WorldWideScience

Sample records for c-1 protein impairs

  1. Mimic Phosphorylation of a βC1 Protein Encoded by TYLCCNB Impairs Its Functions as a Viral Suppressor of RNA Silencing and a Symptom Determinant.

    Science.gov (United States)

    Zhong, Xueting; Wang, Zhan Qi; Xiao, Ruyuan; Cao, Linge; Wang, Yaqin; Xie, Yan; Zhou, Xueping

    2017-08-15

    Phosphorylation of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-βC1) by SNF1-related protein kinase 1 (SnRK1) plays a critical role in defense of host plants against geminivirus infection in Nicotiana benthamiana However, how phosphorylation of TYLCCNB-βC1 impacts its pathogenic functions during viral infection remains elusive. In this study, we identified two additional tyrosine residues in TYLCCNB-βC1 that are phosphorylated by SnRK1. The effects of TYLCCNB-βC1 phosphorylation on its functions as a viral suppressor of RNA silencing (VSR) and a symptom determinant were investigated via phosphorylation mimic mutants in N. benthamiana plants. Mutations that mimic phosphorylation of TYLCCNB-βC1 at tyrosine 5 and tyrosine 110 attenuated disease symptoms during viral infection. The phosphorylation mimics weakened the ability of TYLCCNB-βC1 to reverse transcriptional gene silencing and to suppress posttranscriptional gene silencing and abolished its interaction with N. benthamiana ASYMMETRIC LEAVES 1 in N. benthamiana leaves. The mimic phosphorylation of TYLCCNB-βC1 had no impact on its protein stability, subcellular localization, or self-association. Our data establish an inhibitory effect of phosphorylation of TYLCCNB-βC1 on its pathogenic functions as a VSR and a symptom determinant and provide a mechanistic explanation of how SnRK1 functions as a host defense factor. IMPORTANCE Tomato yellow leaf curl China virus (TYLCCNV), which causes a severe yellow leaf curl disease in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). TYLCCNB encodes a single pathogenicity protein, βC1 (TYLCCNB-βC1), which functions as both a viral suppressor of RNA silencing (VSR) and a symptom determinant. Here, we show that mimicking phosphorylation of TYLCCNB-βC1 weakens its ability to reverse transcriptional gene silencing, to suppress posttranscriptional gene silencing, and to interact with N

  2. Alcohol binding in the C1 (C1A + C1B) domain of protein kinase C epsilon

    Science.gov (United States)

    Pany, Satyabrata; Das, Joydip

    2015-01-01

    Background Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε. Methods In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. Results In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40 Å apart from each other indicating that these residues form two different alcohol binding sites. Conclusions The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists. PMID:26210390

  3. Usefulness of C1 Esterase Inhibitor Protein Concentrate in the ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... of this case report is to describe the lifesaving use of a novel C1‑INH protein concentrate in a patient with mild‑to‑moderate dyspnea caused by swelling of the upper airway (larynx) and tongue. Keywords: C1 esterase inhibitor protein, hereditary angioedema, laryngeal edema, oropharyngeal swelling.

  4. Usefulness of C1 Esterase Inhibitor Protein Concentrate in the ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... concentrate in a patient with mild‑to‑moderate dyspnea caused by swelling of the upper airway (larynx) and tongue. Keywords: C1 esterase inhibitor protein, hereditary angioedema, laryngeal edema, oropharyngeal swelling. Usefulness of C1 Esterase Inhibitor Protein Concentrate in the. Management of ...

  5. Impaired Autophagy in the Lipid-Storage Disorder Niemann-Pick Type C1 Disease

    OpenAIRE

    Sarkar, Sovan; Carroll, Bernadette; Buganim, Yosef; Maetzel, Dorothea; Ng, Alex H.M.; Cassady, John P.; Cohen, Malkiel A.; Chakraborty, Souvik; Wang, Haoyi; Spooner, Eric; Ploegh, Hidde; Gsponer, Joerg; Korolchuk, Viktor I.; Jaenisch, Rudolf

    2013-01-01

    Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1) disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal prot...

  6. Impaired Autophagy in the Lipid-Storage Disorder Niemann-Pick Type C1 Disease

    Directory of Open Access Journals (Sweden)

    Sovan Sarkar

    2013-12-01

    Full Text Available Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1 disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal proteolytic function remains unaffected. Expression of functional NPC1 protein rescues this defect. Inhibition of autophagy also causes cholesterol accumulation. Compromised autophagy was seen in disease-affected organs of Npc1 mutant mice. Of potential therapeutic relevance is that HP-β-cyclodextrin, which is used for cholesterol-depletion treatment, impedes autophagy, whereas stimulating autophagy restores its function independent of amphisome formation. Our data suggest that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may provide a rational treatment strategy for NPC1 disease.

  7. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease.

    Science.gov (United States)

    Sarkar, Sovan; Carroll, Bernadette; Buganim, Yosef; Maetzel, Dorothea; Ng, Alex H M; Cassady, John P; Cohen, Malkiel A; Chakraborty, Souvik; Wang, Haoyi; Spooner, Eric; Ploegh, Hidde; Gsponer, Joerg; Korolchuk, Viktor I; Jaenisch, Rudolf

    2013-12-12

    Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1) disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal proteolytic function remains unaffected. Expression of functional NPC1 protein rescues this defect. Inhibition of autophagy also causes cholesterol accumulation. Compromised autophagy was seen in disease-affected organs of Npc1 mutant mice. Of potential therapeutic relevance is that HP-β-cyclodextrin, which is used for cholesterol-depletion treatment, impedes autophagy, whereas stimulating autophagy restores its function independent of amphisome formation. Our data suggest that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may provide a rational treatment strategy for NPC1 disease. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Usefulness of C1 esterase inhibitor protein concentrate in the ...

    African Journals Online (AJOL)

    Hereditary angioedema is an autosomal‑dominant disorder caused by mutation of the gene encoding the C1 esterase inhibitor (C1‑INH). It manifests as painless, nonpruritic, nonpitting episodic swelling of the subcutaneous tissues, gastrointestinal, and upper respiratory tracts in the absence of urticaria. An attack typically ...

  9. Effect of the hinge protein on the heme iron site of cytochrome c1

    International Nuclear Information System (INIS)

    Kim, C.H.; Yencha, A.J.; Bunker, G.; Zhang, G.; Chance, B.; King, T.E.

    1989-01-01

    X-ray absorption spectroscopic (XAS) studies on cytochrome c 1 from beef heart mitochondria were conducted to identify the effect of the hinge protein on the structure of the heme site in cytochrome c 1 . A comparison of XAS data of highly purified one-band and two-band cytochrome c 1 demonstrates that the hinge protein exerts a rather pronounced effect on the heme environment of the cytochrome c 1 : a conformational change occurs within a radius of approximately 5 angstrom from the heme iron in cytochrome c 1 when the hinge protein is bound to cytochrome c 1 . This result may be correlated with the previous observations that the structure and reactivity of cytochrome c 1 are affected by the hinge protein

  10. Interaction of C1q and mannan-binding lectin (MBL) with C1r, C1s, MBL-associated serine proteases 1 and 2, and the MBL-associated protein MAp19

    DEFF Research Database (Denmark)

    Thiel, S; Petersen, Steen Vang; Vorup-Jensen, T

    2000-01-01

    Mannan-binding lectin (MBL) and C1q activate the complement cascade via attached serine proteases. The proteases C1r and C1s were initially discovered in a complex with C1q, whereas the MBL-associated serine proteases 1 and 2 (MASP-1 and -2) were discovered in a complex with MBL. There is controv......Mannan-binding lectin (MBL) and C1q activate the complement cascade via attached serine proteases. The proteases C1r and C1s were initially discovered in a complex with C1q, whereas the MBL-associated serine proteases 1 and 2 (MASP-1 and -2) were discovered in a complex with MBL......, whereas MASP-1, MASP-2, and a third protein, MAp19 (19-kDa MBL-associated protein), were found to be associated only with MBL. The bulk of MASP-1 and MAp19 was found in association with each other and was not bound to MBL or MASP-2. The interactions of MASP-1, MASP-2, and MAp19 with MBL differ from those...... of C1r and C1s with C1q in that both high salt concentrations and calcium chelation (EDTA) are required to fully dissociate the MASPs or MAp19 from MBL. In the presence of calcium, most of the MASP-1, MASP-2, and MAp19 emerged on gel-permeation chromatography as large complexes that were not associated...

  11. The C1q family of proteins: insights into the emerging non-traditional functions

    Directory of Open Access Journals (Sweden)

    Berhane eGhebrehiwet

    2012-04-01

    Full Text Available Research conducted over the past 20 years have helped us unravel not only the hidden structural and functional subtleties of human C1q, but also has catapulted the molecule from a mere recognition unit of the classical pathway to a well-recognized molecular sensor of damage modified self or non-self antigens. Thus, C1q is involved in a rapidly expanding list of pathological disorders—including autoimmunity, trophoblast migration, preeclampsia and cancer. The results of two recent reports are provided to underscore the critical role C1q plays in health and disease. First is the observation by Singh and colleagues showing that pregnant C1q-/- mice recapitulate the key features of human preeclampsia that correlate with increased fetal death. Treatment of the C1q-/- mice with pravastatin restored trophoblast invasiveness, placental blood flow, and angiogenic balance and, thus, prevented the onset of preeclampsia. Second is the report by Hong et al., which showed that C1q can induce apoptosis of prostate cancer cells by activating the tumor suppressor molecule WW-domain containing oxydoreductase (WWOX or WOX1 and destabilizing cell adhesion. Downregulation of C1q on the other hand enhanced prostate hyperplasia and cancer formation due to failure of WOX1 activation. Recent evidence also shows that C1q belongs to a family of structurally and functionally related TNFα-like family of proteins that may have arisen from a common ancestral gene. Therefore C1q not only shares the diverse functions with the TNF family of proteins, but also explains why C1q has retained some of its ancestral cytokine-like activities. This review is intended to highlight some of the structural and functional aspects of C1q by underscoring the growing list of its non-traditional functions.

  12. Complement protein C1q induces maturation of human dendritic cells.

    Science.gov (United States)

    Csomor, Eszter; Bajtay, Zsuzsa; Sándor, Noémi; Kristóf, Katalin; Arlaud, Gérard J; Thiel, Steffen; Erdei, Anna

    2007-07-01

    Maturation of dendritic cells (DCs) is known to be induced by several stimuli, including microbial products, inflammatory cytokines and immobilized IgG, as demonstrated recently. Since immune complexes formed in vivo also contain C1q, moreover apoptotic cells and several pathogens fix C1q in the absence of antibodies, we undertook to investigate whether this complement protein has an impact on various functions of human DCs. Maturation of monocyte-derived immature DCs (imMDCs) cultured on immobilized C1q was followed by monitoring expression of CD80, CD83, CD86, MHCII and CCR7. The functional activity of the cells was assessed by measuring cytokine secretion and their ability to activate allogeneic T lymphocytes. Cytokine production by T cells co-cultured with C1q-matured DCs was also investigated. C1q, but not the structurally related mannose-binding lectin was found to bind to imMDC in a dose-dependent manner and induced NF-kappaB translocation to the nucleus. Immobilized C1q induced maturation of MDCs and enhanced secretion of IL-12 and TNF-alpha, moreover, elevated their T-cell stimulating capacity. As IFN-gamma levels were increased in supernatants of MDC-T cell co-cultures, our data suggest that C1q-induced DC maturation generates a Th1-type response. Interestingly, IL-10 levels were elevated by C1q-treated MDCs but not in the supernatant of their co-cultures with allogeneic T cells. Taken together, these results indicate that C1q-opsonized antigens may play a role in the induction and regulation of immune response. Moreover our data are relevant in view of the role of C1q in removal of apoptotic cells and the association between C1q-deficiency and autoimmunity.

  13. Modular organization of proteins containing C1q-like globular domain.

    Science.gov (United States)

    Kishore, U; Reid, K B

    1999-05-01

    The first step in the activation of the classical pathway of complement cascade by immune complexes involves the binding of the six globular heads of C1q to the Fc regions of immunoglobulin G (IgG) or immunoglobulin M (IgM). The globular heads of C1q are located C-terminal to the six triple-helical stalks present in the molecule, each head is considered to be composed of the C-terminal halves (3 x 135 residues) of one A-, one B- and one C-chain. It is not known if the C-terminal globular regions, present in each of the three types of chains, are independently folded modules (with each chain having distinct binding properties towards immunoglobulins) or whether the different binding functions of C1q are dependent upon a globular structure which relies on contributions from all three chains. Recent reports of recombinant production and characterisation of soluble globular head regions of all the three chains indicate that the globular regions of C1q may adopt a modular organization, i.e., each globular head of C1q may be composed of three, structurally and functionally, independent domains, thus retaining multivalency in the form of a heterotrimer. Modules of the same type as the C1q C-terminal module are also found in a variety of noncomplement proteins that include the C-terminal regions of the human type VIII and type X collagens, precerebellin, the chipmunk hibernation proteins, the human endothelial cell protein, multimerin, the serum protein, Acrp-30 which is secreted from mouse adipocytes, and the sunfish inner-ear specific structural protein. The C1q molecule is the only one of these proteins for which, to date, a function has been ascribed to the module. The existence of a shared structural region between C1q and certain collagens may suggest an evolutionarily common ancestral precursor. Various structural and biochemical data suggest that these modules may be responsible for multimerisation through patches of aromatic residues within them.

  14. Fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75 interact with the CREC proteins, calumenin and reticulocalbin

    DEFF Research Database (Denmark)

    Hansen, Gry Aune Westergaard; Ludvigsen, Maja; Jacobsen, Christian

    2015-01-01

    Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify...... the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted...

  15. Development of diacyltetrol lipids as activators for the C1 domain of protein kinase C.

    Science.gov (United States)

    Mamidi, Narsimha; Gorai, Sukhamoy; Mukherjee, Rakesh; Manna, Debasis

    2012-04-01

    The protein kinase C (PKC) family of serine/threonine kinases is an attractive drug target for the treatment of cancer and other diseases. Diacylglycerol (DAG), phorbol esters and others act as ligands for the C1 domain of PKC isoforms. Inspection of the crystal structure of the PKCδ C1b subdomain in complex with phorbol-13-O-acetate shows that one carbonyl group and two hydroxyl groups play pivotal roles in recognition of the C1 domain. To understand the importance of two hydroxyl groups of phorbol esters in PKC binding and to develop effective PKC activators, we synthesized DAG like diacyltetrols (DATs) and studied binding affinities with C1b subdomains of PKCδ and PKCθ. DATs, with the stereochemistry of natural DAGs at the sn-2 position, were synthesized from (+)-diethyl L-tartrate in four to seven steps as single isomers. The calculated EC(50) values for the short and long chain DATs varied in the range of 3-6 μM. Furthermore, the fluorescence anisotropy values of the proteins were increased in the presence of DATs in a similar manner to that of DAGs. Molecular docking of DATs (1b-4b) with PKCδ C1b showed that the DATs form hydrogen bonds with the polar residues and backbone of the protein, at the same binding site, as that of DAG and phorbol esters. Our findings reveal that DATs represent an attractive group of C1 domain ligands that can be used as research tools or further structurally modified for potential drug development.

  16. Human and pneumococcal cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) proteins are both ligands of human C1q protein.

    Science.gov (United States)

    Terrasse, Rémi; Tacnet-Delorme, Pascale; Moriscot, Christine; Pérard, Julien; Schoehn, Guy; Vernet, Thierry; Thielens, Nicole M; Di Guilmi, Anne Marie; Frachet, Philippe

    2012-12-14

    C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (K(D) = 0.34-2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response.

  17. Human and Pneumococcal Cell Surface Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Proteins Are Both Ligands of Human C1q Protein*

    Science.gov (United States)

    Terrasse, Rémi; Tacnet-Delorme, Pascale; Moriscot, Christine; Pérard, Julien; Schoehn, Guy; Vernet, Thierry; Thielens, Nicole M.; Di Guilmi, Anne Marie; Frachet, Philippe

    2012-01-01

    C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (KD = 0.34–2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response. PMID:23086952

  18. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of recombinant human C1ORF123 protein.

    Science.gov (United States)

    Rahaman, Siti Nurulnabila A; Mat Yusop, Jastina; Mohamed-Hussein, Zeti-Azura; Ho, Kok Lian; Teh, Aik-Hong; Waterman, Jitka; Ng, Chyan Leong

    2016-03-01

    C1ORF123 is a human hypothetical protein found in open reading frame 123 of chromosome 1. The protein belongs to the DUF866 protein family comprising eukaryote-conserved proteins with unknown function. Recent proteomic and bioinformatic analyses identified the presence of C1ORF123 in brain, frontal cortex and synapses, as well as its involvement in endocrine function and polycystic ovary syndrome (PCOS), indicating the importance of its biological role. In order to provide a better understanding of the biological function of the human C1ORF123 protein, the characterization and analysis of recombinant C1ORF123 (rC1ORF123), including overexpression and purification, verification by mass spectrometry and a Western blot using anti-C1ORF123 antibodies, crystallization and X-ray diffraction analysis of the protein crystals, are reported here. The rC1ORF123 protein was crystallized by the hanging-drop vapor-diffusion method with a reservoir solution comprised of 20% PEG 3350, 0.2 M magnesium chloride hexahydrate, 0.1 M sodium citrate pH 6.5. The crystals diffracted to 1.9 Å resolution and belonged to an orthorhombic space group with unit-cell parameters a = 59.32, b = 65.35, c = 95.05 Å. The calculated Matthews coefficient (VM) value of 2.27 Å(3) Da(-1) suggests that there are two molecules per asymmetric unit, with an estimated solvent content of 45.7%.

  19. Estimation of immune complexes by a microplate-adapted C1q-Protein A enzyme-linked-immunosorbent-assay (C1q-PA-ELISA)

    DEFF Research Database (Denmark)

    Bjerrum, L; Glikmann, G; Jensenius, J C

    1983-01-01

    of IC were found in the majority of sera from patients with rheumatoid arthritis and SLE. The described C1q-PA-ELISA is a simple and inexpensive method for detection of C1q-binding immune complexes. The reproducibility is acceptable and the sensitivity is higher than for most IC-methods based on C1q-binding....

  20. Complement protein C1q induces maturation of human dendritic cells

    DEFF Research Database (Denmark)

    Cosmor, E; Bajtay, Z; Sándor, N

    2007-01-01

    activity of the cells was assessed by measuring cytokine secretion and their ability to activate allogeneic T lymphocytes. Cytokine production by T cells co-cultured with C1q-matured DCs was also investigated. C1q, but not the structurally related mannose-binding lectin was found to bind to imMDC in a dose......q-induced DC maturation generates a Th1-type response. Interestingly, IL-10 levels were elevated by C1q-treated MDCs but not in the supernatant of their co-cultures with allogeneic T cells. Taken together, these results indicate that C1q-opsonized antigens may play a role in the induction......Maturation of dendritic cells (DCs) is known to be induced by several stimuli, including microbial products, inflammatory cytokines and immobilized IgG, as demonstrated recently. Since immune complexes formed in vivo also contain C1q, moreover apoptotic cells and several pathogens fix C1q...

  1. C1q/TNF-related protein 6 (CTRP6) links obesity to adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Lei, Xia; Seldin, Marcus M; Little, Hannah C; Choy, Nicholas; Klonisch, Thomas; Wong, G William

    2017-09-08

    Obesity is associated with chronic low-grade inflammation, and metabolic regulators linking obesity to inflammation have therefore received much attention. Secreted C1q/TNF-related proteins (CTRPs) are one such group of regulators that regulate glucose and fat metabolism in peripheral tissues and modulate inflammation in adipose tissue. We have previously shown that expression of CTRP6 is up-regulated in leptin-deficient mice and, conversely, down-regulated by the anti-diabetic drug rosiglitazone. Here, we provide evidence for a novel role of CTRP6 in modulating both inflammation and insulin sensitivity. We found that in obese and diabetic humans and mouse models, CTRP6 expression was markedly up-regulated in adipose tissue and that stromal vascular cells, such as macrophages, are a major CTRP6 source. Overexpressing mouse or human CTRP6 impaired glucose disposal in peripheral tissues in response to glucose and insulin challenge in wild-type mice. Conversely, Ctrp6 gene deletion improved insulin action and increased metabolic rate and energy expenditure in diet-induced obese mice. Mechanistically, CTRP6 regulates local inflammation and glucose metabolism by targeting macrophages and adipocytes, respectively. In cultured macrophages, recombinant CTRP6 dose-dependently up-regulated the expression and production of TNF-α. Conversely, CTRP6 deficiency reduced circulating inflammatory cytokines and pro-inflammatory macrophages in adipose tissue. CTRP6-overexpressing mice or CTRP6-treated adipocytes had reduced insulin-stimulated Akt phosphorylation and glucose uptake. In contrast, loss of CTRP6 enhanced insulin-stimulated Akt activation in adipose tissue. Together, these results establish CTRP6 as a novel metabolic/immune regulator linking obesity to adipose tissue inflammation and insulin resistance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Cytoadhesion to gC1qR through Plasmodium falciparum erythrocyte membrane protein 1 in severe malaria

    DEFF Research Database (Denmark)

    Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau

    2016-01-01

    Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed...... by static binding assays and qPCR the cytoadhesion and var gene transcriptional profile of 86 P. falciparum isolates from Mozambican children with severe and uncomplicated malaria, as well as of a P. falciparum 3D7 line selected for binding to gC1qR (Pf3D7gC1qR). Transcript levels of DC8 correlated...... positively with cytoadhesion to gC1qR (rho = 0.287, P = 0.007), were higher in isolates from children with severe anemia than with uncomplicated malaria, as well as in isolates from Europeans presenting a first episode of malaria (n = 21) than Mozambican adults (n = 25), and were associated with an increased...

  3. Tomato SlSnRK1 protein interacts with and phosphorylates βC1, a pathogenesis protein encoded by a geminivirus β-satellite.

    Science.gov (United States)

    Shen, Qingtang; Liu, Zhou; Song, Fengming; Xie, Qi; Hanley-Bowdoin, Linda; Zhou, Xueping

    2011-11-01

    The βC1 protein of tomato yellow leaf curl China β-satellite functions as a pathogenicity determinant. To better understand the molecular basis of βC1 in pathogenicity, a yeast two-hybrid screen of a tomato (Solanum lycopersicum) cDNA library was carried out using βC1 as bait. βC1 interacted with a tomato SUCROSE-NONFERMENTING1-related kinase designated as SlSnRK1. Their interaction was confirmed using a bimolecular fluorescence complementation assay in Nicotiana benthamiana cells. Plants overexpressing SnRK1 were delayed for symptom appearance and contained lower levels of viral and satellite DNA, while plants silenced for SnRK1 expression developed symptoms earlier and accumulated higher levels of viral DNA. In vitro kinase assays showed that βC1 is phosphorylated by SlSnRK1 mainly on serine at position 33 and threonine at position 78. Plants infected with βC1 mutants containing phosphorylation-mimic aspartate residues in place of serine-33 and/or threonine-78 displayed delayed and attenuated symptoms and accumulated lower levels of viral DNA, while plants infected with phosphorylation-negative alanine mutants contained higher levels of viral DNA. These results suggested that the SlSnRK1 protein attenuates geminivirus infection by interacting with and phosphorylating the βC1 protein.

  4. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    International Nuclear Information System (INIS)

    Noisakran, Sansanee; Sengsai, Suchada; Thongboonkerd, Visith; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Puttikhunt, Chunya

    2008-01-01

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells

  5. Estimation of immune complexes by a microplate-adapted C1q-Protein A enzyme-linked-immunosorbent-assay (C1q-PA-ELISA)

    DEFF Research Database (Denmark)

    Bjerrum, L; Glikmann, G; Jensenius, J C

    1983-01-01

    . Bound IC was measured by use of alkaline phosphatase-labelled Protein A followed by the substrate para-nitro-phenyl-phosphate. A dose response was found for both delta IgG and BSA anti-BSA complexes, while variations in the concentration of monomer IgG did not affect the optical density. Elevated levels...

  6. Cranial nerve IX and X impairment after a sports-related Jefferson (C1) fracture in a 16-year-old male: a case report.

    Science.gov (United States)

    Dettling, Samuel D; Morscher, Melanie A; Masin, Jeffrey S; Adamczyk, Mark J

    2013-01-01

    Jefferson (C1) fractures are rare cervical spine injuries that usually do not result in cranial nerve (CN) impairment. However, case reports of Collet-Sicard syndrome (impairment of CNs IX-XII) and impairment of CNs IX, X, and XII have been reported. All reported cases involved adult patients in high-impact collisions, such as motor vehicle accidents or falls. To our knowledge, a Jefferson fracture with selective CN impairment due to a low-energy, sports-related injury in a pediatric patient has not been reported. Chart and radiographic data for a single case were reviewed and reported in a retrospective study approved by the Institutional Review Board of the participating hospital. A 16-year-old male was diagnosed with a Jefferson fracture after a head-to-chest football collision. On computed tomography, the distance between the atlas transverse process and styloid process of the skull was 5 mm right and 10 mm left. Before halo fixation, the patient had vague complaints of dysphagia. These complaints worsened which led to the diagnosis of CN IX and X impairment and placement of a feeding tube. The fracture healed uneventfully, the dysphagia symptoms resolved, and the halo fixation and feeding tube were removed. The patient returned to all activities, but was instructed to avoid participation in contact sports. This was the first report of selective CN impairment in a pediatric patient with a Jefferson fracture resulting from a low-impact sports-related injury. Careful monitoring of the patient complaints led to appropriate treatment. Further studies into the spatial relationship between the transverse process of the atlas in relation to the styloid process of the skull may be warranted. Level V, case report.

  7. Three novel C1q domain containing proteins from the disk abalone Haliotis discus discus: Genomic organization and analysis of the transcriptional changes in response to bacterial pathogens.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Jayasinghe, J D H E; Godahewa, G I; Park, Hae-Chul; Lee, Jehee

    2016-09-01

    The globular C1q (gC1q) domain containing proteins, commonly referred as C1q domain containing (C1qDC) proteins, are an essential family of proteins involved in various innate immune responses. In this study, three novel C1qDC proteins were identified from the disk abalone (Haliotis discus discus) transcriptome database and designated as AbC1qDC1, AbC1qDC2, and AbC1qDC3. The cDNA sequences of AbC1qDC1, AbC1qDC2, and AbC1qDC3 consisted of 807, 1305, and 660 bp open reading frames (ORFs) encoding 269, 435, and 220 amino acids (aa), respectively. Putative signal peptides and the N-terminal gC1q domain were identified in all three AbC1qDC proteins. An additional predicted motif region, known as the coiled coil region (CCR), was identified next to the signal sequence of AbC1qDC2. The genomic organization of the AbC1qDCs was determined using a bacterial artificial chromosome (BAC) library. It was found that the CDS of AbC1qDC1 was distributed among three exons, while the CDSs of AbC1qDC2 and AbC1qDC3 were distributed between two exons. Sequence analysis indicated that the AbC1qDC proteins shared <40% identity with other counterparts from different species. According to the neighbor-joining phylogenetic tree, the proteins were grouped within an invertebrate group with high evolutionary distances, which suggests that they are new members of the C1qDC family. Higher expression of AbC1qDC1 and AbC1qDC2 was detected in hepatopancreas, muscle, and mantle tissues compare to the other tissues analyzed, using reverse transcription, followed by quantitative real-time PCR (qPCR) using SYBR Green, whereas AbC1qDC3 was predominantly expressed in gill tissues, followed by muscles and the hepatopancreas. The temporal expression of AbC1qDC transcripts in gills after bacterial (Vibrio parahaemolyticus and Listeria monocytogenes) and lipopolysaccharide stimulation indicated that AbC1qDCs can be strongly induced by both Gram-negative and Gram-positive bacterial species with different

  8. C 1

    Science.gov (United States)

    Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg

    2016-01-01

    Geometrically continuous ( G k ) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are C k also for non-tensor-product layout. This paper describes and analyzes one such concrete C 1 geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G 1 surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson's equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O ( h 3 ) convergence in the L ∞ norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis.

  9. The nature of the hydrophobic n-alkanol binding site within the C1 domains of protein kinase Calpha.

    Science.gov (United States)

    Slater, Simon J; Malinowski, Steve A; Stubbs, Christopher D

    2004-06-15

    The activator-binding sites within the C1 domains of protein kinase C (PKC) are also able to bind alcohols and anesthetics. In this study, the nature of the interaction of these agents with the hydrophobic region within the C1 domains was investigated and a structure-activity relationship for the alcohol effects was obtained. The effects of a series of n-alkanols on PKCalpha activity, determined using an in vitro assay system that lacked lipids, were found to be a nonlinear function of the chain length. In the absence of phorbol ester or diacylglycerol, 1-octanol potently activated PKCalpha in a concentration-dependent manner, while 1-heptanol was completely without effect, despite differing by one methylene unit. The minimal structural requirement for the activating effect corresponded to R-CH(OH)-(CH(2))(n)-CH(3), where R = H or an alkyl group and n >or= 6. Consistent with this, 2-octanol, for which n = 5, was without effect on the activity, even though this alcohol is only marginally less hydrophobic than 1-octanol, whereas 2-nonanol, for which n = 6, was able to produce activity. Importantly, it was found that PKCalpha was activated to a greater extent by R-2-nonanol than by the S enantiomer. The potentiation of phorbol ester-induced, membrane-associated PKCalpha activity by long-chain n-alkanols reported previously (Slater, S. J., Kelly, M. B., Larkin, J. D., Ho, C, Mazurek, A, Taddeo, F. J., Yeager, M. D., Stubbs, C. D. (1997) J. Biol. Chem. 272, 6167-6173), was also found here for nonmembrane associated PKC, indicating that this effect is an intrinsic property of the enzyme rather than a result of membrane perturbation. Overall, the results suggest that the alcohol-binding sites within the C1 domains of PKCalpha contain spatially distinct hydrophilic and hydrophobic regions that impose a high degree of structural specificity on the interactions of alcohols and other anesthetic compounds, as well as diacylglycerols and phorbol esters.

  10. Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Nielsen, EH; Andersen, Ove

    1996-01-01

    Serum amyloid P component (SAP), a member of the conserved pentraxin family of plasma proteins, binds calcium dependently to its ligands. The authors investigated SAPs interaction with the complement proteins C4b binding protein (C4bp) and C1q by ELISA, immunoelectrophoresis and electron microscopy....... Binding of these proteins to SAP was demonstrated when SAP was immobilized using F(ab')2 anti-SAP, but not when SAP reacted with these proteins in liquid phase; thus the binding to human SAP was markedly phase state dependent. Presaturation of solid phase SAP with heparin, which binds SAP with high...... affinity, did not interfere with the subsequent binding of C4bp or C1q to SAP. In contrast, collagen I and IV showed partial competition with the binding of C1q to SAP. Using fresh serum, immobilized native SAP bound C4bp whereas binding of C1q/C1 could not be demonstrated. Altogether the results indicate...

  11. Structure and function of complement protein C1q and its role in the development of autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Katarzyna Smykał-Jankowiak

    2009-09-01

    Full Text Available Complement plays an important role in the immune system. Three different pathways of complement activation are known: the classical, alternative, and lectin dependent. They involve more than 30 serum peptides. C1q is the first subcomponent of the classical pathway of complement activation. It is composed of three types of chains, A, B, and C, which form a molecule containing 18 peptides. Each of the chains has a short amino-terminal region followed by a collagen-like region (playing a role in the activation of C1r2C1s2 and a carboxy-terminal head, which binds to immune complexes. Recent studies have shown a great number of ligands for C1q, including aggregated IgG, IgM, human T-cell lymphotropic virus-I (HTLV-I, gp21 peptide, human immunodeficiency virus-1 (HIV-1 gp21 peptide, β-amyloid, fragments of bacterial walls, apoptotic cells, and many others. However, the role of C1q is not only associated with complement activation. It also helps in the removal of immune complexes and necrotic cells, stimulates the production of some cytokines, and modulates the function of lymphocytes. Complete C1q deficiency is a rare genetic disorder. The C1q gene is located on the short arm of chromosome 1. So far, only a few mutations in C1q gene have been reported. The presence of these mutations is strongly associated with recurrent bacterial infections and the development of systemic lupus erythematosus (SLE. Recent clinical studies point to the significance of anti-C1q antibodies in the diagnosis and assessment of lupus nephritis activity.

  12. Hepatitis B Virus X Protein Up-Regulates AKR1C1 Expression Through Nuclear Factor-Y in Human Hepatocarcinoma Cells.

    Science.gov (United States)

    Li, Kai; Ding, Shijia; Chen, Ke; Qin, Dongdong; Qu, Jialin; Wang, Sen; Sheng, Yanrui; Zou, Chengcheng; Chen, Limin; Tang, Hua

    2013-01-01

    The hepatitis B virus X (HBx) protein has long been recognized as an important transcriptional transactivator of several genes. Human aldo-keto reductase family 1, member C1 (AKR1C1), a member of the family of AKR1CS, is significantly increased in HBx-expressed cells. This study aimed to investigate the possible mechanism of HBx in regulating AKR1C1 expression in HepG2.2.15 cells and the role of AKR1C1 for HBV-induced HCC. RT-PCR was performed to detect AKR1C1 expression on mRNA level in HepG2 and HepG2.2.15 cell. The promoter activity of AKR1C1 was assayed by transient transfection and Dual-luciferase reporter assay system. The AKR1C1 promoter sequence was screened using the TFSEARCH database and the ALIBABA 2.0 software. The potential transcription factors binding sites were identified using 5' functional deletion analysis and site-directed mutagenesis. In this study, we found that HBx promoted AKR1C1 expression in HepG2.2.15 cells. Knockdown of HBx inhibited AKR1C1 activation. The role of HBx expression in regulating the promoter activity of human AKR1C1 gene was analyzed. The 5'functional deletion analysis identified that the region between -128 and -88 was the minimal promoter region of HBx to activate AKR1C1 gene expression. Site-directed mutagenesis studies suggested that nuclear factor-Y (NF-Y) plays an important role in this HBx-induced AKR1C1 activation. In HepG2.2.1.5 cell, HBx can promote AKR1C1 promoter activity and thus activates the basal transcription of AKR1C1 gene. This process is mediated by the transcription factor NF-Y. This study explored the mechanism for the regulation of HBV on AKR1C1 expression and has provided a new understanding of HBV-induced HCC.

  13. Assembly studies of six intestinal intermediate filament (IF) proteins B2, C1, C2, D1, D2, and E1 in the nematode C. elegans.

    Science.gov (United States)

    Karabinos, Anton; Schünemann, Jürgen; Parry, David A D

    2017-03-01

    The dimerisation properties of six intestine-expressed intermediate filament (IF) proteins (B2, C1, C2, D1, D2, E1) were analysed in blot overlay assay on membranes containing all of the eleven recombinant C. elegans IF proteins (A1, A2, A3, A4, B1, B2, C1, C2, D1, D2, and E1). The interactions detected in the blot assays exclusively comprise intestine-expressed IF proteins and the protein A4, which is found in the dauer larva intestine. About 86% of these interactions are heterotypic, while the remaining interactions relate to C1, C2, and D2 homodimers. These multiple modes of interaction were also supported by calculations of the numbers of possible interchain ionic interactions derived from the individual rod sequences. The results predict that the six B2, C1, C2, D1, D2, and E1 IF proteins are able to form as many as eleven different heteropolymeric and three homopolymeric IFs in the C. elegans intestine. This simple model of the intestinal IF meshwork enables us to speculate that our previously reported triple RNAi worms arrested or decreased their growth because of feeding reduction due to morphological defects of the mechanically compromised intestine. © 2017 Wiley Periodicals, Inc.

  14. Elucidating the Mechanism of Gain of Toxic Function From Mutant C1 Inhibitor Proteins in Hereditary Angioedema

    Science.gov (United States)

    2017-10-01

    fact , that the plasma level of C1INH was significantly reduced in 75 PiZZ children compared to 35 control children (14%, p ɘ.01). A similar...constructed all plasmids and performed mutagenesis Funding Support: None Name: Astrid Doerner Project Role: Project Scientist Research

  15. Deletion of the Synechocystis sp. PCC 6803 kaiAB1C1 gene cluster causes impaired cell growth under light-dark conditions.

    Science.gov (United States)

    Dörrich, Anja K; Mitschke, Jan; Siadat, Olga; Wilde, Annegret

    2014-11-01

    In contrast to Synechococcus elongatus PCC 7942, few data exist on the timing mechanism of the widely used cyanobacterium Synechocystis sp. PCC 6803. The standard kaiAB1C1 operon present in this organism was shown to encode a functional KaiC protein that interacted with KaiA, similar to the S. elongatus PCC 7942 clock. Inactivation of this operon in Synechocystis sp. PCC 6803 resulted in a mutant with a strong growth defect when grown under light-dark cycles, which was even more pronounced when glucose was added to the growth medium. In addition, mutants showed a bleaching phenotype. No effects were detected in mutant cells grown under constant light. Microarray experiments performed with cells grown for 1 day under a light-dark cycle revealed many differentially regulated genes with known functions in the ΔkaiABC mutant in comparison with the WT. We identified the genes encoding the cyanobacterial phytochrome Cph1 and the light-repressed protein LrtA as well as several hypothetical ORFs with a complete inverse behaviour in the light cycle. These transcripts showed a stronger accumulation in the light but a weaker accumulation in the dark in ΔkaiABC cells in comparison with the WT. In general, we found a considerable overlap with microarray data obtained for hik31 and sigE mutants. These genes are known to be important regulators of cell metabolism in the dark. Strikingly, deletion of the ΔkaiABC operon led to a much stronger phenotype under light-dark cycles in Synechocystis sp. PCC 6803 than in Synechococcus sp. PCC 7942. © 2014 The Authors.

  16. Activation of human microglia by fibrillar prion protein-related peptides is enhanced by amyloid-associated factors SAP and C1q

    NARCIS (Netherlands)

    Veerhuis, Robert; Boshuizen, Ronald S.; Morbin, Michela; Mazzoleni, Giulia; Hoozemans, Jeroen J. M.; Langedijk, Johannes P. M.; Tagliavini, Fabrizio; Langeveld, Jan P. M.; Eikelenboom, Piet

    2005-01-01

    Complement activation products C1q and C3d, serum amyloid P component (SAP) and activated glial cells accumulate in amyloid deposits of conformationally changed prion protein (PrPSc) in Creutzfeldt-Jakob disease, Gerstmann-Straussier-Scheinker disease and scrapie-infected mouse brain. Biological

  17. Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function.

    Science.gov (United States)

    Sun, Jiandong; Liu, Yan; Moreno, Stephanie; Baudry, Michel; Bi, Xiaoning

    2015-03-18

    Angelman syndrome (AS) is a neurogenetic disorder caused by deficiency of maternally expressed ubiquitin-protein ligase E3A (UBE3A), an E3 ligase that targets specific proteins for proteasomal degradation. Although motor function impairment occurs in all patients with AS, very little research has been done to understand and treat it. The present study focuses on Ube3A deficiency-induced alterations in signaling through the mechanistic target of rapamycin (mTOR) pathway in the cerebellum of the AS mouse model and on potential therapeutic applications of rapamycin. Levels of tuberous sclerosis complex 2 (TSC2), a negative regulator of mTOR, were increased in AS mice compared with wild-type mice; however, TSC2 inhibitory phosphorylation was also increased. Correspondingly, levels of phosphorylated/active mTOR were increased. Phosphorylation of the mTORC1 substrates S6 kinase 1 (S6K1) and S6 was elevated, whereas that of the mTORC2 substrates AKT and N-myc downstream regulated 1 was decreased, suggesting enhanced mTORC1 but inhibited mTORC2 signaling. Semi-chronic treatment of AS mice with rapamycin not only improved their motor performance but also normalized mTORC1 and mTORC2 signaling. Furthermore, inhibitory phosphorylation of rictor, a key regulatory/structural subunit of the mTORC2 complex, was increased in AS mice and decreased after rapamycin treatment. These results indicate that Ube3A deficiency leads to overactivation of the mTORC1-S6K1 pathway, which in turn inhibits rictor, resulting in decreased mTORC2 signaling in Purkinje neurons of AS mice. Finally, rapamycin treatment also improved dendritic spine morphology in AS mice, through inhibiting mTORC1 and possibly enhancing mTORC2-mediated regulation of synaptic cytoskeletal elements. Collectively, our results indicate that the imbalance between mTORC1 and mTORC2 activity may contribute to synaptic pathology and motor impairment in AS. Copyright © 2015 the authors 0270-6474/15/354706-13$15.00/0.

  18. C0 and C1 N-terminal Ig domains of myosin binding protein C exert different effects on thin filament activation.

    Science.gov (United States)

    Harris, Samantha P; Belknap, Betty; Van Sciver, Robert E; White, Howard D; Galkin, Vitold E

    2016-02-09

    Mutations in genes encoding myosin, the molecular motor that powers cardiac muscle contraction, and its accessory protein, cardiac myosin binding protein C (cMyBP-C), are the two most common causes of hypertrophic cardiomyopathy (HCM). Recent studies established that the N-terminal domains (NTDs) of cMyBP-C (e.g., C0, C1, M, and C2) can bind to and activate or inhibit the thin filament (TF). However, the molecular mechanism(s) by which NTDs modulate interaction of myosin with the TF remains unknown and the contribution of each individual NTD to TF activation/inhibition is unclear. Here we used an integrated structure-function approach using cryoelectron microscopy, biochemical kinetics, and force measurements to reveal how the first two Ig-like domains of cMyPB-C (C0 and C1) interact with the TF. Results demonstrate that despite being structural homologs, C0 and C1 exhibit different patterns of binding on the surface of F-actin. Importantly, C1 but not C0 binds in a position to activate the TF by shifting tropomyosin (Tm) to the "open" structural state. We further show that C1 directly interacts with Tm and traps Tm in the open position on the surface of F-actin. Both C0 and C1 compete with myosin subfragment 1 for binding to F-actin and effectively inhibit actomyosin interactions when present at high ratios of NTDs to F-actin. Finally, we show that in contracting sarcomeres, the activating effect of C1 is apparent only once low levels of Ca(2+) have been achieved. We suggest that Ca(2+) modulates the interaction of cMyBP-C with the TF in the sarcomere.

  19. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, Christophe; Fish, Alexander [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi [University of Patras, 26505 Rio, Patras (Greece); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2015-10-31

    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  20. The C proteins of HeLa 40S nuclear ribonucleoprotein particles exist as anisotropic tetramers of (C1)3 C2.

    OpenAIRE

    Barnett, S F; Friedman, D L; LeStourgeon, W M

    1989-01-01

    The C proteins (C1 and C2) of HeLa 40S heterogeneous nuclear ribonucleoprotein particles copurify under native conditions as a stable complex with a fixed molar protein ratio (S.F. Barnett, W.M. LeStourgeon, and D.L. Friedman, J. Biochem. Biophys. Methods 16:87-97, 1988). Gel filtration chromatography and velocity sedimentation analyses of these complexes revealed a large Stokes radius (6.2 nm) and a sedimentation coefficient of 5.8S. On the basis of these values and a partial specific volume...

  1. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins.

    Science.gov (United States)

    Caillat, Christophe; Fish, Alexander; Pefani, Dafni Eleftheria; Taraviras, Stavros; Lygerou, Zoi; Perrakis, Anastassis

    2015-11-01

    GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin-Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  2. Cloning and characterization of the c1 repressor of Pseudomonas aeruginosa bacteriophage D3: a functional analog of phage lambda cI protein

    International Nuclear Information System (INIS)

    Miller, R.V.; Kokjohn, T.A.

    1987-01-01

    We cloned the gene (c1) which encodes the repressor of vegetative function of Pseudomonas aeruginosa bacteriophage D3. The cloned gene was shown to inhibit plating of D3 and the induction of D3 lysogens by UV irradiation. The efficiency of plating and prophage induction of the heteroimmune P. aeruginosa phage F116L were not affected by the presence of the cloned c1 gene of D3. When the D3 DNA fragment containing c1 was subcloned into pBR322 and introduced into Escherichia coli, it was shown to specifically inhibit the plating of phage lambda and the induction of the lambda prophage by mitomycin C. The plating of lambda imm434 phage was not affected. Analysis in minicells indicated that these effects correspond to the presence of a plasmid-encoded protein of 36,000 molecular weight. These data suggest the possibility that coliphage lambda and the P. aeruginosa phage D3 evolved from a common ancestor. The conservation of the functional similarities of their repressors may have occurred because of the advantage to these temperate phages of capitalizing on the potential of the evolutionarily conserved RecA protein to monitor the level of damage to the host genome

  3. Cloning and characterization of the c1 repressor of Pseudomonas aeruginosa bacteriophage D3: a functional analog of phage lambda cI protein

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.V.; Kokjohn, T.A.

    1987-05-01

    We cloned the gene (c1) which encodes the repressor of vegetative function of Pseudomonas aeruginosa bacteriophage D3. The cloned gene was shown to inhibit plating of D3 and the induction of D3 lysogens by UV irradiation. The efficiency of plating and prophage induction of the heteroimmune P. aeruginosa phage F116L were not affected by the presence of the cloned c1 gene of D3. When the D3 DNA fragment containing c1 was subcloned into pBR322 and introduced into Escherichia coli, it was shown to specifically inhibit the plating of phage lambda and the induction of the lambda prophage by mitomycin C. The plating of lambda imm434 phage was not affected. Analysis in minicells indicated that these effects correspond to the presence of a plasmid-encoded protein of 36,000 molecular weight. These data suggest the possibility that coliphage lambda and the P. aeruginosa phage D3 evolved from a common ancestor. The conservation of the functional similarities of their repressors may have occurred because of the advantage to these temperate phages of capitalizing on the potential of the evolutionarily conserved RecA protein to monitor the level of damage to the host genome.

  4. Transcriptome data and gene ontology analysis in human macrophages ingesting modified lipoproteins in the presence or absence of complement protein C1q

    Directory of Open Access Journals (Sweden)

    Minh-Minh Ho

    2016-12-01

    Full Text Available We characterized the transcriptional effects of complement opsonization on foam cell formation in human monocyte-derived macrophages (HMDM. RNA-sequencing was used to identify the pathways modulated by complement protein C1q during HMDM ingestion of the atherogenic lipoproteins oxidized low density lipoprotein (oxLDL and acetylated low density lipoprotein (acLDL. All raw data were submitted to the MIAME-compliant database Gene Expression Omnibus (accession number GEO: GSE80442; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80442. Data presented here include Venn diagram overviews of up- and down-regulated genes for each condition tested, gene ontology analyses of biological processes, molecular functions and cellular components and KEGG pathway analysis. Further investigation of the pathways modulated by C1q in HMDM during ingestion of atherogenic lipoproteins and their functional relevance are described in “Macrophage molecular signaling and inflammatory responses during ingestion of atherogenic lipoproteins are modulated by complement protein C1q” (M.M. Ho, A. Manughian-Peter, W.R. Spivia, A. Taylor, D.A. Fraser, 2016 [1].

  5. hnRNP C1/C2 and Pur-beta proteins mediate induction of senescence by oligonucleotides homologous to the telomere overhang

    Directory of Open Access Journals (Sweden)

    Mulnix RE

    2013-12-01

    Full Text Available Richard E Mulnix,1,* Ryan T Pitman,1 Allison Retzer,2 Ceyda Bertram,1 Kavin Arasi,2 Zachary Crees,2 Jennifer Girard,2 Srijayaprakash B Uppada,1 Amanda L Stone,1 Neelu Puri1,* 1Department of Biomedical Sciences, University of Illinois at Chicago, Rockford, IL, USA; 2College of Medicine, University of Illinois at Chicago, Rockford, IL, USA *These authors contributed equally to this work Background: Experimental disruption of the telomere overhang induces a potent DNA damage response and is the target of newly emerging cancer therapeutics. Introduction of T-oligo, an eleven-base oligonucleotide homologous to the 3'-telomeric overhang, mimics telomere disruption and induces DNA damage responses through activation of p53, p73, p95/Nbs1, E2F1, pRb, and other DNA damage response proteins. ATM (ataxia telangiectasia mutated was once thought to be the primary driver of T-oligo-induced DNA damage responses; however, recent experiments have highlighted other key proteins that may also play a significant role. Methods: To identify proteins associated with T-oligo, MM-AN cells were treated with biotinylated T-oligo or complementary oligonucleotide, cell lysates were run on SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis, and the protein bands observed after treatment of cells with T-oligo or complementary oligonucleotide were analyzed using mass spectrometry. To study the effect of T-oligo on expression of hnRNP C1/C2 (heterogeneous nuclear ribonucleoprotein C1 and C2 and purine-rich element binding proteins (Pur proteins, cells were treated with T-oligo, and immunoblotting experiments were performed. To determine their role in senescence, cells were treated with shRNA (short hairpin ribonucleic acid against these proteins, and senescence was studied using the senescence associated beta-galactosidase assay. Results: Using mass spectrometry, RNA-binding hnRNP C1/C2 and DNA-binding Pur proteins were found to associate with T-oligo. hnRNP C1

  6. Loss of Cellular Sialidases Does Not Affect the Sialylation Status of the Prion Protein but Increases the Amounts of Its Proteolytic Fragment C1.

    Directory of Open Access Journals (Sweden)

    Elizaveta Katorcha

    Full Text Available The central molecular event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC, which is a sialoglycoprotein, into the disease-associated, transmissible form denoted PrPSc. Recent studies revealed a correlation between the sialylation status of PrPSc and incubation time to disease and introduced a new hypothesis that progression of prion diseases could be controlled or reversed by altering the sialylation level of PrPC. Of the four known mammalian sialidases, the enzymes that cleave off sialic acid residues, only NEU1, NEU3 and NEU4 are expressed in the brain. To test whether cellular sialidases control the steady-state sialylation level of PrPC and to identify the putative sialidase responsible for desialylating PrPC, we analyzed brain-derived PrPC from knockout mice deficient in Neu1, Neu3, Neu4, or from Neu3/Neu4 double knockouts. Surprisingly, no differences in the sialylation of PrPC or its proteolytic product C1 were noticed in any of the knockout mice tested as compared to the age-matched controls. However, significantly higher amounts of the C1 fragment relative to full-length PrPC were detected in the brains of Neu1 knockout mice as compared to WT mice or to the other knockout mice. Additional experiments revealed that in neuroblastoma cell line the sialylation pattern of C1 could be changed by an inhibitor of sialylatransferases. In summary, this study suggests that targeting cellular sialidases is apparently not the correct strategy for altering the sialylation levels of PrPC, whereas modulating the activity of sialylatransferases might offer a more promising approach. Our findings also suggest that catabolism of PrPC involves its α-cleavage followed by desialylation of the resulting C1 fragments by NEU1 and consequent fast degradation of the desialylated products.

  7. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Genipin (GNP effectively inhibits uncoupling protein 2 (UCP2, which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS levels. In this study, the hydroxyls at positions C10 (10-OH and C1 (1-OH of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1 proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP's activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1 and 1-ethyl-genipin (1-GNP2 lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1 and 10-acetic acid-genipin (10-GNP2 exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP's apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production.

  8. Loss of Niemann-Pick C1 or C2 protein results in similar biochemical changes suggesting that these proteins function in a common lysosomal pathway.

    Directory of Open Access Journals (Sweden)

    Sayali S Dixit

    Full Text Available Niemann-Pick Type C (NPC disease is a lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids in the endolysosomal system. NPC disease results from a defect in either of two distinct cholesterol-binding proteins: a transmembrane protein, NPC1, and a small soluble protein, NPC2. NPC1 and NPC2 are thought to function closely in the export of lysosomal cholesterol with both proteins binding cholesterol in vitro but they may have unrelated lysosomal roles. To investigate this possibility, we compared biochemical consequences of the loss of either protein. Analyses of lysosome-enriched subcellular fractions from brain and liver revealed similar decreases in buoyant densities of lysosomes from NPC1 or NPC2 deficient mice compared to controls. The subcellular distribution of both proteins was similar and paralleled a lysosomal marker. In liver, absence of either NPC1 or NPC2 resulted in similar alterations in the carbohydrate processing of the lysosomal protease, tripeptidyl peptidase I. These results highlight biochemical alterations in the lysosomal system of the NPC-mutant mice that appear secondary to lipid storage. In addition, the similarity in biochemical phenotypes resulting from either NPC1 or NPC2 deficiency supports models in which the function of these two proteins within lysosomes are linked closely.

  9. Cytochrome b561, copper, β-cleaved amyloid precursor protein and niemann-pick C1 protein are involved in ascorbate-induced release and membrane penetration of heparan sulfate from endosomal S-nitrosylated glypican-1.

    Science.gov (United States)

    Cheng, Fang; Fransson, Lars-Åke; Mani, Katrin

    2017-11-15

    Ascorbate-induced release of heparan sulfate from S-nitrosylated heparan sulfate proteoglycan glypican-1 takes place in endosomes. Heparan sulfate penetrates the membrane and is transported to the nucleus. This process is dependent on copper and on expression and processing of the amyloid precursor protein. It remains unclear how exogenously supplied ascorbate can generate HS-anMan in endosomes and how passage through the membrane is facilitated. Here we have examined wild-type, Alzheimer Tg2576 and amyloid precursor protein (-/-) mouse fibroblasts and human fetal and Niemann-Pick C1 fibroblasts by using deconvolution immunofluorescence microscopy, siRNA technology and [S 35 ]sulfate-labeling, vesicle isolation and gel chromatography. We found that ascorbate-induced release of heparan sulfate was dependent on expression of endosomal cytochrome b561. Formation and nuclear transport of heparan sulfate was suppressed by inhibition of β-processing of the amyloid precursor protein and formation was restored by copper (I) ions. Membrane penetration was not dependent on amyloid beta channel formation. Inhibition of endosomal exit resulted in accumulation of heparan sulfate in vesicles that exposed the C-terminal of the amyloid precursor protein externally. Endosome-to-nucleus transport was also dependent on expression of the Niemann-Pick C1 protein. We propose that ascorbate is taken up from the medium and is oxidized by cytochrome b561 which, in turn, reduces copper (II) to copper (I) present in the N-terminal, β-cleaved domain of the amyloid precursor protein. Re-oxidation of copper (I) is coupled to reductive, deaminative release of heparan sulfate from glypican-1. Passage through the membrane may be facilitated by the C-terminal, β-cleaved fragment of the amyloid precursor protein and the Niemann-Pick C1 protein. Copyright © 2017. Published by Elsevier Inc.

  10. A central role for C1q/TNF-related protein 13 (CTRP13 in modulating food intake and body weight.

    Directory of Open Access Journals (Sweden)

    Mardi S Byerly

    Full Text Available C1q/TNF-related protein 13 (CTRP13, a hormone secreted by adipose tissue (adipokines, helps regulate glucose metabolism in peripheral tissues. We previously reported that CTRP13 expression is increased in obese and hyperphagic leptin-deficient mice, suggesting that it may modulate food intake and body weight. CTRP13 is also expressed in the brain, although its role in modulating whole-body energy balance remains unknown. Here, we show that CTRP13 is a novel anorexigenic factor in the mouse brain. Quantitative PCR demonstrated that food restriction downregulates Ctrp13 expression in mouse hypothalamus, while high-fat feeding upregulates expression. Central administration of recombinant CTRP13 suppressed food intake and reduced body weight in mice. Further, CTRP13 and the orexigenic neuropeptide agouti-related protein (AgRP reciprocally regulate each other's expression in the hypothalamus: central delivery of CTRP13 suppressed Agrp expression, while delivery of AgRP increased Ctrp13 expression. Food restriction alone reduced Ctrp13 and increased orexigenic neuropeptide gene (Npy and Agrp expression in the hypothalamus; in contrast, when food restriction was coupled to enhanced physical activity in an activity-based anorexia (ABA mouse model, hypothalamic expression of both Ctrp13 and Agrp were upregulated. Taken together, these results suggest that CTRP13 and AgRP form a hypothalamic feedback loop to modulate food intake and that this neural circuit may be disrupted in an anorexic-like condition.

  11. 3.3 Å structure of Niemann–Pick C1 protein reveals insights into the function of the C-terminal luminal domain in cholesterol transport

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaochun; Lu, Feiran; Trinh, Michael N.; Schmiege, Philip; Seemann, Joachim; Wang, Jiawei; Blobel, Günter

    2017-08-07

    Niemann–Pick C1 (NPC1) and NPC2 proteins are indispensable for the export of LDL-derived cholesterol from late endosomes. Mutations in these proteins result in Niemann–Pick type C disease, a lysosomal storage disease. Despite recent reports of the NPC1 structure depicting its overall architecture, the function of its C-terminal luminal domain (CTD) remains poorly understood even though 45% of NPC disease-causing mutations are in this domain. Here, we report a crystal structure at 3.3 Å resolution of NPC1* (residues 314–1,278), which—in contrast to previous lower resolution structures—features the entire CTD well resolved. Notably, all eight cysteines of the CTD form four disulfide bonds, one of which (C909–C914) enforces a specific loop that in turn mediates an interaction with a loop of the N-terminal domain (NTD). Importantly, this loop and its interaction with the NTD were not observed in any previous structures due to the lower resolution. Our mutagenesis experiments highlight the physiological relevance of the CTD–NTD interaction, which might function to keep the NTD in the proper orientation for receiving cholesterol from NPC2. Additionally, this structure allows us to more precisely map all of the disease-causing mutations, allowing future molecular insights into the pathogenesis of NPC disease.

  12. Cadmium impairs protein folding in the endoplasmic reticulum and induces the unfolded protein response.

    Science.gov (United States)

    Le, Quynh Giang; Ishiwata-Kimata, Yuki; Kohno, Kenji; Kimata, Yukio

    2016-08-01

    Cellular exposure to cadmium is known to strongly induce the unfolded protein response (UPR), which suggests that the endoplasmic reticulum (ER) is preferentially damaged by cadmium. According to recent reports, the UPR is induced both dependent on and independently of accumulation of unfolded proteins in the ER. In order to understand the toxic mechanism of cadmium, here we investigated how cadmium exposure leads to Ire1 activation, which triggers the UPR, using yeast Saccharomyces cerevisiae as a model organism. Cadmium poorly induced the UPR when Ire1 carried a mutation that impairs its ability to recognize unfolded proteins. Ire1 activation by cadmium was also attenuated by the chemical chaperone 4-phenylbutyrate. Cadmium caused sedimentation of BiP, the molecular chaperone in the ER, which suggests the ER accumulation of unfolded proteins. A green fluorescent protein-based reporter assay also indicated that cadmium damages the oxidative protein folding in the ER. We also found that an excess concentration of extracellular calcium attenuates the Ire1 activation by cadmium. Taken together, we propose that cadmium exposure leads to the UPR induction through impairment of protein folding in the ER. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Plasma C1q/TNF-Related Protein-9 Levels Are Associated with Atherosclerosis in Patients with Type 2 Diabetes without Renal Dysfunction

    Directory of Open Access Journals (Sweden)

    Mariko Asada

    2016-01-01

    Full Text Available Aim. C1q/tumor necrosis factor-related protein-9 (CTRP9, a paralog of adiponectin, is expressed in adipose tissue. CTRP9 exerts protective effects against obesity and atherosclerosis in rodents. We investigated the association between plasma CTRP9 levels and atherosclerosis in patients with type 2 diabetes. Methods. We included 419 patients with type 2 diabetes, 161 of whom had chronic kidney disease (CKD. Fasting plasma CTRP9 and total adiponectin levels were measured with enzyme-linked immunosorbent assay. The intima-media thickness (IMT of the common carotid artery was measured with ultrasonography. Results. Plasma CTRP9 levels were higher in the CKD group than in the non-CKD group. Plasma CTRP9 levels were positively correlated with carotid IMT in the non-CKD group. Multivariate analyses revealed that plasma CTRP9 levels were positively associated with carotid IMT in the non-CKD group, independent of age, sex, body mass index, adiponectin, and other cardiovascular risk factors. However, plasma CTRP9 levels were not associated with carotid IMT in the CKD group. Conclusion. Plasma CTRP9 levels are associated with atherosclerosis in diabetic patients without CKD, independently of obesity, adiponectin, and traditional cardiovascular risk factors. This study indicates a potential role of CTRP9 in atherosclerosis progression in human type 2 diabetes.

  14. C1q/TNF-Related Protein-9 Ameliorates Ox-LDL-Induced Endothelial Dysfunction via PGC-1α/AMPK-Mediated Antioxidant Enzyme Induction

    Directory of Open Access Journals (Sweden)

    Haijian Sun

    2017-05-01

    Full Text Available Oxidized low-density lipoprotein (ox-LDL accumulation is one of the critical determinants in endothelial dysfunction in many cardiovascular diseases such as atherosclerosis. C1q/TNF-related protein 9 (CTRP9 is identified to be an adipocytokine with cardioprotective properties. However, the potential roles of CTRP9 in endothelial function remain largely elusive. In the present study, the effects of CTRP9 on the proliferation, apoptosis, migration, angiogenesis, nitric oxide (NO production and oxidative stress in human umbilical vein endothelial cells (HUVECs exposed to ox-LDL were investigated. We observed that treatment with ox-LDL inhibited the proliferation, migration, angiogenesis and the generation of NO, while stimulated the apoptosis and reactive oxygen species (ROS production in HUVECs. Incubation of HUVECs with CTRP9 rescued ox-LDL-induced endothelial injury. CTRP9 treatment reversed ox-LDL-evoked decreases in antioxidant enzymes including heme oxygenase-1 (HO-1, nicotinamide adenine dinucleotide phosphate (NAD(PH dehydrogenase quinone 1, and glutamate-cysteine ligase (GCL, as well as endothelial nitric oxide synthase (eNOS. Furthermore, CTRP9 induced activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC1-α and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK. Of interest, AMPK inhibition or PGC1-α silencing abolished CTRP9-mediated antioxidant enzymes levels, eNOS expressions, and endothelial protective effects. Collectively, we provided the first evidence that CTRP9 attenuated ox-LDL-induced endothelial injury by antioxidant enzyme inductions dependent on PGC-1α/AMPK activation.

  15. Targeted deletion of C1q/TNF-related protein 9 increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice.

    Science.gov (United States)

    Wei, Zhikui; Lei, Xia; Petersen, Pia S; Aja, Susan; Wong, G William

    2014-04-01

    Transgenic overexpression of CTRP9, a secreted hormone downregulated in obesity, confers striking protection against diet-induced obesity and type 2 diabetes. However, the physiological relevance of this adiponectin-related plasma protein remains undefined. Here, we used gene targeting to establish the metabolic function of CTRP9 in a physiological context. Mice lacking CTRP9 were obese and gained significantly more body weight when fed standard laboratory chow. Increased food intake, due in part to upregulated expression of hypothalamic orexigenic neuropeptides, contributed to greater adiposity in CTRP9 knockout mice. Although the frequency of food intake remained unchanged, CTRP9 knockout mice increased caloric intake by increasing meal size and decreasing satiety ratios. The absence of CTRP9 also resulted in peripheral tissue insulin resistance, leading to increased fasting insulin levels, impaired hepatic insulin signaling, and reduced insulin tolerance. Increased expression of lipogenic genes, combined with enhanced caloric intake, contributed to hepatic steatosis in CTRP9 knockout mice. Loss of CTRP9 also resulted in reduced skeletal muscle AMPK activation and mitochondrial content. Together, these results provide the genetic evidence for a physiological role of CTRP9 in controlling energy balance via central and peripheral mechanisms.

  16. Lower Circulating C1q/TNF-Related Protein-3 (CTRP3 Levels Are Associated with Obesity: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Risa M Wolf

    Full Text Available C1q/TNF-related protein-3 (CTRP3 is a novel adipokine that lowers blood glucose levels, reduces liver triglyceride synthesis, and is protective against hepatic steatosis in diet-induced obese mouse models. We hypothesized that higher circulating serum levels of CTRP3 would be associated with a lean body mass index (BMI and a more favorable metabolic profile in humans. The aim of this study was to investigate CTRP3 levels in lean individuals compared to obese individuals.This was a cross-sectional study of obese (n=44 and lean control patients (n=60. Fasting metabolic parameters were measured in all patients and serum CTRP3 levels were measured by ELISA.BMI of the lean group was 21.9 ± 0.2 kg/m2 and obese group was 45.2 ± 1.1 kg/m2. We found significantly lower circulating levels of CTRP3 in obese individuals (405 ± 8.3 vs. 436 ± 6.7 ng/mL, p=0.004 compared to the lean group. Serum CTRP3 levels were inversely correlated with BMI (p=0.001, and triglycerides (p<0.001, and significantly associated with gender (p<0.01, ethnicity (p=0.05, HDL-cholesterol (p<0.01, and adiponectin (p<0.01. We found BMI (p<0.01, gender (p<0.01, and ethnicity (p<0.05 to be significant predictors of CTRP3 levels when controlling for age in multiple regression analysis.CTRP3 is a beneficial adipokine whose circulating levels are significantly lower in obese individuals. Obesity causes dysregulation in adipokine production, including the down-regulation of CTRP3. Lower CTRP3 levels may contribute to the pathophysiology of metabolic disorders associated with obesity. Optimizing CTRP3 levels through novel therapies may improve obesity and its comorbidities.

  17. Low Proportion of Dietary Plant Protein among Athletes with Premenstrual Syndrome-Related Performance Impairment.

    Science.gov (United States)

    Yamada, Keiko; Takeda, Takashi

    2018-02-01

    Premenstrual syndrome (PMS) is psychosomatic disorder that are limited to the late luteal phase in the menstrual cycle. PMS could impair athletic performance. To investigate associations between proportions of dietary plant and animal protein and PMS-related impairment of athletic performance, we surveyed 135 female athletes aged 18-23 years attending Kindai University. Participants belonged to authorized university clubs, all of which have high rankings in Japanese university sports. Participants completed self-administered questionnaires on diet history, demographics, and PMS-related impairment of athletic performance. Total protein, animal protein, and plant protein intake were examined, and the proportion of dietary plant protein was calculated for each participant. We divided athletes into two groups: those without PMS-related impairment of athletic performance (n = 117) and those with PMS-related performance impairment (n = 18). A t-test was used to compare mean values and multivariable adjusted mean values between groups; adjustment variables were energy intake, body mass index, and daily training duration. Total protein intake was not significantly different between the groups. However, athletes whose performance was affected by PMS reported higher intake of animal protein (mean 50.6 g) than athletes whose performance was unaffected by PMS (mean 34.9 g). Plant protein intake was lower among athletes with PMS-related impairment (mean 25.4 g) than among athletes without impairment (mean 26.9 g). The proportion of dietary plant protein was lower among athletes with PMS-related impairment (39.3%) than those without impairment (45.9%). A low proportion of dietary plant protein may cause PMS-related athletic impairment among athletes.

  18. Increased expression and secretion of r-Gsp protein, rat counterpart of complement C1s precursor, during cyclic AMP-induced differentiation in rat C6 glioma cells.

    Science.gov (United States)

    Nakagawa, Masanori; Nakashima, Shigeru; Banno, Yoshiko; Yamada, Jun; Sawada, Motoshi; Yoshimura, Shin ichi; Kaku, Yasuhiko; Iwama, Toru; Shinoda, Jun; Sakai, Noboru

    2002-10-15

    The gene, termed r-gsp, was originally isolated during identification of differentiation-associated molecules in rat C6 glial cells. Its mRNA expression was markedly increased during cAMP-induced glial cell differentiation. The deduced amino acid sequence of r-gsp was homologous to those of complement C1s precursors of hamsters and humans. In the present study, we raised anti-peptide antibody against r-Gsp protein and analyzed its change during cAMP-induced differentiation. The 90-kDa r-Gsp protein increased time-dependently and reached the maximal level ( approximately 7.6-fold increase) at 24 h in response to dibutyryl cyclic AMP (dbcAMP) and theophylline. Moreover, it was secreted into the medium and then was cleaved to form disulfide-linked fragments, one of which was 30 kDa, similar to C1s, suggesting its processing in the extracellular space. In fact, the partially purified r-Gsp from culture medium was cleaved by active human C1r to form a 30-kDa polypeptide. Moreover, secreted r-Gsp protein cleaved human C4alpha to yield C4alpha' and associated with human serum C1-esterase inhibitor, strongly suggesting that r-Gsp protein is rat C1s. However, in C6 cells overexpressing r-Gsp, their morphology and proliferation rate were similar to those in parent C6 cells. These results suggest that r-Gsp protein could not induce glial differentiation alone, and suggest that r-Gsp protein was secreted as a proenzyme and processed in culture medium. Its possible role in glial cell differentiation will be discussed.

  19. Amyloid beta plaque-associated proteins C1q and SAP enhance the Abeta1-42 peptide-induced cytokine secretion by adult human microglia in vitro

    NARCIS (Netherlands)

    Veerhuis, Robert; van Breemen, Mariëlle J.; Hoozemans, Jeroen M.; Morbin, Michela; Ouladhadj, Jamal; Tagliavini, Fabrizio; Eikelenboom, Piet

    2003-01-01

    Pro-inflammatory cytokines released by activated microglia could be a driving force in Alzheimer's disease (AD) pathology. We evaluated whether the presence of complement factor C1q and serum amyloid P component (SAP) in Abeta deposits is related to microglial activation. Activated microglia

  20. Mechanical ventilation and sepsis impair protein metabolism in the diaphragm of neonatal pigs

    Science.gov (United States)

    Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...

  1. Fuzzy regions in an intrinsically disordered protein impair protein-protein interactions.

    Science.gov (United States)

    Gruet, Antoine; Dosnon, Marion; Blocquel, David; Brunel, Joanna; Gerlier, Denis; Das, Rahul K; Bonetti, Daniela; Gianni, Stefano; Fuxreiter, Monika; Longhi, Sonia; Bignon, Christophe

    2016-02-01

    Despite the partial disorder-to-order transition that intrinsically disordered proteins often undergo upon binding to their partners, a considerable amount of residual disorder may be retained in the bound form, resulting in a fuzzy complex. Fuzzy regions flanking molecular recognition elements may enable partner fishing through non-specific, transient contacts, thereby facilitating binding, but may also disfavor binding through various mechanisms. So far, few computational or experimental studies have addressed the effect of fuzzy appendages on partner recognition by intrinsically disordered proteins. In order to shed light onto this issue, we used the interaction between the intrinsically disordered C-terminal domain of the measles virus (MeV) nucleoprotein (NTAIL ) and the X domain (XD) of the viral phosphoprotein as model system. After binding to XD, the N-terminal region of NTAIL remains conspicuously disordered, with α-helical folding taking place only within a short molecular recognition element. To study the effect of the N-terminal fuzzy region on NTAIL /XD binding, we generated N-terminal truncation variants of NTAIL , and assessed their binding abilities towards XD. The results revealed that binding increases with shortening of the N-terminal fuzzy region, with this also being observed with hsp70 (another MeV NTAIL binding partner), and for the homologous NTAIL /XD pairs from the Nipah and Hendra viruses. Finally, similar results were obtained when the MeV NTAIL fuzzy region was replaced with a highly dissimilar artificial disordered sequence, supporting a sequence-independent inhibitory effect of the fuzzy region. © 2015 Federation of European Biochemical Societies.

  2. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery.

    Science.gov (United States)

    Vazquez-Cintron, Edwin J; Beske, Phillip H; Tenezaca, Luis; Tran, Bao Q; Oyler, Jonathan M; Glotfelty, Elliot J; Angeles, Christopher A; Syngkon, Aurelia; Mukherjee, Jean; Kalb, Suzanne R; Band, Philip A; McNutt, Patrick M; Shoemaker, Charles B; Ichtchenko, Konstantin

    2017-02-21

    Botulinum neurotoxin (BoNT) binds to and internalizes its light chain into presynaptic compartments with exquisite specificity. While the native toxin is extremely lethal, bioengineering of BoNT has the potential to eliminate toxicity without disrupting neuron-specific targeting, thereby creating a molecular vehicle capable of delivering therapeutic cargo into the neuronal cytosol. Building upon previous work, we have developed an atoxic derivative (ad) of BoNT/C1 through rationally designed amino acid substitutions in the metalloprotease domain of wild type (wt) BoNT/C1. To test if BoNT/C1 ad retains neuron-specific targeting without concomitant toxic host responses, we evaluated the localization, activity, and toxicity of BoNT/C1 ad in vitro and in vivo. In neuronal cultures, BoNT/C1 ad light chain is rapidly internalized into presynaptic compartments, but does not cleave SNARE proteins nor impair spontaneous neurotransmitter release. In mice, systemic administration resulted in the specific co-localization of BoNT/C1 ad with diaphragmatic motor nerve terminals. The mouse LD 50 of BoNT/C1 ad is 5 mg/kg, with transient neurological symptoms emerging at sub-lethal doses. Given the low toxicity and highly specific neuron-targeting properties of BoNT/C1 ad, these data suggest that BoNT/C1 ad can be useful as a molecular vehicle for drug delivery to the neuronal cytoplasm.

  3. Targeted deletion of C1q/TNF-related protein 9 increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice

    OpenAIRE

    Wei, Zhikui; Lei, Xia; Petersen, Pia S.; Aja, Susan; Wong, G. William

    2014-01-01

    Transgenic overexpression of CTRP9, a secreted hormone downregulated in obesity, confers striking protection against diet-induced obesity and type 2 diabetes. However, the physiological relevance of this adiponectin-related plasma protein remains undefined. Here, we used gene targeting to establish the metabolic function of CTRP9 in a physiological context. Mice lacking CTRP9 were obese and gained significantly more body weight when fed standard laboratory chow. Increased food intake, due in ...

  4. Impact on malaria parasite multiplication rates in infected volunteers of the protein-in-adjuvant vaccine AMA1-C1/Alhydrogel+CPG 7909.

    Directory of Open Access Journals (Sweden)

    Christopher J A Duncan

    Full Text Available Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria.In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes.A significant correlation was observed between parasite multiplication rate in 48 hours (PMR and both vaccine-induced growth-inhibitory activity (Pearson r = -0.93 [95% CI: -1.0, -0.27] P = 0.02 and AMA1 antibody titres in the vaccine group (Pearson r = -0.93 [95% CI: -0.99, -0.25] P = 0.02. However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70. Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5-9], control group median 9 days [range 7-9].Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers.ClinicalTrials.gov [NCT00984763].

  5. Impact on Malaria Parasite Multiplication Rates in Infected Volunteers of the Protein-in-Adjuvant Vaccine AMA1-C1/Alhydrogel+CPG 7909

    Science.gov (United States)

    Duncan, Christopher J. A.; Sheehy, Susanne H.; Ewer, Katie J.; Douglas, Alexander D.; Collins, Katharine A.; Halstead, Fenella D.; Elias, Sean C.; Lillie, Patrick J.; Rausch, Kelly; Aebig, Joan; Miura, Kazutoyo; Edwards, Nick J.; Poulton, Ian D.; Hunt-Cooke, Angela; Porter, David W.; Thompson, Fiona M.; Rowland, Ros; Draper, Simon J.; Gilbert, Sarah C.; Fay, Michael P.; Long, Carole A.; Zhu, Daming; Wu, Yimin; Martin, Laura B.; Anderson, Charles F.; Lawrie, Alison M.; Hill, Adrian V. S.; Ellis, Ruth D.

    2011-01-01

    Background Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA) is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria. Methods In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes. Results A significant correlation was observed between parasite multiplication rate in 48 hours (PMR) and both vaccine-induced growth-inhibitory activity (Pearson r = −0.93 [95% CI: −1.0, −0.27] P = 0.02) and AMA1 antibody titres in the vaccine group (Pearson r = −0.93 [95% CI: −0.99, −0.25] P = 0.02). However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70). Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5–9], control group median 9 days [range 7–9]). Conclusions Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers. Trial Registration ClinicalTrials.gov [NCT00984763] PMID:21799809

  6. The association of circulating levels of complement-C1q TNF-related protein 5 (CTRP5) with nonalcoholic fatty liver disease and type 2 diabetes: a case?control study

    OpenAIRE

    Emamgholipour, Solaleh; Moradi, Nariman; Beigy, Maani; Shabani, Parisa; Fadaei, Reza; Poustchi, Hossein; Doosti, Mahmood

    2015-01-01

    Background It is well-established that nonalcoholic fatty liver disease (NAFLD) is associated with type 2 diabetes mellitus (T2DM). Complement-C1q TNF-related protein 5 (CTRP5) is a novel adipokine involved in the regulation of lipid and glucose metabolism. We aimed to assess plasma levels of CTRP5 in patients with NAFLD (n?=?22), T2DM (n?=?22) and NAFLD with T2DM (NAFLD?+?T2DM) (n?=?22) in comparison with healthy subjects (n?=?21) and also to study the association between CTRP5 levels and NA...

  7. Human surfactant protein A2 gene mutations impair dimmer/trimer assembly leading to deficiency in protein sialylation and secretion.

    Directory of Open Access Journals (Sweden)

    Yi Song

    Full Text Available Surfactant protein A2 (SP-A2 plays an essential role in surfactant metabolism and lung host defense. SP-A2 mutations in the carbohydrate recognition domain have been related to familial pulmonary fibrosis and can lead to a recombinant protein secretion deficiency in vitro. In this study, we explored the molecular mechanism of protein secretion deficiency and the subsequent biological effects in CHO-K1 cells expressing both wild-type and several different mutant forms of SP-A2. We demonstrate that the SP-A2 G231V and F198S mutants impair the formation of dimmer/trimer SP-A2 which contributes to the protein secretion defect. A deficiency in sialylation, but not N-linked glycosylation, is critical to the observed dimmer/trimer impairment-induced secretion defect. Furthermore, both mutant forms accumulate in the ER and form NP-40-insoluble aggregates. In addition, the soluble mutant SP-A2 could be partially degraded through the proteasome pathway but not the lysosome or autophagy pathway. Intriguingly, 4-phenylbutyrate acid (4-PBA, a chemical chaperone, alleviates aggregate formation and partially rescued the protein secretion of SP-A2 mutants. In conclusion, SP-A2 G231V and F198S mutants impair the dimmer/trimer assembly, which contributes to the protein sialylation and secretion deficiency. The intracellular protein mutants could be partially degraded through the proteasome pathway and also formed aggregates. The treatment of the cells with 4-PBA resulted in reduced aggregation and rescued the secretion of mutant SP-A2.

  8. Protein energy malnutrition impairs homeostatic proliferation of memory CD8 T cells.

    Science.gov (United States)

    Iyer, Smita S; Chatraw, Janel Hart; Tan, Wendy G; Wherry, E John; Becker, Todd C; Ahmed, Rafi; Kapasi, Zoher F

    2012-01-01

    Nutrition is a critical but poorly understood determinant of immunity. There is abundant epidemiological evidence linking protein malnutrition to impaired vaccine efficacy and increased susceptibility to infections; yet, the role of dietary protein in immune memory homeostasis remains poorly understood. In this study, we show that protein-energy malnutrition induced in mice by low-protein (LP) feeding has a detrimental impact on CD8 memory. Relative to adequate protein (AP)-fed controls, LP feeding in lymphocytic choriomeningitis virus (LCMV)-immune mice resulted in a 2-fold decrease in LCMV-specific CD8 memory T cells. Adoptive transfer of memory cells, labeled with a division tracking dye, from AP mice into naive LP or AP mice demonstrated that protein-energy malnutrition caused profound defects in homeostatic proliferation. Remarkably, this defect occurred despite the lymphopenic environment in LP hosts. Whereas Ag-specific memory cells in LP and AP hosts were phenotypically similar, memory cells in LP hosts were markedly less responsive to polyinosinic-polycytidylic acid-induced acute proliferative signals. Furthermore, upon recall, memory cells in LP hosts displayed reduced proliferation and protection from challenge with LCMV-clone 13, resulting in impaired viral clearance in the liver. The findings show a metabolic requirement of dietary protein in sustaining functional CD8 memory and suggest that interventions to optimize dietary protein intake may improve vaccine efficacy in malnourished individuals.

  9. Pharmacogenetic characterization of naturally occurring germline NT5C1A variants to chemotherapeutic nucleoside analogs

    Science.gov (United States)

    Saliba, Jason; Zabriskie, Ryan; Ghosh, Rajarshi; Powell, Bradford C; Hicks, Stephanie; Kimmel, Marek; Meng, Qingchang; Ritter, Deborah I; Wheeler, David A; Gibbs, Richard A; Tsai, Francis T F; Plon, Sharon E

    2016-01-01

    Background Mutations or alteration in expression of the 5’ nucleotidase gene family can confer altered responses to treatment with nucleoside analogs. While investigating leukemia susceptibility genes, we discovered a very rare p.L254P NT5C1A missense variant in the substrate recognition motif. Given the paucity of cellular drug response data from NT5C1A germline variation, we characterized p.L254P and eight rare variants of NT5C1A from genomic databases. Methods Through lentiviral infection, we created HEK293 cell lines that stably overexpress wildtype NT5C1A, p.L254P, or eight NT5C1A variants reported in the NHLBI Exome Variant server (one truncating and seven missense). IC50 values were determined by cytotoxicity assays after exposure to chemotherapeutic nucleoside analogs (Cladribine, Gemcitabine, 5-Fluorouracil). In addition, we used structure-based homology modeling to generate a 3D model for the C-terminal region of NT5C1A. Results The p.R180X (truncating), p.A214T, and p.L254P missense changes were the only variants that significantly impaired protein function across all nucleotide analogs tested (>5-fold difference versus WT; p<.05). Several of the remaining variants individually displayed differential effects (both more and less resistant) across the analogs tested. The homology model provided a structural framework to understand the impact of NT5C1A mutants on catalysis and drug processing. The model predicted active site residues within NT5C1A motif III and we experimentally confirmed that p.K314 (not p.K320) is required for NT5C1A activity. Conclusion We characterized germline variation and predicted protein structures of NT5C1A. Individual missense changes showed substantial variation in response to the different nucleoside analogs tested, which may impact patients’ responses to treatment. PMID:26906009

  10. Serum-based protein profiles of Alzheimer's disease and mild cognitive impairment in elderly Hispanics

    Science.gov (United States)

    Villarreal, Alcibiades E; O'Bryant, Sid E; Edwards, Melissa; Grajales, Shantal; Britton, Gabrielle B

    2016-01-01

    Aim: To describe the biomarker profiles in elderly Panamanians diagnosed with Alzheimer's disease (AD), mild cognitive impairment (MCI) or no impairment using serum-based biomarkers. Methods: Twenty-four proteins were analyzed using an electrochemiluminescence-based multiplex biomarker assay platform. A biomarker profile was generated using random forest analyses. Results: Two proteins differed among groups: IL-18 and T-lymphocyte-secreted protein I-309. The AD profile was highly accurate and independent of age, gender, education and Apolipoprotein E ε4 status. AD and MCI profiles had substantial overlap among the top markers, suggesting common functions in AD and MCI but differences in their relative importance. Conclusion: Our results underscore the potential influence of genetic and environmental differences within Hispanic populations on the proteomic profile of AD. PMID:27229914

  11. Protein energy malnutrition associates with different types of hearing impairments in toddlers: Anemia increases cochlear dysfunction.

    Science.gov (United States)

    Kamel, Terez Boshra; Deraz, Tharwat Ezzat; Elkabarity, Rasha H; Ahmed, Rasha K

    2016-06-01

    This work aimed to highlight a challenging asymptomatic problem which is early detection of hearing impairment in toddlers with protein energy malnutrition (PEM) as a neuro-cognitive effect of PEM on developing brain in relation to hemoglobin level. 100 toddlers, aged 6-24 months, fifty with moderate/severe PEM and fifty healthy children, were included in study. Both TEOAEs and ABR testing were used to assess auditory function. Study reported an association between malnutrition and hearing impairment, 26% of cases had conductive deafness secondary to otitis media with effusion using tympanometry; 84.6% showed type B and 15.4% type C which may suggest developing or resolving otitis media. Their ABR showed 46% mild and 53% moderate impairment. 32% of PEM cases had sensory neural hearing loss and with type (A) tympanometry. Those were assessed using ABR; 58% had mild, 34% moderate and 8% profound impairment. 10% of PEM cases had mixed hearing loss with 50% type B and 50% type C tympanometry and their ABR showed moderate to profound impairment. TEOAEs latencies at different frequencies correlate negatively with hemoglobin level. Toddlers with moderate/severe PEM had hearing impairments of different types and degrees. Neuro-physiological methods could be early and safe detectors of auditory disorders especially in high-risk toddlers. Anemia increases risk for auditory dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis.

    Science.gov (United States)

    Tudor, Jennifer C; Davis, Emily J; Peixoto, Lucia; Wimmer, Mathieu E; van Tilborg, Erik; Park, Alan J; Poplawski, Shane G; Chung, Caroline W; Havekes, Robbert; Huang, Jiayan; Gatti, Evelina; Pierre, Philippe; Abel, Ted

    2016-04-26

    Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation. Copyright © 2016, American Association for the Advancement of Science.

  13. 1Protein Energy Malnutrition Impairs Homeostatic Proliferation of Memory CD8 T cells

    Science.gov (United States)

    Iyer, Smita S.; Chatraw, Janel Hart; Tan, Wendy G.; Wherry, E. John; Becker, Todd C.; Ahmed, Rafi; Kapasi, Zoher F.

    2011-01-01

    Nutrition is a critical but poorly understood determinant of immunity. There is abundant epidemiological evidence linking protein malnutrition to impaired vaccine efficacy and increased susceptibility to infections; yet, the role of dietary protein in immune memory homeostasis remains poorly understood. Here we show that protein energy malnutrition (PEM) induced in mice by low-protein (LP) feeding has a detrimental impact on CD8 memory. Relative to adequate-protein (AP) fed controls, LP feeding in lymphocytic choriomeningitis virus (LCMV) immune mice resulted in a 2-fold decrease in LCMV-specific CD8 memory T cells. Adoptive transfer of memory cells, labeled with a division tracking dye, from AP mice into naive LP or AP mice demonstrated that PEM caused profound defects in homeostatic proliferation. Remarkably, this defect occurred despite the lymphopenic environment in LP hosts. While antigen-specific memory cells in LP and AP hosts were phenotypically similar, memory cells in LP hosts were markedly less-responsive to poly(I:C)-induced acute proliferative signals. Furthermore, upon recall, memory cells in LP hosts displayed reduced proliferation and protection from challenge with LCMV-clone 13 resulting in impaired viral clearance in the liver. The findings show a metabolic requirement of dietary protein in sustaining functional CD8 memory and suggest that interventions to optimize dietary protein intake may improve vaccine efficacy in malnourished individuals. PMID:22116826

  14. Is Cancer Cachexia Attributed to Impairments in Basal or Postprandial Muscle Protein Metabolism?

    Science.gov (United States)

    Horstman, Astrid M H; Olde Damink, Steven W; Schols, Annemie M W J; van Loon, Luc J C

    2016-08-16

    Cachexia is a significant clinical problem associated with very poor quality of life, reduced treatment tolerance and outcomes, and a high mortality rate. Mechanistically, any sizeable loss of skeletal muscle mass must be underpinned by a structural imbalance between muscle protein synthesis and breakdown rates. Recent data indicate that the loss of muscle mass with aging is, at least partly, attributed to a blunted muscle protein synthetic response to protein feeding. Whether such anabolic resistance is also evident in conditions where cachexia is present remains to be addressed. Only few data are available on muscle protein synthesis and breakdown rates in vivo in cachectic cancer patients. When calculating the theoretical changes in basal or postprandial fractional muscle protein synthesis and breakdown rates that would be required to lose 5% of body weight within a six-month period, we can define the changes that would need to occur to explain the muscle mass loss observed in cachectic patients. If changes in both post-absorptive and postprandial muscle protein synthesis and breakdown rates contribute to the loss of muscle mass, it would take alterations as small as 1%-2% to induce a more than 5% decline in body weight. Therefore, when trying to define impairments in basal and/or postprandial muscle protein synthesis or breakdown rates using contemporary stable isotope methodology in cancer cachexia, we need to select large homogenous groups of cancer patients (>40 patients) to allow us to measure physiological and clinically relevant differences in muscle protein synthesis and/or breakdown rates. Insight into impairments in basal or postprandial muscle protein synthesis and breakdown rates in cancer cachexia is needed to design more targeted nutritional, pharmaceutical and/or physical activity interventions to preserve skeletal muscle mass and, as such, to reduce the risk of complications, improve quality of life, and lower mortality rates during the various

  15. Trichinella spiralis Calreticulin Binds Human Complement C1q As an Immune Evasion Strategy.

    Science.gov (United States)

    Zhao, Limei; Shao, Shuai; Chen, Yi; Sun, Ximeng; Sun, Ran; Huang, Jingjing; Zhan, Bin; Zhu, Xinping

    2017-01-01

    As a multicellular parasitic nematode, Trichinella spiralis regulates host immune responses by producing a variety of immunomodulatory molecules to escape from host immune attack, but the mechanisms underlying the immune evasion are not well understood. Here, we identified that T. spiralis calreticulin ( Ts -CRT), a Ca 2+ -binding protein, facilitated T. spiralis immune evasion by interacting with the first component of human classical complement pathway, C1q. In the present study, Ts -CRT was found to be expressed on the surface of different developmental stages of T. spiralis as well as in the secreted products of adult and muscle larval worms. Functional analysis identified that Ts -CRT was able to bind to human C1q, resulting in the inhibition of C1q-initiated complement classical activation pathway reflected by reduced C4/C3 generation and C1q-dependent lysis of antibody-sensitized sheep erythrocytes. Moreover, recombinant Ts -CRT (r Ts -CRT) binding to C1q suppressed C1q-induced THP-1-derived macrophages chemotaxis and reduced monocyte-macrophages release of reactive oxygen intermediates (ROIs). Blocking Ts -CRT on the surface of newborn larvae (NBL) of T. spiralis with anti- Ts -CRT antibody increased the C1q-mediated adherence of monocyte-macrophages to larvae and impaired larval infectivity. All of these results suggest that T. spiralis -expressed Ts -CRT plays crucial roles in T. spiralis immune evasion and survival in host mostly by directly binding to host complement C1q, which not only reduces C1q-mediated activation of classical complement pathway but also inhibits the C1q-induced non-complement activation of macrophages.

  16. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2009-02-27

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  17. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  18. cAMP-dependent Protein Kinase (PKA) Signaling Is Impaired in the Diabetic Heart.

    Science.gov (United States)

    Bockus, Lee B; Humphries, Kenneth M

    2015-12-04

    Diabetes mellitus causes cardiac dysfunction and heart failure that is associated with metabolic abnormalities and autonomic impairment. Autonomic control of ventricular function occurs through regulation of cAMP-dependent protein kinase (PKA). The diabetic heart has suppressed β-adrenergic responsiveness, partly attributable to receptor changes, yet little is known about how PKA signaling is directly affected. Control and streptozotocin-induced diabetic mice were therefore administered 8-bromo-cAMP (8Br-cAMP) acutely to activate PKA in a receptor-independent manner, and cardiac hemodynamic function and PKA signaling were evaluated. In response to 8Br-cAMP treatment, diabetic mice had impaired inotropic and lusitropic responses, thus demonstrating postreceptor defects. This impaired signaling was mediated by reduced PKA activity and PKA catalytic subunit content in the cytoplasm and myofilaments. Compartment-specific loss of PKA was reflected by reduced phosphorylation of discrete substrates. In response to 8Br-cAMP treatment, the glycolytic activator PFK-2 was robustly phosphorylated in control animals but not diabetics. Control adult cardiomyocytes cultured in lipid-supplemented media developed similar changes in PKA signaling, suggesting that lipotoxicity is a contributor to diabetes-induced β-adrenergic signaling dysfunction. This work demonstrates that PKA signaling is impaired in diabetes and suggests that treating hyperlipidemia is vital for proper cardiac signaling and function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. cAMP-dependent Protein Kinase (PKA) Signaling Is Impaired in the Diabetic Heart*

    Science.gov (United States)

    Bockus, Lee B.; Humphries, Kenneth M.

    2015-01-01

    Diabetes mellitus causes cardiac dysfunction and heart failure that is associated with metabolic abnormalities and autonomic impairment. Autonomic control of ventricular function occurs through regulation of cAMP-dependent protein kinase (PKA). The diabetic heart has suppressed β-adrenergic responsiveness, partly attributable to receptor changes, yet little is known about how PKA signaling is directly affected. Control and streptozotocin-induced diabetic mice were therefore administered 8-bromo-cAMP (8Br-cAMP) acutely to activate PKA in a receptor-independent manner, and cardiac hemodynamic function and PKA signaling were evaluated. In response to 8Br-cAMP treatment, diabetic mice had impaired inotropic and lusitropic responses, thus demonstrating postreceptor defects. This impaired signaling was mediated by reduced PKA activity and PKA catalytic subunit content in the cytoplasm and myofilaments. Compartment-specific loss of PKA was reflected by reduced phosphorylation of discrete substrates. In response to 8Br-cAMP treatment, the glycolytic activator PFK-2 was robustly phosphorylated in control animals but not diabetics. Control adult cardiomyocytes cultured in lipid-supplemented media developed similar changes in PKA signaling, suggesting that lipotoxicity is a contributor to diabetes-induced β-adrenergic signaling dysfunction. This work demonstrates that PKA signaling is impaired in diabetes and suggests that treating hyperlipidemia is vital for proper cardiac signaling and function. PMID:26468277

  20. Mechanical ventilation alone, and in the presence of sepsis, impair protein metabolism in the diaphragm of neonatal pigs

    Science.gov (United States)

    Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...

  1. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

    NARCIS (Netherlands)

    Antunes, Ana T.; Goos, Yvonne J.; Pereboom, Tamara C.; Hermkens, Dorien; Wlodarski, Marcin W.; Da Costa, Lydie; MacInnes, Alyson W.

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene

  2. Measles virus C protein impairs production of defective copyback double-stranded viral RNA and activation of protein kinase R.

    Science.gov (United States)

    Pfaller, Christian K; Radeke, Monte J; Cattaneo, Roberto; Samuel, Charles E

    2014-01-01

    Measles virus (MV) lacking expression of C protein (C(KO)) is a potent activator of the double-stranded RNA (dsRNA)-dependent protein kinase (PKR), whereas the isogenic parental virus expressing C protein is not. Here, we demonstrate that significant amounts of dsRNA accumulate during C(KO) mutant infection but not following parental virus infection. dsRNA accumulated during late stages of infection and localized with virus replication sites containing N and P proteins. PKR autophosphorylation and stress granule formation correlated with the timing of dsRNA appearance. Phospho-PKR localized to dsRNA-containing structures as revealed by immunofluorescence. Production of dsRNA was sensitive to cycloheximide but resistant to actinomycin D, suggesting that dsRNA is a viral product. Quantitative PCR (qPCR) analyses revealed reduced viral RNA synthesis and a steepened transcription gradient in C(KO) virus-infected cells compared to those in parental virus-infected cells. The observed alterations were further reflected in lower viral protein expression levels and reduced C(KO) virus infectious yield. RNA deep sequencing confirmed the viral RNA expression profile differences seen by qPCR between C(KO) mutant and parental viruses. After one subsequent passage of the C(KO) virus, defective interfering RNA (DI-RNA) with a duplex structure was obtained that was not seen with the parental virus. We conclude that in the absence of C protein, the amount of PKR activator RNA, including DI-RNA, is increased, thereby triggering innate immune responses leading to impaired MV growth.

  3. SpirPro: A Spirulina proteome database and web-based tools for the analysis of protein-protein interactions at the metabolic level in Spirulina (Arthrospira) platensis C1.

    Science.gov (United States)

    Senachak, Jittisak; Cheevadhanarak, Supapon; Hongsthong, Apiradee

    2015-07-29

    Spirulina (Arthrospira) platensis is the only cyanobacterium that in addition to being studied at the molecular level and subjected to gene manipulation, can also be mass cultivated in outdoor ponds for commercial use as a food supplement. Thus, encountering environmental changes, including temperature stresses, is common during the mass production of Spirulina. The use of cyanobacteria as an experimental platform, especially for photosynthetic gene manipulation in plants and bacteria, is becoming increasingly important. Understanding the mechanisms and protein-protein interaction networks that underlie low- and high-temperature responses is relevant to Spirulina mass production. To accomplish this goal, high-throughput techniques such as OMICs analyses are used. Thus, large datasets must be collected, managed and subjected to information extraction. Therefore, databases including (i) proteomic analysis and protein-protein interaction (PPI) data and (ii) domain/motif visualization tools are required for potential use in temperature response models for plant chloroplasts and photosynthetic bacteria. A web-based repository was developed including an embedded database, SpirPro, and tools for network visualization. Proteome data were analyzed integrated with protein-protein interactions and/or metabolic pathways from KEGG. The repository provides various information, ranging from raw data (2D-gel images) to associated results, such as data from interaction and/or pathway analyses. This integration allows in silico analyses of protein-protein interactions affected at the metabolic level and, particularly, analyses of interactions between and within the affected metabolic pathways under temperature stresses for comparative proteomic analysis. The developed tool, which is coded in HTML with CSS/JavaScript and depicted in Scalable Vector Graphics (SVG), is designed for interactive analysis and exploration of the constructed network. SpirPro is publicly available on the web

  4. C-terminal fluorescent labeling impairs functionality of DNA mismatch repair proteins.

    Directory of Open Access Journals (Sweden)

    Angela Brieger

    Full Text Available The human DNA mismatch repair (MMR process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2. Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.

  5. P, = C ~ !~, 1 ~ t2 )

    Indian Academy of Sciences (India)

    P, = C ~ !~, 1 ~ t2 ). (1). Observe that if t is rational, then Pt is a rational point; that is, its coordinates are rational. (This formula permits us, in principle, to enumerate all rational points on C.) Let. B denote the point (1,0). Then APt = 2/V'f+t2 and. B Pt = 2t / V'f+t2, so if t is such that t and J 1 + t2 are rational, then IAPtl and IBPtl ...

  6. Secreted calmodulin-like skin protein ameliorates scopolamine-induced memory impairment.

    Science.gov (United States)

    Hayashi, Masaaki; Tajima, Hirohisa; Hashimoto, Yuichi; Matsuoka, Masaaki

    2014-06-18

    Humanin, a short bioactive peptide, inhibits cell death in a variety of cell-based death models through Humanin receptors in vitro. In vivo, Humanin ameliorates both muscarinic receptor antagonist-induced memory impairment in normal mice and memory impairment in Alzheimer's disease (AD)-relevant mouse models including aged transgenic mice expressing a familial AD-linked gene. Recently, calmodulin-like skin protein (CLSP) has been shown to be secreted from skin tissues, contain a region minimally similar to the core region of Humanin, and inhibit AD-related neuronal death through the heterotrimeric Humanin receptor on the cell surface in vitro. As CLSP is much more potent than Humanin and efficiently transported through blood circulation across the blood-brain barrier to the central nervous system, CLSP is considered as a physiological agonist that binds to the heterotrimeric Humanin receptor and triggers the Humanin-induced signals in central nervous system. However, it remains unknown whether CLSP ameliorates memory impairment in mouse dementia models as Humanin does. In this study, we show that recombinant CLSP, administered intracerebroventricularly or intraperitoneally, ameliorates scopolamine-induced dementia in mice.

  7. Xanthurenic acid translocates proapoptotic Bcl-2 family proteins into mitochondria and impairs mitochondrial function

    Directory of Open Access Journals (Sweden)

    Hess Otto M

    2004-04-01

    Full Text Available Abstract Background Xanthurenic acid is an endogenous molecule produced by tryptophan degradation, produced in the cytoplasm and mitochondria. Its accumulation can be observed in aging-related diseases, e.g. senile cataract and infectious disease. We previously reported that xanthurenic acid provokes apoptosis, and now present a study of the response of mitochondria to xanthurenic acid. Results Xanthurenic acid at 10 or 20 μM in culture media of human aortic smooth muscle cells induces translocation of the proteins Bax, Bak, Bclxs, and Bad into mitochondria. In 20 μM xanthurenic acid, Bax is also translocated to the nucleus. In isolated mitochondria xanthurenic acid leads to Bax and Bclxs oligomerization, accumulation of Ca2+, and increased oxygen consumption. Conclusion Xanthurenic acid interacts directly with Bcl-2 family proteins, inducing mitochondrial pathways of apoptosis and impairing mitochondrial functions.

  8. Circulating complement-C1q TNF-related protein 1 levels are increased in patients with type 2 diabetes and are associated with insulin sensitivity in Chinese subjects.

    Science.gov (United States)

    Pan, Xuebo; Lu, Tingting; Wu, Fan; Jin, Leigang; Zhang, Yi; Shi, Lihua; Li, Xiaokun; Lin, Zhuofeng

    2014-01-01

    Complement-C1q TNF-related protein 1 (CTRP1), a member of the CTRP superfamily, possesses anti-inflammatory and anti-diabetic effects in mice. However, the clinical relevance of CTRP1 has been seldom explored. The current study aimed to investigate the association of circulating CTRP1 and type 2 diabetes mellitus (T2DM) in a Chinese population. Serum CTRP1 and adiponectin levels of 96 T2DM patients and 85 healthy subjects were determined by ELISA, and their associations with adiposity, glucose and lipid profiles were studied. In a subgroup of this study, the 75-g oral glucose tolerance test (OGTT) was performed in 20 healthy and 20 T2DM subjects to evaluate the relationship among serum levels of CTRP1 and adiponectin, insulin secretion and insulin sensitivity. Serum CTRP1 levels were significantly increased in patients with T2DM, compared with healthy controls (pmetabolism and insulin resistance, and independently associated with fasting glucose levels (pinsulin secretion, while negatively to insulin sensitivity, as measured by OGTT. CTRP1 is a novel adipokine associated with T2DM in humans. The paradoxical increase of serum CTRP1 levels in T2DM subjects may be due to a compensatory response to the adverse glucose and lipid metabolism, which warrants further investigation.

  9. Stomatin-like protein 2 deficiency results in impaired mitochondrial translation.

    Science.gov (United States)

    Mitsopoulos, Panagiotis; Lapohos, Orsolya; Weraarpachai, Woranontee; Antonicka, Hana; Chang, Yu-Han; Madrenas, Joaquín

    2017-01-01

    Mitochondria translate the RNAs for 13 core polypeptides of respiratory chain and ATP synthase complexes that are essential for the assembly and function of these complexes. This process occurs in close proximity to the mitochondrial inner membrane. However, the mechanisms and molecular machinery involved in mitochondrial translation are not fully understood, and defects in this process can result in severe diseases. Stomatin-like protein (SLP)-2 is a mainly mitochondrial protein that forms cardiolipin- and prohibitin-enriched microdomains in the mitochondrial inner membrane that are important for the formation of respiratory supercomplexes and their function. Given this regulatory role of SLP-2 in processes closely associated with the mitochondrial inner membrane, we hypothesized that the function of SLP-2 would have an impact on mitochondrial translation. 35S-Methionine/cysteine pulse labeling of resting or activated T cells from T cell-specific Slp-2 knockout mice showed a significant impairment in the production of several mitochondrial DNA-encoded polypeptides following T cell activation, including Cytb, COXI, COXII, COXIII, and ATP6. Measurement of mitochondrial DNA stability and mitochondrial transcription revealed that this impairment was at the post-transcriptional level. Examination of mitochondrial ribosome assembly showed that SLP-2 migrated in sucrose-density gradients similarly to the large ribosomal subunit but that its deletion at the genetic level did not affect mitochondrial ribosome assembly. Functionally, the impairment in mitochondrial translation correlated with decreased interleukin-2 production in activated T cells. Altogether, these data show that SLP-2 acts as a general regulator of mitochondrial translation.

  10. Stomatin-like protein 2 deficiency results in impaired mitochondrial translation.

    Directory of Open Access Journals (Sweden)

    Panagiotis Mitsopoulos

    Full Text Available Mitochondria translate the RNAs for 13 core polypeptides of respiratory chain and ATP synthase complexes that are essential for the assembly and function of these complexes. This process occurs in close proximity to the mitochondrial inner membrane. However, the mechanisms and molecular machinery involved in mitochondrial translation are not fully understood, and defects in this process can result in severe diseases. Stomatin-like protein (SLP-2 is a mainly mitochondrial protein that forms cardiolipin- and prohibitin-enriched microdomains in the mitochondrial inner membrane that are important for the formation of respiratory supercomplexes and their function. Given this regulatory role of SLP-2 in processes closely associated with the mitochondrial inner membrane, we hypothesized that the function of SLP-2 would have an impact on mitochondrial translation. 35S-Methionine/cysteine pulse labeling of resting or activated T cells from T cell-specific Slp-2 knockout mice showed a significant impairment in the production of several mitochondrial DNA-encoded polypeptides following T cell activation, including Cytb, COXI, COXII, COXIII, and ATP6. Measurement of mitochondrial DNA stability and mitochondrial transcription revealed that this impairment was at the post-transcriptional level. Examination of mitochondrial ribosome assembly showed that SLP-2 migrated in sucrose-density gradients similarly to the large ribosomal subunit but that its deletion at the genetic level did not affect mitochondrial ribosome assembly. Functionally, the impairment in mitochondrial translation correlated with decreased interleukin-2 production in activated T cells. Altogether, these data show that SLP-2 acts as a general regulator of mitochondrial translation.

  11. Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing

    Directory of Open Access Journals (Sweden)

    Glenn D. Hoke

    2016-01-01

    Full Text Available Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer.

  12. Renal cold storage followed by transplantation impairs expression of key mitochondrial fission and fusion proteins.

    Directory of Open Access Journals (Sweden)

    Nirmala Parajuli

    Full Text Available The majority of transplanted kidneys are procured from deceased donors which all require exposure to cold storage (CS for successful transplantation. Unfortunately, this CS leads to renal and mitochondrial damage but, specific mitochondrial targets affected by CS remain largely unknown. The goal of this study is to determine whether pathways involved with mitochondrial fusion or fission, are disrupted during renal CS.Male Lewis rat kidneys were exposed to cold storage (CS alone or cold storage combined with transplantation (CS/Tx. To compare effects induced by CS, kidney transplantation without CS exposure (autotransplantation; ATx was also used. Mitochondrial function was assessed using high resolution respirometry. Expression of mitochondrial fusion and fission proteins were monitored using Western blot analysis.CS alone (no Tx reduced respiratory complex I and II activities along with reduced expression of the primary mitochondrial fission protein, dynamin related protein (DRP1, induced loss of the long form of Optic Atrophy Protein (OPA1, and altered the mitochondrial protease, OMA1, which regulates OPA1 processing. CS followed by Tx (CS/Tx reduced complex I, II, and III activities, and induced a profound loss of the long and short forms of OPA1, mitofusin 1 (MFN1, and mitofusin 2 (MFN2 which all control mitochondrial fusion. In addition, expression of DRP1, along with its primary receptor protein, mitochondrial fission factor (MFF, were also reduced after CS/Tx. Interestingly, CS/Tx lead to aberrant higher molecular weight OMA1 aggregate expression.Our results suggest that CS appears to involve activation of the OMA1, which could be a key player in proteolysis of the fusion and fission protein machinery following transplantation. These findings raise the possibility that impaired mitochondrial fission and fusion may be unrecognized contributors to CS induced mitochondrial injury and compromised renal graft function after transplantation.

  13. Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism.

    Science.gov (United States)

    Gidlund, Eva-Karin; von Walden, Ferdinand; Venojärvi, Mika; Risérus, Ulf; Heinonen, Olli J; Norrbom, Jessica; Sundberg, Carl Johan

    2016-12-01

    Humanin (HN) is a mitochondrially encoded and secreted peptide linked to glucose metabolism and tissue protecting mechanisms. Whether skeletal muscle HN gene or protein expression is influenced by exercise remains unknown. In this intervention study we show, for the first time, that HN protein levels increase in human skeletal muscle following 12 weeks of resistance training in persons with prediabetes. Male subjects (n = 55) with impaired glucose regulation (IGR) were recruited and randomly assigned to resistance training, Nordic walking or a control group. The exercise interventions were performed three times per week for 12 weeks with progressively increased intensity during the intervention period. Biopsies from the vastus lateralis muscle and venous blood samples were taken before and after the intervention. Skeletal muscle and serum protein levels of HN were analyzed as well as skeletal muscle gene expression of the mitochondrially encoded gene MT-RNR2, containing the open reading frame for HN To elucidate mitochondrial training adaptation, mtDNA, and nuclear DNA as well as Citrate synthase were measured. Skeletal muscle HN protein levels increased by 35% after 12 weeks of resistance training. No change in humanin protein levels was seen in serum in any of the intervention groups. There was a significant correlation between humanin levels in serum and the improvements in the 2 h glucose loading test in the resistance training group. The increase in HN protein levels in skeletal muscle after regular resistance training in prediabetic males may suggest a role for HN in the regulation of glucose metabolism. Given the preventative effect of exercise on diabetes type 2, the role of HN as a mitochondrially derived peptide and an exercise-responsive mitokine warrants further investigation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Age-dependent impairment of eyeblink conditioning in prion protein-deficient mice.

    Directory of Open Access Journals (Sweden)

    Yasushi Kishimoto

    Full Text Available Mice lacking the prion protein (PrP(C gene (Prnp, Ngsk Prnp (0/0 mice, show late-onset cerebellar Purkinje cell (PC degeneration because of ectopic overexpression of PrP(C-like protein (PrPLP/Dpl. Because PrP(C is highly expressed in cerebellar neurons (including PCs and granule cells, it may be involved in cerebellar synaptic function and cerebellar cognitive function. However, no studies have been conducted to investigate the possible involvement of PrP(C and/or PrPLP/Dpl in cerebellum-dependent discrete motor learning. Therefore, the present cross-sectional study was designed to examine cerebellum-dependent delay eyeblink conditioning in Ngsk Prnp (0/0 mice in adulthood (16, 40, and 60 weeks of age. The aims of the present study were two-fold: (1 to examine the role of PrP(C and/or PrPLP/Dpl in cerebellum-dependent motor learning and (2 to confirm the age-related deterioration of eyeblink conditioning in Ngsk Prnp (0/0 mice as an animal model of progressive cerebellar degeneration. Ngsk Prnp (0/0 mice aged 16 weeks exhibited intact acquisition of conditioned eyeblink responses (CRs, although the CR timing was altered. The same result was observed in another line of PrP(c-deficient mice, ZrchI PrnP (0/0 mice. However, at 40 weeks of age, CR incidence impairment was observed in Ngsk Prnp (0/0 mice. Furthermore, Ngsk Prnp (0/0 mice aged 60 weeks showed more significantly impaired CR acquisition than Ngsk Prnp (0/0 mice aged 40 weeks, indicating the temporal correlation between cerebellar PC degeneration and motor learning deficits. Our findings indicate the importance of the cerebellar cortex in delay eyeblink conditioning and suggest an important physiological role of prion protein in cerebellar motor learning.

  15. Circulating complement-C1q TNF-related protein 1 levels are increased in patients with type 2 diabetes and are associated with insulin sensitivity in Chinese subjects.

    Directory of Open Access Journals (Sweden)

    Xuebo Pan

    Full Text Available BACKGROUND: Complement-C1q TNF-related protein 1 (CTRP1, a member of the CTRP superfamily, possesses anti-inflammatory and anti-diabetic effects in mice. However, the clinical relevance of CTRP1 has been seldom explored. The current study aimed to investigate the association of circulating CTRP1 and type 2 diabetes mellitus (T2DM in a Chinese population. DESIGN AND METHODS: Serum CTRP1 and adiponectin levels of 96 T2DM patients and 85 healthy subjects were determined by ELISA, and their associations with adiposity, glucose and lipid profiles were studied. In a subgroup of this study, the 75-g oral glucose tolerance test (OGTT was performed in 20 healthy and 20 T2DM subjects to evaluate the relationship among serum levels of CTRP1 and adiponectin, insulin secretion and insulin sensitivity. RESULTS: Serum CTRP1 levels were significantly increased in patients with T2DM, compared with healthy controls (p<0.001. Similar to adiponectin, serum levels of CTRP1 were significantly correlated to several parameters involved in glucose metabolism and insulin resistance, and independently associated with fasting glucose levels (p<0.05 after BMI and gender adjustments. Furthermore, CTRP1 levels were positively correlated to insulin secretion, while negatively to insulin sensitivity, as measured by OGTT. CONCLUSION: CTRP1 is a novel adipokine associated with T2DM in humans. The paradoxical increase of serum CTRP1 levels in T2DM subjects may be due to a compensatory response to the adverse glucose and lipid metabolism, which warrants further investigation.

  16. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    Energy Technology Data Exchange (ETDEWEB)

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.; Barth,A.I.M.; Krauss, Sharon Wald

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing, and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.

  17. Direct interaction between CD91 and C1q

    DEFF Research Database (Denmark)

    Duus, Karen; Hansen, Erik W; Tacnet, Pascale

    2010-01-01

    receptor, or low-density lipoprotein receptor-related protein) and calreticulin, with CD91 being the transmembrane part and calreticulin acting as the C1q-binding molecule. In the present study, we observe that C1q binds cells from a CD91 expressing monocytic cell line as well as monocytes from human blood....... C1q binding to monocytes was shown to be correlated with CD91 expression and could be inhibited by the CD91 chaperone, receptor-associated protein. We also report data showing a direct interaction between CD91 and C1q. The interaction was investigated using various protein interaction assays......1q. The results obtained show for the first time that CD91 recognizes C1q directly. On the basis of these findings, we propose that CD91 is a receptor for C1q and that this multifunctional scavenger receptor uses a subset of its ligand-binding sites for clearance of C1q and C1q bound material....

  18. Topical Dexamethasone Administration Impairs Protein Synthesis and Neuronal Regeneration in the Olfactory Epithelium

    Directory of Open Access Journals (Sweden)

    Umberto Crisafulli

    2018-03-01

    Full Text Available Chronic inflammatory process in the nasal mucosa is correlated with poor smell perception. Over-activation of immune cells in the olfactory epithelium (OE is generally associated with loss of olfactory function, and topical steroidal anti-inflammatory drugs have been largely used for treating such condition. Whether this therapeutic strategy could directly affect the regenerative process in the OE remains unclear. In this study, we show that nasal topical application of dexamethasone (DEX; 200 or 800 ng/nostril, a potent synthetic anti-inflammatory steroid, attenuates OE lesion caused by Gram-negative bacteria lipopolysaccharide (LPS intranasal infusion. In contrast, repeated DEX (400 ng/nostril local application after lesion establishment limited the regeneration of olfactory sensory neurons after injury promoted by LPS or methimazole. Remarkably, DEX effects were observed when the drug was infused as 3 consecutive days regimen. The anti-inflammatory drug does not induce OE progenitor cell death, however, disturbance in mammalian target of rapamycin downstream signaling pathway and impairment of protein synthesis were observed during the course of DEX treatment. In addition, in vitro studies conducted with OE neurospheres in the absence of an inflammatory environment showed that glucocorticoid receptor engagement directly reduces OE progenitor cells proliferation. Our results suggest that DEX can interfere with the intrinsic regenerative cellular mechanisms of the OE, raising concerns on the use of topical anti-inflammatory steroids as a risk factor for progressive olfactory function impairment.

  19. Co-treatment with a C1B5 peptide of protein kinase Cγ and a low dose of gemcitabine strongly attenuated pancreatic cancer growth in mice through T cell activation.

    Science.gov (United States)

    Ishiguro, Susumu; Kawabata, Atsushi; Zulbaran-Rojas, Alejandro; Monson, Kelsey; Uppalapati, Deepthi; Ohta, Naomi; Inui, Makoto; Pappas, Charalampos G; Tzakos, Andreas G; Tamura, Masaaki

    2018-01-01

    Although gemcitabine is an effective chemotherapeutic for pancreatic cancer, severe side effects often accompany its use. Since we have discovered that locally administered C1B domain peptides effectively control tumor growth without any side effects, the efficacy of co-treatment with this peptide and a low dose of gemcitabine on the growth of pancreatic cancer was examined. Two- and three-dimensional cell culture studies clarified that a co-treatment with C1B5 peptide and gemcitabine significantly attenuated growth of PAN02 mouse and PANC-1 human pancreatic cancer cells in 2D and 3D cultures. Although treatment with the low dose of gemcitabine alone (76%) or the C1B5 peptide alone (39%) inhibited tumor growth moderately, a co-treatment with C1B5 peptide and a low dose of gemcitabine markedly inhibited the growth of PAN02 autografts in the mouse peritoneal cavity (94% inhibition) without any noticeable adverse effect. The number of peritoneal cavity-infiltrating neutrophils and granzyme B + lymphocytes was significantly higher in the co-treatment group than in the control group. A significant increase of granzyme B mRNA expression was also detected in human T cells by the co-treatment. Taken together, the current study suggests that C1B5 peptide offers a remarkably effective combination treatment strategy to reduce side effects associated with gemcitabine, without losing its tumoricidal effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Receptor interacting protein kinase-2 inhibition by CYLD impairs anti-bacterial immune responses in macrophages

    Directory of Open Access Journals (Sweden)

    Katharina eWex

    2016-01-01

    Full Text Available Upon infection with intracellular bacteria, nucleotide oligomerization domain protein 2 (NOD2 recognizes bacterial muramyl dipeptide and binds, subsequently, to receptor-interacting serine/threonine kinase 2 (RIPK2. RIPK2 mediates the activation of immune responses via the nuclear factor-κB (NF-κB and extracellular-signal regulated kinase (ERK pathways. Previously, it has been shown that RIPK2 activation dependens on its K63-ubiquitination by the E3 ligases pellino-3 and ITCH, whereas the deubiquitinating enzyme A20 counter-regulates RIPK2 activity by cleaving K63-polyubiquitin chains from RIPK2. Here, we newly identify the deubiquitinating enzyme CYLD as a new interacting partner and inhibitor of RIPK2. We show that CYLD binds to and removes K63-polyubiquitin chains from RIPK2 in Listeria monocytogenes (Lm infected bone-marrow-derived macrophages (BMDM. CYLD-mediated K63-deubiquitination of RIPK2 resulted in an impaired activation of both NF-κB and ERK1/2 pathways, reduced production of proinflammatory cytokines (IL-6, IL-12, anti-listerial ROS and NO, and, finally, impaired pathogen control. In turn, RIPK2 inhibition by siRNA prevented activation of NF-κB and ERK1/2 and completely abolished the protective effect of CYLD-deficiency with respect to the production of IL-6, NO, ROS and pathogen control. Noteworthy, CYLD also inhibited autophagy of Listeria in a RIPK2-ERK1/2 dependent manner.The protective function of CYLD-deficiency was dependent on IFN-γ pre-stimulation of infected macrophages. Interestingly, the reduced NF-κB activation in CYLD-expressing macrophages limited the protective effect of IFN-γ by reducing NF-κB-dependent STAT1 activation. Taken together, our study identifies CYLD as an important inhibitor of RIPK2-dependent anti-bacterial immune responses in macrophages.

  1. Baroreflex deficiency induces additional impairment of vagal tone, diastolic function and calcium handling proteins after myocardial infarction

    Science.gov (United States)

    Mostarda, Cristiano; Rodrigues, Bruno; Medeiros, Alessandra; Moreira, Edson D; Moraes-Silva, Ivana C; Brum, Patricia C; Angelis, Katia De; Irigoyen, Maria-Cláudia

    2014-01-01

    Baroreflex dysfunction has been considered an important mortality predictor after myocardial infarction (MI). However, the impact of baroreflex deficiency prior to MI on tonic autonomic control and cardiac function, and on the profile of proteins associated with intracellular calcium handling has not yet been studied. The aim of the present study was to analyze how the impairment of baroreflex induced by sinoaortic denervation (SAD) prior to MI in rats affects the tonic autonomic control, ventricular function and cardiomyocyte calcium handling proteins. After 15 days of following or SAD surgery, rats underwent MI. Echocardiographic, hemodynamic, autonomic and molecular evaluations were performed 90 days after MI. Baroreflex impairment led to additional damage on: left ventricular remodeling, diastolic function, vagal tonus and intrinsic heart rate after MI. The loss of vagal component of the arterial baroreflex and vagal tonus were correlated with changes in the cardiac proteins involved in intracellular calcium homeostasis. Furthermore, additional increase in sodium calcium exchanger expression levels was associated with impaired diastolic function in experimental animals. Our findings strongly suggest that previous arterial baroreflex deficiency may induce additional impairment of vagal tonus, which was associated with calcium handling proteins abnormalities, probably triggering ventricular diastolic dysfunction after MI in rats. PMID:24936224

  2. Ceramide 1-phosphate (C1P) promotes cell migration Involvement of a specific C1P receptor.

    Science.gov (United States)

    Granado, María H; Gangoiti, Patricia; Ouro, Alberto; Arana, Lide; González, Monika; Trueba, Miguel; Gómez-Muñoz, Antonio

    2009-03-01

    Ceramide 1-phosphate (C1P) is a bioactive sphingolipid that is implicated in the regulation of cell homeostasis and the control of inflammation. It is mitogenic for fibroblasts and macrophages, and has been described as potent inhibitor of apoptosis. Using RAW 264.7 macrophages we have now discovered a new biological activity of C1P: stimulation of cell migration. This novel action can only be observed when C1P is applied exogenously to the cells in culture, and not by increasing the intracellular levels of C1P. This fact led to identify a specific receptor through which C1P stimulates cell migration. The receptor is coupled to G(i) proteins and causes phosphorylation of extracellularly regulated kinases 1 and 2, and protein kinase B (also known as Akt) upon ligation with C1P. Inhibition of either of these pathways completely abolished C1P-stimulated macrophage migration. In addition, C1P stimulated the DNA binding activity of nuclear factor kappa B, and blockade of this transcription factor resulted in complete inhibition of macrophage migration. This newly identified receptor could be an important drug target for treatment of illnesses that are associated to inflammatory processes, or to diseases in which cell migration is a major cause of pathology, as it occurs in metastatic tumors.

  3. Expression of functional human C1 inhibitor in COS cells

    NARCIS (Netherlands)

    Eldering, E.; Nuijens, J. H.; Hack, C. E.

    1988-01-01

    Full length human C1 inhibitor cDNA was cloned into a vector suitable for transient expression in COS-1 cells. Transfected COS cells secreted an immunoreactive protein of Mr approximately 110,000 that appeared to be functionally equivalent to the plasma-derived protein as established by the

  4. Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release.

    Science.gov (United States)

    Sadakata, Tetsushi; Kakegawa, Wataru; Mizoguchi, Akira; Washida, Miwa; Katoh-Semba, Ritsuko; Shutoh, Fumihiro; Okamoto, Takehito; Nakashima, Hisako; Kimura, Kazushi; Tanaka, Mika; Sekine, Yukiko; Itohara, Shigeyoshi; Yuzaki, Michisuke; Nagao, Soichi; Furuichi, Teiichi

    2007-03-07

    Ca2+-dependent activator protein for secretion 2 (CAPS2/CADPS2) is a secretory granule-associated protein that is abundant at the parallel fiber terminals of granule cells in the mouse cerebellum and is involved in the release of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF), both of which are required for cerebellar development. The human homolog gene on chromosome 7 is located within susceptibility locus 1 of autism, a disease characterized by several cerebellar morphological abnormalities. Here we report that CAPS2 knock-out mice are deficient in the release of NT-3 and BDNF, and they consequently exhibit suppressed phosphorylation of Trk receptors in the cerebellum; these mice exhibit pronounced impairments in cerebellar development and functions, including neuronal survival, differentiation and migration of postmitotic granule cells, dendritogenesis of Purkinje cells, lobulation between lobules VI and VII, structure and vesicular distribution of parallel fiber-Purkinje cell synapses, paired-pulse facilitation at parallel fiber-Purkinje cell synapses, rotarod motor coordination, and eye movement plasticity in optokinetic training. Increased granule cell death of the external granular layer was noted in lobules VI-VII and IX, in which high BDNF and NT-3 levels are specifically localized during cerebellar development. Therefore, the deficiency of CAPS2 indicates that CAPS2-mediated neurotrophin release is indispensable for normal cerebellar development and functions, including neuronal differentiation and survival, morphogenesis, synaptic function, and motor learning/control. The possible involvement of the CAPS2 gene in the cerebellar deficits of autistic patients is discussed.

  5. No evidence for impaired humoral immunity to pneumococcal proteins in Australian Aboriginal children with otitis media.

    Science.gov (United States)

    Thornton, Ruth B; Kirkham, Lea-Ann S; Corscadden, Karli J; Coates, Harvey L; Vijayasekaran, Shyan; Hillwood, Jessica; Toster, Sophie; Edminston, Phillipa; Zhang, Guicheng; Keil, Anthony; Richmond, Peter C

    2017-01-01

    The Australian Aboriginal population experiences disproportionately high rates of otitis media (OM). Streptococcus pneumoniae is one of the main pathogens responsible for OM and currently no vaccine offering cross strain protection exists. Vaccines consisting of conserved antigens to S. pneumoniae may reduce the burden of OM in high-risk populations; however no data exists examining naturally acquired antibody in Aboriginal children with OM. Serum and salivary IgA and IgG were measured against the S. pneumoniae antigens PspA1 and 2, CbpA and Ply in a cross sectional study of 183 children, including 36 non-Aboriginal healthy control children and 70 Aboriginal children and 77 non-Aboriginal children undergoing surgery for OM using a multiplex bead assay. Significant differences were observed between the 3 groups for serum anti-PspA1 IgA, anti-CbpA and anti-Ply IgG and for all salivary antibodies assessed. Aboriginal children with a history of OM had significantly higher antibody titres than non-Aboriginal healthy children with no history of OM and non-Aboriginal children with a history of OM for several proteins in serum and saliva. Non-Aboriginal children with a history of OM had significantly higher salivary anti-PspA1 IgG than healthy children, while all other titres were comparable between the groups. Conserved vaccine candidate proteins from S. pneumoniae induce serum and salivary antibody responses in Aboriginal and non-Aboriginal children with a history of OM. Aboriginal children do not have an impaired antibody response to the antigens measured from S. pneumoniae and they may represent vaccine candidates in Indigenous populations. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. Constitutive stimulatory G protein activity in limb mesenchyme impairs bone growth.

    Science.gov (United States)

    Karaca, Anara; Malladi, Vijayram Reddy; Zhu, Yan; Tafaj, Olta; Paltrinieri, Elena; Wu, Joy Y; He, Qing; Bastepe, Murat

    2018-05-01

    GNAS mutations leading to constitutively active stimulatory G protein alpha-subunit (Gsα) cause different tumors, fibrous dysplasia of bone, and McCune-Albright syndrome, which are typically not associated with short stature. Enhanced signaling of the parathyroid hormone/parathyroid hormone-related peptide receptor, which couples to multiple G proteins including Gsα, leads to short bones with delayed endochondral ossification. It has remained unknown whether constitutive Gsα activity also impairs bone growth. Here we generated mice expressing a constitutively active Gsα mutant (Gsα-R201H) conditionally upon Cre recombinase (cGsα R201H mice). Gsα-R201H was expressed in cultured bone marrow stromal cells from cGsα R201H mice upon adenoviral-Cre transduction. When crossed with mice in which Cre is expressed in a tamoxifen-regulatable fashion (CAGGCre-ER™), tamoxifen injection resulted in mosaic expression of the transgene in double mutant offspring. We then crossed the cGsα R201H mice with Prx1-Cre mice, in which Cre is expressed in early limb-bud mesenchyme. The double mutant offspring displayed short limbs at birth, with narrow hypertrophic chondrocyte zones in growth plates and delayed formation of secondary ossification center. Consistent with enhanced Gsα signaling, bone marrow stromal cells from these mice demonstrated increased levels of c-fos mRNA. Our findings indicate that constitutive Gsα activity during limb development disrupts endochondral ossification and bone growth. Given that Gsα haploinsufficiency also leads to short bones, as in patients with Albright's hereditary osteodystrophy, these results suggest that a tight control of Gsα activity is essential for normal growth plate physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  8. Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure.

    Science.gov (United States)

    Kim, Soochan; Han, Sinsuk; Lee, Ye Eun; Jung, Woong-Jae; Lee, Hyung Soo; Kim, Yong-Sun; Choi, Eun-Kyoung; Kim, Mi-Yeon

    2016-01-01

    The cellular prion protein is expressed in almost all tissues, including the central nervous system and lymphoid tissues. To investigate the effects of the prion protein in lymphoid cells and spleen structure formation, we used prion protein-deficient (Prnp(0/0)) Zürich I mice generated by inactivation of the Prnp gene. Prnp(0/0) mice had decreased lymphocytes, in particular, CD4 T cells and lymphoid tissue inducer (LTi) cells. Decreased CD4 T cells resulted from impaired expression of CCL19 and CCL21 in the spleen rather than altered chemokine receptor CCR7 expression. Importantly, some of the white pulp regions in spleens from Prnp(0/0) mice displayed impaired T zone structure as a result of decreased LTi cell numbers and altered expression of the lymphoid tissue-organizing genes lymphotoxin-α and CXCR5, although expression of the lymphatic marker podoplanin and CXCL13 by stromal cells was not affected. In addition, CD3(-)CD4(+)IL-7Rα(+) LTi cells were rarely detected in impaired white pulp in spleens of these mice. These data suggest that the prion protein is required to form the splenic white pulp structure and for development of normal levels of CD4 T and LTi cells. Copyright © 2015. Published by Elsevier GmbH.

  9. Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium.

    Science.gov (United States)

    Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D; Khairallah, Ramzi J; Sarkey, Jason; Govindan, Suresh; Chen, Xin; Ge, Ying; Rajan, Sudarsan; Wieczorek, David F; Irving, Thomas; Westfall, Margaret V; de Tombe, Pieter P; Sadayappan, Sakthivel

    2014-03-28

    Myocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca(2+) transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model. However, the underlying mechanisms remain unclear. Here, we investigate the association between C0-C1f and altered contractility in human cardiac myofilaments in vitro. To accomplish this, we generated recombinant human C0-C1f (hC0C1f) and incorporated it into permeabilized human left ventricular myocardium. Mechanical properties were studied at short (2 μm) and long (2.3 μm) sarcomere length (SL). Our data demonstrate that the presence of hC0C1f in the sarcomere had the greatest effect at short, but not long, SL, decreasing maximal force and myofilament Ca(2+) sensitivity. Moreover, hC0C1f led to increased cooperative activation, cross-bridge cycling kinetics, and tension cost, with greater effects at short SL. We further established that the effects of hC0C1f occur through direct interaction with actin and α-tropomyosin. Our data demonstrate that the presence of hC0C1f in the sarcomere is sufficient to induce depressed myofilament function and Ca(2+) sensitivity in otherwise healthy human donor myocardium. Decreased cardiac function post-MI may result, in part, from the ability of hC0C1f to bind actin and α-tropomyosin, suggesting that cleaved C0-C1f could act as a poison polypeptide and disrupt the interaction of native cardiac myosin-binding protein C with the thin filament.

  10. Water channel proteins in the inner ear and their link to hearing impairment and deafness.

    Science.gov (United States)

    Eckhard, Andreas; Gleiser, Corinna; Arnold, Heinz; Rask-Andersen, Helge; Kumagami, Hidetaka; Müller, Marcus; Hirt, Bernhard; Löwenheim, Hubert

    2012-01-01

    The inner ear is a fluid-filled sensory organ that transforms mechanical stimuli into the senses of hearing and balance. These neurosensory functions depend on the strict regulation of the volume of the two major extracellular fluid domains of the inner ear, the perilymph and the endolymph. Water channel proteins, or aquaporins (AQPs), are molecular candidates for the precise regulation of perilymph and endolymph volume. Eight AQP subtypes have been identified in the membranous labyrinth of the inner ear. Similar AQP subtypes are also expressed in the kidney, where they function in whole-body water regulation. In the inner ear, AQP subtypes are ubiquitously expressed in distinct cell types, suggesting that AQPs have an important physiological role in the volume regulation of perilymph and endolymph. Furthermore, disturbed AQP function may have pathophysiological relevance and may turn AQPs into therapeutic targets for the treatment of inner ear diseases. In this review, we present the currently available knowledge regarding the expression and function of AQPs in the inner ear. We give special consideration to AQP subtypes AQP2, AQP4 and AQP5, which have been studied most extensively. The potential functions of AQP2 and AQP5 in the resorption and secretion of endolymph and of AQP4 in the equilibration of cell volume are described. The pathophysiological implications of these AQP subtypes for inner ear diseases, that appear to involve impaired fluid regulation, such as Menière's disease and Sjögren's syndrome, are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Impaired Relaxation of Airway Smooth Muscle in Mice Lacking the Actin-Binding Protein Gelsolin.

    Science.gov (United States)

    Mikami, Maya; Zhang, Yi; Danielsson, Jennifer; Joell, Tiarra; Yong, Hwan Mee; Townsend, Elizabeth; Khurana, Seema; An, Steven S; Emala, Charles W

    2017-05-01

    Diverse classes of ligands have recently been discovered that relax airway smooth muscle (ASM) despite a transient increase in intracellular calcium concentrations ([Ca 2+ ] i ). However, the cellular mechanisms are not well understood. Gelsolin is a calcium-activated actin-severing and -capping protein found in many cell types, including ASM cells. Gelsolin also binds to phosphatidylinositol 4,5-bisphosphate, making this substrate less available for phospholipase Cβ-mediated hydrolysis to inositol triphosphate and diacylglycerol. We hypothesized that gelsolin plays a critical role in ASM relaxation and mechanistically accounts for relaxation by ligands that transiently increase [Ca 2+ ] i . Isolated tracheal rings from gelsolin knockout (KO) mice showed impaired relaxation to both a β-agonist and chloroquine, a bitter taste receptor agonist, which relaxes ASM, despite inducing transiently increased [Ca 2+ ] i . A single inhalation of methacholine increased lung resistance to a similar extent in wild-type and gelsolin KO mice, but the subsequent spontaneous relaxation was less in gelsolin KO mice. In ASM cells derived from gelsolin KO mice, serotonin-induced Gq-coupled activation increased both [Ca 2+ ] i and inositol triphosphate synthesis to a greater extent compared to cells from wild-type mice, possibly due to the absence of gelsolin binding to phosphatidylinositol 4,5-bisphosphate. Single-cell analysis showed higher filamentous:globular actin ratio at baseline and slower cytoskeletal remodeling dynamics in gelsolin KO cells. Gelsolin KO ASM cells also showed an attenuated decrease in cell stiffness to chloroquine and flufenamic acid. These findings suggest that gelsolin plays a critical role in ASM relaxation and that activation of gelsolin may contribute to relaxation induced by ligands that relax ASM despite a transient increase in [Ca 2+ ] i .

  12. Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells

    International Nuclear Information System (INIS)

    Goffinet, M; Thoulouzan, M; Pradines, A; Lajoie-Mazenc, I; Weinbaum, Carolyn; Faye, JC; Séronie-Vivien, S

    2006-01-01

    Nitrogen-containing bisphosphonates (N-BPs) have been designed to inhibit osteoclast-mediated bone resorption. However, it is now accepted that part of their anti-tumor activities is related to interference with the mevalonate pathway. We investigated the effects of zoledronic acid (ZOL), on cell proliferation and protein isoprenylation in two tumoral (LnCAP, PC-3,), and one normal established (PNT1-A) prostatic cell line. To assess if inhibition of geranyl-geranylation by ZOL impairs the biological activity of RhoA GTPase, we studied the LPA-induced formation of stress fibers. The inhibitory effect of ZOL on geranyl geranyl transferase I was checked biochemically. Activity of ZOL on cholesterol biosynthesis was determined by measuring the incorporation of 14 C mevalonate in cholesterol. ZOL induced dose-dependent inhibition of proliferation of all the three cell lines although it appeared more efficient on the untransformed PNT1A. Whatever the cell line, 20 μM ZOL-induced inhibition was reversed by geranyl-geraniol (GGOH) but neither by farnesol nor mevalonate. After 48 hours treatment of cells with 20 μM ZOL, geranyl-geranylation of Rap1A was abolished whereas farnesylation of HDJ-2 was unaffected. Inhibition of Rap1A geranyl-geranylation by ZOL was rescued by GGOH and not by FOH. Indeed, as observed with treatment by a geranyl-geranyl transferase inhibitor, treatment of PNT1-A cells with 20 μM ZOL prevented the LPA-induced formation of stress fibers. We checked that in vitro ZOL did not inhibit geranyl-geranyl-transferase I. ZOL strongly inhibited cholesterol biosynthesis up to 24 hours but at 48 hours 90% of this biosynthesis was rescued. Although zoledronic acid is currently the most efficient bisphosphonate in metastatic prostate cancer management, its mechanism of action in prostatic cells remains unclear. We suggest in this work that although in first intention ZOL inhibits FPPsynthase its main biological actitivity is directed against protein

  13. Fast track, dynein-dependent nuclear targeting of human immunodeficiency virus Vpr protein; impaired trafficking in a clinical isolate

    International Nuclear Information System (INIS)

    Caly, Leon; Kassouf, Vicki T.; Moseley, Gregory W.; Diefenbach, Russell J.; Cunningham, Anthony L.; Jans, David A.

    2016-01-01

    Nuclear import of the accessory protein Vpr is central to infection by human immunodeficiency virus (HIV). We previously identified the Vpr F72L mutation in a HIV-infected, long-term non-progressor, showing that it resulted in reduced Vpr nuclear accumulation and altered cytoplasmic localisation. Here we demonstrate for the first time that the effects of nuclear accumulation of the F72L mutation are due to impairment of microtubule-dependent-enhancement of Vpr nuclear import. We use high resolution imaging approaches including fluorescence recovery after photobleaching and other approaches to document interaction between Vpr and the dynein light chain protein, DYNLT1, and impaired interaction of the F72L mutant with DYNLT1. The results implicate MTs/DYNLT1 as drivers of Vpr nuclear import and HIV infection, with important therapeutic implications. - Highlights: • HIV-1 Vpr utilizes the microtubule network to traffic towards the nucleus. • Mechanism relies on interaction between Vpr and dynein light chain protein DYNLT1. • Long-term non-progressor derived mutation (F72L) impairs this interaction. • Key residues in the vicinity of F72 contribute to interaction with DYNLT1.

  14. Fast track, dynein-dependent nuclear targeting of human immunodeficiency virus Vpr protein; impaired trafficking in a clinical isolate

    Energy Technology Data Exchange (ETDEWEB)

    Caly, Leon [Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800 (Australia); Kassouf, Vicki T. [Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145 (Australia); Moseley, Gregory W. [Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800 (Australia); Diefenbach, Russell J.; Cunningham, Anthony L. [Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145 (Australia); Jans, David A., E-mail: david.jans@monash.edu [Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800 (Australia)

    2016-02-12

    Nuclear import of the accessory protein Vpr is central to infection by human immunodeficiency virus (HIV). We previously identified the Vpr F72L mutation in a HIV-infected, long-term non-progressor, showing that it resulted in reduced Vpr nuclear accumulation and altered cytoplasmic localisation. Here we demonstrate for the first time that the effects of nuclear accumulation of the F72L mutation are due to impairment of microtubule-dependent-enhancement of Vpr nuclear import. We use high resolution imaging approaches including fluorescence recovery after photobleaching and other approaches to document interaction between Vpr and the dynein light chain protein, DYNLT1, and impaired interaction of the F72L mutant with DYNLT1. The results implicate MTs/DYNLT1 as drivers of Vpr nuclear import and HIV infection, with important therapeutic implications. - Highlights: • HIV-1 Vpr utilizes the microtubule network to traffic towards the nucleus. • Mechanism relies on interaction between Vpr and dynein light chain protein DYNLT1. • Long-term non-progressor derived mutation (F72L) impairs this interaction. • Key residues in the vicinity of F72 contribute to interaction with DYNLT1.

  15. Microbial growth on C1 compounds: proceedings

    International Nuclear Information System (INIS)

    Crawford, R.L.; Hanson, R.S.

    1984-01-01

    This book contains individual papers prepared for the 4th International Symposium on Microbial Growth on One Carbon Compounds. Individual reports were abstracted and indexed for EDB. Topics presented were in the areas of the physiology and biochemistry of autotraps, physiology and biochemistry of methylotrophs and methanotrops, physiology and biochemistry of methanogens, genetics of microbes that use C 1 compounds, taxonomy and ecology of microbes tht grow on C 1 compounds, applied aspects of microbes that grow on C 1 compounds, and new directions in C 1 metabolism. (DT)

  16. Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of Meier-Gorlin syndrome.

    Directory of Open Access Journals (Sweden)

    Tom Stiff

    Full Text Available Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS, a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency.

  17. C-Reactive Protein Impairs Dendritic Cell Development, Maturation, and Function: Implications for Peripheral Tolerance

    Directory of Open Access Journals (Sweden)

    Rachel V. Jimenez

    2018-03-01

    Full Text Available C-reactive protein (CRP is the prototypical acute phase reactant, increasing in blood concentration rapidly and several-fold in response to inflammation. Recent evidence indicates that CRP has an important physiological role even at low, baseline levels, or in the absence of overt inflammation. For example, we have shown that human CRP inhibits the progression of experimental autoimmune encephalomyelitis (EAE in CRP transgenic mice by shifting CD4+ T cells away from the TH1 and toward the TH2 subset. Notably, this action required the inhibitory Fcγ receptor IIB (FcγRIIB, but did not require high levels of human CRP. Herein, we sought to determine if CRP’s influence in EAE might be explained by CRP acting on dendritic cells (DC; antigen presenting cells known to express FcγRIIB. We found that CRP (50 µg/ml reduced the yield of CD11c+ bone marrow-derived DCs (BMDCs and CRP (≥5 μg/ml prevented their full expression of major histocompatibility complex class II and the co-stimulatory molecules CD86 and CD40. CRP also decreased the ability of BMDCs to stimulate antigen-driven proliferation of T cells in vitro. Importantly, if the BMDCs were genetically deficient in mouse FcγRIIB then (i the ability of CRP to alter BMDC surface phenotype and impair T cell proliferation was ablated and (ii CD11c-driven expression of a human FCGR2B transgene rescued the CRP effect. Lastly, the protective influence of CRP in EAE was fully restored in mice with CD11c-driven human FcγRIIB expression. These findings add to the growing evidence that CRP has important biological effects even in the absence of an acute phase response, i.e., CRP acts as a tonic suppressor of the adaptive immune system. The ability of CRP to suppress development, maturation, and function of DCs implicates CRP in the maintenance of peripheral T cell tolerance.

  18. Protein malnutrition impairs the immune response and influences the severity of infection in a hamster model of chronic visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Eugenia Carrillo

    Full Text Available Leishmaniasis remains one of the world's most devastating neglected tropical diseases. It mainly affects developing countries, where it often co-exists with chronic malnutrition, one of the main risk factors for developing the disease. Few studies have been published, however, on the relationship between leishmaniasis progression and malnutrition. The present paper reports the influence of protein malnutrition on the immune response and visceral disease development in adult hamsters infected with Leishmania infantum fed either standard or low protein diets. The low protein diet induced severe malnutrition in these animals, and upon infection with L. infantum 33% had severe visceral leishmaniasis compared to only 8% of animals fed the standard diet. The infected, malnourished animals showed notable leukocyte depletion, mild specific antibody responses, impairment of lymphoproliferation, presence of parasites in blood (16.67% of the hamsters and significant increase of the splenic parasite burden. Animals fed standard diet suffered agranulocytosis and monocytopenia, but showed stronger specific immune responses and had lower parasite loads than their malnourished counterparts. The present results show that protein malnutrition promotes visceral leishmaniasis and provide clues regarding the mechanisms underlying the impairment of the immune system.

  19. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein.

    Science.gov (United States)

    Pan, Hongyu; Wang, Dongpi; Zhang, Xiaoqin; Zhou, Dongming; Zhang, Heng; Qian, Qi; He, Xiao; Liu, Zhaoling; Liu, Yunjin; Zheng, Tingting; Zhang, Ling; Wang, Mingkai; Sun, Binggui

    2016-10-11

    Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP). However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ) or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG) of adult mice overexpressing wild-type hAPP (hAPP-I5) compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Effects of fenofibrate on hyperlipidemia and postprandial triglyceride metabolism in human apolipoprotein C1 transgenic mice

    NARCIS (Netherlands)

    Jong, M.C.; Dahlmans, V.E.H.; Princen, H.M.G.; Hofker, M.H.; Havekes, L.M.

    1998-01-01

    To study the in vivo role of apolipoprotein (apo) C1 in lipoprotein metabolism, we have generated transgenic mice expressing the human apo C1 gene. Apo C1 is a small 6.6 kDa protein that is primarily synthesized by the liver and is present on chylomicrons, very low density lipoproteins (VLDL) and

  1. Impaired exercise capacity, but unaltered mitochondrial respiration in skeletal or cardiac muscle of mice lacking cellular prion protein.

    Science.gov (United States)

    Nico, Patrícia Barreto Costa; Lobão-Soares, Bruno; Landemberger, Michele Christine; Marques, Wilson; Tasca, Carla I; de Mello, Carlos Fernando; Walz, Roger; Carlotti, Carlos Gilberto; Brentani, Ricardo R; Sakamoto, Américo C; Bianchin, Marino Muxfeldt

    2005-11-04

    The studies of physiological roles for cellular prion protein (PrP(c)) have focused on possible functions of this protein in the CNS, where it is largely expressed. However, the observation that PrP(c) is expressed also in muscle tissue suggests that the physiological role of PrP(c) might not be limited to the central nervous system. In the present study, we investigated possible functions of PrP(c) in muscle using PrP(c) gene (Prnp) null mice (Prnp(0/0)). For this purpose, we submitted Prnp(0/0) animals to different protocols of exercise, and compared their performance to that of their respective wild-type controls. Prnp(0/0) mice showed an exercise-dependent impairment of locomotor activity. In searching for possible mechanisms associated with the impairment observed, we evaluated mitochondrial respiration (MR) in skeletal or cardiac muscle from these mice during resting or after different intensities of exercise. Baseline MR (states 3 and 4), respiratory control ratio (RCR) and mitochondrial membrane potential (DeltaPsi) were evaluated and were not different in skeletal or cardiac muscle tissue of Prnp(0/0) mice when compared with wild-type animals. We concluded that Prnp(0/0) mice show impairment of swimming capacity, perhaps reflecting impairment of muscular activity under more extreme exercise conditions. In spite of the mitochondrial abnormalities reported in Prnp(0/0) mice, our observation seems not to be related to MR. Our results indicate that further investigations should be conducted in order to improve our knowledge about the function of PrP(c) in muscle physiology and its possible role in several different neuromuscular pathologies.

  2. APP/Go protein Gβγ-complex signaling mediates Aβ degeneration and cognitive impairment in Alzheimer's disease models.

    Science.gov (United States)

    Bignante, Elena Anahi; Ponce, Nicolás Eric; Heredia, Florencia; Musso, Juliana; Krawczyk, María C; Millán, Julieta; Pigino, Gustavo F; Inestrosa, Nibaldo C; Boccia, Mariano M; Lorenzo, Alfredo

    2018-04-01

    Deposition of amyloid-β (Aβ), the proteolytic product of the amyloid precursor protein (APP), might cause neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the direct involvement of APP in the mechanism of Aβ-induced degeneration in AD remains on debate. Here, we analyzed the interaction of APP with heterotrimeric Go protein in primary hippocampal cultures and found that Aβ deposition dramatically enhanced APP-Go protein interaction in dystrophic neurites. APP overexpression rendered neurons vulnerable to Aβ toxicity by a mechanism that required Go-Gβγ complex signaling and p38-mitogen-activated protein kinase activation. Gallein, a selective pharmacological inhibitor of Gβγ complex, inhibited Aβ-induced dendritic and axonal dystrophy, abnormal tau phosphorylation, synaptic loss, and neuronal cell death in hippocampal neurons expressing endogenous protein levels. In the 3xTg-AD mice, intrahippocampal application of gallein reversed memory impairment associated with early Aβ pathology. Our data provide further evidence for the involvement of APP/Go protein in Aβ-induced degeneration and reveal that Gβγ complex is a signaling target potentially relevant for developing therapies for halting Aβ degeneration in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Diabetes Impairs Wnt3 Protein-induced Neurogenesis in Olfactory Bulbs via Glutamate Transporter 1 Inhibition.

    Science.gov (United States)

    Wakabayashi, Tamami; Hidaka, Ryo; Fujimaki, Shin; Asashima, Makoto; Kuwabara, Tomoko

    2016-07-15

    Diabetes is associated with impaired cognitive function. Streptozotocin (STZ)-induced diabetic rats exhibit a loss of neurogenesis and deficits in behavioral tasks involving spatial learning and memory; thus, impaired adult hippocampal neurogenesis may contribute to diabetes-associated cognitive deficits. Recent studies have demonstrated that adult neurogenesis generally occurs in the dentate gyrus of the hippocampus, the subventricular zone, and the olfactory bulbs (OB) and is defective in patients with diabetes. We hypothesized that OB neurogenesis and associated behaviors would be affected in diabetes. In this study, we show that inhibition of Wnt3-induced neurogenesis in the OB causes several behavioral deficits in STZ-induced diabetic rats, including impaired odor discrimination, cognitive dysfunction, and increased anxiety. Notably, the sodium- and chloride-dependent GABA transporters and excitatory amino acid transporters that localize to GABAergic and glutamatergic terminals decreased in the OB of diabetic rats. Moreover, GAT1 inhibitor administration also hindered Wnt3-induced neurogenesis in vitro Collectively, these data suggest that STZ-induced diabetes adversely affects OB neurogenesis via GABA and glutamate transporter systems, leading to functional impairments in olfactory performance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. On the string equation at c=1

    International Nuclear Information System (INIS)

    Nakatsu, Toshio.

    1994-07-01

    The analogue of the string equation which specifies the partition function of c=1 string with a compactification radius β is an element of Z ≥1 is described in the framework of Toda lattice hierarchy. (author)

  5. Carnitine congener mildronate protects against stress- and haloperidol-induced impairment in memory and brain protein expression in rats.

    Science.gov (United States)

    Beitnere, Ulrika; Dzirkale, Zane; Isajevs, Sergejs; Rumaks, Juris; Svirskis, Simons; Klusa, Vija

    2014-12-15

    The present study investigates the efficacy of mildronate, a carnitine congener, to protect stress and haloperidol-induced impairment of memory in rats and the expression of brain protein biomarkers involved in synaptic plasticity, such as brain-derived neurotrophic factor (BDNF), acetylcholine esterase and glutamate decarboxylase 67 (GAD67). Two amnesia models were used: 2h immobilization stress and 3-week haloperidol treatment. Stress caused memory impairment in the passive avoidance test and induced a significant 2-fold BDNF elevation in hippocampal and striatal tissues that was completely inhibited by mildronate. Mildronate decreased the level of GAD67 (but not acetylcholine esterase) expression by stress. Haloperidol decrease by a third hippocampal BDNF and acetylcholine esterase (but not GAD67) expression, which was normalized by mildronate; it also reversed the haloperidol-induced memory impairment in Barnes test. The results suggest the usefulness of mildronate as protector against neuronal disturbances caused by stress or haloperidol. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Paradoxical sleep deprivation impairs spatial learning and affects membrane excitability and mitochondrial protein in the hippocampus.

    Science.gov (United States)

    Yang, Rui-Hua; Hu, San-Jue; Wang, Yuan; Zhang, Wen-Bin; Luo, Wen-Jing; Chen, Jing-Yuan

    2008-09-16

    Previous research has demonstrated that paradoxical sleep has a key role in learning and memory, and sleep deprivation interferes with learning and memory. However, the mechanism of memory impairment induced by sleep deprivation is poorly understood. The present study investigated the effect of paradoxical sleep deprivation (PSD) on spatial learning and memory using the Morris Water Maze. Effects of PSD on CA1 pyramidal neurons in hippocampus were also examined. PSD impaired spatial learning of rats. PSD induced translocation of Bax to mitochondria and cytochrome c release into the cytoplasm, and decreased the membrane excitability of CA1 pyramidal neurons, effects which may contribute to the deficits in learning behavior. These results may partially explain the mechanism of the effect of PSD on learning. Modulating the excitability of hippocampal neurons and protecting mitochondrial function are possible targets for preventing the effects of paradoxical sleep deprivation.

  7. Immunoglobulin production is impaired in protein-deprived mice and can be restored by dietary protein supplementation

    Directory of Open Access Journals (Sweden)

    J.F. Amaral

    2006-12-01

    Full Text Available Most contacts with food protein and microbiota antigens occur at the level of the gut mucosa. In animal models where this natural stimulation is absent, such as germ-free and antigen-free mice, the gut-associated lymphoid tissue (GALT and systemic immunological activities are underdeveloped. We have shown that food proteins play a critical role in the full development of the immune system. C57BL/6 mice weaned to a diet in which intact proteins are replaced by equivalent amounts of amino acids (Aa diet have a poorly developed GALT as well as low levels of serum immunoglobulins (total Ig, IgG, and IgA, but not IgM. In the present study, we evaluated whether the introduction of a protein-containing diet in 10 adult Aa-fed C57BL/6 mice could restore their immunoglobulin levels and whether this recovery was dependent on the amount of dietary protein. After the introduction of a casein-containing diet, Aa-fed mice presented a fast recovery (after 7 days of secretory IgA (from 0.33 to 0.75 mg/mL, while in casein-fed mice this value was 0.81 mg/mL and serum immunoglobulin levels (from 5.39 to 10.25 mg/mL of total Ig. Five percent dietary casein was enough to promote the restoration of secretory IgA and serum immunoglobulin levels to a normal range after 30 days feeding casein diet (as in casein-fed mice - 15% by weight of diet. These data suggest that the defect detected in the immunoglobulin levels was a reversible result of the absence of food proteins as an antigenic stimulus. They also indicate that the deleterious consequences of malnutrition at an early age for some immune functions may be restored by therapeutic intervention later in life.

  8. Truncated HSPB1 causes axonal neuropathy and impairs tolerance to unfolded protein stress

    Directory of Open Access Journals (Sweden)

    Emil Ylikallio

    2015-06-01

    General significance: sHSPs have important roles in prevention of protein aggregates that induce toxicity. We showed that C-terminal part of HSPB1 is critical for tolerance of unfolded protein stress, and when lacking causes axonal neuropathy in patients.

  9. Restarting stalled autophagy a potential therapeutic approach for the lipid storage disorder, Niemann-Pick type C1 disease.

    Science.gov (United States)

    Sarkar, Sovan; Maetzel, Dorothea; Korolchuk, Viktor I; Jaenisch, Rudolf

    2014-06-01

    Autophagy is essential for cellular homeostasis and its dysfunction in human diseases has been implicated in the accumulation of misfolded protein and in cellular toxicity. We have recently shown impairment in autophagic flux in the lipid storage disorder, Niemann-Pick type C1 (NPC1) disease associated with abnormal cholesterol sequestration, where maturation of autophagosomes is impaired due to defective amphisome formation caused by failure in SNARE machinery. Abrogation of autophagy also causes cholesterol accumulation, suggesting that defective autophagic flux in NPC1 disease may act as a primary causative factor not only by imparting its deleterious effects, but also by increasing cholesterol load. However, cholesterol depletion treatment with HP-β-cyclodextrin impedes autophagy, whereas pharmacologically stimulating autophagy restores its function independent of amphisome formation. Of potential therapeutic relevance is that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may rescue both the cholesterol and autophagy defects in NPC1 disease.

  10. Gestational Protein Restriction Impairs Insulin-Regulated Glucose Transport Mechanisms in Gastrocnemius Muscles of Adult Male Offspring

    Science.gov (United States)

    Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar

    2014-01-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  11. Gestational protein restriction impairs insulin-regulated glucose transport mechanisms in gastrocnemius muscles of adult male offspring.

    Science.gov (United States)

    Blesson, Chellakkan S; Sathishkumar, Kunju; Chinnathambi, Vijayakumar; Yallampalli, Chandrasekhar

    2014-08-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet-exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet-fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  12. Heterogeneous nuclear ribonucleoprotein B1 protein impairs DNA repair mediated through the inhibition of DNA-dependent protein kinase activity

    International Nuclear Information System (INIS)

    Iwanaga, Kentaro; Sueoka, Naoko; Sato, Akemi; Hayashi, Shinichiro; Sueoka, Eisaburo

    2005-01-01

    Heterogeneous nuclear ribonucleoprotein B1, an RNA binding protein, is overexpressed from the early stage of lung cancers; it is evident even in bronchial dysplasia, a premalignant lesion. We evaluated the proteins bound with hnRNP B1 and found that hnRNP B1 interacted with DNA-dependent protein kinase (DNA-PK) complex, and recombinant hnRNP B1 protein dose-dependently inhibited DNA-PK activity in vitro. To test the effect of hnRNP B1 on DNA repair, we performed comet assay after irradiation, using normal human bronchial epithelial (HBE) cells treated with siRNA for hnRNP A2/B1: reduction of hnRNP B1 treated with siRNA for hnRNP A2/B1 induced faster DNA repair in normal HBE cells. Considering these results, we assume that overexpression of hnRNP B1 occurring in the early stage of carcinogenesis inhibits DNA-PK activity, resulting in subsequent accumulation of erroneous rejoining of DNA double-strand breaks, causing tumor progression

  13. Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus.

    Science.gov (United States)

    Chen, X; Threlkeld, S W; Cummings, E E; Juan, I; Makeyev, O; Besio, W G; Gaitanis, J; Banks, W A; Sadowska, G B; Stonestreet, B S

    2012-12-13

    The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) and tight junction proteins by Western immunoblot in fetal sheep at 127 days of gestation without ischemia, and 4, 24, or 48 h after ischemia. The largest increase in K(i) (Pbrain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (K(i)) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4 h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24 and 48 than 4 h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Low- and high-affinity phorbol ester and diglyceride interactions with protein kinase C: 1-O-alkyl-2-acyl-sn-glycerol enhances phorbol ester- and diacylglycerol-induced activity but alone does not induce activity.

    Science.gov (United States)

    Slater, S J; Seiz, J L; Stagliano, B A; Cook, A C; Milano, S K; Ho, C; Stubbs, C D

    2001-05-22

    Phorbol ester-induced conventional protein kinase C (PKCalpha, -betaIota/IotaIota, and -gamma) isozyme activities are potentiated by 1,2-diacyl-sn-glycerol. This has been attributed to a "cooperative" interaction of the two activators with two discrete sites termed the low- and high-affinity phorbol ester binding sites, respectively [Slater, S. J., Milano, S. K., Stagliano, B. A., Gergich, K. J., Ho, C., Mazurek, A., Taddeo, F. J., Kelly, M. B., Yeager, M. D., and Stubbs, C. D. (1999) Biochemistry 38, 3804-3815]. Here, we report that the 1-O-alkyl ether diglyceride, 1-O-hexadecyl-2-acetyl-sn-glycerol (HAG), like its 1,2-diacyl counterpart, 1-oleoyl-2-acetyl-sn-glycerol (OAG), also potentiated PKCalpha, -betaI/II, and -gamma activities induced by the phorbol ester 4beta-12-O-tetradecanoylphorbol-13-acetate (TPA). Similar to OAG, HAG was found to bind to the low-affinity phorbol ester binding site and to enhance high-affinity phorbol ester binding, and to decrease the level of Ca(2+) required for phorbol ester-induced activity, while being without effect on the Ca(2+) dependence of membrane association. Thus, similar to OAG, HAG may also potentiate phorbol ester-induced activity by interacting with the low-affinity phorbol ester binding site, leading to a reduced level of Ca(2+) required for the activating conformational change. However, HAG was found not to behave like a 1,2-diacyl-sn-glycerol in that alone it did not induce PKC activity, and also in that it enhanced OAG-induced activity. The results reveal HAG to be a member of a new class of "nonactivating" compounds that modulate PKC activity by interacting with the low-affinity phorbol ester binding site.

  15. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles

    International Nuclear Information System (INIS)

    Chen Min; Mikecz, Anna von

    2005-01-01

    Despite of their exponentially growing use, little is known about cell biological effects of nanoparticles. Here, we report uptake of silica (SiO 2 ) nanoparticles to the cell nucleus where they induce aberrant clusters of topoisomerase I (topo I) in the nucleoplasm that additionally contain signature proteins of nuclear domains, and protein aggregation such as ubiquitin, proteasomes, cellular glutamine repeat (polyQ) proteins, and huntingtin. Formation of intranuclear protein aggregates (1) inhibits replication, transcription, and cell proliferation; (2) does not significantly alter proteasomal activity or cell viability; and (3) is reversible by Congo red and trehalose. Since SiO 2 nanoparticles trigger a subnuclear pathology resembling the one occurring in expanded polyglutamine neurodegenerative disorders, we suggest that integrity of the functional architecture of the cell nucleus should be used as a read out for cytotoxicity and considered in the development of safe nanotechnology

  16. Impaired mitochondrial respiration and protein nitration in the rat hippocampus after acute inhalation of combustion smoke

    International Nuclear Information System (INIS)

    Lee, Heung M.; Reed, Jason; Greeley, George H.; Englander, Ella W.

    2009-01-01

    Survivors of massive inhalation of combustion smoke endure critical injuries, including lasting neurological complications. We have previously reported that acute inhalation of combustion smoke disrupts the nitric oxide homeostasis in the rat brain. In this study, we extend our findings and report that a 30-minute exposure of awake rats to ambient wood combustion smoke induces protein nitration in the rat hippocampus and that mitochondrial proteins are a sensitive nitration target in this setting. Mitochondria are central to energy metabolism and cellular signaling and are critical to proper cell function. Here, analyses of the mitochondrial proteome showed elevated protein nitration in the course of a 24-hour recovery following exposure to smoke. Mass spectrometry identification of several significantly nitrated mitochondrial proteins revealed diverse functions and involvement in central aspects of mitochondrial physiology. The nitrated proteins include the ubiquitous mitochondrial creatine kinase, F1-ATP synthase α subunit, dihydrolipoamide dehydrogenase (E3), succinate dehydrogenase Fp subunit, and voltage-dependent anion channel (VDAC1) protein. Furthermore, acute exposure to combustion smoke significantly compromised the respiratory capacity of hippocampal mitochondria. Importantly, elevated protein nitration and reduced mitochondrial respiration in the hippocampus persisted beyond the time required for restoration of normal oxygen and carboxyhemoglobin blood levels after the cessation of exposure to smoke. Thus, the time frame for intensification of the various smoke-induced effects differs between blood and brain tissues. Taken together, our findings suggest that nitration of essential mitochondrial proteins may contribute to the reduction in mitochondrial respiratory capacity and underlie, in part, the brain pathophysiology after acute inhalation of combustion smoke

  17. On orientifolds of c=1 orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Dijkstra, T.P.T. [NIKHEF, PO Box 41882, 1009 DB Amsterdam (Netherlands); Gato-Rivera, B. [NIKHEF, PO Box 41882, 1009 DB Amsterdam (Netherlands); Riccioni, F. [NIKHEF, PO Box 41882, 1009 DB Amsterdam (Netherlands)]. E-mail: f.riccioni@damtp.cam.ac.uk; Schellekens, A.N. [NIKHEF, PO Box 41882, 1009 DB Amsterdam (Netherlands)

    2004-10-25

    The aim of this paper is to study orientifolds of c=1 conformal field theories. A systematic analysis of the allowed orientifold projections for c=1 orbifold conformal field theories is given. We compare the Klein bottle amplitudes obtained at rational points with the orientifold projections that we claim to be consistent for any value of the orbifold radius. We show that the recently obtained Klein bottle amplitudes corresponding to exceptional modular invariants, describing bosonic string theories at fractional square radius, are also in agreement with those orientifold projections.

  18. Presence of early stage cancer does not impair the early protein metabolic response to major surgery.

    Science.gov (United States)

    Engelen, Mariëlle P K J; Klimberg, V Suzanne; Allasia, Arianna; Deutz, Nicolaas Ep

    2017-06-01

    Combined bilateral mastectomy and reconstruction is a common major surgical procedure in women with breast cancer and in those with a family history of breast cancer. As this large surgical procedure induces muscle protein loss, a preserved anabolic response to nutrition is warranted for optimal recovery. It is unclear whether the presence of early stage cancer negatively affects the protein metabolic response to major surgery as this would mandate perioperative nutritional support. In nine women with early stage (Stage II) breast malignancy and nine healthy women with a genetic predisposition to breast cancer undergoing the same large surgical procedure, we examined whether surgery influences the catabolic response to overnight fasting and the anabolic response to nutrition differently. Prior to and within 24 h after combined bilateral mastectomy and reconstruction surgery, whole body protein synthesis and breakdown rates were assessed after overnight fasting and after meal intake by stable isotope methodology to enable the calculation of net protein catabolism in the post-absorptive state and net protein anabolic response to a meal. Major surgery resulted in an up-regulation of post-absorptive protein synthesis and breakdown rates (P surgery (P cancer (P breast cancer or surgery. The presence of early stage breast cancer does not enhance the normal catabolic response to major surgery or further attenuates the anabolic response to meal intake within 24 h after major surgery in patients with non-cachectic breast cancer. This indicates that the acute anabolic potential to conventional feeding is maintained in non-cachectic early stage breast cancer after major surgery. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  19. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase Cε

    International Nuclear Information System (INIS)

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir

    2007-01-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKCε was also inhibited. Surprisingly, phosphorylation of cytosolic PKCε was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKCε translocation inhibitor peptide, εV1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKCε migration to implement palmitate effect. Experimental evidences indicate that phospho-PKCε adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity

  20. The "Alarmins" HMBG1 and IL-33 Downregulate Structural Skin Barrier Proteins and Impair Epidermal Growth

    NARCIS (Netherlands)

    Nygaard, U.; Bogaard, E.H.J. van den; Niehues, H.; Hvid, M.; Deleuran, M.; Johansen, C.; Vestergaard, C.

    2017-01-01

    The epidermal-derived +ACI-alarmins+ACI- high-mobility group box 1 (HMGB1) protein and interleukin-33 (IL-33) are upregulated in patients with atopic dermatitis. How-ever, their capacity as pro-inflammatory cytokines and their derived effects on skin barrier regulation are poorly elucidated. We

  1. Impaired embryonic development in mice overexpressing the RNA-binding protein TIAR.

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    Full Text Available BACKGROUND: TIA-1-related (TIAR protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs. Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. METHODOLOGY/PRINCIPAL FINDINGS: To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2alpha that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. CONCLUSIONS/SIGNIFICANCE: This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming.

  2. Lead (Pb+2) impairs long-term memory and blocks learning-induced increases in hippocampal protein kinase C activity

    International Nuclear Information System (INIS)

    Vazquez, Adrinel; Pena de Ortiz, Sandra

    2004-01-01

    The long-term storage of information in the brain known as long-term memory (LTM) depends on a variety of intracellular signaling cascades utilizing calcium (Ca 2+ ) and cyclic adenosine monophosphate as second messengers. In particular, Ca +2 /phospholipid-dependent protein kinase C (PKC) activity has been proposed to be necessary for the transition from short-term memory to LTM. Because the neurobehavioral toxicity of lead (Pb +2 ) has been associated to its interference with normal Ca +2 signaling in neurons, we studied its effects on spatial learning and memory using a hippocampal-dependent discrimination task. Adult rats received microinfusions of either Na + or Pb +2 acetate in the CA1 hippocampal subregion before each one of four training sessions. A retention test was given 7 days later to examine LTM. Results suggest that intrahippocampal Pb +2 did not affect learning of the task, but significantly impaired retention. The effects of Pb +2 selectively impaired reference memory measured in the retention test, but had no effect on the general performance because it did not affect the latency to complete the task during the test. Finally, we examined the effects of Pb +2 on the induction of hippocampal Ca +2 /phospholipid-dependent PKC activity during acquisition training. The results showed that Pb +2 interfered with the learning-induced activation of Ca +2 /phospholipid-dependent PKC on day 3 of acquisition. Overall, our results indicate that Pb +2 causes cognitive impairments in adult rats and that such effects might be subserved by interference with Ca +2 -related signaling mechanisms required for normal LTM

  3. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle.

    Science.gov (United States)

    Malkus, Kristen A; Tsika, Elpida; Ischiropoulos, Harry

    2009-06-05

    While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD) as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis.

  4. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle

    Directory of Open Access Journals (Sweden)

    Malkus Kristen A

    2009-06-01

    Full Text Available Abstract While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis.

  5. Nicotine-prevented learning and memory impairment in REM sleep-deprived rat is modulated by DREAM protein in the hippocampus.

    Science.gov (United States)

    Abd Rashid, Norlinda; Hapidin, Hermizi; Abdullah, Hasmah; Ismail, Zalina; Long, Idris

    2017-06-01

    REM sleep deprivation is associated with impairment in learning and memory, and nicotine treatment has been shown to attenuate this effect. Recent studies have demonstrated the importance of DREAM protein in learning and memory processes. This study investigates the association of DREAM protein in REM sleep-deprived rats hippocampus upon nicotine treatment. Male Sprague Dawley rats were subjected to normal condition, REM sleep deprivation and control wide platform condition for 72 hr. During this procedure, saline or nicotine (1 mg/kg) was given subcutaneously twice a day. Then, Morris water maze (MWM) test was used to assess learning and memory performance of the rats. The rats were sacrificed and the brain was harvested for immunohistochemistry and Western blot analysis. MWM test found that REM sleep deprivation significantly impaired learning and memory performance without defect in locomotor function associated with a significant increase in hippocampus DREAM protein expression in CA1, CA2, CA3, and DG regions and the mean relative level of DREAM protein compared to other experimental groups. Treatment with acute nicotine significantly prevented these effects and decreased expression of DREAM protein in all the hippocampus regions but only slightly reduce the mean relative level of DREAM protein. This study suggests that changes in DREAM protein expression in CA1, CA2, CA3, and DG regions of rat's hippocampus and mean relative level of DREAM protein may involve in the mechanism of nicotine treatment-prevented REM sleep deprivation-induced learning and memory impairment in rats.

  6. A quenched c = 1 critical matrix model

    International Nuclear Information System (INIS)

    Qiu, Zongan; Rey, Soo-Jong.

    1990-12-01

    We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: 'quenched' matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our 'quenched' matrix model satisfy Virasoro algebra constraints

  7. Cooperative Research in C1 Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2000-10-27

    C1 chemistry refers to the conversion of simple carbon-containing materials that contain one carbon atom per molecule into valuable products. The feedstocks for C1 chemistry include natural gas, carbon dioxide, carbon monoxide, methanol and synthesis gas (a mixture of carbon monoxide and hydrogen). Synthesis gas, or syngas, is produced primarily by the reaction of natural gas, which is principally methane, with steam. It can also be produced by gasification of coal, petroleum coke, or biomass. The availability of syngas from coal gasification is expected to increase significantly in the future because of increasing development of integrated gasification combined cycle (IGCC) power generation. Because of the abundance of remote natural gas, the advent of IGCC, and environmental advantages, C1 chemistry is expected to become a major area of interest for the transportation fuel and chemical industries in the relatively near future. The CFFLS will therefore perform a valuable national service by providing science and engineering graduates that are trained in this important area. Syngas is the source of most hydrogen. Approximately 10 trillion standard cubic feet (SCF) of hydrogen are manufactured annually in the world. Most of this hydrogen is currently used for the production of ammonia and in a variety of refining and chemical operations. However, utilization of hydrogen in fuel cells is expected to grow significantly in the next century. Syngas is also the feedstock for all methanol and Fischer-Tropsch plants. Currently, world consumption of methanol is over 25 million tons per year. There are many methanol plants in the U.S. and throughout the world. Methanol and oxygenated transportation fuel products play a significant role in the CFFLS C1 program. Currently, the only commercial Fischer-Tropsch plants are overseas, principally in South Africa (SASOL). However, new plants are being built or planned for a number of locations. One possible location for future F

  8. Functional characterization of the protein C A267T mutation: evidence for impaired secretion due to defective intracellular transport

    Directory of Open Access Journals (Sweden)

    Tjeldhorn Lena

    2010-09-01

    Full Text Available Abstract Background Activated protein C (PC is a serine protease that regulates blood coagulation by inactivating coagulation factors Va and VIIIa. PC deficiency is an autosomally inherited disorder associated with a high risk of recurrent venous thrombosis. The aim of the study was to explore the mechanisms responsible for severe PC deficiency in a patient with the protein C A267T mutation by in-vitro expression studies. Results Huh7 and CHO-K1 cells were transiently transfected with expression vectors containing wild-type (WT PC and mutated PC (A267T PC cDNAs. PC mRNA levels were assessed by qRT-PCR and the PC protein levels were measured by ELISA. The mRNA levels of WT PC and A267T PC were similar, while the intracellular protein level of A267T PC was moderately decreased compared to WT PC. The secretion of A267T PC into the medium was severely impaired. No differences in molecular weights were observed between WT and A267T PC before and after treatment with endo-β-N-acetylglucosaminidase. Proteasomal and lysosomal degradations were examined using lactacystin and bafilomycin, respectively, and revealed that A267T PC was slightly more susceptible for proteasomal degradation than WT PC. Intracellular co-localization analysis indicated that A267T PC was mainly located in the endoplasmic reticulum (ER, whereas WT PC was observed in both ER and Golgi. Conclusions In contrast to what has been reported for other PC mutants, intracellular degradation of A267T PC was not the main/dominant mechanism underlying the reduced intracellular and secretion levels of PC. Our results indicate that the A267T mutation most likely caused misfolding of PC, which might lead to increased retention of the mutated PC in ER.

  9. Experience Modulates the Effects of Histone Deacetylase Inhibitors on Gene and Protein Expression in the Hippocampus: Impaired Plasticity in Aging

    Science.gov (United States)

    Sewal, Angila S.; Patzke, Holger; Perez, Evelyn J.; Park, Pul; Lehrmann, Elin; Zhang, Yongqing; Becker, Kevin G.; Fletcher, Bonnie R.; Long, Jeffrey M.

    2015-01-01

    The therapeutic potential of histone deacetylase inhibitor (HDACi) treatment has attracted considerable attention in the emerging area of cognitive neuroepigenetics. The possibility that ongoing cognitive experience importantly regulates the cell biological effects of HDACi administration, however, has not been systematically examined. In an initial experiment addressing this issue, we tested whether water maze training influences the gene expression response to acute systemic HDACi administration in the young adult rat hippocampus. Training powerfully modulated the response to HDACi treatment, increasing the total number of genes regulated to nearly 3000, including many not typically linked to neural plasticity, compared with experience was provided together with HDACi administration. Next, we tested whether the synaptic protein response to HDACi treatment is similarly dependent on recent cognitive experience, and whether this plasticity is altered in aged rats with memory impairment. Whereas synaptic protein labeling in the young hippocampus was selectively increased when HDACi administration was provided in conjunction with water maze training, combined treatment had no effect on synaptic proteins in the aged hippocampus. Our findings indicate that ongoing experience potently regulates the molecular consequences of HDACi treatment and that the interaction of recent cognitive experience with histone acetylation dynamics is disrupted in the aged hippocampus. SIGNIFICANCE STATEMENT The possibility that interventions targeting epigenetic regulation could be effective in treating a range of neurodegenerative disorders has attracted considerable interest. Here we demonstrate in the rat hippocampus that ongoing experience powerfully modifies the molecular response to one such intervention, histone deacetylase inhibitor (HDACi) administration. A single learning episode dramatically shifts the gene expression profile induced by acute HDACi treatment, yielding a

  10. Impaired mitochondrial metabolism and protein synthesis in streptozotocin diabetic rat hepatocytes

    International Nuclear Information System (INIS)

    Memon, R.A.; Bessman, S.P.; Mohan, C.

    1990-01-01

    Isolated hepatocytes prepared from control, streptozotocin diabetic rats were incubated at 30 degrees C in Krebs-Henseleit bicarbonate buffer, pH 7.4, containing 0.5 mM concentration of each of the 20 natural amino acids. Effect of insulin on the oxidation of 2,3- 14 C and 1,4- 14 C succinate (suc) carbons and their incorporation into hepatocyte protein, lipid and various metabolic intermediates was studied. Mitochondrial oxidation of suc carbons and their incorporation into protein and lipid was significantly lower in diabetic and insulin treated diabetic rats. Diabetic rats failed to exhibit any significant insulin effect on the oxidation of either 2,3 or 1,4- 14 C suc carbons. Amphibolic channeling of 2,3- 14 C suc carbons into amino acids was significantly reduced in hepatocytes of diabetic rats, however, more of these carbons were diverted into the gluconeogenesis pathway. Diabetes caused a far greater decrease in the oxidation of 2,3- 14 C suc carbons as compared to 1,4- 14 C suc. Based on an earlier report that insulin stimulates only the intramitochondrial Krebs cycle reactions, the authors conclude that the diminished level of anabolic activities in the diabetic rat hepatocytes is due to the subsequent reduction in amphibolic channeling of metabolic intermediates

  11. Oxidative stress impairs function and increases redox protein modifications in human spermatozoa.

    Science.gov (United States)

    Morielli, Tania; O'Flaherty, Cristian

    2015-01-01

    Oxidative stress, generated by excessive reactive oxygen species (ROS) or decreased antioxidant defenses (and possibly both), is associated with male infertility. Oxidative stress results in redox-dependent protein modifications, such as tyrosine nitration and S-glutathionylation. Normozoospermic sperm samples from healthy individuals were included in this study. Samples were incubated with increasing concentrations (0-5 mM) of exogenous hydrogen peroxide, tert-butyl hydroperoxide, or diethylamine NONOate (DA-NONOate, a nitric oxide (NO∙) donor) added to the medium. Spermatozoa treated with or without ROS were incubated under capacitating conditions and then levels of tyrosine phosphorylation and percentage of acrosome reaction (AR) induced by lysophosphatidylcholine were determined. Modified sperm proteins from cytosolic, triton-soluble, and triton-insoluble fractions were analyzed by SDS-PAGE immunoblotting and immunocytochemistry with anti-glutathione and anti-nitrotyrosine antibodies. Levels of S-glutathionylation increased dose dependently after exposure to hydroperoxides (Psperm capacitation by oxidative stress. In conclusion, oxidative stress promotes a dose-dependent increase in tyrosine nitration and S-glutathionylation and alters motility and the ability of spermatozoa to undergo capacitation.Free Spanish abstractA Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/149/1/113/suppl/DC1. © 2015 Society for Reproduction and Fertility.

  12. Alcohol ingestion impairs maximal post-exercise rates of myofibrillar protein synthesis following a single bout of concurrent training.

    Directory of Open Access Journals (Sweden)

    Evelyn B Parr

    Full Text Available INTRODUCTION: The culture in many team sports involves consumption of large amounts of alcohol after training/competition. The effect of such a practice on recovery processes underlying protein turnover in human skeletal muscle are unknown. We determined the effect of alcohol intake on rates of myofibrillar protein synthesis (MPS following strenuous exercise with carbohydrate (CHO or protein ingestion. METHODS: In a randomized cross-over design, 8 physically active males completed three experimental trials comprising resistance exercise (8×5 reps leg extension, 80% 1 repetition maximum followed by continuous (30 min, 63% peak power output (PPO and high intensity interval (10×30 s, 110% PPO cycling. Immediately, and 4 h post-exercise, subjects consumed either 500 mL of whey protein (25 g; PRO, alcohol (1.5 g·kg body mass⁻¹, 12±2 standard drinks co-ingested with protein (ALC-PRO, or an energy-matched quantity of carbohydrate also with alcohol (25 g maltodextrin; ALC-CHO. Subjects also consumed a CHO meal (1.5 g CHO·kg body mass⁻¹ 2 h post-exercise. Muscle biopsies were taken at rest, 2 and 8 h post-exercise. RESULTS: Blood alcohol concentration was elevated above baseline with ALC-CHO and ALC-PRO throughout recovery (P<0.05. Phosphorylation of mTOR(Ser2448 2 h after exercise was higher with PRO compared to ALC-PRO and ALC-CHO (P<0.05, while p70S6K phosphorylation was higher 2 h post-exercise with ALC-PRO and PRO compared to ALC-CHO (P<0.05. Rates of MPS increased above rest for all conditions (∼29-109%, P<0.05. However, compared to PRO, there was a hierarchical reduction in MPS with ALC-PRO (24%, P<0.05 and with ALC-CHO (37%, P<0.05. CONCLUSION: We provide novel data demonstrating that alcohol consumption reduces rates of MPS following a bout of concurrent exercise, even when co-ingested with protein. We conclude that alcohol ingestion suppresses the anabolic response in skeletal muscle and may therefore impair recovery and adaptation

  13. Loss of the HPV-infection resistance EVER2 protein impairs NF-κB signaling pathways in keratinocytes.

    Directory of Open Access Journals (Sweden)

    Françoise Vuillier

    Full Text Available Homozygous mutations in EVER genes cause epidermodysplasia verruciformis (EV, characterized by an immune defect and the development of skin cancers associated with β-human papillomavirus (HPV infections. The effects of EVER protein loss on the keratinocyte immune response remain unknown. We show here that EVER2 plays a critical role in the interplay between the NF-κB and JNK/AP-1 signaling pathways. EVER2-deficient cells overproduce IL-6 following the upregulation of JNK activation. They respond poorly to phorbol ester and TNF via the NF-κB pathway. They have lower levels of IKKα subunit, potentially accounting for impairments of p100 processing and the alternative NF-κB pathway. The loss of EVER2 is associated with an unusual TRAF protein profile. We demonstrate that EVER2 deficiency sustains TRAF2 ubiquitination and decreases the pool of TRAF2 available in the detergent-soluble fraction of the cell. Finally, we demonstrate that EVER2 loss induces constitutive PKCα-dependent c-jun phosphorylation and facilitates activation of the HPV5 long control region through a JNK-dependent pathway. These findings indicate that defects of the EVER2 gene may create an environment conducive to HPV replication and the persistence of lesions with the potential to develop into skin cancer.

  14. Specific cleavage of the lung surfactant protein A by human cathepsin S may impair its antibacterial properties.

    Science.gov (United States)

    Lecaille, Fabien; Naudin, Clément; Sage, Juliette; Joulin-Giet, Alix; Courty, Agnès; Andrault, Pierre-Marie; Veldhuizen, Ruud A W; Possmayer, Fred; Lalmanach, Gilles

    2013-08-01

    Human cysteine cathepsins (Cats) are implicated in lung injuries and tissue remodeling and have recently emerged as important players in pulmonary inflammations. The proteolytic activities of Cat B, L, K, S and H are dramatically increased in the sputum of patients with cystic fibrosis (CF), suggesting a possible involvement in the CF pathophysiology. We found that pulmonary surfactant protein A (SP-A) that participates to innate host defense is extensively degraded in CF expectorations. Breakdown of SP-A was markedly decreased in CF sputum by E-64 and Mu-Leu-Hph-VSPh, a Cat S inhibitor. Cat S cleaved efficiently and specifically SP-A within critical residues of the solvent-exposed loop of its carbohydrate recognition (C-type lectin) domain that allows binding to pathogens. Cat S decreased aggregation properties of SP-A (self-aggregation, aggregation of phospholipid vesicles and rough LPS). Moreover cleavage of SP-A by Cat S reduced binding to yeast mannan and impaired agglutination of Escherichia coli and Pseudomonas aeruginosa, a foremost detrimental pathogen colonizing the lungs of CF patients. Besides human neutrophil serine proteases and bacterial proteases, we propose that Cat S may participate in the pathophysiology of CF by weakening the antibacterial activity of SP-A. More broadly, present results provide further indication that Cat S, along with Cats B and L, could display immuno-modulatory functions by inactivating key proteins involved in the innate immunity defense. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Rescue of cAMP response element-binding protein signaling reversed spatial memory retention impairments induced by subanesthetic dose of propofol.

    Science.gov (United States)

    Zhang, Hao; Zhang, Shao-Bo; Zhang, Qing-Qing; Liu, Meng; He, Xing-Ying; Zou, Zui; Sun, Hai-Jing; You, Zhen-Dong; Shi, Xue-Yin

    2013-07-01

    The intravenous anesthetic propofol caused episodic memory impairments in human. We hypothesized propofol caused episodic-like spatial memory retention but not acquisition impairments in rats and rescuing cAMP response element-binding protein (CREB) signaling using selective type IV phosphodiesterase (PDEIV) inhibitor rolipram reversed these effects. Male Sprague-Dawley rats were randomized into four groups: control; propofol (25 mg/kg, intraperitoneal); rolipram; and rolipram + propofol (pretreatment of rolipram 25 min before propofol, 0.3 mg/kg, intraperitoneal). Sedation and motor coordination were evaluated 5, 15, and 25 min after propofol injection. Invisible Morris water maze (MWM) acquisition and probe test (memory retention) were performed 5 min and 24 h after propofol injection. Visible MWM training was simultaneously performed to resist nonspatial effects. Hippocampal CREB signaling was detected 5 min, 50 min, and 24 h after propofol administration. Rolipram did not change propofol-induced anesthetic/sedative states or impair motor skills. No difference was found on the latency to the platform during the visible MWM. Propofol impaired spatial memory retention but not acquisition. Rolipram reversed propofol-induced spatial memory impairments and suppression on cAMP levels, CaMKIIα and CREB phosphorylation, brain-derived neurotropic factor (BDNF) and Arc protein expression. Propofol caused spatial memory retention impairments but not acquisition inability possibly by inhibiting CREB signaling. © 2013 John Wiley & Sons Ltd.

  16. Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits.

    Science.gov (United States)

    van Veen, Harrie A; Koiter, Jaco; Vogelezang, Carla J M; van Wessel, Noucha; van Dam, Tijtje; Velterop, Ingeborg; van Houdt, Kristina; Kupers, Luc; Horbach, Danielle; Salaheddine, Mourad; Nuijens, Jan H; Mannesse, Maurice L M

    2012-12-31

    C1 inhibitor (C1INH) is a single-chain glycoprotein that inhibits activation of the contact system of coagulation and the complement system. C1INH isolated from human blood plasma (pd-hC1INH) is used for the management of hereditary angioedema (HAE), a disease caused by heterozygous deficiency of C1INH, and is a promise for treatment of ischemia-reperfusion injuries like acute myocardial or cerebral infarction. To obtain large quantities of C1INH, recombinant human C1INH (rhC1INH) was expressed in the milk of transgenic rabbits (12 g/l) harboring genomic human C1INH sequences fused to 5' bovine αS(1) casein promoter sequences. Recombinant hC1INH was isolated from milk to a specific activity of 6.1 U/mg and a purity of 99%; by size-exclusion chromatography the 1% impurities consisted of multimers and N-terminal cleaved C1INH species. Mass spectrometric analysis of purified rhC1INH revealed a relative molecular mass (M(r)) of 67,200. Differences in M(r) on SDS PAGE and mass spectrometric analysis between rhC1INH and pd-hC1INH are explained by differential glycosylation (calculated carbohydrate contents of 21% and 28%, respectively), since protein sequencing analysis of rhC1INH revealed intact N- and C-termini. Host-related impurity analysis by ELISA revealed trace amounts of rabbit protein (approximately 10 ppm) in purified batches, but not endogenous rabbit C1INH. The kinetics of inhibition of the target proteases C1s, Factor XIIa, kallikrein and Factor XIa by rhC1INH and pd-hC1INH, indicated comparable inhibitory potency and specificity. Recently, rhC1INH (Ruconest(®)) has been approved by the European Medicines Agency for the treatment of acute attacks of HAE. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice

    Directory of Open Access Journals (Sweden)

    Koo Edward H

    2007-07-01

    in Tg2576 mice. Given its ability to selectively target Aβ42 production and improve cognitive impairments in transgenic APP mice, as well as promising data from a phase 2 human clinical trial, future studies are needed to investigate the utility of R-flurbiprofen as an AD therapeutic and its possible mechanisms of action.

  18. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice.

    Science.gov (United States)

    Kukar, Thomas; Prescott, Sonya; Eriksen, Jason L; Holloway, Vallie; Murphy, M Paul; Koo, Edward H; Golde, Todd E; Nicolle, Michelle M

    2007-07-24

    selectively target Abeta42 production and improve cognitive impairments in transgenic APP mice, as well as promising data from a phase 2 human clinical trial, future studies are needed to investigate the utility of R-flurbiprofen as an AD therapeutic and its possible mechanisms of action.

  19. COOPERATIVE RESEARCH IN C1 CHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2001-04-30

    Faculty and students from five universities (Kentucky, West Virginia, Utah, Pittsburgh and Auburn) are collaborating on a basic research program to develop novel C1 chemistry processes for the production of clean, high quality transportation fuel. An Industrial Advisory Board (IAB) with members from Chevron, Eastman Chemical, Energy International, Teir Associates, and the Department of Defense has been formed to provide practical guidance to the program. The program has two principal objectives. (1) Develop technology for conversion of C1 source materials (natural gas, synthesis gas, carbon dioxide and monoxide, and methanol) into clean, high efficiency transportation fuel. (2) Develop novel processes for producing hydrogen from natural gas and other hydrocarbons. Some of the principal accomplishments of the program in its first two years are: (1) The addition of acetylenic compounds in Fischer-Tropsch synthesis is found to produce significant amounts of oxygenated products in FT diesel fuels. Such oxygenated products should decrease particulate matter (PM) emissions. (2) Nanoscale, binary, Fe-based catalysts supported on alumina have been shown to have significant activity for the decomposition of methane into pure hydrogen and potentially valuable multi-walled carbon nanotubes. (3) Catalytic synthesis processes have been developed for synthesis of diethyl carbonate, higher ethers, and higher alcohols from C1 source materials. Testing of the effect of adding these oxygenates to diesel fuel on PM emissions has begun using a well-equipped small diesel engine test facility. (4) Supercritical fluid (SCF) FT synthesis has been conducted under SCF hexane using both Fe and Co catalysts. There is a marked effect on the hydrocarbon product distribution, with a shift to higher carbon number products. These and other results are summarized.

  20. The level of Alzheimer-associated neuronal thread protein in urine may be an important biomarker of mild cognitive impairment.

    Science.gov (United States)

    Ma, Lina; Chen, Juan; Wang, Rong; Han, Ying; Zhang, Jingshuang; Dong, Wen; Zhang, Xu; Wu, Yanchuan; Zhao, Zhiwei

    2015-04-01

    Increased levels of Alzheimer-associated neuronal thread protein (AD7c-NTP) are often detected in urine in the early course of Alzheimer's disease (AD), which makes it a promising biomarker for AD. However, whether the concentration of urinary AD7c-NTP is increased in patients with mild cognitive impairment (MCI) remains unclear. The aim of this study was to explore the value of urinary AD7c-NTP to assist in the diagnosis of cognitive impairment by comparing differences in urinary AD7c-NTP among normal controls, MCI patients and AD patients. One hundred and seventy patients from the Xuan wu Hospital, Capital Medical University were divided into three groups according to their clinical diagnosis: an AD group (n=45), an MCI group (n=60) and a normal group (n=65). The Mini Mental State Examination and the Montreal Cognitive Assessment scale were used to screen for the diagnosis of AD and MCI, and patients met the diagnostic criteria of the National Institute of Neurological Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association. The level of urinary AD7c-NTP was determined using the enzyme-linked immunosorbent assay method. The urinary levels of AD7c-NTP in the AD group (median 2.14 [range 0.49-6.39] ng/ml) and the MCI group (median 1.57 [range 0.4-4.15] ng/ml) were significantly higher than those of the normal group (median 0.53 [range 0.04-2.07] ng/ml). To our knowledge our study is the first to show that the level of urinary AD7c-NTP in MCI patients is higher than in healthy people, which suggests that the level of urinary AD7c-NTP may be an important biomarker for early diagnosis of MCI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Development of central nervous system autoimmunity is impaired in the absence of Wiskott-Aldrich syndrome protein.

    Directory of Open Access Journals (Sweden)

    Marita Bosticardo

    Full Text Available Wiskott-Aldrich Syndrome protein (WASP is a key regulator of the actin cytoskeleton in hematopoietic cells. Defective expression of WASP leads to multiple abnormalities in different hematopoietic cells. Despite severe impairment of T cell function, WAS patients exhibit a high prevalence of autoimmune disorders. We attempted to induce EAE, an animal model of organ-specific autoimmunity affecting the CNS that mimics human MS, in Was(-/- mice. We describe here that Was(-/- mice are markedly resistant against EAE, showing lower incidence and milder score, reduced CNS inflammation and demyelination as compared to WT mice. Microglia was only poorly activated in Was(-/- mice. Antigen-induced T-cell proliferation, Th-1 and -17 cytokine production and integrin-dependent adhesion were increased in Was(-/- mice. However, adoptive transfer of MOG-activated T cells from Was(-/- mice in WT mice failed to induce EAE. Was(-/- mice were resistant against EAE also when induced by adoptive transfer of MOG-activated T cells from WT mice. Was(+/- heterozygous mice developed an intermediate clinical phenotype between WT and Was(-/- mice, and they displayed a mixed population of WASP-positive and -negative T cells in the periphery but not in their CNS parenchyma, where the large majority of inflammatory cells expressed WASP. In conclusion, in absence of WASP, T-cell responses against a CNS autoantigen are increased, but the ability of autoreactive T cells to induce CNS autoimmunity is impaired, most probably because of an inefficient T-cell transmigration into the CNS and defective CNS resident microglial function.

  2. Low density lipoprotein receptor-related protein 5 (LRP5) mutations and osteoporosis, impaired glucose metabolism and hypercholesterolaemia.

    Science.gov (United States)

    Saarinen, Anne; Saukkonen, Tero; Kivelä, Tero; Lahtinen, Ulla; Laine, Christine; Somer, Mirja; Toiviainen-Salo, Sanna; Cole, William G; Lehesjoki, Anna-Elina; Mäkitie, Outi

    2010-04-01

    Mutations in the low-density lipoprotein receptor-related protein 5 gene (LRP5) underlie osteoporosis-pseudoglioma syndrome. Animal models implicate a role for LRP5 in lipid and glucose homeostasis. The objective was to evaluate metabolic consequences of LRP5 mutations in humans. Thirteen Finnish individuals with homozygous or heterozygous LRP5 mutations were assessed for bone health, glucose and lipid metabolism, and for serum serotonin concentration. Results were compared with findings in family members without mutations. Bone mineral density (BMD), vertebral morphology, oral and intravenous glucose tolerance tests, lipid profile and serum serotonin concentrations. Two individuals were homozygous for R570W, one compound heterozygous for R570W and R1036Q, and 10 were heterozygous (six for R570W, three for R1036Q and one for R925C). Subjects with two LRP5 mutations had multiple spinal fractures and low BMD. Subjects with one mutation had significantly lower median lumbar spine (P = 0.004) and femoral neck (P = 0.005) BMD Z-scores, and more often vertebral fractures than the 18 individuals without mutations. Of the 12 subjects with LRP5 mutation six had diabetes and one had impaired glucose tolerance. Intravenous glucose tolerance tests suggested impaired beta-cell function; no insulin resistance was observed. Prevalence of hypercholesterolaemia was similar in mutation positive and negative subjects. Serum serotonin concentrations showed a trend towards higher concentrations in subjects with LRP5 mutation. We found high prevalence of osteoporosis and abnormal glucose metabolism in subjects with LRP5 mutation(s). Further studies are needed to establish the role of LRP5 in glucose and lipid metabolism.

  3. Microbial growth on C1 compounds

    Science.gov (United States)

    Kemp, M. B.; Quayle, J. R.

    1967-01-01

    1. A study has been made of the incorporation of carbon from [14C]formaldehyde and [14C]formate by cultures of Pseudomonas methanica growing on methane. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled compounds for periods of up to 1min., has been analysed by chromatography and radioautography. 3. Radioactivity was fixed from [14C]formaldehyde mainly into the phosphates of the sugars, glucose, fructose, sedoheptulose and allulose. 4. Very little radioactivity was fixed from [14C]formate; after 1min. the only products identified were serine and malate. 5. The distribution of radioactivity within the carbon skeleton of glucose, obtained from short-term incubations with [14C]methanol of Pseudomonas methanica growing on methane, has been investigated. At the earliest time of sampling over 70% of the radioactivity was located in C-1; as the time increased the radioactivity spread throughout the molecule. 6. The results have been interpreted in terms of a variant of the pentose phosphate cycle, involving the condensation of formaldehyde with C-1 of ribose 5-phosphate to give allulose phosphate. PMID:6030306

  4. Nelfinavir Impairs Glycosylation of Herpes Simplex Virus 1 Envelope Proteins and Blocks Virus Maturation

    Directory of Open Access Journals (Sweden)

    Soren Gantt

    2015-01-01

    Full Text Available Nelfinavir (NFV is an HIV-1 aspartyl protease inhibitor that has numerous effects on human cells, which impart attractive antitumor properties. NFV has also been shown to have in vitro inhibitory activity against human herpesviruses (HHVs. Given the apparent absence of an aspartyl protease encoded by HHVs, we investigated the mechanism of action of NFV herpes simplex virus type 1 (HSV-1 in cultured cells. Selection of HSV-1 resistance to NFV was not achieved despite multiple passages under drug pressure. NFV did not significantly affect the level of expression of late HSV-1 gene products. Normal numbers of viral particles appeared to be produced in NFV-treated cells by electron microscopy but remain within the cytoplasm more often than controls. NFV did not inhibit the activity of the HSV-1 serine protease nor could its antiviral activity be attributed to inhibition of Akt phosphorylation. NFV was found to decrease glycosylation of viral glycoproteins B and C and resulted in aberrant subcellular localization, consistent with induction of endoplasmic reticulum stress and the unfolded protein response by NFV. These results demonstrate that NFV causes alterations in HSV-1 glycoprotein maturation and egress and likely acts on one or more host cell functions that are important for HHV replication.

  5. CLCuMuB βC1 Subverts Ubiquitination by Interacting with NbSKP1s to Enhance Geminivirus Infection in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Qi Jia

    2016-06-01

    Full Text Available Viruses interfere with and usurp host machinery and circumvent defense responses to create a suitable cellular environment for successful infection. This is usually achieved through interactions between viral proteins and host factors. Geminiviruses are a group of plant-infecting DNA viruses, of which some contain a betasatellite, known as DNAβ. Here, we report that Cotton leaf curl Multan virus (CLCuMuV uses its sole satellite-encoded protein βC1 to regulate the plant ubiquitination pathway for effective infection. We found that CLCuMu betasatellite (CLCuMuB βC1 interacts with NbSKP1, and interrupts the interaction of NbSKP1s with NbCUL1. Silencing of either NbSKP1s or NbCUL1 enhances the accumulation of CLCuMuV genomic DNA and results in severe disease symptoms in plants. βC1 impairs the integrity of SCFCOI1 and the stabilization of GAI, a substrate of the SCFSYL1 to hinder responses to jasmonates (JA and gibberellins (GA. Moreover, JA treatment reduces viral accumulation and symptoms. These results suggest that CLCuMuB βC1 inhibits the ubiquitination function of SCF E3 ligases through interacting with NbSKP1s to enhance CLCuMuV infection and symptom induction in plants.

  6. 1H, 13C and 15N NMR Assignments of the C1A and C1B Subdomains of PKC-delta

    Science.gov (United States)

    Ziemba, Brian P.; Booth, Jamie C.; Jones, David N. M.

    2015-01-01

    The Protein Kinase C family of enzymes is a group of serine/threonine kinases that play central roles in cell-cycle regulation, development and cancer. A key step in the activation of PKC is translocation to membranes and binding of membrane-associated activators including diacylglycerol (DAG). Interaction of novel and conventional isotypes of PKC with DAG and phorbol esters occurs through the two C1 regulatory domains (C1A and C1B), which exhibit distinct ligand binding selectivity that likely controls enzyme activation by different co-activators. PKC has also been implicated in physiological responses to alcohol consumption and it has been proposed that PKCα [1, 2], PKCε [3] and PKCδ [4, 5] contain specific alcohol-binding sites in their C1 domains. We are interested in understanding how ethanol affects signal transduction processes through its affects on the structure and function of the C1 domains of PKC. Here we present the 1H, 15N and 13C NMR chemical shift assignments for the Rattus norvegicus PKCδ C1A and C1B proteins. PMID:21132404

  7. Unitarity relations in c=1 Liouville theory

    International Nuclear Information System (INIS)

    Lowe, D.A.

    1992-01-01

    In this paper, the authors consider the S-matrix of c = 1 Liouville theory with vanishing cosmological constant. The authors examine some of the constraints imposed by unitarity. These completely determine (N,2) amplitudes at tree level in terms of the (N,1) amplitudes when the plus tachyon momenta take generic values. A surprising feature of the matrix model results is the lack of particle creation branch cuts in the higher genus amplitudes. In fact, the authors show that the naive field theory limit of Liouville theory would predict such branch cuts. However, unitarity in the full string theory ensures that such cuts do not appear in genus one (N,1) amplitudes. The authors conclude with some comments about the genus one (N,2) amplitudes

  8. Drosophila Full-Length Amyloid Precursor Protein Is Required for Visual Working Memory and Prevents Age-Related Memory Impairment.

    Science.gov (United States)

    Rieche, Franziska; Carmine-Simmen, Katia; Poeck, Burkhard; Kretzschmar, Doris; Strauss, Roland

    2018-03-05

    The β-amyloid precursor protein (APP) plays a central role in the etiology of Alzheimer's disease (AD). However, its normal physiological functions are still unclear. APP is cleaved by various secretases whereby sequential processing by the β- and γ-secretases produces the β-amyloid peptide that is accumulating in plaques that typify AD. In addition, this produces secreted N-terminal sAPPβ fragments and the APP intracellular domain (AICD). Alternative cleavage by α-secretase results in slightly longer secreted sAPPα fragments and the identical AICD. Whereas the AICD has been connected with transcriptional regulation, sAPPα fragments have been suggested to have a neurotrophic and neuroprotective role [1]. Moreover, expression of sAPPα in APP-deficient mice could rescue their deficits in learning, spatial memory, and long-term potentiation [2]. Loss of the Drosophila APP-like (APPL) protein impairs associative olfactory memory formation and middle-term memory that can be rescued with a secreted APPL fragment [3]. We now show that APPL is also essential for visual working memory. Interestingly, this short-term memory declines rapidly with age, and this is accompanied by enhanced processing of APPL in aged flies. Furthermore, reducing secretase-mediated proteolytic processing of APPL can prevent the age-related memory loss, whereas overexpression of the secretases aggravates the aging effect. Rescue experiments confirmed that this memory requires signaling of full-length APPL and that APPL negatively regulates the neuronal-adhesion molecule Fasciclin 2. Overexpression of APPL or one of its secreted N termini results in a dominant-negative interaction with the FASII receptor. Therefore, our results show that specific memory processes require distinct APPL products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Philip L S M Gordts

    Full Text Available OBJECTIVE: Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1 dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS: LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION: These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.

  10. Immunogenicity assessment of recombinant human c1-inhibitor: an integrated analysis of clinical studies.

    Science.gov (United States)

    Hack, C Erik; Mannesse, Maurice; Baboeram, Aartie; Oortwijn, Beatrijs; Relan, Anurag

    2012-10-01

    Recombinant human C1-inhibitor (rhC1INH) is used to treat acute angioedema attacks in hereditary angioedema (HAE) due to a genetic C1INH deficiency. Recombinant proteins in general may induce antibody responses and therefore evaluation of such responses in the target population is an essential step in the clinical development program of a recombinant protein. Here we report the assessment of the immunogenicity of rhC1INH in symptomatic HAE patients. Blood samples collected before and after administration of rhC1INH were tested for antibodies against plasma-derived (pd) or rhC1INH, or against host-related impurities (HRI). Above cut-off screening results were confirmed with displacement assays, and also tested for neutralizing anti-C1INH antibodies. Finally, the relation of antibodies to clinical efficacy and safety of rhC1INH was analyzed. Data from 155 HAE patients who received 424 treatments with rhC1INH were analyzed. 1.5% of all pre-exposure tests and 1.3% of all post-exposure tests were above the cut-off level in the screening assay for anti-C1INH antibodies. Six patients (3.9%) had anti-rhC1INH antibodies positive in the confirmatory assay. In two patients, confirmed antibodies were pre-existing with no increase post-exposure; in three patients, the antibodies occurred on a single occasion post-exposure; and in one patient, on subsequent occasions post-exposure. Neutralizing anti-pdC1INH antibodies were not found. Anti-HRI antibodies in the screening assay occurred in <0.7% of the tests before exposure to rhC1INH, in <1.9% after first exposure and in <3.1% after repeat treatment with rhC1INH. Five patients had anti-HRI antibodies positive in the confirmatory assay. In one patient, the antibodies were pre-existing, whereas in three of the 155 rhC1INH-treated patients (1.9%), confirmed anti-HRI antibodies occurred at more time points. Antibody findings were not associated with altered efficacy of rhC1INH or adverse events. These results indicate a reassuring

  11. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    Science.gov (United States)

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  12. Deregulated unfolded protein response in chronic wounds of diabetic ob/ob mice: a potential connection to inflammatory and angiogenic disorders in diabetes-impaired wound healing.

    Science.gov (United States)

    Schürmann, Christoph; Goren, Itamar; Linke, Andreas; Pfeilschifter, Josef; Frank, Stefan

    2014-03-28

    Type-2 diabetes mellitus (T2D) represents an important metabolic disorder, firmly connected to obesity and low level of chronic inflammation caused by deregulation of fat metabolism. The convergence of chronic inflammatory signals and nutrient overloading at the endoplasmic reticulum (ER) leads to activation of ER-specific stress responses, the unfolded protein response (UPR). As obesity and T2D are often associated with impaired wound healing, we investigated the role of UPR in the pathologic of diabetic-impaired cutaneuos wound healing. We determined the expression patterns of the three UPR branches during normal and diabetes-impaired skin repair. In healthy and diabetic mice, injury led to a strong induction of BiP (BiP/Grp78), C/EBP homologous protein (CHOP) and splicing of X-box-binding protein (XBP)1. Diabetic-impaired wounds showed gross and sustained induction of UPR associated with increased expression of the pro-inflammatory chemokine macrophage inflammatory protein (MIP)2 as compared to normal healing wounds. In vitro, treatment of RAW264.7 macrophages with tunicamycin, and subsequently stimulation with lipopolysaccharide (LPS) and interferon (IFN)-γ enhances MIP2 mRNA und protein expression compared to proinflammatory stimulation alone. However, LPS/IFNγ induced vascular endothelial growth factor (VEGF) production was blunted by tunicamycin induced-ER stress. Hence, UPR is activated following skin injury, and functionally connected to the production of proinflammatory mediators. In addition, prolongation of UPR in diabetic non-healing wounds aggravates ER stress and weakens the angiogenic phenotype of wound macrophages. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion.

    Science.gov (United States)

    Branco, Renato Chaves Souto; Camargo, Rafael Ludemann; Batista, Thiago Martins; Vettorazzi, Jean Franciesco; Borck, Patrícia Cristine; Dos Santos-Silva, Junia Carolina Rebelo; Boschero, Antonio Carlos; Zoppi, Cláudio Cesar; Carneiro, Everardo Magalhães

    2017-09-01

    Taurine (Tau) restores β-cell function in obesity; however, its action is lost in malnourished obese rodents. Here, we investigated the mechanisms involved in the lack of effects of Tau in this model. C57BL/6 mice were fed a control diet (CD) (14% protein) or a protein-restricted diet (RD) (6% protein) for 6 wk. Afterward, mice received a high-fat diet (HFD) for 8 wk [CD + HFD (CH) and RD + HFD (RH)] with or without 5% Tau supplementation after weaning on their drinking water [CH + Tau (CHT) and RH + Tau (RHT)]. The HFD increased insulin secretion through mitochondrial metabolism in CH and RH. Tau prevented all those alterations in CHT only. The expression of the taurine transporter (Tau-T), as well as Tau content in pancreatic islets, was increased in CH but had no effect on RH. Protein malnutrition programs β cells and impairs Tau-induced restoration of mitochondrial metabolism and biogenesis. This may be associated with modulation of the expression of Tau-T in pancreatic islets, which may be responsible for the absence of effect of Tau in protein-malnourished obese mice.-Branco, R. C. S., Camargo, R. L., Batista, T. M., Vettorazzi, J. F., Borck, P. C., dos Santos-Silva, J. C. R., Boschero, A. C., Zoppi, C. C., Carneiro, E. M. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion. © FASEB.

  14. Increased Regenerative Capacity of the Olfactory Epithelium in Niemann–Pick Disease Type C1

    Directory of Open Access Journals (Sweden)

    Anja Meyer

    2017-04-01

    Full Text Available Niemann–Pick disease type C1 (NPC1 is a fatal neurovisceral lysosomal lipid storage disorder. The mutation of the NPC1 protein affects the homeostasis and transport of cholesterol and glycosphingolipids from late endosomes/lysosomes to the endoplasmic reticulum resulting in progressive neurodegeneration. Since olfactory impairment is one of the earliest symptoms in many neurodegenerative disorders, we focused on alterations of the olfactory epithelium in an NPC1 mouse model. Previous findings revealed severe morphological and immunohistochemical alterations in the olfactory system of NPC1−/− mutant mice compared with healthy controls (NPC1+/+. Based on immunohistochemical evaluation of the olfactory epithelium, we analyzed the impact of neurodegeneration in the olfactory epithelium of NPC1−/− mice and observed considerable loss of mature olfactory receptor neurons as well as an increased number of proliferating and apoptotic cells. Additionally, after administration of two different therapy approaches using either a combination of miglustat, 2-hydroxypropyl-β-cyclodextrin (HPβCD and allopregnanolone or a monotherapy with HPβCD, we recorded a remarkable reduction of morphological damages in NPC1−/− mice and an up to four-fold increase of proliferating cells within the olfactory epithelium. Numbers of mature olfactory receptor neurons doubled after both therapy approaches. Interestingly, we also observed therapy-induced alterations in treated NPC1+/+ controls. Thus, olfactory testing may provide useful information to monitor pharmacologic treatment approaches in human NPC1.

  15. Loss of heterochromatin protein 1 gamma reduces the number of primordial germ cells via impaired cell cycle progression in mice.

    Science.gov (United States)

    Abe, Kanae; Naruse, Chie; Kato, Tomoaki; Nishiuchi, Takumi; Saitou, Mitinori; Asano, Masahide

    2011-11-01

    Signals from extraembryonic tissues in mice determine which proximal epiblast cells become primordial germ cells (PGCs). After their specification, approximately 40 PGCs appear at the base of the allantoic bud and migrate to the genital ridges, where they expand to about 25 000 cells by Embryonic Day (E)13.5. The heterochromatin protein 1 (HP1) family members HP1alpha, HP1beta, and HP1gamma (CBX5, CBX1, and CBX3, respectively) are thought to induce heterochromatin structure and to regulate gene expression by binding methylated histone H3 lysine 9. We found a dramatic loss of germ cells before meiosis in HP1gamma mutant (HP1gamma(-/-)) mice that we generated previously. The reduction in PGCs in HP1gamma(-/-) embryos was detectable from the early bud stage (E7.25), and the number of HP1gamma(-/-) PGCs was gradually reduced thereafter. Bromodeoxyuridine incorporation into PGCs was significantly reduced in E7.25 and E12.5 HP1gamma(-/-) embryos. Furthermore, a lower proportion of HP1gamma(-/-) PGCs than wild-type PGCs was in S phase, and a higher proportion, respectively, was in G1 phase at E12.5. Moreover, the proportion of p21 (Cip, official symbol CDKN1A)-positive HP1gamma(-/-) PGCs was increased, suggesting that the G1/S phase transition was inhibited. However, no differences were detected between fate determination, migration, apoptosis, or histone modification of PGCs of control embryos and those of HP1gamma(-/-) embryos. Therefore, the reduction in PGCs in HP1gamma(-/-) embryos could be caused by impaired cell cycle in PGCs. These results suggest that HP1gamma plays an important role in keeping enough germ cells by regulating the PGC cell cycle.

  16. Intestinal and Hepatic Niemann-Pick C1-Like 1

    Directory of Open Access Journals (Sweden)

    Sung-Woo Park

    2013-08-01

    Full Text Available Polytopic transmembrane protein, Niemann-Pick C1-Like 1 (NPC1L1 is localized at the apical membrane of enterocytes and the canalicular membrane of hepatocytes. It mediates intestinal cholesterol absorption and prevents extensive loss of cholesterol by transporting biliary cholesterol into hepatocytes. NPC1L1 is a molecular target of ezetimibe, an agent for hypercholesterolemia. Recently, NPC1L1 inhibition has been shown to prevent metabolic disorders such as fatty liver disease, obesity, diabetes, and atherosclerosis. In this review, the identification and characterization of NPC1L1, NPC1L1-dependent cholesterol transport, the relationship with pathogenesis of metabolic disease and its newly introduced function for virus entry are discussed.

  17. Cholesterol Removal from Adult Skeletal Muscle impairs Excitation-Contraction Coupling and Aging reduces Caveolin-3 and alters the Expression of other Triadic Proteins

    Directory of Open Access Journals (Sweden)

    Genaro eBarrientos

    2015-04-01

    Full Text Available Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation-contraction coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not sarcoplasmic reticulum membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX activity and protein content of NOX2 subunits (p47phox and gp91phox, implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs excitation-contraction coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged

  18. Deficient sumoylation of yeast 2-micron plasmid proteins Rep1 and Rep2 associated with their loss from the plasmid-partitioning locus and impaired plasmid inheritance.

    Directory of Open Access Journals (Sweden)

    Jordan B Pinder

    Full Text Available The 2-micron plasmid of the budding yeast Saccharomyces cerevisiae encodes copy-number amplification and partitioning systems that enable the plasmid to persist despite conferring no advantage to its host. Plasmid partitioning requires interaction of the plasmid Rep1 and Rep2 proteins with each other and with the plasmid-partitioning locus STB. Here we demonstrate that Rep1 stability is reduced in the absence of Rep2, and that both Rep proteins are sumoylated. Lysine-to-arginine substitutions in Rep1 and Rep2 that inhibited their sumoylation perturbed plasmid inheritance without affecting Rep protein stability or two-hybrid interaction between Rep1 and Rep2. One-hybrid and chromatin immunoprecipitation assays revealed that Rep1 was required for efficient retention of Rep2 at STB and that sumoylation-deficient mutants of Rep1 and Rep2 were impaired for association with STB. The normal co-localization of both Rep proteins with the punctate nuclear plasmid foci was also lost when Rep1 was sumoylation-deficient. The correlation of Rep protein sumoylation status with plasmid-partitioning locus association suggests a theme common to eukaryotic chromosome segregation proteins, sumoylated forms of which are found enriched at centromeres, and between the yeast 2-micron plasmid and viral episomes that depend on sumoylation of their maintenance proteins for persistence in their hosts.

  19. Jejunal proteins secreted by db/db mice or insulin-resistant humans impair the insulin signaling and determine insulin resistance.

    Directory of Open Access Journals (Sweden)

    Serenella Salinari

    Full Text Available Two recent studies demonstrated that bariatric surgery induced remission of type 2 diabetes very soon after surgery and far too early to be attributed to weight loss. In this study, we sought to explore the mechanism/s of this phenomenon by testing the effects of proteins from the duodenum-jejunum conditioned-medium (CM of db/db or Swiss mice on glucose uptake in vivo in Swiss mice and in vitro in both Swiss mice soleus and L6 cells. We studied the effect of sera and CM proteins from insulin resistant (IR and insulin-sensitive subjects on insulin signaling in human myoblasts.db/db proteins induced massive IR either in vivo or in vitro, while Swiss proteins did not. In L6 cells, only db/db proteins produced a noticeable increase in basal (473Ser-Akt phosphorylation, lack of GSK3β inhibition and a reduced basal (389Thr-p70-S6K1 phosphorylation. Human IR serum markedly increased basal (473Ser-Akt phosphorylation in a dose-dependent manner. Human CM IR proteins increased by about twofold both basal and insulin-stimulated (473Ser-Akt. Basal (9Ser-GSK3β phosphorylation was increased by IR subjects serum with a smaller potentiating effect of insulin.These findings show that jejunal proteins either from db/db mice or from insulin resistant subjects impair muscle insulin signaling, thus inducing insulin resistance.

  20. Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model.

    Science.gov (United States)

    Huang, Xiao-Zhong; Li, Zhong-Rong; Zhu, Li-Bin; Huang, Hui-Ya; Hou, Long-Long; Lin, Jing

    2014-08-01

    Butyrate is well known to induce apoptosis in differentiating intestinal epithelial cells. The present study was designed to examine the role of p38 mitogen-activated protein kinase (MAPK) in butyrate-induced intestinal barrier impairment. The intestinal barrier was determined by measuring the transepithelial electrical resistance (TER) in a Caco-2 cell monolayer model. The permeability was determined by measuring transepithelial passage of fluorescein isothiocyanate-conjugated inulin (inulin-FITC). The morphology of the monolayers was examined with scanning electron microscopy. The apoptosis status was determined by annexin V-FITC labeling and flow cytometry. The activity of p38 MAPK was determined by the phosphorylation status of p38 with Western blotting. Butyrate at 5 mM increases the apoptosis rate of Caco-2 cells and induces impairment of intestinal barrier functions as determined by decreased TER and increased inulin-FITC permeability. Butyrate treatment activates p38 MAPK in a concentration- and time-dependent manner. SB203580, a specific p38 inhibitor, inhibits butyrate-induced Caco-2 cell apoptosis. Treatment of SB203580 significantly attenuates the butyrate-induced impairment of barrier functions in the Caco-2 cell monolayer model. p38 MAPK can be activated by butyrate and is involved in the butyrate-induced apoptosis and impairment of intestinal barrier function. Inhibition of p38 MAPK can significantly attenuate butyrate-induced intestinal barrier dysfunction.

  1. 26 CFR 1.1092(c)-1 - Qualified covered calls.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Qualified covered calls. 1.1092(c)-1 Section 1.1092(c)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Wash Sales of Stock Or Securities § 1.1092(c)-1 Qualified covered calls. (a) In...

  2. Ubiquitin Accumulation on Disease Associated Protein Aggregates Is Correlated with Nuclear Ubiquitin Depletion, Histone De-Ubiquitination and Impaired DNA Damage Response.

    Directory of Open Access Journals (Sweden)

    Adi Ben Yehuda

    Full Text Available Deposition of ubiquitin conjugates on inclusion bodies composed of protein aggregates is a definitive cytopathological hallmark of neurodegenerative diseases. We show that accumulation of ubiquitin on polyQ IB, associated with Huntington's disease, is correlated with extensive depletion of nuclear ubiquitin and histone de-ubiquitination. Histone ubiquitination plays major roles in chromatin regulation and DNA repair. Accordingly, we observe that cells expressing IB fail to respond to radiomimetic DNA damage, to induce gamma-H2AX phosphorylation and to recruit 53BP1 to damaged foci. Interestingly ubiquitin depletion, histone de-ubiquitination and impaired DNA damage response are not restricted to PolyQ aggregates and are associated with artificial aggregating luciferase mutants. The longevity of brain neurons depends on their capacity to respond to and repair extensive ongoing DNA damage. Impaired DNA damage response, even modest one, could thus lead to premature neuron aging and mortality.

  3. Molecular dynamics and docking simulation of a natural variant of Activated Protein C with impaired protease activity: implications for integrin-mediated antiseptic function.

    Science.gov (United States)

    D'Ursi, Pasqualina; Orro, Alessandro; Morra, Giulia; Moscatelli, Marco; Trombetti, Gabriele; Milanesi, Luciano; Rovida, Ermanna

    2015-01-01

    Activated Protein C (APC) is a multifunctional serine protease, primarily known for its anticoagulant function in the coagulation system. Several studies have already elucidated its role in counteracting apoptosis and inflammation in cells, while significant effort is still ongoing for defining its involvement in sepsis. Earlier literature has shown that the antiseptic function of APC is mediated by its binding to leukocyte integrins, which is due to the presence of the integrin binding motif Arg-Gly-Asp at the N-terminus of the APC catalytic chain. Many natural mutants have been identified in patients with Protein C deficiency diagnosis including a variant of specificity pocket (Gly216Asp). In this work, we present a molecular model of the complex of APC with αVβ3 integrin obtained by protein-protein docking approach. A computational analysis of this variant is hereby presented, based on molecular dynamics and docking simulations, aiming at investigating the effects of the Gly216Asp mutation on the protein conformation and inferring its functional implications. Our study shows that such mutation is likely to impair the protease activity while preserving the overall protein fold. Moreover, superposition of the integrin binding motifs in wild-type and mutant forms suggests that the interaction with integrin can still occur and thus the mutant is likely to retain its antiseptic function related to the neutrophyl integrin binding. Therapeutic applications could result in this APC mutant which retains antiseptic function without anticoagulant side effects.

  4. Characterization of expression, activity and role in antibacterial immunity of Anopheles gambiae lysozyme c-1

    OpenAIRE

    Kajla, Mayur K.; Andreeva, Olga; Gilbreath, Thomas M.; Paskewitz, Susan M.

    2010-01-01

    There are eight lysozyme genes in the Anopheles gambiae genome. Transcripts of one of these genes, LYSC-1, increased in Anopheles gambiae cell line 4a3B by 24 h after exposure to heat-killed Micrococcus luteus. Lysozyme activity was also identified in conditioned media from the cell line from which the protein was purified to homogeneity using ion exchange and gel filtration. Mass spectrometric analysis of the purified protein showed 100% identity to lysozyme c-1. Purified lysozyme c-1 was te...

  5. Endogenous C1-inhibitor production and expression in the heart after acute myocardial infarction.

    Science.gov (United States)

    Emmens, Reindert W; Baylan, Umit; Juffermans, Lynda J M; Karia, Rashmi V; Ylstra, Bauke; Wouters, Diana; Zeerleder, Sacha; Simsek, Suat; van Ham, Marieke; Niessen, Hans W M; Krijnen, Paul A J

    2016-01-01

    Complement activation contributes significantly to inflammation-related damage in the heart after acute myocardial infarction. Knowledge on factors that regulate postinfraction complement activation is incomplete however. In this study, we investigated whether endogenous C1-inhibitor, a well-known inhibitor of complement activation, is expressed in the heart after acute myocardial infarction. C1-inhibitor and complement activation products C3d and C4d were analyzed immunohistochemically in the hearts of patients who died at different time intervals after acute myocardial infarction (n=28) and of control patients (n=8). To determine putative local C1-inhibitor production, cardiac transcript levels of the C1-inhibitor-encoding gene serping1 were determined in rats after induction of acute myocardial infarction (microarray). Additionally, C1-inhibitor expression was analyzed (fluorescence microscopy) in human endothelial cells and rat cardiomyoblasts in vitro. C1-inhibitor was found predominantly in and on jeopardized cardiomyocytes in necrotic infarct cores between 12h and 5days old. C1-inhibitor protein expression coincided in time and colocalized with C3d and C4d. In the rat heart, serping1 transcript levels were increased from 2h up until 7days after acute myocardial infarction. Both endothelial cells and cardiomyoblasts showed increased intracellular expression of C1-inhibitor in response to ischemia in vitro (n=4). These observations suggest that endogenous C1-inhibitor is likely involved in the regulation of complement activity in the myocardium following acute myocardial infarction. Observations in rat and in vitro suggest that C1-inhibitor is produced locally in the heart after acute myocardial infarction. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Analysis list: Nr3c1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Nr3c1 Adipocyte,Blood,Breast,Embryo,Embryonic fibroblast,Liver,Neural + mm9 http://...dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Nr3c1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Nr3c1.5.tsv http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Nr3c1.10.tsv http://dbarchive.bioscie...ncedbc.jp/kyushu-u/mm9/colo/Nr3c1.Adipocyte.tsv,http://dbarchive.biosciencedbc.jp.../kyushu-u/mm9/colo/Nr3c1.Blood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Nr3c1.Breast.tsv,http:

  7. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development

    International Nuclear Information System (INIS)

    Simeone, A.; Mavilio, F.; Acampora, D.

    1987-01-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomains identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hybridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny

  8. Impaired systemic vascular reactivity & raised high-sensitivity C reactive protein levels in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Parul Khare

    2016-01-01

    Interpretation & conclusions: Our findings showed raised hs CRP levels and impaired systemic vascular reactivity in COPD patients. Whether these may increase the risk of cardiovascular disease in COPD patients need to be confirmed in future studies with large sample size and appropriate study design.

  9. Feeding soy protein isolate prevents impairment of bone acquisition by western diets as a result of insulin signaling in bone

    Science.gov (United States)

    Excessive consumption of high fat/high cholesterol “Western” diets during postnatal life results in increased energy intake, development of obesity and systemic insulin resistance. However, how this diet impairs bone development and remodeling is not well understood, and no effective dietary interve...

  10. Cholesterol depletion of hepatoma cells impairs hepatitis B virus envelopment by altering the topology of the large envelope protein.

    NARCIS (Netherlands)

    Dorobantu, C.M.; Macovei, A.; Lazar, C.; Dwek, R.A.; Zitzmann, N.; Branza-Nichita, N.

    2011-01-01

    Previous reports have shown that cholesterol depletion of the membrane envelope of the hepatitis B virus (HBV) impairs viral infection of target cells. A potential function of this lipid in later steps of the viral life cycle remained controversial, with secretion of virions and subviral particles

  11. Altered subcellular localization of heat shock protein 90 is associated with impaired expression of the aryl hydrocarbon receptor pathway in dogs.

    Directory of Open Access Journals (Sweden)

    Frank G van Steenbeek

    Full Text Available The aryl hydrocarbon receptor (AHR mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein (AIP and aryl hydrocarbon receptor nuclear translocator (ARNT. The resulting intrahepatic portosystemic shunts (IHPSS are frequently diagnosed in specific dog breeds, such as the Irish wolfhound. We compared the expression of components of the AHR pathway in healthy Irish wolfhounds and dogs with IHPSS. To this end, we analyzed the mRNA expression in the liver of AHR,AIP, ARNT, and other genes involved in this pathway, namely, those for aryl hydrocarbon receptor nuclear translocator 2 (ARNT2, hypoxia inducible factor 1alpha (HIF1A, heat shock protein 90AA1 (HSP90AA1, cytochromes P450 (CYP1A1, CYP1A2, and CYP1B1, vascular endothelial growth factor A (VEGFA, nitric oxide synthesase 3 (NOS3, and endothelin (EDN1. The observed low expression of AHR mRNA in the Irish wolfhounds is in associated with a LINE-1 insertion in intron 2, for which these dogs were homozygous. Down regulation in Irish wolfhounds was observed for AIP, ARNT2, CYP1A2, CYP1B1 and HSP90AA1 expression, whereas the expression of HIF1A was increased. Immunohistochemistry revealed lower levels of AHR, HIF1A, and VEGFA protein in the nucleus and lower levels of ARNT and HSP90AA1 protein in the cytoplasm of the liver cells of Irish wolfhounds. The impaired expression of HSP90AA1 could trigger the observed differences in mRNA and protein levels and therefore explain the link between two very different functions of AHR: regulation of the closure of the ductus venosus and the response to toxins.

  12. Altered subcellular localization of heat shock protein 90 is associated with impaired expression of the aryl hydrocarbon receptor pathway in dogs.

    Science.gov (United States)

    van Steenbeek, Frank G; Spee, Bart; Penning, Louis C; Kummeling, Anne; van Gils, Ingrid H M; Grinwis, Guy C M; Van Leenen, Dik; Holstege, Frank C P; Vos-Loohuis, Manon; Rothuizen, Jan; Leegwater, Peter A J

    2013-01-01

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein (AIP) and aryl hydrocarbon receptor nuclear translocator (ARNT). The resulting intrahepatic portosystemic shunts (IHPSS) are frequently diagnosed in specific dog breeds, such as the Irish wolfhound. We compared the expression of components of the AHR pathway in healthy Irish wolfhounds and dogs with IHPSS. To this end, we analyzed the mRNA expression in the liver of AHR,AIP, ARNT, and other genes involved in this pathway, namely, those for aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), hypoxia inducible factor 1alpha (HIF1A), heat shock protein 90AA1 (HSP90AA1), cytochromes P450 (CYP1A1, CYP1A2, and CYP1B1), vascular endothelial growth factor A (VEGFA), nitric oxide synthesase 3 (NOS3), and endothelin (EDN1). The observed low expression of AHR mRNA in the Irish wolfhounds is in associated with a LINE-1 insertion in intron 2, for which these dogs were homozygous. Down regulation in Irish wolfhounds was observed for AIP, ARNT2, CYP1A2, CYP1B1 and HSP90AA1 expression, whereas the expression of HIF1A was increased. Immunohistochemistry revealed lower levels of AHR, HIF1A, and VEGFA protein in the nucleus and lower levels of ARNT and HSP90AA1 protein in the cytoplasm of the liver cells of Irish wolfhounds. The impaired expression of HSP90AA1 could trigger the observed differences in mRNA and protein levels and therefore explain the link between two very different functions of AHR: regulation of the closure of the ductus venosus and the response to toxins.

  13. IgG responses to Pneumococcal and Haemophilus influenzae protein antigens are not impaired in children with a history of recurrent acute otitis media.

    Science.gov (United States)

    Wiertsema, Selma P; Corscadden, Karli J; Mowe, Eva N; Zhang, Guicheng; Vijayasekaran, Shyan; Coates, Harvey L; Mitchell, Timothy J; Thomas, Wayne R; Richmond, Peter C; Kirkham, Lea-Ann S

    2012-01-01

    Vaccines including conserved antigens from Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) have the potential to reduce the burden of acute otitis media. Little is known about the antibody response to such antigens in young children with recurrent acute otitis media, however, it has been suggested antibody production may be impaired in these children. We measured serum IgG levels against 4 pneumococcal (PspA1, PspA 2, CbpA and Ply) and 3 NTHi (P4, P6 and PD) proteins in a cross-sectional study of 172 children under 3 years of age with a history of recurrent acute otitis media (median 7 episodes, requiring ventilation tube insertion) and 63 healthy age-matched controls, using a newly developed multiplex bead assay. Children with a history of recurrent acute otitis media had significantly higher geometric mean serum IgG levels against NTHi proteins P4, P6 and PD compared with healthy controls, whereas there was no difference in antibody levels against pneumococcal protein antigens. In both children with and without a history of acute otitis media, antibody levels increased with age and were significantly higher in children colonised with S. pneumoniae or NTHi compared with children that were not colonised. Proteins from S. pneumoniae and NTHi induce serum IgG in children with a history of acute otitis media. The mechanisms in which proteins induce immunity and potential protection requires further investigation but the dogma of impaired antibody responses in children with recurrent acute otitis media should be reconsidered.

  14. Underlying connections between the redox system imbalance, protein oxidation and impaired quality traits in pale, soft and exudative (PSE) poultry meat.

    Science.gov (United States)

    Carvalho, Rafael H; Ida, Elza I; Madruga, Marta S; Martínez, Sandra L; Shimokomaki, Massami; Estévez, Mario

    2017-01-15

    The connections between the redox imbalance in post-mortem muscle, early protein oxidation and the onset of pale, soft and exudative (PSE) condition in chicken breast are studied. PSE was induced by incubation of post-mortem chicken carcasses at 37°C for 200min. PSE-induced muscle consistently had faster pH decline and lower pH at 200min (5.84 vs. 6.59) and 24h (5.69 vs. 5.96), higher L(∗) (54.4 vs. 57.3), and lower texture and water holding capacity (WHC) than normal meat. The activities of catalase, glutathione peroxidase and superoxide dismutase were significantly lower in PSE-induced samples than in the normal counterparts. PSE was more susceptible to proteolysis and protein oxidation than normal meat during succeeding chilled storage with more intense tryptophan and thiols depletion, higher protein carbonylation and more intense formation of protein cross-links. We provide plausible explanations to support the role of protein oxidation in the impaired quality PSE chicken. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Hereditary and acquired C1-inhibitor-dependent angioedema: from pathophysiology to treatment.

    Science.gov (United States)

    Zeerleder, Sacha; Levi, Marcel

    2016-01-01

    Uncontrolled generation of bradykinin (BK) due to insufficient levels of protease inhibitors controlling contact phase (CP) activation, increased activity of CP proteins, and/or inadequate degradation of BK into inactive peptides increases vascular permeability via BK-receptor 2 (BKR2) and results in subcutaneous and submucosal edema formation. Hereditary and acquired angioedema due to C1-inhibitor deficiency (C1-INH-HAE and -AAE) are diseases characterized by serious and potentially fatal attacks of subcutaneous and submucosal edemas of upper airways, facial structures, abdomen, and extremities, due to inadequate control of BK generation. A decreased activity of C1-inhibitor is the hallmark of C1-INH-HAE (types 1 and 2) due to a mutation in the C1-inhibitor gene, whereas the deficiency in C1-inhibitor in C1-INH-AAE is the result of autoimmune phenomena. In HAE with normal C1-inhibitor, a significant percentage of patients have an increased activity of factor XIIa due to a FXII mutation (FXII-HAE). Treatment of C1-inhibitor-dependent angioedema focuses on restoring control of BK generation by inhibition of CP proteases by correcting the balance between CP inhibitors and BK breakdown or by inhibition of BK-mediated effects at the BKR2 on endothelial cells. This review will address the pathophysiology, clinical picture, diagnosis and available treatment in C1-inhibitor-dependent angioedema focusing on BK-release and its regulation. Key Messages Inadequate control of bradykinin formation results in the formation of characteristic subcutaneous and submucosal edemas of the skin, upper airways, facial structures, abdomen and extremities as seen in hereditary and acquired C1-inhibitor-dependent angioedema. Diagnosis of hereditary and acquired C1-inhibitor-dependent angioedema may be troublesome as illustrated by the fact that there is a significant delay in diagnosis; a certain grade of suspicion is therefore crucial for quick diagnosis. Submucosal edema formation in

  16. Dietary cholesterol induces trafficking of intestinal Niemann-Pick Type C1 Like 1 from the brush border to endosomes

    DEFF Research Database (Denmark)

    Skov, Marianne; Tønnesen, Carina K; Hansen, Gert H

    2011-01-01

    The transmembrane protein Niemann-Pick C1 Like 1 (NPC1L1) belongs to the Niemann-Pick C1 (NPC1) family of cholesterol transporters and is mainly expressed in the liver and the small intestine. NPC1L1 is believed to be the main transporter responsible for the absorption of dietary cholesterol. Lik...

  17. Impaired LDL Receptor-Related Protein 1 Translocation Correlates with Improved Dyslipidemia and Atherosclerosis in apoE-Deficient Mice

    DEFF Research Database (Denmark)

    Gordts, Philip L S M; Bartelt, Alexander; Nilsson, Stefan K

    2012-01-01

    Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1) dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE.......Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1) dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE....

  18. Inhibition of PKA anchoring to A-kinase anchoring proteins impairs consolidation and facilitates extinction of contextual fear memories

    NARCIS (Netherlands)

    Nijholt, Ingrid M.; Ostroveanu, Anghelus; Scheper, Wouter A.; Penke, Botond; Luiten, Paul G. M.; Van der Zee, Eddy A.; Eisel, Ulrich L. M.

    Both genetic and pharmacological studies demonstrated that contextual fear conditioning is critically regulated by cyclic AMP-dependent protein kinase (PKA). Since PKA is a broad range protein kinase, a mechanism for confining its activity is required. It has been shown that intracellular spatial

  19. The Response of Muscle Protein Anabolism to Combined Hyperaminoacidemia and Glucose-Induced Hyperinsulinemia Is Impaired in the Elderly

    OpenAIRE

    VOLPI, ELENA; MITTENDORFER, BETTINA; RASMUSSEN, BLAKE B.; WOLFE, ROBERT R.

    2000-01-01

    Muscle mass declines with aging. Amino acids alone stimulate muscle protein synthesis in the elderly. However, mixed nutritional supplementation failed to improve muscle mass. We hypothesized that the failure of nutritional supplements is due to altered responsiveness of muscle protein anabolism to increased amino acid availability associated with endogenous hyperinsulinemia.

  20. Gelatin increases the coarseness of whey protein gels and impairs water exudation from the mixed gel at low temperatures

    NARCIS (Netherlands)

    Martin, A.H.; Bakhuizen, E.; Ersch, C.; Urbonaite, V.; Jongh, H.H.J. de; Pouvreau, L.

    2016-01-01

    To understand the origin of water holding of mixed protein gels, a study was performed on water exudation from mixed whey protein (WP)-gelatin gels upon applied pressure. Mixed gels were prepared with varying WP and gelatin concentration and gelatin type to obtain gels with a wide range of gel

  1. 17 CFR 240.15c1-1 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Definitions. 240.15c1-1... Exchange Act of 1934 Rules Relating to Over-The-Counter Markets § 240.15c1-1 Definitions. As used in any rule adopted pursuant to section 15(c)(1) of the Act: (a) The term customer shall not include a broker...

  2. Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport.

    Science.gov (United States)

    Vijayakumar, Archana; Aryal, Pratik; Wen, Jennifer; Syed, Ismail; Vazirani, Reema P; Moraes-Vieira, Pedro M; Camporez, Joao Paulo; Gallop, Molly R; Perry, Rachel J; Peroni, Odile D; Shulman, Gerald I; Saghatelian, Alan; McGraw, Timothy E; Kahn, Barbara B

    2017-10-24

    Lower adipose-ChREBP and de novo lipogenesis (DNL) are associated with insulin resistance in humans. Here, we generated adipose-specific ChREBP knockout (AdChREBP KO) mice with negligible sucrose-induced DNL in adipose tissue (AT). Chow-fed AdChREBP KO mice are insulin resistant with impaired insulin action in the liver, muscle, and AT and increased AT inflammation. HFD-fed AdChREBP KO mice are also more insulin resistant than controls. Surprisingly, adipocytes lacking ChREBP display a cell-autonomous reduction in insulin-stimulated glucose transport that is mediated by impaired Glut4 translocation and exocytosis, not lower Glut4 levels. AdChREBP KO mice have lower levels of palmitic acid esters of hydroxy stearic acids (PAHSAs) in serum, and AT. 9-PAHSA supplementation completely rescues their insulin resistance and AT inflammation. 9-PAHSA also normalizes impaired glucose transport and Glut4 exocytosis in ChREBP KO adipocytes. Thus, loss of adipose-ChREBP is sufficient to cause insulin resistance, potentially by regulating AT glucose transport and flux through specific lipogenic pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport

    Directory of Open Access Journals (Sweden)

    Archana Vijayakumar

    2017-10-01

    Full Text Available Lower adipose-ChREBP and de novo lipogenesis (DNL are associated with insulin resistance in humans. Here, we generated adipose-specific ChREBP knockout (AdChREBP KO mice with negligible sucrose-induced DNL in adipose tissue (AT. Chow-fed AdChREBP KO mice are insulin resistant with impaired insulin action in the liver, muscle, and AT and increased AT inflammation. HFD-fed AdChREBP KO mice are also more insulin resistant than controls. Surprisingly, adipocytes lacking ChREBP display a cell-autonomous reduction in insulin-stimulated glucose transport that is mediated by impaired Glut4 translocation and exocytosis, not lower Glut4 levels. AdChREBP KO mice have lower levels of palmitic acid esters of hydroxy stearic acids (PAHSAs in serum, and AT. 9-PAHSA supplementation completely rescues their insulin resistance and AT inflammation. 9-PAHSA also normalizes impaired glucose transport and Glut4 exocytosis in ChREBP KO adipocytes. Thus, loss of adipose-ChREBP is sufficient to cause insulin resistance, potentially by regulating AT glucose transport and flux through specific lipogenic pathways.

  4. Aggravation of Irradiation Induced Impairment in Protein Metabolism in Albino Rate Subjected to Oral Injection of Kelthane Miticide

    International Nuclear Information System (INIS)

    Yousri, R.M.; Abu Ghadeer, A.R.M.; Abbady, M.M.; Helmy, A.S.; Abdallah, N.M.

    1998-01-01

    The combined effect of both whole body gamma radiation exposure and administration of organo chlorine miticide k elthane o n protein metabolism was investigated in male albino rats. Kelthane was orally given at a dose level of 100 mg/kg body weight over a period of seven days. Irradiation process permitted the rats to receive one Gray every other day at a weekly cumulative dose of 3 Gy up to a total dose of 15 Gy. The biochemical assays included total proteins, protein fractions, free amino acids (FAAS) and urea level in blood serum as well as protein content and its FAAS in urine . The data revealed significant changes in the protein parameters due to whole body gamma irradiation. These changes were shown to be dose and time dependent which reached their maximum at the end of the experimentation period. The alterations were more pronounced in animal groups exposed to gamma radiation and received keltane pesticide

  5. A potential role for Akt/FOXO signalling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle.

    Science.gov (United States)

    Crossland, Hannah; Constantin-Teodosiu, Dumitru; Gardiner, Sheila M; Constantin, Despina; Greenhaff, Paul L

    2008-11-15

    Sepsis causes muscle atrophy and insulin resistance, but the underlying mechanisms are unclear. Therefore, the present study examined the effects of lipopolysaccharide (LPS)-induced endotoxaemia on the expression of Akt, Forkhead Box O (FOXO) and its downstream targets, to identify any associations between changes in FOXO-dependent processes influencing muscle atrophy and insulin resistance during sepsis. Chronically instrumented male Sprague-Dawley rats received a continuous intravenous infusion of LPS (15 microg kg(-1) h(-1)) or saline for 24 h at 0.4 ml h(-1). Animals were terminally anaesthetized and the extensor digitorum longus muscles from both hindlimbs were removed and snap-frozen. Measurements were made of mRNA and protein expression of selected signalling molecules associated with pathways regulating protein synthesis and degradation and carbohydrate metabolism. LPS infusion induced increases in muscle tumour necrosis factor-alpha (8.9-fold, P < 0.001) and interleukin-6 (8.4-fold, P < 0.01), paralleled by reduced insulin receptor substrate-1 mRNA expression (-0.7-fold, P < 0.01), and decreased Akt1 protein and cytosolic FOXO1 and FOXO3 phosphorylation. These changes were accompanied by significant increases in muscle atrophy F-box mRNA (5.5-fold, P < 0.001) and protein (2-fold, P < 0.05) expression, and pyruvate dehydrogenase kinase 4 mRNA (15-fold, P < 0.001) and protein (1.6-fold, P < 0.05) expression. There was a 29% reduction in the muscle protein: DNA ratio, a 56% reduction in pyruvate dehydrogenase complex (PDC) activity (P < 0.05), and increased glycogen degradation and lactate accumulation. The findings of this study suggest a potential role for Akt/FOXO in the simultaneous impairment of carbohydrate oxidation, at the level of PDC, and up-regulation of muscle protein degradation, in LPS-induced endotoxaemia.

  6. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling.

    Science.gov (United States)

    Doody, Erin E; Groebner, Jennifer L; Walker, Jetta R; Frizol, Brittnee M; Tuma, Dean J; Fernandez, David J; Tuma, Pamela L

    2017-12-01

    The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P 450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N -acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity. NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol

  7. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis

    Science.gov (United States)

    Baehr, Leslie M.; West, Daniel W.D.; Marcotte, George; Marshall, Andrea G.; De Sousa, Luis Gustavo; Baar, Keith; Bodine, Sue C.

    2016-01-01

    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength. PMID:26826670

  8. Mutational spectrum and phenotypes in Danish families with hereditary angioedema because of C1 inhibitor deficiency

    DEFF Research Database (Denmark)

    Bygum, A; Fagerberg, C R; Ponard, D

    2011-01-01

    Hereditary angioedema (HAE), type I and II, is an autosomal dominant disease with deficiency of functional C1 inhibitor protein causing episodic swellings of skin, mucosa and viscera. HAE is a genetically heterogeneous disease with more than 200 different mutations in the SERPING1 gene. A genotype...

  9. Implication of a novel Gla-containing protein, Gas6 in the pathogenesis of insulin resistance, impaired glucose homeostasis, and inflammation: A review.

    Science.gov (United States)

    Dihingia, Anjum; Kalita, Jatin; Manna, Prasenjit

    2017-06-01

    Growth arrest specific 6 (Gas6), a vitamin K-dependent protein plays a significant role in the regulation of cellular homeostasis via binding with TAM-receptor tyrosine kinases. Several studies reported the role of Gas6 in cancer, glomerular injury, obesity, and inflammation, however, very little is known about its role in insulin resistance (IR) and impaired glucose metabolism. Majority of the studies reported an inverse correlation of Gas6 protein levels or gene polymorphism with plasma glucose, HbA1c, IR, and inflammatory cytokines among type 2 diabetes (T2D) and obese subjects. However, few studies reported a positive correlation of Gas6 protein levels or gene polymorphism with IR and inflammation among obese subjects. This review for the first time provides an overview of the association of Gas6 protein levels or gene polymorphism with IR, glucose intolerance, and inflammation among T2D and obese subjects. This review also depicts the probable mechanism underlying the association of Gas6 with glucose intolerance and inflammation. The outcome of this review will increase the understanding about the role of Gas6 in the pathogenesis of IR, glucose intolerance and inflammation and that should in turn lead to the design of clinical interventions to improve glucose metabolism and the lives of the T2D patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids.

    Science.gov (United States)

    Faergeman, N J; DiRusso, C C; Elberger, A; Knudsen, J; Black, P N

    1997-03-28

    The yeast Saccharomyces cerevisiae is able to utilize exogenous fatty acids for a variety of cellular processes including beta-oxidation, phospholipid biosynthesis, and protein modification. The molecular mechanisms that govern the uptake of these compounds in S. cerevisiae have not been described. We report the characterization of FAT1, a gene that encodes a putative membrane-bound long-chain fatty acid transport protein (Fat1p). Fat1p contains 623 amino acid residues that are 33% identical and 54% with similar chemical properties as compared with the fatty acid transport protein FATP described in 3T3-L1 adipocytes (Schaffer and Lodish (1994) Cell 79, 427-436), suggesting a similar function. Disruption of FAT1 results in 1) an impaired growth in YPD medium containing 25 microM cerulenin and 500 microM fatty acid (myristate (C14:0), palmitate (C16:0), or oleate (C18:1)); 2) a marked decrease in the uptake of the fluorescent long-chain fatty acid analogue boron dipyrromethene difluoride dodecanoic acid (BODIPY-3823); 3) a reduced rate of exogenous oleate incorporation into phospholipids; and 4) a 2-3-fold decrease in the rates of oleate uptake. These data support the hypothesis that Fat1p is involved in long-chain fatty acid uptake and may represent a long-chain fatty acid transport protein.

  11. GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, impairs neovascularization by decreasing endothelial progenitor cell function.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Lin

    Full Text Available The number and function of endothelial progenitor cells (EPCs are sensitive to hyperglycemia, hypertension, and smoking in humans, which are also associated with the development of atherosclerosis. GroEL1 from Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis. However, the actual effects of GroEL1 on EPC function are unclear. In this study, we investigate the EPC function in GroEL1-administered hind limb-ischemic C57BL/B6 and C57BL/10ScNJ (a toll-like receptor 4 (TLR4 mutation mice and human EPCs. In mice, laser Doppler imaging, flow cytometry, and immunohistochemistry were used to evaluate the degree of neo-vasculogenesis, circulating level of EPCs, and expression of CD34, vWF, and endothelial nitric oxide synthase (eNOS in vessels. Blood flow in the ischemic limb was significantly impaired in C57BL/B6 but not C57BL/10ScNJ mice treated with GroEL1. Circulating EPCs were also decreased after GroEL1 administration in C57BL/B6 mice. Additionally, GroEL1 inhibited the expression of CD34 and eNOS in C57BL/B6 ischemic muscle. In vitro, GroEL1 impaired the capacity of differentiation, mobilization, tube formation, and migration of EPCs. GroEL1 increased senescence, which was mediated by caspases, p38 MAPK, and ERK1/2 signaling in EPCs. Furthermore, GroEL1 decreased integrin and E-selectin expression and induced inflammatory responses in EPCs. In conclusion, these findings suggest that TLR4 and impaired NO-related mechanisms could contribute to the reduced number and functional activity of EPCs in the presence of GroEL1 from C. pneumoniae.

  12. Visual Impairment

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ... with the brain, making vision impossible. What Is Visual Impairment? Many people have some type of visual ...

  13. Anti-C1q in systemic lupus erythematosus.

    Science.gov (United States)

    Stojan, G; Petri, M

    2016-07-01

    C1q is the first component of the classical complement pathway. Both clinically validated in-house ELISA assays as well as commercial ELISA kits are used for detection of anti-C1q antibodies. Anti-C1q autoantibodies can be detected in a wide range of autoimmune diseases and are highly sensitive for hypocomplementemic uticarial vasculitis. In SLE, anti-C1q are strongly associated with proliferative lupus nephritis, and their absence carries a negative predictive value for development of lupus nephritis of close to 100%. Anti-C1q in combination with anti-dsDNA and low complement has the strongest serological association with renal involvement. The anti-C1q titers correlate with global disease activity scores in patients with renal involvement, and higher titers seem to precede renal flares. After the successful treatment of a renal flare, anti-C1q has the tendency to decrease or even become undetectable. The main obstacle to the inclusion of anti-C1q in the classification criteria and clinical management of SLE is the lack of standardized laboratory assays. © The Author(s) 2016.

  14. Health-Related Quality of Life with Subcutaneous C1-Inhibitor for Prevention of Attacks of Hereditary Angioedema.

    Science.gov (United States)

    Lumry, William R; Craig, Timothy; Zuraw, Bruce; Longhurst, Hilary; Baker, James; Li, H Henry; Bernstein, Jonathan A; Anderson, John; Riedl, Marc A; Manning, Michael E; Keith, Paul K; Levy, Donald S; Caballero, Teresa; Banerji, Aleena; Gower, Richard G; Farkas, Henriette; Lawo, John-Philip; Pragst, Ingo; Machnig, Thomas; Watson, Douglas J

    2018-01-31

    Hereditary angioedema with C1-inhibitor deficiency (C1-INH-HAE) impairs health-related quality of life (HRQoL). The objective of this study was to assess HRQoL outcomes in patients self-administering subcutaneous C1-INH (C1-INH[SC]; HAEGARDA) for routine prevention of HAE attacks. Post hoc analysis of data from the placebo-controlled, crossover phase III COMPACT study (Clinical Studies for Optimal Management of Preventing Angioedema with Low-Volume Subcutaneous C1-Inhibitor Replacement Therapy). Ninety patients with C1-INH-HAE were randomized to 1 of 4 treatment sequences: C1-INH(SC) 40 or 60 IU/kg twice weekly for 16 weeks, preceded or followed by 16 weeks of twice weekly placebo injections. All HAE attacks were treated with open-label on-demand treatment as necessary. HRQoL assessments at week 14 (last visit) included the European Quality of Life-5 Dimensions Questionnaire (EQ-5D-3L), the Hospital Anxiety and Depression Scale (HADS), the Work Productivity and Activity Impairment Questionnaire (WPAI), and the Treatment Satisfaction Questionnaire for Medication (TSQM). Compared with placebo (on-demand treatment alone), treatment with twice weekly C1-INH(SC) (both doses combined) was associated with better EQ-5D visual analog scale general health, less HADS anxiety, less WPAI presenteeism, work productivity loss, and activity impairment, and greater TSQM effectiveness and overall treatment satisfaction. More patients self-reported a "good/excellent" response during routine prevention with C1-INH(SC) compared with on-demand only (placebo prophylaxis) management. For each HRQoL measure, a greater proportion of patients had a clinically meaningful improvement during C1-INH(SC) treatment compared with placebo. In patients with frequent HAE attacks, a treatment strategy of routine prevention with self-administered twice weekly C1-INH(SC) had a greater impact on improving multiple HAE-related HRQoL impairments, most notably anxiety and work productivity, compared with on

  15. Safety and Usage of C1-Inhibitor in Hereditary Angioedema

    DEFF Research Database (Denmark)

    Riedl, Marc A; Bygum, Anette; Lumry, William

    2016-01-01

    of this study was to describe safety and usage patterns of pnfC1-INH. METHODS: A multicenter, observational, registry was conducted between 2010 and 2014 at 30 United States and 7 European sites to obtain both prospective (occurring after enrollment) and retrospective (occurring before enrollment) safety...... and usage data on subjects receiving pnfC1-INH for any reason. RESULTS: Of 343 enrolled patients, 318 received 1 or more doses of pnfC1-INH for HAE attacks (11,848 infusions) or for prophylaxis (3142 infusions), comprising the safety population. Median dosages per infusion were 10.8 IU/kg (attack treatment......, international patient registry documented widespread implementation of pnfC1-INH self-administration outside of a health care setting consistent with current HAE guidelines. These real-world data revealed pnfC1-INH usage for a variety of reasons in patients with HAE and showed a high level of safety regardless...

  16. The heterodimeric structure of heterogeneous nuclear ribonucleoprotein C1/C2 dictates 1,25-dihydroxyvitamin D-directed transcriptional events in osteoblasts.

    Science.gov (United States)

    Lisse, Thomas S; Vadivel, Kanagasabai; Bajaj, S Paul; Chun, Rene F; Hewison, Martin; Adams, John S

    2014-01-01

    Heterogeneous nuclear ribonucleoprotein (hnRNP) C plays a key role in RNA processing. More recently hnRNP C has also been shown to function as a DNA binding protein exerting a dominant-negative effect on transcriptional responses to the vitamin D hormone,1,25-dihydroxyvitamin D (1,25(OH) 2 D), via interaction in cis with vitamin D response elements (VDREs). The physiologically active form of human hnRNPC is a tetramer of hnRNPC1 (huC1) and C2 (huC2) subunits known to be critical for specific RNA binding activity in vivo , yet the requirement for heterodimerization of huC1 and C2 in DNA binding and downstream action is not well understood. While over-expression of either huC1 or huC2 alone in mouse osteoblastic cells did not suppress 1,25(OH) 2 D-induced transcription, over-expression of huC1 and huC2 in combination using a bone-specific polycistronic vector successfully suppressed 1,25(OH) 2 D-mediated induction of osteoblast target gene expression. Over-expression of either huC1 or huC2 in human osteoblasts was sufficient to confer suppression of 1,25(OH) 2 D-mediated transcription, indicating the ability of transfected huC1 and huC2 to successfully engage as heterodimerization partners with endogenously expressed huC1 and huC2. The failure of the chimeric combination of mouse and human hnRNPCs to impair 1,25(OH) 2 D-driven gene expression in mouse cells was structurally predicted, owing to the absence of the last helix in the leucine zipper (LZ) heterodimerization domain of hnRNPC gene product in lower species, including the mouse. These results confirm that species-specific heterodimerization of hnRNPC1 and hnRNPC2 is a necessary prerequisite for DNA binding and down-regulation of 1,25(OH) 2 D-VDR-VDRE-directed gene transactivation in osteoblasts.

  17. Angioedema as the first presentation of B-cell non-Hodgkin lymphoma--an unusual case with normal C1 esterase inhibitor level: a case report.

    Science.gov (United States)

    Gunatilake, Sonali Sihindi Chapa; Wimalaratna, Harith

    2014-08-07

    Acquired angioedema is a rare but recognized manifestation of lymphoproliferative disorders due to deficiency in C1 esterase inhibitor. Normal level of C1 esterase inhibitor proteins in association with angioedema due to lymphoproliferative disease is a rare and an uncommon finding caused by antibodies produced from the underlying disease. Antibodies cause inactivation of C1 esterase inhibitor, thus resulting in C1 esterase inhibitor dysfunction despite of normal quantity of C1 esterase inhibitor. A 50-year-old Sri Lankan male presented with first episode of angioedema without any family history. Physical examination revealed mild pallor with swelling of tongue, lips and perioral region. On investigations, erythrocyte sedimentation rate was persistently high and bone marrow with immunohistochemistry revealed infiltration with B-cell type low grade non-Hodgkin lymphoma. Computed tomography scan of the chest and abdomen showed paratracheal and subcarinal lymphadenopathy and splenomegaly, with the findings being compatible with lymphoma. He had normal C1 esterase inhibitor protein level with reduced activity and low C1q, C4 levels indicating antibodies against C1 esterase inhibitor causing dysfunctional C1 esterase inhibitor. Adult onset angioedema should prompt physicians to suspect underlying lymphoproliferative disorder despite of C1 esterase inhibitor protein level being normal. Though uncommon, presence of antibodies against C1 esterase inhibitor secondary to lymphoproliferative disorder should be considered in the presence of normal C1 esterase inhibitor protein levels with low functional capacity in the background of acquired angioedema.

  18. Impairment of different protein domains causes variable clinical presentation within Pitt-Hopkins syndrome and suggests intragenic molecular syndromology of TCF4.

    Science.gov (United States)

    Bedeschi, Maria Francesca; Marangi, Giuseppe; Calvello, Maria Rosaria; Ricciardi, Stefania; Leone, Francesca Pia Chiara; Baccarin, Marco; Guerneri, Silvana; Orteschi, Daniela; Murdolo, Marina; Lattante, Serena; Frangella, Silvia; Keena, Beth; Harr, Margaret H; Zackai, Elaine; Zollino, Marcella

    2017-11-01

    Pitt-Hopkins syndrome is a neurodevelopmental disorder characterized by severe intellectual disability and a distinctive facial gestalt. It is caused by haploinsufficiency of the TCF4 gene. The TCF4 protein has different functional domains, with the NLS (nuclear localization signal) domain coded by exons 7-8 and the bHLH (basic Helix-Loop-Helix) domain coded by exon 18. Several alternatively spliced TCF4 variants have been described, allowing for translation of variable protein isoforms. Typical PTHS patients have impairment of at least the bHLH domain. To which extent impairment of the remaining domains contributes to the final phenotype is not clear. There is recent evidence that certain loss-of-function variants disrupting TCF4 are associated with mild ID, but not with typical PTHS. We describe a frameshift-causing partial gene deletion encompassing exons 4-6 of TCF4 in an adult patient with mild ID and nonspecific facial dysmorphisms but without the typical features of PTHS, and a c.520C > T nonsense variant within exon 8 in a child presenting with a severe phenotype largely mimicking PTHS, but lacking the typical facial dysmorphism. Investigation on mRNA, along with literature review, led us to suggest a preliminary phenotypic map of loss-of-function variants affecting TCF4. An intragenic phenotypic map of loss-of-function variants in TCF4 is suggested here for the first time: variants within exons 1-4 and exons 4-6 give rise to a recurrent phenotype with mild ID not in the spectrum of Pitt-Hopkins syndrome (biallelic preservation of both the NLS and bHLH domains); variants within exons 7-8 cause a severe phenotype resembling PTHS but in absence of the typical facial dysmorphism (impairment limited to the NLS domain); variants within exons 9-19 cause typical Pitt-Hopkins syndrome (impairment of at least the bHLH domain). Understanding the TCF4 molecular syndromology can allow for proper nosology in the current era of whole genomic investigations. Copyright

  19. Sporadic inclusion-body myositis: A degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy.

    Science.gov (United States)

    Askanas, Valerie; Engel, W King; Nogalska, Anna

    2015-04-01

    Sporadic inclusion-body myositis (s-IBM) is the most common degenerative muscle disease in which aging appears to be a key risk factor. In this review we focus on several cellular molecular mechanisms responsible for multiprotein aggregation and accumulations within s-IBM muscle fibers, and their possible consequences. Those include mechanisms leading to: a) accumulation in the form of aggregates within the muscle fibers, of several proteins, including amyloid-β42 and its oligomers, and phosphorylated tau in the form of paired helical filaments, and we consider their putative detrimental influence; and b) protein misfolding and aggregation, including evidence of abnormal myoproteostasis, such as increased protein transcription, inadequate protein disposal, and abnormal posttranslational modifications of proteins. Pathogenic importance of our recently demonstrated abnormal mitophagy is also discussed. The intriguing phenotypic similarities between s-IBM muscle fibers and the brains of Alzheimer and Parkinson's disease patients, the two most common neurodegenerative diseases associated with aging, are also discussed. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis. Copyright © 2014. Published by Elsevier B.V.

  20. Remorin, a Solanaceae Protein Resident in Membrane Rafts and Plasmodesmata, Impairs Potato virus X Movement[W

    Science.gov (United States)

    Raffaele, Sylvain; Bayer, Emmanuelle; Lafarge, David; Cluzet, Stéphanie; German Retana, Sylvie; Boubekeur, Tamy; Leborgne-Castel, Nathalie; Carde, Jean-Pierre; Lherminier, Jeannine; Noirot, Elodie; Satiat-Jeunemaître, Béatrice; Laroche-Traineau, Jeanny; Moreau, Patrick; Ott, Thomas; Maule, Andrew J.; Reymond, Philippe; Simon-Plas, Françoise; Farmer, Edward E.; Bessoule, Jean-Jacques; Mongrand, Sébastien

    2009-01-01

    Remorins (REMs) are proteins of unknown function specific to vascular plants. We have used imaging and biochemical approaches and in situ labeling to demonstrate that REM clusters at plasmodesmata and in ∼70-nm membrane domains, similar to lipid rafts, in the cytosolic leaflet of the plasma membrane. From a manipulation of REM levels in transgenic tomato (Solanum lycopersicum) plants, we show that Potato virus X (PVX) movement is inversely related to REM accumulation. We show that REM can interact physically with the movement protein TRIPLE GENE BLOCK PROTEIN1 from PVX. Based on the localization of REM and its impact on virus macromolecular trafficking, we discuss the potential for lipid rafts to act as functional components in plasmodesmata and the plasma membrane. PMID:19470590

  1. Hypertension and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Su-hang SHANG

    2015-08-01

    Full Text Available As a leading risk factor for stroke, hypertension is also an important risk factor for cognitive impairment. Midlife hypertension doubles the risk of dementia later in life and accelerates the progression of dementia, but the correlation between late-life blood pressure and cognitive impairment is still unclear. Beside blood pressure, the effect of pulse pressure, blood pressure variability and circadian rhythm of blood pressure on cognition is currently attracting more and more attention. Hypertension induces alterations in cerebrovascular structure and functions, which lead to brain lesions including cerebral atrophy, stroke, lacunar infarcts, diffuse white matter damage, microinfarct and microhemorrhage, resuling in cognitive impairment. Hypertension also impairs the metabolism and transfer of amyloid-β protein (Aβ, thus accelerates cognitive impairment. Individualized therapy, focusing on characteristics of hypertensive patients, may be a good choice for prevention and treatment of cognitive impairment. DOI: 10.3969/j.issn.1672-6731.2015.08.004

  2. Characterization of expression, activity and role in antibacterial immunity of Anopheles gambiae lysozyme c-1

    Science.gov (United States)

    Kajla, Mayur K.; Andreeva, Olga; Gilbreath, Thomas M.; Paskewitz, Susan M.

    2009-01-01

    There are eight lysozyme genes in the Anopheles gambiae genome. Transcripts of one of these genes, LYSC-1, increased in Anopheles gambiae cell line 4a3B by 24 h after exposure to heat-killed Micrococcus luteus. Lysozyme activity was also identified in conditioned media from the cell line from which the protein was purified to homogeneity using ion exchange and gel filtration. Mass spectrometric analysis of the purified protein showed 100% identity to lysozyme c-1. Purified lysozyme c-1 was tested against non-mosquito derived as well as culturable bacteria isolated from mosquito midguts. Lysozyme c-1 had negligible effects on the growth of most mosquito-derived bacteria in vitro but did inhibit the growth of M. luteus. Although Lys c-1 did not directly kill most bacteria, knockdown of LYSC-1 resulted in significant mortality in mosquitoes subjected to hemocoelic infections with Escherichia coli but not M. luteus thus suggesting that this protein plays an important role in antibacterial defense against selected bacteria. PMID:19932188

  3. Bacillus subtilis strain deficient for the protein-tyrosine kinase PtkA exhibits impaired DNA replication

    DEFF Research Database (Denmark)

    Petranovic, Dina; Michelsen, Ole; Zahradka, K

    2007-01-01

    A/PtpZ was previously shown to regulate the phosphorylation state of UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. This promiscuity towards substrates is reminiscent of eukaryal kinases and has prompted us to investigate possible physiological effects of ptkA and ptpZ gene inactivations...

  4. Characterization of a gC1qR from the giant freshwater prawn, Macrobrachium rosenbergii.

    Science.gov (United States)

    Ye, Ting; Huang, Xin; Wang, Xian-Wei; Shi, Yan-Ru; Hui, Kai-Min; Ren, Qian

    2015-03-01

    gC1qR, as a multicompartmental and a multifunctional protein, plays an important role in innate immunity. In this study, a gC1qR homolog (MrgC1qR) in the giant freshwater prawn, Macrobrachium rosenbergii was identified. MrgC1qR, a 258-amino-acid polypeptide, shares high identities with gC1qR from other species. MrgC1qR gene was expressed in different tissues and was highest expressed in the hepatopancreas. In addition, the MrgC1qR transcript was significantly enhanced after 6 h of white spot syndrome virus (WSSV) infection or post 2 h, 24 h of Vibrio anguillarum challenge compared to appropriate controls. Moreover, recombinant MrgC1qR (rMrgC1qR) had bacterial binding activity, the result also revealed that rMrgC1qR could bind pathogen-associated molecular patterns (PAMPs) such as LPS or PGN, suggesting that MrgC1qRmight function as a pathogen-recognition receptor (PRR). Furthermore, glutathione S-transferase (GST) pull-down assays showed that rMrgC1qR with GST-tag could bind to rMrFicolin1 or rMrFicolin2 with His-tag. Altogether, these results may demonstrate a role for MrgC1qR in innate immunity in the giant freshwater prawns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Loss of a doublecortin (DCX)-domain protein causes structural defects in a tubulin-based organelle of Toxoplasma gondii and impairs host-cell invasion

    Science.gov (United States)

    Nagayasu, Eiji; Hwang, Yu-Chen; Liu, Jun; Murray, John M.; Hu, Ke

    2017-01-01

    The ∼6000 species in phylum Apicomplexa are single-celled obligate intracellular parasites. Their defining characteristic is the apical complex—membranous and cytoskeletal elements at the apical end of the cell that participate in host-cell invasion. The apical complex of Toxoplasma gondii and some other apicomplexans includes a cone-shaped assembly, the conoid, which in T. gondii comprises 14 spirally arranged fibers that are nontubular polymers of tubulin. The tubulin dimers of the conoid fibers make canonical microtubules elsewhere in the same cell, suggesting that nontubulin protein dictates their special arrangement in the conoid fibers. One candidate for this role is TgDCX, which has a doublecortin (DCX) domain and a TPPP/P25-α domain, both of which are known modulators of tubulin polymer structure. Loss of TgDCX radically disrupts the structure of the conoid, severely impairs host-cell invasion, and slows growth. Both the conoid structural defects and the impaired invasion of TgDCX-null parasites are corrected by reintroduction of a TgDCX coding sequence. The nontubular polymeric form of tubulin found in the conoid is not found in the host cell, suggesting that TgDCX may be an attractive target for new parasite-specific chemotherapeutic agents. PMID:27932494

  6. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    Science.gov (United States)

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  7. An exact bosonization rule for c = 1 noncritical string theory

    International Nuclear Information System (INIS)

    Ishibashi, Nobuyuki; Yamaguchi, Atsushi

    2007-01-01

    We construct a string field theory for c = 1 noncritical strings using the loop variables as the string field. We show how one can express the nonrelativistic free fermions which describes the theory, in terms of these string fields

  8. Anti-C1q antibodies in systemic lupus erythematosus.

    Science.gov (United States)

    Orbai, A-M; Truedsson, L; Sturfelt, G; Nived, O; Fang, H; Alarcón, G S; Gordon, C; Merrill, Jt; Fortin, P R; Bruce, I N; Isenberg, D A; Wallace, D J; Ramsey-Goldman, R; Bae, S-C; Hanly, J G; Sanchez-Guerrero, J; Clarke, A E; Aranow, C B; Manzi, S; Urowitz, M B; Gladman, D D; Kalunian, K C; Costner, M I; Werth, V P; Zoma, A; Bernatsky, S; Ruiz-Irastorza, G; Khamashta, M A; Jacobsen, S; Buyon, J P; Maddison, P; Dooley, M A; Van Vollenhoven, R F; Ginzler, E; Stoll, T; Peschken, C; Jorizzo, J L; Callen, J P; Lim, S S; Fessler, B J; Inanc, M; Kamen, D L; Rahman, A; Steinsson, K; Franks, A G; Sigler, L; Hameed, S; Pham, N; Brey, R; Weisman, M H; McGwin, G; Magder, L S; Petri, M

    2015-01-01

    Anti-C1q has been associated with systemic lupus erythematosus (SLE) and lupus nephritis in previous studies. We studied anti-C1q specificity for SLE (vs rheumatic disease controls) and the association with SLE manifestations in an international multicenter study. Information and blood samples were obtained in a cross-sectional study from patients with SLE (n = 308) and other rheumatologic diseases (n = 389) from 25 clinical sites (84% female, 68% Caucasian, 17% African descent, 8% Asian, 7% other). IgG anti-C1q against the collagen-like region was measured by ELISA. Prevalence of anti-C1q was 28% (86/308) in patients with SLE and 13% (49/389) in controls (OR = 2.7, 95% CI: 1.8-4, p lupus nephritis. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Unilateral extended suboccipital approach for a C1 dumbbell schwanoma

    Directory of Open Access Journals (Sweden)

    Gorgan R.M.

    2015-03-01

    Full Text Available Craniovertebral junction tumors represent a complex pathology carrying a high risk of injuring the vertebral artery and the lower cranial nerves. Dumbbell C1- C2 schannomas are very rare tumors in this location. We present a case of a 66 years old male accepted for left laterocervical localized pain, headache and vertigo, with a large C1 dumbbell schwannoma extending in lateral over the C1 arch and displacing the C3 segment of the vertebral artery superiorly and anteriorly. Complete removal of the tumor was achieved using a far lateral approach. The approach is discussed with focus on the vertebral artery anatomy as the approach should give enough space to gain control of the artery without creating instability. Safe removal of C1 nerve root schwanomas can be achieved even if they compress and displace the vertebral artery by entering a fibrous tissue plane between the tumor and the vertebral artery.

  10. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Hammer, Niels A; Nielsen, Jacob

    2004-01-01

    Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.......5). To characterize the physiological role of IMP1, we generated IMP1-deficient mice carrying a gene trap insertion in the Imp1 gene. Imp1(-/-) mice were on average 40% smaller than wild-type and heterozygous sex-matched littermates. Growth retardation was apparent from E17.5 and remained permanent into adult life...

  11. Two-matrix models and c =1 string theory

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong Chuansheng

    1994-05-01

    We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.)

  12. 26 CFR 1.1402(c)-1 - Trade or business.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Trade or business. 1.1402(c)-1 Section 1.1402(c... (CONTINUED) INCOME TAXES Tax on Self-Employment Income § 1.1402(c)-1 Trade or business. In order for an individual to have net earnings from self-employment, he must carry on a trade or business, either as an...

  13. Activity-Based Protein Profiling Reveals Mitochondrial Oxidative Enzyme Impairment and Restoration in Diet-Induced Obese Mice

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Natalie C.; Angel, Thomas E.; Lewis, Michael P.; Pederson, Leeanna M.; Chauvigne-Hines, Lacie M.; Wiedner, Susan D.; Zink, Erika M.; Smith, Richard D.; Wright, Aaron T.

    2012-10-24

    High-fat diet (HFD) induced obesity and concomitant development of insulin resistance (IR) and type 2 diabetes mellitus have been linked to mitochondrial dysfunction. However, it is not clear whether mitochondrial dysfunction is a direct effect of a HFD or if the mitochondrial function is reduced with increased HFD duration. We hypothesized that the function of mitochondrial oxidative and lipid metabolism functions in skeletal muscle mitochondria for HFD mice are similar or elevated relative to standard diet (SD) mice, thereby IR is neither cause nor consequence of mitochondrial dysfunction. We applied a chemical probe approach to identify functionally reactive ATPases and nucleotide-binding proteins in mitochondria isolated from skeletal muscle of C57Bl/6J mice fed HFD or SD chow for 2-, 8-, or 16-weeks; feeding time points known to induce IR. A total of 293 probe-labeled proteins were identified by mass spectrometry-based proteomics, of which 54 differed in abundance between HFD and SD mice. We found proteins associated with the TCA cycle, oxidative phosphorylation (OXPHOS), and lipid metabolism were altered in function when comparing SD to HFD fed mice at 2-weeks, however by 16-weeks HFD mice had TCA cycle, β-oxidation, and respiratory chain function at levels similar to or higher than SD mice.

  14. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available BACKGROUND: To investigate if microRNAs (miRNAs play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+ current. RESULTS: H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2, with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. CONCLUSIONS: Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  15. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Science.gov (United States)

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  16. Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and proper morphology of inner dynein arms.

    Directory of Open Access Journals (Sweden)

    Ryosuke Yamamoto

    2017-09-01

    Full Text Available Cytoplasmic assembly of ciliary dyneins, a process known as preassembly, requires numerous non-dynein proteins, but the identities and functions of these proteins are not fully elucidated. Here, we show that the classical Chlamydomonas motility mutant pf23 is defective in the Chlamydomonas homolog of DYX1C1. The pf23 mutant has a 494 bp deletion in the DYX1C1 gene and expresses a shorter DYX1C1 protein in the cytoplasm. Structural analyses, using cryo-ET, reveal that pf23 axonemes lack most of the inner dynein arms. Spectral counting confirms that DYX1C1 is essential for the assembly of the majority of ciliary inner dynein arms (IDA as well as a fraction of the outer dynein arms (ODA. A C-terminal truncation of DYX1C1 shows a reduction in a subset of these ciliary IDAs. Sucrose gradients of cytoplasmic extracts show that preassembled ciliary dyneins are reduced compared to wild-type, which suggests an important role in dynein complex stability. The role of PF23/DYX1C1 remains unknown, but we suggest that DYX1C1 could provide a scaffold for macromolecular assembly.

  17. Angiotensin II Type 1 Receptor Mechanoactivation Involves RGS5 (Regulator of G Protein Signaling 5) in Skeletal Muscle Arteries: Impaired Trafficking of RGS5 in Hypertension.

    Science.gov (United States)

    Hong, Kwangseok; Li, Min; Nourian, Zahra; Meininger, Gerald A; Hill, Michael A

    2017-12-01

    Studies suggest that arteriolar pressure-induced vasoconstriction can be initiated by GPCRs (G protein-coupled receptors), including the AT 1 R (angiotensin II type 1 receptor). This raises the question, are such mechanisms regulated by negative feedback? The present studies examined whether RGS (regulators of G protein signaling) proteins in vascular smooth muscle cells are colocalized with the AT 1 R when activated by mechanical stress or angiotensin II and whether this modulates AT 1 R-mediated vasoconstriction. To determine whether activation of the AT 1 R recruits RGS5, an in situ proximity ligation assay was performed in primary cultures of cremaster muscle arteriolar vascular smooth muscle cells treated with angiotensin II or hypotonic solution in the absence or presence of candesartan (an AT 1 R blocker). Proximity ligation assay results revealed a concentration-dependent increase in trafficking/translocation of RGS5 toward the activated AT 1 R, which was attenuated by candesartan. In intact arterioles, knockdown of RGS5 enhanced constriction to angiotensin II and augmented myogenic responses to increased intraluminal pressure. Myogenic constriction was attenuated to a higher degree by candesartan in RGS5 siRNA-transfected arterioles, consistent with RGS5 contributing to downregulation of AT 1 R-mediated signaling. Further, translocation of RGS5 was impaired in vascular smooth muscle cells of spontaneously hypertensive rats. This is consistent with dysregulated (RGS5-mediated) AT 1 R signaling that could contribute to excessive vasoconstriction in hypertension. In intact vessels, candesartan reduced myogenic vasoconstriction to a greater extent in spontaneously hypertensive rats compared with controls. Collectively, these findings suggest that AT 1 R activation results in translocation of RGS5 toward the plasma membrane, limiting AT 1 R-mediated vasoconstriction through its role in G q/11 protein-dependent signaling. © 2017 American Heart Association, Inc.

  18. Inhibition of latent membrane protein 1 impairs the growth and tumorigenesis of latency II Epstein-Barr virus-transformed T cells.

    Science.gov (United States)

    Ndour, Papa Alioune; Brocqueville, Guillaume; Ouk, Tan-Sothéa; Goormachtigh, Gautier; Morales, Olivier; Mougel, Alexandra; Bertout, Julie; Melnyk, Oleg; Fafeur, Véronique; Feuillard, Jean; Coll, Jean; Adriaenssens, Eric

    2012-04-01

    Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV.

  19. XBP1 (X-Box-Binding Protein-1)-Dependent O-GlcNAcylation Is Neuroprotective in Ischemic Stroke in Young Mice and Its Impairment in Aged Mice Is Rescued by Thiamet-G.

    Science.gov (United States)

    Jiang, Meng; Yu, Shu; Yu, Zhui; Sheng, Huaxin; Li, Ying; Liu, Shuai; Warner, David S; Paschen, Wulf; Yang, Wei

    2017-06-01

    Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein response is activated. A key unfolded protein response prosurvival pathway is controlled by the endoplasmic reticulum stress sensor (inositol-requiring enzyme-1), XBP1 (downstream X-box-binding protein-1), and O-GlcNAc (O-linked β-N-acetylglucosamine) modification of proteins (O-GlcNAcylation). Stroke impairs endoplasmic reticulum function, which activates unfolded protein response. The rationale of this study was to explore the potentials of the IRE1/XBP1/O-GlcNAc axis as a target for neuroprotection in ischemic stroke. Mice with Xbp1 loss and gain of function in neurons were generated. Stroke was induced by transient or permanent occlusion of the middle cerebral artery in young and aged mice. Thiamet-G was used to increase O-GlcNAcylation. Deletion of Xbp1 worsened outcome after transient and permanent middle cerebral artery occlusion. After stroke, O-GlcNAcylation was activated in neurons of the stroke penumbra in young mice, which was largely Xbp1 dependent. This activation of O-GlcNAcylation was impaired in aged mice. Pharmacological increase of O-GlcNAcylation before or after stroke improved outcome in both young and aged mice. Our study indicates a critical role for the IRE1/XBP1 unfolded protein response branch in stroke outcome. O-GlcNAcylation is a prosurvival pathway that is activated in the stroke penumbra in young mice but impaired in aged mice. Boosting prosurvival pathways to counterbalance the age-related decline in the brain's self-healing capacity could be a promising strategy to improve ischemic stroke outcome in aged brains. © 2017 American Heart Association, Inc.

  20. Correlations of dietary energy and protein intakes with renal function impairment in chronic kidney disease patients with or without diabetes.

    Science.gov (United States)

    Chen, Mei-En; Hwang, Shang-Jyh; Chen, Hung-Chun; Hung, Chi-Chih; Hung, Hsin-Chia; Liu, Shao-Chun; Wu, Tsai-Jiin; Huang, Meng-Chuan

    2017-05-01

    Dietary energy and protein intake can affect progression of chronic kidney disease (CKD). CKD complicated with diabetes is often associated with a decline in renal function. We investigated the relative importance of dietary energy intake (DEI) and dietary protein intake (DPI) to renal function indicators in nondiabetic and diabetic CKD patients. A total of 539 Stage 3-5 CKD patients [estimated glomerular filtration rate (eGFR)Disease equation] with or without diabetes were recruited from outpatient clinics of Nephrology and Nutrition in a medical center in Taiwan. Appropriateness of DEI and DPI was used to subcategorize CKD patients into four groups:(1) kidney diet (KD) A (KD-A), the most appropriate diet, was characterized by low DPI and adequate DEI; (2) KD-B, low DPI and inadequate DEI; (3) KD-C, excess DPI and adequate DEI; and (4) KD-D, the least appropriate diet, excess DPI and inadequate DEI. Inadequate DEI was defined as a ratio of actual intake/recommended intake less than 90% and adequate DEI as over 90%. Low DPI was defined as less than 110% of recommended intake and excessive when over 110%. Outcome measured was eGFR. In both groups of CKD patients, DEI was significantly lower (ppatients were KD-C and KD-D significantly correlated with reduced eGFR compared with KD-A at increments of -5.63 mL/min/1.73 m 2 (p = 0.029) and -7.72 mL/min/1.73 m 2 (p=0.015). In conclusion, inadequate energy and excessive protein intakes appear to correlate with poorer renal function in nondiabetic CKD patients. Patients with advanced CKD are in need of counseling by dietitians to improve adherence to diets. Copyright © 2017. Published by Elsevier Taiwan.

  1. Impairment of the hematological response and interleukin-1β production in protein-energy malnourished mice after endotoxemia with lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Fock, R.A.; Vinolo, M.A.R.; Blatt, S.L.; Borelli, P. [Laboratório de Hematologia Experimental, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-09-21

    The objectives of this study were to determine if protein-energy malnutrition (PEM) could affect the hematologic response to lipopolysaccharide (LPS), the interleukin-1β (IL-1β) production, leukocyte migration, and blood leukocyte expression of CD11a/CD18. Two-month-old male Swiss mice were submitted to PEM (N = 30) with a low-protein diet (14 days) containing 4% protein, compared to 20% protein in the control group (N = 30). The total cellularity of blood, bone marrow, spleen, and bronchoalveolar lavage evaluated after the LPS stimulus indicated reduced number of total cells in all compartments studied and different kinetics of migration in malnourished animals. The in vitro migration assay showed reduced capacity of migration after the LPS stimulus in malnourished animals (45.7 ± 17.2 × 10{sup 4} cells/mL) compared to control (69.6 ± 7.1 × 10{sup 4} cells/mL, P ≤ 0.05), but there was no difference in CD11a/CD18 expression on the surface of blood leukocytes. In addition, the production of IL-1β in vivo after the LPS stimulus (180.7 pg·h{sup −1}·mL{sup −1}), and in vitro by bone marrow and spleen cells (41.6 ± 15.0 and 8.3 ± 4.0 pg/mL) was significantly lower in malnourished animals compared to control (591.1 pg·h{sup −1}·mL{sup −1}, 67.0 ± 23.0 and 17.5 ± 8.0 pg/mL, respectively, P ≤ 0.05). The reduced expression of IL-1β, together with the lower number of leukocytes in the central and peripheral compartments, different leukocyte kinetics, and reduced leukocyte migration capacity are factors that interfere with the capacity to mount an adequate immune response, being partly responsible for the immunodeficiency observed in PEM.

  2. Impairment of the hematological response and interleukin-1β production in protein-energy malnourished mice after endotoxemia with lipopolysaccharide

    International Nuclear Information System (INIS)

    Fock, R.A.; Vinolo, M.A.R.; Blatt, S.L.; Borelli, P.

    2012-01-01

    The objectives of this study were to determine if protein-energy malnutrition (PEM) could affect the hematologic response to lipopolysaccharide (LPS), the interleukin-1β (IL-1β) production, leukocyte migration, and blood leukocyte expression of CD11a/CD18. Two-month-old male Swiss mice were submitted to PEM (N = 30) with a low-protein diet (14 days) containing 4% protein, compared to 20% protein in the control group (N = 30). The total cellularity of blood, bone marrow, spleen, and bronchoalveolar lavage evaluated after the LPS stimulus indicated reduced number of total cells in all compartments studied and different kinetics of migration in malnourished animals. The in vitro migration assay showed reduced capacity of migration after the LPS stimulus in malnourished animals (45.7 ± 17.2 × 10 4 cells/mL) compared to control (69.6 ± 7.1 × 10 4 cells/mL, P ≤ 0.05), but there was no difference in CD11a/CD18 expression on the surface of blood leukocytes. In addition, the production of IL-1β in vivo after the LPS stimulus (180.7 pg·h −1 ·mL −1 ), and in vitro by bone marrow and spleen cells (41.6 ± 15.0 and 8.3 ± 4.0 pg/mL) was significantly lower in malnourished animals compared to control (591.1 pg·h −1 ·mL −1 , 67.0 ± 23.0 and 17.5 ± 8.0 pg/mL, respectively, P ≤ 0.05). The reduced expression of IL-1β, together with the lower number of leukocytes in the central and peripheral compartments, different leukocyte kinetics, and reduced leukocyte migration capacity are factors that interfere with the capacity to mount an adequate immune response, being partly responsible for the immunodeficiency observed in PEM

  3. Early-onset Alzheimers and cortical vision impairment in a woman with valosin-containing protein disease associated with 2 APOE ε4/APOE ε4 genotype.

    Science.gov (United States)

    Shamirian, Sharis; Nalbandian, Angèle; Khare, Manaswitha; Castellani, Rudolph; Kim, Ronald; Kimonis, Virginia E

    2015-01-01

    Hereditary inclusion body myopathy is a heterogeneous group of disorders characterized by rimmed vacuoles and by the presence of filamentous cytoplasmic and intranuclear inclusions. Inclusion body myopathy with Paget disease of bone and frontotemporal dementia is a progressive autosomal dominant disorder associated with a mutation in valosin-containing protein (VCP) with typical onset of symptoms in the 30s. APOE [Latin Small Letter Open E]4 is a major risk factor for late-onset Alzheimer disease, a progressive neurodegenerative disorder that affects memory, thinking, behavior, and emotion as a result of the excessive buildup and decreased clearance of β-amyloid proteins resulting in the appearance of neuritic plaques and neurofibrillary tangles. In conclusion, we report a unique patient with an APOE [Latin Small Letter Open E]4/APOE [Latin Small Letter Open E]4 genotype and atypical VCP disease associated with early Alzheimer disease and severe vision impairment. Future studies will elucidate the interaction of VCP mutations and APOE [Latin Small Letter Open E]4 alleles in understanding common mechanisms in AD and VCP disease.

  4. Correlations of dietary energy and protein intakes with renal function impairment in chronic kidney disease patients with or without diabetes

    Directory of Open Access Journals (Sweden)

    Mei-En Chen

    2017-05-01

    Full Text Available Dietary energy and protein intake can affect progression of chronic kidney disease (CKD. CKD complicated with diabetes is often associated with a decline in renal function. We investigated the relative importance of dietary energy intake (DEI and dietary protein intake (DPI to renal function indicators in nondiabetic and diabetic CKD patients. A total of 539 Stage 3–5 CKD patients [estimated glomerular filtration rate (eGFR<60 mL/min/1.73 m2 using the Modification of Diet in Renal Disease equation] with or without diabetes were recruited from outpatient clinics of Nephrology and Nutrition in a medical center in Taiwan. Appropriateness of DEI and DPI was used to subcategorize CKD patients into four groups:(1 kidney diet (KD A (KD-A, the most appropriate diet, was characterized by low DPI and adequate DEI; (2 KD-B, low DPI and inadequate DEI; (3 KD-C, excess DPI and adequate DEI; and (4 KD-D, the least appropriate diet, excess DPI and inadequate DEI. Inadequate DEI was defined as a ratio of actual intake/recommended intake less than 90% and adequate DEI as over 90%. Low DPI was defined as less than 110% of recommended intake and excessive when over 110%. Outcome measured was eGFR. In both groups of CKD patients, DEI was significantly lower (p<0.001 and DPI higher (p=0.002 than recommended levels. However, only in the nondiabetic CKD patients were KD-C and KD-D significantly correlated with reduced eGFR compared with KD-A at increments of −5.63 mL/min/1.73 m2 (p = 0.029 and −7.72 mL/min/1.73 m2 (p=0.015. In conclusion, inadequate energy and excessive protein intakes appear to correlate with poorer renal function in nondiabetic CKD patients. Patients with advanced CKD are in need of counseling by dietitians to improve adherence to diets.

  5. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein

    DEFF Research Database (Denmark)

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten

    2005-01-01

    -type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development....... In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic...... delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo....

  6. Inhibition of TRF1 Telomere Protein Impairs Tumor Initiation and Progression in Glioblastoma Mouse Models and Patient-Derived Xenografts.

    Science.gov (United States)

    Bejarano, Leire; Schuhmacher, Alberto J; Méndez, Marinela; Megías, Diego; Blanco-Aparicio, Carmen; Martínez, Sonia; Pastor, Joaquín; Squatrito, Massimo; Blasco, Maria A

    2017-11-13

    Glioblastoma multiforme (GBM) is a deadly and common brain tumor. Poor prognosis is linked to high proliferation and cell heterogeneity, including glioma stem cells (GSCs). Telomere genes are frequently mutated. The telomere binding protein TRF1 is essential for telomere protection, and for adult and pluripotent stem cells. Here, we find TRF1 upregulation in mouse and human GBM. Brain-specific Trf1 genetic deletion in GBM mouse models inhibited GBM initiation and progression, increasing survival. Trf1 deletion increased telomeric DNA damage and reduced proliferation and stemness. TRF1 chemical inhibitors mimicked these effects in human GBM cells and also blocked tumor sphere formation and tumor growth in xenografts from patient-derived primary GSCs. Thus, targeting telomeres throughout TRF1 inhibition is an effective therapeutic strategy for GBM. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Slow Physical Growth, Delayed Reflex Ontogeny, and Permanent Behavioral as Well as Cognitive Impairments in Rats Following Intra-generational Protein Malnutrition

    Science.gov (United States)

    Naik, Aijaz A.; Patro, Ishan K.; Patro, Nisha

    2015-01-01

    Environmental stressors including protein malnutrition (PMN) during pre-, neo- and post-natal age have been documented to affect cognitive development and cause increased susceptibility to neuropsychiatric disorders. Most studies have addressed either of the three windows and that does not emulate the clinical conditions of intra-uterine growth restriction (IUGR). Such data fail to provide a complete picture of the behavioral alterations in the F1 generation. The present study thus addresses the larger window from gestation to F1 generation, a new model of intra-generational PMN. Naive Sprague Dawley (SD) dams pre-gestationally switched to LP (8% protein) or HP (20% protein) diets for 45 days were bred and maintained throughout gestation on same diets. Pups born (HP/LP dams) were maintained on the respective diets post-weaningly. The present study aimed to show the sex specific differences in the neurobehavioral evolution and behavioral phenotype of the HP/LP F1 generation pups. A battery of neurodevelopmental reflex tests, behavioral (Open field and forelimb gripstrength test), and cognitive [Elevated plus maze (EPM) and Morris water maze (MWM)] assays were performed. A decelerated growth curve with significantly restricted body and brain weight, delays in apparition of neuro-reflexes and poor performance in the LP group rats was recorded. Intra-generational PMN induced poor habituation-with-time in novel environment exploration, low anxiety and hyperactive like profile in open field test in young and adult rats. The study revealed poor forelimb neuromuscular strength in LP F1 pups till adulthood. Group occupancy plots in MWM test revealed hyperactivity with poor learning, impaired memory retention and integration, thus modeling the signs of early onset Alzehemier phenotype. In addition, a gender specific effect of LP diet with severity in males and favoring female sex was also noticed. PMID:26696810

  8. 75 FR 57846 - Airworthiness Directives; Robert E. Rust, Jr. Model DeHavilland DH.C1 Chipmunk 21, DH.C1 Chipmunk...

    Science.gov (United States)

    2010-09-23

    ... Airworthiness Directives; Robert E. Rust, Jr. Model DeHavilland DH.C1 Chipmunk 21, DH.C1 Chipmunk 22, and DH.C1... installation, with replacement as necessary for Robert E. Rust, Jr. Model DeHavilland DH.C1 Chipmunk 21, DH.C1...

  9. Epstein-Barr virus-encoded latent membrane protein 1 impairs G2 checkpoint in human nasopharyngeal epithelial cells through defective Chk1 activation.

    Directory of Open Access Journals (Sweden)

    Wen Deng

    Full Text Available Nasopharyngeal carcinoma (NPC is a common cancer in Southeast Asia, particularly in southern regions of China. EBV infection is closely associated with NPC and has long been postulated to play an etiological role in the development of NPC. However, the role of EBV in malignant transformation of nasopharyngeal epithelial cells remains enigmatic. The current hypothesis of NPC development is that premalignant nasopharyngeal epithelial cells harboring genetic alterations support EBV infection and expression of EBV genes induces further genomic instability to facilitate the development of NPC. The latent membrane protein 1 (LMP1 is a well-documented EBV-encoded oncogene. The involvement of LMP1 in human epithelial malignancies has been implicated, but the mechanisms of oncogenic actions of LMP1, particularly in nasopharyngeal cells, are unclear. Here we observed that LMP1 expression in nasopharyngeal epithelial cells impaired G2 checkpoint, leading to formation of unrepaired chromatid breaks in metaphases after γ-ray irradiation. We further found that defective Chk1 activation was involved in the induction of G2 checkpoint defect in LMP1-expressing nasopharyngeal epithelial cells. Impairment of G2 checkpoint could result in loss of the acentrically broken chromatids and propagation of broken centric chromatids in daughter cells exiting mitosis, which facilitates chromosome instability. Our findings suggest that LMP1 expression facilitates genomic instability in cells under genotoxic stress. Elucidation of the mechanisms involved in LMP1-induced genomic instability in nasopharyngeal epithelial cells will shed lights on the understanding of role of EBV infection in NPC development.

  10. Autophagy and mitochondrial biogenesis impairment contribute to age-dependent liver injury in experimental sepsis: dysregulation of AMP-activated protein kinase pathway.

    Science.gov (United States)

    Inata, Yu; Kikuchi, Satoshi; Samraj, Ravi S; Hake, Paul W; O'Connor, Michael; Ledford, John R; O'Connor, James; Lahni, Patrick; Wolfe, Vivian; Piraino, Giovanna; Zingarelli, Basilia

    2018-02-01

    Age is an independent risk factor of multiple organ failure in patients with sepsis. However, the age-related mechanisms of injury are not known. AMPK is a crucial regulator of energy homeostasis, which controls mitochondrial biogenesis by activation of peroxisome proliferator-activated receptor-γ coactivator-α (PGC-1α) and disposal of defective organelles by autophagy. We investigated whether AMPK dysregulation might contribute to age-dependent liver injury in young (2-3 mo) and mature male mice (11-13 mo) subjected to sepsis. Liver damage was higher in mature mice than in young mice and was associated with impairment of hepatocyte mitochondrial function, structure, and biogenesis and reduced autophagy. At molecular analysis, there was a time-dependent nuclear translocation of the active phosphorylated catalytic subunits AMPKα1/α2 and PGC-1α in young, but not in mature, mice after sepsis. Treatment with the AMPK activator 5-amino-4-imidazolecarboxamide riboside-1-β-d-ribofuranoside (AICAR) improved liver mitochondrial structure in both age groups compared with vehicle. In loss-of-function studies, young knockout mice with systemic deficiency of AMPKα1 exhibited greater liver injury than did wild-type mice after sepsis. Our study suggests that AMPK is important for liver metabolic recovery during sepsis. Although its function may diminish with age, pharmacological activation of AMPK may be of therapeutic benefit.-Inata, Y., Kikuchi, S., Samraj, R. S., Hake, P. W., O'Connor, M., Ledford, J. R., O'Connor, J., Lahni, P., Wolfe, V., Piraino, G., Zingarelli, B. Autophagy and mitochondrial biogenesis impairment contribute to age-dependent liver injury in experimental sepsis: dysregulation of AMP-activated protein kinase pathway.

  11. Loss of the xeroderma pigmentosum group B protein binding site impairs p210 BCR/ABL1 leukemogenic activity

    International Nuclear Information System (INIS)

    Pannucci, N L; Li, D; Sahay, S; Thomas, E K; Chen, R; Tala, I; Hu, T; Ciccarelli, B T; Megjugorac, N J; Adams III, H C; Rodriguez, P L; Fitzpatrick, E R; Lagunoff, D; Williams, D A; Whitehead, I P

    2013-01-01

    Previous studies have demonstrated that p210 BCR/ABL1 interacts directly with the xeroderma pigmentosum group B (XPB) protein, and that XPB is phosphorylated on tyrosine in cells that express p210 BCR/ABL1. In the current study, we have constructed a p210 BCR/ABL1 mutant that can no longer bind to XPB. The mutant has normal kinase activity and interacts with GRB2, but can no longer phosphorylate XPB. Loss of XPB binding is associated with reduced expression of c-MYC and reduced transforming potential in ex-vivo clonogenicity assays, but does not affect nucleotide excision repair in lymphoid or myeloid cells. When examined in a bone marrow transplantation (BMT) model for chronic myelogenous leukemia, mice that express the mutant exhibit attenuated myeloproliferation and lymphoproliferation when compared with mice that express unmodified p210 BCR/ABL1. Thus, the mutant-transplanted mice show predominantly neutrophilic expansion and altered progenitor expansion, and have significantly extended lifespans. This was confirmed in a BMT model for B-cell acute lymphoblastic leukemia, wherein the majority of the mutant-transplanted mice remain disease free. These results suggest that the interaction between p210 BCR/ABL1 and XPB can contribute to disease progression by influencing the lineage commitment of lymphoid and myeloid progenitors

  12. The homeobox protein CEH-23 mediates prolonged longevity in response to impaired mitochondrial electron transport chain in C. elegans.

    Directory of Open Access Journals (Sweden)

    Ludivine Walter

    2011-06-01

    Full Text Available Recent findings indicate that perturbations of the mitochondrial electron transport chain (METC can cause extended longevity in evolutionarily diverse organisms. To uncover the molecular basis of how altered METC increases lifespan in C. elegans, we performed an RNAi screen and revealed that three predicted transcription factors are specifically required for the extended longevity of mitochondrial mutants. In particular, we demonstrated that the nuclear homeobox protein CEH-23 uniquely mediates the longevity but not the slow development, reduced brood size, or resistance to oxidative stress associated with mitochondrial mutations. Furthermore, we showed that ceh-23 expression levels are responsive to altered METC, and enforced overexpression of ceh-23 is sufficient to extend lifespan in wild-type background. Our data point to mitochondria-to-nucleus communications to be key for longevity determination and highlight CEH-23 as a novel longevity factor capable of responding to mitochondrial perturbations. These findings provide a new paradigm for how mitochondria impact aging and age-dependent diseases.

  13. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme.

    Directory of Open Access Journals (Sweden)

    Wenbin Zhou

    Full Text Available Transfer RNA (tRNA precursors undergo endoribonucleolytic processing of their 5' and 3' ends. 5' cleavage of the precursor transcript is performed by ribonuclease P (RNase P. While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs. The plant organellar PRORP (PRORP1 has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi. PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA and tRNA-Arg(ACG suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.

  14. DNA ligase C1 mediates the LigD-independent nonhomologous end-joining pathway of Mycobacterium smegmatis.

    Science.gov (United States)

    Bhattarai, Hitesh; Gupta, Richa; Glickman, Michael S

    2014-10-01

    Nonhomologous end joining (NHEJ) is a recently described bacterial DNA double-strand break (DSB) repair pathway that has been best characterized for mycobacteria. NHEJ can religate transformed linear plasmids, repair ionizing radiation (IR)-induced DSBs in nonreplicating cells, and seal I-SceI-induced chromosomal DSBs. The core components of the mycobacterial NHEJ machinery are the DNA end binding protein Ku and the polyfunctional DNA ligase LigD. LigD has three autonomous enzymatic modules: ATP-dependent DNA ligase (LIG), DNA/RNA polymerase (POL), and 3' phosphoesterase (PE). Although genetic ablation of ku or ligD abolishes NHEJ and sensitizes nonreplicating cells to ionizing radiation, selective ablation of the ligase activity of LigD in vivo only mildly impairs NHEJ of linearized plasmids, indicating that an additional DNA ligase can support NHEJ. Additionally, the in vivo role of the POL and PE domains in NHEJ is unclear. Here we define a LigD ligase-independent NHEJ pathway in Mycobacterium smegmatis that requires the ATP-dependent DNA ligase LigC1 and the POL domain of LigD. Mycobacterium tuberculosis LigC can also support this backup NHEJ pathway. We also demonstrate that, although dispensable for efficient plasmid NHEJ, the activities of the POL and PE domains are required for repair of IR-induced DSBs in nonreplicating cells. These findings define the genetic requirements for a LigD-independent NHEJ pathway in mycobacteria and demonstrate that all enzymatic functions of the LigD protein participate in NHEJ in vivo. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Oxidative stress impairs cGMP-dependent protein kinase activation and vasodilator-stimulated phosphoprotein serine-phosphorylation.

    Science.gov (United States)

    Banday, Anees A; Lokhandwala, Mustafa F

    2018-02-09

    Reactive oxygen species induce vascular dysfunction and hypertension by directly interacting with nitric oxide (NO) which leads to NO inactivation. In addition to a decrease in NO bioavailability, there is evidence that oxidative stress can also modulate NO signaling during hypertension. Here, we investigated the effect of oxidative stress on NO signaling molecules cGMP-dependent protein kinase (PKG) and vasodilator-stimulated phosphoprotein (VASP) which are known to mediate vasodilatory actions of NO. Male Sprague Dawley (SD) rats were provided with tap water (control), 30 mM L-buthionine sulfoximine (BSO, a pro-oxidant), 1 mM tempol (T, an antioxidant) and BSO + T for 3 wks. BSO-treated rats exhibited high blood pressure and oxidative stress. Incubation of mesenteric arterial rings with NO donors caused concentration-dependent relaxation in control rats. However, the response to NO donors was significantly lower in BSO-treated rats with a marked decrease in pD2. In control rats, NO donors activated mesenteric PKG, increased VASP phosphorylation and its interaction with transient receptor potential channels 4 (TRPC4) and inhibited store-operated Ca 2+ influx. NO failed to activate these signaling molecules in mesenteric arteries from BSO-treated rats. Supplementation of BSO-treated rats with tempol reduced oxidative stress and blood pressure and normalized the NO signaling. These data suggest that oxidative stress can reduce NO-mediated PKG activation and VASP-TRPC4 interaction which leads to failure of NO to reduce Ca 2+ influx in smooth muscle cells. The increase in intracellular Ca 2+ contributes to sustained vasoconstriction and subsequent hypertension. Antioxidant supplementation decreases oxidative stress, normalizes NO signaling and reduces blood pressure.

  16. Regorafenib impairs mitochondrial functions, activates AMP-activated protein kinase, induces autophagy, and causes rat hepatocyte necrosis.

    Science.gov (United States)

    Weng, Zuquan; Luo, Yong; Yang, Xi; Greenhaw, James J; Li, Haibo; Xie, Liming; Mattes, William B; Shi, Qiang

    2015-01-02

    The tyrosine kinase inhibitor regorafenib was approved by regulatory agencies for cancer treatment, albeit with strong warnings of severe hepatotoxicity included in the product label. The basis of this toxicity is unknown; one possible mechanism, that of mitochondrial damage, was tested. In isolated rat liver mitochondria, regorafenib directly uncoupled oxidative phosphorylation (OXPHOS) and promoted calcium overload-induced swelling, which were respectively prevented by the recoupler 6-ketocholestanol (KC) and the mitochondrial permeability transition (MPT) pore blocker cyclosporine A (CsA). In primary hepatocytes, regorafenib uncoupled OXPHOS, disrupted mitochondrial inner membrane potential (MMP), and decreased cellular ATP at 1h, and triggered MPT at 3h, which was followed by necrosis but not apoptosis at 7h and 24h, all of which were abrogated by KC. The combination of the glycolysis enhancer fructose plus the mitochondrial ATPase synthase inhibitor oligomycin A abolished regorafenib induced necrosis at 7h. This effect was not seen at 24h nor with the fructose or oligomycin A separately. CsA in combination with trifluoperazine, both MPT blockers, showed similar effects. Two compensatory mechanisms, activation of AMP-activated protein kinase (AMPK) to ameliorate ATP shortage and induction of autophagy to remove dysfunctional mitochondria, were found to be mobilized. Hepatocyte necrosis was enhanced either by the AMPK inhibitor Compound C or the autophagy inhibitor chloroquine, while autophagy inducer rapamycin was strongly cytoprotective. Remarkably, all toxic effects were observed at clinically-relevant concentrations of 2.5-15μM. These data suggest that uncoupling of OXPHOS and the resulting ATP shortage and MPT induction are the key mechanisms for regorafenib induced hepatocyte injury, and AMPK activation and autophagy induction serve as pro-survival pathways against such toxicity. Published by Elsevier Ireland Ltd.

  17. Latent Membrane Protein LMP2A Impairs Recognition of EBV-Infected Cells by CD8+ T Cells.

    Directory of Open Access Journals (Sweden)

    Chiara Rancan

    2015-06-01

    Full Text Available The common pathogen Epstein-Barr virus (EBV transforms normal human B cells and can cause cancer. Latent membrane protein 2A (LMP2A of EBV supports activation and proliferation of infected B cells and is expressed in many types of EBV-associated cancer. It is not clear how latent EBV infection and cancer escape elimination by host immunity, and it is unknown whether LMP2A can influence the interaction of EBV-infected cells with the immune system. We infected primary B cells with EBV deleted for LMP2A, and established lymphoblastoid cell lines (LCLs. We found that CD8+ T cell clones showed higher reactivity against LMP2A-deficient LCLs compared to LCLs infected with complete EBV. We identified several potential mediators of this immunomodulatory effect. In the absence of LMP2A, expression of some EBV latent antigens was elevated, and cell surface expression of MHC class I was marginally increased. LMP2A-deficient LCLs produced lower amounts of IL-10, although this did not directly affect CD8+ T cell recognition. Deletion of LMP2A led to several changes in the cell surface immunophenotype of LCLs. Specifically, the agonistic NKG2D ligands MICA and ULBP4 were increased. Blocking experiments showed that NKG2D activation contributed to LCL recognition by CD8+ T cell clones. Our results demonstrate that LMP2A reduces the reactivity of CD8+ T cells against EBV-infected cells, and we identify several relevant mechanisms.

  18. Pediatric hereditary angioedema due to C1-inhibitor deficiency

    Directory of Open Access Journals (Sweden)

    Farkas Henriette

    2010-07-01

    Full Text Available Abstract Hereditary angioedema (HAE resulting from the deficiency of the C1 inhibitor (C1-INH is a rare, life-threatening disorder. It is characterized by attacks of angioedema involving the skin and/or the mucosa of the upper airways, as well as the intestinal mucosa. In approximately 50 per cent of cases, clinical manifestations may appear during childhood. The complex management of HAE in pediatric patients is in many respects different from the management of adults. Establishing the diagnosis early, preferably before the onset of clinical symptoms, is essential in cases with a positive family history. Complement studies usually afford accurate diagnosis, whereas molecular genetics tests may prove helpful in uncertain cases. Appropriate therapy, supported by counselling, suitable modification of lifestyle, and avoidance of triggering factors (which primarily include mechanical trauma, mental stress and airway infections in children may spare the patient unnecessary surgery and may prevent mortality. Prompt control of edematous attacks, short-term prophylaxis and intermittent therapy are recommended as the primary means for the management of pediatric cases. Medicinal products currently used for the treatment of children with hereditary angioedema include antifibrinolytics, attenuated androgens, and C1-INH replacement therapy. Current guidelines favour antifibrinolytics for long-term prophylaxis because of their favorable safety profile but efficacy may be lacking. Attenuated androgens administered in the lowest effective dose are another option. C1-INH replacement therapy is also an effective and safe agent for children. Regular monitoring and follow-up of patients are necessary.

  19. C1 metabolism in Paracoccus denitrificans : genetics of Paracoccus denitrificans

    NARCIS (Netherlands)

    Harms, N; van Spanning, R J

    Paracoccus denitrificans is able to grow on the C1 compounds methanol and methylamine. These compounds are oxidized to formaldehyde which is subsequently oxidized via formate to carbon dioxide. Biomass is produced by carbon dioxide fixation via the ribulose biphosphate pathway. The first oxidation

  20. C1q Nephropathy: The Unique Underrecognized Pathological Entity

    Directory of Open Access Journals (Sweden)

    Joe Devasahayam

    2015-01-01

    Full Text Available C1q nephropathy is a rare glomerular disease with characteristic mesangial C1q deposition noted on immunofluorescence microscopy. It is histologically defined and poorly understood. Light microscopic features are heterogeneous and comprise minimal change disease (MCD, focal segmental glomerulosclerosis (FSGS, and proliferative glomerulonephritis. Clinical presentation is also diverse, and ranges from asymptomatic hematuria or proteinuria to frank nephritic or nephrotic syndrome in both children and adults. Hypertension and renal insufficiency at the time of diagnosis are common findings. Optimal treatment is not clear and is usually guided by the underlying light microscopic lesion. Corticosteroids are the mainstay of treatment, with immunosuppressive agents reserved for steroid resistant cases. The presence of nephrotic syndrome and FSGS appear to predict adverse outcomes as opposed to favorable outcomes in those with MCD. Further research is needed to establish C1q nephropathy as a universally recognized distinct clinical entity. In this paper, we discuss the current understanding of pathogenesis, histopathology, clinical features, therapeutic options, and outcomes of C1q nephropathy.

  1. Protein-energy malnutrition alters IgA responses to rotavirus vaccination and infection but does not impair vaccine efficacy in mice

    Science.gov (United States)

    Maier, Elizabeth A.; Weage, Kristina J.; Guedes, Marjorie M; Denson, Lee A.; McNeal, Monica M.; Bernstein, David I.; Moore, Sean R.

    2013-01-01

    Background Conflicting evidence links malnutrition to the reduced efficacy of rotavirus vaccines in developing countries, where diarrhea and undernutrition remain leading causes of child deaths. Here, we adapted mouse models of rotavirus vaccination (rhesus rotavirus, RRV), rotavirus infection (EDIM), and protein-energy malnutrition (PEM) to test the hypothesis that undernutrition reduces rotavirus vaccine immunogenicity and efficacy. Methods We randomized wild type Balb/C dams with 3-day-old pups to a control diet (CD) or an isocaloric, multideficient regional basic diet (RBD) that produces PEM. At 3 weeks of age, we weaned CD and RBD pups to their dams’ diet and subrandomized weanlings to receive a single dose of either live oral rotavirus vaccine (RRV) or PBS. At 6 weeks of age, we orally challenged all groups with murine rotavirus (EDIM). Serum and stool specimens were collected before and after RRV and EDIM administration to measure viral shedding and antibody responses by ELISA. Results RBD pups and weanlings exhibited significant failure to thrive compared to age-matched CD mice (Pvaccination induced higher levels of serum anti-RV IgA responses in RBD vs. CD mice (PVaccination protected CD and RBD mice equally against EDIM infection, as measured by viral shedding. In unvaccinated RBD mice, EDIM shedding peaked 1 day earlier (Pvaccination (Pvaccination mitigated stool IgA responses to EDIM more in CD vs. RBD mice (Pvaccination and infection, undernutrition does not impair rotavirus vaccine efficacy nor exacerbate infection in this mouse model of protein-energy malnutrition. Alternative models are needed to elucidate host-pathogen factors undermining rotavirus vaccine effectiveness in high-risk global settings. PMID:24200975

  2. aThe dyslexia candidate gene DYX1C1 is a potential marker of poor survival in breast cancer

    International Nuclear Information System (INIS)

    Rosin, Gustaf; Hannelius, Ulf; Lindström, Linda; Hall, Per; Bergh, Jonas; Hartman, Johan; Kere, Juha

    2012-01-01

    The dyslexia candidate gene, DYX1C1, shown to regulate and interact with estrogen receptors and involved in the regulation of neuronal migration, has recently been proposed as a putative cancer biomarker. This study was undertaken to assess the prognostic value and therapy-predictive potential of DYX1C1 mRNA and protein expression in breast cancer. DYX1C1 mRNA expression was assessed at the mRNA level in three independent population-derived patient cohorts. An association to estrogen/progesterone receptor status, Elston grade, gene expression subtype and lymph node status was analyzed within these cohorts. DYX1C1 protein expression was examined using immunohistochemistry in cancer and normal breast tissue. The statistical analyses were performed using the non-parametric Wilcoxon rank-sum test, ANOVA, Fisher's exact test and a multivariate proportional hazard (Cox) model. DYX1C1 mRNA is significantly more highly expressed in tumors that have been classified as estrogen receptor α and progesterone receptor-positive. The expression of DYX1C1 among the molecular subtypes shows the lowest median expression within the basal type tumors, which are considered to have the worst prognosis. The expression of DYX1C1 is significantly lower in tumors graded as Elston grade 3 compared with grades 1 and 2. DYX1C1 protein is expressed in 88% of tumors and in all 10 normal breast tissues examined. Positive protein expression was significantly correlated to overall survival (Hazard ratio 3.44 [CI 1.84-6.42]) of the patients but not to any of the variables linked with mRNA expression. We show that the expression of DYX1C1 in breast cancer is associated with several clinicopathological parameters and that loss of DYX1C1 correlates with a more aggressive disease, in turn indicating that DYX1C1 is a potential prognostic biomarker in breast cancer

  3. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response. Published by Elsevier Inc.

  4. Quantum and classical aspects of deformed c = 1 strings

    International Nuclear Information System (INIS)

    Nakatsu, T.; Tsujimaru, S.; Takasaki, K.

    1995-01-01

    The quantum and classical aspects of a deformed c=1 matrix model proposed by Jevicki and Yoneya are studied. String equations are formulated in the framework of the Toda lattice hierarchy. The Whittaker functions now play the role of generalized Airy functions in c<1 strings. This matrix model has two distinct parameters. Identification of the string coupling constant is thereby not unique, and leads to several different perturbative interpretations of this model as a string theory. Two such possible interpretations are examined. In both cases, the classical limit of the string equations, which turns out to give a formal solution of Polchinski's scattering equations, shows that the classical scattering amplitudes of massless tachyons are insensitive to deformations of the parameters in the matrix model. (author)

  5. Anti-C1q antibodies in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Orbai, A-M; Truedsson, L; Sturfelt, G

    2015-01-01

    : Prevalence of anti-C1q was 28% (86/308) in patients with SLE and 13% (49/389) in controls (OR = 2.7, 95% CI: 1.8-4, p 4, p = 0.015), anti-dsDNA (OR = 3.4, 95% CI: 1.9-6.1, p ... associated with renal involvement (OR = 14.9, 95% CI: 5.8-38.4, p 

  6. Isometric C1-immersions for pairs of Riemannian metrics

    International Nuclear Information System (INIS)

    D'Ambra, Giuseppina; Datta, Mahuya

    2001-08-01

    Let h 1 , h 2 be two Euclidean metrics on R q , and let V be a C ∞ -manifold endowed with two Riemannian metrics g 1 and g 2 . We study the existence of C 1 -immersions f:(V,g 1 ,g 2 )→(R q ,h 1 ,h 2 ) such that f*(h i )=g i for i=1,2. (author)

  7. Genetic Determinants of C1 Inhibitor Deficiency Angioedema Age of Onset.

    Science.gov (United States)

    Gianni, Panagiota; Loules, Gedeon; Zamanakou, Maria; Kompoti, Maria; Csuka, Dorottya; Psarros, Fotis; Magerl, Markus; Moldovan, Dimitru; Maurer, Marcus; Speletas, Matthaios G; Farkas, Henriette; Germenis, Anastasios E

    2017-01-01

    In view of the large heterogeneity in the clinical presentation of hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE), great efforts are being made towards detecting measurable biological determinants of disease severity that can help to improve the management of the disease. Considering the central role that plasma kallikrein plays in bradykinin production, we investigated the contribution of the functional polymorphism KLKB1-428G/A to the disease phenotype. We studied 249 C1-INH-HAE patients from 114 European families, and we explored possible associations of C1-INH-HAE clinical features with carriage of KLKB1-428G/A, combined or not with that of the functional F12-46C/T polymorphism. Carriers of the G allele of the KLKB1-428G/A polymorphism exhibited a significantly delayed disease onset (i.e., by 4.1 years [p < 0.001], depending on the zygocity status), while carriers of both the KLKB1-428G/A and the F12-46C/T polymorphism displayed an 8.8-year delay in disease onset (p < 0.001) and a 64% lower probability of needing long-term prophylactic treatment (p = 0.019). These findings support our initial hypothesis that functional alterations in genes of proteins involved in bradykinin metabolism and function affect the clinical phenotype and possibly contribute to the pathogenesis of C1-INH-HAE. Given that an earlier onset of symptoms is inversely correlated with the subsequent course of the disease and, eventually, the need for long-term prophylaxis, these polymorphisms may be helpful prognostic biomarkers of disease severity. © 2017 S. Karger AG, Basel.

  8. Efficient C1-continuous phase-potential upwind (C1-PPU) schemes for coupled multiphase flow and transport with gravity

    Science.gov (United States)

    Jiang, Jiamin; Younis, Rami M.

    2017-10-01

    In the presence of counter-current flow, nonlinear convergence problems may arise in implicit time-stepping when the popular phase-potential upwinding (PPU) scheme is used. The PPU numerical flux is non-differentiable across the co-current/counter-current flow regimes. This may lead to cycles or divergence in the Newton iterations. Recently proposed methods address improved smoothness of the numerical flux. The objective of this work is to devise and analyze an alternative numerical flux scheme called C1-PPU that, in addition to improving smoothness with respect to saturations and phase potentials, also improves the level of scalar nonlinearity and accuracy. C1-PPU involves a novel use of the flux limiter concept from the context of high-resolution methods, and allows a smooth variation between the co-current/counter-current flow regimes. The scheme is general and applies to fully coupled flow and transport formulations with an arbitrary number of phases. We analyze the consistency property of the C1-PPU scheme, and derive saturation and pressure estimates, which are used to prove the solution existence. Several numerical examples for two- and three-phase flows in heterogeneous and multi-dimensional reservoirs are presented. The proposed scheme is compared to the conventional PPU and the recently proposed Hybrid Upwinding schemes. We investigate three properties of these numerical fluxes: smoothness, nonlinearity, and accuracy. The results indicate that in addition to smoothness, nonlinearity may also be critical for convergence behavior and thus needs to be considered in the design of an efficient numerical flux scheme. Moreover, the numerical examples show that the C1-PPU scheme exhibits superior convergence properties for large time steps compared to the other alternatives.

  9. Is the A-Chain the Engine That Drives the Diversity of C1q Functions? Revisiting Its Unique Structure

    Directory of Open Access Journals (Sweden)

    Berhane Ghebrehiwet

    2018-02-01

    Full Text Available The immunopathological functions associated with human C1q are still growing in terms of novelty, diversity, and pathologic relevance. It is, therefore, not surprising that C1q is being recognized as an important molecular bridge between innate and adaptive immunity. The secret of this functional diversity, in turn, resides in the elegant but complex structure of the C1q molecule, which is assembled from three distinct gene products: A, B, and C, each of which has evolved from a separate and unique ancestral gene template. The C1q molecule is made up of 6A, 6B, and 6C polypeptide chains, which are held together through strong covalent and non-covalent bonds to form the 18-chain, bouquet-of-flower-like protein that we know today. The assembled C1q protein displays at least two distinct structural and functional regions: the collagen-like region (cC1q and the globular head region (gC1q, each being capable of driving a diverse range of ligand- or receptor-mediated biological functions. What is most intriguing, however, is the observation that most of the functions appear to be predominantly driven by the A-chain of the molecule, which begs the question: what are the evolutionary modifications or rearrangements that singularly shaped the primordial A-chain gene to become a pluripotent and versatile component of the intact C1q molecule? Here, we revisit and discuss some of the known unique structural and functional features of the A-chain, which may have contributed to its versatility.

  10. The distortive mechanism for the activation of complement component C1 supported by studies with a monoclonal antibody against the "arms" of C1q

    NARCIS (Netherlands)

    Hoekzema, R.; Martens, M.; Brouwer, M. C. [=Maria Clara; Hack, C. E.

    1988-01-01

    A mouse monoclonal antibody (IgG1 isotype) against human C1q (MAb 130) is presented that activates C1 in serum through its antigen-binding sites at an optimal molar ratio of 3 MAbs:1 C1q. The antibody does not inhibit binding of C1q to IgG. Experiments with pepsin- and collagenase-digested C1q

  11. Heterogeneous nuclear ribonucleoproteins C1/C2 identified as autoantigens by biochemical and mass spectrometric methods

    Science.gov (United States)

    HH Heegaard, Niels; R Larsen, Martin; Muncrief, Terri; Wiik , Allan; Roepstorff, Peter

    2000-01-01

    Introduction: The classification of antinuclear antibodies (ANAs) is important for diagnosis and prognosis and for understanding the molecular pathology of autoimmune disease. Many of the proteins that associate with RNA in the ribonucleoprotein (RNP) complexes of the spliceosome have been found to react with some types of ANA [1], including proteins of the heterogeneous nuclear RNP (hnRNP) complex that associate with newly transcribed pre-mRNA. Autoantibodies to the A2, B1, and B2 proteins of hnRNP found in some patients may be markers of several overlap syndromes [2]. However, ANAs with specificity for these proteins as well as for the D protein also appear to occur in many distinct connective-tissue diseases, although epitope specificities may differ [3]. ANAs with specificity for the C component of hnRNP (consisting of the C1 and C2 proteins) have to our knowledge so far been described in only one case [4]. We here describe the approach taken to unambiguously identify the C1/C2 proteins as ANA targets in the sera of some patients. Aims: To determine the fine specificity of sera containing an unusual speckled ANA-staining pattern using a combination of 2D gel electrophoresis and MS. Methods: Patient sera were screened for ANAs by indirect immunofluorescence microscopy on HEp-2 cells (cultured carcinoma cells). Sera with an unusual, very regular, speckled ANA pattern were tested for reactivity with components of nuclear extracts of HeLa cells that were separated by one-dimensional (1D) or 2D gel electrophoresis or by reversed-phase high-performance liquid chromatography (HPLC). IgG reactivity was assessed by immunoblotting. Reactive protein spots from 2D separations were excised from the gels and subjected to in-gel digestion with trypsin for subsequent peptide mapping, partial peptide sequencing, and protein identification by MS and tandem MS on a hybrid electrospray ionization/quadrupole/time-of-flight (ESI-Q-TOF) mass spectrometer [5,6,7]. Results: We observed

  12. Deletion of Protein Kinase D1 in Pancreatic β-Cells Impairs Insulin Secretion in High-Fat Diet-Fed Mice.

    Science.gov (United States)

    Bergeron, Valérie; Ghislain, Julien; Vivot, Kevin; Tamarina, Natalia; Philipson, Louis H; Fielitz, Jens; Poitout, Vincent

    2018-01-01

    Ββ-Cell adaptation to insulin resistance is necessary to maintain glucose homeostasis in obesity. Failure of this mechanism is a hallmark of type 2 diabetes (T2D). Hence, factors controlling functional β-cell compensation are potentially important targets for the treatment of T2D. Protein kinase D1 (PKD1) integrates diverse signals in the β-cell and plays a critical role in the control of insulin secretion. However, the role of β-cell PKD1 in glucose homeostasis in vivo is essentially unknown. Using β-cell-specific, inducible PKD1 knockout mice (βPKD1KO), we examined the role of β-cell PKD1 under basal conditions and during high-fat feeding. βPKD1KO mice under a chow diet presented no significant difference in glucose tolerance or insulin secretion compared with mice expressing the Cre transgene alone; however, when compared with wild-type mice, both groups developed glucose intolerance. Under a high-fat diet, deletion of PKD1 in β-cells worsened hyperglycemia, hyperinsulinemia, and glucose intolerance. This was accompanied by impaired glucose-induced insulin secretion both in vivo in hyperglycemic clamps and ex vivo in isolated islets from high-fat diet-fed βPKD1KO mice without changes in islet mass. This study demonstrates an essential role for PKD1 in the β-cell adaptive secretory response to high-fat feeding in mice. © 2017 by the American Diabetes Association.

  13. Adiponectin induced AMP-activated protein kinase impairment mediates insulin resistance in Bama mini-pig fed high-fat and high-sucrose diet

    Directory of Open Access Journals (Sweden)

    Miaomiao Niu

    2017-08-01

    Full Text Available Objective Adipose tissue is no longer considered as an inert storage organ for lipid, but instead is thought to play an active role in regulating insulin effects via secretion adipokines. However, conflicting reports have emerged regarding the effects of adipokines. In this study, we investigated the role of adipokines in glucose metabolism and insulin sensitivity in obese Bama mini-pigs. Methods An obesity model was established in Bama mini-pigs, by feeding with high-fat and high-sucrose diet for 30 weeks. Plasma glucose and blood biochemistry levels were measured, and intravenous glucose tolerance test was performed. Adipokines, including adiponectin, interleukin-6 (IL-6, resistin and tumor necrosis factor alpha (TNF-α, and glucose-induced insulin secretion were also examined by radioimmunoassay. AMP-activated protein kinase (AMPK phosphorylation in skeletal muscle, which is a useful insulin resistance marker, was examined by immunoblotting. Additionally, associations of AMPK phosphorylation with plasma adipokines and homeostasis model assessment of insulin resistance (HOMA-IR index were assessed by Pearce’s correlation analysis. Results Obese pigs showed hyperglycemia, high triglycerides, and insulin resistance. Adiponectin levels were significantly decreased (p<0.05 and IL-6 amounts dramatically increased (p<0.05 in obese pigs both in serum and adipose tissue, corroborating data from obese mice and humans. However, circulating resistin and TNF-α showed no difference, while the values of TNF-α in adipose tissue were significantly higher in obese pigs, also in agreement with data from obese humans but not rodent models. Moreover, strong associations of skeletal muscle AMPK phosphorylation with plasma adiponectin and HOMA-IR index were obtained. Conclusion AMPK impairment induced by adiponectin decrease mediates insulin resistance in high-fat and high-sucrose diet induction. In addition, Bama mini-pig has the possibility of a conformable

  14. Aberrant location of inhibitory synaptic marker proteins in the hippocampus of dystrophin-deficient mice: implications for cognitive impairment in duchenne muscular dystrophy.

    Science.gov (United States)

    Krasowska, Elżbieta; Zabłocki, Krzysztof; Górecki, Dariusz C; Swinny, Jerome D

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses. The clustering of neurotransmitter receptors at inhibitory synapses, thus impacting on synaptic transmission, is of particular significance. However, less is known about the role of dystrophin in influencing the precise expression patterns of proteins located within the pre- and postsynaptic elements of inhibitory synapses. To this end, we exploited molecular markers of inhibitory synapses, interneurons and dystrophin-deficient mouse models to explore the role of dystrophin in determining the stereotypical patterning of inhibitory connectivity within the cellular networks of the hippocampus CA1 region. In tissue from wild-type (WT) mice, immunoreactivity of neuroligin2 (NL2), an adhesion molecule expressed exclusively in postsynaptic elements of inhibitory synapses, and the vesicular GABA transporter (VGAT), a marker of GABAergic presynaptic elements, were predictably enriched in strata pyramidale and lacunosum moleculare. In acute contrast, NL2 and VGAT immunoreactivity was relatively evenly distributed across all CA1 layers in dystrophin-deficient mice. Similar changes were evident with the cannabinoid receptor 1, vesicular glutamate transporter 3, parvalbumin, somatostatin and the GABAA receptor alpha1 subunit. The data show that in the absence of dystrophin, there is a rearrangement of the molecular machinery, which underlies the precise spatio-temporal pattern of GABAergic synaptic transmission within the CA1 sub-field of the hippocampus.

  15. Personalized Therapy Against Preeclampsia by Replenishing Placental Protein 13 (PP13 Targeted to Patients With Impaired PP13 Molecule or Function

    Directory of Open Access Journals (Sweden)

    Hamutal Meiri

    Full Text Available Hypertensive disorders affect about one third of all people aged 20 and above, and are treated with anti-hypertensive drugs. Preeclampsia (PE is one form of such disorders that only develops during pregnancy. It affects ten million pregnant women globally and additionally causes fetal loss and major newborn disabilities. The syndrome's origin is multifactorial, and anti-hypertensive drugs are ineffective in treating it. Biomarkers are helpful for predict its development. Generic drugs, such as low dose aspirin, were proven effective in preventing preterm PE. However, it does not cure the majority of cases and many studies are underway for fighting PE with extended use of additional generic drugs, or through new drug development programs.This review focuses on placental protein 13 (PP13. This protein is only expressed in the placenta. Impaired PP13 DNA structure and/or its reduced mRNA expression leads to lower blood PP13 level that predict a higher risk of developing PE. Two polymorphic PP13 variants have been identified: (1 The promoter PP13 variant with an “A/A” genotype in the -98 position (versus “A/C” or “C/C”. Having the “A/A” genotype is coupled to lower PP13 expression, mainly during placental syncytiotrophoblast differentiation and, if associated with obesity and history of previous preeclampsia, it accurately predicts higher risk for developing the disorder. (2 A thymidine deletion at position 221 causes a frame shift in the open reading frame, and the formation of an early stop codon resulting in the formation of DelT221, a truncated variant of PP13. In pregnant rodents, both short- and long- term replenishment of PP13 causes reversible hypotension and vasodilation of uterine vessels. Long-term exposure is also accompanied by the development of larger placentas and newborns. Also, only w/t PP13 is capable of inducing leukocyte apoptosis, providing maternal immune tolerance to pregnancy.Based on published data, we

  16. Protein tyrosine phosphatase receptor type R deficient mice exhibit increased exploration in a new environment and impaired novel object recognition memory

    NARCIS (Netherlands)

    Erkens, M.; Bakker, B.; Duijn, L.M. van; Hendriks, W.J.A.J.; Zee, C.E.E.M. van der

    2014-01-01

    Mouse gene Ptprr encodes multiple protein tyrosine phosphatase receptor type R (PTPRR) isoforms that negatively regulate mitogen-activated protein kinase (MAPK) signaling pathways. In the mouse brain, PTPRR proteins are expressed in cerebellum, olfactory bulb, hippocampus, amygdala and perirhinal

  17. Structural studies of conformational changes of proteins upon phosphorylation: Structures of activated CheY, CheY-N16-FliM complex, and AAA + ATPase domain of NtrC1 in both inactive and active states

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seok-Yong [Univ. of California, Berkeley, CA (United States)

    2003-04-10

    Protein phosphorylation is a general mechanism for signal transduction as well as regulation of cellular function. Unlike phosphorylation in eukaryotic systems that uses Ser/Thr for the sites of modification, two-component signal transduction systems, which are prevalent in bacteria, archea, and lower eukaryotes, use an aspartate as the site of phosphorylation. Two-component systems comprise a histidine kinase and a receiver domain. The conformational change of the receiver domain upon phosphorylation leads to signal transfer to the downstream target, a process that had not been understood well at the molecular level. The transient nature of the phospho-Asp bond had made structural studies difficult. The discovery of an excellent analogue for acylphosphate, BeF3-, enabled structural study of activated receiver domains. The structure of activated Chemotaxis protein Y (CheY) was determined both by NMR spectroscopy and X-ray crystallography. These structures revealed the molecular basis of the conformational change that is coupled to phosphorylation. Phosphorylation of the conserved Asp residue in the active site allows hydrogen bonding of the T87 Oγ to phospho-aspartate, which in turn leads to the rotation of Y106 into the ''in'' position (termed Y-T coupling). The structure of activated CheY complexed with the 16 N-terminal residues of FliM (N16-FliM), its target, was also determined by X-ray crystallography and confirmed the proposed mechanism of activation (Y-T coupling). First, N16-FliM binds to the region on CheY that undergoes a significant conformational change. Second, the ''in'' position of Y106 presents a better binding surface for FliM because the sidechain of Y106 in the inactive form of CheY (''out'' position) sterically interferes with binding of N16-FliM. In addition to confirmation of Y-T coupling, the structure of the activated CheY-N16-FliM complex suggested that the

  18. Microbial growth on C1 compounds. Incorporation of C1 units into allulose phosphate by extracts of Pseudomonas methanica

    Science.gov (United States)

    Kemp, M. B.; Quayle, J. R.

    1966-01-01

    1. Incubation of cell-free extracts of methane- or methanol-grown Pseudomonas methanica with [14C]formaldehyde and d-ribose 5-phosphate leads to incorporation of radioactivity into a non-volatile product, which has the chromatographic properties of a phosphorylated compound. 2. Treatment of this reaction product with a phosphatase, followed by chromatography, shows the presence of two compounds whose chromatographic properties are consistent with their being free sugars. 3. The minor component of the dephosphorylated products has been identified as fructose. The major component has been identified as allulose (psicose) on the basis of co-chromatography, co-crystallization of the derived phenylosazone and dinitrophenylosazone with authentic derivatives of allulose and behaviour towards oxidation with bromine water. 4. It is suggested that the bacterial extracts catalyse the condensation of a C1 unit identical with, or derived from, formaldehyde with ribose 5-phosphate to give allulose 6-phosphate. 5. Testing of hexose phosphates and pentose phosphates as substrates has so far shown the reaction to be specific for ribose 5-phosphate. 6. The condensation reaction is not catalysed by extracts of methanol-grown Pseudomonas AM1. 7. A variant of the pentose phosphate cycle, involving this condensation reaction, is suggested as an explanation for the net synthesis of C3 compounds from C1 units by P. methanica. PMID:5965346

  19. C1,1 regularity for degenerate elliptic obstacle problems

    Science.gov (United States)

    Daskalopoulos, Panagiota; Feehan, Paul M. N.

    2016-03-01

    The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.

  20. Plasma enhanced C1 chemistry for green technology

    Science.gov (United States)

    Nozaki, Tomohiro

    2013-09-01

    Plasma catalysis is one of the innovative next generation green technologies that meet the needs for energy and materials conservation as well as environmental protection. Non-thermal plasma uniquely generates reactive species independently of reaction temperature, and these species are used to initiate chemical reactions at unexpectedly lower temperatures than normal thermochemical reactions. Non-thermal plasma thus broadens the operation window of existing chemical conversion processes, and ultimately allows modification of the process parameters to minimize energy and material consumption. We have been specifically focusing on dielectric barrier discharge (DBD) as one of the viable non-thermal plasma sources for practical fuel reforming. In the presentation, room temperature one-step conversion of methane to methanol and hydrogen using a miniaturized DBD reactor (microplasma reactor) is highlighted. The practical impact of plasma technology on existing C1-chemistry is introduced, and then unique characteristics of plasma fuel reforming such as non-equilibrium product distribution is discussed.

  1. A Selection of Recent Advances in C1 Chemistry.

    Science.gov (United States)

    Mesters, Carl

    2016-06-07

    This review presents a selection of recent publications related to the chemistry and catalysis of C1 molecules, including methane, methanol, carbon monoxide, and carbon dioxide. These molecules play an important role in the current supply of energy and chemicals and will likely become even more relevant because of the need to decarbonize fuels (shift from coal to natural gas) in line with CO2 capture and use to mitigate global warming, as well as a gradual shift on the supply side from crude oil to natural gas. This review includes both recent industrial developments, such as the huge increase in methanol-to-olefins-capacity build in China and the demonstration of oxidative coupling of methane, and scientific developments in these chemistries facilitated by improved capabilities in, for example, analytical tools and computational modeling.

  2. ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription

    Science.gov (United States)

    Li, Yanyan; Wei, Yuyan; Gong, Di; Gao, Junping; Zhang, Jie; Tan, Weiwei; Wen, Tianfu; Zhang, Le; Huang, Lugang; Xiang, Rong; Lin, Ping; Wei, Yuquan

    2015-01-01

    Reactive oxygen species (ROS)-driven oxidative stress has been recognized as a critical inducer of cancer cell death in response to therapeutic agents. Our previous studies have demonstrated that zinc finger protein (ZNF)32 is key to cell survival upon oxidant stimulation. However, the mechanisms by which ZNF32 mediates cell death remain unclear. Here, we show that at moderate levels of ROS, Sp1 directly binds to two GC boxes within the ZNF32 promoter to activate ZNF32 transcription. Alternatively, at cytotoxic ROS concentrations, ZNF32 expression is repressed due to decreased binding activity of Sp1. ZNF32 overexpression maintains mitochondrial membrane potential and enhances the antioxidant capacity of cells to detoxify ROS, and these effects promote cell survival upon pro-oxidant agent treatment. Alternatively, ZNF32-deficient cells are more sensitive and vulnerable to oxidative stress-induced cell injury. Mechanistically, we demonstrate that complement 1q-binding protein (C1QBP) is a direct target gene of ZNF32 that inactivates the p38 MAPK pathway, thereby exerting the protective effects of ZNF32 on oxidative stress-induced apoptosis. Taken together, our findings indicate a novel mechanism by which the Sp1-ZNF32-C1QBP axis protects against oxidative stress and implicate a promising strategy that ZNF32 inhibition combined with pro-oxidant anticancer agents for hepatocellular carcinoma treatment. PMID:26497555

  3. Insulin-like growth factor I (IGF-I) and IGF-binding protein 3 response to growth hormone is impaired in HIV-infected children.

    Science.gov (United States)

    Rondanelli, Mariangela; Caselli, Desiree; Aricò, Maurizio; Maccabruni, Anna; Magnani, Barbara; Bacchella, Luisa; De Stefano, Anna; Maghnie, Mohamed; Solerte, Sebastiano Bruno; Minoli, Lorenzo

    2002-03-20

    To better characterize the somatotropic axis in HIV-infected children the circadian rhythm of growth hormone (GH), and basal and stimulated (by an insulin-like growth factor I [IGF-I] generation test) plasma levels of IGF-I and insulin-like growth factor-binding protein 3 (IGFBP-3), were evaluated in 16 children (9 boys and 7 girls; age range, 7-11 years) with HIV infection. All patients were free from active opportunistic infection or liver disease at the time of the study. Sixteen age- and sex-matched healthy children (10 boys and 6 girls; age range, 7-11 years) served as control subjects. GH rhythmometric data were analyzed by single and population mean cosinor analysis. As regards the IGF-I generation test, biosynthetic human GH (hGH, 0.1 IU/kg, 0.033 mg/kg) was administered subcutaneously for 4 days and blood samples were taken from fasting subjects at baseline and on the morning after the last GH injection for measurement of IGF-I and IGFBP-3. Plasma GH levels fell within normal limits in the HIV-seropositive patients and were similar to those of healthy children (1.31 +/- 1.18 vs. 1.57 +/- 1.16 microg/liter, respectively; mean +/- SD). The population mean cosinor analysis shows that the GH circadian rhythm reached statistical significance both in the HIV-seropositive children and in the control group. Despite this, the IGF-I and IGFBP-3 levels were significantly lower in HIV-infected children than in the control group (75.6 +/- 57.2 vs. 233.3 +/- 52.5 ng/ml, p < 0.001 and 2.09 +/- 0.17 vs. 3.89 +/- 0.24 mg/liter, p < 0.01, respectively; mean +/- SD); moreover, the response of IGF-I and IGFBP-3 to the IGF-I generation test was significantly lower in HIV-infected children than in the control group (86.3 +/- 55.8 vs. 257.5 +/- 53.4 ng/ml, p < 0.001 and 3.14 +/- 0.43 mg/liter, p < 0.01, respectively; mean +/- SD). It appears that circadian GH secretion is normal in children with HIV infection, but the response to exogenous GH with regard to IGF-I and IGFBP-3

  4. 75 FR 53861 - Airworthiness Directives; Robert E. Rust, Jr. Model DeHavilland DH.C1 Chipmunk 21, DH.C1 Chipmunk...

    Science.gov (United States)

    2010-09-02

    ... Airworthiness Directives; Robert E. Rust, Jr. Model DeHavilland DH.C1 Chipmunk 21, DH.C1 Chipmunk 22, and DH.C1...). ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Robert E. Rust... CFR part 39) to include an AD that would apply to all Robert E. Rust, Jr. Models DeHavilland DH.C1...

  5. Catalytic routes to fuels from C1 and oxygenate molecules

    KAUST Repository

    Wang, Shuai

    2017-02-23

    This account illustrates concepts in chemical kinetics underpinned by the formalism of transition state theory using catalytic processes that enable the synthesis of molecules suitable as fuels from C-1 and oxygenate reactants. Such feedstocks provide an essential bridge towards a carbon-free energy future, but their volatility and low energy density require the formation of new C-C bonds and the removal of oxygen. These transformations are described here through recent advances in our understanding of the mechanisms and site requirements in catalysis by surfaces, with emphasis on enabling concepts that tackle ubiquitous reactivity and selectivity challenges. The hurdles in forming the first C-C bond from C-1 molecules are illustrated by the oxidative coupling of methane, in which surface O-atoms form OH radicals from O-2 and H2O molecules. These gaseous OH species act as strong H-abstractors and activate C-H bonds with earlier transition states than oxide surfaces, thus rendering activation rates less sensitive to the weaker C-H bonds in larger alkane products than in CH4 reactants. Anhydrous carbonylation of dimethyl ether forms a single C-C bond on protons residing within inorganic voids that preferentially stabilize the kinetically-relevant transition state through van der Waals interactions that compensate for the weak CO nucleophile. Similar solvation effects, but by intrapore liquids instead of inorganic hosts, also become evident as alkenes condense within MCM-41 channels containing isolated Ni2+ active sites during dimerization reactions. Intrapore liquids preferentially stabilize transition states for C-C bond formation and product desorption, leading to unprecedented reactivity and site stability at sub-ambient temperatures and to 1-alkene dimer selectivities previously achieved only on organometallic systems with co-catalysts or activators. C-1 homologation selectively forms C-4 and C-7 chains with a specific backbone (isobutane, triptane) on solid

  6. Entanglement entropy of two disjoint intervals in c = 1 theories

    International Nuclear Information System (INIS)

    Alba, Vincenzo; Tagliacozzo, Luca; Calabrese, Pasquale

    2011-01-01

    We study the scaling of the Rényi entanglement entropy of two disjoint blocks of critical lattice models described by conformal field theories with central charge c = 1. We provide the analytic conformal field theory result for the second order Rényi entropy for a free boson compactified on an orbifold describing the scaling limit of the Ashkin–Teller (AT) model on the self-dual line. We have checked this prediction in cluster Monte Carlo simulations of the classical two-dimensional AT model. We have also performed extensive numerical simulations of the anisotropic Heisenberg quantum spin chain with tree tensor network techniques that allowed us to obtain the reduced density matrices of disjoint blocks of the spin chain and to check the correctness of the predictions for Rényi and entanglement entropies from conformal field theory. In order to match these predictions, we have extrapolated the numerical results by properly taking into account the corrections induced by the finite length of the blocks on the leading scaling behavior

  7. Detergent Insoluble Proteins and Inclusion Body-Like Structures Immunoreactive for PRKDC/DNA-PK/DNA-PKcs, FTL, NNT, and AIFM1 in the Amygdala of Cognitively Impaired Elderly Persons.

    Science.gov (United States)

    Gal, Jozsef; Chen, Jing; Katsumata, Yuriko; Fardo, David W; Wang, Wang-Xia; Artiushin, Sergey; Price, Douglas; Anderson, Sonya; Patel, Ela; Zhu, Haining; Nelson, Peter T

    2018-01-01

    Misfolded protein in the amygdala is a neuropathologic feature of Alzheimer disease and many other neurodegenerative disorders. We examined extracts from human amygdala (snap-frozen at autopsy) to investigate whether novel and as yet uncharacterized misfolded proteins would be detectable. Polypeptides from the detergent-insoluble, urea-soluble protein fractions of amygdala were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. Among the detergent-insoluble proteins identified in amygdala of demented subjects but not controls were Tau, TDP-43, Aβ, α-synuclein, and ApoE. Additional detergent-insoluble proteins from demented subjects in the high-molecular weight portion of SDS gels included NNT, TNIK, PRKDC (DNA-PK, or DNA-PKcs), ferritin light chain (FTL), AIFM1, SYT11, STX1B, EAA1, COL25A1, M4K4, CLH1, SQSTM, SYNJ1, C3, and C4. In follow-up immunohistochemical experiments, NNT, TNIK, PRKDC, AIFM1, and FTL were observed in inclusion body-like structures in cognitively impaired subjects' amygdalae. Double-label immunofluorescence revealed that FTL and phospho-PRKDC immunoreactivity colocalized partially with TDP-43 and/or Tau inclusion bodies. Western blots showed high-molecular weight "smears", particularly for NNT and PRKDC. A preliminary genetic association study indicated that rare NNT, TNIK, and PRKDC gene variants had nominally significant association with Alzheimer-type dementia risk. In summary, novel detergent-insoluble proteins, with evidence of proteinaceous deposits, were found in amygdalae of elderly, cognitively impaired subjects. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  8. Cloning and heterologous expression of a novel insecticidal gene (tccC1) from Xenorhabdus nematophilus strain

    International Nuclear Information System (INIS)

    Joo Lee, Pom; Ahn, Ji-Young; Kim, Yang-Hoon; Wook Kim, Seung; Kim, Ji-Yeon; Park, Jae-Sung; Lee, Jeewon

    2004-01-01

    We have identified and cloned a novel toxin gene (tccC1/xptB1) from Xenorhabdus nematophilus strain isolated from Korea-specific entomophagous nematode Steinernema glaseri MK. The DNA sequence of cloned toxin gene (3048 bp) has an open reading frame encoding 1016 amino acids with a predicted molecular mass of 111058 Da. The toxin sequence shares 50-96% identical amino acid residues with the previously reported tccC1 cloned from X. nematophilus (AJ308438), Photorhabdus luminescens W14 (AF346499) P. luminescens TTO1 (BX571873), and Yersinia pestis CO92 (NC 0 03143). The toxin gene was successfully expressed in Escherichia coli, and the recombinant toxin protein caused a rapid cessation in mortality of Galleria mellonella larvae (80% death of larvae within 2 days). Conclusively, the heterologous expression of the novel gene tccC1 cloned into E. coli plasmid vector produced recombinant toxin with high insecticidal activity

  9. Physiological and transcriptional responses to high temperature in Arthrospira (Spirulina) platensis C1.

    Science.gov (United States)

    Panyakampol, Jaruta; Cheevadhanarak, Supapon; Sutheeworapong, Sawannee; Chaijaruwanich, Jeerayut; Senachak, Jittisak; Siangdung, Wipawan; Jeamton, Wattana; Tanticharoen, Morakot; Paithoonrangsarid, Kalyanee

    2015-03-01

    Arthrospira (Spirulina) platensis is a well-known commercial cyanobacterium that is used as a food and in feed supplements. In this study, we examined the physiological changes and whole-genome expression in A. platensis C1 exposed to high temperature. We found that photosynthetic activity was significantly decreased after the temperature was shifted from 35°C to 42°C for 2 h. A reduction in biomass production and protein content, concomitant with the accumulation of carbohydrate content, was observed after prolonged exposure to high temperatures for 24 h. Moreover, the results of the expression profiling in response to high temperature at the designated time points (8 h) revealed two distinct phases of the responses. The first was the immediate response phase, in which the transcript levels of genes involved in different mechanisms, including genes for heat shock proteins; genes involved in signal transduction and carbon and nitrogen metabolism; and genes encoding inorganic ion transporters for magnesium, nitrite and nitrate, were either transiently induced or repressed by the high temperature. In the second phase, the long-term response phase, both the induction and repression of the expression of genes with important roles in translation and photosynthesis were observed. Taken together, the results of our physiological and transcriptional studies suggest that dynamic changes in the transcriptional profiles of these thermal-responsive genes might play a role in maintaining cell homeostasis under high temperatures, as reflected in the growth and biochemical composition, particularly the protein and carbohydrate content, of A. platensis C1. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Introduction of an Aliphatic Ketone into Recombinant Proteins in a Bacterial Strain that Overexpresses an Editing-Impaired Leucyl-tRNA Synthetase

    Science.gov (United States)

    Tang, Yi; Wang, Pin; Van Deventer, James A.; Link, A. James; Tirrell, David A.

    2011-01-01

    A leucine analog containing a ketone has been incorporated into proteins in E. coli. Only E. coli strains overexpressing an editing-deficient leucyl-tRNA synthetase were capable of synthesizing proteins with the aliphatic ketone amino acid. Modification of ketone-containing proteins under mild conditions has been demonstrated. PMID:19670197

  11. Recombinant C1-Inhibitor Effects on Coagulation and Fibrinolysis in Patients with Hereditary Angioedema

    NARCIS (Netherlands)

    Relan, Anurag; Bakhtiari, Kamran; van Amersfoort, Edwin S.; Meijers, Joost C. M.; Hack, C. Erik

    2012-01-01

    Background: Recombinant human C1-inhibitor (rhC1INH; Ruconest (R)) has been developed for treatment of acute angioedema attacks in patients with hereditary angioedema (HAE) due to heterozygous deficiency of C1INH. Previous reports suggest that administration of plasma-derived C1INH products may be

  12. Recombinant human C1-inhibitor in the treatment of acute angioedema attacks

    NARCIS (Netherlands)

    Choi, Goda; Soeters, Maarten R.; Farkas, Henriette; Varga, Lilian; Obtulowicz, Krystyna; Bilo, Barbara; Porebski, Greg; Hack, C. Erik; Verdonk, Rene; Nuijens, Jan; Levi, Marcel

    2007-01-01

    BACKGROUND: Patients with hereditary C1-inhibitor deficiency have recurrent attacks of angioedema, preferably treated with C1-inhibitor concentrate. A recombinant human C1-inhibitor (rHuC1INH) was developed, derived from milk from transgenic rabbits. This study was undertaken to investigate the

  13. Expression of CYP1C1 and CYP1A in Fundulus heteroclitus during PAH-induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lu [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States); Camus, Alvin C. [Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA (United States); Dong, Wu; Thornton, Cammi [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States); Willett, Kristine L., E-mail: kwillett@olemiss.edu [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States)

    2010-09-15

    CYP1C1 is a relatively newly identified member of the cytochrome P450 family 1 in teleost fish. However, CYP1C1's expression and physiological roles relative to the more recognized CYP1A in polycyclic aromatic hydrocarbons (PAHs) induced toxicities are unclear. Fundulus heteroclitus fry were exposed at 6-8 days post-hatch (dph) and again at 13-15 dph for 6 h to dimethyl sulfoxide (DMSO) control, 5 mg/L benzo[a]pyrene (BaP), or 5 mg/L dimethylbenzanthracene (DMBA). Fry were euthanized at 0, 6, 18, 24 and 30 h after the second exposure. In these groups, both CYP1A and CYP1C1 protein expression were induced within 6 h after the second exposure. Immunohistochemistry (IHC) results from fry revealed strongest CYP1C1 expression in renal tubular and intestinal epithelial cells. Additional fish were examined for liver lesions 8 months after initial exposure. Gross lesions were observed in 20% of the BaP and 35% of the DMBA-treated fish livers. Histopathologic findings included foci of cellular alteration and neoplasms, including hepatocellular adenoma, hepatocellular carcinoma and cholangioma. Strong CYP1A immunostaining was detected diffusely in altered cell foci and on the invading margin of hepatocelluar carcinomas. Lower CYP1A expression was seen in central regions of the neoplasms. In contrast, CYP1C1 was only detectable and highly expressed in proliferated bile duct epithelial cells. Our CYP1C1 results suggest the potential for tissue specific CYP1C1-mediated PAH metabolism but not a more chronic role in progression to liver hepatocellular carcinoma.

  14. Iron ions and haeme modulate the binding properties of complement subcomponent C1q and of immunoglobulins.

    Science.gov (United States)

    Dimitrov, J D; Roumenina, L T; Doltchinkova, V R; Vassilev, T L

    2007-03-01

    The complement system and circulating antibodies play a major role in the defence against infection. They act at the sites of inflammation, where the harsh microenvironment and the oxidative stress lead to the release of free iron ions and haeme. The aim of this study was to analyse the consequences of the exposure of C1q and immunoglobulins to iron ions or haeme. The changes in target recognition by C1q and in the rheumatoid factor activity of the immunoglobulins were investigated. The exposure of C1q to ferrous ions increased its binding to IgG and to IgM. In contrast, haeme inhibited C1q binding to all studied targets, especially to IgG1 and C-reactive protein. Thus, the haeme released as a result of tissue damage and oxidative stress may act as a negative feedback regulator of an inappropriate complement triggering as seen in ischaemia-reperfusion tissue injury. The results also show that iron ions and haeme were able to reveal rheumatoid factor activity of IgG. The modulation of the C1q-target binding as well as the revealing of rheumatoid factor activity of IgG by exposure to redox-active agents released at the sites of inflammation may have important consequences for the understanding of the immunopathological mechanisms of inflammatory and autoimmune diseases.

  15. Ecallantide is a novel treatment for attacks of hereditary angioedema due to C1 inhibitor deficiency

    Directory of Open Access Journals (Sweden)

    Farkas H

    2011-05-01

    Full Text Available Henriette Farkas, Lilian Varga3rd Department of Internal Medicine, Semmelweis University, Budapest, HungaryAbstract: Hereditary angioedema (HAE resulting from the deficiency of the C1 inhibitor protein is a rare disease, characterized by paroxysms of edema formation in the subcutis and in the submucosa. Edema can cause obstruction of the upper airway, which may lead to suffocation. Prompt elimination of edema is necessary to save patients from this life-threatening condition. Essentially, these edematous attacks are related to the activation of the kinin-kallikrein system and the consequent release of bradykinin. Ecallantide (known as DX-88 previously, a potent and specific inhibitor of plasma kallikrein is an innovative medicinal product. This is the only agent approved recently by the FDA for all localizations of edematous HAE attacks. Its advantages include no risk of viral contamination, high selectivity, very rapid onset of action, good tolerability, and straightforward subcutaneous administration. Owing to the risk of anaphylaxis, ecallantide should be administered by a health care professional. A postmarketing survey to improve risk-assessment and risk-minimization has been launched. The results of these studies may lead to the approval of ecallantide for self-administration.Keywords: hereditary angioedema, C1-inhibitor deficiency, treatment, bradykinin, kallikrein inhibitor, subcutaneous administration

  16. Identification and characterization of a novel gene, c1orf109, encoding a CK2 substrate that is involved in cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    Liu Shan-shan

    2012-05-01

    Full Text Available Abstract Background In the present study we identified a novel gene, Homo Sapiens Chromosome 1 ORF109 (c1orf109, GenBank ID: NM_017850.1, which encodes a substrate of CK2. We analyzed the regulation mode of the gene, the expression pattern and subcellular localization of the predicted protein in the cell, and its role involving in cell proliferation and cell cycle control. Methods Dual-luciferase reporter assay, chromatin immunoprecipitation and EMSA were used to analysis the basal transcriptional requirements of the predicted promoter regions. C1ORF109 expression was assessed by western blot analysis. The subcellular localization of C1ORF109 was detected by immunofluorescence and immune colloidal gold technique. Cell proliferation was evaluated using MTT assay and colony-forming assay. Results We found that two cis-acting elements within the crucial region of the c1orf109 promoter, one TATA box and one CAAT box, are required for maximal transcription of the c1orf109 gene. The 5′ flanking region of the c1orf109 gene could bind specific transcription factors and Sp1 may be one of them. Employing western blot analysis, we detected upregulated expression of c1orf109 in multiple cancer cell lines. The protein C1ORF109 was mainly located in the nucleus and cytoplasm. Moreover, we also found that C1ORF109 was a phosphoprotein in vivo and could be phosphorylated by the protein kinase CK2 in vitro. Exogenous expression of C1ORF109 in breast cancer Hs578T cells induced an increase in colony number and cell proliferation. A concomitant rise in levels of PCNA (proliferating cell nuclear antigen and cyclinD1 expression was observed. Meanwhile, knockdown of c1orf109 by siRNA in breast cancer MDA-MB-231 cells confirmed the role of c1orf109 in proliferation. Conclusions Taken together, our findings suggest that C1ORF109 may be the downstream target of protein kinase CK2 and involved in the regulation of cancer cell proliferation.

  17. Role of apoCs in lipoprotein metabolism : Functional differences between ApoC1, ApoC2, and ApoC3

    NARCIS (Netherlands)

    Jong, M.C.; Hofker, M.H.; Havekes, L.M.

    1999-01-01

    The human apoCs (ie, apoC1, apoC2, and apoC3) are often portrayed as members of 1 consistent protein family because of their similar distributions among lipoprotein classes, their low molecular weights, and coincident purification. The human apoCs are protein constituents of chylomicrons, VLDL, and

  18. Bicaudal C1 promotes pancreatic NEUROG3+ endocrine progenitor differentiation and ductal morphogenesis

    DEFF Research Database (Denmark)

    Lemaire, Laurence A; Goulley, Joan; Kim, Yung Hae

    2015-01-01

    In human, mutations in bicaudal C1 (BICC1), an RNA binding protein, have been identified in patients with kidney dysplasia. Deletion of Bicc1 in mouse leads to left-right asymmetry randomization and renal cysts. Here, we show that BICC1 is also expressed in both the pancreatic progenitor cells...... that line the ducts during development, and in the ducts after birth, but not in differentiated endocrine or acinar cells. Genetic inactivation of Bicc1 leads to ductal cell over-proliferation and cyst formation. Transcriptome comparison between WT and Bicc1 KO pancreata, before the phenotype onset, reveals...... that PKD2 functions downstream of BICC1 in preventing cyst formation in the pancreas. Moreover, the analysis highlights immune cell infiltration and stromal reaction developing early in the pancreas of Bicc1 knockout mice. In addition to these functions in duct morphogenesis, BICC1 regulates NEUROG3...

  19. Nuclear Localization of the C1 Factor (Host Cell Factor) in Sensory Neurons Correlates with Reactivation of Herpes Simplex Virus from Latency

    Science.gov (United States)

    Kristie, Thomas M.; Vogel, Jodi L.; Sears, Amy E.

    1999-02-01

    After a primary infection, herpes simplex virus is maintained in a latent state in neurons of sensory ganglia until complex stimuli reactivate viral lytic replication. Although the mechanisms governing reactivation from the latent state remain unknown, the regulated expression of the viral immediate early genes represents a critical point in this process. These genes are controlled by transcription enhancer complexes whose assembly requires and is coordinated by the cellular C1 factor (host cell factor). In contrast to other tissues, the C1 factor is not detected in the nuclei of sensory neurons. Experimental conditions that induce the reactivation of herpes simplex virus in mouse model systems result in rapid nuclear localization of the protein, indicating that the C1 factor is sequestered in these cells until reactivation signals induce a redistribution of the protein. The regulated localization suggests that C1 is a critical switch determinant of the viral lytic-latent cycle.

  20. LPS-binding protein-deficient mice have an impaired defense against Gram-negative but not Gram-positive pneumonia

    NARCIS (Netherlands)

    Branger, Judith; Florquin, Sandrine; Knapp, Sylvia; Leemans, Jaklien C.; Pater, Jennie M.; Speelman, Peter; Golenbock, Douglas T.; van der Poll, Tom

    2004-01-01

    LPS-binding protein (LBP) can facilitate the transfer of cell wall components of both Gram-negative bacteria (LPS) and Gram-positive bacteria (lipoteichoic acid) to inflammatory cells. Although LBP is predominantly produced in the liver, recent studies have indicated that this protein is also

  1. A mutation in the glutamate-rich region of RNA-binding motif protein 20 causes dilated cardiomyopathy through missplicing of titin and impaired Frank-Starling mechanism

    DEFF Research Database (Denmark)

    Beqqali, Abdelaziz; Bollen, I. A. E.; Rasmussen, T. B.

    2016-01-01

    -rich region of RBM20. Western blot analysis of endogenous RBM20 protein revealed strongly reduced protein levels in the heart of an RBM20(E913K/+) carrier. RNA deep-sequencing demonstrated massive inclusion of exons coding for the spring region of titin in the RBM20(E913K/+) carrier. Titin isoform analysis...

  2. Edible Safety Assessment of Genetically Modified Rice T1C-1 for Sprague Dawley Rats through Horizontal Gene Transfer, Allergenicity and Intestinal Microbiota.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1 studying horizontal gene transfer (HGT in Sprague Dawley rats fed transgenic rice for 90 d; (2 examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3 studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota.

  3. Binding of Streptococcus pneumoniae Endopeptidase O (PepO) to Complement Component C1q Modulates the Complement Attack and Promotes Host Cell Adherence*

    Science.gov (United States)

    Agarwal, Vaibhav; Sroka, Magdalena; Fulde, Marcus; Bergmann, Simone; Riesbeck, Kristian; Blom, Anna M.

    2014-01-01

    The Gram-positive species Streptococcus pneumoniae is a human pathogen causing severe local and life-threatening invasive diseases associated with high mortality rates and death. We demonstrated recently that pneumococcal endopeptidase O (PepO) is a ubiquitously expressed, multifunctional plasminogen and fibronectin-binding protein facilitating host cell invasion and evasion of innate immunity. In this study, we found that PepO interacts directly with the complement C1q protein, thereby attenuating the classical complement pathway and facilitating pneumococcal complement escape. PepO binds both free C1q and C1 complex in a dose-dependent manner based on ionic interactions. Our results indicate that recombinant PepO specifically inhibits the classical pathway of complement activation in both hemolytic and complement deposition assays. This inhibition is due to direct interaction of PepO with C1q, leading to a strong activation of the classical complement pathway, and results in consumption of complement components. In addition, PepO binds the classical complement pathway inhibitor C4BP, thereby regulating downstream complement activation. Importantly, pneumococcal surface-exposed PepO-C1q interaction mediates bacterial adherence to host epithelial cells. Taken together, PepO facilitates C1q-mediated bacterial adherence, whereas its localized release consumes complement as a result of its activation following binding of C1q, thus representing an additional mechanism of human complement escape by this versatile pathogen. PMID:24739385

  4. Presence of the resistance genes vanC1 and pbp5 in phenotypically vancomycin and ampicillin susceptible Enterococcus faecalis.

    Science.gov (United States)

    Schwaiger, Karin; Bauer, Johann; Hörmansdorfer, Stefan; Mölle, Gabriele; Preikschat, Petra; Kämpf, Peter; Bauer-Unkauf, Ilse; Bischoff, Meike; Hölzel, Christina

    2012-08-01

    Ampicillin and vancomycin are important antibiotics for the therapy of Enterococcus faecalis infections. The ampicillin resistance gene pbp5 is intrinsic in Enterococcus faecium. The vanC1 gene confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Both genes are chromosomally located. Resistance to ampicillin and vancomycin was determined in 484 E. faecalis of human and porcine origin by microdilution. Since E. faecalis are highly skilled to acquire resistance genes, all strains were investigated for the presence of pbp5 (and, in positive strains, for the penicillin-binding protein synthesis repressor gene psr) and vanC1 (and, in positive strains, for vanXYc and vanT) by using polymerase chain reaction (PCR). One porcine and one human isolate were phenotypically resistant to ampicillin; no strain was vancomycin resistant. Four E. faecalis (3/1 of porcine/human origin) carried pbp5 (MIC=1 mg/L), and four porcine strains were vanC1 positive (minimum inhibitory concentration [MIC]=1 mg/L). Real-time reverse transcriptase (RT)-PCR revealed that the genes were not expressed. The psr gene was absent in the four pbp5-positive strains; the vanXYc gene was absent in the four vanC1-positive strains. However, vanT of the vanC gene cluster was detected in two vanC1-positive strains. To our knowledge, this is the first report on the presence of pbp5, identical with the "E. faecium pbp5 gene," and of vanC1/vanT in E. faecalis. Even if resistance is not expressed in these strains, this study shows that E. faecalis have a strong ability to acquire resistance genes-and potentially to spread them to other bacteria. Therefore, close monitoring of this species should be continued.

  5. Acquired Form of Angioedema of the Head and Neck Related to a Deficiency in C1-Inhibitor: A Case Report with a Review of the Literature

    Directory of Open Access Journals (Sweden)

    Bassel Hallak

    2012-01-01

    Full Text Available Angioedema related to a deficiency in the C1-inhibitor protein is characterized by its lack of response to therapies including antihistamine, steroids, and epinephrine. In the case of laryngeal edema, mortality rate is approximately 30 percent. The first case of the acquired form of angioedema related to a deficiency in C1-inhibitor was published in 1972. In our paper, we present a case of an acquired form of angioedema of the oropharyngeal region secondary to the simultaneous occurrence of two causative factors: neutralization of C1-inhibitor by an autoantibody and the use of an angiotensin convertin enzyme inhibitor.

  6. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses1

    Science.gov (United States)

    Belkina, Anna C.; Nikolajczyk, Barbara S.; Denis, Gerald V.

    2013-01-01

    Histone acetylation regulates activation and repression of multiple inflammatory genes known to play critical roles in chronic inflammatory diseases. However, proteins responsible for translating the histone acetylation code into an orchestrated pro-inflammatory cytokine response remain poorly characterized. Bromodomain extra terminal (BET) proteins are “readers” of histone acetylation marks with demonstrated roles in gene transcription, but the ability of BET proteins to coordinate the response of inflammatory cytokine genes through translation of histone marks is unknown. We hypothesize that members of the BET family of dual bromodomain-containing transcriptional regulators directly control inflammatory genes. We examined the genetic model of brd2 lo mice, a BET protein hypomorph, to show that Brd2 is essential for pro-inflammatory cytokine production in macrophages. Studies that utilize siRNA knockdown and a small molecule inhibitor of BET protein binding, JQ1, independently demonstrate BET proteins are critical for macrophage inflammatory responses. Furthermore, we show that Brd2 and Brd4 physically associate with the promoters of inflammatory cytokine genes in macrophages. This association is absent in the presence of BET inhibition by JQ1. Finally, we demonstrate that JQ1 ablates cytokine production in vitro and blunts the “cytokine storm” in endotoxemic mice by reducing levels of IL-6 and TNF-α while rescuing mice from LPS-induced death. We propose that targeting BET proteins with small molecule inhibitors will benefit hyper-inflammatory conditions associated with high levels of cytokine production. PMID:23420887

  7. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses.

    Science.gov (United States)

    Belkina, Anna C; Nikolajczyk, Barbara S; Denis, Gerald V

    2013-04-01

    Histone acetylation regulates activation and repression of multiple inflammatory genes known to play critical roles in chronic inflammatory diseases. However, proteins responsible for translating the histone acetylation code into an orchestrated proinflammatory cytokine response remain poorly characterized. Bromodomain and extraterminal (BET) proteins are "readers" of histone acetylation marks, with demonstrated roles in gene transcription, but the ability of BET proteins to coordinate the response of inflammatory cytokine genes through translation of histone marks is unknown. We hypothesize that members of the BET family of dual bromodomain-containing transcriptional regulators directly control inflammatory genes. We examined the genetic model of brd2 lo mice, a BET protein hypomorph, to show that Brd2 is essential for proinflammatory cytokine production in macrophages. Studies that use small interfering RNA knockdown and a small-molecule inhibitor of BET protein binding, JQ1, independently demonstrate BET proteins are critical for macrophage inflammatory responses. Furthermore, we show that Brd2 and Brd4 physically associate with the promoters of inflammatory cytokine genes in macrophages. This association is absent in the presence of BET inhibition by JQ1. Finally, we demonstrate that JQ1 ablates cytokine production in vitro and blunts the "cytokine storm" in endotoxemic mice by reducing levels of IL-6 and TNF-α while rescuing mice from LPS-induced death. We propose that targeting BET proteins with small-molecule inhibitors will benefit hyperinflammatory conditions associated with high levels of cytokine production.

  8. Human diploid fibroblasts have receptors for the globular domain of C1Q

    International Nuclear Information System (INIS)

    Bordin, S.; Page, R.C.

    1986-01-01

    The authors showed that mass cultures of fibroblasts grown from gingival explants in DB medium with 10% human serum are enriched in a phenotype that binds C1q with an affinity much higher than the rest of the population. Because of potential biologic importance of C1q receptors, the authors studied whether the interaction between C1q and this phenotype was mediated by the globular or collagenous domains of the molecule. Globular fragments were prepared by digesting C1q with collagenase, and collagenous fragments obtained after pepsin treatment. C1q binding on cells in suspension was determined by reaction with 125 I-C1q as reported. Competition experiments were performed under conditions in which intact 125 I-C1q binding saturated all available receptors. The results showed that collagenous fragments inhibited 20% of the 125 I-C1q binding to high affinity receptors, whereas inhibition by globular fragments was 70%. Unlabeled intact C1q and collagen type 1 were used as controls, and inhibited 92% and 17% of C1q binding, respectively. These studies show that C1q interacts with the fibroblast phenotype expressing high affinity receptors through its globular domain. The authors suggest that at sites of trauma, native C1 may bind to the surface of these cells via the globular domain of C1q, and that this unique phenotype may play an important role in tissue repair

  9. Self-administration of C1-inhibitor concentrate in patients with hereditary or acquired angioedema caused by C1-inhibitor deficiency

    NARCIS (Netherlands)

    Levi, Marcel; Choi, Goda; Picavet, Charles; Hack, C. Erik

    2006-01-01

    BACKGROUND: Administration of C1-inhibitor concentrate is effective for prophylaxis and treatment of severe angioedema attacks caused by C1-inhibitor deficiency. The concentrate should be administered intravenously and hence needs to be administered by health care professionals, which might cause

  10. Chronic C1-C2 Rotatory Subluxation Reduced by C1 Lateral Mass Screws and C2 Translaminar Screws: A Case Report.

    Science.gov (United States)

    Lavelle, William F; Palomino, Kathryn; Badve, Siddharth A; Albanese, Stephen A

    C1-C2 rotatory subluxation can result from a variety or etiologies. Pediatric patients are particularly susceptible to C1-C2 rotatory subluxation. If left untreated the condition is termed an atlantoaxial rotatory fixation (AARF) and chronic neck pain and deformity can result. Patients failing conservative treatment or those with recurrent or chronic rotatory subluxation may require halo treatment or surgical intervention. This illustrative case report is about a patient with chronic C1-C2 AARF who was treated with C1 lateral mass screws and C2 translaminar screws, a treatment that has not been addressed by this technique in a pediatric population. This is a retrospective case review. After an unsuccessful attempt at reduction, an 11-year-old girl underwent surgery to treat her C1-C2 AARF. Through an all posterior approach, screws were placed bilaterally into the C1 lateral masses followed by the placement of C2 translaminar screws bilaterally. A small amount of distraction was applied through the screw construct to open up the C1-C2 articulation and the AARF was open reduced and fused. A detailed postoperative computed tomographic scan focused on the occiput C1-C2 joint confirmed the anatomical reduction of the joint complex. The patient had cosmetically pleasing relief of her torticollis and was doing well at 60 months after surgery. Level IV.

  11. A new strategy for inhibition of the spoilage yeasts Saccharomyces cerevisiae and Zygosaccharomyces bailii based on combination of a membrane-active peptide with an oligosaccharide that leads to an impaired glycosylphosphatidylinositol (GPI)-dependent yeast wall protein layer.

    Science.gov (United States)

    Bom, I J; Klis, F M; de Nobel, H; Brul, S

    2001-12-01

    Glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in yeast are connected to the beta-1,3-glucan network via a beta-1,6-glucan moiety. Addition of gentiobiose or beta-1,6-glucan oligomers to growing cells affected the construction of a normal layer of GPI-dependent cell wall proteins at the outer rim of the Saccharomyces cerevisiae cell wall. Treated S. cerevisiae cells secreted significant amounts of cell wall protein 2, were much more sensitive to the lytic action of zymolyase 20T and displayed a marked increase in sensitivity to the small amphipathic antimicrobial peptide MB-21. Similar results in terms of sensitization of yeast cells to the antimicrobial peptide were obtained with the notorious food spoilage yeast Zygosaccharomyces bailii. Our results indicate that treating cells with a membrane-perturbing compound together with compounds that lead to an impaired construction of a normal GPI-dependent yeast wall protein layer represents an effective strategy to prevent the growth of major food spoilage yeasts.

  12. Determination of the complement components C1q, C4 and C3 in serum and cerebrospinal fluid by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Dujardin, B.C.G.; Roijers, A.F.M.; Driedijk, P.C.; Out, T.A.

    1985-06-25

    Non-competitive 2-site radioimmunoassays (RIA) for the determination of the complement proteins C1q, C4 and C3 in cerebrospinal fluid (CSF) are described. The quantitative results of the RIAs were the same as those obtained by other assay methods: radial immunodiffusion and turbidimetry and, in the case of C4, the haemolytic assay. The ratios (concentration in CSF)/(concentration in serum) of the complement proteins correlated poorly with that of albumin. In contrast, the ratio of IgG was significantly correlated with that of albumin. The ratios of the complement proteins were higher than might be expected on the basis of their molecular masses. This suggests that these proteins may be synthesized within the normal central nervous system. (Auth.). 20 refs.; 3 figs.; 3 tabs.

  13. A New Role for an Old Antimicrobial: Lysozyme c-1 Can Function to Protect Malaria Parasites in Anopheles Mosquitoes

    Science.gov (United States)

    Li, Bin; Luckhart, Shirley; Li, Jianyong; Paskewitz, Susan M.

    2011-01-01

    Background Plasmodium requires an obligatory life stage in its mosquito host. The parasites encounter a number of insults while journeying through this host and have developed mechanisms to avoid host defenses. Lysozymes are a family of important antimicrobial immune effectors produced by mosquitoes in response to microbial challenge. Methodology/Principal Findings A mosquito lysozyme was identified as a protective agonist for Plasmodium. Immunohistochemical analyses demonstrated that Anopheles gambiae lysozyme c-1 binds to oocysts of Plasmodium berghei and Plasmodium falciparum at 2 and 5 days after infection. Similar results were observed with Anopheles stephensi and P. falciparum, suggesting wide occurrence of this phenomenon across parasite and vector species. Lysozyme c-1 did not bind to cultured ookinetes nor did recombinant lysozyme c-1 affect ookinete viability. dsRNA-mediated silencing of LYSC-1 in Anopheles gambiae significantly reduced the intensity and the prevalence of Plasmodium berghei infection. We conclude that this host antibacterial protein directly interacts with and facilitates development of Plasmodium oocysts within the mosquito. Conclusions/Significance This work identifies mosquito lysozyme c-1 as a positive mediator of Plasmodium development as its reduction reduces parasite load in the mosquito host. These findings improve our understanding of parasite development and provide a novel target to interrupt parasite transmission to human hosts. PMID:21573077

  14. The role of ficolins and MASPs in hereditary angioedema due to C1-inhibitor deficiency

    DEFF Research Database (Denmark)

    Csuka, Dorottya; Munthe-Fog, Lea; Skjoedt, Mikkel-Ole

    2013-01-01

    Hereditary angioedema due to C1-inhibitor deficiency (HAE-C1-INH) causes disturbances in the complement system. However, the influence of HAE-C1-INH on the lectin pathway of complement is unresolved. Thus, we studied the main initiator molecules, enzymes and regulators in the lectin pathway...

  15. Safety of C1-Esterase Inhibitor in Acute and Prophylactic Therapy of Hereditary Angioedema

    DEFF Research Database (Denmark)

    Busse, Paula; Bygum, Anette; Edelman, Jonathan

    2014-01-01

    BACKGROUND: The plasma-derived, pasteurized C1-inhibitor (C1-INH) concentrate, Berinert has a 4-decade history of use in hereditary angioedema (HAE), with a substantial literature base that demonstrates safety and efficacy. Thromboembolic events have rarely been reported with C1-INH products, typ...

  16. 26 CFR 1.666(c)-1A - Pro rata portion of taxes deemed distributed.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Pro rata portion of taxes deemed distributed. 1.666(c)-1A Section 1.666(c)-1A Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Taxable Years Beginning Before January 1, 1969 § 1.666(c)-1A Pro rata portion of taxes deemed distributed...

  17. 26 CFR 1.666(c)-1 - Pro rata portion of taxes deemed distributed.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Pro rata portion of taxes deemed distributed. 1.666(c)-1 Section 1.666(c)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Taxable Years Beginning Before January 1, 1969 § 1.666(c)-1 Pro rata portion of taxes deemed distributed...

  18. 26 CFR 1.860C-1 - Taxation of holders of residual interests.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Taxation of holders of residual interests. 1.860C-1 Section 1.860C-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Real Estate Investment Trusts § 1.860C-1 Taxation of holders...

  19. Prevalence and clinical significance of anti-C1q antibodies in ...

    African Journals Online (AJOL)

    Autoantibodies against C1q are strongly linked to immune-complex disorders like systemic lupus erythematosus (SLE). Although anti-C1q antibodies have received much interest in the recent years, their biological functions remain unclear. Anti-C1q antibodies are strongly associated with lupus nephritis. The aim of this ...

  20. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons.

    Science.gov (United States)

    Fallini, Claudia; Donlin-Asp, Paul G; Rouanet, Jeremy P; Bassell, Gary J; Rossoll, Wilfried

    2016-03-30

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels ofGAP43mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restoresGAP43mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite outgrowth and stabilization

  1. Mouse embryonic stem cells that express a NUP98-HOXD13 fusion protein are impaired in their ability to differentiate and can be complemented by BCR-ABL.

    Science.gov (United States)

    Slape, Christopher; Chung, Yang Jo; Soloway, Paul D.; Tessarollo, Lino; Aplan, Peter D

    2007-01-01

    NUP98-HOXD13 (NHD13) fusions have been identified in patients with myelodysplastic syndrome (MDS), acute myelogenous leukemia (AML) and chronic myeloid leukemia blast crisis (CML-BC). We generated “knock-in” mouse embryonic stem (ES) cells that express a NHD13 fusion gene from the endogenous murine NUP98 promoter, and used an in vitro differentiation system to differentiate the ES cells to haematopoietic colonies. Replating assays demonstrated that the partially differentiated NHD13 ES cells were immortal, and two of these cultures were transferred to liquid culture. These cell lines are partially differentiated immature haematopoietic cells, as determined by morphology, immunophenotype and gene expression profile. Despite these characteristics, they were unable to differentiate when exposed to high concentrations of Epo, G-CSF, or M-CSF. The cell lines are incompletely transformed, as evidenced by their dependence on IL3, and their failure to initiate tumours when injected into immunodeficient mice. We attempted genetic complementation of the NHD13 gene using IL3 independence and tumorigenicity in immunodeficient mice as markers of transformation, and found that BCR-ABL successfully transformed the cell lines. These findings support the hypothesis that expression of a NHD13 fusion gene impairs haematopoietic differentiation, and that these cell lines present a model system to study the nature of this impaired differentiation. PMID:17377591

  2. Visual impairment in the hearing impaired students

    OpenAIRE

    Gogate Parikshit; Rishikeshi Nikhil; Mehata Reshma; Ranade Satish; Kharat Jitesh; Deshpande Madan

    2009-01-01

    Background : Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. Aim : To detect and treat visual impairment, if any, in hearing-impaired children. Setting and Design : Observational, clinical case series of hearing-impaired children in schools providing special education. Materials and Methods : Hearing-impaired children in selected schools underwent detailed vis...

  3. χc1 and χc2 Resonance Parameters with the Decays χc1,c2 →j /ψμ+μ-

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Ajaltouni, Z.; Akar, S.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; D'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M. O.; Van Beuzekom, M.; Bezshyiko, Ia; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J.V.; Bowen, E.; Bozzi, C.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph; Chatzikonstantinidis, G.; Chefdeville, M.; Cheung, S. F.; Chitic, S. G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E.L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H. P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luchinsky, A.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M. N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J.G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; Dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva De Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, J.; Smith, M.; Soares Lavra, L.; Sokoloff, M. D.; Soler, F. J.P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, M.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhelezov, A.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.

    2017-01-01

    The decays χc1→J/ψμ+μ- and χc2→J/ψμ+μ- are observed and used to study the resonance parameters of the χc1 and χc2 mesons. The masses of these states are measured to be m(χc1)=3510.71±0.04(stat)±0.09(syst) MeV and m(χc2)=3556.10±0.06(stat)±0.11(syst) MeV, where the knowledge of the momentum scale for

  4. Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor.

    Science.gov (United States)

    Huang, Shanshan; Ling, Joseph J; Yang, Su; Li, Xiao-Jiang; Li, Shihua

    2011-07-01

    The polyglutamine diseases consist of nine neurodegenerative disorders including spinocerebellar ataxia type 17 that is caused by a polyglutamine tract expansion in the TATA box-binding protein. In all polyglutamine diseases, polyglutamine-expanded proteins are ubiquitously expressed throughout the body but cause selective neurodegeneration. Understanding the specific effects of polyglutamine-expanded proteins, when expressed at the endogenous levels, in neurons is important for unravelling the pathogenesis of polyglutamine diseases. However, addressing this important issue using mouse models that either overly or ubiquitously express mutant polyglutamine proteins in the brain and body has proved difficult. To investigate the pathogenesis of spinocerebellar ataxia 17, we generated a conditional knock-in mouse model that expresses one copy of the mutant TATA box-binding protein gene, which encodes a 105-glutamine repeat, selectively in neuronal cells at the endogenous level. Neuronal expression of mutant TATA box-binding protein causes age-dependent neurological symptoms in mice and the degeneration of cerebellar Purkinje cells. Mutant TATA box-binding protein binds more tightly to the transcription factor nuclear factor-Y, inhibits its association with the chaperone protein promoter, as well as the promoter activity and reduces the expression of the chaperones Hsp70, Hsp25 and HspA5, and their response to stress. These findings demonstrate how mutant TATA box-binding protein at the endogenous level affects neuronal function, with important implications for the pathogenesis and treatment of polyglutamine diseases.

  5. C1-inhibitor polymers activate the FXII-dependent kallikrein-kinin system

    DEFF Research Database (Denmark)

    Elenius Madsen, Daniel; Sidelmann, Johannes Jakobsen; Biltoft, Daniel

    2015-01-01

    attacks. HAE is caused by mutations in the C1-inh encoding gene, and we recently demonstrated that some mutations give rise to the presence of polymerized C1-inh in the plasma of HAE patients. METHODS: C1-inh polymers corresponding to the size of polymers observed in vivo were produced using heat...... denaturation and gel filtration. The ability of these polymers to facilitate FXII activation was assessed in vitro in an FXII activation bandshift assay. After spiking of plasma with C1-inh polymers, kallikrein generation was analyzed in a global kallikrein generation method. Prekallikrein consumption...... in the entire Danish HAE cohort was analyzed using an ELISA method. RESULTS: C1-inh polymers mediated FXII activation, and a dose dependent kallikrein generation in plasma spiked with C1-inh polymers. An increased (pre)kallikrein consumption was observed in plasma samples from HAE patients presenting with C1...

  6. Marked variability in clinical presentation and outcome of patients with C1q immunodeficiency

    DEFF Research Database (Denmark)

    van Schaarenburg, Rosanne A; Schejbel, Lone; Truedsson, Lennart

    2015-01-01

    OBJECTIVE: Globally approximately 60 cases of C1q deficiency have been described with a high prevalence of Systemic Lupus Erythematosus (SLE). So far treatment has been guided by the clinical presentation rather than the underlying C1q deficiency. Recently, it was shown that C1q production can...... survey, of clinicians treating C1q deficient patients. A high response rate of >70% of the contacted clinicians yielded information on 45 patients with C1q deficiency of which 25 are published. RESULTS: Follow-up data of 45 patients from 31 families was obtained for a median of 11 years after diagnosis......-fatality before the age of 20, and at least 50% of patients are expected to reach their middle ages. CONCLUSION: Here we report the largest phenotypic data set on C1q deficiency to date, revealing high variance; with high mortality but also a subset of patients with an excellent prognosis. Management of C1q...

  7. Draft Genome Sequence of a Chitinase-producing Biocontrol Bacterium Serratia sp. C-1

    Directory of Open Access Journals (Sweden)

    Seur Kee Park

    2015-09-01

    Full Text Available The chitinase-producing bacterial strain C-1 is one of the key chitinase-producing biocontrol agents used for effective bioformulations for biological control. These bioformulations are mixed cultures of various chitinolytic bacteria. However, the precise identification, biocontrol activity, and the underlying mechanisms of the strain C-1 have not been investigated so far. Therefore, we evaluated in planta biocontrol efficacies of C-1 and determined the draft genome sequence of the strain in this study. The bacterial C-1 strain was identified as a novel Serratia sp. by a phylogenic analysis of its 16S rRNA sequence. The Serratia sp. C-1 bacterial cultures showed strong in planta biocontrol efficacies against some major phytopathogenic fungal diseases. The draft genome sequence of Serratia sp. C-1 indicated that the C-1 strain is a novel strain harboring a subset of genes that may be involved in its biocontrol activities.

  8. Presence of C1-inhibitor polymers in a subset of patients suffering from hereditary angioedema.

    Directory of Open Access Journals (Sweden)

    Daniel Elenius Madsen

    Full Text Available Hereditary angioedema (HAE is a potentially life-threatening disease caused by mutations in the gene encoding the serine protease inhibitor (serpin C1 inhibitor (C1-inh. The mutations cause decreased functional plasma levels of C1-inh, which triggers unpredictable recurrent edema attacks. Subjects suffering from HAE have been classified in type I patients with decreased functional and antigenic levels of C1-inh, and type II patients with decreased functional but normal antigenic C1-inh levels. However, a few reports have demonstrated that some mutations cause C1-inh polymerization in vitro, and it is speculated that C1-inh polymers may exist in patient plasma, challenging the current classification of HAE patients. To investigate the presence of C1-inh polymers in patient plasma samples, we developed an immunological method, where monoclonal antibodies produced against polymerized C1-inh were applied in native PAGE western blotting. Using this approach we analyzed genuine plasma samples from 31 Danish HAE families, and found that plasma samples from three genotypically distinct HAE type I families (classified upon C1-inh plasma concentrations contained C1-inh polymers. Identical C1-inh polymerization phenotypes were observed in four affected family members from one of these families. Genotyping of the families revealed that the polymerogenic mutations of two families were located in proximity to the reactive center loop insertion site in C1-inh (p.Ile271Thr and p.Ser258_Pro260del,and one mutation affected helix C (p.Thr167Asn. In conclusion, we demonstrate that C1-inh polymers are present in the plasma of a subgroup of HAE type I patients.

  9. Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; DiRusso, C C; Elberger, A

    1997-01-01

    The yeast Saccharomyces cerevisiae is able to utilize exogenous fatty acids for a variety of cellular processes including beta-oxidation, phospholipid biosynthesis, and protein modification. The molecular mechanisms that govern the uptake of these compounds in S. cerevisiae have not been describe...

  10. Tubulin Polymerization-promoting Protein (TPPP/p25α) Promotes Unconventional Secretion of α-Synuclein through Exophagy by Impairing Autophagosome-Lysosome Fusion

    DEFF Research Database (Denmark)

    Ejlerskov, Patrick; Rasmussen, Izabela; Nielsen, Troels Tolstrup

    2013-01-01

    Aggregation of α-synuclein can be promoted by the tubulin polymerization-promoting protein/p25α, which we have used here as a tool to study the role of autophagy in the clearance of α-synuclein. In NGF-differentiated PC12 catecholaminergic nerve cells, we show that de novo expressed p25α co...

  11. Leucine supplementation does not affect protein turnover and impairs the beneficial effects of endurance training on glucose homeostasis in healthy mice.

    Science.gov (United States)

    Costa Júnior, José M; Rosa, Morgana R; Protzek, André O; de Paula, Flávia M; Ferreira, Sandra M; Rezende, Luiz F; Vanzela, Emerielle C; Zoppi, Cláudio C; Silveira, Leonardo R; Kettelhut, Isis C; Boschero, Antonio C; de Oliveira, Camila A M; Carneiro, Everardo M

    2015-04-01

    Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160(Thr-642) (AKT substrate of 160 kDa) and AMPK(Thr-172) (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis.

  12. Posterior C1-C2 screw-rod fixation and autograft fusion for the treatment of os odontoideum with C1-C2 instability.

    Science.gov (United States)

    Huang, Da-Geng; Wang, Tao; Hao, Ding-Jun; He, Bao-Rong; Liu, Tuan-Jiang; Ma, Xiao-Wen; Yu, Cheng-Cheng; Feng, Hang; Zhao, Song-Chuan; Hui, Hua

    2017-12-01

    To report our experience treating os odontoideum with C1-C2 instability via C1-C2 screw-rod fixation and autograft fusion and to explore the clinical efficacy of such a treatment strategy. We retrospectively reviewed the medical records of patients who were diagnosed with os odontoideum with C1-C2 instability and treated by posterior C1-C2 screw-rod fixation and fusion. Neurological deficits were measured with the Japanese Orthopedic Association (JOA) scoring system and neck pain was assessed using the Visual Analogue Scale (VAS) score. Fusion was determined based on the presence of bridging bone in computed tomography (CT) imaging, whereas stability was determined based on the lack of movement in dynamic radiographs. Thirty-two patients (18 males) were included in the study. The surgery was successfully accomplished in all patients. Thirty (93.8%) patients had confirmed C1-C2 bony fusion in CT images and all patients (100%) were stable in dynamic radiographs. The mean preoperative JOA score was 14.3±1.4 (range 11-16); at the final visit, it increased to 16.2±0.8 (range 14-17) (pos odontoideum with C1-C2 instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Recovery of stress-impaired social behavior by an antagonist of the CRF binding protein, CRF6-33,in the bed nucleus of the stria terminalis of male rats.

    Science.gov (United States)

    Vasconcelos, Mailton; Stein, Dirson J; Albrechet-Souza, Lucas; Miczek, Klaus A; de Almeida, Rosa Maria M

    2018-01-09

    Social stress is recognized to promote the development of neuropsychiatric and mood disorders. Corticotropin releasing factor (CRF) is an important neuropeptide activated by social stress, and it contributes to neural and behavioral adaptations, as indicated by impaired social interactions and anhedonic effects. Few studies have focused on the role of the CRF binding protein (CRFBP), a component of the CRF system, and its activity in the bed nucleus of stria terminalis (BNST), a limbic structure connecting amygdala and hypothalamus. In this study, animals' preference for sweet solutions was examined as an index of stress-induced anhedonic responses in Wistar rats subjected to four brief intermittent episodes of social defeat. Next, social approach was assessed after local infusions of the CRFBP antagonist, CRF fragment 6-33 (CRF 6-33 ) into the BNST. The experience of brief episodes of social defeat impaired social approach behaviors in male rats. However, intra-BNST CRF 6-33 infusions restored social approach in stressed animals to the levels of non-stressed rats. CRF 6-33 acted selectively on social interaction and did not alter general exploration in nether stressed nor non-stressed rats. These findings suggest that BNST CRFBP is involved in the modulation of anxiety-like responses induced by social stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Catalytic autoantibodies against myelin basic protein (MBP) isolated from serum of autistic children impair in vitro models of synaptic plasticity in rat hippocampus.

    Science.gov (United States)

    Gonzalez-Gronow, Mario; Cuchacovich, Miguel; Francos, Rina; Cuchacovich, Stephanie; Blanco, Angel; Sandoval, Rodrigo; Gomez, Cristian Farias; Valenzuela, Javier A; Ray, Rupa; Pizzo, Salvatore V

    2015-10-15

    Autoantibodies from autistic spectrum disorder (ASD) patients react with multiple proteins expressed in the brain. One such autoantibody targets myelin basic protein (MBP). ASD patients have autoantibodies to MBP of both the IgG and IgA classes in high titers, but no autoantibodies of the IgM class. IgA autoantibodies act as serine proteinases and degrade MBP in vitro. They also induce a decrease in long-term potentiation in the hippocampi of rats either perfused with or previously inoculated with this IgA. Because this class of autoantibody causes myelin sheath destruction in multiple sclerosis (MS), we hypothesized a similar pathological role for them in ASD. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Impaired function of the blood-testis barrier during aging is preceded by a decline in cell adhesion proteins and GTPases.

    Directory of Open Access Journals (Sweden)

    Catriona Paul

    Full Text Available With increasing age comes many changes in the testis, including germ cell loss. Cell junctions in the testis tether both seminiferous epithelial and germ cells together and assist in the formation of the blood-testis barrier (BTB, which limits transport of biomolecules, ions and electrolytes from the basal to the adluminal compartment and protects post-meiotic germ cells. We hypothesize that as male rats age the proteins involved in forming the junctions decrease and that this alters the ability of the BTB to protect the germ cells. Pachytene spermatocytes were isolated from Brown Norway rat testes at 4 (young and 18 (aged months of age using STA-PUT velocity sedimentation technique. RNA was extracted and gene expression was assessed using Affymetrix rat 230 2.0 whole rat genome microarrays. Microarray data were confirmed by q-RT-PCR and protein expression by Western blotting. Of the genes that were significantly decreased by at least 1.5 fold, 70 were involved in cell adhesion; of these, at least 20 are known to be specifically involved in junction dynamics within the seminiferous epithelium. The mRNA and protein levels of Jam2, Ocln, cdh2 (N-cadherin, ctnna (α-catenin, and cldn11 (involved in adherens junctions, among others, were decreased by approximately 50% in aged spermatocytes. In addition, the GTPases Rac1 and cdc42, involved in the recruitment of cadherins to the adherens junctions, were similarly decreased. It is therefore not surprising that with lower expression of these proteins that the BTB becomes diminished with age. We saw, using a FITC tracer, a gradual collapse of the BTB between 18 and 24 months. This provides the opportunity for harmful substances and immune cells to cross the BTB and cause the disruption of spermatogenesis that is observed with increasing age.

  16. Occurrence and Antioxidant Activity of C1 Degradation Products in Cocoa.

    Science.gov (United States)

    De Taeye, Cédric; Cibaka, Marie-Lucie Kankolongo; Collin, Sonia

    2017-02-28

    Procyanidin C1 is by far the main flavan-3-ol trimer in cocoa. Like other flavan-3-ols, however, it suffers a lot during heat treatments such as roasting. RP-HPLCHRMS/MS(ESI(-))analysis applied to an aqueous model medium containing commercial procyanidin C1 proved that epimerization is the main reaction involved in its degradation (accounting for 62% of degradation products). In addition to depolymerization, cocoa procyanidin C1 also proved sensitive to oxidation, yielding once- and twice-oxidized dimers. No chemical oligomer involving the native trimer was found in either model medium or cocoa, while two C1 isomers were retrieved. C1 degradation products exhibited antioxidant activity (monitored by RPHPLC-Online TEAC) close to that of C1 (when expressed in µM TE/mg·kg-1).

  17. Characterization of two new dominant ClC-1 channel mutations associated with myotonia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Colding-Jørgensen, Eskild

    2003-01-01

    laevis oocytes for electrophysiological characterization. Both ClC-1 mutants, M128V and E193K, showed a large rightward shift in the current-voltage relationship. In addition, the activation kinetics were slowed in the ClC-1 M128V mutant, as compared to the wild-type ClC-1. Interestingly, ClC-1 E193K...... revealed a change in reversal potential compared to wild-type channels. This finding supports the notion that the E193 amino acid is an important determinant in the selectivity filter of the human ClC-1 channel. The electrophysiological behavior of both mutants demonstrates a severe reduction in ClC-1...

  18. Protective effect of Porphyra yezoensis glycoprotein on D-galactosamine‑induced cytotoxicity in Hepa 1c1c7 cells.

    Science.gov (United States)

    Choi, Jeong-Wook; Kim, Young-Min; Park, Su-Jin; Kim, In-Hye; Nam, Taek-Jeong

    2015-05-01

    The present study aimed to examine the signaling pathways and enzyme activity associated with the protective effect of Porphyra yezoensis glycoprotein (PYGP) on D‑galactosamine (D‑GaIN)‑induced cytotoxicity in Hepa 1c1c7 cells. D‑GaIN is commonly used to induce hepatic injury models in vivo as well as in vitro. PYGP was extracted from Porphyra yezoensis, a red algae distributed along the coasts of Republic of Korea, China and Japan. In the present study, Hepa 1c1c7 cells were pre‑treated with PYGP (20 and 40 µg/ml) for 24 h and then the media was replaced with D‑GaIN (20 mM) and PYGP (20 and 40 µg/ml). The results demonstrated that D‑GaIN induced Hepa 1c1c7 cell death and pretreatment with PYGP was found to attenuate D‑GaIN toxicity. In addition, D‑GaIN decreased the antioxidant activity and increased lipid peroxidation processes; however, pre‑treatment with PYGP reduced the generation of lipid peroxidation products, such as thiobarbituric acid reactive substances, as well as increased the activity of antioxidant enzymes, including superoxide dismutase, catalase and glutathione‑s‑transferase (GST). PYGP was shown to suppress the overexpression of extracellular signal‑regulated kinase, c‑jun N‑terminal kinase and p38 mitogen‑activated protein kinase (MAPK) phosphorylation induced by D‑GaIN. Furthermore, PYGP increased the protein expression of nuclear factor erythroid 2‑related factor 2 (Nrf2), quinine oxidoreductase 1, GST and heme oxygenase 1 protein expression. These results suggested that PYGP had cytoprotective effects against D‑GaIN‑induced cell damage, which may be associated with MAPKs and the Nrf2 signaling pathway.

  19. A family with atypical Hailey Hailey disease--is there more to the underlying genetics than ATP2C1?

    Directory of Open Access Journals (Sweden)

    Nina van Beek

    Full Text Available The autosomal dominant Hailey Hailey disease (HHD is caused by mutations in the ATP2C1 gene encoding for human secretory pathway Ca2+/Mn2+ ATPase protein (hSPCA1 in the Golgi apparatus. Clinically, HHD presents with erosions and hyperkeratosis predominantly in the intertrigines. Here we report an exome next generation sequencing (NGS based analysis of ATPase genes in a Greek family with 3 HHD patients presenting with clinically atypical lesions mainly localized on the neck and shoulders. By NGS of one HHD-patient and in silico SNP calling and SNP filtering we identified a SNP in the expected ATP2C1 gene and SNPs in further ATPase genes. Verification in all 3 affected family members revealed a heterozygous frameshift deletion at position 2355_2358 in exon 24 of ATP2C1 in all three patients. 7 additional SNPs in 4 ATPase genes (ATP9B, ATP11A, ATP2B3 and ATP13A5 were identified. The SNPs rs138177421 in the ATP9B gene and rs2280268 in the ATP13A5 gene were detected in all 3 affected, but not in 2 non affected family members. The SNPs in the ATP2B3 and ATP11A gene as well as further SNPs in the ATP13A5 gene could not be confirmed in all affected family members. One may speculate that besides the level of functional hSPCA1 protein, levels of other ATPase proteins may influence expressivity of the disease and might also contribute, as in this case, to atypical presentations.

  20. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    Science.gov (United States)

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. © 2016 Federation of European Biochemical Societies.

  1. Phase 1 trial of AMA1-C1/Alhydrogel plus CPG 7909: an asexual blood-stage vaccine for Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Gregory E D Mullen

    2008-08-01

    Full Text Available Apical Membrane Antigen 1 (AMA1, a polymorphic merozoite surface protein, is a leading blood-stage malaria vaccine candidate. This is the first reported use in humans of an investigational vaccine, AMA1-C1/Alhydrogel, with the novel adjuvant CPG 7909.A phase 1 trial was conducted at the University of Rochester with 75 malaria-naive volunteers to assess the safety and immunogenicity of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine. Participants were sequentially enrolled and randomized within dose escalating cohorts to receive three vaccinations on days 0, 28 and 56 of either 20 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 15, 80 microg of AMA1-C1/Alhydrogel (n = 30, or 80 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 30.Local and systemic adverse events were significantly more likely to be of higher severity with the addition of CPG 7909. Anti-AMA1 immunoglobulin G (IgG were detected by enzyme-linked immunosorbent assay (ELISA, and the immune sera of volunteers that received 20 microg or 80 microg of AMA1-C1/Alhydrogel+CPG 7909 had up to 14 fold significant increases in anti-AMA1 antibody concentration compared to 80 microg of AMA1-C1/Alhydrogel alone. The addition of CPG 7909 to the AMA1-C1/Alhydrogel vaccine in humans also elicited AMA1 specific immune IgG that significantly and dramatically increased the in vitro growth inhibition of homologous parasites to levels as high as 96% inhibition.The safety profile of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine is acceptable, given the significant increase in immunogenicity observed. Further clinical development is ongoing.ClinicalTrials.gov NCT00344539.

  2. Immunosafety of recombinant human C1-inhibitor in hereditary angioedema: evaluation of ige antibodies.

    Science.gov (United States)

    Hack, C Erik; Relan, Anurag; Baboeram, Aartie; Oortwijn, Beatrijs; Versteeg, Serge; van Ree, Ronald; Pijpstra, Rienk

    2013-04-01

    Recombinant human C1-inhibitor (rhC1INH) purified from milk of transgenic rabbits is used for the treatment of acute attacks in patients with hereditary angioedema (HAE) due to C1-inhibitor (C1INH) deficiency. The objective was to investigate the risk of rhC1INH inducing IgE antibodies or eliciting anaphylactic reactions. In subjects treated with rhC1INH, we retrospectively analysed the frequency and clinical relevance of pre-exposure and potentially newly induced IgE antibodies against rabbit and other animal allergens including cow's milk by the ImmunoCAP(®) Specific IgE blood test system. 130 HAE patients and 14 healthy subjects received 300 administrations of rhC1INH, 65 subjects (47.4 %) on one occasion; 72 (52.6 %) on at least two occasions (range 2-12; median 2). Five subjects had pre-existing anti-rabbit epithelium IgE; the subject with the highest levels and a previously undisclosed rabbit allergy developed an anaphylactic reaction upon first exposure to rhC1INH, whereas the other four subjects with lower pre-existing IgE levels (Class 1-3), did not. No other anaphylactic reactions were identified in any of the subjects exposed to rhC1INH. Analysis of post-exposure samples revealed that the risk of inducing new or boosting existing IgE responses to rabbit or cow's milk allergens was negligible. The propensity of rhC1INH to induce IgE antibodies following repeated administration of rhC1INH is low. Subjects with substantially elevated anti-rabbit epithelium IgE antibodies and/or clinical allergy to rabbits may have an increased risk for an allergic reaction. No other risk factors for allergic reactions to rhC1INH have been identified.

  3. Population pharmacokinetics of recombinant human C1 inhibitor in patients with hereditary angioedema.

    Science.gov (United States)

    Farrell, Colm; Hayes, Siobhan; Relan, Anurag; van Amersfoort, Edwin S; Pijpstra, Rienk; Hack, C Erik

    2013-12-01

    To characterize the pharmacokinetics (PK) of recombinant human C1 inhibitor (rhC1INH) in healthy volunteers and hereditary angioedema (HAE) patients. Plasma levels of C1INH following 294 administrations of rhC1INH in 133 subjects were fitted using nonlinear mixed-effects modelling. The model was used to simulate maximal C1INH levels for the proposed dosing scheme. A one-compartment model with Michaelis-Menten elimination kinetics described the data. Baseline C1INH levels were 0.901 [95% confidence interval (CI): 0.839-0.968] and 0.176 U ml(-1) (95% CI: 0.154-0.200) in healthy volunteers and HAE patients, respectively. The volume of distribution of rhC1INH was 2.86 l (95% CI: 2.68-3.03). The maximal rate of elimination and the concentration corresponding to half this maximal rate were 1.63 U ml(-1) h(-1) (95% CI: 1.41-1.88) and 1.60 U ml(-1) (95% CI: 1.14-2.24), respectively, for healthy volunteers and symptomatic HAE patients. The maximal elimination rate was 36% lower in asymptomatic HAE patients. Peak C1INH levels did not change upon repeated administration of rhC1INH. Bodyweight was found to be an important predictor of the volume of distribution. Simulations of the proposed dosing scheme predicted peak C1INH concentrations above the lower level of the normal range (0.7 U ml(-1)) for at least 94% of all patients. The population PK model for C1INH supports a dosing scheme on a 50 U kg(-1) basis up to 84 kg, with a fixed dose of 4200 U above 84 kg. The PK of rhC1INH following repeat administration are consistent with the PK following the first administration. © 2013 The British Pharmacological Society.

  4. Pseudomonas aeruginosa tssC1 Links Type VI Secretion and Biofilm-Specific Antibiotic Resistance▿

    Science.gov (United States)

    Zhang, Li; Hinz, Aaron J.; Nadeau, Jean-Paul; Mah, Thien-Fah

    2011-01-01

    Biofilm-specific antibiotic resistance is influenced by multiple factors. We demonstrated that Pseudomonas aeruginosa tssC1, a gene implicated in type VI secretion (T6S), is important for resistance of biofilms to a subset of antibiotics. We showed that tssC1 expression is induced in biofilms and confirmed that tssC1 is required for T6S. PMID:21784934

  5. Pseudomonas aeruginosa tssC1 Links Type VI Secretion and Biofilm-Specific Antibiotic Resistance▿

    OpenAIRE

    Zhang, Li; Hinz, Aaron J.; Nadeau, Jean-Paul; Mah, Thien-Fah

    2011-01-01

    Biofilm-specific antibiotic resistance is influenced by multiple factors. We demonstrated that Pseudomonas aeruginosa tssC1, a gene implicated in type VI secretion (T6S), is important for resistance of biofilms to a subset of antibiotics. We showed that tssC1 expression is induced in biofilms and confirmed that tssC1 is required for T6S.

  6. Enhanced Ig production by human peripheral lymphocytes induced by aggregated C1q

    NARCIS (Netherlands)

    Daha, M. R.; Klar, N.; Hoekzema, R.; van Es, L. A.

    1990-01-01

    Because B cells express receptors for C1q, we have investigated the role of C1q in the stimulation of B cells. When B cells were cultured in the presence of C1q that had been frozen, T cells, and suboptimal concentrations of PWM, there was a dose-dependent enhancement of IgM, IgG, and IgA by the B

  7. A Map of the Arenavirus Nucleoprotein-Host Protein Interactome Reveals that Junín Virus Selectively Impairs the Antiviral Activity of Double-Stranded RNA-Activated Protein Kinase (PKR).

    Science.gov (United States)

    King, Benjamin R; Hershkowitz, Dylan; Eisenhauer, Philip L; Weir, Marion E; Ziegler, Christopher M; Russo, Joanne; Bruce, Emily A; Ballif, Bryan A; Botten, Jason

    2017-08-01

    Arenaviruses are enveloped negative-strand RNA viruses that cause significant human disease. These viruses encode only four proteins to accomplish the viral life cycle, so each arenavirus protein likely plays unappreciated accessory roles during infection. Here we used immunoprecipitation and mass spectrometry to identify human proteins that interact with the nucleoproteins (NPs) of the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) and the New World arenavirus Junín virus (JUNV) strain Candid #1. Bioinformatic analysis of the identified protein partners of NP revealed that host translation appears to be a key biological process engaged during infection. In particular, NP associates with the double-stranded RNA (dsRNA)-activated protein kinase (PKR), a well-characterized antiviral protein that inhibits cap-dependent protein translation initiation via phosphorylation of eIF2α. JUNV infection leads to increased expression of PKR as well as its redistribution to viral replication and transcription factories. Further, phosphorylation of PKR, which is a prerequisite for its ability to phosphorylate eIF2α, is readily induced by JUNV. However, JUNV prevents this pool of activated PKR from phosphorylating eIF2α, even following exposure to the synthetic dsRNA poly(I·C), a potent PKR agonist. This blockade of PKR function is highly specific, as LCMV is unable to similarly inhibit eIF2α phosphorylation. JUNV's ability to antagonize the antiviral activity of PKR appears to be complete, as silencing of PKR expression has no impact on viral propagation. In summary, we provide a detailed map of the host machinery engaged by arenavirus NPs and identify an antiviral pathway that is subverted by JUNV. IMPORTANCE Arenaviruses are important human pathogens for which FDA-approved vaccines do not exist and effective antiviral therapeutics are needed. Design of antiviral treatment options and elucidation of the mechanistic basis of disease pathogenesis will depend

  8. Cell surface expression and function of the macromolecular C1 complex on the surface of human monocytes

    Directory of Open Access Journals (Sweden)

    Kinga K Hosszu

    2012-03-01

    Full Text Available The synthesis of the subunits of the C1 complex (C1q, C1s, C1r, and its regulator C1 inhibitor (C1-Inh by human monocytes has been previously established. However, surface expression of these molecules by monocytes has not been shown. Using flow cytometry and antigen-capture ELISA, we show here for the first time that, in addition to C1q, PB monocytes and the monocyte-derived U937 cells express C1s and C1r, as well as Factor B and C1-Inh on their surface. C1s and C1r immunoprecipitated with C1q, suggesting that at least some of the C1q on these cells is part of the C1 complex. Furthermore, the C1 complex on U937 cells was able to trigger complement activation via the classical pathway. The presence of C1-Inh may ensure that an unwarranted autoactivation of the C1 complex does not take place. Since C1-Inh closely monitors the activation of the C1 complex in a sterile or infectious inflammatory environment, further elucidation of the role of C1 complex is crucial to dissect its function in monocyte, DC and T cell activities, and its implications in host defense and tolerance.

  9. MiR-17-5p Impairs Trafficking of H-ERG K+ Channel Protein by Targeting Multiple ER Stress-Related Chaperones during Chronic Oxidative Stress

    OpenAIRE

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    BACKGROUND: To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Lucifer...

  10. Overview of hereditary angioedema caused by C1-inhibitor deficiency: assessment and clinical management.

    Science.gov (United States)

    Bork, K; Davis-Lorton, M

    2013-02-01

    Hereditary angioedema due to C1-inhibitor deficiency (HAE-C1-INH) is a rare, autosomal-dominant disease. HAE-C1-INH is characterized by recurrent attacks of marked, diffuse, nonpitting and nonpruritic skin swellings, painful abdominal attacks, and laryngeal edema. The extremities and the gastrointestinal tract are most commonly affected. Swelling of the upper respiratory mucosa poses the greatest risk because death from asphyxiation can result from laryngealedema. HAE-C1-INH attacks are variable, unpredictable, and may be induced by a variety of stimuli, including stress or physical trauma. Because the clinical presentation of HAE-C1-INH is similar to other types of angioedema, the condition may be a challenge to diagnose. Accurate identification of HAE-C1-INH is critical in order to avoid asphyxiation by laryngeal edema and to improve the burden of disease. Based on an understanding of the underlying pathophysiology of IHAE-C1-INH, drugs targeted specifically to the disease, such as C1-inhibitor therapy, bradykinin B2-receptor antagonists, and kallikrein-inhibitors, have become available for both treatment and prevention of angioedema attacks. This article reviews the clinical features, differential diagnosis, and current approaches to management of HAE-C1-INH.

  11. Specific Language Impairment

    Science.gov (United States)

    ... Home » Health Info » Voice, Speech, and Language Specific Language Impairment On this page: What is specific language ... percent of children in kindergarten. What is specific language impairment? Specific language impairment (SLI) is a language ...

  12. Cortical Visual Impairment

    Science.gov (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased ...

  13. All Vision Impairment

    Science.gov (United States)

    ... Prevalence Rates for Vision Impairment by Age and Race/Ethnicity Table for 2010 U.S. Age-Specific Prevalence ... Ethnicity 2010 Prevalence Rates of Vision Impairment by Race Table for 2010 Prevalence Rates of Vision Impairment ...

  14. Observation of $B^0_s\\rightarrow\\chi_{c1}\\phi$ decay and study of $B^0\\rightarrow\\chi_{c1,2}K^{*0}$ decays

    CERN Document Server

    INSPIRE-00258707; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Holtrop, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The first observation of the decay $B^0_s\\rightarrow\\chi_{c1}\\phi$ and a study of $B^0\\rightarrow\\chi_{c1,2}K^{*0}$ decays are presented. The analysis is performed using a dataset, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. The following ratios of branching fractions are measured: \\begin{equation*} \\begin{array}{lll} \\dfrac{\\cal{B}(B^0_s\\rightarrow\\chi_{c1}\\phi)}{\\cal{B}(B^0_s\\rightarrow J/\\psi\\phi)} &=& (18.9 \\pm1.8\\,(stat)\\pm1.3\\,(syst)\\pm0.8\\,(\\cal{B})) \\times 10^{-2}, \\\\ \\dfrac{\\cal{B}(B^0\\rightarrow\\chi_{c1}K^{*0})}{\\cal{B}(B^0\\rightarrow J/\\psi K^{*0})} &=& (19.8 \\pm1.1\\,(stat)\\pm1.2\\,(syst)\\pm0.9\\,(\\cal{B})) \\times 10^{-2}, \\\\ \\dfrac{\\cal{B}(B^0\\rightarrow\\chi_{c2}K^{*0})}{\\cal{B}(B^0\\rightarrow\\chi_{c 1}K^{*0})} &=& (17.1 \\pm5.0\\,(stat)\\pm1.7\\,(syst)\\pm1.1\\,(\\cal{B})) \\times 10^{-2}, \\\\ \\end{array} \\end{equation*} where the third uncertainty is due to the limited knowledge o...

  15. Impaired cellular responses to cytosolic DNA or infection with Listeria monocytogenes and vaccinia virus in the absence of the murine LGP2 protein.

    Directory of Open Access Journals (Sweden)

    Darja Pollpeter

    2011-04-01

    Full Text Available Innate immune signaling is crucial for detection of and the initial response to microbial pathogens. Evidence is provided indicating that LGP2, a DEXH box domain protein related to the RNA recognition receptors RIG-I and MDA5, participates in the cellular response to cytosolic double-stranded DNA (dsDNA. Analysis of embryonic fibroblasts and macrophages from mice harboring targeted disruption in the LGP2 gene reveals that LGP2 can act as a positive regulator of type I IFN and anti-microbial gene expression in response to transfected dsDNA. Results indicate that infection of LGP2-deficient mice with an intracellular bacterial pathogen, Listeria monocytogenes, leads to reduced levels of type I IFN and IL12, and allows increased bacterial growth in infected animals, resulting in greater colonization of both spleen and liver. Responses to infection with vaccinia virus, a dsDNA virus, are also suppressed in cells lacking LGP2, reinforcing the ability of LGP2 to act as a positive regulator of antiviral signaling. In vitro mechanistic studies indicate that purified LGP2 protein does not bind DNA but instead mediates these responses indirectly. Data suggest that LGP2 may be acting downstream of the intracellular RNA polymerase III pathway to activate anti-microbial signaling. Together, these findings demonstrate a regulatory role for LGP2 in the response to cytosolic DNA, an intracellular bacterial pathogen, and a DNA virus, and provide a plausible mechanistic hypothesis as the basis for this activity.

  16. Factor VIII C1 domain spikes 2092-2093 and 2158-2159 comprise regions that modulate cofactor function and cellular uptake

    NARCIS (Netherlands)

    Bloem, Esther; van den Biggelaar, Maartje; Wroblewska, Aleksandra; Voorberg, Jan; Faber, Johan H.; Kjalke, Marianne; Stennicke, Henning R.; Mertens, Koen; Meijer, Alexander B.

    2013-01-01

    The C1 domain of factor VIII (FVIII) has been implicated in binding to multiple constituents, including phospholipids, von Willebrand factor, and low-density lipoprotein receptor-related protein (LRP). We have previously described a human monoclonal antibody called KM33 that blocks these

  17. Regulation of human lung fibroblast C1q-receptors by transforming growth factor-beta and tumor necrosis factor-alpha.

    Science.gov (United States)

    Lurton, J; Soto, H; Narayanan, A S; Raghu, G

    1999-03-01

    Transforming growth factor-beta (TGF-beta) and tumor necrosis factor-alpha (TNF-alpha) are two polypeptide mediators which are believed to play a role in the evolution of idiopathic pulmonary fibrosis (IPF). We have evaluated the effect of these two substances on the expression of receptors for collagen (cC1q-R) and globular (gC1q-R) domains of C1q and on type I collagen in human lung fibroblasts. Two fibroblast subpopulations differing in C1q receptor expression were obtained by culturing human lung explants in medium containing fresh human serum and heated plasma-derived serum and separating them based on C1q binding [Narayanan, Lurton and Raghu: Am J Resp Cell Mol Biol. 1998; 17:84]. The cells, referred to as HH and NL cells, respectively, were exposed to TGF-beta and TNF-alpha in serum-free conditions. The levels of mRNA were assessed by in situ hybridization and Northern analysis, and protein levels compared after SDS-polyacrylamide gel electrophoresis and Western blotting. NL cells exposed to TGF-beta and TNF-alpha contained 1.4 and 1.6 times as much cC1q-R mRNA, respectively, whereas in HH cells cC1q-R mRNA increased 2.0- and 2.4-fold. The gC1q-R mRNA levels increased to a lesser extent in both cells. These increases were not reflected in protein levels of CC1q-R and gC1q-R, which were similar to or less than controls. Both TGF-beta and TNF-alpha also increased procollagen [I] mRNA levels in both cells. Overall, TNF-alpha caused a greater increase and the degree of response by HH fibroblasts to both TGF-beta and TNF-alpha was higher than NL cells. These results indicated that TGF-beta and TNF-alpha upregulate the mRNA levels for cC1q-R and collagen and that they do not affect gC1q-R mRNA levels significantly. They also indicated different subsets of human lung fibroblasts respond differently to inflammatory mediators.

  18. Elevated C1orf63 expression is correlated with CDK10 and predicts better outcome for advanced breast cancers: a retrospective study

    International Nuclear Information System (INIS)

    Hong, Chao-Qun; Zhang, Fan; You, Yan-Jie; Qiu, Wei-Li; Giuliano, Armando E.; Cui, Xiao-Jiang; Zhang, Guo-Jun; Cui, Yu-Kun

    2015-01-01

    Chromosome 1 open reading frame 63 (C1orf63) is located on the distal short arm of chromosome 1, whose allelic loss has been observed in several human cancers. C1orf63 has been reported to be up-regulated in IL-2-starved T lymphocytes, which suggests it might be involved in cell cycle control, a common mechanism for carcinogenesis. Here we investigated the expression and clinical implication of C1orf63 in breast cancer. Paraffin-embedded specimens, clinicopathological features and follow-up data of the breast cancer patients were collected. Publicly available microarray and RNA-seq datasets used in this study were downloaded from ArrayExpress of EBI and GEO of NCBI. KM plotter tool was also adopted. The expression of C1orf63 and CDK10, one known cell cycle-dependent tumor suppressor in breast cancer, was assessed by immunohistochemistry. Western blotting was performed to detect C1orf63 protein in human breast cancer cell lines, purchased from the Culture Collection of the Chinese Academy of Sciences, Shanghai. In a group of 12 human breast tumors and their matched adjacent non-cancerous tissues, C1orf63 expression was observed in 7 of the 12 breast tumors, but not in the 12 adjacent non-cancerous tissues (P < 0.001). Similar results were observed of C1orf63 mRNA expression both in breast cancer and several other cancers, including lung cancer, prostate cancer and hepatocellular carcinoma. In another group of 182 breast cancer patients, C1orf63 expression in tumors was not correlated with any clinicopathological features collected in this study. Survival analyses showed that there was no significant difference of overall survival (OS) rates between the C1orf63 (+) group and the C1orf63 (−) group (P = 0.145). However, the analyses of KM plotter displayed a valid relationship between C1orf63 and RFS (relapse free survival)/OS (P < 0.001; P = 0.007). Notablely, in breast cancers with advanced TNM stages (III ~ IV) among these 182 patients, C1orf63 expression was an

  19. Feeding broiler breeders a reduced balanced protein diet during the rearing and laying period impairs reproductive performance but enhances broiler offspring performance.

    Science.gov (United States)

    Lesuisse, J; Li, C; Schallier, S; Leblois, J; Everaert, N; Buyse, J

    2017-09-01

    Mammalian studies have shown that nutritional constraints during the perinatal period are able to program the progeny (metabolism, performance). The presented research aimed to investigate if broiler breeders and their offspring performance could be influenced by reducing the dietary crude protein (CP) level with 25%. A total of 160 day-old pure line A breeder females were randomly divided over 2 dietary treatments. The control group was fed commercial diets, whereas the reduced balanced protein (RP) breeders received an isoenergetic diet that was decreased with 25% in dietary CP and amino acid during their entire lifespan. The RP birds required an increased feed allowance, varying between 3 and 15%, to meet the same BW goals as their control fed counterparts. The difference in feed allocations and reduction of the dietary CP level resulted in a net protein reduction varying between 14 and 23%. At wk 27 and 40, the body composition of the breeders was changed as a result of the dietary treatment. At both ages, the proportional abdominal fat pad weight of the RP breeders was increased (P < 0.001), whereas the proportional breast muscle weight was only higher at wk 27 in the control group compared to the RP group (P < 0.001). Egg weight (P < 0.001) and egg production (P < 0.001) was decreased for the RP fed birds. The lower dietary CP level reduced the proportional albumen weight of the RP eggs (P = 0.006). Male offspring from RP breeders were characterized by an increase in BW from 28 d until 35 d of age (P = 0.015). Moreover, female progeny of RP breeders showed a reduced FCR (P = 0.025), whereas male progeny showed a tendency (P = 0.052) towards a lower FCR at 5 wk of age. In conclusion, lowering dietary CP levels in rearing and laying phase of breeders had a negative effect on breeder performance but enhanced live performance of the offspring. © 2017 Poultry Science Association Inc.

  20. Genetic analysis of complement C1s deficiency associated with systemic lupus erythematosus highlights alternative splicing of normal C1s gene

    DEFF Research Database (Denmark)

    Armano, MT; Ferriani, VP; Florido, MP

    2008-01-01

    ' fibroblasts when analyzed by confocal microscopy. We show that all four siblings are homozygous for a mutation at position 938 in exon 6 of the C1s cDNA that creates a premature stop codon. Our investigations led us to reveal the presence of previously uncharacterized splice variants of C1s mRNA transcripts...... in normal human cells. These variants are derived from the skipping of exon 3 and from the use of an alternative 3' splice site within intron 1 which increases the size of exon 2 by 87 nucleotides....

  1. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome*

    Science.gov (United States)

    Libby, Andrew E.; Bales, Elise; Orlicky, David J.; McManaman, James L.

    2016-01-01

    Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease. PMID:27679530

  2. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome.

    Science.gov (United States)

    Libby, Andrew E; Bales, Elise; Orlicky, David J; McManaman, James L

    2016-11-11

    Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Absence of the calcium-binding protein calretinin, not of calbindin D-28k, causes a permanent impairment of murine adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Kiran eTodkar

    2012-04-01

    Full Text Available Calretinin (CR and calbindin D-28k (CB are cytosolic EF-hand Ca2+-binding proteins and function as Ca2+ buffers affecting the spatiotemporal aspects of Ca2+ transients and possibly also as Ca2+ sensors modulating signaling cascades. In the adult hippocampal circuitry, CR and CB are expressed in specific principal neurons and subsets of interneurons. In addition, CR is transiently expressed within the neurogenic dentate gyrus (DG niche. CR and CB expression during adult neurogenesis mark critical transition stages, onset of differentiation for CR and the switch to adult-like connectivity for CB. Absence of either protein during these stages in null-mutant mice may have functional consequences and contribute to some aspects of the identified phenotypes. We report the impact of CR- and CB-deficiency on the proliferation and differentiation of progenitor cells within the subgranular zone (SGZ neurogenic niche of the DG. Effects were evaluated I 2 and 4 weeks postnatally, during the transition period of the proliferative matrix to the adult state, and II in adult animals (3 months to trace possible permanent changes in adult neurogenesis. The absence of CB from differentiated DG granule cells has no retrograde effect on the proliferative activity of progenitor cells, nor affects survival or migration/differentiation of newborn neurons in the adult DG including the SGZ. On the contrary, lack of CR from immature early postmitotic granule cells causes an early loss in proliferative capacity of the SGZ that is maintained into adult age, when it has a further impact on the migration/survival of newborn granule cells. The transient CR expression at the onset of adult neurogenesis differentiation may thus have two functions: I to serve as a self-maintenance signal for the pool of cells at the same stage of neurogenesis contributing to their survival/differentiation, and II it may contribute to retrograde signaling required for maintenance of the progenitor

  4. 17 CFR 240.24c-1 - Access to nonpublic information.

    Science.gov (United States)

    2010-04-01

    ... Access to nonpublic information. (a) For purposes of this section, the term “nonpublic information” means... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Access to nonpublic information. 240.24c-1 Section 240.24c-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION...

  5. 17 CFR 270.18c-1 - Exemption of privately held indebtedness.

    Science.gov (United States)

    2010-04-01

    ... indebtedness. 270.18c-1 Section 270.18c-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... indebtedness. The issuance or sale of more than one class of senior securities representing indebtedness by a... outstanding any publicly held indebtedness, and all securities of any such class are (a) privately held by the...

  6. C1 polymerisation and related C-C bond forming ‘carbene insertion’ reactions

    NARCIS (Netherlands)

    Jellema, E.; Jongerius, A.L.; Reek, J.N.H.; de Bruin, B.

    2010-01-01

    In this critical review we summarise the currently available ‘C1 polymerisation’ techniques as valuable alternatives for ‘C2 polymerisation’ in the preparation of saturated main-chain carbon-based polymers. C1 polymerisation involves the growth of polymers from monomers delivering only one

  7. Administration of C1 inhibitor reduces neutrophil activation in patients with sepsis

    NARCIS (Netherlands)

    Zeerleder, Sacha; Caliezi, Christoph; van Mierlo, Gerard; Eerenberg-Belmer, Anke; Sulzer, Irmela; Hack, C. Erik; Wuillemin, Walter A.

    2003-01-01

    Forty patients with severe sepsis or septic shock recently received C1 inhibitor. In the present study we studied the effect of C1 inhibitor therapy on circulating elastase-alpha(1)-antitrypsin complex (EA) and lactoferrin (LF) levels in these patients to gain further insight about agonists involved

  8. Amplitude analysis of the chi(c1) -> eta pi(+)pi(-) decays

    NARCIS (Netherlands)

    Haddadi, Z.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Löhner, H.; Messchendorp, J. G.; Tiemens, M.

    2017-01-01

    Using 448.0 x 10(6) psi(3686) events collected with the BESIII detector, an amplitude analysis is performed for psi(3686) -> gamma chi(c1), chi(c1) ->eta pi(+)pi(-) decays. The most dominant two- body structure observed is a(0)(980)(+/-) pi(-/+); a(0)(980)(+/-) -> eta pi(+/-.) line shape is modeled

  9. 17 CFR 240.15c1-9 - Use of pro forma balance sheets.

    Science.gov (United States)

    2010-04-01

    ... pro forma balance sheets. The term manipulative, deceptive, or other fraudulent device or contrivance... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Use of pro forma balance sheets. 240.15c1-9 Section 240.15c1-9 Commodity and Securities Exchanges SECURITIES AND EXCHANGE...

  10. 26 CFR 1.267(c)-1 - Constructive ownership of stock.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Constructive ownership of stock. 1.267(c)-1...) INCOME TAX (CONTINUED) INCOME TAXES Items Not Deductible § 1.267(c)-1 Constructive ownership of stock. (a) In general. (1) The determination of stock ownership for purposes of section 267(b) shall be in...

  11. Functional C1-inhibitor diagnostics in hereditary angioedema: assay evaluation and recommendations

    DEFF Research Database (Denmark)

    Wagenaar-Bos, Ineke G A; Drouet, Christian; Aygören-Pursun, Emel

    2008-01-01

    Hereditary angioedema (HAE) is an autosomal dominant disease characterized by recurrent episodes of potentially life-threatening angioedema. The most widespread underlying genetic deficiency is a heterozygous deficiency of the serine protease inhibitor C1 esterase inhibitor (C1-Inh). In addition ...

  12. Autoantibodies against C1q in systemic lupus erythematosus are antigen-driven

    DEFF Research Database (Denmark)

    Schaller, Monica; Bigler, Cornelia; Danner, Doris

    2009-01-01

    Autoantibodies against complement C1q (anti-C1q Abs) were shown to strongly correlate with the occurrence of severe nephritis in patients with systemic lupus erythematosus (SLE), suggesting a potential pathogenic role by interfering with the complement cascade. To analyze the humoral immune...

  13. Centrosomal localisation of the cancer/testis (CT) antigens NY-ESO-1 and MAGE-C1 is regulated by proteasome activity in tumour cells.

    Science.gov (United States)

    Pagotto, Anna; Caballero, Otavia L; Volkmar, Norbert; Devalle, Sylvie; Simpson, Andrew J G; Lu, Xin; Christianson, John C

    2013-01-01

    The Cancer/Testis (CT) antigen family of genes are transcriptionally repressed in most human tissues but are atypically re-expressed in many malignant tumour types. Their restricted expression profile makes CT antigens ideal targets for cancer immunotherapy. As little is known about whether CT antigens may be regulated by post-translational processing, we investigated the mechanisms governing degradation of NY-ESO-1 and MAGE-C1 in selected cancer cell lines. Inhibitors of proteasome-mediated degradation induced the partitioning of NY-ESO-1 and MAGE-C1 into a detergent insoluble fraction. Moreover, this treatment also resulted in increased localisation of NY-ESO-1 and MAGE-C1 at the centrosome. Despite their interaction, relocation of either NY-ESO-1 or MAGE-C1 to the centrosome could occur independently of each other. Using a series of truncated fragments, the regions corresponding to NY-ESO-1(91-150) and MAGE-C1(900-1116) were established as important for controlling both stability and localisation of these CT antigens. Our findings demonstrate that the steady state levels of NY-ESO-1 and MAGE-C1 are regulated by proteasomal degradation and that both behave as aggregation-prone proteins upon accumulation. With proteasome inhibitors being increasingly used as front-line treatment in cancer, these data raise issues about CT antigen processing for antigenic presentation and therefore immunogenicity in cancer patients.

  14. Expression of organic anion transporting polypeptide 1c1 and monocarboxylate transporter 8 in the rat placental barrier and the compensatory response to thyroid dysfunction.

    Directory of Open Access Journals (Sweden)

    Yi-na Sun

    Full Text Available Thyroid hormones (THs must pass from mother to fetus for normal fetal development and require the expression of placental TH transporters. We investigate the compensatory effect of placental organic anion transporting polypeptide 1c1 (Oatp1c1 and monocarboxylate transporter 8 (Mct8 on maternal thyroid dysfunction. We describe the expressions of these two transporters in placental barriers and trophoblastic cell populations in euthyroidism and thyroid dysfunction resulting from differential iodine nutrition at gestation day (GD 16 and 20, that is, before and after the onset of fetal thyroid function. Immunohistochemistry revealed that in the blood-placenta barrier, these two TH transporters were strongly expressed in the villous interstitial substance and were weakly expressed in trophoblast cells. Levels of Oatp1c1 protein obviously increased in the placental fetal portion during maternal thyroid deficiency at GD16. Under maternal thyroid deficiency after the production of endogenous fetal TH, quantitative PCR analysis revealed down-regulation of Oatp1c1 occurred along with up-regulation of Mct8 in trophoblast cell populations isolated by laser capture microdissection (LCM; this was consistent with the protein levels in the fetal portion of the placenta. In addition, decreased D3 mRNA at GD16 and increased D2 mRNA on two gestational days were observed in trophoblast cells with thyroid dysfunction. However, levels of Oatp1c1 mRNA at GD16 and D3 mRNA at GD20 were too low to be detectable in trophoblast cells. In conclusion, placental Oatp1c1 plays an essential compensatory role when the transplacental passage of maternal THs is insufficient at the stage before the fetal TH production. In addition, the coordinated effects of Oatp1c1, Mct8, D2 and D3 in the placental barrier may regulate both transplacental TH passage and the development of trophoblast cells during thyroid dysfunction throughout the pregnancy.

  15. Optimal Entry Point and Trajectory for Anterior C1 Lateral Mass Screw.

    Science.gov (United States)

    Hu, Yong; Dong, Wei-Xin; Spiker, William Ryan; Yuan, Zhen-Shan; Sun, Xiao-Yang; Zhang, Jiao; Xie, Hui; Albert, Todd J

    2017-06-01

    A radiographic analysis of the anatomy of the C1 lateral mass using computed tomography (CT) scans and Mimics software. To define the anatomy of the C1 lateral mass and make recommendations for optimal entry point and trajectory for anterior C1 lateral mass screws. Although various posterior insertion angles and entry points for screw insertion have been proposed for posterior C1 lateral mass screws, no large series have been performed to assess the ideal entry point and optimal trajectory for anterior C1 lateral mass screw placement. The C1 lateral mass was evaluated using CT scans and a 3-dimensional imaging application (Mimics software). Measuring the space available for the anterior C1 lateral mass screw (SAS) at different camber angles from 0 to 30 degrees (5-degree intervals) was performed to identify the ideal camber angle of insertion. Measuring the range of sagittal angles was performed to calculate the ideal sagittal angle. Other measurements involving the height of the C1 lateral mass were also made. The optimal screw entry point was found to be located on the anterior surface of the atlas 12.88 mm (±1.10 mm) lateral to the center of the anterior tubercle. This optimal entry point was found to be 6.81 mm (±0.59 mm) superior to the anterior edge of the atlas inferior articulating process. The mean ideal camber angle was 20.92 degrees laterally and the mean ideal sagittal angle was 5.80 degrees downward. These measurements define the optimal entry point and trajectory for anterior C1 lateral mass screws and facilitate anterior C1 lateral mass screw placement. A thorough understanding of the local anatomy may decrease the risk of injury to the spinal cord, vertebral artery, and internal carotid artery. Delineating the anatomy in each case with preoperative 3D CT evaluation is recommended.

  16. Surgical treatment of upper cervical spine injuries (c1-c2): experience in 26 patients

    International Nuclear Information System (INIS)

    Pasha, I.F.; Qureshi, M.A.; Khalique, A.B.; Afzal, W.; Qureshi, M.A.

    2013-01-01

    Objective: To describe the spectrum of operations in unstable upper cervical spinal injuries in (atlanto-axial) region at our unit. Study Design: A cross-sectional study. Place And Duration: Spine Unit, Department of Orthopedics, Combined Military Hospital (CMH), Rawalpindi from Jan 2001 to Dec 2008. Patients and Methods: Frequency of different kind of operations in 26 patients operated for upper cervical spinal injuries was reviewed. A performa was made for each patient and records were kept in a custom built Microsoft access database. Results: Average age of patients studied was 27 years with male pre dominance. Total 12(46%) patients had Atlanto-axial instability, 8(31%) had Hangman's fracture and 6(23%) patients had odontoid peg fracture. While 11(42%) patients had no neurological deficit according to American spinal injury association impairment scale (AIS-E) and 15(58%) had partial neurological deficit. The patients were divided into three groups. Group A had odontoid peg fracture, Group B had atlanto-axial instability and Group C had Hangman's fracture. The spine was approached posteriorly in 19(73(Yo) cases and anteriorly in 7(27%). Pedicle screw fixation was done in 6(23%) patients, odontoid peg screw fixation in 6(23%), Gallie's fusion in 5(19%), occipito-cervical fusion in 4(15%), posterior transarticular fixation in 3(12%), anterior transarticular fixation and decompression in others, 9(60%) patients improved neurologically postoperatively and there was no deterioration of neurological status. Nonunion in two (8%) cases and implant failure in one (4%) were complications. Conclusion: Upper cervical injuries (C1-C2) are rare and their management is complex, necessitating lot of experience for their management. Early diagnosis and appropriate treatment is essential for good outcome. Each injury has to be managed at its own merit and a single operation may not be appropriate in all situations. General guidelines can be drawn from our study for the

  17. χc 1 and χc 2 Resonance Parameters with the Decays χc 1 ,c 2→J /ψ μ+μ-

    Science.gov (United States)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hu, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luchinsky, A.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2017-12-01

    The decays χc 1→J /ψ μ+μ- and χc 2→J /ψ μ+μ- are observed and used to study the resonance parameters of the χc 1 and χc 2 mesons. The masses of these states are measured to be m (χc 1)=3510.71 ±0.04 (stat ) ±0.09 (syst ) MeV and m (χc 2)=3556.10 ±0.06 (stat ) ±0.11 (syst ) MeV , where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m (χc 2)-m (χc 1)=45.39 ±0.07 (stat ) ±0.03 (syst ) MeV . The natural width of the χc 2 meson is measured to be Γ (χc 2)=2.10 ±0.20 (stat ) ±0.02 (syst ) MeV . These results are in good agreement with and have comparable precision to the current world averages.

  18. χ_{c1} and χ_{c2} Resonance Parameters with the Decays χ_{c1,c2}→J/ψμ^{+}μ^{-}.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Atzeni, M; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bordyuzhin, I; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Chapman, M G; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hu, W; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Keizer, F; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Kress, F; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Luchinsky, A; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malecki, B; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombächer, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pisani, F; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Weisser, C; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, M; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2017-12-01

    The decays χ_{c1}→J/ψμ^{+}μ^{-} and χ_{c2}→J/ψμ^{+}μ^{-} are observed and used to study the resonance parameters of the χ_{c1} and χ_{c2} mesons. The masses of these states are measured to be m(χ_{c1})=3510.71±0.04(stat)±0.09(syst)  MeV and m(χ_{c2})=3556.10±0.06(stat)±0.11(syst)  MeV, where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m(χ_{c2})-m(χ_{c1})=45.39±0.07(stat)±0.03(syst)  MeV. The natural width of the χ_{c2} meson is measured to be Γ(χ_{c2})=2.10±0.20(stat)±0.02(syst)  MeV. These results are in good agreement with and have comparable precision to the current world averages.

  19. Embryonic lethality in mice lacking the nuclear factor of activated T cells 5 protein due to impaired cardiac development and function.

    Directory of Open Access Journals (Sweden)

    Man Chi Mak

    Full Text Available Nuclear factor of activated T cells 5 protein (NFAT5 is thought to be important for cellular adaptation to osmotic stress by regulating the transcription of genes responsible for the synthesis or transport of organic osmolytes. It is also thought to play a role in immune function, myogenesis and cancer invasion. To better understand the function of NFAT5, we developed NFAT5 gene knockout mice. Homozygous NFAT5 null (NFAT5(-/- mouse embryos failed to develop normally and died after 14.5 days of embryonic development (E14.5. The embryos showed peripheral edema, and abnormal heart development as indicated by thinner ventricular wall and reduced cell density at the compact and trabecular areas of myocardium. This is associated with reduced level of proliferating cell nuclear antigen and increased caspase-3 in these tissues. Cardiomyocytes from E14.5 NFAT5(-/- embryos showed a significant reduction of beating rate and abnormal Ca(2+ signaling profile as a consequence of reduced sarco(endoplasmic reticulum Ca(2+-ATPase (SERCA and ryanodine receptor (RyR expressions. Expression of NFAT5 target genes, such as HSP 70 and SMIT were reduced in NFAT5(-/- cardiomyocytes. Our findings demonstrated an essential role of NFAT5 in cardiac development and Ca(2+ signaling. Cardiac failure is most likely responsible for the peripheral edema and death of NFAT5(-/- embryos at E14.5 days.

  20. Acetylcorynoline impairs the maturation of mouse bone marrow-derived dendritic cells via suppression of IκB kinase and mitogen-activated protein kinase activities.

    Directory of Open Access Journals (Sweden)

    Ru-Huei Fu

    Full Text Available BACKGROUND: Dendritic cells (DCs are major modulators in the immune system. One active field of research is the manipulation of DCs as pharmacological targets to screen novel biological modifiers for the treatment of inflammatory and autoimmune disorders. Acetylcorynoline is the major alkaloid component derived from Corydalis bungeana herbs. We assessed the capability of acetylcorynoline to regulate lipopolysaccharide (LPS-stimulated activation of mouse bone marrow-derived DCs. METHODOLOGY/PRINCIPAL FINDINGS: Our experimental data showed that treatment with up to 20 µM acetylcorynoline does not cause cytotoxicity in cells. Acetylcorynoline significantly inhibited the secretion of tumor necrosis factor-α, interleukin-6, and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility complex class II, CD40, and CD86 on DCs was also decreased by acetylcorynoline, and the endocytic capacity of LPS-stimulated DCs was restored by acetylcorynoline. In addition, LPS-stimulated DC-elicited allogeneic T-cell proliferation was blocked by acetylcorynoline, and the migratory ability of LPS-stimulated DCs was reduced by acetylcorynoline. Moreover, acetylcorynoline significantly inhibits LPS-induced activation of IκB kinase and mitogen-activated protein kinase. Importantly, administration of acetylcorynoline significantly attenuates 2,4-dinitro-1-fluorobenzene-induced delayed-type hypersensitivity. CONCLUSIONS/SIGNIFICANCE: Acetylcorynoline may be one of the potent immunosuppressive agents through the blockage of DC maturation and function.

  1. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    Energy Technology Data Exchange (ETDEWEB)

    Changotra, Harish; Turk, Susan M. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Artigues, Antonio [Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS (United States); Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Hutt-Fletcher, Lindsey M., E-mail: lhuttf@lsuhsc.edu [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2016-02-15

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  2. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    International Nuclear Information System (INIS)

    Changotra, Harish; Turk, Susan M.; Artigues, Antonio; Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I.; Hutt-Fletcher, Lindsey M.

    2016-01-01

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  3. Protein-energy malnutrition alters IgA responses to rotavirus vaccination and infection but does not impair vaccine efficacy in mice.

    Science.gov (United States)

    Maier, Elizabeth A; Weage, Kristina J; Guedes, Marjorie M; Denson, Lee A; McNeal, Monica M; Bernstein, David I; Moore, Sean R

    2013-12-17

    Conflicting evidence links malnutrition to the reduced efficacy of rotavirus vaccines in developing countries, where diarrhea and undernutrition remain leading causes of child deaths. Here, we adapted mouse models of rotavirus vaccination (rhesus rotavirus, RRV), rotavirus infection (EDIM), and protein-energy malnutrition (PEM) to test the hypothesis that undernutrition reduces rotavirus vaccine immunogenicity and efficacy. We randomized wild type Balb/C dams with 3-day-old pups to a control diet (CD) or an isocaloric, multideficient regional basic diet (RBD) that produces PEM. At 3 weeks of age, we weaned CD and RBD pups to their dams' diet and subrandomized weanlings to receive a single dose of either live oral rotavirus vaccine (RRV) or PBS. At 6 weeks of age, we orally challenged all groups with murine rotavirus (EDIM). Serum and stool specimens were collected before and after RRV and EDIM administration to measure viral shedding and antibody responses by ELISA. RBD pups and weanlings exhibited significant failure to thrive compared to age-matched CD mice (Pprotein-energy malnutrition. Alternative models are needed to elucidate host-pathogen factors undermining rotavirus vaccine effectiveness in high-risk global settings. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Expression of an oxalate decarboxylase impairs the necrotic effect induced by Nep1-like protein (NLP) of Moniliophthora perniciosa in transgenic tobacco.

    Science.gov (United States)

    da Silva, Leonardo F; Dias, Cristiano V; Cidade, Luciana C; Mendes, Juliano S; Pirovani, Carlos P; Alvim, Fátima C; Pereira, Gonçalo A G; Aragão, Francisco J L; Cascardo, Júlio C M; Costa, Marcio G C

    2011-07-01

    Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO(2) and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa. This resistance was correlated with the inhibition of ROS formation in the transgenic plants inoculated with OA, MpNEP2, or a combination of both PCD elicitors. Taken together, these results have established a pivotal function for oxalate as a source of ROS required for the PCD-inducing activity of OA and NLP. The results also indicate that FvOXDC represents a potentially novel source of resistance against OA- and NLP-producing pathogens such as M. perniciosa, the causal agent of witches' broom disease of cacao (Theobroma cacao L.).

  5. Exogenous ceramide-1-phosphate (C1P) and phospho-ceramide analogue-1 (PCERA-1) regulate key macrophage activities via distinct receptors.

    Science.gov (United States)

    Katz, Sebastián; Ernst, Orna; Avni, Dorit; Athamna, Muhammad; Philosoph, Amir; Arana, Lide; Ouro, Alberto; Hoeferlin, L Alexis; Meijler, Michael M; Chalfant, Charles E; Gómez-Muñoz, Antonio; Zor, Tsaffrir

    2016-01-01

    Inflammation is an ensemble of tightly regulated steps, in which macrophages play an essential role. Previous reports showed that the natural sphingolipid ceramide 1-phosphate (C1P) stimulates macrophages migration, while the synthetic C1P mimic, phospho-ceramide analogue-1 (PCERA-1), suppresses production of the key pro-inflammatory cytokine TNFα and amplifies production of the key anti-inflammatory cytokine IL-10 in LPS-stimulated macrophages, via one or more unidentified G-protein coupled receptors. We show that C1P stimulated RAW264.7 macrophages migration via the NFκB pathway and MCP-1 induction, while PCERA-1 neither mimicked nor antagonized these activities. Conversely, PCERA-1 synergistically elevated LPS-dependent IL-10 expression in RAW264.7 macrophages via the cAMP-PKA-CREB signaling pathway, while C1P neither mimicked nor antagonized these activities. Interestingly, both compounds have the capacity to additively inhibit TNFα secretion; PCERA-1, but not C1P, suppressed LPS-induced TNFα expression in macrophages in a CREB-dependent manner, while C1P, but not PCERA-1, directly inhibited recombinant TNFα converting enzyme (TACE). Finally, PCERA-1 failed to interfere with binding of C1P to either the cell surface receptor or to TACE. These results thus indicate that the natural sphingolipid C1P and its synthetic analog PCERA-1 bind and activate distinct receptors expressed in RAW264.7 macrophages. Identification of these receptors will be instrumental for elucidation of novel activities of extra-cellular sphingolipids, and may pave the way for the design of new sphingolipid mimics for the treatment of inflammatory diseases, and pathologies which depend on cell migration, as in metastatic tumors. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface

    Science.gov (United States)

    Hovingh, Elise S.; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H. M.

    2017-01-01

    Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis. PMID:28742139

  7. COMPARATIVE STUDY TO FIND THE EFFECT OF MULLIGANS SNAG TECHNIQUE (C1-C2 VERSUS MAITLANDS TECHNIQUE (C1-C2 IN CERVICOGENIC HEADACHE AMONG INFORMATION TECHNOLOGY PROFESSIONALS

    Directory of Open Access Journals (Sweden)

    Neeti Christian

    2017-06-01

    Full Text Available Background: Headache is a common condition which physiotherapists have to deal with in clinical practice.Headaches which arise from the cervical spine are termed as Cervicogenic headaches (CGH, and these types of headaches are common form of a chronic and recurrent headache.The diagnostic criteria for CGH are outlined by the IHS (International Headache Society. The upper cervical joints, namely the occiput-C1 and C1-C2 segments are the most common origin of pain. Office and computer workers have the highest incidence of neck disorders than other occupations; the prevalence of neck disorders is above 50% among them. The purpose of this study is to find the effectiveness of Mulligan’s SNAG technique (C1-C2 and Maitland’s technique (C1-C2 in CGH and to compare these manual therapy techniques (Mulligan’s SNAG technique and Maitland’s technique with a control group. Methods: 30 subjects were selected for the study among them 23 subjects completed the study. The subjects were randomly allocated to 3 groups. The range of motion (ROM and severity of a headache were assessed pre and post intervention using FRT and HDI respectively. Result: The comparison revealed that SNAG group had a greater increase in cervical rotation (p<0.01 range than the Maitland’s technique and control groups. The mean value between pre-post differences shows a decrease in severity of a headache among all three groups. The significant difference between 3 groups was found through Tukey’s post hoc test using ANOVA method (Group A versus Group C; p<0.01 and Group B versus Group C; p<0.05. Conclusion: The present study suggested that C1-C2 SNAG technique showed statistically significant improvement in reducing headache and disability when compared to the Maitland’s mobilization technique among cervicogenic headache subjects

  8. Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs reconsolidation of a memory associated with self-administered cocaine.

    Directory of Open Access Journals (Sweden)

    Xun Wan

    Full Text Available The intracellular mechanisms underlying memory reconsolidation critically involve cAMP signaling. These events were originally attributed to PKA activation by cAMP, but the identification of Exchange Protein Activated by cAMP (Epac, as a distinct mediator of cAMP signaling, suggests that cAMP-regulated processes that subserve memory reconsolidation are more complex. Here we investigated how activation of Epac with 8-pCPT-cAMP (8-CPT impacts reconsolidation of a memory that had been associated with cocaine self-administration. Rats were trained to lever press for cocaine on an FR-1 schedule, in which each cocaine delivery was paired with a tone+light cue. Lever pressing was then extinguished in the absence of cue presentations and cocaine delivery. Following the last day of extinction, rats were put in a novel context, in which the conditioned cue was presented to reactivate the cocaine-associated memory. Immediate bilateral infusions of 8-CPT into the basolateral amygdala (BLA following reactivation disrupted subsequent cue-induced reinstatement in a dose-dependent manner, and modestly reduced responding for conditioned reinforcement. When 8-CPT infusions were delayed for 3 hours after the cue reactivation session or were given after a cue extinction session, no effect on cue-induced reinstatement was observed. Co-administration of 8-CPT and the PKA activator 6-Bnz-cAMP (10 nmol/side rescued memory reconsolidation while 6-Bnz alone had no effect, suggesting an antagonizing interaction between the two cAMP signaling substrates. Taken together, these studies suggest that activation of Epac represents a parallel cAMP-dependent pathway that can inhibit reconsolidation of cocaine-cue memories and reduce the ability of the cue to produce reinstatement of cocaine-seeking behavior.

  9. Eicosapentaenoic acid membrane incorporation impairs ABCA1-dependent cholesterol efflux via a protein kinase A signaling pathway in primary human macrophages.

    Science.gov (United States)

    Fournier, Natalie; Tardivel, Sylviane; Benoist, Jean-François; Vedie, Benoît; Rousseau-Ralliard, Delphine; Nowak, Maxime; Allaoui, Fatima; Paul, Jean-Louis

    2016-04-01

    A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A role for the dehydrogenase DHRS7 (SDR34C1) in prostate cancer.

    Science.gov (United States)

    Seibert, Julia K; Quagliata, Luca; Quintavalle, Cristina; Hammond, Thomas G; Terracciano, Luigi; Odermatt, Alex

    2015-11-01

    Several microarray studies of prostate cancer (PCa) samples have suggested altered expression of the "orphan" enzyme short-chain dehydrogenase/reductase DHRS7 (retSDR4, SDR34C1). However, the role of DHRS7 in PCa is largely unknown and the impact of DHRS7 modulation on cancer cell properties has not yet been studied. Here, we investigated DHRS7 expression in normal human prostate and PCa tissue samples at different tumor grade using tissue microarray and immunovisualization. Moreover, we characterized the effects of siRNA-mediated DHRS7 knockdown on the properties of three distinct human prostate cell lines. We found that DHRS7 protein expression decreases alongside tumor grade, as judged by the Gleason level, in PCa tissue samples. The siRNA-mediated knockdown of DHRS7 expression in the human PCa cell lines LNCaP, BPH1, and PC3 significantly increased cell proliferation in LNCaP cells as well as cell migration in all of the investigated cell lines. Furthermore, cell adhesion was decreased upon DHRS7 knockdown in all three cell lines. To begin to understand the mechanisms underlying the effects of DHRS7 depletion, we performed a microarray study with samples from LNCaP cells treated with DHRS7-specific siRNA. Several genes involved in cell proliferation and adhesion pathways were found to be altered in DHRS7-depleted LNCaP cells. Additionally, genes of the BRCA1/2 pathway and the epithelial to mesenchymal transition regulator E-cadherin were altered following DHRS7 knockdown. Based on these results, further research is needed to evaluate the potential role of DHRS7 as a tumor suppressor and whether its loss-of-function promotes PCa progression and metastasis. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  12. C1-esterase inhibitor protects against early vein graft remodeling under arterial blood pressure.

    Science.gov (United States)

    Krijnen, Paul A J; Kupreishvili, Koba; de Vries, Margreet R; Schepers, Abbey; Stooker, Wim; Vonk, Alexander B A; Eijsman, Leon; Van Hinsbergh, Victor W M; Zeerleder, Sacha; Wouters, Diana; van Ham, Marieke; Quax, Paul H A; Niessen, Hans W M

    2012-01-01

    Arterial pressure induced vein graft injury can result in endothelial loss, accelerated atherosclerosis and vein graft failure. Inflammation, including complement activation, is assumed to play a pivotal role herein. Here, we analyzed the effects of C1-esterase inhibitor (C1inh) on early vein graft remodeling. Human saphenous vein graft segments (n=8) were perfused in vitro with autologous blood either supplemented or not with purified human C1inh at arterial pressure for 6h. The vein segments and perfusion blood were analyzed for cell damage and complement activation. In addition, the effect of purified C1inh on vein graft remodeling was analyzed in vivo in atherosclerotic C57Bl6/ApoE3 Leiden mice, wherein donor caval veins were interpositioned in the common carotid artery. Application of C1inh in the in vitro perfusion model resulted in significantly higher blood levels and significantly more depositions of C1inh in the vein wall. This coincided with a significant reduction in endothelial loss and deposition of C3d and C4d in the vein wall, especially in the circular layer, compared to vein segments perfused without supplemented C1inh. Administration of purified C1inh significantly inhibited vein graft intimal thickening in vivo in atherosclerotic C57Bl6/ApoE3 Leiden mice, wherein donor caval veins were interpositioned in the common carotid artery. C1inh significantly protects against early vein graft remodeling, including loss of endothelium and intimal thickening. These data suggest that it may be worth considering its use in patients undergoing coronary artery bypass grafting. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Occurrence and Antioxidant Activity of C1 Degradation Products in Cocoa

    OpenAIRE

    De Taeye, Cédric; Kankolongo Cibaka, Marie-Lucie; Collin, Sonia

    2017-01-01

    Procyanidin C1 is by far the main flavan-3-ol trimer in cocoa. Like other flavan-3-ols, however, it suffers a lot during heat treatments such as roasting. RP-HPLC-HRMS/MS(ESI(?))analysis applied to an aqueous model medium containing commercial procyanidin C1 proved that epimerization is the main reaction involved in its degradation (accounting for 62% of degradation products). In addition to depolymerization, cocoa procyanidin C1 also proved sensitive to oxidation, yielding once- and twice-ox...

  14. A microplate adaptation of the solid-phase C1q immune complex assay

    International Nuclear Information System (INIS)

    Hunt, J.S.; Kennedy, M.P.; Barber, K.E.; McGiven, A.R.

    1980-01-01

    A method has been developed for the detection of C1q binding immune complexes in serum in which microculture plates are used as the solid-phase matrix for adsorption of C1q. This micromethod used only one-tenth of the amount of both C1q and [ 125 I]antihuman immunoglobulin per test and enabled 7 times as many samples to be tested in triplicate in comparison with the number performed in duplicate by the standard tube assay. (Auth.)

  15. Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes methyl chloride (CH3CI) measurements made on air extracted from 62 samples from the Taylor Dome M3C1 ice core in East Antarctica. CH3CI was...

  16. Steroidogenic impairment due to reduced ovarian transcription of cytochrome P450 side-chain-cleavage (P450scc) and steroidogenic acute regulatory protein (StAR) during experimental nephrotic syndrome.

    Science.gov (United States)

    Peña-Rico, Miguel; Guadalupe Ortiz-López, María; Camacho-Castillo, Luz; Cárdenas, Mario; Pedraza-Chaverri, José; Menjívar, Marta

    2006-07-10

    The nephrotic syndrome is a renal disease characterized by proteinuria, hypoproteinemia, edema and hyperlipidemia. It has been reported that female nephrotic rats are characterized by loss of the oestrus cycle, follicle atresia, low gonadotropin and steroid concentrations; particularly, undetectable estradiol levels. Therefore, to determine the mechanisms involved in the ovarian steroidogenesis impairment, in this present study we evaluated the ovarian expression of the essential steroidogenesis components: cytochrome P450 side cholesterol chain cleavage enzyme (P450scc) and steroidogenic acute regulatory protein (StAR). The experiments were conducted in the rat experimental model of nephrosis induced by puromycin aminonucleoside (PAN) and in control groups. The evaluation of the expression of P450scc and StAR mRNA were performed during the acute phase of nephrosis as well as after the exogenous administration of 1 or 4 doses of human chorionic gonadotrophin (hCG), or a daily dose of FSH or FSH+hCG for 10 days. In addition, serum hormone concentrations, intra-ovarian steroid content, and the reproductive capacity were determined. The results revealed a decreased expression of mRNA of P450scc enzyme and StAR during nephrosis, and eventhough they increased after gonadotropins treatment, they did not conduce to a normal cycling rat period or fertility recovery. This study demonstrates that the mechanism by which ovarian steroid biosynthesis is altered during acute nephrosis involves damage at the P450scc and StAR mRNA synthesis and processing.

  17. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade.

    Science.gov (United States)

    Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini; Mulenga, Albert

    2015-02-01

    In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it's plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it's current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation. We discuss our findings in the context of tick feeding physiology.

  18. PrP-C1 fragment in cattle brains reveals features of the transmissible spongiform encephalopathy associated PrPsc.

    Science.gov (United States)

    Serra, Fabienne; Müller, Joachim; Gray, John; Lüthi, Ramona; Dudas, Sandor; Czub, Stefanie; Seuberlich, Torsten

    2017-03-15

    Three different types of bovine spongiform encephalopathy (BSE) are known and supposedly caused by distinct prion strains: the classical (C-) BSE type that was typically found during the BSE epidemic, and two relatively rare atypical BSE types, termed H-BSE and L-BSE. The three BSE types differ in the molecular phenotype of the disease associated prion protein, namely the N-terminally truncated proteinase K (PK) resistant prion protein fragment (PrP res ). In this study, we report and analyze yet another PrP res type (PrP res-2011 ), which was found in severely autolytic brain samples of two cows in the framework of disease surveillance in Switzerland in 2011. Analysis of brain tissues from these animals by PK titration and PK inhibitor assays ruled out the process of autolysis as the cause for the aberrant PrP res profile. Immunochemical characterization of the PrP fragments present in the 2011 cases by epitope mapping indicated that PrP res-2011 corresponds in its primary sequence to the physiologically occurring PrP-C1 fragment. However, high speed centrifugation, sucrose gradient assay and NaPTA precipitation revealed biochemical similarities between PrP res-2011 and the disease-associated prion protein found in BSE affected cattle in terms of detergent insolubility, PK resistance and PrP aggregation. Although it remains to be established whether PrP res-2011 is associated with a transmissible disease, our results point out the need of further research on the role the PrP-C1 aggregation and misfolding in health and disease. Copyright © 2017. Published by Elsevier B.V.

  19. 17 CFR 240.15c1-8 - Sales at the market.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Sales at the market. 240.15c1... Securities Exchange Act of 1934 Rules Relating to Over-The-Counter Markets § 240.15c1-8 Sales at the market... securities exchange that such security is being offered to such customer “at the market” or at a price...

  20. Complications of the lateral C1-C2 puncture myelography for cervical spinal canal

    International Nuclear Information System (INIS)

    Mihale, J.; Traubner, P.

    1998-01-01

    This reviewed the complications of 106 patients of the lateral C1-C2 puncture myelography for cervical spinal canal and cervical spinal cord disorders. Spinal cord puncture and contrast injection, puncture between the occiput and C1, and blood vessel puncture were the main complications. These principally depended on the misdirection of the X ray beam. For preventing major arterial puncture determined the pathway of the vertebral arteries and incidence of anomaly. (authors)

  1. Minimum variance and variance of outgoing quality limit MDS-1(c1, c2) plans

    Science.gov (United States)

    Raju, C.; Vidya, R.

    2016-06-01

    In this article, the outgoing quality (OQ) and total inspection (TI) of multiple deferred state sampling plans MDS-1(c1,c2) are studied. It is assumed that the inspection is rejection rectification. Procedures for designing MDS-1(c1,c2) sampling plans with minimum variance of OQ and TI are developed. A procedure for obtaining a plan for a designated upper limit for the variance of the OQ (VOQL) is outlined.

  2. Analysis of healthy cohorts for single nucleotide polymorphisms in C1q gene cluster

    Directory of Open Access Journals (Sweden)

    MARIA A. RADANOVA

    2015-12-01

    Full Text Available C1q is the first component of the classical pathway of complement activation. The coding region for C1q is localized on chromosome 1p34.1–36.3. Mutations or single nucleotide polymorphisms (SNPs in C1q gene cluster can cause developing of Systemic lupus erythematosus (SLE because of C1q deficiency or other unknown reason. We selected five SNPs located in 7.121 kbp region on chromosome 1, which were previously associated with SLE and/or low C1q level, but not causing C1q deficiency and analyzed them in terms of allele frequencies and genotype distribution in comparison with Hispanic, Asian, African and other Caucasian cohorts. These SNPs were: rs587585, rs292001, rs172378, rs294179 and rs631090. One hundred eighty five healthy Bulgarian volunteers were genotyped for the selected five C1q SNPs by quantative real-time PCR methods. International HapMap Project has been used for information about genotype distribution and allele frequencies of the five SNPs in, Hispanics, Asians, Africans and others Caucasian cohorts. Bulgarian healthy volunteers and another pooled Caucasian cohort had similar frequencies of genotypes and alleles of rs587585, rs292001, rs294179 and rs631090 SNPs. Nevertheless, genotype AA of rs172378 was significantly overrepresented in Bulgarians when compared to other healthy Caucasians from USA and UK (60% vs 31%. Genotype distribution of rs172378 in Bulgarians was similar to Greek-Cyriot Caucasians. For all Caucasians the major allele of rs172378 was A. This is the first study analyzing the allele frequencies and genotype distribution of C1q gene cluster SNPs in Bulgarian healthy population.

  3. Arterial stiffness and cognitive impairment.

    Science.gov (United States)

    Li, Xiaoxuan; Lyu, Peiyuan; Ren, Yanyan; An, Jin; Dong, Yanhong

    2017-09-15

    damages the cerebral microcirculation, which causes various phenomena associated with cerebral small vessel diseases (CSVDs), such as white matter hyperintensities (WMHs), cerebral microbleeds (CMBs), and lacunar infarctions (LIs). The mechanisms underlying the relationship between arterial stiffness and cognitive impairment may also be associated with reductions in white matter and gray matter integrity, medial temporal lobe atrophy and Aβ protein deposition. Engaging in more frequent physical exercise; increasing flavonoid and long-chain n-3 polyunsaturated fatty acid consumption; increasing tea, nitrite, dietary calcium and vitamin D intake; losing weight and taking medications intended to improve insulin sensitivity; quitting smoking; and using antihypertensive drugs and statins are early interventions and lifestyle changes that may be effective in preventing arterial stiffness and thus preventing cognitive impairment. Arterial stiffness is a sensitive predictor of cognitive impairment, and arterial stiffness severity has the potential to serve as an indicator used to facilitate treatments designed to prevent or delay the onset and progression of dementia in elderly individuals. Early treatment of arterial stiffness is beneficial and recommended. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Visual impairment in the hearing impaired students.

    Science.gov (United States)

    Gogate, Parikshit; Rishikeshi, Nikhil; Mehata, Reshma; Ranade, Satish; Kharat, Jitesh; Deshpande, Madan

    2009-01-01

    Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. To detect and treat visual impairment, if any, in hearing-impaired children. Observational, clinical case series of hearing-impaired children in schools providing special education. Hearing-impaired children in selected schools underwent detailed visual acuity testing, refraction, external ocular examination and fundoscopy. Ocular motility testing was also performed. Teachers were sensitized and trained to help in the assessment of visual acuity using Snellen's E charts. Refractive errors and squint were treated as per standard practice. Excel software was used for data entry and SSPS for analysis. The study involved 901 hearing-impaired students between four and 21 years of age, from 14 special education schools. A quarter of them (216/901, 24%) had ocular problems. Refractive errors were the most common morbidity 167(18.5%), but only 10 children were using appropriate spectacle correction at presentation. Fifty children had visual acuity less than 20/80 at presentation; after providing refractive correction, this number reduced to three children, all of whom were provided low-vision aids. Other common conditions included strabismus in 12 (1.3%) children, and retinal pigmentary dystrophy in five (0.6%) children. Ocular problems are common in hearing-impaired children. Screening for ocular problems should be made mandatory in hearing-impaired children, as they use their visual sense to compensate for the poor auditory sense.

  5. C1q aggregate binding for the determination of anti-complementary activity of immunoglobulin products.

    Science.gov (United States)

    Georgakopoulos, Thanae; Tatford, Owen C; Gurevich, Vladimir; Bertolini, Joseph

    2011-01-01

    Aggregates in human immunoglobulin (Ig) products can develop due to employed manufacturing, formulation and storage conditions and can cause adverse reactions in patients. The test for anti-complementary activity (ACA) recommended by the European Pharmacopoeia (EP) is insensitive, variable and time consuming. We have optimised a commercial assay for the detection and quantitation of C1q binding aggregates in intravenous and intramuscular IgG preparations. The generation of C4d, iC3b and SC5b-9 induced by aggregates in vitro was measured by enzyme-linked immunosorbent assays (ELISA). In establishing the sensitivity of the C1q aggregate binding assay to detect IgG aggregates in comparison to turbidity and ACA, pure IgG at neutral and acidic pH was heated for various lengths of time to generate varying amounts of aggregates. The level of C1q binding aggregates was 7 fold greater in intramuscular samples. These aggregates were capable of activating complement in vitro and correlated with an increase in ACA. C1q aggregate binding was apparent before any quantifiable turbidity and ACA in the heat-treated samples. Furthermore, the C1q binding assay could discriminate between different levels of aggregates where ACA had reached a plateau. C1q aggregate binding is a sensitive, convenient, specific and robust means of detecting aggregates with a propensity for complement activation. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  6. Vertebral artery variations at the C1-2 level diagnosed by magnetic resonance angiography

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Saito, Naoko; Watadani, Takeyuki; Okada, Yoshitaka; Kozawa, Eito; Nishi, Naoko; Mizukoshi, Waka; Inoue, Kaiji; Nakajima, Reiko; Takahashi, Masahiro [Saitama Medical University International Medical Center, Department of Diagnostic Radiology, Hidaka, Saitama (Japan)

    2012-01-15

    The craniovertebral junction is clinically important. The vertebral artery (VA) in its several variations runs within this area. We report the prevalence of these VA variations on magnetic resonance angiography (MRA). We retrospectively reviewed MRA images, obtained using two 1.5-T imagers, of 2,739 patients, and paid special attention to the course and branching of the VA at the level of the C1-2 vertebral bodies. There were three types of VA variation at the C1-2 level: (1) persistent first intersegmental artery (FIA), (2) VA fenestration, and (3) posterior inferior cerebellar artery (PICA) originating from the C1/2 level. The overall prevalence of these three variations was 5.0%. There was no laterality in frequency, but we found female predominance (P < 0.05). We most frequently observed the persistent FIA (3.2%), which was sometimes bilateral. We found VA fenestration (0.9%) and PICA of C1/2 origin (1.1%) with almost equal frequency. Two PICAs of C1/2 origin had no normal VA branch. We frequently observed VA variations at the C1-2 level and with female predominance. The persistent FIA was most prevalent and sometimes seen bilaterally. Preoperative identification of these variations in VA is necessary to avoid complications during surgery at the craniovertebral junction. (orig.)

  7. Antithrombin III/SerpinC1 insufficiency exacerbates renal ischemia/reperfusion injury.

    Science.gov (United States)

    Wang, Feng; Zhang, Guangyuan; Lu, Zeyuan; Geurts, Aron M; Usa, Kristie; Jacob, Howard J; Cowley, Allen W; Wang, Niansong; Liang, Mingyu

    2015-10-01

    Antithrombin III, encoded by SerpinC1, is a major anti-coagulation molecule in vivo and has anti-inflammatory effects. We found that patients with low antithrombin III activities presented a higher risk of developing acute kidney injury after cardiac surgery. To study this further, we generated SerpinC1 heterozygous knockout rats and followed the development of acute kidney injury in a model of modest renal ischemia/reperfusion injury. Renal injury, assessed by serum creatinine and renal tubular injury scores after 24 h of reperfusion, was significantly exacerbated in SerpinC1(+/-) rats compared to wild-type littermates. Concomitantly, renal oxidative stress, tubular apoptosis, and macrophage infiltration following this injury were significantly aggravated in SerpinC1(+/-) rats. However, significant thrombosis was not found in the kidneys of any group of rats. Antithrombin III is reported to stimulate the production of prostaglandin I2, a known regulator of renal cortical blood flow, in addition to having anti-inflammatory effects and to protect against renal failure. Prostaglandin F1α, an assayable metabolite of prostaglandin I2, was increased in the kidneys of the wild-type rats at 3 h after reperfusion. The increase of prostaglandin F1α was significantly blunted in SerpinC1(+/-) rats, which preceded increased tubular injury and oxidative stress. Thus, our study found a novel role of SerpinC1 insufficiency in increasing the severity of renal ischemia/reperfusion injury.

  8. Thyroid hormone transport and metabolism by OATP1C1 and consequences of genetic variation

    DEFF Research Database (Denmark)

    van der Deure, Wendy M; Hansen, Pia Skov; Peeters, Robin P

    2008-01-01

    OATP1C1 has been characterized as a specific thyroid hormone transporter. Based on its expression in capillaries in different brain regions, OATP1C1 is thought to play a key-role in transporting thyroid hormone across the blood-brain barrier. For this reason, we studied the specificity of iodothy......OATP1C1 has been characterized as a specific thyroid hormone transporter. Based on its expression in capillaries in different brain regions, OATP1C1 is thought to play a key-role in transporting thyroid hormone across the blood-brain barrier. For this reason, we studied the specificity...... with TH levels, nor did they affect transport function in vitro. In conclusion, OATP1C1 mediates transport of T4, T4S and rT3 and increases the access of these substrates to the intracellular active sites of the deiodinases. No effect of genetic variation on the function of OATP1C1 was observed....

  9. Specific, sensitive, precise, and rapid functional chromogenic assay of activated first complement component (C1) in plasma

    DEFF Research Database (Denmark)

    Munkvad, S; Jespersen, J; Sidelmann, Johannes Jakobsen

    1990-01-01

    We present a new functional assay for the first complement component (C1) in plasma, based on its activation by inhibition of the C1-esterase inhibitor (C1-inh) when monospecific antiserum to C1-inh is added to the plasma. After maximal activation, we can determine the concentration of activated ...

  10. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specification

    Science.gov (United States)

    2010-07-01

    ... Measurements Required, and Maximum Discrepancy Specification C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges..., June 22, 2010, table C-1 to subpart C was revised, effective Aug. 23, 2010. For the convenience of the...

  11. Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain

    NARCIS (Netherlands)

    S. Mayerl (Steffen); T.J. Visser (Theo); V.M. Darras (Veerle); S. Horn (Sigrun); H. Heuer (Heike)

    2012-01-01

    textabstractOrganic anion-transporting polypeptide 1c1 (Oatp1c1) (also known as Slco1c1 and Oatp14) belongs to the family of Oatp and has been shown to facilitate the transport of T 4. In the rodent brain, Oatp1c1 is highly enriched in capillary endothelial cells and choroid plexus structures where

  12. Structural And Biochemical Studies of Botulinum Neurotoxin Serotype C1 Light Chain Protease: Implications for Dual Substrate Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Jin, R.; Sikorra, S.; Stegmann, C.M.; Pich, A.; Binz, T.; Brunger, A.T.

    2009-06-01

    Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote a-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the a-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.

  13. Mild Cognitive Impairment (MCI)

    Science.gov (United States)

    Mild cognitive impairment (MCI) Overview Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It can involve ...

  14. Mild Cognitive Impairment (MCI)

    Science.gov (United States)

    Mild cognitive impairment (MCI) Overview Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It ...

  15. The Janus faces of acquired angioedema: C1-inhibitor deficiency, lymphoproliferation and autoimmunity.

    Science.gov (United States)

    Wu, Maddalena Alessandra; Castelli, Roberto

    2016-02-01

    Several clinical and biological features of lymphoproliferative diseases have been associated with an increased risk of developing autoimmune manifestations. Acquired deficiency of C1-inhibitor (C1-INH) (AAE) is a rare syndrome clinically similar to hereditary angioedema (HAE) characterized by local increase in vascular permeability (angioedema) of the skin and the gastrointestinal and oro-pharyngo-laryngeal mucosa. Bradykinin, a potent vasoactive peptide, released from high molecular weight kininogen when it is cleaved by plasma kallikrein (a serine protease controlled by C1-INH), is the mediator of symptoms. In total 46% of AAE patients carry an underlying hematological disorder including monoclonal gammopathy of uncertain significance (MGUS) or B cell malignancies. However, 74% of AAE patients have anti-C1-INH autoantibodies without hematological, clinical or instrumental evidence of lymphoproliferative disease. Unlike HAE patients, AAE patients usually have late-onset symptoms, do not have a family history of angioedema and present variable response to treatment due to the hypercatabolism of C1-INH. Experiments show that C1-INH and/or the classical complement pathway were consumed by the neoplastic lymphatic tissues and/or anti-C1-INH neutralizing autoantibodies. Therapy of AAE follows two directions: 1) prevention/reversal of the symptoms of angioedema; and 2) treatment of the associated disease. Different forms of B cell disorders coexist and/or evolve into each other in AAE and seem to be dominated by an altered control of B cell proliferation, thus AAE represents an example of the strict link between autoimmunity and lymphoproliferation.

  16. Effect of C1-Esterase-inhibitor in angiotensin-converting enzyme inhibitor-induced angioedema.

    Science.gov (United States)

    Greve, Jens; Bas, Murat; Hoffmann, Thomas K; Schuler, Patrick J; Weller, Patrick; Kojda, Georg; Strassen, Ulrich

    2015-06-01

    The study objective was to generate pilot data to evaluate the effectiveness and safety of C1-esterase-inhibitor concentrate (C1-INH) compared to standard treatment in patients with angiotensin-converting enzyme inhibitor (ACEi)-induced angioedema affecting the upper aerodigestive tract. Proof-of-concept case series with historical control. Adult patients with angioedema in the upper aerodigestive tract presenting to the emergency department were included. After establishing the diagnosis of ACEi-induced angioedema based on patient history and thorough clinical examination, all patients were administered 1,000 international units (IU) of C1-INH intravenously. A historical control group consisting of adult patients with ACEi-induced angioedema who had been treated with intravenous corticosteroids and antihistamines at the same institution over the past 8 years was used for comparison. The most important parameters assessed were the time to complete resolution of symptoms and the need for intubation or tracheotomy. Ten patients were included in the C1-INH group and 47 in the corticosteroid/antihistamine group. The time to complete resolution of symptoms was considerably longer in the historical control group (33.1 ± 19.4 hours) than in the C1-INH group (10.1 ± 3.0 hours). No intubation or tracheotomy was needed in the C1-INH group (0/10 patients), whereas three out of the 47 historical controls required tracheotomy and two were intubated (5/47). The results suggest a role for C1-INH as an effective and safe therapeutic option in patients with ACEi-induced angioedema, which needs to be confirmed by further larger and double-blinded studies. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Surgical treatment of adult and pediatric C1/C2 subluxation with intraoperative computed tomography guidance

    Science.gov (United States)

    Ling, Ji Min; Tiruchelvarayan, Rajendra; Seow, Wan T.; Ng, Hua BI

    2013-01-01

    Background: Surgical treatment of C1/C2 subluxation has evolved significantly over the past 2 decades, from the relatively simpler posterior wiring to more technically demanding instrumentations such as C1 lateral mass screws – C2 pedicle screws, C1/C2 transarticular screws, and occipital cervical fusion. Navigation with fluoroscopy is currently the standard of practice in most centers. However, fluoroscopy at this level carries several major drawbacks, such as blockage by the mandible and inability to produce axial images for assessment of the reduction of rotatory subluxation. Methods: The authors report a series of 21 patients with C1/C2 subluxation treated surgically with intraoperative computed tomography (ICT) guidance. Results: There were 7 children and 14 adults. Eight patients underwent C1/C2 fixation with a Harm's construct, and 13 patients underwent occipital cervical fusion. One out of 17 (6%) C1 lateral mass screws has breached the medial wall of lateral mass by 1 mm. Two out of 20 (10%) C2 pedicle screws have breached the foramen transversarium by 1 mm (Neo classification grade 1). The position of all subaxial screws (49 lateral mass screws and 13 pedicle screws) and occipital screws (50 screws) appeared satisfactory. No neurovascular damage occurred in all the patients. Conclusions: Ninety eight percent of the screws were placed in ideal position with the aid of ICT. Only 2% of the screws deviated from the planned position, but the breaches were not clinically significant and hence no revision was required. This showed that ICT guidance can help to achieve a high accuracy of surgical instrumentation for the treatment of C1/C2 subluxation. PMID:23646272

  18. HvPap-1 C1A Protease Participates Differentially in the Barley Response to a Pathogen and an Herbivore

    Directory of Open Access Journals (Sweden)

    Mercedes Diaz-Mendoza

    2017-09-01

    Full Text Available Co-evolutionary processes in plant–pathogen/herbivore systems indicate that protease inhibitors have a particular value in biotic interactions. However, little is known about the defensive role of their targets, the plant proteases. C1A cysteine proteases are the most abundant enzymes responsible for the proteolytic activity during different processes like germination, development and senescence in plants. To identify and characterize C1A cysteine proteases of barley with a potential role in defense, mRNA and protein expression patterns were analyzed in response to biotics stresses. A barley cysteine protease, HvPap-1, previously related to abiotic stresses and grain germination, was particularly induced by flagellin or chitosan elicitation, and biotic stresses such as the phytopathogenic fungus Magnaporthe oryzae or the phytophagous mite Tetranychus urticae. To elucidate the in vivo participation of this enzyme in defense, transformed barley plants overexpressing or silencing HvPap-1 encoding gene were subjected to M. oryzae infection or T. urticae infestation. Whereas overexpressing plants were less susceptible to the fungus than silencing plants, the opposite behavior occurred to the mite. This unexpected result highlights the complexity of the regulatory events leading to the response to a particular biotic stress.

  19. Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies.

    Science.gov (United States)

    Imbrici, Paola; Altamura, Concetta; Camerino, Giulia Maria; Mangiatordi, Giuseppe Felice; Conte, Elena; Maggi, Lorenzo; Brugnoni, Raffaella; Musaraj, Kejla; Caloiero, Roberta; Alberga, Domenico; Marsano, Renè Massimiliano; Ricci, Giulia; Siciliano, Gabriele; Nicolotti, Orazio; Mora, Marina; Bernasconi, Pia; Desaphy, Jean-Francois; Mantegazza, Renato; Camerino, Diana Conte

    2016-10-01

    Myotonia congenita is an inherited disease that is characterized by impaired muscle relaxation after contraction caused by loss-of-function mutations in the skeletal muscle ClC-1 channel. We report a novel ClC-1 mutation, T335N, that is associated with a mild phenotype in 1 patient, located in the extracellular I-J loop. The purpose of this study was to provide a solid correlation between T335N dysfunction and clinical symptoms in the affected patient as well as to offer hints for drug development. Our multidisciplinary approach includes patch-clamp electrophysiology on T335N and ClC-1 wild-type channels expressed in tsA201 cells, Western blot and quantitative PCR analyses on muscle biopsies from patient and unaffected individuals, and molecular dynamics simulations using a homology model of the ClC-1 dimer. T335N channels display reduced chloride currents as a result of gating alterations rather than altered surface expression. Molecular dynamics simulations suggest that the I-J loop might be involved in conformational changes that occur at the dimer interface, thus affecting gating. Finally, the gene expression profile of T335N carrier showed a diverse expression of K + channel genes, compared with control individuals, as potentially contributing to the phenotype. This experimental paradigm satisfactorily explained myotonia in the patient. Furthermore, it could be relevant to the study and therapy of any channelopathy.-Imbrici, P., Altamura, C., Camerino, G. M., Mangiatordi, G. F., Conte, E., Maggi, L., Brugnoni, R., Musaraj, K., Caloiero, R., Alberga, D., Marsano, R. M., Ricci, G., Siciliano, G., Nicolotti, O., Mora, M., Bernasconi, P., Desaphy, J.-F., Mantegazza, R., Camerino, D. C. Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies. © The Author(s).

  20. Deposition Velocities of C1 - C5 Alkyl Nitrates at a Northern Colorado Site

    Science.gov (United States)

    Abeleira, A.; Sive, B. C.; Farmer, D.; Swarthout, B.

    2017-12-01

    Organic nitrates (RONO2) are ubiquitous in the troposphere and are part of gas-phase oxidized nitrogen (NOy = NOx + HNO3 + HONO + N2O5 + HO2NO2 + PAN + NO3 + RONO2). RONO2 can act as both sinks and sources of HOx (RO + RO2 + OH) and NOx (NO + NO2), contributing to the nonlinearity of ozone (O3) formation. It is thus potentially important to understand sinks of RONO2, and how they change seasonally, in order to predict O3 on local, regional and global scales. We focus here on speciated C1 - C5 monofunctional alkyl nitrates (C1 - C5 ANs). In polluted continental regions the dominant source of C1 - C5 ANs is the OH-initiated oxidation of parent alkanes in the presence of NO, and thus changes seasonally with OH mixing ratios. Direct emissions of C1 - C2 ANs include oceanic sources and biomass burning. The sinks of C1 - C5 ANs include OH oxidation and photolysis, both of which release O3 precursors. Chemical transport models tend to overestimate the mixing ratios of small ANs indicating that a missing sink is not included. Wet deposition of C1 - C5 ANs is typically ignored due to the very low Henry's Law constants of these species. However, dry deposition of total organic nitrogen has been observed to be substantial. The dry deposition velocity of methyl nitrate has previously been estimated from summer observations at a rural New England site with a value of 0.13 cm s-1. Here we report deposition velocities for C1 - C5 ANs from surface observations at the Boulder Atmospheric Observatory (BAO) in Erie, Colorado during winter 2011 and spring 2015. We calculate deposition velocities from the observed decay in C1 - C5 ANs at night during periods with a stable nocturnal boundary layer height of 100 - 200 meters. Ideal meteorological conditions were observed for 5 nights during the 2011 NACHTT campaign (February - March 2011), and for 5 nights during the 2015 SONGNEX campaign (March - May 2015). Deposition velocities increased with alkyl nitrate size, ranging from 0.15 cm

  1. Tau protein

    DEFF Research Database (Denmark)

    Frederiksen, Jette Lautrup Battistini; Kristensen, Kim; Bahl, Jmc

    2011-01-01

    Background: Tau protein has been proposed as biomarker of axonal damage leading to irreversible neurological impairment in MS. CSF concentrations may be useful when determining risk of progression from ON to MS. Objective: To investigate the association between tau protein concentration and 14......-3-3 protein in the cerebrospinal fluid (CSF) of patients with monosymptomatic optic neuritis (ON) versus patients with monosymptomatic onset who progressed to multiple sclerosis (MS). To evaluate results against data found in a complete literature review. Methods: A total of 66 patients with MS and/or ON from...... the Department of Neurology of Glostrup Hospital, University of Copenhagen, Denmark, were included. CSF samples were analysed for tau protein and 14-3-3 protein, and clinical and paraclinical information was obtained from medical records. Results: The study shows a significantly increased concentration of tau...

  2. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine

    International Nuclear Information System (INIS)

    Duval, Caroline; Touche, Veronique; Tailleux, Anne; Fruchart, Jean-Charles; Fievet, Catherine; Clavey, Veronique; Staels, Bart; Lestavel, Sophie

    2006-01-01

    Niemann-Pick C1 like 1 (NPC1L1) is a protein critical for intestinal cholesterol absorption. The nuclear receptors peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptors (LXRα and LXRβ) are major regulators of cholesterol homeostasis and their activation results in a reduced absorption of intestinal cholesterol. The goal of this study was to define the role of PPARα and LXR nuclear receptors in the regulation of NPC1L1 gene expression. We show that LXR activators down-regulate NPC1L1 mRNA levels in the human enterocyte cell line Caco-2/TC7, whereas PPARα ligands have no effect. Furthermore, NPC1L1 mRNA levels are decreased in vivo, in duodenum of mice treated with the LXR agonist T0901317. In conclusion, the present study identifies NPC1L1 as a novel LXR target gene further supporting a crucial role of LXR in intestinal cholesterol homeostasis

  3. Procyanidin trimer C1 derived from Theobroma cacao reactivates latent human immunodeficiency virus type 1 provirus.

    Science.gov (United States)

    Hori, Takanori; Barnor, Jacob; Huu, Tung Nguyen; Morinaga, Osamu; Hamano, Akiko; Ndzinu, Jerry; Frimpong, Angela; Minta-Asare, Keren; Amoa-Bosompem, Mildred; Brandful, James; Odoom, John; Bonney, Joseph; Tuffour, Isaac; Owusu, Baffour-Awuah; Ofosuhene, Mark; Atchoglo, Philip; Sakyiamah, Maxwell; Adegle, Richard; Appiah-Opong, Regina; Ampofo, William; Koram, Kwadwo; Nyarko, Alexander; Okine, Laud; Edoh, Dominic; Appiah, Alfred; Uto, Takuhiro; Yoshinaka, Yoshiyuki; Uota, Shin; Shoyama, Yukihiro; Yamaoka, Shoji

    2015-04-03

    Despite remarkable advances in combination antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) infection remains incurable due to the incomplete elimination of the replication-competent virus, which persists in latent reservoirs. Strategies for targeting HIV reservoirs for eradication that involves reactivation of latent proviruses while protecting uninfected cells by cART are urgently needed for cure of HIV infection. We screened medicinal plant extracts for compounds that could reactivate the latent HIV-1 provirus and identified a procyanidin trimer C1 derived from Theobroma cacao as a potent activator of the provirus in human T cells latently infected with HIV-1. This reactivation largely depends on the NF-κB and MAPK signaling pathways because either overexpression of a super-repressor form of IκBα or pretreatment with a MEK inhibitor U0126 diminished provirus reactivation by C1. A pan-PKC inhibitor significantly blocked the phorbol ester-induced but not the C1-induced HIV-1 reactivation. Although C1-induced viral gene expression persisted for as long as 48 h post-stimulation, NF-κB-dependent transcription peaked at 12 h post-stimulation and then quickly declined, suggesting Tat-mediated self-sustainment of HIV-1 expression. These results suggest that procyanidin C1 trimer is a potential compound for reactivation of latent HIV-1 reservoirs. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. In silico Analysis of osr40c1 Promoter Sequence Isolated from Indica Variety Pokkali

    Directory of Open Access Journals (Sweden)

    W.S.I. de Silva

    2017-07-01

    Full Text Available The promoter region of a drought and abscisic acid (ABA inducible gene, osr40c1, was isolated from a salt-tolerant indica rice variety Pokkali, which is 670 bp upstream of the putative translation start codon. In silico promoter analysis of resulted sequence showed that at least 15 types of putative motifs were distributed within the sequence, including two types of common promoter elements, TATA and CAAT boxes. Additionally, several putative cis-acing regulatory elements which may be involved in regulation of osr40c1 expression under different conditions were found in the 5′-upstream region of osr40c1. These are ABA-responsive element, light-responsive elements (ATCT-motif, Box I, G-box, GT1-motif, Gap-box and Sp1, myeloblastosis oncogene response element (CCAAT-box, auxin responsive element (TGA-element, gibberellin-responsive element (GARE-motif and fungal-elicitor responsive elements (Box E and Box-W1. A putative regulatory element, required for endosperm-specific pattern of gene expression designated as Skn-1 motif, was also detected in the Pokkali osr40c1 promoter region. In conclusion, the bioinformatic analysis of osr40c1 promoter region isolated from indica rice variety Pokkali led to the identification of several important stress-responsive cis-acting regulatory elements, and therefore, the isolated promoter sequence could be employed in rice genetic transformation to mediate expression of abiotic stress induced genes.

  5. Second-order optimality conditions for problems with C1 data

    Science.gov (United States)

    Ginchev, Ivan; Ivanov, Vsevolod I.

    2008-04-01

    In this paper we obtain second-order optimality conditions of Karush-Kuhn-Tucker type and Fritz John one for a problem with inequality constraints and a set constraint in nonsmooth settings using second-order directional derivatives. In the necessary conditions we suppose that the objective function and the active constraints are continuously differentiable, but their gradients are not necessarily locally Lipschitz. In the sufficient conditions for a global minimum we assume that the objective function is differentiable at and second-order pseudoconvex at , a notion introduced by the authors [I. Ginchev, V.I. Ivanov, Higher-order pseudoconvex functions, in: I.V. Konnov, D.T. Luc, A.M. Rubinov (Eds.), Generalized Convexity and Related Topics, in: Lecture Notes in Econom. and Math. Systems, vol. 583, Springer, 2007, pp. 247-264], the constraints are both differentiable and quasiconvex at . In the sufficient conditions for an isolated local minimum of order two we suppose that the problem belongs to the class C1,1. We show that they do not hold for C1 problems, which are not C1,1 ones. At last a new notion parabolic local minimum is defined and it is applied to extend the sufficient conditions for an isolated local minimum from problems with C1,1 data to problems with C1 one.

  6. C1-esterase inhibitor blocks T lymphocyte proliferation and cytotoxic T lymphocyte generation in vitro

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Bregenholt, S; Nording, J A

    1998-01-01

    cultures grown in the presence of complement-inactivated serum. Read-outs were cell proliferation, lymphokine production and development of T cell-mediated cytotoxicity. We found that addition of C1-inh to MLC and mitogen-exposed murine and human lymphocyte cultures inhibited proliferation, the development...... beta2m in nanomolar amounts to a one-way allogenic mixed lymphocyte culture (MLC) increased the endogenous production of IL-2 and the generation of allo-specific cytotoxic T lymphocytes. C1-inh was purified from fresh human plasma and added to human or murine MLC and mitogen-stimulated lymphocyte...... of allospecific cytotoxic activity, and changed the endogenous production of IL-2, IL-4, IL-10, IL-12 and IFN-gamma. These data clearly demonstrate a regulatory function of C1-inh on T cell-mediated immune functions....

  7. C1 Inhibitor Deficiency and Angioedema of the Small Intestine Masquerading as Crohn’s Disease

    Directory of Open Access Journals (Sweden)

    Kelly W Burak

    2000-01-01

    Full Text Available A case of C1 inhibitor deficiency presenting as localized edema of the small intestine is described. A 16-year-old, previously healthy woman presented with recurrent attacks of abdominal pain and vomiting following minor abdominal trauma. Investigations including computed tomography scan and barium studies confirmed localized edema of the jejunum. At laparoscopy, Crohn’s disease was suspected; however, a subsequent enteroscopy was normal. Complement levels revealed a low C4 level, and C1 inhibitor deficiency was later confirmed. Attacks of abdominal pain began after starting oral contraceptives and have not returned since stopping the birth control pill. This rare cause of abdominal pain is examined, and C1 inhibitor deficiency and angioedema are reviewed.

  8. Carbon isotope anomaly in the major plant C1 pool and its global biogeochemical implications

    Directory of Open Access Journals (Sweden)

    F. Keppler

    2004-01-01

    Full Text Available We report that the most abundant C1 units of terrestrial plants, the methoxyl groups of pectin and lignin, have a unique carbon isotope signature exceptionally depleted in 13C. Plant-derived C1 volatile organic compounds (VOCs are also anomalously depleted in 13C compared with Cn+1 VOCs. The results confirm that the plant methoxyl pool is the predominant source of biospheric C1 compounds of plant origin such as methanol, chloromethane and bromomethane. Furthermore this pool, comprising ca 2.5% of carbon in plant biomass, could be an important substrate for methanogenesis and thus be envisaged as a possible source of isotopically light methane entering the atmosphere. Our findings have significant implications for the use of carbon isotope ratios in elucidation of global carbon cycling. Moreover methoxyl groups could act as markers for biological activity in organic matter of terrestrial and extraterrestrial origin.

  9. Identification and Analysis of the Chloroplast rpoC1 Gene Differentially Expressed in Wild Ginseng

    Directory of Open Access Journals (Sweden)

    Lee Kwang-Ho

    2012-06-01

    Full Text Available Panax ginseng is a well-known herbal medicine in traditional Asian medicine, and wild ginseng is widely accepted to be more active than cultivated ginseng in chemoprevention. However, little has actually been reported on the difference between wild ginseng and cultivated ginseng. Thus, to identify and analyze those differences, we used suppressive subtraction hybridization (SSH sequences with microarrays, realtime polymerase chain reaction (PCR, and reverse transcription PCRs (RT-PCRs. One of the clones isolated in this research was the chloroplast rpoC1 gene, a β subunit of RNA polymerase. Real-time RT-PCR results showed that the expression of the rpoC1 gene was significantly upregulated in wild ginseng as compared to cultivated ginseng, so, we conclude that the rpoC1 gene may be one of the important markers of wild ginseng.

  10. C1 Polymerization: a unique tool towards polyethylene-based complex macromolecular architectures

    KAUST Repository

    Wang, De

    2017-05-09

    The recent developments in organoborane initiated C1 polymerization (chain grows by one atom at a time) of ylides opens unique horizons towards well-defined/perfectly linear polymethylenes (equivalent to polyethylenes, PE) and PE-based complex macromolecular architectures. The general mechanism of C1 polymerization (polyhomologation) involves the formation of a Lewis complex between a methylide (monomer) and a borane (initiator), followed by migration/insertion of a methylene into the initiator and after oxidation/hydrolysis to afford OH-terminated polyethylenes. This review summarizes efforts towards conventional and newly discovered borane-initiators and ylides (monomers), as well as a combination of polyhomologation with other polymerization methods. Initial efforts dealing with C3 polymerization and the synthesis of the first C1/C3 copolymers are also given. Finally, some thoughts for the future of these polymerizations are presented.

  11. Distinct expression of synaptic NR2A and NR2B in the central nervous system and impaired morphine tolerance and physical dependence in mice deficient in postsynaptic density-93 protein

    Directory of Open Access Journals (Sweden)

    Johns Roger A

    2008-10-01

    Full Text Available Abstract Postsynaptic density (PSD-93, a neuronal scaffolding protein, binds to and clusters N-methyl-D-aspartate receptor (NMDAR subunits NR2A and NR2B at cellular membranes in vitro. However, the roles of PSD-93 in synaptic NR2A and NR2B targeting in the central nervous system and NMDAR-dependent physiologic and pathologic processes are still unclear. We report here that PSD-93 deficiency significantly decreased the amount of NR2A and NR2B in the synaptosomal membrane fractions derived from spinal cord dorsal horn and forebrain cortex but did not change their levels in the total soluble fraction from either region. However, PSD-93 deficiency did not markedly change the amounts of NR2A and NR2B in either synaptosomal or total soluble fractions from cerebellum. In mice deficient in PSD-93, morphine dose-dependent curve failed to shift significantly rightward as it did in wild type (WT mice after acute and chronic morphine challenge. Unlike WT mice, PSD-93 knockout mice also showed marked losses of NMDAR-dependent morphine analgesic tolerance and associated abnormal sensitivity in response to mechanical, noxious thermal, and formalin-induced inflammatory stimuli after repeated morphine injection. In addition, PSD-93 knockout mice displayed dramatic loss of jumping activity, a typical NMDAR-mediated morphine withdrawal abstinence behavior. These findings indicate that impaired NMDAR-dependent neuronal plasticity following repeated morphine injection in PSD-93 knockout mice is attributed to PSD-93 deletion-induced alterations of synaptic NR2A and NR2B expression in dorsal horn and forebrain cortex neurons. The selective effect of PSD-93 deletion on synaptic NMDAR expression in these two major pain-related regions might provide the better strategies for the prevention and treatment of opioid tolerance and physical dependence.

  12. Memory Impairment in Children with Language Impairment

    Science.gov (United States)

    Baird, Gillian; Dworzynski, Katharina; Slonims, Vicky; Simonoff, Emily

    2010-01-01

    Aim: The aim of this study was to assess whether any memory impairment co-occurring with language impairment is global, affecting both verbal and visual domains, or domain specific. Method: Visual and verbal memory, learning, and processing speed were assessed in children aged 6 years to 16 years 11 months (mean 9y 9m, SD 2y 6mo) with current,…

  13. Visual impairment in the hearing impaired students

    Directory of Open Access Journals (Sweden)

    Gogate Parikshit

    2009-01-01

    Full Text Available Background : Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. Aim : To detect and treat visual impairment, if any, in hearing-impaired children. Setting and Design : Observational, clinical case series of hearing-impaired children in schools providing special education. Materials and Methods : Hearing-impaired children in selected schools underwent detailed visual acuity testing, refraction, external ocular examination and fundoscopy. Ocular motility testing was also performed. Teachers were sensitized and trained to help in the assessment of visual acuity using Snellen′s E charts. Refractive errors and squint were treated as per standard practice. Statistical Analysis : Excel software was used for data entry and SSPS for analysis. Results : The study involved 901 hearing-impaired students between four and 21 years of age, from 14 special education schools. A quarter of them (216/901, 24% had ocular problems. Refractive errors were the most common morbidity 167(18.5%, but only 10 children were using appropriate spectacle correction at presentation. Fifty children had visual acuity less than 20/80 at presentation; after providing refractive correction, this number reduced to three children, all of whom were provided low-vision aids. Other common conditions included strabismus in 12 (1.3% children, and retinal pigmentary dystrophy in five (0.6% children. Conclusion : Ocular problems are common in hearing-impaired children. Screening for ocular problems should be made mandatory in hearing-impaired children, as they use their visual sense to compensate for the poor auditory sense.

  14. A PP2C-1 Allele Underlying a Quantitative Trait Locus Enhances Soybean 100-Seed Weight.

    Science.gov (United States)

    Lu, Xiang; Xiong, Qing; Cheng, Tong; Li, Qing-Tian; Liu, Xin-Lei; Bi, Ying-Dong; Li, Wei; Zhang, Wan-Ke; Ma, Biao; Lai, Yong-Cai; Du, Wei-Guang; Man, Wei-Qun; Chen, Shou-Yi; Zhang, Jin-Song

    2017-05-01

    Cultivated soybeans may lose some useful genetic loci during domestication. Introgression of genes from wild soybeans could broaden the genetic background and improve soybean agronomic traits. In this study, through whole-genome sequencing of a recombinant inbred line population derived from a cross between a wild soybean ZYD7 and a cultivated soybean HN44, and mapping of quantitative trait loci for seed weight, we discovered that a phosphatase 2C-1 (PP2C-1) allele from wild soybean ZYD7 contributes to the increase in seed weight/size. PP2C-1 may achieve this function by enhancing cell size of integument and activating a subset of seed trait-related genes. We found that PP2C-1 is associated with GmBZR1, a soybean ortholog of Arabidopsis BZR1, one of key transcription factors in brassinosteroid (BR) signaling, and facilitate accumulation of dephosphorylated GmBZR1. In contrast, the PP2C-2 allele with variations of a few amino acids at the N-terminus did not exhibit this function. Moreover, we showed that GmBZR1 could promote seed weight/size in transgenic plants. Through analysis of cultivated soybean accessions, we found that 40% of the examined accessions do not have the PP2C-1 allele, suggesting that these accessions can be improved by introduction of this allele. Taken together, our study identifies an elite allele PP2C-1, which can enhance seed weight and/or size in soybean, and pinpoints that manipulation of this allele by molecular-assisted breeding may increase production in soybean and other legumes/crops. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  15. Impairment of endothelium-dependent ACh-induced relaxation in aorta of diabetic db/db mice--possible dysfunction of receptor and/or receptor-G protein coupling.

    Science.gov (United States)

    Miike, Tomohiro; Kunishiro, Kazuyoshi; Kanda, Mamoru; Azukizawa, Satoru; Kurahashi, Kazuyoshi; Shirahase, Hiroaki

    2008-06-01

    Diabetes is a risk factor of ischemic heart disease, cerebral ischemia, and atherosclerosis, in which endothelial dysfunction plays a role in the pathogenesis. We examined vascular responses in the aorta of pre-diabetic db/db mice with normoglycemia, hyperlipidemia, and hyperinsulinemia (6 weeks old), and diabetic db/db mice with hyperglycemia, hyperlipidemia, and hyperinsulinemia (11 weeks old) in comparison with age-matched non-diabetic db/+ mice. Prostaglandin F2alpha (PGF2alpha)-induced contraction was significantly enhanced in the aorta of diabetic but not pre-diabetic db/db mice compared to age-matched non-diabetic db/+ mice. Acetylcholine (ACh), adenosine-5'-diphosphate (ADP), NaF, a G protein activator and A-23187, a Ca-ionophore, caused endothelium-dependent and nitric oxide (NO)-mediated relaxation, and sodium nitroprusside (SNP), an NO donor, caused endothelium-independent relaxation in the pre-contracted aorta of db/db mice. Maximal endothelium-dependent ACh-induced relaxation was reduced in diabetic but not pre-diabetic db/db mice compared to age-matched db/+ mice, while maximal SNP-induced relaxation was not different between diabetic and non-diabetic mice. ACh-induced relaxation in diabetic db/db mice was not affected by ozagrel, a thromboxane A2 (TXA2) synthetase inhibitor, or acetylsalicylic acid (aspirin), a cyclooxygenase inhibitor, suggesting no involvement of endogenous TXA2 or prostanoids in the reduction of relaxation. Maximal endothelium-dependent ADP-, A-23187-, and NaF-induced relaxation was not reduced in diabetic db/db mice. EC50 values for ACh- and SNP-induced relaxation were increased in diabetic but not pre-diabetic db/db mice, suggesting decreases in sensitivity to NO in diabetic mice. Two-week treatment with KV-5070, a PPARgamma agonist, lowered plasma glucose, triglyceride (TG), and insulin but not cholesterol, and reversed the reduced ACh-induced relaxation. In conclusion, ACh-induced endothelium-dependent relaxation is impaired

  16. Presence of C1-Inhibitor Polymers in a Subset of Patients Suffering from Hereditary Angioedema

    DEFF Research Database (Denmark)

    Elenius Madsen, Daniel; Hansen, Søren Werner Karlskov; Gram, Jørgen Brodersen

    2014-01-01

    phenotypes were observed in four affected family members from one of these families. Genotyping of the families revealed that the polymerogenic mutations of two families were located in proximity to the reactive center loop insertion site in C1-inh (p.Ile271Thr and p.Ser258_Pro260del),and one mutation...... affected helix C (p.Thr167Asn). In conclusion, we demonstrate that C1-inh polymers are present in the plasma of a subgroup of HAE type I patients....

  17. Endovascular Treatment of a Vertebral Artery Pseudoaneurysm Following Posterior C1-C2 Transarticular Screw Fixation

    International Nuclear Information System (INIS)

    Mendez, Jose C.; Gonzalez-Llanos, Francisco

    2005-01-01

    We present a case of vertebral artery pseudoaneurysm after a posterior C1-C2 transarticular screw fixation procedure that was effectively treated with endovascular coil occlusion. Vertebral artery pseudoaneurysm complicating posterior C1-C2 transarticular fixation is extremely rare, with only one previous case having been reported previously. Endovascular occlusion is better achieved in the subacute phase of the pseudoaneurysm, when the wall of the pseudoaneurysm has matured and stabilized. Further follow-up angiographies are mandatory in order to confirm that there is no recurrence of the lesion

  18. Two-dimensional black hole as a topological coset model of c = 1 string theory

    International Nuclear Information System (INIS)

    Mukhi, S.; Vafa, C.

    1993-01-01

    We show that a special superconformal coset (with c=3) is equivalent to c=1 matter coupled to two-dimensional gravity. This identification allows a direct computation of the correlation functions of the c=1 non-critical string to all genus, and at nonzero cosmological constant, directly from the continuum approach. The results agree with those of the matrix model. Moreover we connect our coset with a twisted version of a euclidean two-dimensional black hole, in which the ghost and matter systems are mixed. (orig.)

  19. Gaussian quadrature rules for C 1 quintic splines with uniform knot vectors

    KAUST Repository

    Bartoň, Michael

    2017-03-21

    We provide explicit quadrature rules for spaces of C1C1 quintic splines with uniform knot sequences over finite domains. The quadrature nodes and weights are derived via an explicit recursion that avoids numerical solvers. Each rule is optimal, that is, requires the minimal number of nodes, for a given function space. For each of nn subintervals, generically, only two nodes are required which reduces the evaluation cost by 2/32/3 when compared to the classical Gaussian quadrature for polynomials over each knot span. Numerical experiments show fast convergence, as nn grows, to the “two-third” quadrature rule of Hughes et al. (2010) for infinite domains.

  20. Improving C1-C2 Complex Fusion Rates: An Alternate Approach.

    Science.gov (United States)

    Ghostine, Samer S; Kaloostian, Paul E; Ordookhanian, Christ; Kaloostian, Sean; Zarrini, Parham; Kim, Terrence; Scibelli, Stephen; Clark-Schoeb, Scott J; Samudrala, Srinath; Lauryssen, Carl; Gill, Amandip S; Johnson, Patrick J

    2017-11-29

    The surgical repair of atlantoaxial instabilities (AAI) presents complex and unique challenges, originating from abnormalities and/or trauma within the junction regions of the C1-C2 atlas-axis, to surgeons. When this region is destabilized, surgical fusion becomes of key importance in order to prevent spinal cord injury. Several techniques can be utilized to provide for the adequate fusion of the atlantoaxial construct. Nevertheless, many individuals have less than ideal rates of fusion, below 35%-40%, which also involves the C2 nerve root being sacrificed. This suboptimal and unavoidable iatrogenic complication results in the elevated probability of complications typically composed of vertebral artery injury. This review is a retrospective analysis of 87 patients from Cedars Sinai Medical Center in Los Angeles, California, who had the C1-C2 surgical fusion procedure performed within the time frame from 2001 to 2008, with a mean follow-up period of three years. These patients had presented with typical AAI symptoms of fatigability, limited mobility, and clumsiness. Diagnosis of C1-C2 instability was documented via radiographic studies, typically utilizing computed tomography (CT) scans or x-rays. All patients had bilateral C1 lateral masses and C2 pedicle screws. In addition, the C1-C2 joint was accessed by retracting the C2 nerve root superiorly and exposing the joint by utilizing a high-speed burr. The cavity that is developed within the joint is packed with local autologous bone from the cephalad resection of the C2 laminae. Fusion of the C1-C2 joint was achieved in all patients and a final follow-up was conducted approximately three years postoperative. Of the 87 patients, two presented with occipital headaches resulting from the C1 screws impinging on the C2 nerve root. The issue was rectified by removing instrumentation in both patients after documenting complete fusion via radiographic studies, with complete resolution of symptoms. No vertebral

  1. Procyanidin C1 Causes Vasorelaxation Through Activation of the Endothelial NO/cGMP Pathway in Thoracic Aortic Rings

    OpenAIRE

    Byun, Eui-Baek; Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sup; Byun, Eui-Hong; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Lee, Ju-Woon; Park, Sang-Hyun; Byun, Myung-Woo; Kim, Jae-Hun

    2014-01-01

    The aim of this study was to clarify the efficacy of procyanidin C1 (Pro C1) for modulating vascular tone. Pro C1 induced a potent vasorelaxant effect on phenylephrine-constricted endothelium-intact thoracic aortic rings, but had no effect on denuded thoracic aortic rings. Moreover, Pro C1 caused a significant increase in nitric oxide (NO) production in endothelial cells. Pro C1-induced vasorelaxation and Pro C1-induced NO production were significantly decreased in the presence of a nonspecif...

  2. C1 lateral mass screws for posterior segmental stabilization of the upper cervical spine and a new method of three-point rigid fixation of the C1-C2 complex Parafusos na massa lateral de C1 para instrumentação segmentar da coluna cervical alta e um novo método de fixação em três pontos do complexo C1-C2

    Directory of Open Access Journals (Sweden)

    Marcelo D. Vilela

    2006-09-01

    Full Text Available OBJECTIVE: To describe our experience with C1 lateral mass screws as part of a construct for C1-2 stabilization and report an alternate method of C1-C2 complex three-point fixation. METHOD: All patients that had at least one screw placed in the lateral mass of C1 as part of a construct for stabilization of the C1-C2 complex entered this study. In selected patients who had a higher chance of nonunion an alternate construct was used: transarticular C1-C2 screws combined with C1 lateral mass screws. RESULTS: Twenty-one C1 lateral mass screws were placed in 11 patients. In three patients the alternate construct was used. All patients had a demonstrable solid and stable fusion on follow-up. CONCLUSION: C1 lateral mass screws are safe and provide immediate stability. The use of C1-C2 transarticular screws combined with C1 lateral mass screws is a feasible and also an excellent alternative for a three-point fixation of the C1-C2 complex.OBJETIVO: Descrever nossa experiência com o uso de parafusos na massa lateral de C1 como parte de uma montagem para estabilização do complexo C1-C2 e relatar uma fixação alternativa em três pontos do complexo C1-C2. MÉTODO: Todos os pacientes em que pelo menos um parafuso na massa lateral de C1 foi colocado como parte de uma montagem para estabilização C1-C2 entraram neste estudo. Em certos pacientes com maior chance de não-união, uma montagem alternativa foi usada: parafusos transarticulares C1-C2 associados a parafusos na massa lateral de C1. RESULTADOS: Foram colocados 21 parafusos na massa lateral de C1 em 11 pacientes e em três pacientes foi usada a montagem alternativa. Todos os pacientes evoluíram para uma união sólida e estável. CONCLUSÃO: Parafusos na massa lateral de C1 são seguros e conferem estabilidade imediata. Parafusos na massa lateral de C1 combinados a parafusos transarticulares são exequíveis e também excelente alternativa para fixação rígida em três pontos do complexo C1-C2.

  3. Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set includes methyl bromide (CH3Br) measurements made on air extracted from 70 samples from the Taylor Dome M3C1 ice core. CH3Br was measured in air from...