine molecule is found to be bonded to the surface via both its amino and carboxylate functional groups. The molecule straddles two [11-bar0] rows of the Cu substrate. The two O atoms are found to be in identical sites both approximately atop Cu atoms on the [11-bar0] rows offset parallel to the surface by 0.80 ± 0.05 A in the [001] azimuth, the O-Cu bondlength was found to be 2.03 ± 0.05 A. The N atom was also found to adsorb in an approximately atop geometry but offset parallel to the surface by 0.24 ± 0.10A in the [11-bar0] direction, the N-Cu bondlength was found to be 2.05± 0.05 A. PhD was unsuccessful in determining the positions of the two C atoms that form a bridge between the two functional groups bonded to the surface due to difficulties in separating the two inequivalent contributions to the final intensity modulation function. For the CN-Ni(110) system both PhD and Near Edge

  7. Computer simulations of material ejection during C{sub 60} and Ar{sub m} bombardment of octane and β-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Palka, G.; Kanski, M.; Maciazek, D. [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Garrison, B.J. [Department of Chemistry, 104 Chemistry Building, Penn State University, University Park, PA 16802 (United States); Postawa, Z., E-mail: zbigniew.postawa@uj.edu.pl [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland)

    2015-06-01

    Molecular dynamics (MD) computer simulations are used to investigate material ejection and fragment formation during keV C{sub 60} and Ar{sub m} (m = 60, 101, 205, 366, 872 and 2953) bombardment of organic solids composed from octane and β-carotene molecules at 0° and 45° impact angle. Both systems are found to sputter efficiently. For the octane system, material removal occurs predominantly by ejection of intact molecules, while fragment emission is a significant ejection channel for β-carotene. A difference in the molecular dimensions is proposed to explain this observation. It has been shown that the dependence of the sputtering yield Y on the primary kinetic energy E and the cluster size n can be expressed in a simplified form if represented in reduced units. A linear and nonlinear dependence of the Y/n on the E/n are identified and the position of the transition point from the linear to nonlinear regions depends on the size of the cluster projectile. The impact angle has a minor influence on the shape of the simplified representation.

  8. The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption

    International Nuclear Information System (INIS)

    Wang Tao; Guo Qing; Liu Yan; Wang Wen-Bo; Sheng Kuang; Ao Zhi-Min; Yu Bin

    2011-01-01

    The atomic and electronic structures of AB-stacking bilayer graphene (BLG) in the presence of H 2 O molecules are investigated by density functional theory calculations. For free-standing BLG, the bandgap is opened to 0.101 eV with a single H 2 O molecule adsorbed on its surface. The perfectly suspended BLG is sensitive to H 2 O adsorbates, which break the BLG lattice symmetry and open an energy gap. While a single H 2 O molecule is adsorbed on the BLG surface with a SiO 2 substrate, the bandgap widens to 0.363 eV. Both the H 2 O molecule adsorption and the oxide substrate contribute to the BLG bandgap opening. The phenomenon is interpreted with the charge transfer process in 2D carbon nanostructures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Direct Modification of Microcrystalline Cellulose with Ethylenediamine for use as Adsorbent for Removal Amitriptyline Drug from Environment.

    Science.gov (United States)

    Bezerra, Roosevelt D S; Leal, Régis C; da Silva, Mateus S; Morais, Alan I S; Marques, Thiago H C; Osajima, Josy A; Meneguin, Andréia B; da S Barud, Hernane; C da Silva Filho, Edson

    2017-11-22

    Cellulose derivatives have been widely used as adsorbents for the removal of micropollutants such as drugs, dyes, and metals, due to their abundance, low cost and non-contaminating nature. In this context, several studies have been performed searching for new adsorbents (cellulose derivatives) efficient at contaminant removal from aqueous solutions. Thus, a new adsorbent was synthesized by chemical modification of cellulose with ethylenediamine in the absence of solvent and applied to the adsorption of amitriptyline (AMI) in aqueous solution. The modification reaction was confirmed by X-ray Diffraction (XRD), elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry/Differential Scanning Calorimeter (TG/DSC), solid state Nuclear Magnetic Resonance of ¹H and 13 C (¹H-NMR and 13 C-NMR). Moreover, the effectiveness of reaction was confirmed by computational calculations using Density Functional Theory (DFT) at level B3LYP/6-31G(d). This adsorption process was influenced by pH, time, concentration, temperature and did not show significant changes due to the ionic strength variation. Through these experiments, it was observed that the maximum adsorption capacity of AMI by CN polymer at 298 K, 300 min, and pH 7 was 87.66 ± 0.60 mg·g -1 .

  10. Direct Modification of Microcrystalline Cellulose with Ethylenediamine for Use as Adsorbent for Removal Amitriptyline Drug from Environment

    Directory of Open Access Journals (Sweden)

    Roosevelt D. S. Bezerra

    2017-11-01

    Full Text Available Cellulose derivatives have been widely used as adsorbents for the removal of micropollutants such as drugs, dyes, and metals, due to their abundance, low cost and non-contaminating nature. In this context, several studies have been performed searching for new adsorbents (cellulose derivatives efficient at contaminant removal from aqueous solutions. Thus, a new adsorbent was synthesized by chemical modification of cellulose with ethylenediamine in the absence of solvent and applied to the adsorption of amitriptyline (AMI in aqueous solution. The modification reaction was confirmed by X-ray Diffraction (XRD, elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR, Thermogravimetry/Differential Scanning Calorimeter (TG/DSC, solid state Nuclear Magnetic Resonance of 1H and 13C (1H-NMR and 13C-NMR. Moreover, the effectiveness of reaction was confirmed by computational calculations using Density Functional Theory (DFT at level B3LYP/6-31G(d. This adsorption process was influenced by pH, time, concentration, temperature and did not show significant changes due to the ionic strength variation. Through these experiments, it was observed that the maximum adsorption capacity of AMI by CN polymer at 298 K, 300 min, and pH 7 was 87.66 ± 0.60 mg·g−1.

  11. Mono- and bis(pyrrolo)tetrathiafulvalene derivatives tethered to C60

    DEFF Research Database (Denmark)

    Vico Solano, Marta; Della Pia, Eduardo Antonio; Jevric, Martyn

    2014-01-01

    -functionalized MPTTF/BPTTF derivatives, two different tailor-made amino acids, and C-60. Electronic communication between the MPTTF/BPTTF units and the C-60 moieties was studied by a variety of techniques including cyclic voltammetry and absorption spectroscopy. These solution-based studies indicated no observable...

  12. Recent advances in the discovery of small molecule c-Met Kinase inhibitors.

    Science.gov (United States)

    Parikh, Palak K; Ghate, Manjunath D

    2018-01-01

    c-Met is a prototype member of a subfamily of heterodimeric receptor tyrosine kinases (RTKs) and is the receptor for hepatocyte growth factor (HGF). Binding of HGF to its receptor c-Met, initiates a wide range of cellular signalling, including those involved in proliferation, motility, migration and invasion. Importantly, dysregulated HGF/c-Met signalling is a driving factor for numerous malignancies and promotes tumour growth, invasion, dissemination and/or angiogenesis. Dysregulated HGF/c-Met signalling has also been associated with poor clinical outcomes and resistance acquisition to some approved targeted therapies. Thus, c-Met kinase has emerged as a promising target for cancer drug development. Different therapeutic approaches targeting the HGF/c-Met signalling pathway are under development for targeted cancer therapy, among which small molecule inhibitors of c-Met kinase constitute the largest effort within the pharmaceutical industry. The review is an effort to summarize recent advancements in medicinal chemistry development of small molecule c-Met kinase inhibitors as potential anti-cancer agents which would certainly help future researchers to bring further developments in the discovery of small molecule c-Met kinase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (UNIX VERSION)

    Science.gov (United States)

    Donnell, B.

    1994-01-01

    CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with

  14. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (MACINTOSH VERSION)

    Science.gov (United States)

    Riley, G.

    1994-01-01

    CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with

  15. Application of chitin and zeolite adsorbents for treatment of low level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Moattar, F.; Hayeripour, S.

    2004-01-01

    Two types of shrimp chitin derivatives and two types of Iranian natural zeolite derivates were studied for adsorption and treatment of low-level radioactive liquid waste. Chitin with lowers than 10% and chitosan with higher than 90% deacetylation factor were selected as neutral organic adsorbents. Natural clinoptilolite of Firuzkooh area and Na from derivates of it were selected as natural inorganic adsorbents. The static and dynamic ion exchange experimental results show that the ad adsorption efficiency depend on particle size, Ph, adsorbent type, deacetylation factor ( in chitin adsorbents) and cation type. The best Cs adsorption occurred in Na from clinoptilolite. Nevertheless chitin derivatives, particularly chitosan, are more efficient than zeolite adsorbents for removing of radionuclides such as 137 Cs, 54 Mn, 90 Sr and 60 Co. Adsorption performance was discussed and compared with each other

  16. Synchrotron radiation photoemission spectrum study on K3C60 film

    Institute of Scientific and Technical Information of China (English)

    李宏年; 徐亚伯; 鲍世宁; 李海洋; 何丕模; 钱海杰; 刘风琴; 奎热西·易卜拉欣

    2000-01-01

    K3C60 single crystal film was prepared on the cleaved (111) surface of C60 single crystal. Synchrotron radiation angle-resolved photoemission spectra were measured at normal emission with sample temperature at - 150K. Up to four subpeaks of LUMO-derived band were observed. These sub-peaks exhibit distinct energy dispersions which resemble in general the theoretical ones calculated for K3C60 at low temperature with the so-called one-dimensional disordered structure. But there is large deviation of experimental sub-band intervals from the theoretical values. This result is meaningful for the studies of the physical properties of alkali-doped C60 solids, e.g. the mechanism for superconductivity.

  17. New Antifouling Platform Characterized by Single-Molecule Imaging

    Science.gov (United States)

    2015-01-01

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm2 which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm2 adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm2). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others. PMID:24503420

  18. New antifouling platform characterized by single-molecule imaging.

    Science.gov (United States)

    Ryu, Ji Young; Song, In Taek; Lau, K H Aaron; Messersmith, Phillip B; Yoon, Tae-Young; Lee, Haeshin

    2014-03-12

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm(2) which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm(2) adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm(2)). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others.

  19. A Prediction of the Damping Properties of Hindered Phenol AO-60/polyacrylate Rubber (AO-60/ACM) Composites through Molecular Dynamics Simulation

    Science.gov (United States)

    Yang, Da-Wei; Zhao, Xiu-Ying; Zhang, Geng; Li, Qiang-Guo; Wu, Si-Zhu

    2016-05-01

    Molecule dynamics (MD) simulation, a molecular-level method, was applied to predict the damping properties of AO-60/polyacrylate rubber (AO-60/ACM) composites before experimental measures were performed. MD simulation results revealed that two types of hydrogen bond, namely, type A (AO-60) -OH•••O=C- (ACM), type B (AO-60) - OH•••O=C- (AO-60) were formed. Then, the AO-60/ACM composites were fabricated and tested to verify the accuracy of the MD simulation through dynamic mechanical thermal analysis (DMTA). DMTA results showed that the introduction of AO-60 could remarkably improve the damping properties of the composites, including the increase of glass transition temperature (Tg) alongside with the loss factor (tan δ), also indicating the AO-60/ACM(98/100) had the best damping performance amongst the composites which verified by the experimental.

  20. Scanning tunneling microscopy studies of organic monolayers adsorbed on the rhodium(111) crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Cernota, Paul Davis [Univ. of California, Berkeley, CA (United States)

    1999-08-01

    Scanning Tunneling Microscopy studies were carried out on ordered overlayers on the (111) surface of rhodium. These adsorbates include carbon monoxide (CO), cyclohexane, cyclohexene, 1,4-cyclohexadiene, para-xylene, and meta-xylene. Coadsorbate systems included: CO with ethylidyne, CO with para- and meta-xylene, and para-xylene with meta-xylene. In the case of CO, the structure of the low coverage (2x2) overlayer has been observed. The symmetry of the unit cell in this layer suggests that the CO is adsorbed in the 3-fold hollow sites. There were also two higher coverage surface structures with (√7x√7) unit cells. One of these is composed of trimers of CO and has three CO molecules in each unit cell. The other structure has an additional CO molecule, making a total of four. This extra CO sits on a top site.

  1. Study on the origin of pressure-induced superconductivity of Cs3C60

    International Nuclear Information System (INIS)

    Fujiki, S.; Kubozono, Y.; Takabayashi, Y.; Kashino, S.; Kobayashi, M.; Ishii, K.; Suematsu, H.

    2001-01-01

    Physical properties of bco phase of Cs 3+α C 60 (α=0.0-1.0) and A15 phase of Cs 3 C 60 are studied by X-ray diffraction, ESR, AC susceptibility, resistivity and Raman. The ESR of Cs 300(6) C 60 showed a broad peak of ∼380 G due to conduction electron, while no broad peak was observed in the ESR of bco Cs 3+α C 60 (α≠0.0) and A15 phase. This shows that only bco phase of Cs 3 C 60 is metallic. The AC susceptibility of bco phase of Cs 3.2(3) C 60 and Cs 3.5(1) C 60 showed no superconducting transition above 1.3 K even under high pressure, and the resistivity was 0.52 Ω cm for both samples

  2. Diffuse versus square-well confining potentials in modelling A-C60 atoms

    International Nuclear Information System (INIS)

    Dolmatov, V K; King, J L; Oglesby, J C

    2012-01-01

    A perceived advantage for the replacement of a discontinuous square-well pseudo-potential, which is often used by various researchers as an approximation to the actual C 60 cage potential in calculations of endohedral atoms A-C 60 , by a more realistic diffuse potential is explored. The photoionization of endohedral H-C 60 and Xe-C 60 is chosen as the case study. The diffuse potential is modelled by a combination of two Woods-Saxon potentials. It is demonstrated that photoionization spectra of A-C 60 atoms are largely insensitive to the degree η of diffuseness of the potential borders, in a reasonably broad range of ηs. These spectra are found to be insensitive to discontinuity of the square-well potential as well. Both potentials result in practically identical calculated spectra. New numerical values for the set of square-well parameters, which lead to a better agreement between experimental and theoretical data for A-C 60 spectra, are recommended for future studies. (paper)

  3. Surface-enhanced Raman spectrum of Gly-Gly adsorbed on the silver colloidal surface

    Science.gov (United States)

    Xiaojuan, Yuan; Huaimin, Gu; Jiwei, Wu

    2010-08-01

    Raman and SERS spectra of homodipeptide Gly-Gly and Gly were recorded and compared in this paper, and band assignment for the functional groups contained in these molecules was analyzed in detail. Time-dependent and pH-dependent SERS spectra of Gly-Gly molecule adsorbed on nano-colloidal silver surface were also studied. The time-dependent SERS spectra of Gly-Gly are characterized by the increase in intensity of bands primarily representing the vibrational signatures emanating from the amino and amide moiety of Gly-Gly molecule. It is found that the adsorption style of Gly-Gly on the silver colloid changes as time goes on; at 5 min after adding the sample to the silver colloid, Gly-Gly adsorbs on silver surface firstly through the carboxylate, amino and amide groups, and then the carboxylate group is far away from the silver surface at 10 min to 3 days. The SERS variation of Gly-Gly with the change of pH suggests that the adsorption style is pH-dependent, the different adsorption behavior of the Gly-Gly occurs on silver surface at different pH values.

  4. Electron-Stimulated Desorption of Positive Ions from Methanol Adsorbed on a Solid Ar Substrate

    Science.gov (United States)

    Kawanowa, H.; Hanatani, K.; Gotoh, Y.; Souda, R.

    Electron-stimulated desorption (ESD) of positive ions from weakly physisorbed molecules has been investigated. From methanol adsorbed on a solid Ar substrate, the protonated cluster ions of the type H+(CH3OH)n (n = 1 - 4) are emitted, together with the fragment ions such as CHn+ (n = 0 - 3), H3O+, CHO+, CH3O+, etc. The yields of these ions are markedly enhanced at the smallest coverage and decay steeply with increasing coverage. Coulomb explosion between valence holes confined in adsorbed nanoclusters is responsible for the enhanced ion yields. Very few ions except for H+ are emitted from a thick layer as well as nanoclusters adsorbed directly on a metal substrate due to the delocalization of valence holes.

  5. An in situ XPS study of L-cysteine co-adsorbed with water on polycrystalline copper and gold

    Science.gov (United States)

    Jürgensen, Astrid; Raschke, Hannes; Esser, Norbert; Hergenröder, Roland

    2018-03-01

    The interactions of biomolecules with metal surfaces are important because an adsorbed layer of such molecules introduces complex reactive functionality to the substrate. However, studying these interactions is challenging: they usually take place in an aqueous environment, and the structure of the first few monolayers on the surface is of particular interest, as these layers determine most interfacial properties. Ideally, this requires surface sensitive analysis methods that are operated under ambient conditions, for example ambient pressure x-ray photoelectron spectroscopy (AP-XPS). This paper focuses on an AP-XPS study of the interaction of water vapour and l-Cysteine on polycrystalline copper and gold surfaces. Thin films of l-Cysteine were characterized with XPS in UHV and in a water vapour atmosphere (P ≤ 1 mbar): the structure of the adsorbed l-Cysteine layer depended on substrate material and deposition method, and exposure of the surface to water vapour led to the formation of hydrogen bonds between H2O molecules and the COO- and NH2 groups of adsorbed l-Cysteine zwitterions and neutral molecules, respectively. This study also proved that it is possible to investigate monolayers of biomolecules in a gas atmosphere with AP-XPS using a conventional laboratory Al-Kα x-ray source.

  6. Development of a computationally-designed polymeric adsorbent specific for mycotoxin patulin.

    Science.gov (United States)

    Piletska, Elena V; Pink, Demi; Karim, Kal; Piletsky, Sergey A

    2017-12-04

    Patulin is a toxic compound which is found predominantly in apples affected by mould rot. Since apples and apple-containing products are a popular food for the elderly, children and babies, the monitoring of the toxin is crucial. This paper describes a development of a computationally-designed polymeric adsorbent for the solid-phase extraction of patulin, which provides an effective clean-up of the food samples and allows the detection and accurate quantification of patulin levels present in apple juice using conventional chromatography methods. The developed bespoke polymer demonstrates a quantitative binding towards the patulin present in undiluted apple juice. The polymer is inexpensive and easy to mass-produce. The contributing factors to the function of the adsorbent is a combination of acidic and basic functional monomers producing a zwitterionic complex in the solution that formed stronger binding complexes with the patulin molecule. The protocols described in this paper provide a blueprint for the development of polymeric adsorbents for other toxins or different food matrices.

  7. Equation of motion coupled cluster methods for electron attachment and ionization potential in fullerenes C{sub 60} and C{sub 70}

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran-Nair, Kiran [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70802 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Kowalski, Karol, E-mail: karol.kowalski@pnnl.gov [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O.Box 999, Richland, Washington 99352 (United States); Moreno, Juana; Jarrell, Mark [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70802 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Shelton, William A. [Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2014-08-21

    In both molecular and periodic solid-state systems there is a need for the accurate determination of the ionization potential and the electron affinity for systems ranging from light harvesting polymers and photocatalytic compounds to semiconductors. The development of a Green's function approach based on the coupled cluster (CC) formalism would be a valuable tool for addressing many properties involving many-body interactions along with their associated correlation functions. As a first step in this direction, we have developed an accurate and parallel efficient approach based on the equation of motion-CC technique. To demonstrate the high degree of accuracy and numerical efficiency of our approach we calculate the ionization potential and electron affinity for C{sub 60} and C{sub 70}. Accurate predictions for these molecules are well beyond traditional molecular scale studies. We compare our results with experiments and both quantum Monte Carlo and GW calculations.

  8. INTERACTION OF CARBON DIOXIDE WITH CARBON ADSORBENTS BELOW 400 C

    Energy Technology Data Exchange (ETDEWEB)

    Deitz, V R; Carpenter, F G; Arnold, R G

    1963-06-15

    The adsorption of carbon dioxide on carbon adsorbents (FT carbon, coconut charcoal, acid-washed bone char) and adsorbents containing basic calcium phosphate (hydroxylapatite, bone char, ash of bone char) was studied. Special consideration was given to the pretreatment of the materials. The carbons equilibrated as rapidly as the temperature; the basic calcium phosphates showed a rapid initial adsorption followed by a very slow rate which continued for days. Linear adsorption isotherms were found on FT carbon and the isosteric heats varied slightiy with coverage. The isotherms for the remaining materials had varying curvature and were for the most part in the same sequence as the estimated surface areas. The isosteric heats of carbon dioxide correlated very well with the magnitude of surface hydroxyl groups, an estimate of which was made from the chemical composition. There appeared to be three increasing levels of interaction: (1) pure physical adsorption; (2) an adsorption complex having 'bicarbonate structure'; and (3) an adsorption complex having 'carbonate structure'. (auth)

  9. Highly selective reactions of C(60)Cl(6) with thiols for the synthesis of functionalized [60]fullerene derivatives

    OpenAIRE

    Khakina, Ekaterina A; Yurkova, Anastasiya A; Peregudov, Alexander S; Troyanov, Sergey I; Trush, Vyacheslav V; Vovk, Andrey I; Mumyatov, Alexander V; Martynenko, Vyacheslav M; Balzarini, Jan; Troshin, Pavel A

    2012-01-01

    Chlorofullerene C(60)Cl(6) undergoes highly selective reactions with thiols forming compounds C(60)[SR](5)H with high yields. These reactions open up straightforward synthetic routes to many functionalized fullerene derivatives, e.g. water-soluble compounds showing interesting biological activities.

  10. Synthesis of Zn-MOF incorporating titanium-hydrides as active sites binding H{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongsik, E-mail: jkim40@nd.edu [Department of Chemical and Biomolecular Engineering, University of Notre Dame, 182, Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Ok Kim, Dong; Wook Kim, Dong; Sagong, Kil [Hanwha Chemical Research & Development Center, 6, Shinseong-dong, Yuseong-gu, Daejeon 305-804 (Korea, Republic of)

    2015-10-15

    This paper describes the synthetic effort for a Zn-MOF imparting Ti-H as a preferential binding site potentially capturing H{sub 2} molecules via Kubas-type interaction. The formation mechanism of Ti-H innate to the final material was potentially demonstrated to follow a radical dissociation rather than a β-hydrogen elimination and a C-H reductive elimination. - Graphical abstract: This study details the synthesis and the formation mechanism of Zn-MOF adsorbent site-isolating TiH{sub 3} that can potentially capture H{sub 2} molecules via Kubas-binding mechanism. - Highlights: • OH-functionalized Zn-MOF was employed as a reactive template to site-isolate TiH{sub 3}. • This MOF was post-synthetically modified using a tetracyclohexyl titanium (IV). • This intermediate was hydrogenolyzed to change ligand from cyclohexyl to hydride. • Formation mechanism of TiH{sub 3} was investigated via two control GC–MS experiments. • Final Zn-MOF potentially site-isolating TiH{sub 3} species was used as a H{sub 2} adsorbent.

  11. Theoretical Study of the Charge-Transfer State Separation within Marcus Theory: The C60-Anthracene Case Study.

    Science.gov (United States)

    Volpi, Riccardo; Nassau, Racine; Nørby, Morten Steen; Linares, Mathieu

    2016-09-21

    We study, within Marcus theory, the possibility of the charge-transfer (CT) state splitting at organic interfaces and a subsequent transport of the free charge carriers to the electrodes. As a case study we analyze model anthracene-C60 interfaces. Kinetic Monte Carlo (KMC) simulations on the cold CT state were performed at a range of applied electric fields, and with the fields applied at a range of angles to the interface to simulate the action of the electric field in a bulk heterojunction (BHJ) interface. The results show that the inclusion of polarization in our model increases CT state dissociation and charge collection. The effect of the electric field on CT state splitting and free charge carrier conduction is analyzed in detail with and without polarization. Also, depending on the relative orientation of the anthracene and C60 molecules at the interface, CT state splitting shows different behavior with respect to both applied field strength and applied field angle. The importance of the hot CT in helping the charge carrier dissociation is also analyzed in our scheme.

  12. Electron and photon-beam induced reactions of adsorbed disilane: Low-temperature thin-film growth

    International Nuclear Information System (INIS)

    Bozso, F.; Avouris, Ph.

    1991-01-01

    Electrons and photons of sufficient energy can cause fragmentation and desorption of adsorbed molecules or fragments of them, by inducing electronic excitations to dissociative states. The surface species after such excitations are mostly of highly reactive radical character, which readily react with the substrate and with other molecular or radical species in the adsorbed layer. This paper discusses the adsorption, thermal and electron/photon-beam induced reactions of disilane, oxygen and ammonia on Si(111)-7x7, and the electron/photon-induced growth of silicon, silicon dioxide and silicon nitride films at 100K

  13. Effectiveness Study of Drinking Water Treatment Using Clays/Andisol Adsorbent in Lariat Heavy Metal Cadmium (Cd) and Bacterial Pathogens

    Science.gov (United States)

    Pranoto; Inayati; Firmansyah, Fathoni

    2018-04-01

    Water is a natural resource that is essential for all living creatures. In addition, water also caused of disease affecting humans. The existence of one of heavy metal pollutants cadmium (Cd) in the body of water is an environmental problem having a negative impact on the quality of water resources. Adsorption is one of the ways or methods that are often used for the treatment of wastewater. Clay and allophanic soil were used as Cd adsorbent by batch method. Ceramic filter was used to reduce Cd concentration in the ground water. This study aims to determine the effect of the composition of clay and Allophane, activation temperature and contact time on the adsorption capacity of Cd in the model solution. The optimum adsorption condition and the effectiveness of drinking water treatment in accordance with Regulation of the Minister of Health using clay/Andisol adsorbents in ensnare heavy metals Cd and bacterial pathogens. Identification and characterization of adsorbent is done by using NaF, Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), specific surface area and total acidity specific. The Cd metal concentrations were analysed by atomic absorption spectroscopy. Adsorption isotherms determined by Freundlich and Langmuir equations. Modified water purification technology using ceramic filters are made with a mixture of clay and Andisol composition. The results showed samples of clay and Andisol containing minerals. The optimum condition of adsorption was achieved at 200 °C of activation temperature, 60 minutes of contact time and the 60:40 of clay:Andisol adsorbent composition. Freundlich isotherm represented Cd adsorption on the clay/Andisol adsorbent with a coefficient of determination (R2=0.99) and constant (k=1.59), higher than Langmuir (R2=0.89). The measurement results show the water purification technology using ceramic filters effectively reduce E. coli bacterial and Cd content in the water.

  14. Positron annihilation study of graphite, glassy carbon and C60/C70 fullerene

    International Nuclear Information System (INIS)

    Hasegawa, Masayuki; Kajino, Masahiro; Yamaguchi, Sadae; Iwata, Tadao; Kuramoto, Eiichi; Takenaka, Minoru.

    1992-01-01

    ACAR (Angular Correlation of Annihilation Radiation) and positron lifetime measurements have been made on, HOPG (Highly Oriented Pyrolytic Graphite), isotropic fine-grained graphite, glassy carbons and C 60 /C 70 powder. HOPG showed marked bimodality along the c-axis and anisotropy in ACAR momentum distribution, which stem from characteristic annihilation between 'interlayer' positrons and π-electrons in graphite. ACAR curves of the isotropic graphite and glassy carbons are even narrower than that of HOPG perpendicular to the c-axis. Positron lifetime of 420 and 390 - 480 psec, much longer than that of 221 psec in HOPG, were observed for the isotropic graphite and glassy carbons respectively, which are due to positron trapping in structural voids in them. Positron lifetime and ACAR width (FWHM) can be well correlated to void sizes (1.7 to 5.0 nm) of glassy carbons which have been determined by small angle neutron (SAN) scattering measurements. ACAR curves and positron lifetime of C 60 /C 70 powder agree well with those of glassy carbons. This shows that positron wave functions extend, as in the voids of glassy carbons, much wider than open spaces of the octahedral interstices of the face-centered cubic (FCC) structure of C 60 crystal and strongly suggests positron trapping in the 'soccer ball' vacancy. Possible positron states in the carbon materials are discussed with a simple model of void volume-trapping. Preliminary results on neutron irradiation damage in HOPG are also presented. (author)

  15. Transmission properties of C{sub 60} ions through micro- and nano-capillaries

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Hidetsugu, E-mail: tsuchida@nucleng.kyoto-u.ac.jp [Quantum Science and Engineering Center, Kyoto University, Uji, Kyoto 611-0011 (Japan); Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Majima, Takuya [Quantum Science and Engineering Center, Kyoto University, Uji, Kyoto 611-0011 (Japan); Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Tomita, Shigeo [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Sasa, Kimikazu [Tandem Accelerator Complex, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Narumi, Kazumasa; Saitoh, Yuichi; Chiba, Atsuya; Yamada, Keisuke [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Hirata, Koichi [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565 (Japan); Shibata, Hiromi [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Itoh, Akio [Quantum Science and Engineering Center, Kyoto University, Uji, Kyoto 611-0011 (Japan); Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan)

    2013-11-15

    We apply the capillary beam-focusing method for the C{sub 60} fullerene projectiles in the velocity range between 0.14 and 0.2 a.u. We study the C{sub 60} transmission properties through two different types of capillaries: (1) borosilicate glass microcapillary with an outlet diameter of 5.5 μm, and (2) Al{sub 2}O{sub 3} multi-capillary foil with a pore size of about 70 nm and a high aspect ratio of about 750. We measured the transmitted particle composition by using the electrostatic deflection method combined with the microchannel plate imaging technique. For the experiments with the single microcapillary, the main transmission component is found to be primary C{sub 60} beams that are focused in the area equal to the capillary outlet diameter. Minor components are charge-exchanged C{sub 60} ions and charged or neutral fragments (fullerene-like C{sub 60-2m} and small C{sub n} particles), and their fractions decrease with decreasing the projectile velocity. It is concluded that the C{sub 60} transmission fraction is considerably high for both types of the capillaries in the present velocity range.

  16. CuPc/C60 heterojunction thin film optoelectronic devices

    International Nuclear Information System (INIS)

    Murtaza, Imran; Karimov, Khasan S.; Qazi, Ibrahim

    2010-01-01

    The optoelectronic properties of heterojunction thin film devices with ITO/CuPc/C 60 /Al structure have been investigated by analyzing their current-voltage characteristics, optical absorption and photocurrent. In this organic photovoltaic device, CuPc acts as an optically active layer, C 60 as an electron-transporting layer and ITO and Al as electrodes. It is observed that, under illumination, excitons are formed, which subsequently drift towards the interface with C 60 , where an internal electric field is present. The excitons that reach the interface are subsequently dissociated into free charge carriers due to the electric field present at the interface. The experimental results show that in this device the total current density is a function of injected carriers at the electrode-organic semiconductor surface, the leakage current through the organic layer and collected photogenerated current that results from the effective dissociation of excitons. (semiconductor devices)

  17. SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles.

    Science.gov (United States)

    Chen, Y; Chen, S J; Li, S; Wei, J J

    2015-10-16

    In this study, normal Raman spectra of p—hydroxybenzoic acid (PHBA) powder and its surface—enhanced Raman scattering (SERS) spectra in silver colloidal solutions were measured under near infrared excitation conditions. In theoretical calculation, two models of PHBA adsorbed on the surfaces of silver nanoparticles were established. The Raman frequencies of these two models using density functional theory (DFT) method were calculated, and compared with the experimental results. It was found that the calculated Raman frequencies were in good agreement with experimental values, which indicates that there are two enhanced mechanism physical (electromagnetic, EM) enhancement and chemical (charge—transfer, CT) enhancement, in silver colloidal solutions regarding SERS effect. Furthermore, from high—quality SERS spectrum of PHBA obtained in silver colloids, we inferred that PHBA molecules in silver colloids adsorb onto the metal surfaces through carboxyl at a perpendicular orientation. The combination of SERS spectra and DFT calculation is thus useful for studies of the adsorption—orientation of a molecule on a metal colloid.

  18. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies.

    Science.gov (United States)

    Scivetti, Iván; Persson, Mats

    2017-09-06

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals-HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  19. The Hsp60C gene in the 25F cytogenetic region in Drosophila ...

    Indian Academy of Sciences (India)

    Unknown

    Earlier studies have shown that of the four genes (Hsp60A, Hsp60B, Hsp60C, Hsp60D genes) predicted to encode the conserved Hsp60 family chaperones in Drosophila melanogaster, the ..... C. Genomic organization and the predicted.

  20. Catalytic routes to fuels from C1 and oxygenate molecules

    KAUST Repository

    Wang, Shuai

    2017-02-23

    This account illustrates concepts in chemical kinetics underpinned by the formalism of transition state theory using catalytic processes that enable the synthesis of molecules suitable as fuels from C-1 and oxygenate reactants. Such feedstocks provide an essential bridge towards a carbon-free energy future, but their volatility and low energy density require the formation of new C-C bonds and the removal of oxygen. These transformations are described here through recent advances in our understanding of the mechanisms and site requirements in catalysis by surfaces, with emphasis on enabling concepts that tackle ubiquitous reactivity and selectivity challenges. The hurdles in forming the first C-C bond from C-1 molecules are illustrated by the oxidative coupling of methane, in which surface O-atoms form OH radicals from O-2 and H2O molecules. These gaseous OH species act as strong H-abstractors and activate C-H bonds with earlier transition states than oxide surfaces, thus rendering activation rates less sensitive to the weaker C-H bonds in larger alkane products than in CH4 reactants. Anhydrous carbonylation of dimethyl ether forms a single C-C bond on protons residing within inorganic voids that preferentially stabilize the kinetically-relevant transition state through van der Waals interactions that compensate for the weak CO nucleophile. Similar solvation effects, but by intrapore liquids instead of inorganic hosts, also become evident as alkenes condense within MCM-41 channels containing isolated Ni2+ active sites during dimerization reactions. Intrapore liquids preferentially stabilize transition states for C-C bond formation and product desorption, leading to unprecedented reactivity and site stability at sub-ambient temperatures and to 1-alkene dimer selectivities previously achieved only on organometallic systems with co-catalysts or activators. C-1 homologation selectively forms C-4 and C-7 chains with a specific backbone (isobutane, triptane) on solid

  1. Catalytic routes to fuels from C1 and oxygenate molecules

    KAUST Repository

    Wang, Shuai; Agirrezabal-Telleria, Iker; Bhan, Aditya; Simonetti, Dante; Takanabe, Kazuhiro; Iglesia, Enrique

    2017-01-01

    This account illustrates concepts in chemical kinetics underpinned by the formalism of transition state theory using catalytic processes that enable the synthesis of molecules suitable as fuels from C-1 and oxygenate reactants. Such feedstocks provide an essential bridge towards a carbon-free energy future, but their volatility and low energy density require the formation of new C-C bonds and the removal of oxygen. These transformations are described here through recent advances in our understanding of the mechanisms and site requirements in catalysis by surfaces, with emphasis on enabling concepts that tackle ubiquitous reactivity and selectivity challenges. The hurdles in forming the first C-C bond from C-1 molecules are illustrated by the oxidative coupling of methane, in which surface O-atoms form OH radicals from O-2 and H2O molecules. These gaseous OH species act as strong H-abstractors and activate C-H bonds with earlier transition states than oxide surfaces, thus rendering activation rates less sensitive to the weaker C-H bonds in larger alkane products than in CH4 reactants. Anhydrous carbonylation of dimethyl ether forms a single C-C bond on protons residing within inorganic voids that preferentially stabilize the kinetically-relevant transition state through van der Waals interactions that compensate for the weak CO nucleophile. Similar solvation effects, but by intrapore liquids instead of inorganic hosts, also become evident as alkenes condense within MCM-41 channels containing isolated Ni2+ active sites during dimerization reactions. Intrapore liquids preferentially stabilize transition states for C-C bond formation and product desorption, leading to unprecedented reactivity and site stability at sub-ambient temperatures and to 1-alkene dimer selectivities previously achieved only on organometallic systems with co-catalysts or activators. C-1 homologation selectively forms C-4 and C-7 chains with a specific backbone (isobutane, triptane) on solid

  2. Adsorption of arsenate from aqueous solution by rice husk-based adsorbent

    International Nuclear Information System (INIS)

    Khan, Taimur; Chaudhuri, Malay

    2013-01-01

    Rice husk-based adsorbent (RHBA) was prepared by burning rice husk in a muffle furnace at 400°C for 4 h and adsorption of arsenate by the RHBA from aqueous solution was examined. Batch adsorption test showed that extent of arsenate adsorption depended on contact time and pH. Equilibrium adsorption was attained in 60 min, with maximum adsorption occurring at pH 7. Equilibrium adsorption data were well described by the Freundlich isotherm model. Freundlich constants K f and 1/n were 3.62 and 2, respectively. The RHBA is effective in the adsorption of arsenate from water and is a potentially suitable filter medium for removing arsenate from groundwater at wells or in households.

  3. Search for an interstellar Si2C molecule: A theoretical prediction

    Indian Academy of Sciences (India)

    63, No. 3. — journal of. September 2004 physics pp. 627–631. Search for an interstellar Si2C molecule: A theoretical prediction. SURESH CHANDRA. School of ... top molecule as its electric dipole moment µ lies along the axis of intermediate moment of inertia. Because of differences between the molecular parameters of.

  4. Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer

    Science.gov (United States)

    Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas

    2018-03-01

    First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.

  5. Attosecond time delay in the valence photoionization of C240 versus C60

    International Nuclear Information System (INIS)

    Shi, Kele; Magrakvelidze, Maia; Anstine, Dylan; Chakraborty, Himadri; Madjet, Mohamed

    2015-01-01

    We investigate effects of electron correlations on the attosecond time delay of the photoionization from HOMO and HOMO-1 electrons in C 240 . A comparison with earlier C 60 results assesses the molecular size effect. (paper)

  6. Scaling of C{sub 60} ionization and fragmentation with the energy deposited in collisions with H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +} and He{sup +} ions (2-130 keV)

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, D. [LCAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)]. E-mail: dbm@yosemite.ups-tlse.fr; Moretto-Capelle, P.; Bordenave-Montesquieu, A.; Rentenier, A. [LCAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)

    2001-03-14

    Fragmentation, ionization and C{sub 2} fragment evaporation of the C{sub 60} molecule induced by collisions with H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +} and He{sup +} monocharged ions have been measured in coincidence with the electron emission in the 2-130 keV projectile energy range. The time-of-flight mass spectra were found to vary strongly with the collision energy or velocity and the projectile. On the other hand, they scale rather nicely with the energy deposited in the molecule. Relative weights of the total multi-fragmentation into small C{sub n}{sup +} fragments (n=1-14), individual multi-fragmentation (n=1,7 and 11), double ionization of the intact molecule and evaporation of C{sub 2} molecules associated with the doubly charged fullerene ion, are used to illustrate our finding quantitatively. (author). Letter-to-the-editor.

  7. Preparative-scale separation of C60 and C70 on polystyrene gel

    International Nuclear Information System (INIS)

    Guegel, A.; Becker, M.; Hammel, D.; Mindach, L.; Raeder, J.; Simon, T.; Wagner, M.; Muellen, K.

    1992-01-01

    Five grams of a mixture of C 60 /C 70 can be separated in 24 hours by gel permeation chromatography on polystyrene gel. The mobile phase can be completely recovered, and the method can be scaled up by a simple increase in the inner diameter of the column. (orig.) [de

  8. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    International Nuclear Information System (INIS)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C

    2007-01-01

    Se have investigated single and double ionization of C 60 molecule in collisions with 2.33 MeV/u Si q+ (q=6-14) and 3.125 MeV/u O q+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C 60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening

  9. Noble gas separation with the use of inorganic adsorbents

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.; Christian, J.D.; Paplawsky, W.J.

    1979-01-01

    A noble gas separation process is proposed for application to airborne nuclear fuel reprocessing plant effluents. The process involves the use of inorganic adsorbents for the removal of contaminant gases and noble gas separation through selective adsorption. Water and carbon dioxide are removed with selected zeolites that do not appreciably adsorb the noble gases. Xenon is essentially quantitatively removed with a specially developed adsorbent using conventional adsorption-desorption techniques. Oxygen is removed to low ppM levels by the use of a rapid cycle adsorption technique on a special adsorbent leaving a krypton-nitrogen mixture. Krypton is separated from nitrogen with a special adsorbent operated at about -80 0 C. Because the separation process does not require high pressures and oxygen is readily removed to sufficiently limit ozone formation to insignificant levels, appreciable capital and operating cost savings with this process are possible compared with other proposed processes. In addition, the proposed process is safer to operate

  10. Extraction and HPLC- UV Analysis of C60, C70, and [6,6]-phenyl C61-butyric acid methyl ester in Synthetic and Natural Waters

    Science.gov (United States)

    Studies have shown that C60 fullerene can form stable colloidal suspensions in water that result in C60 aqueous concentrations many orders of magnitude above C60's aqueous solubility; however, quantitative methods for the analysis of C60 and other fullerenes in environmental medi...

  11. A molecular dynamics study on the transport of a charged biomolecule in a polymeric adsorbent medium and its adsorption onto a charged ligand.

    Science.gov (United States)

    Riccardi, E; Wang, J-C; Liapis, A I

    2010-08-28

    The transport of a charged adsorbate biomolecule in a porous polymeric adsorbent medium and its adsorption onto the covalently immobilized ligands have been modeled and investigated using molecular dynamics modeling and simulations as the third part of a novel fundamental methodology developed for studying ion-exchange chromatography based bioseparations. To overcome computational challenges, a novel simulation approach is devised where appropriate atomistic and coarse grain models are employed simultaneously and the transport of the adsorbate is characterized through a number of locations representative of the progress of the transport process. The adsorbate biomolecule for the system studied in this work changes shape, orientation, and lateral position in order to proceed toward the site where adsorption occurs and exhibits decreased mass transport coefficients as it approaches closer to the immobilized ligand. Furthermore, because the ligands are surrounded by counterions carrying the same type of charge as the adsorbate biomolecule, it takes the biomolecule repeated attempts to approach toward a ligand in order to displace the counterions in the proximity of the ligand and to finally become adsorbed. The formed adsorbate-ligand complex interacts with the counterions and polymeric molecules and is found to evolve slowly and continuously from one-site (monovalent) interaction to multisite (multivalent) interactions. Such a transition of the nature of adsorption reduces the overall adsorption capacity of the ligands in the adsorbent medium and results in a type of surface exclusion effect. Also, the adsorption of the biomolecule also presents certain volume exclusion effects by not only directly reducing the pore volume and the availability of the ligands in the adjacent regions, but also causing the polymeric molecules to change to more compact structures that could further shield certain ligands from being accessible to subsequent adsorbate molecules. These

  12. The third-order nonlinear optical susceptibility of C{sub 60}-derived nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiangang, Wan [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jinming, Dong [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jie, Jiang [Nanjing Univ., JS (China). Dept. of Physics; Xing, D Y [Nanjing Univ., JS (China). Dept. of Physics

    1997-02-01

    Using the extended Su-Schrieffer-Heeger (SSH) model and the sum-over-state (SOS) method, we have calculated the third-order nonlinear polarizability {gamma} and its dispersion spectra for C{sub 60}-derived nanotubes, which is one of the narrowest tubes. Our numerical calculations indicate that both symmetry and size of the nanotubes have great effect on the third-order nonlinear polarizability {gamma} spectra. We find that with increasing size, both static {gamma} values and dynamical response peak values increase. When the atom number of the C{sub 60}-derived nanotubes is 140, the static {gamma} value is about 65 times larger than that of C{sub 60}, and the highest peak value of {gamma} (at 3{omega} = 3.52 eV) is about three orders larger than that of C{sub 60}. So, C{sub 60}-derived nanotubes may become a kind of good nonlinear optical materials. (orig.)

  13. Structural defects and epitaxial rotation of C-60 and C-70(111) films on GeS(001)

    DEFF Research Database (Denmark)

    Bernaerts, D.; Van Tendeloo, G.; Amelinckx, S.

    1996-01-01

    A transmission electron microscopy study of epitaxial C60 and C70 films grown on a GeS (001) surface is presented. The relationship between the orientation of the substrate and the films and structural defects in the films, such as grain boundaries, unknown in bulk C60 and C70 crystals, are studied...

  14. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons.

    Science.gov (United States)

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Chen, Chih-Yu; Choa, Ching-Guan; Hwu, Ching-Shyung; Lai, Nina

    2006-05-01

    This study selected biosolids from a petrochemical waste-water treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl2) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl2-immersed biosolids pyrolyzed at 500 degrees C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high.

  15. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (IBM PC VERSION)

    Science.gov (United States)

    Donnell, B.

    1994-01-01

    CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with

  16. Structure and properties of poly(methyl methacrylate) (PMMA)-fullerene (C60) nanocomposites

    Science.gov (United States)

    Kropka, Jamie; Green, Peter

    2006-03-01

    We examined the rheological and dynamical mechanical (DMA) properties of PMMA-C60 nanocomposite materials with relatively low concentrations of C60, 0.1-5wt%. Decreases of the glass transition temperature (Tg), ˜7 ^oC, were observed in samples with 0.5 and 1 wt% C60. The decreases in Tg are connected to decreases of the longest relaxation time measured for the system. The plateau modulus of the composites was enhanced relative to the homopolymer but did not increase monotonically with C60 concentration. The relative changes of the relaxation time, the plateau modulus and Tg cannot be explained by the Doi-Edwards model and appear to be connected to the distribution of the nanoparticles, as determined by electron microscopy.

  17. Orthorhombic fulleride (CH3NH2)K3C60 close to Mott-Hubbard instability: Ab initio study

    Science.gov (United States)

    Potočnik, Anton; Manini, Nicola; Komelj, Matej; Tosatti, Erio; Arčon, Denis

    2012-08-01

    We study the electronic structure and magnetic interactions in methylamine-intercalated orthorhombic alkali-doped fullerene (CH3NH2)K3C60 within the density functional theory. As in the simpler ammonia intercalated compound (NH3)K3C60, the orthorhombic crystal-field anisotropy Δ lifts the t1u triple degeneracy at the Γ point and drives the system deep into the Mott-insulating phase. However, the computed Δ and conduction electron bandwidth W cannot alone account for the abnormally low experimental Néel temperature, TN=11 K, of the methylamine compound, compared to the much higher value TN=40 K of the ammonia one. Significant interactions between CH3NH2 and C603- are responsible for the stabilization of particular fullerene-cage distortions and the ensuing low-spin S=1/2 state. These interactions also seem to affect the magnetic properties, as interfullerene exchange interactions depend on the relative orientation of deformations of neighboring C603- molecules. For the ferro-orientational order of CH3NH2-K+ groups we find an apparent reduced dimensionality in magnetic exchange interactions, which may explain the suppressed Néel temperature. The disorder in exchange interactions caused by orientational disorder of CH3NH2-K+ groups could further contribute to this suppression.

  18. Growth and FIB-SEM analyses of C60 microtubes vertically synthesized on porous alumina membranes

    Science.gov (United States)

    Miyazawa, Kun'ichi; Kuriyama, Ryota; Shimomura, Shuichi; Wakahara, Takatsugu; Tachibana, Masaru

    2014-02-01

    The vertical growth of C60 microtubes (C60MTs) on anodic aluminum oxide (AAO) membranes was investigated. The C60MT size dependence on isopropyl alcohol (IPA) injection rate, into C60-saturated toluene solutions through AAO membranes, was measured. A longitudinal section of the interface between a vertically grown C60MT (V-C60MT) and a membrane was prepared by focused ion beam processing, and observed with scanning electron microscopy. No cracking was observed along the interface, suggesting good bonding. V-C60MTs exhibited spiral growth. V-C60MT planar density, wall thickness and aspect ratio all decreased with increasing IPA injection rate. The relationships among length, inner and outer diameters of V-C60MTs were also investigated by varying IPA injection rate.

  19. A theoretical investigation of the N2O + SO2 reaction on surfaces of P-doped C60 nanocage and Si-doped B30N30 nanocage

    Directory of Open Access Journals (Sweden)

    Meysam Najafi

    Full Text Available The mechanism of N2O reduction via SO2 on surfaces of P-doped C60 and Si-doped B30N30 by density functional theory were investigated. The P and Si adsorption energies on surface of C60 and B30N30 were calculated to be −287.5 and −312.1 kcal/mol, respectively. The decomposition of C60-P-N2O and B30N30-Si-N2O and reduction of C60-P-O∗ and B30N30-Si-O∗ by SO2 molecule were investigated. The B30N30-Si-O∗ has lower activation energy and has more negative ΔGad rather than C60-P-O∗ and therefore the process of B30N30-Si-O∗ + SO2 → B30N30-Si + SO3 was spontaneous more than C60-P-O∗ + SO2 → C60-P + SO3 from thermodynamic view point. Results show that activation energies for B30N30-Si-O∗ + N2O → B30N30-Si-O2 + N2 and C60-P-O∗ + N2O → C60-P-O2 + N2 reactions were 33.23 and 35.82 kcal/mol, respectively. The results show that P-doped C60 and Si-doped B30N30 can be observed as a real catalysts for the reduction of N2O. Keywords: Atom doping, Catalyst, Nanocage, Adsorption, N2O reduction

  20. Experimental study on the basic characteristics of a novel silica-based CMPO adsorbent

    International Nuclear Information System (INIS)

    Wei, Yuezhou; Arai, Tsuyoshi; Zhang, Anyun; Hoshi, Harutaka; Koma, Yoshikazu; Watanabe, Masayuki

    2002-01-01

    In order to establish the extraction chromatography process for recovery of minor actinides from HLLW with a novel silica-based CMPO (octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide) adsorbent, some basic characteristics, such as dissolving behavior of CMPO from the adsorbent, thermal decomposition of the adsorbent and treatment method of organic wastes, were examined. It was found that the leakage of CMPO from the adsorbent in contact with an aqueous solution is the result of the solubility of CMPO in the solution. About 40-50 ppm of CMPO constantly leaked into the effluent from the adsorbent packed column using 0.01 M (M=mol/dm 3 ) HNO 3 as a mobile phase. The leakage of CMPO from the adsorbent could be effectively depressed with the utilization of the aqueous solution saturated by CMPO. TG-DTA thermal analysis results indicate that CMPO in the adsorbent decomposed at 20degC and the SDB-polymer at 290degC. The impregnated CMPO could be completely dissolved out from the support with acetone. Furthermore, the organic wastes such as CMPO, oxalic acid and DTPA those come from the elution procedure could be effectively decomposed with the Fenton reagent. (author)

  1. Surface enhanced Raman scattering of new acridine based fluorophore adsorbed on silver electrode

    Science.gov (United States)

    Solovyeva, Elena V.; Myund, Liubov A.; Denisova, Anna S.

    2015-10-01

    4,5-Bis(N,N-di(2-hydroxyethyl)iminomethyl)acridine (BHIA) is a new acridine based fluoroionophore and a highly-selective sensor for cadmium ion. The direct interaction of the aromatic nitrogen atom with a surface is impossible since there are bulky substituents in the 4,5-positions of the acridine fragment. Nevertheless BHIA molecule shows a reliable SERS spectrum while adsorbed on a silver electrode. The analysis of SERS spectra pH dependence reveals that BHIA species adsorbed on a surface can exist in both non-protonated and protonated forms. The adsorption of BHIA from alkaline solution is accompanied by carbonaceous species formation at the surface. The intensity of such "carbon bands" turned out to be related with the supporting electrolyte (KCl) concentration. Upon lowering the electrode potential the SERS spectra of BHIA do not undergo changes but the intensity of bands decreases. This indicates that the adsorption mechanism on the silver surface is realized via aromatic system of acridine fragment. In case of such an adsorption mechanism the chelate fragment of the BHIA molecule is capable of interaction with the solution components. Addition of Cd2+ ions to a system containing BHIA adsorbed on a silver electrode in equilibrium with the solution leads to the formation of BHIA/Cd2+ complex which desorption causes the loss of SERS signal.

  2. Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water

    Science.gov (United States)

    Zhang, Chang; Li, Yingzhen; Wang, Ting-Jie; Jiang, Yanping; Fok, Jason

    2017-12-01

    A novel iron oxide adsorbent with a high fluoride adsorption capacity was prepared by a facile wet-chemical precipitation method and ethanol treatment. The ethanol-treated adsorbent was amorphous and had a high specific surface area. The adsorption capacity of the treated adsorbent was much higher than that of untreated adsorbent. The Langmuir maximum adsorption capacity of the adsorbent prepared at a low final precipitation pH (≤9.0) and treated with ethanol reached 60.8 mg/g. A fast adsorption rate was obtained, and 80% of the adsorption equilibrium capacity was achieved within 2 min. The adsorbent had high fluoride-removal efficiency for water in a wide initial pH range of 3.5-10.3 and had a high affinity for fluoride in the presence of common co-anions. The ethanol treatment resulted in structure transformation of the adsorbent by inhibiting the crystallization of the nano-precipitates. The adsorption was confirmed to be ion exchange between fluoride ions and the hydroxyl groups on the adsorbent surface.

  3. Facile preparation of amine and amino acid adducts of [60]fullerene using chlorofullerene C60Cl6 as a precursor.

    Science.gov (United States)

    Kornev, Alexey B; Khakina, Ekaterina A; Troyanov, Sergey I; Kushch, Alla A; Peregudov, Alexander; Vasilchenko, Alexey; Deryabin, Dmitry G; Martynenko, Vyacheslav M; Troshin, Pavel A

    2012-06-04

    We report a general synthetic approach to the preparation of highly functionalized amine and amino acid derivatives of [60]fullerene starting from readily available chlorofullerene C(60)Cl(6). The synthesized water-soluble amino acid derivative of C(60) demonstrated pronounced antiviral activity, while the cationic amine-based compound showed strong antibacterial action in vitro.

  4. C60 Fullerene Effects on Diphenyl-N-(trichloroacetyl)-amidophosphate Interaction with DNA In Silico and Its Cytotoxic Activity Against Human Leukemic Cell Line In Vitro

    Science.gov (United States)

    Grebinyk, A.; Prylutska, S.; Grynyuk, I.; Kolp, B.; Hurmach, V.; Sliva, T.; Amirkhanov, V.; Trush, V.; Matyshevska, O.; Slobodyanik, M.; Prylutskyy, Yu.; Frohme, M.; Ritter, U.

    2018-03-01

    New representative of carbacylamidophosphates - diphenyl-N-(trichloroacetyl)-amidophosphate (HL), which contains two phenoxy substituents near the phosphoryl group, was synthesized, identified by elemental analysis and IR and NMR spectroscopy, and tested as a cytotoxic agent itself and in combination with C60 fullerene. According to molecular simulation results, C60 fullerene and HL could interact with DNA and form a rigid complex stabilized by stacking interactions of HL phenyl groups with C60 fullerene and DNA G nucleotide, as well as by interactions of HL CCl3 group by ion-π bonds with C60 molecule and by electrostatic bonds with DNA G nucleotide. With the use of MTT test, the cytotoxic activity of HL against human leukemic CCRF-CM cells with IC50 value detected at 10 μM concentration at 72 h of cells treatment was shown. Under combined action of 16 μM C60 fullerene and HL, the value of IC50 was detected at lower 5 μM HL concentration and at earlier 48 h period of incubation, besides the cytotoxic effect of HL was observed at a low 2.5 μM concentration at which HL by itself had no influence on cell viability. Binding of C60 fullerene and HL with minor DNA groove with formation of a stable complex is assumed to be one of the possible reasons of their synergistic inhibition of CCRF-CEM cells proliferation. Application of C60 fullerene in combination with 2.5 μM HL was shown to have no harmful effect on structural stability of blood erythrocytes membrane. Thus, combined action of C60 fullerene and HL in a low concentration potentiated HL cytotoxic effect against human leukemic cells and was not followed by hemolytic effect.

  5. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Science.gov (United States)

    2010-07-01

    ... waste landfill emissions. 60.33c Section 60.33c Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW...

  6. High temperature dielectric properties of spent adsorbent with zinc sulfate by cavity perturbation technique

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guo [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); Liu, Chenhui [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); Faculty of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650093 (China); Zhang, Libo, E-mail: libozhang77@163.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); and others

    2017-05-15

    Highlights: • Cavity perturbation technique is employed to measure the dielectric properties. • Microwave absorption capability of ZnO is poor from 20 °C to 850 °C. • Dielectric properties of spent absorbent and zinc sulfate are influenced by temperature especially in high temperature stage. • Penetration depths and heating curve indicate spent adsorbent and ZnO·2ZnSO{sub 4}, ZnSO{sub 4} are excellent microwave absorber. • The pore structures of spent adsorbent are improved significantly by microwave-regeneration directly. - Abstract: Dielectric properties of spent adsorbent with zinc sulfate are investigated by cavity perturbation technique at 2450 MHz from 20 °C to approximately 1000 °C. Two weight loss stages are observed for spent adsorbent by thermogravimetric-differential scanning calorimeter (TG-DSC) analysis, and zinc sulfate is decomposed to ZnO·2ZnSO{sub 4} and ZnO at about 750 °C and 860 °C. Microwave absorption capability of ZnSO{sub 4} increases with increasing temperature and declines after ZnO generation on account of the poor dielectric properties. Dielectric properties of spent adsorbent are dependent on apparent density and noticed an interestingly linearly relationship at room temperature. The three parameters increase gently from 20 °C to 400 °C, but a sharp increase both in real part and imaginary part are found subsequently due to the volatiles release and regeneration of carbon. And material conductivity is improved, which contributes to the π-electron conduction appearance. Relationship between penetration depth and temperature further elaborate spent adsorbent is an excellent microwave absorber and the microwave absorption capability order of zinc compounds is ZnO·2ZnSO{sub 4}, ZnSO{sub 4} and ZnO. Heating characteristics suggest that heating rate is related with dielectric properties of materials. The pore structures of spent adsorbent are improved significantly and the surface is smoother after microwave-regeneration.

  7. Aggregate formation of eosin-Y adsorbed on nanocrystalline TiO2 films

    Science.gov (United States)

    Yaguchi, Kaori; Furube, Akihiro; Katoh, Ryuzi

    2012-11-01

    We have studied the adsorption of eosin-Y on nanocrystalline TiO2 films with two different solvents namely acetonitrile (ACN) and ethanol (EtOH). A Langmuir-type adsorption isotherm was observed with ACN. In contrast, a Freundlich-type adsorption isotherm was observed with EtOH, suggesting that EtOH molecules co-adsorbed on TiO2 surface. Absorption spectra of the dye adsorbed films clearly show aggregate formation at high concentrations of dye in the solutions. From the analysis of the spectra, we conclude that head-to-tail type aggregates are observed with ACN, whereas various types of aggregates, including H-type and head-to-tail type aggregates, are observed with EtOH.

  8. Self-Cleaning Photocatalytic Polyurethane Coatings Containing Modified C60 Fullerene Additives

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Lundin

    2014-08-01

    Full Text Available Surfaces are often coated with paint for improved aesthetics and protection; however, additional functionalities that impart continuous self-decontaminating and self-cleaning properties would be extremely advantageous. In this report, photochemical additives based on C60 fullerene were incorporated into polyurethane coatings to investigate their coating compatibility and ability to impart chemical decontaminating capability to the coating surface. C60 exhibits unique photophysical properties, including the capability to generate singlet oxygen upon exposure to visible light; however, C60 fullerene exhibits poor solubility in solvents commonly employed in coating applications. A modified C60 containing a hydrophilic moiety was synthesized to improve polyurethane compatibility and facilitate segregation to the polymer–air interface. Bulk properties of the polyurethane films were analyzed to investigate additive–coating compatibility. Coatings containing photoactive additives were subjected to self-decontamination challenges against representative chemical contaminants and the effects of additive loading concentration, light exposure, and time on chemical decontamination are reported. Covalent attachment of an ethylene glycol tail to C60 improved its solubility and dispersion in a hydrophobic polyurethane matrix. Decomposition products resulting from oxidation were observed in addition to a direct correlation between additive loading concentration and decomposition of surface-residing contaminants. The degradation pathways deduced from contaminant challenge byproduct analyses are detailed.

  9. Development and Characterization of Biocompatible Fullerene [C60]/Amphiphilic Block Copolymer Nanocomposite

    Directory of Open Access Journals (Sweden)

    Alok Chaurasia

    2015-01-01

    Full Text Available We report a supramolecular process for the synthesis of well-defined fullerene (C60/polymer colloid nanocomposites in an aqueous solution via complex formation. A biocompatible triblock poly(4-vinylpyridine-b-polyethylene-b-poly(4-vinylpyridine, P4VP8-b-PEO105-b-P4VP8, was synthesized by atom transfer radical polymerization. The block copolymer formed complexes with C60 in toluene and resulted in fullerene assembly in cluster form. Nanocomposite dispersion in an aqueous solution could be obtained using an aged solution of the polymer/C60/toluene solution by a solvent evaporation technique. The UV-Vis and FTIR spectroscopy confirmed the complex formation of fullerene with the polymer which plays a significant role in controlling the PDI and size of polymer/C60 micelles in the toluene solution. The particle size and morphology of P4VP8-b-PEO105-b-P4VP8 and P4VP8-b-PEO105-b-P4VP8/C60 mixture were studied by dynamic light scattering (DLS and transmission electron microscopy (TEM. In a cytotoxicity test, both pure polymer and the resulting polymer/C60 composite in water showed more than 90% cell viability at 1 mg/mL concentration.

  10. Study of the C{sub 10}-C{sub 14} paraffins separation by adsorption on 5A zeolite; Etude de la separation des paraffines en C{sub 10}-C{sub 14} par adsorption sur zeolithe 5A

    Energy Technology Data Exchange (ETDEWEB)

    Paoli, H.

    2002-11-01

    Surface-active synthesis by the way of LAB (Linear Alkyl Benzene) chain needs linear alkanes between C10 and C14. The petroleum cut used is a mixture of linear and branched paraffins, and therefore a separation is needed. It is realised using of a Simulated Counter Current process, developed and licensed by IFP. The molecular sieve employed, i.e. zeolite 5A, is obtained by ion exchange and thermal treatment from a 4A zeolite. These post synthesis operations modify the adsorbent structure and consequently its adsorption and diffusion properties. After having obtained a range as complete as possible of samples of various exchange ratios and treated in various conditions, we have characterised these adsorbent structures by X-Rays Diffraction. A limited number of structures has been refined by the Rietveld method, on the basis of anomalous diffraction experiments at the Ca K edge. Aluminium NMR was used as well. These structural data allowed to explain adsorption properties modifications of various probe molecules (H{sub 2}O, nC{sub 6}, nC{sub 10} and nC{sub 14}) studied by TPD and diffusion properties modifications studied by Quasi Elastic Neutron Scattering. (author)

  11. Combination of rice husk and coconut shell activated adsorbent to adsorb Pb(II) ionic metal and it’s analysis using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Rohmah, D. N.; Saputro, S.; Masykuri, M.; Mahardiani, L.

    2018-03-01

    The purpose of this research was to know the effect and determine the mass comparation which most effective combination between rice husk and coconut shell activated adsorbent to adsorb Pb (II) ion using SPS method. This research used experimental method. Technique to collecting this datas of this research is carried out by several stages, which are: (1) carbonization of rice husk and coconut shell adsorbent using muffle furnace at a temperature of 350°C for an hour; (2) activation of the rice husk and coconut shell adsorbent using NaOH 1N and ZnCl2 15% activator; (3) contacting the adsorbent of rice husk and coconut shell activated adsorbent with liquid waste simulation of Pb(II) using variation comparison of rice husk and coconut shell, 1:0; 0:1; 1:1; 2:1; 1:2; (4) analysis of Pb(II) using Solid-Phase Spectrophotometry (SPS); (5) characterization of combination rice husk and coconut shell activated adsorbent using FTIR. The result of this research show that the combined effect of combination rice husk and coconut shell activated adsorbent can increase the ability of the adsorbent to absorb Pb(II) ion then the optimum adsorbent mass ratio required for absorbing 20 mL of Pb(II) ion with a concentration of 49.99 µg/L is a ratio of 2:1 with the absorption level of 97,06%Solid-Phase Spectrophotometry (SPS) is an effective method in the level of µg/L, be marked with the Limit of Detection (LOD) of 0.03 µg/L.

  12. Cost analysis of seawater uranium recovered by a polymeric adsorbent system

    International Nuclear Information System (INIS)

    Schneider, E.; Lindner, H.; Sachde, D.; Flicker, M.

    2014-01-01

    In tandem with its adsorbent development and marine testing efforts, the United States Department of Energy, Office of Nuclear Energy, routinely updates and expands its cost analysis of technologies for extracting uranium from seawater. If informed by repeatable data from field tests, a rigorous cost analysis can convincingly establish seawater uranium as a “backstop” to conventional uranium resources. A backstop provides an essentially unlimited supply of an otherwise exhaustible resource. Its role is to remove the uncertainty around the long-term sustainability of the resource. The cost analysis ultimately aims to demonstrate a uranium production cost that is sustainable for the nuclear power industry, with no insurmountable technical or environmental roadblocks. It is also a tool for guiding further R&D, identifying inputs and performance factors where further development would offer the greatest reduction in costs and/or uncertainties. A life cycle discounted cash flow methodology is used to calculate the uranium production cost and its uncertainty from the costs of fundamental inputs including chemicals and materials, labor, equipment, energy carriers and facilities. The inputs themselves are defined by process flow models of the adsorbent fabrication and grafting, mooring at sea, recovery, and elution and purification steps in the seawater uranium recovery process. Pacific Northwest National Laboratory (PNNL) has carried out marine tests of the Oak Ridge National Laboratory amidoxime grafted polymer adsorbent in natural seawater. Multiple test campaigns demonstrated that after 60 days of immersion the uranium uptake averaged 3090 ± 310 μg U/g of adsorbent. Past ocean experiments on similar material by the Japan Atomic Energy Agency (JAEA) demonstrated that the adsorbent may be used in the sea six times before being replaced, with 5% uptake degradation per reuse. The mooring and recovery system envisioned for the adsorbent is similar to one proposed by

  13. C(60 fullerene prevents genotoxic effects of doxorubicin in human lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    K. S. Afanasieva

    2015-02-01

    Full Text Available The self-ordering of C60 fullerene, doxorubicin and their mixture precipitated from aqueous solutions was investigated using atomic-force microscopy. The results suggest the complexation between the two compounds. The genotoxicity of doxorubicin in complex with C60 fullerene (С60+Dox was evaluated in vitro with comet assay using human lymphocytes. The obtained results show that the C60 fullerene prevents the toxic effect of Dox in normal cells and, thus, С60+Dox complex might be proposed for biomedical application.

  14. Nano-Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60.

    Science.gov (United States)

    Yamamoto, Yuta; Tsurumaki, Eiji; Wakamatsu, Kan; Toyota, Shinji

    2018-05-30

    An anthracene cyclic hexamer was synthesized by the coupling reaction as a macrocyclic hydrocarbon host. This disk-shaped host included a C 60 guest in 1:1 ratio to form a Saturn-type supramolecular complex in solution and in crystals. X-ray analysis unambiguously revealed that the guest molecule was accommodated in the middle of the host cavity with several CH⋅⋅⋅π contacts. The association constant K a determined by NMR titration measurements was 2.3×10 3  L mol -1 at 298 K in toluene. The structural features and the role of CH⋅⋅⋅π interactions are discussed with the aid of DFT calculations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent

    OpenAIRE

    Awual, M. R.; 矢板 毅; 田口 富嗣; 塩飽 秀啓; 鈴木 伸一; 岡本 芳浩

    2014-01-01

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of DB24C8 onto inorganic mesoporous silica. The obtained results revealed that adsorbent had higher selectivity towards C...

  16. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants.

    Science.gov (United States)

    Homaeigohar, Shahin; Zillohu, Ahnaf Usman; Abdelaziz, Ramzy; Hedayati, Mehdi Keshavarz; Elbahri, Mady

    2016-10-19

    In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES) for removal of methylene blue (MB) dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption of cationic MB molecules. As an extra challenge, to augment the adsorbent's properties in terms of adsorption capacity in neutral and acidic conditions and thermal stability, vanadium pentoxide (V₂O₅) nanoparticles were added to the nanofibers. Adsorption data were analyzed according to the Freundlich adsorption model. The thermodynamic parameters verified that only at basic pH is the adsorption spontaneous and in general the process is entropy-driven and endothermic. The kinetics of the adsorption process was evaluated by the pseudo-first- and pseudo-second-order models. The latter model exhibited the highest correlation with data. In sum, the adsorbent showed a promising potential for dye removal from industrial dyeing wastewater systems, especially when envisaging their alkaline and hot conditions.

  17. The C60(FeCp22-Based Cell Proliferation Accelerator

    Directory of Open Access Journals (Sweden)

    Andrei Soldatov

    2013-01-01

    Full Text Available We studied structural and magnetic proprieties of the fulleride C60(FeCp22. The influence of fulleride particles on the cell proliferative activity was also investigated. We found that the proliferative activity of the RINmF5 cells increases (53% versus control in presence of the C60(FeCp22 nanosized particles. Moreover, it was registered that the cell culture became multilayered and secreted basophile matrix.

  18. Extraction and high-performance liquid chromatographic analysis of C60, C70, and [6,6]-phenyl C61-butyric acid methyl ester in synthetic and natural waters.

    Science.gov (United States)

    Bouchard, Dermont; Ma, Xin

    2008-09-05

    Studies have shown that C(60) fullerene can form stable colloidal suspensions in water that result in C(60) aqueous concentrations many orders of magnitude above C(60)'s aqueous solubility; however, quantitative methods for the analysis of C(60) and other fullerenes in environmental media are scarce. Using a 80/20v/v toluene-acetonitrile mobile phase and a 4.6 mm x 150 mm Cosmosil 5micron PYE column, C(60), C(70), and PCBM ([6,6]-phenyl C(61)-butyric acid methyl ester) were fully resolved. Selectivity factors (alpha) for C(60) relative to PCBM and C(70) relative to C(60) were 3.18 and 2.19, respectively. The best analytical wavelengths for the fullerenes were determined to be 330, 333, and 333 nm with log molar absorption coefficients (log epsilon) of 4.63, 4.82, and 4.60 for PCBM, C(60), C(70), respectively. Extraction and quantitation of all three fullerenes in aqueous suspensions over a range of pH (4-10) and ionic strengths were very good. Whole-method quantification limits for ground and surface suspensions were 2.87, 2.48, and 6.54 microg/L for PCBM, C(60), and C(70), respectively.

  19. Towards room-temperature superconductivity in low-dimensional C60 nanoarrays: An ab initio study

    Science.gov (United States)

    Erbahar, Dogan; Liu, Dan; Berber, Savas; Tománek, David

    2018-04-01

    We propose to raise the critical temperature Tc for superconductivity in doped C60 molecular crystals by increasing the electronic density of states at the Fermi level N (EF) and thus the electron-phonon coupling constant in low-dimensional C60 nanoarrays. We consider both electron and hole dopings and present numerical results for N (EF) , which increases with the decreasing bandwidth of the partly filled hu- and t1 u-derived frontier bands with the decreasing coordination number of C60. Whereas a significant increase in N (EF) occurs in two-dimensional (2D) arrays of doped C60 intercalated in-between graphene layers, we propose that the highest-Tc values approaching room temperature may occur in bundles of nanotubes filled by one-dimensional (1D) arrays of externally doped C60 or La @C60 or in diluted three-dimensional (3D) crystals where quasi-1D arrangements of C60 form percolation paths.

  20. Dipolar molecules inside C-70: an electric field-driven room-temperature single-molecule switch

    Czech Academy of Sciences Publication Activity Database

    Foroutan-Nejad, C.; Andrushchenko, Valery; Straka, Michal

    2016-01-01

    Roč. 18, č. 48 (2016), s. 32673-32677 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : room-temperature single-molecule switch * electric field * endohedral fullerene * density functional calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlepdf/2016/cp/c6cp06986j

  1. Giant plasmon excitation in single and double ionization of C{sub 60} by fast highly charged Si and O ions

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai-5 (India)

    2007-09-15

    Se have investigated single and double ionization of C{sub 60} molecule in collisions with 2.33 MeV/u Si{sup q+} (q=6-14) and 3.125 MeV/u O{sup q+} (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C{sub 60} are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.

  2. The nano-science of C sub 6 0 molecule

    CERN Document Server

    Rafii-Tabar, H

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C sub 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C sub 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of thi...

  3. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Hung-Lung Chiang; Kuo-Hsiung Lin; Chih-Yu Chen; Ching-Guan Choa; Ching-Shyung Hwu; Nina Lai [China Medical University, Taichung (Taiwan). Department of Risk Management

    2006-05-15

    This study selected biosolids from a petrochemical wastewater treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl{sub 2}) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl{sub 2}-immersed biosolids pyrolyzed at 500{sup o}C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high. 18 refs., 9 figs., 3 tabs.

  4. Parallel beam powder diffraction study on the A1C60 system (A=K, Rb)

    International Nuclear Information System (INIS)

    Faigel, G.; Tegze, M.; Bortel, G.; Forro, L.; Oszlanyi, G.; Stephens, P.W.

    1994-01-01

    We report x-ray powder diffraction studies on Rb x C 60 and K x C 60 . It is shown that at room temperature there exist stoichiometric compounds in the Rb x C 60 and K x C 60 systems at the x = 1 composition. Their equilibrium structures are pseudo body centered orthorhombic. The C 60 -C 60 intermolecular separation (9.1 A) is the shortest among the known alkali-fullerides. A first order phase transition is observed at about 380 K from the high temperature fcc phase to the room temperature orthorhombic phase. (orig.)

  5. Electronic structure and optical properties of solid C60

    International Nuclear Information System (INIS)

    Mattesini, M.; Ahuja, R.; Sa, L.; Hugosson, H.W.; Johansson, B.; Eriksson, O.

    2009-01-01

    The electronic structure and the optical properties of face-centered-cubic C 60 have been investigated by using an all-electron full-potential method. Our ab initio results show that the imaginary dielectric function for high-energy values looks very similar to that of graphite, revealing close electronic structure similarities between the two systems. We have also identified the origin of different peaks in the dielectric function of fullerene by means of the calculated electronic density of states. The computed optical spectrum compares fairly well with the available experimental data for the Vis-UV absorption spectrum of solid C 60 .

  6. Junctional Adhesion Molecule (JAM)-C Deficient C57BL/6 Mice Develop a Severe Hydrocephalus

    Science.gov (United States)

    Liebner, Stefan; Mittelbronn, Michel; Deutsch, Urban; Enzmann, Gaby; Adams, Ralf H.; Aurrand-Lions, Michel; Plate, Karl H.; Imhof, Beat A.; Engelhardt, Britta

    2012-01-01

    The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C−/− mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C−/− mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C−/− C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C−/− mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C−/− C57BL/6 mice. Taken together, our study suggests that JAM-C−/− C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C. PMID:23029139

  7. Characteristics of pellet-type adsorbents prepared from water treatment sludge and their effect on trimethylamine removal

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Junghyun; Park, Nayoung; Kim, Goun; Lee, Choul Ho; Jeon, Jong-Ki [Kongju National University, Cheonan (Korea, Republic of); Park, Young-Kwon [University of Seoul, Seoul (Korea, Republic of)

    2014-04-15

    We optimized the preparation method of pellet-type adsorbents based on alum sludge with the aim of developing a high-performance material for the adsorption of gaseous trimethylamine. Effects of calcination temperature on physical and chemical properties of pellet-type adsorbents were investigated. The porous structure and surface characteristics of the adsorbents were studied using N{sub 2} adsorption and desorption isotherms, scanning electron microscope, X-ray diffraction, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine. The adsorbents obtained from the water treatment sludge are microporous materials with well-developed mesoporosity. The pellet-type adsorbent calcined at 500 .deg. C had the highest percentage of micropore volume and the smallest average pore diameter. The highest adsorption capacity in trimethylamine removal attained over the pellet-type adsorbent calcined at 500 .deg. C can be attributed to the highest number of acid sites as well as the well-developed microporosity.

  8. Sodium doping in copper-phthalocyanine/C60 heterojunction for organic photovoltaic applications

    International Nuclear Information System (INIS)

    Chen, Hui-Ju; Wu, Hsuan-Ta; Hung, Kuang-Teng; Fu, Sheng-Wen; Shih, Chuan-Feng

    2013-01-01

    Sodium was incorporating at the copper-phthalocyanine (CuPc)/C 60 interface in CuPc/C 60 -based small-molecular solar cells to enhance their power conversion efficiency. C 60 was deposited on slightly sodium-doped CuPc. Post-annealing improved the cell properties. Post-annealing doubled the conversion efficiency of the least sodium-doped devices (75 °C, 40 min). The electron/hole mobility ratio gradually approached unity as the annealing time increased, indicating that a reduction in the space charge accumulation was the main cause of the increase of the short-circuit current. The mechanism of enhancement of carrier transport by annealing was investigated by making capacitance–voltage measurements and performing corresponding depth-profile analyses. - Highlights: • Incorporate Na at copper-phthalocyanine/C 60 interface • Annealing importantly improved the cell efficiency of Na-doped devices. • Change in the carrier mobility and concentration was investigated

  9. The growth and electronic structure of azobenzene-based functional molecules on layered crystals

    International Nuclear Information System (INIS)

    Iwicki, J; Ludwig, E; Buck, J; Kalläne, M; Kipp, L; Rossnagel, K; Köhler, F; Herges, R

    2012-01-01

    In situ ultraviolet photoelectron spectroscopy is used to study the growth of ultrathin films of azobenzene-based functional molecules (azobenzene, Disperse Orange 3 and a triazatriangulenium platform with an attached functional azo-group) on the layered metal TiTe 2 and on the layered semiconductor HfS 2 at liquid nitrogen temperatures. Effects of intermolecular interactions, of the substrate electronic structure, and of the thermal energy of the sublimated molecules on the growth process and on the adsorbate electronic structure are identified and discussed. A weak adsorbate-substrate interaction is particularly observed for the layered semiconducting substrate, holding the promise of efficient molecular photoswitching.

  10. Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics

    International Nuclear Information System (INIS)

    Ploeg, M.J.C. van der; Baveco, J.M.; Hout, A. van der; Bakker, R.; Rietjens, I.M.C.M.; Brink, N.W. van den

    2011-01-01

    Effects of C 60 nanoparticles (nominal concentrations 0, 15.4 and 154 mg/kg soil) on mortality, growth and reproduction of Lumbricus rubellus earthworms were assessed. C 60 exposure had a significant effect on cocoon production, juvenile growth rate and mortality. These endpoints were used to model effects on the population level. This demonstrated reduced population growth rate with increasing C 60 concentrations. Furthermore, a shift in stage structure was shown for C 60 exposed populations, i.e. a larger proportion of juveniles. This result implies that the lower juvenile growth rate due to exposure to C 60 resulted in a larger proportion of juveniles, despite increased mortality among juveniles. Overall, this study indicates that C 60 exposure may seriously affect earthworm populations. Furthermore, it was demonstrated that juveniles were more sensitive to C 60 exposure than adults. - C 60 nanoparticle exposure can affect Lumbricus rubellus populations.

  11. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    and alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of two laser...... beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  12. Liver lipid molecules induce PEPCK-C gene transcription and attenuate insulin action

    International Nuclear Information System (INIS)

    Chen Guoxun

    2007-01-01

    Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) plays key roles in gluconeogenesis, glyceroneogenesis, and cataplerosis. Experiments were designed to examine the effects of endogenous lipid molecules from rat livers on the expression of PEPCK-C gene in primary rat hepatocytes. The lipid extracts prepared from livers of Zucker fatty, lean, and Wistar rats induced the expression levels of PEPCK-C transcripts. Insulin-mediated reduction of PEPCK-C gene expression was attenuated by the same treatment. The lipid extracts induced the relative luciferase activity of reporter gene constructs that contain a 2.2-kb 5' promoter fragment of PEPCK-C gene, but not the construct that contains only the 3' untranslated region (UTR) of its mRNA. The estimated half life of PEPCK-C transcripts in the presence of the lipid extract is the same as that in the absence of it. My results demonstrate for the first time that endogenous lipid molecules induce PEPCK-C gene transcription and attenuate insulin action in liver

  13. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    Science.gov (United States)

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  14. Modified denatured lysozyme effectively solubilizes fullerene c60 nanoparticles in water

    Science.gov (United States)

    Siepi, Marialuisa; Politi, Jane; Dardano, Principia; Amoresano, Angela; De Stefano, Luca; Monti, Daria Maria; Notomista, Eugenio

    2017-08-01

    Fullerenes, allotropic forms of carbon, have very interesting pharmacological effects and engineering applications. However, a very low solubility both in organic solvents and water hinders their use. Fullerene C60, the most studied among fullerenes, can be dissolved in water only in the form of nanoparticles of variable dimensions and limited stability. Here the effect on the production of C60 nanoparticles by a native and denatured hen egg white lysozyme, a highly basic protein, has been systematically studied. In order to obtain a denatured, yet soluble, lysozyme derivative, the four disulfides of the native protein were reduced and exposed cysteines were alkylated by 3-bromopropylamine, thus introducing eight additional positive charges. The C60 solubilizing properties of the modified denatured lysozyme proved to be superior to those of the native protein, allowing the preparation of biocompatible highly homogeneous and stable C60 nanoparticles using lower amounts of protein, as demonstrated by dynamic light scattering, transmission electron microscopy and atomic force microscopy studies. This lysozyme derivative could represent an effective tool for the solubilization of other carbon allotropes.

  15. Performance of a C{sub 60}{sup +} ion source on a dynamic SIMS instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, Albert J. [Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Dr. Stop 8371, Gaithersburg, MD 20899-8371 (United States)]. E-mail: albert.fahey@nist.gov; Gillen, Greg [Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Dr. Stop 8371, Gaithersburg, MD 20899-8371 (United States); Chi, Peter [Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Dr. Stop 8371, Gaithersburg, MD 20899-8371 (United States); Mahoney, Christine M. [Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Dr. Stop 8371, Gaithersburg, MD 20899-8371 (United States)

    2006-07-30

    An IonOptika C{sub 60}{sup +} ion source has been fitted onto a CAMECA{sup 1} ims-4f. Stable ion beams of C{sub 60}{sup +} and C{sub 60}{sup 2+} have been obtained with typical currents approaching 20nA under conditions that allow for several days of source operation. The beam has been able to be focussed into a spot size of {approx}3{mu}m with an anode voltage of 10keV and scanning ion images have been acquired. We have performed analyses to characterize the performance of C{sub 60}{sup +} and C{sub 60}{sup 2+}. Depth profiles of a Cr-Ni multi-layer and polymer films with C{sub 60}{sup +} have produced excellent results. We have discovered that, under bombardment energies of <12keV on Si, C{sub 60}{sup +} will sputter material from the sample but will also produce deposition at a rate that exceeds the sputter rate. The performance of the source and our experiences with its operation will be discussed and some characteristic analysis data will be shown.

  16. Development of TiC coated wall materials for JT-60

    International Nuclear Information System (INIS)

    Abe, T.; Murakami, Y.; Obara, K.; Hiroki, S.; Nakamura, K.; Inagawa, K.

    1985-01-01

    Development of titanium carbide (TiC, 20 μm thick) coated wall materials has been carried out for JT-60. Application of TiC coatings onto molybdenum and Inconel 625 substrates requires a deposition temperature below 950 0 C and 600 0 C respectively, because recrystallization of molybdenum and age hardening of Inconel 625 occur above these temperatures. Through this process of coating we develop a new type plasma CVD(TP-CVD method) for molybdenum and a new type PVD(HCD-ARE method) for Inconel 625 which could successfully reduce the deposition temperature to 900 0 C and 500 0 C, respectively. The TiC coated wall samples were characterized by AES, ESCA, X-ray diffractometer, EPMA, SEM, metalography, tensile tests, thermal shock tests, and other techniques. As a result of the above measurements, it was demonstrated that the characteristics of those TiC coated walls satisfy the requirements arising from JT-60 operation conditions. (orig.)

  17. Graphene oxide-Li(+)@C60 donor-acceptor composites for photoenergy conversion.

    Science.gov (United States)

    Supur, Mustafa; Kawashima, Yuki; Ohkubo, Kei; Sakai, Hayato; Hasobe, Taku; Fukuzumi, Shunichi

    2015-06-28

    An ionic endohedral metallofullerene (Li(+)@C60) with mild hydrophilic nature was combined with graphene oxide (GO) to construct a donor-acceptor composite in neat water. The resulting composite was characterised by UV-Vis and Raman spectroscopy, powder X-ray diffraction, dynamic light scattering measurements and transmission electron microscopy. Theoretical calculations (DFT at the B3LYP/6-31(d) level) were also utilized to gain further insight into the composite formation. As detected by electron paramagnetic resonance spectroscopy, photoexcitation of the GO-Li(+)@C60 composite results in electron transfer from GO to the triplet excited state of Li(+)@C60, leading to photocurrent generation at the OTE/SnO2 electrode.

  18. C60+ - looking for the bucky-ball in interstellar space

    Science.gov (United States)

    Galazutdinov, G. A.; Shimansky, V. V.; Bondar, A.; Valyavin, G.; Krełowski, J.

    2017-03-01

    The laboratory gas-phase spectrum recently published by Campbell et al. has reinvigorated attempts to confirm the presence of the C_{60}^+ cation in the interstellar medium, through an analysis of the spectra of hot, reddened stars. This search is hindered by at least two issues that need to be addressed: (I) the wavelength range of interest is severely polluted by strong water-vapour lines coming from the Earth's atmosphere; (II) one of the major bands attributed to C_{60}^+, at 9633 Å, is blended with the stellar Mg II line, which is susceptible to non-local thermodynamic equilibrium effects in hot stellar atmospheres. Both these issues are carefully considered here for the first time, based on high-resolution and high signal-to-noise ratio echellé spectra for 19 lines of sight. The result is that the presence of C_{60}^+ in interstellar clouds is brought into question.

  19. Thermodynamic and structural study of two-dimensional phase transitions and orientational order in films of linear molecules with a large quadrupole moment, physi-sorbed on lamellar substrates

    International Nuclear Information System (INIS)

    Terlain, Anne

    1984-01-01

    The 2D (two-dimensional) phase transitions and orientational order in N 2 O, CO 2 , C 2 N 2 and C 2 D 2 films physi-sorbed on the (0001) face of graphite or lamellar halides, were studied experimentally by adsorption isotherm measurements and neutron diffraction. The thermodynamic functions derived from sets of isotherms suggest that crystal monolayers of N 2 O, CO 2 , and C 2 N 2 adsorbed on graphite are orientationally ordered and that the quadrupolar interaction stabilizes the 2D crystal with respect to the 2D liquid. This stabilization leads to an increase in the 2D triple point temperature, T 2t as compared with the 2D critical temperature T 2c . For C 2 N 2 this stabilization is so pronounced that T 2t becomes virtually higher than T 2c , and the phase diagram qualitatively different, having no gas-liquid coexistence domain. From a neutron diffraction experiment we have determined the crystal structure of the C 2 N 2 monolayer. It supports our interpretation of the monolayer phase diagram. In N 2 O, CO 2 , C 2 N 2 films adsorbed on graphite the molecules lie flat on the surface and their orientational order hence differs from that in the bulk crystals resulting in a loss of adsorbate-adsorbate interaction energy. Beyond a given film thickness this loss will not be compensated by the adsorbate-substrate interaction and the film will stop growing. For most of the films studied a partial wetting transition is observed at which the film thickness increases discontinuously with temperature. Although C 2 N 2 and C 2 D 2 monolayers on graphite have comparable adsorption energies, only C 2 D 2 is adsorbed on lamellar halides. This adsorption is possible only because the monolayer has a large entropy due to orientational disorder. For C 2 N 2 , which has a higher moment of inertia, such an orientational disorder cannot exist. (author) [fr

  20. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (DEC VAX VMS VERSION)

    Science.gov (United States)

    Donnell, B.

    1994-01-01

    CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with