WorldWideScience

Sample records for black locust wood shearing strength wood for constructions

  1. Research Concerning the Shearing Strength of Black Locust Wood

    Directory of Open Access Journals (Sweden)

    Mihaela POROJAN

    2011-06-01

    Full Text Available The paper presents the experimental resultsobtained for the shearing strength of black locustwood (Robinia pseudacacia L. harvested from twogeographical areas (North and South of Romania.Wood is subjected to shearing stress when usedwithin different fields, and especially inconstructions. Tangential stresses are produced inthe shearing sections and they are influenced by thestructure of wood through the position of theshearing plane and of the force direction towards thegrain. Accordingly, several shearing types arepossible. The shearing strengths for the three mainshearing types, both on radial and tangentialdirection were determined within the present study.The evaluation of data was achieved by using theANOVA analysis, in order to test the level ofsignificance depending on the shearing planeorientation and the harvesting area. The obtainedresults were compared to the values mentionedwithin reference literature for this wood species andtwo other hardwood species with similar density. It isworth to be mentioned that the shearing strengths ofblack locust wood from Romania (both from Northand South are generally higher than those indicatedby reference literature for oak and beech. Thisrecommends black locust wood as constructionwood and for other applications where wood issubjected to shearing stress.

  2. Wood construction under cold climate

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Hagman, Olle; Sundqvist, Bror

    2014-01-01

    As wood constructions increasingly use engineered wood products worldwide, concerns arise about the integrity of the wood and adhesives system. The glueline stability is a crucial issue for engineered wood application, especially under cold climate. In this study, Norway spruce (Picea abies...... affected shear strength of wood joints. As temperature decreased, the shear strength decreased. PUR resin resulted in the strongest shear strength at all temperatures tested. MF resin responded to temperature changes in a similar ways as the PUR resin. The shear strength of wood joints with EPI resins...... specimens need to be tested in further work to more completely present the issue. The EN 301 and EN 302 may need to be specified based on wood species....

  3. Heat-induced chemical and color changes of extractive-free Black Locust (Rosinia Pseudoacacia) wood

    Science.gov (United States)

    Yao Chen; Jianmin Gao; Yongming Fan; Mandla A. Tshabalala; Nicole M. Stark

    2012-01-01

    To investigate chemical and color changes of the polymeric constituents of black locust (Robinia pseudoacacia) wood during heat treatment, extractive-free wood flour was conditioned to 30% initial moisture content (MC) and heated for 24 h at 120 °C in either an oxygen or nitrogen atmosphere. The color change was measured using the CIELAB color system. Chemical changes...

  4. EVALUATION OF STRENGTH TO SHEAR AND DELAMINATION IN GLUED LAMINATED WOOD

    Directory of Open Access Journals (Sweden)

    Carlito Calil Neto

    2014-12-01

    Full Text Available The Glued Laminated Wood has a large range of applications. In Brazil, its employment as cross-piece poles for overhead electrical power has attracted the attention of companies in the industry, motivated by the potential use of this material. Among the factors that influence the mechanical performance of Glulam solutions stand out efficiency and affinity of the adhesives to the species of wood used, the type of treatment and moisture content of wood veneer, motivating the development of new research on this topic. This research aimed to investigate, by Design of Experiments (DOE, the influence of wood (pinus, teca, eucalipto, adhesive (Purbond; Cascophen and treatment (CCA, CCB, CCBS in the variable responses shear strength and delamination, consisting in the same combination factors evaluated in ANEEL/EESC-PD220-07 project: Head Crosshead Glulam Series. The results of the statistical analysis showed that the species factor expressed significant effect for both response variables evaluated, did not occur with adhesive and treatment factors. Moisture content was significant in the wood evaluated when analyzed the shear strength, and the teca wood showed the highest shear strength and also relating to the delamination.

  5. The Effect of Heat Treatment on the chemical and color change of Black Locust (Robinia Pseudoacacia) wood flour

    Science.gov (United States)

    Yao Chen; Yongming Fan; Jianmin Gao; Nicole M. Stark

    2012-01-01

    The aim of this study was to investigate the effects of oxygen and moisture content (MC) on the chemical and color changes of black locust (Robinia pseudoacacia) wood during heat treatment. The wood flour was conditioned to different initial MCs and heated for 24 h at a constant temperature of 120°C in either oxygen or nitrogen atmosphere. The pH values and...

  6. SHEAR STRENGTH IN THE GLUE LINE OF Eucalyptus sp. AND Pinus sp.WOOD

    Directory of Open Access Journals (Sweden)

    Juliana Jerásio Bianche

    Full Text Available ABSTRACT To evaluate the adhesive efficiency on the union of glued joints in a particular temperature and humidity conditions for a specified time the adhesive must be submitted to specific load tests, such as shear in the glue line. The objective of this study was to evaluate the shear strength in the glue line of Eucalyptus sp and Pinus sp.woods. Five adhesives (castor oil, sodium silicate, modified silicate, , PVA and resorcinol-formaldehyde, three weights (150 g/m2, 200 g/m2, and 250 g/m2 and two species (Eucalyptus sp. and Pinus sp. of wood were used. Twelve specimens were obtained from each repetition per treatment, corresponding to 108 specimens that were conditioned at a temperature of 23 ± 1°C and relative humidity of 50 ± 2%. The interaction between the weight and type of adhesive was significant for the shear strength in the glue line of eucalyptus wood. However, no interaction between the weight and the adhesive was found for pinus, only the isolated from the adhesive effect. Chemical bonds originated in the polymerization of resorcinol-formaldehyde adhesives and castor bi-component conferred upon these adhesives the greatest resistance in the glue line. Castor and resorcinol-formaldehyde adhesives showed the highest shear strength values in the line of glue and wood failure. Castor adhesive presented satisfactory performance for bonding of eucalyptus and pine woods.

  7. Comparison of Different Wood Species as Raw Materials for Bioenergy

    Directory of Open Access Journals (Sweden)

    Bojana Klašnja

    2013-12-01

    Full Text Available Background and Purpose: Most projections of the global energy use predict that biomass will be an important component of primary energy sources in the coming decades. Short rotation plantations have the potential to become an important source of renewable energy in Europe because of the high biomass yields, a good combustion quality as solid fuel, ecological advantages and comparatively low biomass production costs. Materials and Methods: In this study, the wood of black locust Robinia pseudoacacia, white willow Salix alba L., poplars Populus deltoides and Populus x euramericana cl.I-214, aged eight years were examined. Immediately after the felling, sample discs were taken to assess moisture content, ash content, the width of growth rings, wood densities and calorific values, according to the standard methodology. Results:The mean values of willow, poplar and black locust wood density were 341 kg/m3, 336 kg/m3 and 602 kg/m3,respectively. The average heating values of willow poplar and black locust wood were 18.599 MJ/kg, 18.564 MJ/kg and 21.196 MJ/kg, respectively. The FVI index (average values was higher for black locust (17.186 than for poplar and willow clones, which were similar: 11.312 and 11.422 respectively. Conclusions: Black locust wood with a higher density, calorific value and ash content compared to poplar and willow wood proved to be a more suitable raw material as RES. However, it is very important, from the aspect of the application of wood of these tree species as RES, to also consider the influence of the biomass yield per unit area of the plantations established as “energy plantations”.

  8. Black locus (Robinia pseudoacacia L.) and Honey locust (Gleditsia triacanthos L.): technological aspects in relation with the use in solid wood products; Acaia blanca (Robinia pseudoacacia L.) y acacia negra (Gleditsia triacanthos L.): aspectos tecnologicos y relacionados al empleo en productos de madera maciza

    Energy Technology Data Exchange (ETDEWEB)

    Keil, G.; Spavento, E.; Murace, M.; Millanes, A.

    2011-07-01

    Robinia pseudoacacia L. and Gleditsia triacanthos L, are tree species from USA and both was introduced in Europe. In the province of Buenos Aires, Argentina, plantations of these species are scattered, whose wood hasn't been characterized technologically by standardized tests. The objective of this job was to characterize technologically Black locus and Honey locust woods, both implanted in the province of Buenos Aires for its inclusion in the timber market. The physical and mechanical properties determined were: content humidity, apparent densities, dimensional changes, Janka hardness, static bending, cut parallel to fibers,compression perpendicular and parallel to fibers. Natural durability was estimated. Black locus and Honey locust woods were medium density and medium stability, hard, resistant to the cut and the compression perpendicular to fibers and showed values medium to low in parameters of static bending and compression parallel to fibers, values to take into account when designing structural elements. Black locus was the most resistant to fungal degradation. Both woods can be considered suitable for high-value uses in the construction and furniture industries (interior and exterior). (Author) 29 refs.

  9. THE EFFECT OF HEAT TREATMENT ON THE CHEMICAL AND COLOR CHANGE OF BLACK LOCUST (ROBINIA PSEUDOACACIA WOOD FLOUR

    Directory of Open Access Journals (Sweden)

    Yao Chen,

    2012-01-01

    Full Text Available The aim of this study was to investigate the effects of oxygen and moisture content (MC on the chemical and color changes of black locust (Robinia pseudoacacia wood during heat treatment. The wood flour was conditioned to different initial MCs and heated for 24 h at a constant temperature of 120ºC in either oxygen or nitrogen atmosphere. The pH values and chromaticity indexes were examined. Diffuse reflectance UV-Vis (DRUV and Fourier transform infrared (FTIR spectra were used to characterize the changes of chromophores upon heating. The study demonstrated that the pH values decreased after heat treatment, and it was lower when the heat treated was in oxygen than in nitrogen. The L* decreased significantly, while a* and b* increased. The total color difference ΔE* increased with increasing initial MC until a plateau was reached after 30% MC. The color change was greater in oxygen than in nitrogen. The hydroxyl groups decreased after heat treatment. The releases of acid and formation of quinoid compounds and carboxylic groups during heat treatment were confirmed. Discoloration of wood is due mainly to the condensation and oxidation reactions, which are accelerated by oxygen. Higher MCs are required to obtain the greatest color change of wood in inert atmosphere.

  10. Interaction of the wood surface with metal ions. Part 3: The effects of light on chromium impregnated wood surface

    International Nuclear Information System (INIS)

    Stipta, J.; Németh, K.; Molnárné Hamvas, L.

    2004-01-01

    UV-light changes of untreated and chromium impregnated wood surface were investigated by absorption spectrophotometric methods. The properties of indifferent silicagel and celulose layers were to the behaviour of poplar and black locust surface. Chromic-ion-impregnation had no significant effect on the absorption spectra of these layers. On the other hand, hexavalent chromium was reduced and UV-light caused irreversible wood degradation. Surface treatment caused considerable modification in black locust

  11. PHYSICAL AND MECHANICAL PROPERTIES OF BLACK WOOD (EBONY AS A CONSTRUCTION MATERIAL

    Directory of Open Access Journals (Sweden)

    Fengky Satria Yoresta

    2015-01-01

    Full Text Available This research is aimed to determine physical and mechanical properties of Ebony wood as a construction material. The physical and mechanical properties test is conducted based on ASTM D 143-94 code. The mean value of moisture content and specific gravity of Ebony wood is obtained 12,90% and 0,92 gr.cm-3 respectively. Meanwhile MOE, bending strength, compressive strength parallel to grain, shear strength, and tensile strength parallel to grain are 180.425,87 kg.cm-2; 1656,22 kg.cm-2; 861,55 kg.cm-2; 119,61 kg.cm-2; dan 2.319,03 kg.cm-2 respectively. Based on the test results, it can be concluded that Ebony wood is classified to Strength Class I due to PKKI 1961, so it can be recommended for use in heavy construction such as bridge and building structures   Penelitian ini bertujuan menentukan sifat fisis dan mekanis kayu  Ebony sebagai material konstruksi. Pengujian sifat fisis dan mekanis dilakukan berdasarkan standar ASTM D 143-94. -3Nilai kadar air rata-rata kayu Ebony diperoleh sebesar 12,90% dan berat jenis 0,92 gr.cm . Sementara nilai rata-rata MOE, kuat lentur, kuat tekan sejajar serat, kuat geser, dan kuat tarik -2 -2 -2sejajar serat berturut-turut adalah 180.425,87 kg.cm ; 1656,22 kg.cm ; 861,55 kg.cm ; -2 -2119,61 kg.cm ; dan 2.319,03 kg.cm . Berdasarkan hasil penelitian dapat disimpulkan bahwa kayu Ebony tergolong kelas kuat I menurut PKKI 1961, sehingga dapat direkomendasikan untuk digunakan pada konstruksi-konstruksi berat seperti jembatan dan struktur bangunan.   REFERENCES Aghayere A & Jason V. 2007. Structural Wood Design: A Practice-Oriented Approach Using the ASD Method. John Wiley & Sons, Inc., New Jersey Boen T. 2009. Constructing Seismic Resistant Masonry Houses in Indonesia. United Nation. Chauf KA. 2005. Karakteristik Mekanik Kayu Kamper sebagai Bahan Konstruksi. Majalah Ilmiah MEKTEK . Vol 7 : 41-47. Dolan JD. 2004. Timber Structures. Pp 628-669 in Wai FC & Eric ML (Eds Handbook of Structural Engineering – 2nd

  12. Wood-plastic composites utilizing wood flours derived from fast- growing trees common to the midwest

    Science.gov (United States)

    There are several non- or under-utilized hardwood trees common to the Midwestern states. Wood flour (WF) derived from fast-growing Midwest trees (Osage orange, Black Locust and Red Mulberry) were evaluated as a source of bio-based fiber reinforcements. Wood plastic composites (WPC) of high density p...

  13. Wood frame systems for wood homes

    Directory of Open Access Journals (Sweden)

    Julio Cesar Molina

    2010-12-01

    Full Text Available The use of constructive systems that combine strength, speed, with competitive differential techniques and mainly, compromising with the environment, is becoming more popular in Brazil. The constructive system in wood frame for houses of up to five stories is very interesting, because it is a light system, structured in reforested treated wood which allows the combination of several materials, besides allowing speed in the construction and total control of the expenses already in the project phase for being industrialized. The structural behavior of the wood frame is superior to the structural masonry in strength, thermal and acoustic comfort. However, in Brazil, the wood frame is still little known and used, due to lack of technical knowledge about the system, prejudice associated the bad use of the wood as construction material, or still, in some cases, lack of normalization. The aim of this manuscript consists of presenting the main technical characteristics and advantages of the constructive system in wood frame homes, approaching the main stages of the constructive process through examples, showing the materials used in the construction, in addition the main international normative recommendations of the project. Thus, this manuscript also hopes to contribute to the popularization of the wood frame system in Brazil, since it is a competitive, fast and ecologically correct system. Moreover, nowadays, an enormous effort of the technical, commercial and industrial section has been accomplished for the development of this system in the country.

  14. Panel and planar experimental shear behavior of wood panels ...

    African Journals Online (AJOL)

    Panel shear strength along the thickness and planar shear along the length of wood panels laminated softwood oriented OSB 10 mm thick, conditioned at different moisture contents (anhydrous medium, ambient temperature and humid medium) was measured on standardized test specimens, cut in half lengthwise panel ...

  15. Influence of Welding Time on Tensile-Shear Strength of Linear Friction Welded Birch (Betula pendula L. Wood

    Directory of Open Access Journals (Sweden)

    Jussi Ruponen

    2015-04-01

    Full Text Available The purpose of this work was to determine the optimal welding time for linear friction welding of birch (Betula pendula L. wood while keeping the other parameters constant and at similar levels compared to other species in a similar density range. Specimens with dimensions of 20 × 5 × 150 mm3 were welded together, and the influence of welding time (2.5, 3.0, 3.5, and 4.0 s on the mechanical properties of the specimens was determined. The studies included a tensile-shear strength test as well as visual estimation of wood failure percentage (WFP. Additionally, X-ray microtomographic imaging was used to investigate and characterise the bond line properties as a non-destructive testing method. The highest mean tensile-shear strength, 7.9 MPa, was reached with a welding time of 3.5 s. Generally, all four result groups showed high, yet decreasing proportional standard deviations as the welding time increased. X-ray microtomographic images and analysis express the heterogeneity of the weld line clearly as well. According to the averaged group-wise results, WFP and tensile-shear strength correlated positively with an R2 of 0.93. An extrapolation of WFP to 65% totals a tensile-shear strength of 10.6 MPa, corresponding to four common adhesive bonds determined for beech.

  16. Impact of cold temperatures on the shear strength of Norway spruce joints glued with different adhesives

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Hagman, Olle; Sundqvist, Bror

    2015-01-01

    As wood construction increasingly uses engineered wood products worldwide, concerns arise about the integrity of the wood and adhesives used. Bondline strength is a crucial issue for engineered wood applications, especially in cold climates. In this study, Norway spruce (Picea abies) joints (150 mm...... adhesive was tested at six temperatures: 20, −20, −30, −40, −50 and −60 °C. Generally, within the temperature test range, temperature changes significantly affected the shear strength of solid wood and wood joints. As the temperature decreased, the shear strength decreased. PUR adhesive in most cases...... resulted in the strongest shear strength and MUF adhesive resulted in the weakest. MF and PRF adhesives responded to temperature changes in a similar manner to that of the PUR adhesive. The shear strengths of wood joints with PVAc and EPI adhesives were more sensitive to temperature change. At low...

  17. Spectroscopic analysis of the role of extractives on heat-induced discoloration of black locust (Robinia pseudoacacia)

    Science.gov (United States)

    Yao Chen; Yongming Fan; Jianmin Gao; Mandla A. Tshabalala; Nicole M. Stark

    2012-01-01

    To investigate the role of extractives on heat-induced discoloration of wood, samples of black locust (Robinia pseudoacacia) wood flour were extracted with various solvents prior to heat-treatment. Analysis of their color parameters and chromophoric structures showed that the chroma value of the unextracted sample decreased while that of the...

  18. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Science.gov (United States)

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  19. Wood construction and magnetic characteristics of impregnated type magnetic wood

    International Nuclear Information System (INIS)

    Oka, Hideo; Hojo, Atsushi; Seki, Kyoushiro; Takashiba, Toshio

    2002-01-01

    The results of experiments involving the AC and DC magnetic characteristics of impregnated type magnetic wood were studied by taking into consideration the wood construction and fiber direction. The experimental results show that the sufficient amount of impregnated magnetic fluid varies depending on the fiber direction and length, and the grain face of the wood material. The impregnated type magnetic wood sample that is fully impregnated by magnetic fluid has a 60% saturation magnetization compared to the saturation magnetization of magnetic fluid. Samples for which the wood fiber direction was the same as the direction of the magnetic path had a higher magnetization intensity and permeability

  20. Application of molecular genetic methods for identification of wood-decaying fungi in wood constructions

    OpenAIRE

    Elena Bobeková; Michal Tomšovský; Petr Horáček

    2008-01-01

    The aim of the paper is to evaluate the utilization of molecular biology methods for detection of wood decaying fungi directly from decomposed wood using a commercial DNA extraction kit developed for soil substrates (PowerSoil™ DNA isolation kit). The experiment based on dry rot fungus (Serpula lacrymans) detection from inoculated wooden pieces under laboratory conditions was followed by field detection of wood-decaying fungi from wood structures on building constructions. Fungal DNA was ide...

  1. Lignonsulfonate-phenolformaldehyrde adhesive: a potential binder for wood panel industries

    International Nuclear Information System (INIS)

    Akhtar, T.; Lutfullah, G.; Ullah, Z.

    2011-01-01

    Spent sulfite liquor (SSL) was obtained from a paper mill based on grassy pulp material (bagasse, kaigrass and wheat straws). Lignosulfonate (LS) was isolated from SSL by polymerization reaction, initiated with concentrated hydrochloric acid. Different adhesives were prepared by gradual replacement of phenol by LS in phenol-formaldehyde (PF) resole resin. The strength of these resins was evaluated by glue block shear test in two wood species, in both dry and wet states. Maximum shear strength and wood failure was obtained by 20% addition of lignosulfonate to PF resin. No significant difference was observed in shear strength and wood failure of the two wood species in dry and wet states indicating that the resin obtained is waterproof. The results obtained from this study were compared with different commercial glues. Our results were found better than these glues event at a ratio 50: 50 of PF to lignosulfonate. (author)

  2. Alternative Shear Panel Configurations for Light Wood Construction. Development, Seismic Performance, and Design Guidance

    Science.gov (United States)

    Wilcoski, James; Fischer, Chad; Allison, Tim; Malach, Kelly Jo

    2002-04-01

    Shear panels are used in light wood construction to resist lateral loads resulting from earthquakes or strong winds. These panels are typically made of wooden sheathing nailed to building frame members, but this standard panel design interferes with the installation of sheet insulation. A non-insulated shear panel conducts heat between the building interior and exterior wasting considerable amounts of energy. Several alternative shear panel designs were developed to avoid this insulation-mounting problem and sample panels were tested according to standard cyclic test protocols. One of the alternative designs consisted of diagonal steel straps nailed directly to the structural framing. Several others consisted of sheathing nailed to 2 x 4 framing then set into a larger 2 x 6 structural frame in such a way that no sheathing protruded beyond the edge of the 2 x 6 members. Also samples of industry-standard shear panels were constructed and tested in order to establish a performance baseline. Analytical models were developed to size test panels and predict panel behavior. A procedure was developed for establishing design capacities based on both test data and established baseline panel design capacity. The behavior of each panel configuration is documented and recommended design capacities are presented.

  3. Wood versus metal in airplane construction

    Science.gov (United States)

    Seehase, H

    1923-01-01

    The aim of this article is to present, in broad outline, a scientific method for solving the problem, "Wood or Metal." It will be shown that structural methods have by no means reached their final perfection. The strength of the different materials is discussed as well as different construction methods.

  4. Prediction of strength of wood composite materials using ultrasonic

    International Nuclear Information System (INIS)

    Mahmoud, M.K.; Emam, A.

    2005-01-01

    Wood is a biological material integrating a very large variability of its mechanical properties (tensile and compressive), on the two directional longitudinal and transverse Ultrasonic method has been utilized to measure both wood physical and / or wood mechanical properties. The aim of this article is to show the development of ultrasonic technique for quality evaluation of trees, wood material and wood based composites. For quality assessment of these products we discuss the nondestructive evaluation of different factors such as: moisture content, temperature, biological degradation induced by bacterial attack and fungal attack. These techniques were adapted for trees, timber and wood based composites. The present study discusses the prediction of tensile and compressive strength of wood composite materials using ultrasonic testing. Empirical relationships between the tensile properties, compression strength and ultrasonic were proposed. The experimental results indicate the possibility of establishing a relationship between tensile strength and compression values. Moreover, the fractures in tensile and compressive are discussed by photographic

  5. Cellulose-hemicellulose interaction in wood secondary cell-wall

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Shi; Hong, Yu; Chen, Youping; Xiong, Liming

    2015-01-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose. (paper)

  6. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  7. Gluebond strength of laser cut wood

    Science.gov (United States)

    Charles W. McMillin; Henry A. Huber

    1985-01-01

    The degree of strength loss when gluing laser cut wood as compared to conventionally sawn wood and the amount of additional surface treatment needed to improve bond quality were assessed under normal furniture plant operating conditions. The strength of laser cut oak glued with polyvinyl acetate adhesive was reduced to 75 percent of sawn joints and gum was reduced 43...

  8. Application of molecular genetic methods for identification of wood-decaying fungi in wood constructions

    Directory of Open Access Journals (Sweden)

    Elena Bobeková

    2008-01-01

    Full Text Available The aim of the paper is to evaluate the utilization of molecular biology methods for detection of wood decaying fungi directly from decomposed wood using a commercial DNA extraction kit developed for soil substrates (PowerSoil™ DNA isolation kit. The experiment based on dry rot fungus (Serpula lacrymans detection from inoculated wooden pieces under laboratory conditions was followed by field detection of wood-decaying fungi from wood structures on building constructions. Fungal DNA was identified using the PCR–based methods including species-specific PCR and sequencing of amplified ITS region of ribosomal DNA.

  9. BEHAVIOR OF GLUED JOINTS OF EUCALYPTUS sp. SAWN WOOD

    Directory of Open Access Journals (Sweden)

    Octávio Barbosa Plaster

    2008-09-01

    Full Text Available This research evaluated eucalypt wood adhesion capacity. The material evaluated was a commercial sawn wood composed by a blend of species of the genus Eucalyptus. The adhesives used were resorcinol-formaldehyde and polyvinila acetate (PVAc. The wood was segregated in three density with 0% of moisture content: class 1; 2 and 3 that, when combined (class1 x class1; 2x2; 3x3; 1x2; 1x3; 2x3 resulted in six treatments. The performance of the adhesion was evaluated by the shear strength to parallel compression and by wood failure in the glue line. The obtained results allowed to conclude that the adhesion of the combinations of wood/adhesive presented satisfactory performance. The average shear strength of the joints were shown equivalent to the shear strength of the solid wood with similar performance of adhesion in the two adhesives. In general, resorcinol-formaldheyde adhesive presented higher values (74.41% for wood failure in the joints, but similar to all treatments. The adhesion of samples of higher density presented lower performance probably when only the values of wood failure are considered. The values for the strength of glued joints, in general, were similar when analyzed the results achieved with the resorcinol-formaldehyde adhesive- base 140,56 Kgf/cm2. To polyvinila acetate the values of wood failure decrease when the density increase (65.94%, but the resistance in the glue line was positively affected (140.25 Kgf/cm2. In general, the density influenced the adhesion of the joints for the employed adhesives.

  10. Adhesion quality of glued joints from different commercial wood species

    Directory of Open Access Journals (Sweden)

    Alexandre Miguel do Nascimento

    2013-12-01

    Full Text Available The objective of this study was to determine the effect of wood density, adhesive type and gluing pressure on the shear strength of glued joints of fourteen commercial wood species. Wood pieces were classified in three density classes (Class 1: less than 0.55 g cm-3; Class 2: from 0.55 to 0.75 g cm-3; and Class 3: greater than 0.75 g cm-3 and joints bonded with two adhesives: polyvinyl acetate (PVA and urea-formaldehyde (UF, under two different pressures: 6 and 12 kgf cm-2. Glued joints bonded with PVA adhesive presented higher shear strength than those bonded with UF adhesive. For percentage of wood failure, the PVA adhesive had the best performance, however, only Classes 1 and 2 reached the values required by ASTM 3110 standard. Glued joints from Class 3, bonded with UF adhesive, did not reach the values of solid wood. The gluing pressure of 12 kgf cm-2 was more efficient for Class 3, for both shear strength and percentage of wood failure.

  11. Strength and Reliability of Wood for the Components of Low-cost Wind Turbines: Computational and Experimental Analysis and Applications

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sharma, Ranjan

    2009-01-01

    of experiments and computational investigations. Low cost testing machines have been designed, and employed for the systematic analysis of different sorts of Nepali wood, to be used for the wind turbine construction. At the same time, computational micromechanical models of deformation and strength of wood......This paper reports the latest results of the comprehensive program of experimental and computational analysis of strength and reliability of wooden parts of low cost wind turbines. The possibilities of prediction of strength and reliability of different types of wood are studied in the series...... are developed, which should provide the basis for microstructure-based correlating of observable and service properties of wood. Some correlations between microstructure, strength and service properties of wood have been established....

  12. Strength of wood versus rate of testing - A theoretical approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2007-01-01

    Strength of wood is normally measured in ramp load experiments. Experience shows that strength increases with increasing rate of testing. This feature is considered theoretically in this paper. It is shown that the influence of testing rate is a phenomenon, which depends on the quality...... of the considered wood. Low quality wood shows lesser influence of testing rate. This observation agrees with the well-known statement made by Borg Madsen that weak wood subjected to a constant load, has a longer lifetime than strong wood. In general, the influence of testing rate on strength increases...

  13. FLEXURAL TESTING OF WOOD-CONCRETE COMPOSITE BEAM MADE FROM KAMPER AND BANGKIRAI WOOD

    Directory of Open Access Journals (Sweden)

    Fengky Satria Yoresta

    2015-07-01

    Full Text Available Certain wood has a tensile strength that almost equal with steel rebar in reinforced concrete beams. This research aims to understand the capacity and flexural behavior of concrete beams reinforced by wood (wood-concrete composite beam. Two different types of beams based on placement positions of wood layers are proposed in this study. Two kinds of wood used are consisted of Bangkirai (Shorea laevifolia and Kamper (Cinnamomum camphora, meanwhile the concrete mix ratio for all beams is 1 cement : 2 fine aggregates : 3 coarse aggregates. Bending test is conducted by using one-point loading method. The results show that composite beam using Bangkirai wood is stronger than beams using Kamper wood. More thicker wood layer in tensile area will increase the flexural strength of beams. Crack patterns identified could be classified into flexural cracks, shear cracks, and split on wood layer   Beberapa jenis kayu tertentu memiliki kekuatan tarik yang hampir sama dengan tulangan baja pada balok beton bertulang. Penelitian ini bertujuan memahami kapasitas dan perilaku lentur balok beton bertulang yang diperkuat menggunakan kayu (balok komposit beton-kayu. Dua tipe balok yang berbeda berdasarkan posisi penempatan kayu digunakan dalam penelitian ini. Dua jenis kayu yang digunakan adalah kayu Bangkirai (Shorea laevifolia and Kamper (Cinnamomum camphora, sementara itu rasio campuran beton untuk semua balok menggunakan perbandingan 1 semen : 2 agregat halus : 3 agregat kasar. Pengujian lentur dilakukan menggunakan metode one-point loading. Hasil penelitian menunjukkan bahwa balok komposit dengan kayu Bangkirai lebih kuat dibandingkan balok dengan kayu Kamper. Semakin tebal lapisan kayu yang berada di daerah tarik akan meningkatkan kekuatan lentur balok. Pola kerusakan yang teridentifikasi dapat diklasifikasikan menjadi retak lentur, retak geser, dan pecah pada kayu REFERENCES Boen T. (2010. Retrofitting Simple Buildings Damaged by Earthquakes. World Seismic

  14. Testing compression strength of wood logs by drilling resistance

    Science.gov (United States)

    Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter

    2017-04-01

    Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.

  15. Evaluation of bolted connections in wood-plastic composites

    Science.gov (United States)

    Arnandha, Yudhi; Satyarno, Iman; Awaludin, Ali; Irawati, Inggar Septia; Ihsan, Muhamad; Wijanarko, Felyx Biondy; William, Mahdinur, Fardhani, Arfiati

    2017-03-01

    Wood-plastic composite (WPC) is a relatively new material that consists of sawdust and plastic polymer using the extrusion process. Due to its attributes such as low water content, low maintenance, UV durability and being fungi and termite resistant. Nowadays, WPC has already been produced in Indonesia using sawdust from local wood such as Albizia (Paraserianthes falcataria) and Teak (Tectona grandis). Moreover preliminary studies about the physical and mechanical WPC board from Albizia sawdust and HDPE plastic have been carried out. Based on these studies, WPC has a high shear strength around 25-30 MPa higher than its original wood shear strength. This paper was a part of the research in evaluating WPC as potential sheathing in a shear wall system. Since still little is known about connection behavior in WPC using Indonesian local wood, this study evaluated the connection for both of these two types of wood-plastic composite. WPC board from Albizia sawdust will be projected as shear wall sheathing and WPC stud from Teak sawdust projected to be shear wall frame. For this study, the embedding strength for both WPC was determined according to ASTM D 5764 standard, using two types of bolts (stainless bolt and standard bolt) with several diameters as variation (6 mm, 8 mm, 10 and 12 mm). Hence, dowel-bearing test under fastened condition conducted accordance to ASTM D5652, hereby the yield strength then compared with the prediction yield strength from European Yield Model (EYM). According to both single and double shear connection, it can be concluded that yield strength from the EYM method tended to under-predict the 5% diameter offset yield than the actual yield strength from the test. The yield strength itself increase with the increase of bolt diameter. For single shear connection, the highest yield strength was 12 mm standard bolt around 9732 N, slightly higher than stainless bolt around 9393 N. Whereby for double shear connection, the highest yield strength was

  16. Rice straw-wood particle composite for sound absorbing wooden construction materials.

    Science.gov (United States)

    Yang, Han-Seung; Kim, Dae-Jun; Kim, Hyun-Joong

    2003-01-01

    In this study, rice straw-wood particle composite boards were manufactured as insulation boards using the method used in the wood-based panel industry. The raw material, rice straw, was chosen because of its availability. The manufacturing parameters were: a specific gravity of 0.4, 0.6, and 0.8, and a rice straw content (10/90, 20/80, and 30/70 weight of rice straw/wood particle) of 10, 20, and 30 wt.%. A commercial urea-formaldehyde adhesive was used as the composite binder, to achieve 140-290 psi of bending modulus of rupture (MOR) with 0.4 specific gravity, 700-900 psi of bending MOR with 0.6 specific gravity, and 1400-2900 psi of bending MOR with a 0.8 specific gravity. All of the composite boards were superior to insulation board in strength. Width and length of the rice straw particle did not affect the bending MOR. The composite boards made from a random cutting of rice straw and wood particles were the best and recommended for manufacturing processes. Sound absorption coefficients of the 0.4 and 0.6 specific gravity boards were higher than the other wood-based materials. The recommended properties of the rice straw-wood particle composite boards are described, to absorb noises, preserve the temperature of indoor living spaces, and to be able to partially or completely substitute for wood particleboard and insulation board in wooden constructions.

  17. The use of wood for wind turbine blade construction

    Science.gov (United States)

    Gougeon, M.; Zuteck, M.

    1979-01-01

    The interrelationships between moisture and wood, conditions for dry rot spore activity, the protection of wood fibers from moisture, wood resin composites, wood laminating, quality control, and the mechanical properties of wood are discussed. The laminated veneer and the bonded sawn stock fabrication techniques, used in the construction of a turbine blade with a monocoque 'D' section forming the leading edge and a built up trailing edge section, are described. A 20 foot root end sample complete with 24 bonded-in studs was successfully subjected to large onetime loads in both the flatwise and edgewise directions, and to fatigue tests. Results indicate that wood is both a viable and advantageous material for use in wind turbine blades. The basic material is reasonably priced, domestically available, ecologically sound, and easily fabricated with low energy consumption.

  18. On the influence of load variations on lifetime and strength of wood

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2006-01-01

    To days recommendations for probability and reliability analysis of wood structures do not fully recognize the influence of wood microstructure and creep on the mechanical behavior of wood. As a consequence, certain important features in wood design cannot be considered properly. Ignoring the bas...... history on recycle-strength (residual strength). It is demonstrated in this paper, how the problems just mentioned can be solved from respecting wood as a damaged viscoelastic material, meaning that wood is a cracked (damaged) material with creep....

  19. Effects of swelling forces on the durability of wood adhesive bonds

    Science.gov (United States)

    Blake M. Hofferber; Edward Kolodka; Rishawn Brandon; Robert J. Moon; Charles R. Frihart

    2006-01-01

    The purpose of this study was to investigate the role of wood swelling on performance of wood-adhesive bonds (resorcinol formaldehyde, epoxy, emulsion polymerisocyanate), for untreated and acetylated wood. Effects of these treatments on measured strain anisotropy and swelling stress were measured and then related to compressive shear strength and percentage wood...

  20. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding

    Directory of Open Access Journals (Sweden)

    Mitesh Ramanlal Patel

    2009-01-01

    Full Text Available Polyurethane adhesives made from synthetic chemicals are non-biodegradable, costly and difficult to find raw materials from local market. To avoid solid pollution problem, cost effectiveness and easy availability of raw materials, biomaterials based polyurethane adhesives are used in current industrial interest. Direct use of castor oil in polyurethane adhesive gives limited hardness. Modification on active sites of castor oil to utilize double bond of unsaturated fatty acid and carboxyl group yields new modified or activated polyols, which can be utilized for polyurethane adhesive formulation. In view of this, we have synthesized polyurethane adhesives from polyester polyols, castor oil based polyols and epoxy based polyols with Isocyanate adducts based on castor oil and trimethylolpropane. To study the effects of polyurethane adhesive strength (i.e. lap shear strength on wood-to-wood and metal-to-metal bonding through various types of polyols, cross-linking density, isocyanate adducts and also to compare adhesive strength between wood to wood and metal to metal surface. These polyols and polyurethanes were characterized through GPC, NMR and IR-spectroscopy, gel and surface drying time. Thermal stability of PU adhesives was determined under the effect of cross-linking density (NCO/OH ratio. The NCO/OH ratio (1.5 was optimized for adhesives as the higher NCO/OH ratio (2.0 increasing cross-linking density and decreases adhesion. Lower NCO/OH ratio (1.0 provideslow cross-linking density and low strength of adhesives.

  1. Micromechanical modelling of mechanical behaviour and strength of wood

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Qing, Hai

    2008-01-01

    An overview of the micromechanical theoretical and numerical models of wood is presented. Different methods of analysis of the effects of wood microstructures at different scale levels on the mechanical behaviour, deformation and strength of wood are discussed and compared. Micromechanical models...

  2. Black Swan Event Assessment for Fort Leonard Wood, Missouri

    Science.gov (United States)

    2016-03-01

    ER D C/ CE RL S R- 16 -1 Net Zero Planning for Fort Leonard Wood Black Swan Event Assessment for Fort Leonard Wood, Missouri Co ns...search for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. Net Zero Planning for...1.8 degrees Celsius knots 0.5144444 meters per second miles (US statute) 1,609.347 meters miles per hour 0.44704 meters per second ERDC/CERL SR

  3. Wood construction codes issues in the United States

    Science.gov (United States)

    Douglas R. Rammer

    2006-01-01

    The current wood construction codes find their origin in the 1935 Wood Handbook: Wood as an Engineering Material published by the USDA Forest Service. Many of the current design recommendations can be traced back to statements from this book. Since this time a series of development both historical and recent has led to a multi-layered system for use of wood products in...

  4. Preparation and testing of plant seed meal-based wood adhesives.

    Science.gov (United States)

    He, Zhongqi; Chapital, Dorselyn C

    2015-03-05

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications.

  5. Three Construction Projects with Wood Scraps

    Science.gov (United States)

    Levine, Elizabeth

    1977-01-01

    Wood, a natural material, appeals to children of all ages. Wood construction allows children the flexibility of moving parts of their work around until they are satisfied with the arrangement. Three projects are described. (Author/RK)

  6. Wood and Other Materials Used to Construct Nonresidential Buildings - Canada

    Science.gov (United States)

    David B. McKeever; Joe Elling

    2014-01-01

    Low-rise nonresidential building construction is an important market in Canada for lumber, engineered wood products, structural wood panels, and nonstructural wood panels. This report examines wood products consumption in 2012 for construction of selected low-rise nonresidential buildings types that have six or fewer stories. Buildings with more than six stories are...

  7. Identifying Sustainable Wood Sources for the Construction Industry: A Case Study

    Directory of Open Access Journals (Sweden)

    Shenghan Li

    2018-01-01

    Full Text Available Wood is generally considered as a sustainable construction material. However, there are not sufficient wood resources in many countries or regions, especially those short of land resources. These countries and regions have to import wood from overseas. Therefore, it is imperative to determine how to choose sustainable importing sources in order to improve the sustainability performance of using wood in construction. This study compares the sustainability performance of wood imported from different regions by considering wood harvesting, manufacture, and transportation. A framework accounting energy consumption and CO2 emissions is developed for sustainability assessment. The results show that importing wood from Canada, Australia, and New Zealand to Taiwan demands a relatively lower amount of energy than from other regions. Specifically, importing wood from Canada (West demands the lowest amount of energy (2095 MJ/m3, while importing wood form Brazil consumes the highest amount of energy (5356 MJ/m3. In addition, findings showed that the CO2 emissions generated from importing wood from Sweden are significant lower than those from other regions, although the energy consumed during the importing process is relatively high. The study also revealed that the wood manufacturing process and marine transportation contribute to the most energy consumption and CO2 emissions among all importing processes analysed from most of studied regions.

  8. Environment-friendly wood fibre composite with high bonding strength and water resistance

    Science.gov (United States)

    Ji, Xiaodi; Dong, Yue; Nguyen, Tat Thang; Chen, Xueqi; Guo, Minghui

    2018-04-01

    With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications.

  9. Potential of Reinforced Indonesian Glulam Beams Using Grade I (Bengkirai, Grade II (Kamper, Grade III (Nyatoh Woods for Use in Structural Wood Design

    Directory of Open Access Journals (Sweden)

    Saptahari Sugiri

    2016-05-01

    Full Text Available Wood is a natural resource that is renewable and available in various species in tropical countries. Its abundancy in nature makes it easy to obtain, thus making it a nature friendly material for use in construction. Indonesia is the most important source of tropical wood in the world after Brazil, making the use of wood for structural elements very desirable. It is estimated that 4000 different varieties of wood exist in Indonesia. This estimate is based on the herbarium species collected by the Forestry Research Institute, currently counting nearly 4000 types of trees with a diameter of more than 40 cm. In the Indonesian wood structure code, the strength of woods is divided into 3 grades (grade I, II and III. This paper presents an evaluation of the mechanical properties of glulam wood sourced from native Indonesian timber: Bengkirai wood (grade I, Kamper wood (grade II, and Nyatoh wood (grade III, thus proving the potential for Indonesian wood as industrial structural elements in wooden constructions.

  10. The Effect of Heat Treatment on the Pull-off Strength of Optionally Varnished Surfaces of Five Wood Materials

    Directory of Open Access Journals (Sweden)

    Musa Atar

    2015-09-01

    Full Text Available This study investigated the effects of heat treatment, following optional treatment with synthetic, water-based, and alkyd varnishes, on the pull-off strength of wooden materials sampled from oriental beech (Fagus orientalis L., oak (Quercus petraea Liebl., black poplar (Populus nigra L., pine (Pinus sylvestris L., and fir (Abies bornmulleriana M.. The test samples were subjected to heat treatment at temperatures of 165 °C and 175 °C for periods of 2 and 4 h with a total of 4 variations. With respect to the wood type, the samples of beech wood yielded the highest results for pull-off strength, while fir wood yielded the lowest. With respect to the varnish types, the highest pull-off strength was found in the samples of synthetic varnished beech (5,452 with a 37.2% improvement at 175 °C heat treatment for 4 h, while the lowest results were obtained in the samples of fir (0.991 with a 48.5% decrease at 175 °C heat treatment for 4 h. In conclusion, heat treatment significantly decreased the pull-off strength of the woods.

  11. Science supporting the economic and environmental benefits of using wood and wood products in green building construction

    Science.gov (United States)

    Michael A. Ritter; Kenneth Skog; Richard Bergman

    2011-01-01

    The objective of this report is to summarize the scientific findings that support the environmental and economic benefits of using wood and wood products in green building construction. Despite documented advantages in many peer-reviewed scientific articles, most building professionals and members of the public do not recognize wood as a renewable resource or the role...

  12. Fire extinguishing strength of the combustion product of wood saw ...

    African Journals Online (AJOL)

    Forty saw dust samples from four mature hard wood plants grown in southwestern part of Nigeria were analyzed for their ash contents, moisture contents, metallic contents and hence the fire extinguishing strength of the saw dust ash by classical and instrumental methods of analyses. Mahogany (Khaya ivorensis) wood saw ...

  13. Airborne sound transmission loss characteristics of wood-frame construction

    Science.gov (United States)

    Rudder, F. F., Jr.

    1985-03-01

    This report summarizes the available data on the airborne sound transmission loss properties of wood-frame construction and evaluates the methods for predicting the airborne sound transmission loss. The first part of the report comprises a summary of sound transmission loss data for wood-frame interior walls and floor-ceiling construction. Data bases describing the sound transmission loss characteristics of other building components, such as windows and doors, are discussed. The second part of the report presents the prediction of the sound transmission loss of wood-frame construction. Appropriate calculation methods are described both for single-panel and for double-panel construction with sound absorption material in the cavity. With available methods, single-panel construction and double-panel construction with the panels connected by studs may be adequately characterized. Technical appendices are included that summarize laboratory measurements, compare measurement with theory, describe details of the prediction methods, and present sound transmission loss data for common building materials.

  14. EVALUATION OF WOOD PERFORMANCE IN BUILDING CONSTRUCTION THROUGH SYSTEM APPROACH

    Directory of Open Access Journals (Sweden)

    Ricardo Pedreschi

    2005-09-01

    Full Text Available Building construction is considered to be the leading market for the wood industry, in developed and developingcountries. The greatest amount of wood produced in Brazil is consumed as firewood and energy, followed by production of celluloseand third as machined wood. The use of wood from planted forests can be increased. This would lead to a better use of naturalresources, and consequently to an increased sustainability of forest activity in many regions of the country. The performance of woodcan be observed from many different insights: symbolic performance, technical performance and economical performance, conductedby the method of systems approach to architecture. Usages of wood related to the performances of the material, with the redefinitionof parameters of use, elaborating a new culture linked to new technologies were outlined. This work diagnosed the usage of wood inbuilding construction based in system analysis. Through an opinion research related to the acceptation of the use of wood we observethe possibilities of utilization according to physical and mechanical proprieties, aesthetics and appearance performance and postoccupation.According to the results obtained related to the culture and knowledge about the use of wood from planted forest, it canconclude that there is not enough knowledge in this area, and it is, therefore, necessary to create an information system forprofessionals and for people in general.

  15. Wood constructions. Energy eficient, sustainable, practically proven; Holzbau Konstruktionen. Energieeffizient, nachhaltig, praxisgerecht

    Energy Technology Data Exchange (ETDEWEB)

    Lueckmann, Rudolf

    2012-07-01

    The book 'Wood constructions' provides standardized and practically proven designs, all necessary information on building physics, fire protection and additional specialized knowledge for energy efficient renovations and construction details in wood construction. The main topics of this book are: Fundamentals, timber-frame structures, wood preservation, thermal insulation, sound insulation, fire protection, energy-efficient timber buildings, timber construction systems, rehabilitation of timber structures, relevant regulations and standards.

  16. The need and means for sustainable use of wood in the Tanzanian construction industry.

    NARCIS (Netherlands)

    Mufuruki, T.S.; Scheublin, F.J.M.; Egmond - de Wilde De Ligny, van E.L.C.; Braganca, L.; Pinheiro, M.; Jalali, S.; Mateus, R.; Amoeda, R.; Correia Guedes, M.

    2007-01-01

    Pronounced increase in construction activities in Tanzania has a corresponding utilization of wood products. This adds to the already aggravated situation by wood harvest for fuel; manufacturing and forest clearance for agricultural purposes. In most cases exploitation of wood is done to fulfil the

  17. Strength loss in decayed wood

    Science.gov (United States)

    Rebecca E. Ibach; Patricia K. Lebow

    2014-01-01

    Wood is a durable engineering material when used in an appropriate manner, but it is susceptible to biological decay when a log, sawn product, or final product is not stored, handled, or designed properly. Even before the biological decay of wood becomes visually apparent, the decay can cause the wood to become structurally unsound. The progression of decay to that...

  18. Significance of wood extractives for wood bonding.

    Science.gov (United States)

    Roffael, Edmone

    2016-02-01

    Wood contains primary extractives, which are present in all woods, and secondary extractives, which are confined in certain wood species. Extractives in wood play a major role in wood-bonding processes, as they can contribute to or determine the bonding relevant properties of wood such as acidity and wettability. Therefore, extractives play an immanent role in bonding of wood chips and wood fibres with common synthetic adhesives such as urea-formaldehyde-resins (UF-resins) and phenol-formaldehyde-resins (PF-resins). Extractives of high acidity accelerate the curing of acid curing UF-resins and decelerate bonding with alkaline hardening PF-resins. Water-soluble extractives like free sugars are detrimental for bonding of wood with cement. Polyphenolic extractives (tannins) can be used as a binder in the wood-based industry. Additionally, extractives in wood can react with formaldehyde and reduce the formaldehyde emission of wood-based panels. Moreover, some wood extractives are volatile organic compounds (VOC) and insofar also relevant to the emission of VOC from wood and wood-based panels.

  19. Physical-mechanical and anatomical characterization in 26-year-old Eucalyptus resinifera wood

    Directory of Open Access Journals (Sweden)

    Israel Luiz de Lima

    Full Text Available In the present study, we aimed to characterize Eucalyptus resinifera wood through physical and mechanical assays and wood anatomy studies, as well as determine the relationships between the properties and anatomy of wood. We used samples collected from the area close to the bark of ten 26-year-old E. resinifera trees. We concluded that the specific gravity (Gb, compression (f c0, and shear parallel to grain (f v0 were ranked in strength classes C30, C40 and C60, respectively, and that volumetric shrinkage (VS was ranked as high. A positive relationship between Gb and f v0 results from the higher specific gravity associated with higher tissue proportion, in turn, causing higher shear strength. Higher ray frequency increases shear strength, because rays act as reinforcing elements. A negative relationship between VS and vessel diameter occurs because vessel walls are highly resistant to collapse, and since larger lumens represent a higher proportion of empty spaces, less tissue is available for shrinkage.

  20. Wood

    DEFF Research Database (Denmark)

    Unterrainer, Walter

    2014-01-01

    come from? How is it harvested? How is it manufactured and treated ? How are the buildings detailed and protected against weather during construction to keep them dry and make them long-life ? In a period of climate change, forests are the last lungs of the planet to sequestrate CO2. Their global size......Wood – a sustainable building material ? For thousands of years and all over the planet, wood has been used as a building material and exciting architecture has been created in wood. The fantastic structural, physical and aesthetic properties of the material as well as the fact that wood...

  1. Determining shear modulus of thin wood composite materials using a cantilever beam vibration method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; John F. Hunt; Haicheng Yan

    2016-01-01

    Shear modulus (G) of thin wood composite materials is one of several important indicators that characterizes mechanical properties. However, there is not an easy method to obtain this value. This study presents the use of a newly developed cantilever beam free vibration test apparatus to detect in-plane G of thin wood composite...

  2. Still rethinking the value of high wood density.

    Science.gov (United States)

    Larjavaara, Markku; Muller-Landau, Helene C

    2012-01-01

    In a previous paper, we questioned the traditional interpretation of the advantages and disadvantages of high wood density (Functional Ecology 24: 701-705). Niklas and Spatz (American Journal of Botany 97: 1587-1594) challenged the biomechanical relevance of studying properties of dry wood, including dry wood density, and stated that we erred in our claims regarding scaling. We first present the full derivation of our previous claims regarding scaling. We then examine how the fresh modulus of rupture and the elastic modulus scale with dry wood density and compare these scaling relationships with those for dry mechanical properties, using almost exactly the same data set analyzed by Niklas and Spatz. The derivation shows that given our assumptions that the modulus of rupture and elastic modulus are both proportional to wood density, the resistance to bending is inversely proportional to wood density and strength is inversely proportional with the square root of wood density, exactly as we previously claimed. The analyses show that the elastic modulus of fresh wood scales proportionally with wood density (exponent 1.05, 95% CI 0.90-1.11) but that the modulus of rupture of fresh wood does not, scaling instead with the 1.25 power of wood density (CI 1.18-1.31). The deviation from proportional scaling for modulus of rupture is so small that our central conclusion remains correct: for a given construction cost, trees with lower wood density have higher strength and higher resistance to bending.

  3. A profile of wood use in nonresidential building construction

    Science.gov (United States)

    H. N. Spelter; R. G. Anderson

    This report presents estimates of the amounts of lumber, glued-laminated lumber, trusses, plywood, particleboard, hardboard, and wood shingles used in new nonresidential building construction in the United States. Use of wood products is shown for several building types, project sizes, and building components. The estimates are based on a survey of 489 projects under...

  4. Elastic and Strength Properties of Heat-Treated Beech and Birch Wood

    Directory of Open Access Journals (Sweden)

    Vlastimil Borůvka

    2018-04-01

    Full Text Available This paper deals with the impact of heat treatment on the elastic and strength properties of two diffuse porous hardwoods, namely Fagus sylvatica and Betula pendula. Two degrees of the heat treatment were used at temperatures of 165 °C and 210 °C. The dynamic and static elasticity modulus, bending strength, impact toughness, hardness, and density were tested. It is already known that an increase in treatment temperature decreases the mechanical properties and, on the other hand, leads to a better shape and dimensional stability. Higher temperatures of the heat treatment correlated with lower elastic and strength properties. In the case of higher temperature treatments, the decline of tested properties was noticeable as a result of serious changes in the chemical composition of wood. It was confirmed that at higher temperature stages of treatment, there was a more pronounced decrease in beech properties compared to those of the birch, which was the most evident in their bending strength and hardness. Our research confirmed that there is no reason to consider birch wood to be of a lesser quality, although it is regarded by foresters as an inferior tree species. After the heat treatment, the wood properties are almost the same as in the case of beech wood.

  5. Sustainable Construction for Urban Infill Development Using Engineered Massive Wood Panel Systems

    Directory of Open Access Journals (Sweden)

    Steffen Lehmann

    2012-10-01

    Full Text Available Prefabricated engineered solid wood panel construction systems can sequester and store CO2. Modular cross-laminated timber (CLT, also called cross-lam panels form the basis of low-carbon, engineered construction systems using solid wood panels that can be used to build residential infill developments of 10 storeys or higher. Multi-apartment buildings of 4 to 10 storeys constructed entirely in timber, such as recently in Europe, are innovative, but their social and cultural acceptance in Australia and North America is at this stage still uncertain. Future commercial utilisation is only possible if there is a user acceptance. The author is part of a research team that aims to study two problems: first models of urban infill; then focus on how the use of the CLT systems can play an important role in facilitating a more livable city with better models of infill housing. Wood is an important contemporary building resource due to its low embodied energy and unique attributes. The potential of prefabricated engineered solid wood panel systems, such as CLT, as a sustainable building material and system is only just being realised around the globe. Since timber is one of the few materials that has the capacity to store carbon in large quantities over a long period of time, solid wood panel construction offers the opportunity of carbon engineering, to turn buildings into ‘carbon sinks’. Thus some of the historically negative environmental impact of urban development and construction can be turned around with CLT construction on brownfield sites.

  6. Modeling Force Transfer around Openings in Wood-Frame Shear Walls

    Science.gov (United States)

    Minghao Li; Frank Lam; Borjen Yeh; Tom Skaggs; Doug Rammer; James Wacker

    2012-01-01

    This paper presented a modeling study on force transfer around openings (FTAO) in wood-frame shear walls detailed for FTAO. To understand the load transfer in the walls, this study used a finite-element model WALL2D, which is able to model individual wall components, including framing members, sheathing panels, oriented panel-frame nailed connections, framing...

  7. Protein Modifiers Generally Provide Limited Improvement in Wood Bond Strength of Soy Flour Adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda Lorenz

    2013-01-01

    Soy flour adhesives using a polyamidoamine-epichlorohydrin (PAE) polymeric coreactant are used increasingly as wood adhesives for interior products. Although these adhesives give good performance, higher bond strength under wet conditions is desirable. Wet strength is important for accelerated tests involving the internal forces generated by the swelling of wood and...

  8. Some Properties of Astronium graveolens Wood Along the Stem

    Directory of Open Access Journals (Sweden)

    Eduardo Luiz Longui

    Full Text Available ABSTRACT We investigated the axial variation of specific gravity, shear parallel to the grain and anatomical features of Astronium graveolens wood and related these properties to the anatomy along the stem. We felled five 20-year-old trees and cut discs from four different stem heights, including stem base, 1 meter, 2 meters and 3 meters, for a total of 20 discs, and studied wood samples near the bark and at the base of trunk. Axial variations found appear to provide a balance between mechanical strength of the wood at stem base by the higher density and higher shear by the increase in ray frequency that contributes to locking the vertical cells and growth rings, thus preventing the stem from easily breaking when bent. For hydraulic conductivity, vessels with smaller diameter and frequency at the stem base help prevent the occurrence of embolisms that would reduce water flow along the main stem.

  9. Non_standard Wood

    DEFF Research Database (Denmark)

    Tamke, Martin

    . Using parametric design tools and computer controlled production facilities Copenhagens Centre for IT and Architecture undertook a practice based research into performance based non-standard element design and mass customization techniques. In close cooperation with wood construction software......, but the integration of traditional wood craft techniques. The extensive use of self adjusting, load bearing wood-wood joints contributed to ease in production and assembly of a performance based architecture....

  10. Projected wood energy impact on US forest wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Skog, K.E. [USDA Forest Service, Madison, WI (United States)

    1993-12-31

    The USDA Forest Service has developed long-term projections of wood energy use as part of a 1993 assessment of demand for and supply of resources from forest and range lands in the United States. To assess the impact of wood energy demand on timber resources, a market equilibrium model based on linear programming was developed to project residential, industrial, commercial, and utility wood energy use from various wood energy sources: roundwood from various land sources, primary wood products mill residue, other wood residue, and black liquor. Baseline projections are driven by projected price of fossil fuels compared to price of wood fuels and the projected increase in total energy use in various end uses. Wood energy use is projected to increase from 2.67 quad in 1986 to 3.5 quad in 2030 and 3.7 quad in 2040. This is less than the DOE National Energy Strategy projection of 5.5 quad in 2030. Wood energy from forest sources (roundwood) is projected to increase from 3.1 billion (10{sup 9}) ft{sup 3} in 1986 to 4.4. billion ft{sup 3} in 2030 and 4.8 billion ft{sup 3} in 2040 (88, 124 and 136 million m{sup 3}, respectively). This rate of increase of roundwood use for fuel -- 0.8 percent per year -- is virtually the same as the projected increase rate for roundwood for pulpwood. Pulpwood roundwood is projected to increase from 4.2 billion ft{sup 3} in 1986 to 6.0 billion ft{sup 3} in 2030 and 6.4 billion ft{sup 3} in 2040 (119, 170 and 183 million m{sup 3}, respectively).

  11. Wood strength loss as a measure of decomposition in northern forest mineral soil

    Science.gov (United States)

    Martin Jurgensen; David Reed; Deborah Page-Dumroese; Peter Laks; Anne Collins; Glenn Mroz; Marek Degorski

    2006-01-01

    Wood stake weight loss has been used as an index of wood decomposition in mineral soil, but it may not give a reliable estimate in cold boreal forests where decomposition is very slow.Various wood stake strength tests have been used as surrogates of weight loss, but little is known on which test would give the best estimate of decomposition over a variety of soil...

  12. Iron Stain on Wood

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Iron stain, an unsightly blue–black or gray discoloration, can occur on nearly all woods. Oak, redwood, cypress, and cedar are particularly prone to iron stain because these woods contain large amounts of tannin-like extractives. The discoloration is caused by a chemical reaction between extractives in the wood and iron in steel products, such as nails, screws, and...

  13. Wood preservative testing

    Science.gov (United States)

    Rebecca Ibach; Stan T. Lebow

    2012-01-01

    Most wood species used in commercial and residential construction have little natural biological durability and will suffer from biodeterioration when exposed to moisture. Historically, this problem has been overcome by treating wood for outdoor use with toxic wood preservatives. As societal acceptance of chemical use changes, there is continual pressure to develop and...

  14. Evaluating wood failure in plywood shear by optical image analysis

    Science.gov (United States)

    Charles W. McMillin

    1984-01-01

    This exploratory study evaulates the potential of using an automatic image analysis method to measure percent wood failure in plywood shear specimens. The results suggest that this method my be as accurate as the visual method in tracking long-term gluebond quality. With further refinement, the method could lead to automated equipment replacing the subjective visual...

  15. Wood: a construction material for tall buildings

    Science.gov (United States)

    Wimmers, Guido

    2017-12-01

    Wood has great potential as a building material, because it is strong and lightweight, environmentally friendly and can be used in prefabricated buildings. However, only changes in building codes will make wood competitive with steel and concrete.

  16. Physical-mechanical and anatomical characterization in 26-year-old Eucalyptus resinifera wood

    OpenAIRE

    Lima,Israel Luiz de; Longui,Eduardo Luiz; Freitas,Miguel Luiz Menezes; Zanatto,Antonio Carlos Scatena; Zanata,Marcelo; Florsheim,Sandra Monteiro Borges; Bortoletto Jr.,Geraldo

    2014-01-01

    In the present study, we aimed to characterize Eucalyptus resinifera wood through physical and mechanical assays and wood anatomy studies, as well as determine the relationships between the properties and anatomy of wood. We used samples collected from the area close to the bark of ten 26-year-old E. resinifera trees. We concluded that the specific gravity (Gb), compression (f c0), and shear parallel to grain (f v0) were ranked in strength classes C30, C40 and C60, respectively, and that volu...

  17. Mechanical properties: wood lumber versus plastic lumber and thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Bernardo Zandomenico Dias

    Full Text Available Abstract Plastic lumber and thermoplastic composites are sold as alternatives to wood products. However, many technical standards and scientific studies state that the two materials cannot be considered to have the same structural behaviour and strength. Moreover, there are many compositions of thermoplastic-based products and plenty of wood species. How different are their mechanical properties? This study compares the modulus of elasticity and the flexural, compressive, tensile and shear strengths of such materials, as well as the materials' specific mechanical properties. It analyses the properties of wood from the coniferae and dicotyledon species and those of commercialized and experimental thermoplastic-based product formulations. The data were collected from books, scientific papers and manufacturers' websites and technical data sheets, and subsequently compiled and presented in Ashby plots and bar graphs. The high values of the compressive strength and specific compressive and tensile strengths perpendicular to the grain (width direction shown by the experimental thermoplastic composites compared to wood reveal their great potential for use in compressed elements and in functions where components are compressed or tensioned perpendicularly to the grain. However, the low specific flexural modulus and high density of thermoplastic materials limit their usage in certain civil engineering and building applications.

  18. Life cycle environmental impacts of different construction wood waste and wood packaging waste processing methods

    OpenAIRE

    Manninen, Kaisa; Judl, Jáchym; Myllymaa, Tuuli

    2016-01-01

    This study compared the life cycle environmental impacts of different wood waste processing methods in three impact categories: climate impact, acidification impacts and eutrophication impacts. The wood waste recovery methods examined were the use of wood waste in terrace boards made out of wood composite which replace impregnated terrace boards, incineration of wood waste in a multi-fuel boiler instead of peat and the use of wood waste in the production of particleboard in either Finland or ...

  19. Processing bulk natural wood into a high-performance structural material

    Science.gov (United States)

    Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H.; Bruck, Hugh A.; Zhu, J. Y.; Vellore, Azhar; Li, Heng; Minus, Marilyn L.; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing

    2018-02-01

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.

  20. Role of construction debris in release of copper, chromium, and arsenic from treated wood structures

    Science.gov (United States)

    Stan T. Lebow; Steven A. Halverson; Jeffrey J. Morrell; John. Simonsen

    Recent research on the release of wood preservatives from treated wood used in sensitive environments has not considered the potential contribution from construction residues. This study sought to develop leaching rate data for small construction debris and compare those to the release rate from treated wood itself. Western hemlock boards were pressure treated with...

  1. On the influence of moisture and load variations on the strength behavior of wood

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2005-01-01

    Abstract: It is demonstrated in this paper that the influence of moisture- and load variations on lifetime and residual strength (re-cycle strength) of wood can be considered by theories previously developed by the author. The common, controlling factor is creep, which can be modified very easily...... by introducing a special moisture dependent relaxation time in the well-known Power-Law creep expression. Because basic failure mechanisms in wood are invariant with respect to loading modes, it is suggested that a number of methods used in design of wood structures can be generalized/simplified to apply...

  2. Wood adhesives : vital for producing most wood products

    Science.gov (United States)

    Charles R. Frihart

    2011-01-01

    A main route for the efficient utilization of wood resources is to reduce wood to small pieces and then bond them together (Frihart and Hunt 2010). Although humankind has been bonding wood since early Egyptian civilizations, the quality and quantity of bonded wood products has increased dramatically over the past 100 years with the development of new adhesives and...

  3. Heat Resistance of Glued Finger Joints in Spruce Wood Constructions

    Directory of Open Access Journals (Sweden)

    Martin Sviták

    2014-10-01

    Full Text Available The heat resistance of glued spruce wood was evaluated for different joint types and adhesives. Bending strength, modulus of elasticity, and also fracture evaluation were investigated on glued spruce samples made by the finger-jointed principle. Finger-jointed samples were glued with polyurethane (PUR and melamine-urea-formaldehyde (MUF adhesives. Heat loading was realized at temperatures 60, 80, and 110 °C and compared with wood with 20 °C. A static bending test with four-point flexural test was used. Elevated temperature and adhesive type had an important influence on the bending strength. On the other hand, adhesive type had a significant influence on the modulus of elasticity, but elevated temperature had no substantial influence.

  4. The Situation with Use of Wood Constructions in Contemporary Latvian Architecture

    Directory of Open Access Journals (Sweden)

    Antra Viluma

    2017-05-01

    Full Text Available Wood is a historic building material used throughout the Baltic States. Latvia’s forests cover 52% of the country and there are more than 30 producers of timber constructions materials, but during the last two decades the use wood in Latvian architecture has declined when compared to other countries in Europe. In particular – Latvian architects avoid the use of timber in public and multi-unit apartment buildings. Wood is a sustainable and technically appropriate building material for many types of buildings including complex construction, but in Latvian architecture it is used more in facades as a finishing material. This study analyses buildings built during the last few decades, conducted a number of interviews and found that the percentage of wooden buildings in the total building volume in Latvia is less than 5% in both apartment buildings and public sector buildings. Restrictive legislation and negative stereotypes were mentioned as reasons as to why architects avoid the use of wood. For the survey results seven Latvian Museum of Contemporary Art competition projects were analysed as well.

  5. Detection of wood failure by image processing method: influence of algorithm, adhesive and wood species

    Science.gov (United States)

    Lanying Lin; Sheng He; Feng Fu; Xiping Wang

    2015-01-01

    Wood failure percentage (WFP) is an important index for evaluating the bond strength of plywood. Currently, the method used for detecting WFP is visual inspection, which lacks efficiency. In order to improve it, image processing methods are applied to wood failure detection. The present study used thresholding and K-means clustering algorithms in wood failure detection...

  6. Method for quantifying percentage wood failure in block-shear specimens by a laser scanning profilometer

    Science.gov (United States)

    C. T. Scott; R. Hernandez; C. Frihart; R. Gleisner; T. Tice

    2005-01-01

    A new method for quantifying percentage wood failure of an adhesively bonded block-shear specimen has been developed. This method incorporates a laser displacement gage with an automated two-axis positioning system that functions as a highly sensitive profilometer. The failed specimen is continuously scanned across its width to obtain a surface failure profile. The...

  7. Complex geometries in wood

    DEFF Research Database (Denmark)

    Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob

    2009-01-01

    The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....

  8. On the role of CFRP reinforcement for wood beams stiffness

    Science.gov (United States)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates

  9. 49 CFR 178.515 - Standards for reconstituted wood boxes.

    Science.gov (United States)

    2010-10-01

    ... wood boxes. (a) The identification code for a reconstituted wood box is 4F. (b) Construction requirements for reconstituted wood boxes are as follows: (1) The walls of boxes must be made of water... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for reconstituted wood boxes. 178.515...

  10. Wood and Other Materials Used to Construct Nonresidential Buildings in the United States 2011

    Science.gov (United States)

    Craig Adair; David B. McKeever; Chris Gaston; Margaret. Stewart

    2013-01-01

    The construction of low-rise nonresidential buildings is an important market for lumber, engineered wood products, and structural and nonstructural wood panels in the United States. This report examines low-rise nonresidential buildings of six or fewer stories. Those with more than six stories are normally severely restricted by building codes from being wood framed....

  11. Urban Wood Waste Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.

    1998-11-20

    This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris.

  12. Monitoring of wood photodegradation by DRIFT-spectroscopy

    International Nuclear Information System (INIS)

    Faix, O.; Németh, K.

    1988-01-01

    Wood of locust (Robinia pseudoacacia) and poplar (Populus tremoloides) tree has been irradiated with 830 W/m 2 energy up to 60 hrs and extracted with water in order to simulate outdoor weathering. The progress of weathering was monitored by DRIFT spectroscopy. The spectra were baseline corrected and normalized. Spectral differences with regard to wood species, irradiation time, and water extraction were clearly seen. Very pronounced is the intensity decrease of the bands of aromatic skeletal vibrations at 1510 and 1600 cm −1 and the increase of the band at 17.4 cm −1 (C=O stretching). These changes can be quantified and described by exponential equations. The degradation products of weathering are of low molecular weight and can be eliminated from the wood surface by water extraction. The differences between the DRIFT and KBr-TR spectra as well as the quantitative results of the artifical weathering are discussed. (author) [de

  13. Construction of low-cost, Mod-OA wood composite wind turbine blades

    Science.gov (United States)

    Lark, R. F.

    1983-01-01

    Two sixty-foot, low-cost, wood composite blades for service on 200 kW Mod-OA wind turbines were constructed. The blades were constructed of epoxy resin-bonded Douglas fir veneers for the leading edge sections, and paper honeycombcored, birch plywood faced panels for the afterbody sections. The blades were joined to the wind turbine hub by epoxy resin-bonded steel load take-off studs embedded into the root end of the blades. The blades were installed on the 200 kW Mod-OA wind turbine facility at Kahuku, Hawaii, The blades completed nearly 8,000 hours of operation over an 18 month period at an average power of 150 kW prior to replacement with another set of wood composite blades. The blades were replaced because of a corrosion failure of the steel shank on one stud. Inspections showed that the wood composite structure remained in excellent condition.

  14. Construction Cluster Volume I [Wood Structural Framing].

    Science.gov (United States)

    Pennsylvania State Dept. of Justice, Harrisburg. Bureau of Correction.

    The document is the first of a series, to be integrated with a G.E.D. program, containing instructional materials at the basic skills level for the construction cluster. It focuses on wood structural framing and contains 20 units: (1) occupational information; (2) blueprint reading; (3) using leveling instruments and laying out building lines; (4)…

  15. Long term durability of wood-plastic composites made with chemically modified wood

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2017-01-01

    Wood-plastic composites (WPCs) have slower moisture sorption than solid wood, but over time moisture can impact the strength, stiffness, and decay of the composite. These changes will become increasingly important if WPCs are used in more challenging environments such as in ground-contact applications. There are several options for mitigating the moisture sorption of...

  16. Controversy. The wood war

    International Nuclear Information System (INIS)

    James, O.

    2010-01-01

    The author comments the conflict emerging in France between industries exploiting wood for construction and those exploiting it as a heating material for power generation. The first ones accuse the others to steal their raw material, to pull the prices up, and to destabilize the sector. This conflict takes place notably around sawmill wastes which are used either by wood panel fabricators or by wood pellets producers. Both sectors are claiming they are creating more jobs than the other. The French forest indeed offers good opportunities for both sectors, but other countries which are lacking forest surfaces, are buying wood in France. Several issues are matter of discussion: burning wood seems to go against the reduction of greenhouse gas emissions, subsidies awarded to big heater projects. The situation of the wood sector in Austria, Finland and Poland is briefly presented

  17. Manufacturing methods and magnetic characteristics of magnetic wood

    International Nuclear Information System (INIS)

    Oka, H.; Hojo, A.; Osada, H.; Namizaki, Y.; Taniuchi, H.

    2004-01-01

    The relationship between wood construction and DC magnetic characteristics for three types of magnetic wood was experimentally investigated. The results show that the magnetic characteristics of each type of magnetic wood are dependent on the magnetic materials, the density of the magnetic material and the construction of the wood. Furthermore, it was determined that the relationship between the fiber direction and the magnetic path direction of the magnetic wood influenced the wood's magnetic characteristics

  18. On the influence of crack closure on strength estimates of wood

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2004-01-01

    Three well-known duration of load models (Gerhard, Barrett/Foschi, DVM) are considered in this note with respect to their ability to predict lifetime of wood subjected to harmonically varying loads. The result obtained is that they practically predict the same lifetime—which for low frequency...... in metals).It is suggested that any of the simple models can be used in practice when low frequency load variations are considered. The DVM model, however, should be preferred because of its ability to predict residual strength, and because of its ‘build in’ flexibility with respect to wood quality...

  19. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters.

    Science.gov (United States)

    Chowdhury, S; Maniar, A; Suganya, O M

    2015-11-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  20. The effect of some wood preservatives on the thermal degradation of Scots pine

    Energy Technology Data Exchange (ETDEWEB)

    Tomak, Eylem D., E-mail: eylemdizman@yahoo.com [Karadeniz Technical University, Faculty of Forestry, Forest Industrial Engineering Department, 61080 Trabzon (Turkey); Baysal, Ergun, E-mail: bergun@mu.edu.tr [Mugla University, Faculty of Technology, Department of Wood Science and Technology, Kotekli, 48000 Mugla (Turkey); Peker, Huseyin, E-mail: peker100@hotmail.com [Artvin Coruh University, Faculty of Forestry, Forest Industrial Engineering Department, 06100 Artvin (Turkey)

    2012-11-10

    Highlights: Black-Right-Pointing-Pointer Scots pine samples were impregnated with 10 commercial wood preservatives. Black-Right-Pointing-Pointer Thermal degradation of wood was evaluated by TG, DTG and DTA. Black-Right-Pointing-Pointer The thermal behavior of treated wood differed from that of untreated wood. Black-Right-Pointing-Pointer Boron containing wood preservatives yielded more charcoal than other preservatives. Black-Right-Pointing-Pointer Boric oxide and metal compounds in the formulations may affect char weight. - Abstract: Wood has been a structural material for many years; however, its ability to burn has limited its use in some applications. This study aims to evaluate the effect of commercial wood preservatives having concentration of 4% on the thermal behavior of Scots pine wood, and compare the fire retardant effectiveness of these preservatives with that of boron compounds. Thermal degradation of treated and untreated wood samples was evaluated by thermogravimetry (TG), differential thermogravimetry (DTG) and differential thermal analysis (DTA). Thermal behavior of treated wood differed from thermal behavior of untreated wood in terms of a high char yield. Results showed that weight loss of wood reduced while char yield increased in the charring phase of the pyrolysis in the boron containing preservative treated wood accompanying with pyrolysis temperature lowered. The highest char yield was obtained from the samples treated with disodium octaborate tetrahydrate in the all treated groups.

  1. Trends in the highway market for wood products

    Science.gov (United States)

    Robert G. Knutson

    1975-01-01

    Forty-eight million cubic feet of wood products, about 50 million dollars worth, were used in the Nation's highway construction program in 1972. Expenditures for highway construction increased 2½ times from 1954 to 1972. The volume of wood products used in highway construction changed little during this period because other materials were substituted for...

  2. WOOD PROPERTIES AND EFFECT OF WOOD PROPERTIES ON THE WOOD FINISHING

    Directory of Open Access Journals (Sweden)

    Abdulkadir Malkoçoğlu

    2006-04-01

    Full Text Available Wood is basic raw material for furniture and joinery industries with wood structures. Wood is a biological material that has widely different properties depending on species, geographic area where the tree grew, the growth condition, size of the tree at harvest, sawing, and other manufacturing processes. Wood properties have been characterized within two groups as natural and manufacturing factors that effects finishing performance. Grow rate, density, knots, moisture content, extractives and juvenile wood are natural characteristics. Grain orientation, texture, drying and performance expectations are manufacturing characteristics. In this review, the effects of natural and manufacturing characteristics are discussed on the surface finishing performance of wood.

  3. A 3D multilevel model of damage and strength of wood: Analysis of microstructural effects

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2011-01-01

    A 3D hierarchical computational model of damage and strength of wood is developed. The model takes into account the four scale microstructures of wood, including the microfibril reinforced structure at nanoscale, multilayered cell walls at microscale, hexagon-shape-tube cellular structure...

  4. Structural Evaluation Procedures for Heavy Wood Truss Structures

    National Research Council Canada - National Science Library

    Issa, Mohsen

    1998-01-01

    .... An evaluation procedure for wood structures differs from conventional methods used in steel, concrete, and masonry structures because, in wood construction, the allowable stresses used in design...

  5. MECHANICAL CHARACTERIZATION AND SHRINKAGE OF Sclerolobium paniculatum Vogel WOOD IN A HOMOGENEOUS PLANTING UNDER DIFFERENT LEVELS OF FERTILIZATION

    Directory of Open Access Journals (Sweden)

    Joselito Bonifácio Oliveira

    2010-08-01

    Full Text Available The purposa of this work was to study the influence of fertilization on wood quality of Sclerolobium paniculatum Vogel. A homogeneous planting trial, under different levels of liming and phosphorus, was established by Embrapa-Cerrados 18 years ago in Planaltina, Distrito Federal, Brazil, tropical wood savanna region. Mechanical tests conducted were static bending, parallel compression to grain, shear strength and shrinkage. No significant differences were observed for mechanical properties or for shrinkage, which presented: ¦b = 650kg/cm2, E = 59.877kg/cm2, ¦c = 296kg/cm2 e ¦n = 131kg/cm2. Control treatment showed highest values for shear strength and compression parallel to grain. Too many branches in all trees and also too many knots in lumber were observed. Pruning is recommended for homogeneous planting of Sclerolobium paniculatum to avoid knots in order to be produced wood of superior quality.

  6. Effects of copper amine treatments on mechanical, biological and surface/interphase properties of poly (vinyl chloride)/wood composites

    Science.gov (United States)

    Jiang, Haihong

    2005-11-01

    The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.

  7. Domestic Wood Burning in a Residential Area: PM2.5 Trace Elements and Black Smoke

    International Nuclear Information System (INIS)

    Molnar, P.; Gustafson, P.; Johannesson, S.; Barregaard, L.; Saellsten, G.; Boman, J.

    2005-01-01

    Indoor and outdoor levels of PM2.5 have been studied in a residential area in Hagfors, a small town in Sweden. The sampling took place during typical Swedish winter conditions with sub-zero temperatures and full snow cover between February 10th and Mars 6th, 2003. The area consists of single houses having different heating systems. Some of the houses are heated by burning wood; some use heat pumps while others use direct electrical heating. 13 houses burning wood in boilers or similar for heating and 10 houses heated by other means but situated in the same area were selected for this study. Only houses without tobacco smoke were selected since this is one of the major sources of indoor particles. The objectives of the study were to identify levels and differences in composition of aerosol particles outdoors and inside houses with boilers using wood as fuel and houses heated in other ways. For K, Ca, Mn, Zn and Rb significantly higher (p < 0.05) indoor concentration for wood burners were found. The elements most often referred to as markers for wood burning are K and Zn. In addition, Si, S, Cl, Br and Rb are also mentioned as markers (Hedberg et al., 2002, Moloi et al., 2003). Black smoke was linked to wood burning, although not fully significant (p-value 0.07), as seen in figure 1a. Within the wood-burning group, some houses have concentrations comparable to the concentrations in the houses where no wood is used, while the others have much higher concentrations. These houses also have higher concentrations of K compared to the other wood burners. The possible reasons are different types of wood burning appliances and their placement in the houses as well as possible leakage. Sulphur, although sometimes linked to wood burning, shows no relationship to wood burning in this study. In figure 1b it can be seen that the indoor concentrations of sulphur is clearly lower compared to outdoor concentrations and that the levels indoors do not differ between wood and non-wood

  8. Wood-hoopoes: are Phoeniculus purpureus niloticus (Neumann ...

    African Journals Online (AJOL)

    The Green Wood-hoopoe Phoeniculus purpureus (Miller 1784) is represented in all savanna regions of Africa, and has long been the subject of debate (Turner 2014). In addition, birds referred to as the Violet Wood-hoopoe (damarensis and granti) and. Black-billed Wood-hoopoe (somaliensis) appear very closely related to ...

  9. BASIC PROPERTIES IN RELATION TO DRYING PROPERTIES OF THREE WOOD SPECIES FROM INDONESIA

    Directory of Open Access Journals (Sweden)

    Efrida Basri

    2005-03-01

    Full Text Available The objectives of this study were to investigate basic and drying properties of three wood species from Indonesia, i.e. kuda (Lannea coromandelica Merr., waru (Hibiscus tiliaceus L. and mindi besar (Melia dubia Cav.. The basic properties include density, shrinkages, modulus of rupture (MOR, compression parallel to grain (C//, wood strength and anatomical structures. Meanwhile, the drying properties included drying time and drying defects. The initial-final temperature and humidity for each species was based on defects that resulted from high temperature drying trial. The results showed that the drying properties were significantly affected by wood anatomical structure. The initial-final drybulb temperature and wetbulb depression   for kuda wood are 50 -70ºC and 3-30ºC respectively, while the corresponding figures for waru wood are 65-80ºC and 6-30ºC, and for mindi besar wood are 55-80ºC and 4-30ºC. These drying schedules, however, still need further trial prior to their implementation in the factory-scale operation. All wood species studied have density and considerable strength recommended in their use for light medium construction purposes. Mindi besar wood has decorative appearance so it is suitable for furniture.

  10.  Thermal Insulation System Made of Wood and Paper for Use in Residential Construction

    Science.gov (United States)

    Zoltán Pásztory; Tibor Horváth; Samuel V. Glass; Samuel L. Zelinka

    2015-01-01

    This article introduces an insulation system that takes advantage of the low thermal conductivity of still air and is made of wood and paper. The insulation, called the Mirrorpanel, is constructed as a panel of closely spaced layers of coated paper and held together in a frame of wood or fiberboard. Panels have been fabricated and tested at the laboratory scale, whole...

  11. Developing wood construction in France in order to enhance energy independence, reduce greenhouse gas emissions and develop employment

    International Nuclear Information System (INIS)

    2015-05-01

    In France, forests represent a third of the surface of the whole country, whereas the national commercial balance on transformed wood shows a large deficit. A well designed development of wood production and transformation for the construction sector could induce many beneficial effects: diminution of greenhouse gas (CO_2) emissions related to the production of construction materials (cement, steel); substitution of a part of space heating fuels by wood collection and transformation by-products and wastes; and decrease of imports of hydrocarbons (through fuel substitution) and transformed woods (through a better transformation in France of timbers grown in French forests). Some recommendations concerning the development of the wood construction sector are given

  12. Urban Wood Waste Resource Assessment; TOPICAL

    International Nuclear Information System (INIS)

    Wiltsee, G.

    1998-01-01

    This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris

  13. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    Directory of Open Access Journals (Sweden)

    S. Chowdhury

    2015-11-01

    Full Text Available In this study, Wood Ash (WA prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45 and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20% including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM, strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  14. 29 CFR 1910.25 - Portable wood ladders.

    Science.gov (United States)

    2010-07-01

    ... for the construction, care, and use of the common types of portable wood ladders, in order to insure... density wood shall not be used. (ii) [Reserved] (2) [Reserved] (c) Construction requirements. (1... 29 Labor 5 2010-07-01 2010-07-01 false Portable wood ladders. 1910.25 Section 1910.25 Labor...

  15. Life cycle performances of log wood applied for soil bioengineering constructions

    Science.gov (United States)

    Kalny, Gerda; Strauss-Sieberth, Alexandra; Strauss, Alfred; Rauch, Hans Peter

    2016-04-01

    Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. Soil bioengineering is a construction technique that uses biological components for hydraulic and civil engineering solutions. Soil bioengineering solutions are based on the application of living plants and other auxiliary materials including among others log wood. This kind of construction material supports the soil bioengineering system as long as the plants as living construction material overtake the stability function. Therefore it is important to know about the durability and the degradation process of the wooden logs to retain the integral performance of a soil bio engineering system. These aspects will be considered within the framework of the interdisciplinary research project „ELWIRA Plants, wood, steel and concrete - life cycle performances as construction materials". Therefore field investigations on soil bioengineering construction material, specifically European Larch wood logs, of different soil bioengineering structures at the river Wien have been conducted. The drilling resistance as a parameter for particular material characteristics of selected logs was measured and analysed. The drilling resistance was measured with a Rinntech Resistograph instrument at different positions of the wooden logs, all surrounded with three different backfills: Fully surrounded with air, with earth contact on one side and near the water surface in wet-dry conditions. The age of the used logs ranges from one year old up to 20 year old. Results show progress of the drilling resistance throughout the whole cross section as an indicator to assess soil bioengineering construction material. Logs surrounded by air showed a higher drilling resistance than logs with earth contact and the ones exposed to wet-dry conditions. Hence the functional capability of wooden logs were analysed and discussed in terms of different levels of degradation

  16. Relating wood properties to handsheet porosity and mechanical strength

    CSIR Research Space (South Africa)

    Maharaj, S

    2006-11-01

    Full Text Available , 4041 3CSIR, Forestry and Forest Products Research Centre, P.O. Box 17001, Congella, 4013 WOOD HAND-SHEET (STRENGTH) PROCESSING Anatomy Chemistry Density Tear Tensile Burst Background Variation in pulp mills •Need to predict quality of end... important concepts… Some important concepts… • Collapsibility and inter-fibre bonding Light Microscopy SEM • Tear – Fibre level: pull-out vs. breaking/rupture Some important concepts… •Fibre breakage / rupture: less energy = lower tear strength...

  17. Radiation processed composite materials of wood and elastic polyester resins

    International Nuclear Information System (INIS)

    Tapolcai, I.; Czvikovszky, T.

    1983-01-01

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  18. Accumulation of 137Cs and 90Sr in wood and bark of various types of oak and black alder plantings

    International Nuclear Information System (INIS)

    Perevolotskij, A.N.; Bulavik, I.M.; Perevolotskaya, T.V.; Paskrobko, L.A.; Andrush, S.N.

    2008-01-01

    Results of the evaluation of the influence of types of habitat edaphic conditions on 137Cs and 90Sr transition coefficients and their accumulation by wood and bark of English oak (Quercus robur L.) and black alder (Alnus glutinosa (L.) Gaertn) were presented. There was observed the particular influence of edaphic conditions on 137Cs and 90Sr accumulation by wood and bark of English oak. Lowering of 137Cs transition coefficients for the studied elements of phytomass was noted in the conditions of soil fertility increasing. Influence of soil moistening on 137Cs transition into wood and bark of oak trees was stated only in wood-sorrel and glague types of forests. Differences in accumulation of 90Sr by wood and bark of English oak in the studied range of edaphotopes were not proved. There was not found any differences in accumulation of both radionuclides by black alder trees in the typical for them edaphic conditions

  19. Wood handbook : wood as an engineering material

    Science.gov (United States)

    Robert J. Ross; Forest Products Laboratory. USDA Forest Service.

    2010-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  20. Effects of tanalith-e impregnation substance on bending strengths and modulus of elasticity in bending of some wood types

    Directory of Open Access Journals (Sweden)

    Hakan Keskin

    2016-04-01

    Full Text Available The aim of this study was to investigate the effects of impregnation with Tanalith-E on the bending strengths and modulus of elasticity in bending of some wood types. The test samples prepared from beech, oak, walnut, poplar, ash and pine wood materials - that are of common use in the forest products industry of TURKEY - according to TS 345, were treated with according to ASTM D 1413-76 substantially. Un-impregnated samples according to impregnated wood materials, the bending strengths in beech to 6.83%, 5.12% in ash, 5.93% in pine, the elasticity module values to 7.15% in oak and ash, at a rate of 6.58% in the higher were found. The highest values of bending strengths and modulus of elasticity in bending were obtained in beech and ash woods impregnated with Tanalith-E, whereas the lowest values were obtained in the poplar wood.

  1. Production of plastified wood with stronger static bending strength means of polymerization induced by gamma radiation

    International Nuclear Information System (INIS)

    Silva Filho, Elias

    1999-01-01

    The use of gamma radiation to obtain wood-polymer composites is one of the applications of radiation that presents the most commercial interest. The process, denominated radiopolymerization, comprises the impregnation of monomers into the completely dried wood followed by exposure to gamma radiation to induce polymerization of the impregnated monomers. I this context, the present work aimed the application of this process to seven kinds of wood existing in the brazilian forests. The considered monomer is styrene and the gamma source is Cobalt-60. The obtained wood-polystyrene composites were found to have stronger static bending strength. (author)

  2. Roof modular system in wood and particle board (OSB to rural construction

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2012-06-01

    Full Text Available Wood is a material of great applicability in construction, with advantageous properties to form various structural systems, such as walls and roof. Most of the roof structural systems follow models that have remained unchanged for a long time. A roof modular system in distinguished materials is proposed: reforested wood (Pine, oriented strand board (OSB and roof tiles made of recycled long-life packaging material in order to be applied in rural construction. In this alternative, besides the benefit of giving destination packages with long-life thermal comfort, it also highlights the use of reforestated wood being the cultivation of such species that provides incentive for agribusiness. The structural performance of this alternative was evaluated through computer modeling and test results of two modular panels. The analysis is based on the results of vertical displacements, deformations and stresses. A positive correlation between theoretical and experimental values was observed, indicating the model's feasibility for use in roof structures. Therefore, the modular system represents a solution to new architecture conceptions to rural construction, for example, storage construction, cattle handling and poultry, with benefits provided by prefabricated building systems.

  3. Full-scale shear wall tests for force transfer around openings

    Science.gov (United States)

    Tom Skaggs; Borjen Yeh; Frank Lam; Douglas Rammer; James Wacker

    2010-01-01

    Wood structural panel sheathed shear walls and diaphragms are the primary lateral-load resisting elements in wood-frame construction. The historical performance of light-frame structures in North America are very good due, in part, to model building codes that are designed to preserve life safety, as well as the inherent redundancy of wood-frame construction using wood...

  4. Wood and Other Materials Used to Construct Nonresidential Buildings in the United States 2011 Executive Summary

    Science.gov (United States)

    David B. McKeever

    2013-01-01

    The construction of low-rise nonresidential buildings is an important market for lumber, engineered wood products, and structural and nonstructural wood panels in the United States. This report examines low-rise nonresidential buildings of six or fewer stories. Those with more than six stories are normally severely restricted by building codes from being wood framed....

  5. Wood slabs as a proposed solution to the design and construction of pavement

    Directory of Open Access Journals (Sweden)

    Carlos Alfonso Devia Castillo

    2016-01-01

    Full Text Available Alternatives to replace concrete slabs for prefabricated wood as structure of pavement with wearing course was evaluated, ensuring that these prefabrications work as a single element using finger joints. The mechanical behavior of two types of wood identified through simulations implementing a method of finite elements was evaluated, to subsequently determined optimal configuration for the alternative design with wood pavements and finally verified in the laboratory with the optimal configuration determined with simulation for a design of 440 000 vehicles shafts, with the use of the MTS machine and a load of 6.50 tons equivalent to a load of a single axle shaft with two wheels, found that for different traffic design the thickness of the slab of wood to resist this load varies between 0.125 and 0.24 meters. This research shows that prefabricated wood building systems are a viable alternative in the market for pavement construction in the structural sense; additionally, they are an innovation since they modify the structural system of slabs, conventionally built on concrete slabs and reduce environmental impact.

  6. Investigation on the Scratch Strength of Clear Paints Used in Furniture Industries on the Wood Species Beech, Elm, Alder and Spruce

    Directory of Open Access Journals (Sweden)

    Mohammad Ghofrani

    2014-05-01

    Full Text Available In This research, the scratch strength (Cross-Cut Test of clear paints (nitrocellulose lacquers and acid catalyst lacquers of wood species Beech, Elm, Alder and spruce were studied as a function of moisture content (MC of the samples. For this purpose, lumbers (550×110×12 mm were cut from sapwood in tangential surfaces and were air dried for one month according to wood drying procedures. Then, for pre-conditioning of moisture content, at the levels of 8%, 12% and 15%, the samples were placed in three clima rooms. Then, finish applied and strength tests were performed. The results revealed that for acid catalyst lacquers the highest scratch strength (10.4% belongs to Elm wood with 8% moisture content, and the lowest scratch strength (53.6% belongs to Spruce wood with nitrocellulose lacquers having 15% moisture content.

  7. Wood preservatives and pressure-treated wood: considerations for historic-preservation projects

    Science.gov (United States)

    Ronald W. Anthony; Stan T. Lebow

    2015-01-01

    Wood, an abundant resource throughout most of the world, has been used as a building material for thousands of years. Many historic buildings have been built primarily of wood, and masonry and stone buildings generally have wood elements, both structural and architectural. As a biological material, wood is both remarkably complex and yet quite durable if well...

  8. Selected mechanical properties of modified beech wood

    Directory of Open Access Journals (Sweden)

    Jiří Holan

    2008-01-01

    Full Text Available This thesis deals with an examination of mechanical properties of ammonia treated beach wood with a trademark Lignamon. For determination mechanical properties were used procedures especially based on ČSN. From the results is noticeable increased density of wood by 22% in comparison with untreated beach wood, which makes considerable increase of the most mechanical wood properties. Considering failure strength was raised by 32% and modulus of elasticity was raised at average about 46%.

  9. Cord Wood Testing in a Non-Catalytic Wood Stove

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, G. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  10. The variability of wood density and compression strength of Norway spruce

    Czech Academy of Sciences Publication Activity Database

    Horáček, Petr; Fajstavr, Marek; Stojanović, Marko

    2017-01-01

    Roč. 10, 1-2 (2017), s. 17-26 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : Norway spruce * wood density * compression strength * variability Subject RIV: GK - Forestry OBOR OECD: Forestry

  11. Construction of Hydrophobic Wood Surface and Mechanical Property of Wood Cell Wall on Nanoscale Modified by Dimethyldichlorosilane

    Science.gov (United States)

    Yang, Rui; Wang, Siqun; Zhou, Dingguo; Zhang, Jie; Lan, Ping; Jia, Chong

    2018-01-01

    Dimethyldichlorosilane was used to improve the hydrophobicity of wood surface. The water contact angle of the treated wood surface increased from 85° to 143°, which indicated increased hydrophobicity. The nanomechanical properties of the wood cell wall were evaluated using a nanoindentation test to analyse the hydrophobic mechanism on the nano scale. The elastic modulus of the cell wall was significantly affected by the concentration but the influence of treatment time is insignificant. The hardness of the cell wall for treated samples was significantly affected by both treatment time and concentration. The interaction between treatment time and concentration was extremely significant for the elastic modulus of the wood cell wall.

  12. Wood : adhesives

    Science.gov (United States)

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  13. Study of mechanical properties of Palosangre wood (Brosimum rubescens Taub.), from Leticia-Colombia provenance

    International Nuclear Information System (INIS)

    Triana Gomez, Max Alejandro; Gonzalez Roso, Gladis; Paspur Posso, Segundo Demetrio

    2008-01-01

    The technical recommendations of the Pan-American Committee of Technical Norms COPANT were applied for carrying out technological tests of tangential static flexion, parallel compression, tangential parallel shear, radial parallel shear, tangential impact, and radial impact in the wood of Brosimum rubescens Taub. (Moraceae) coming from Leticia, state of Amazonas, Colombia. The statistical analysis was made based on the arithmetic mean, the standard deviation and the variation coefficient to obtain representativeness. Results were adjusted to 12% of content of humidity. The mechanical properties of the wood were also classified, and its possible uses determined. The wood of B. rubescens exhibited the best response to the static flexion effort. According to the ASTM classification, the elasticity module (MOE) and the Maximum Unitary Effort corresponded to the Very High range, while the Proportional Limit Effort to the Middle range. The Maximum Unitary Effort and Proportional Limit Effort obtained for the parallel compression were assigned to the High and Medium ranges, respectively, while the tangential shear matched the High range. The less favorable response was found for the radial shear effort and the impact in the tangential and radial planes that corresponded to the Medium range. It was found that the most appropriate uses of the wood were: interior finishes, external finishes, athletic and sport articles, hand crafts, ends for tools, joinery, furniture, chassis, piles, musical instruments, construction, arches for violin and similar musical instruments, breeches for weapons, structures, mischievous, keels, floors and beams.

  14. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Science.gov (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  15. Intraspecific variability of European larch for wood properties: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Paques, L.E.; Rozenberg, P. [Institut National de Recherches Agronomiques (INRA), 45 - Olivet (France). Station d`Amelioration des Arbres Forestiers

    1995-12-31

    Wood properties of several natural populations of European larch (Larix decidua Mill) were determined from samples collected in one replicate of the II. International IUFRO provenance experiment, planted in Brittany in 1959. According to provenances, proportion of heartwood ranges from 35 to 58% of basal area, basic density from 442 to 505 g/dm{sup 3} and Young modulus of elasticity from 8474 to 14522 MPa. Positive correlations between girth and heartwood proportion and between wood density and modulus of elasticity but negative correlations between ring width and both density and MOE have been found both at the individual and at the population levels. Variability between and within provenances is high for two major traits (proportion of heartwood and Young modulus of elasticity) for which a SW - NE gradient is shown. For wood density parameters including pilodyn, a greater homogeneity is observed. Besides a now largely recognized superiority for growth traits, Central European populations from the Sudetan Mountains and Central Poland would also produce wood with better properties. On the reverse, Alpine populations from the French Alps growing at low elevations have a slower growth, a denser wood with less heartwood and less strength. Used as a control, the hybrid larch origin (Larix x eurolepis) represents the best compromise for wood properties with the highest strength but an average wood density and one of the highest proportion of heartwood. These preliminary results must be confirmed from a larger set of provenances and completed with other major wood properties such as durability and shrinkage. 17 refs, 2 figs, 6 tabs

  16. Intraspecific variability of European larch for wood properties: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Paques, L E; Rozenberg, P [Institut National de Recherches Agronomiques (INRA), 45 - Olivet (France). Station d` Amelioration des Arbres Forestiers

    1996-12-31

    Wood properties of several natural populations of European larch (Larix decidua Mill) were determined from samples collected in one replicate of the II. International IUFRO provenance experiment, planted in Brittany in 1959. According to provenances, proportion of heartwood ranges from 35 to 58% of basal area, basic density from 442 to 505 g/dm{sup 3} and Young modulus of elasticity from 8474 to 14522 MPa. Positive correlations between girth and heartwood proportion and between wood density and modulus of elasticity but negative correlations between ring width and both density and MOE have been found both at the individual and at the population levels. Variability between and within provenances is high for two major traits (proportion of heartwood and Young modulus of elasticity) for which a SW - NE gradient is shown. For wood density parameters including pilodyn, a greater homogeneity is observed. Besides a now largely recognized superiority for growth traits, Central European populations from the Sudetan Mountains and Central Poland would also produce wood with better properties. On the reverse, Alpine populations from the French Alps growing at low elevations have a slower growth, a denser wood with less heartwood and less strength. Used as a control, the hybrid larch origin (Larix x eurolepis) represents the best compromise for wood properties with the highest strength but an average wood density and one of the highest proportion of heartwood. These preliminary results must be confirmed from a larger set of provenances and completed with other major wood properties such as durability and shrinkage. 17 refs, 2 figs, 6 tabs

  17. Tomography reconstruction methods for damage diagnosis of wood structure in construction field

    Science.gov (United States)

    Qiu, Qiwen; Lau, Denvid

    2018-03-01

    The structural integrity of wood building element plays a critical role in the public safety, which requires effective methods for diagnosis of internal damage inside the wood body. Conventionally, the non-destructive testing (NDT) methods such as X-ray computed tomography, thermography, radar imaging reconstruction method, ultrasonic tomography, nuclear magnetic imaging techniques, and sonic tomography have been used to obtain the information about the internal structure of wood. In this paper, the applications, advantages and disadvantages of these traditional tomography methods are reviewed. Additionally, the present article gives an overview of recently developed tomography approach that relies on the use of mechanical and electromagnetic waves for assessing the structural integrity of wood buildings. This developed tomography reconstruction method is believed to provide a more accurate, reliable, and comprehensive assessment of wood structural integrity

  18. Management of black Locust (Robinia pseudoacacia L.) stands in Hungary

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Black locust (Robinia pseudoacacia L.) was the first forest tree species to be imported from North America to Europe at the beginning of the 17th century. It is the most important fast-growing stand-forming tree species in Hungary . Black locust plantations can be successfully established in response to arange of economic and ecological opportunities. Plantation survival and productivity are maximized by matching the species' growth characteristics with silvicultura l options and land management needs. In the paper the sequence of forest tending operations in black locust stands is proposed, based on results of long-term st and structure and forest yield trials. Implementing good silvicultural plans and models will lead to profitable black locust stands and greater acceptance of the species by land managers. Black locust would also beavery useful species for energy productions as the related research results have been shown in the paper .

  19. Influence of Maleic Anhydride/Glycidyl Methacrylate Cografted Polylactic Acid on Properties of Wood Flour/PLA Composites

    Directory of Open Access Journals (Sweden)

    DU Jun

    2017-12-01

    Full Text Available Graft copolymers of PLA-g-MAH, PLA-g-GMA and PLA-co-MAH/GMA were prepared by means of melt grafting. The structure of the graft copolymers were characterized by FTIR.Wood flour/PLA composites were prepared by injection molding with three kinds of graft copolymers as compatibilizers, and the fractured morphology of composites was investigated by scanning electron microscope (SEM. Results show that there is no obvious phase interface between wood flour and PLA,which indicating the interfacial compatibility of wood flour/PLA composites is improved after adding different graft copolymers. The determination results of mechanical properties, processing flowability and dynamic rheological property of composites prepared with different graft copolymers reveal that, compared to the composite without compatibilizer, the tensile strength and impact strength of wood flour/PLA composites are increased by 9.54% and 7.23% respectively, and the equilibrium torque, shear heat, storage modulus and complex viscosity are all increased after adding maleic anhydride/glycidyl methacrylate cografted polylactic acid.

  20. 49 CFR 178.513 - Standards for boxes of natural wood.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for boxes of natural wood. 178.513... natural wood. (a) The following are the identification codes for boxes of natural wood: (1) 4C1 for an ordinary box; and (2) 4C2 for a box with sift-proof walls. (b) Construction requirements for boxes of...

  1. INFLUENCE OF ANATOMICAL FEATURES AND EXTRACTIVES CONTENT WOOD OF Eucalyptus grandis W. Hill ex Maiden IN QUALITY BONDING

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina do Sacramento Albino

    2012-12-01

    Full Text Available http://dx.doi.org/10.5902/198050987561The study aimed to anatomically characterize and to quantify the total extractives in different positions of the log of Eucalyptus grandis W. Hill ex Maiden with 18 years of age and to assess their influence on the shear strength and percentage of wood failure in adhesive bonded joints with thermosetting resorcinol-formaldehyde. Histological slides were prepared for an anatomical study and determined the total extractive content. The preparation of bonded joints was made according to ASTM D 2339-98(2000. It was used the correlation coefficient of Pearson, 1% probability by t test to evaluate the correlation between the anatomical and extractives content with the quality of the glued joints. It was found that there was a correlation between the shear strength with the following characteristics: vessel diameter, wall width, length and width of the fiber, the width of the radius and total extractives content. For the percentage of wood failure, there was a correlation between this with the following characteristics: the frequency of vessels, thickness of the heat of fiber, and high frequency of lightning. Both the radial direction as in the longitudinal direction of the logs there was change in the values found for the measurement of the anatomical elements, the total amount of extractives, the shear test strength and the percentage of wood failure.

  2. Analysis of lifetime and residual strength of wood

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    The present paper is thought of as a working paper for the CTBA-seminar on Thematic network in the field for reliability based design of timber structures, Topic: Numerical methods for structural analysis. It is preliminary and quite informal in its structure. The intention is to present some wood...... technological problems which can be solved with respect to lifetime and residual strength by the so-called DVM-theory (Damaged Viscoelastic Material). The outlines of the paper is straight on: Expressions are presented by which the analysis is made. then some examples are considered with solutions presented...

  3. Wood Products Other Building Materials Used in New Residential Construction in the United States

    Science.gov (United States)

    David B. McKeever; Joe Elling

    2015-01-01

    On average, new residential construction accounts for about one-third of all wood products consumed in the United States annually. During periods of robust housing activity, 45% or more of all wood products consumed are for new single-family and multifamily housing. This can fall to as low as 20% or less during times of economic recession. Unfortunately, 2012 was not...

  4. Mechanical behavior of wood subjected to mode II fracture, using an energetic criterion: Application on THUJA of Morocco

    Directory of Open Access Journals (Sweden)

    Amal Saoud

    2018-04-01

    Full Text Available Shear strength is one of the properties often used to qualify a wood species for use in industry. But until now there is no standardized test which allows understanding this phenomenon. This paper constitutes a new approach to study the behavior of the wood material subjected to the mode II fracture. For that we designed and realized a new prototype of a wooden specimen that we tested in our laboratory which gives rise to an evaluation of the fracture until separation by pure shear of the specimen in the TL plane. The experimental data from a first series of tests on Thuja wood (Tetraclinis Articulata (Vahl Masters as a test material as well as the calculation of mode II initiation fracture toughness and the critical stress intensity factor are presented in this paper

  5. Static in-plane shear behaviour of prefabricated wood-wool panel wallettes

    Science.gov (United States)

    Noh, M. S. Md; Ahmad, Z.; Ibrahim, A.; Kamarudin, A. F.; Mokhatar, S. N.

    2018-04-01

    The green construction material and technique are the current issue toward improving sustainability in the construction industry in Malaysia. The use of construction material that produced from renewable resources is a part of the effort for greening this industry. WWCP (Wood-wool cement panel) is a wood based product available to the construction industry to be used as a structural building wall element. This renewable material has the potential to replace the less eco-friendly materials such as bricks and other masonry element. However, the behaviour of wall subjected to the different load conditions is not well established and therefore, this study aimed to investigate the structural behaviour of the small scale wall (wallettes) subjected to in-plane lateral load. As a comparison, two types of fabrication technique of wallettes with dimension of 1200 mm × 1200 mm (± 30 mm) were considered. The conventional vertical stacking technique was denoted as W1 and new propose techniques (cross laminated) was denoted as W2. Three replicates of each type were fabricated and tested under in-plane lateral load until failure. The test results revealed that, the wallettes fabricated using the new fabrication technique significantly increased two times in load carrying capacity compared to wallettes with conventional technique.

  6. A Study on the Effect of Plasma Treatment for Waste Wood Biocomposites

    Directory of Open Access Journals (Sweden)

    MiMi Kim

    2013-01-01

    Full Text Available The surface modification of wood powder by atmospheric pressure plasma treatment was investigated. The composites were manufactured using wood powder and polypropylene (wood powder: polypropylene = 55 wt% : 45 wt%. Atmospheric pressure plasma treatment was applied under the condition of 3 KV, 17±1 KHz, 2 g/min. Helium was used as the carrier gas and hexamethyl-disiloxane (HMDSO as the monomer to modify the surface property of the waste wood biocomposites by plasma polymerization. The tensile strengths of untreated waste wood powder (W3 and single species wood powder (S3 were about 18.5 MPa and 21.5 MPa while those of plasma treated waste wood powder (PW3 and plasma treated single species wood powder (PS3 were about 21.2 MPa and 23.4 MPa, respectively. Tensile strengths of W3 and S3 were improved by 14.6% and 8.8%, respectively. From the analyses of mechanical properties and morphology, we conclude that the interfacial bonding of polypropylene and wood powder can be improved by atmospheric pressure plasma treatment.

  7. Request for wood samples

    NARCIS (Netherlands)

    NN,

    1977-01-01

    In recent years the wood collection at the Rijksherbarium was greatly expanded following a renewed interest in wood anatomy as an aid for solving classification problems. Staff members of the Rijksherbarium added to the collection by taking interesting wood samples with them from their expeditions

  8. Influences on wood load in mountain streams of the Bighorn National Forest, Wyoming, USA.

    Science.gov (United States)

    Nowakowski, Amy L; Wohl, Ellen

    2008-10-01

    We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.

  9. Optimising hydrogen bonding in solid wood

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2009-01-01

    The chemical bonds of wood are both covalent bonds within the wood polymers and hydrogen bonds within and between the polymers. Both types of bonds are responsible for the coherence, strength and stiffness of the material. The hydrogen bonds are more easily modified by changes in load, moisture...... and temperature distorting the internal bonding state. A problem arises when studying hydrogen bonding in wood since matched wood specimens of the same species will have very different internal bonding states. Thus, possible changes in the bonding state due to some applied treatment such as conditioning...... maintaining 100 % moisture content of the wood. The hypothesis was that this would enable a fast stress relaxation as a result of reorganization of bonds, since moisture plasticizes the material and temperature promotes faster kinetics. Hereby, all past bond distortions caused by various moisture, temperature...

  10. Bio-Based Adhesives and Evaluation for Wood Composites Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Ferdosian

    2017-02-01

    Full Text Available There has been a rapid growth in research and innovation of bio-based adhesives in the engineered wood product industry. This article reviews the recent research published over the last few decades on the synthesis of bio-adhesives derived from such renewable resources as lignin, starch, and plant proteins. The chemical structure of these biopolymers is described and discussed to highlight the active functional groups that are used in the synthesis of bio-adhesives. The potentials and drawbacks of each biomass are then discussed in detail; some methods have been suggested to modify their chemical structures and to improve their properties including water resistance and bonding strength for their ultimate application as wood adhesives. Moreover, this article includes discussion of techniques commonly used for evaluating the petroleum-based wood adhesives in terms of mechanical properties and penetration behavior, which are expected to be more widely applied to bio-based wood adhesives to better evaluate their prospect for wood composites application.

  11. Proceedings of the 8. biennial residual wood conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This conference highlighted practical strategies for managing and utilizing residual wood as a true industry resource. Examples of successful wood energy projects were presented along with the technology and products of more than 30 companies involved in the residual wood business. The topics of discussion ranged from biomass supplies, quality issues, and harvesting guidelines to emerging biomass technologies, project overviews, and financing. The presentations outlined the many opportunities that exist for the forest industry to produce energy from biostock, such as healthy and diseased trees, underbrush, sawdust, wood chips, wood pulp and black liquor. Increasing fuel and energy costs along with advances in technology are improving the economy of forest-based biorefineries. The presentations showed how the industry can gain revenue from residual wood, which is steadily becoming a more valuable resource for pellet production and energy generation The conference featured 20 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  12. Evaluation of wood species and preservatives for WisDOT sign posts.

    Science.gov (United States)

    2013-10-01

    The Wisconsin Department of Transportation (WisDOT) uses preservative-treated wood posts for much of the signage along state highways because wood is relatively inexpensive, easy to install, and has the necessary strength properties to tolerate typic...

  13. Wood burning

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, H

    1955-01-01

    Discussed are the use of wood as a fuel, the technique of wood combustion and the operation of wood-burning stoves for cooking and heating. In addition, there is a section which reviews the use of wood stoves in various countries and lists manufacturers of stoves, central heating furnaces and in some cases sawdust burners.

  14. A gauge for the measurement of wood density MGD-05

    International Nuclear Information System (INIS)

    Bartak, J.; Machaj, B.; Urbanski, P.; Pienkos, P.

    2006-01-01

    Wood density is an important parameter determining several properties of wood as: wood quality, mechanical resistance, charcoal production, transport cost, etc. Radiometric methods for the measurement of wood density are based on attenuation of 241 Am gamma radiation, or measurement of backscattered 241 Am radiation. In the paper authors describe the newly constructed computerized gauge designed for the non routine measurements. Up to 1000 measuring results can be stored in the gauge memory and the measuring results can be sent to an external laptop for computations of density contours

  15. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Directory of Open Access Journals (Sweden)

    Teng-Chun Yang

    2017-03-01

    Full Text Available This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP, and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature.

  16. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Science.gov (United States)

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-01-01

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature. PMID:28772726

  17. Structural condition assessment of in-service wood

    Science.gov (United States)

    Robert J. Ross; Brian K. Brashaw; Xiping Wang

    2006-01-01

    Wood is used extensively for both interior and exterior applications in the construction of a variety of structures (residential, agricultural, commercial, government, religious). The deterioration of an in-service wood member may result from a variety of causes during the life of a structure. It is important, therefore, to periodically assess the condition of wood...

  18. Measuring wood specific gravity, correctly

    Science.gov (United States)

    G. Bruce Williamson; Michael C. Wiemann

    2010-01-01

    The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a forester’s variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these...

  19. Application of Algae as Cosubstrate To Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Sintamarean, Iulia-Maria; Pedersen, Thomas Helmer; Zhao, Xueli

    2017-01-01

    This work proposes a novel strategy to improve the continuous processing of wood slurries in hydrothermal liquefaction systems by coprocessing with algae. Of all algae tested, brown seaweeds and microalgae perform best in preventing slurries dewatering, the main reason for pumpability issues...... with wood slurries. Rheological tests (viscosity–shear rate profile) indicate that the addition of these two algae to the wood slurry causes the highest increase in viscosity, which coincides with improved wood slurries stability and pumpability. Hydrothermal liquefaction of wood-algae slurries at 400 °C...

  20. Electron Microscopy Observation of Biomineralization within Wood Tissues of Kurogaki

    Directory of Open Access Journals (Sweden)

    Kazue Tazaki

    2017-07-01

    Full Text Available Interactions between minerals and microorganisms play a crucial role in living wood tissues. However, living wood tissues have never been studied in the field. Fortunately, we found several kurogaki (black persimmon; Diospyros kaki trees at Tawara in Kanazawa, Ishikawa, Japan. Here, we report the characterization of kurogaki based on scanning electron microscopy equipped with energy-dispersive spectroscopy (SEM-EDS and transmission electron microscopy (TEM, associated with inductively coupled plasma-mass spectrometry (ICP-MS analyses, X-ray fluorescence analyses (XRF and X-ray powder diffraction (XRD analyses. This study aims to illustrate the ability of various microorganisms associated with biominerals within wood tissues of kurogaki, as shown by SEM-EDS elemental content maps and TEM images. Kurogaki grows very slowly and has extremely hard wood, known for its striking black and beige coloration, referred to as a “peacock pattern”. However, the scientific data for kurogaki are very limited. The black “peacock pattern” of the wood mainly comprises cellulose and high levels of crystal cristobalite. As per the XRD results, the black taproot contains mineralized 7 Å clays (kaolinite, cellulose, apatite and cristobalite associated with many microorganisms. The chemical compositions of the black and beige portions of the black persimmon tree were obtained by ICP-MS analyses. Particular elements such as abundant Ca, Mg, K, P, Mn, Ba, S, Cl, Fe, Na, and Al were concentrated in the black region, associated with Pb and Sr elements. SEM-EDS semi-qualitative analyses of kurogaki indicated an abundance of P and Ca in microorganisms in the black region, associated with Pb, Sr, S, Mn, and Mg elements. On the other hand, XRF and XRD mineralogical data showed that fresh andesite, weathered andesite, and the soils around the roots of kurogaki correlate with biomineralization of the black region in kurogaki roots, showing clay minerals (kaolinite and

  1. Assessment of the wood waste resource and its position in the wood / wood-energy sector - Synthesis

    International Nuclear Information System (INIS)

    Guinard, Ludovic; Deroubaix, Gerard; Roux, Marie-Lise; Levet, Anne-Laure; Quint, Vincent

    2015-04-01

    The first objective of this study is to obtain a better knowledge of the 'wood wastes' issue, to propose a photography of the wood waste sector (productions, trades, consumptions), and then to elaborate different prospective scenarios on the use of wood waste volumes while taking into account possible evolutions on the medium or short term of the regulation and market of the wood/wood energy sector. The considered wastes come from industrial production, from the use of wood-based products, and from the end of life of products potentially containing wood. The authors present bibliographical sources and the adopted methodology, briefly describe the 'wood waste' system with its actors, and then report their assessment of wood wastes. They propose a global assessment as well as detailed assessments with respect to waste origins: wood trade and distribution, industries, craft, households and communities, building sector, public and private tertiary sector, packaging. They also address the collection and management of wood wastes by public services, and present the different types of valorisation (panel fabrication, energy, and others). They discuss exports, and then present different scenarios: a trend-based scenario, and two prospective scenarios with a priority to energetic valorisation or to material valorisation of wood wastes. These scenarios are compared

  2. Use of nanofillers in wood coatings

    DEFF Research Database (Denmark)

    Nikolic, Miroslav; Lawther, John Mark; Sanadi, Anand Ramesh

    2015-01-01

    Wood has been used for thousands of years and remains an important material in the construction industry, most often protected with coatings. Development of nanotechnology allows further improvements or new performance properties to be achieved in wood coatings. Increased UV protection...... with nanometal oxides that allow wood texture to remain seen and higher resilience to scratch and abrasion with use of different nanoparticle shapes are some of the applications that are reviewed here. A variety of possible applications together with a high level of improvements, alongside commercial factors...... like a low level of loading, have already established nanoparticles in some areas of wood coatings. This article is a comprehensive scientific review of the published work in the use of nanofillers in wood coatings....

  3. Remarks on orthotropic elastic models applied to wood

    Directory of Open Access Journals (Sweden)

    Nilson Tadeu Mascia

    2006-09-01

    Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

  4. Surfaces foliated by planar geodesics: a model forcurved wood design

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens

    2017-01-01

    Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle......Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle...

  5. Status of wood-based industries in Malaysia

    International Nuclear Information System (INIS)

    Dahlan Haji Mohd

    1987-01-01

    Malaysia is one of the biggest suppliers of tropical wood in the world. However, less than 10% of the timber exported have gone through secondary processing. It is high time for this country to concentrate more on the secondary and tertiary sectors with the use of new technology such as radiation curing of coatings, in order to improve the quality of wood products. This paper examines where the strength and potential of the local wood industry lie. (author)

  6. Competitive outcomes between wood-decaying fungi are altered in burnt wood.

    Science.gov (United States)

    Edman, Mattias; Eriksson, Anna-Maria

    2016-06-01

    Fire is an important disturbance agent in boreal forests where it creates a wide variety of charred and other types of heat-modified dead wood substrates, yet how these substrates affect fungal community structure and development within wood is poorly understood. We allowed six species of wood-decaying basidiomycetes to compete in pairs in wood-discs that were experimentally burnt before fungal inoculation. The outcomes of interactions in burnt wood differed from those in unburnt control wood for two species:Antrodia sinuosanever lost on burnt wood and won over its competitor in 67% of the trials compared to 40% losses and 20% wins on unburnt wood. In contrast, Ischnoderma benzoinumwon all interactions on unburnt wood compared to 33% on burnt wood. However, the responses differed depending on the identity of the competing species, suggesting an interaction between competitor and substrate type. The observed shift in competitive balance between fungal species probably results from chemical changes in burnt wood, but the underlying mechanism needs further investigation. Nevertheless, the results indicate that forest fires indirectly structure fungal communities by modifying dead wood, and highlight the importance of fire-affected dead wood substrates in boreal forests. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Strength and durability of one-part polyurethane adhesive bonds to wood

    Science.gov (United States)

    C. B. Vick; E. A. Okkonen

    1998-01-01

    One-part polyurethane wood adhesives comprise a new class of general purpose consumer products. Manufacturersa claims of waterproof bonds brought many inquiries to the Forest Products Laboratory (FPL) from users constructing aircraft, boats, lawn furniture, and other laminated materials for outdoor use. Although FPL has technical information on several types of...

  8. Derivation of nominal strength for wood utility poles

    Science.gov (United States)

    Ronald W. Wolfe; Jozsef Bodig; Patricia Lebow

    2001-01-01

    The designated fiber stress values published in the American National Standards Institute Standard for Poles, ANSI 05.1, no longer reflect the state of the knowledge. These values are based on a combination of test data from small clear wood samples and small poles (

  9. Synthesis and characterization of starch-g-poly(vinyl acetate-co-butyl acrylate) bio-based adhesive for wood application.

    Science.gov (United States)

    Zia-Ud-Din; Chen, Lei; Ullah, Ikram; Wang, Peng Kai; Javaid, Allah Bakhsh; Hu, Chun; Zhang, Mengchao; Ahamd, Ishtiaq; Xiong, Hanguo; Wang, Zhenjiong

    2018-07-15

    Enhancing the performance of wood adhesive is important for its industrial applications. Accordingly, we designed and demonstrated the use of two co-monomers vinyl acetate (VAc) and butyl acrylate (BA) for promoting the graft copolymerization while improving the bonding performance of wood adhesive. The results showed that the addition of co-monomers in the ratio of VAc/BA 6:4 (v/v, volume basis of VAc) could improve the shear strength to 6.68MPa and 3.32MPa in dry and wet states, respectively. 1 H-nuclear magnetic resonance ( 1 H NMR) and fourier transform infrared spectroscopy (FT-IR) analysis revealed successful graft copolymerization reaction while the morphologies were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Furthermore, the grafting reaction and thermal stabilities of wood adhesive were analyzed by X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The results showed that the properties of wood adhesive could improve dramatically by using two co-monomers VAc and BA during the graft copolymerization reaction. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Proposal for the award of a contract for the wood construction work for the Globe of Innovation project

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract for the wood construction work for the Globe of Innovation project. A call for tenders (IT-3260/ST/GIR) was sent on 31 October 2003 to twelve firms in one Member State. By the closing date, CERN had received five tenders from four firms and one consortium. The Finance Committee is invited to agree to the negotiation of a contract with CIB (CH), the lowest bidder, for the wood construction work for the Globe of Innovation project for an estimated amount not exceeding 820 000 Swiss francs, not subject to revision. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: CH - 100%.

  11. Chapter 6: Wood energy and competing wood product markers

    Science.gov (United States)

    Kenneth E. Skog; Robert C. Abt; Karen Abt

    2014-01-01

    Understanding the effect of expanding wood energy markets is important to all wood-dependent industries and to policymakers debating the implementation of public programs to support the expansion of wood energy generation. A key factor in determining the feasibility of wood energy projects (e.g. wood boiler or pellet plant) is the long-term (i.e. 20-30year) supply...

  12. Mathematical Simulation of Temperature Profiles within Microwave Heated Wood Made for Wood-Based Nano composites

    International Nuclear Information System (INIS)

    Li, X.; He, X.; Lv, J.; Wu, Y.; Luo, Y.; Chen, H.

    2013-01-01

    High intensive microwave pretreatment is a new method to modify wood for the fabrication of wood-based nano composites. Based on the physical law on heat transfer, a mathematical model to describe the temperature profiles within wood heated by high intensive microwave was established and simulated in this research. The results showed that the temperature profiles within wood were related to microwave heating methods; The temperature inside wood firstly increased and then gradually decreased along the direction of microwave transmission when the unilateral microwave heating was applied, and the temperature difference along the thickness direction of wood was very significant; The temperature with wood firstly increased and then gradually decreased from the wood surface to interior when the bilateral microwave heating was applied. Compared with the unilateral microwave heating, bilateral microwave heating is a better microwave heating method for the more uniform wood microwave pretreatment.

  13. An assessment of management practices of wood and wood-related wastes in the urban environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The US Environmental Protection Agency estimates that yard waste{sup 1} accounts for approximately 16% of the municipal solid waste (MSW) stream (US EPA, 1994). Until recently, specific data and related information on this component of the (MSW) stream has been limited. The purposes of this study, phase two of the three-phase assessment of urban wood waste issues, are to assess and describe current alternatives to landfills for urban wood waste management; provide guidance on the management of urban wood waste to organizations that produce or manage wood waste; and clarify state regulatory and policy positions affecting these organizations. For this study, urban wood waste is defined as solid waste generated by tree and landscape maintenance services (public and private). Urban wood waste includes the following materials: unchipped mixed wood, unchipped logs, and unchipped tops and brush; clearing and grubbing waste; fall leaves and grass clippings; and chips and whole stumps. Construction and demolition debris and consumer-generated yard waste are not included in this study. Generators of urban wood waste include various organizations; municipal, county, and commercial tree care divisions; nurseries, orchards, and golf courses; municipal park and recreation departments; and electric and telephone utility power line maintenance, excavator and land clearance, and landscape organizations. (1) US EPA defines yard waste as ''yard trimmings'' which includes ''grass, leaves and tree brush trimmings from residential, institutional, and commercial sources.''

  14. The fungal composition of natural biofinishes on oil-treated wood

    NARCIS (Netherlands)

    van Nieuwenhuijzen, Elke J.; Houbraken, Jos A. M. P.; Punt, Peter J; Roeselers, Guus; Adan, Olaf C G; Samson, Robert A.

    2017-01-01

    Biofinished wood is considered to be a decorative and protective material for outdoor constructions, showing advantages compared to traditional treated wood in terms of sustainability and self-repair. Natural dark wood staining fungi are essential to biofinish formation on wood. Although all sorts

  15. The fungal composition of natural biofinishes on oil-treated wood

    NARCIS (Netherlands)

    van Nieuwenhuijzen, E.J.; Houbraken, J.A.M.P.; Punt, P.J.; Roeselers, G.; Adan, O.C.G.; Samson, R.A.

    2017-01-01

    Background Biofinished wood is considered to be a decorative and protective material for outdoor constructions, showing advantages compared to traditional treated wood in terms of sustainability and self-repair. Natural dark wood staining fungi are essential to biofinish formation on wood. Although

  16. Mechanical trunk in pine wood for cattle

    Directory of Open Access Journals (Sweden)

    Antonio Orlando da Luz Freire Neto

    2012-12-01

    Full Text Available The timber reforestation, mainly by Eucalyptus and Pinus sp., has low power processing, strength, good natural durability and, most importantly, provide reduce pressure on native forests. The concern with native forests and the high price of some of these woods force the market to replace those species by other, more abundant and available at most competitive prices. Anything that involves the handling of animals in its various phases has a direct dependency of husbandry facilities, pastures and actions of the people involved (best practices. With the segment of the production and export of meat increasingly competitive and globalized world, the adoption of best practices and animal welfare criteria are striking and decision makers for the acceptance of Brazilian beef in the world market, especially the European market. The use of appropriate animal husbandry facilities is critical to the proper rational management ("action with knowledge" of animals and increased productivity. The trunk restraint carries important role in the implementation and conduct of good animal welfare as having desirable features strength, durability, ability to contain cattle of various sizes, as well as easy to manipulate when the animal inside. Available on the market in the form of different models and costs, is an installation manufactured in wood and iron or galvanized, and may or may not be coupled with an analytical balance or digital, still and mechanical and other systems or electronics. The concern in this installation is perceived improvement in the number of patents filed and recorded and the constant evolution of their functions, with various companies operating in this segment. However, the development and validation of containment trunks with alternative materials, reflecting mainly the reduction of the final cost are poorly studied. In this first phase of the project will be considered the construction of trunk restraint coupled with analytical balance

  17. Environmental impact of constructions made of acetylated wood

    NARCIS (Netherlands)

    van der Lugt, P.; Bongers, F; Vogtländer, J.G.; Eberhardsteiner, J.; Winter, W.; Fadai, A.; Poll, M.

    2016-01-01

    In the global climate agreements made during COP 21 in Paris, the role of forests and wood products have gained more attention considering their important impact – both negative and positive – through deforestation, forest conservation, afforestation and increasing application of wood in durable

  18. Properties of Hungarian oak(quercus conferta Kit. wood from the Hilandar Monastery forest

    Directory of Open Access Journals (Sweden)

    Popović Zdravko

    2007-01-01

    Full Text Available This paper presents the study results of the basic physical and strength properties of Hungarian oak (Quercus conferta Kit. wood from the Kakovo Monastery forests of Hilandar Monastery in Greece. Wood properties were analyzed in detail, as an indispensable proof of wood quality and its use for joinery, interiors and wooden floors. The basic physical properties of wood (moisture content at the time of tree felling, density and volume porosity and the basic strength properties (compressive strength, bending strength and module of elasticity were researched. The results are presented in Tables and in Diagrams with statistical parameters and compared to the literature data. The correlation of the study properties of wood was also analyzed.

  19. EVOLUTION OF LIGHTWEIGHT WOOD COMPOSITES

    Directory of Open Access Journals (Sweden)

    Marius C. BARBU

    2016-01-01

    Full Text Available Lightweight boards and beams in the wood-based construction and furniture industry are not a new topic. The density reduction of panels using sandwich structure with light cores was confirmed by users like doors or mobile homes more than three decades ago. Today many ways to attain a lighter wooden structure are on offer, partially in industrial application. The first one is the use of light-weight wood species like balsa, lime, pine from southern hemisphere plantations etc. limited by the availability, strength properties, gluability and so on. A second one is the sandwich structure made from hard faces like thick veneer, thin plywood, particleboard or high density thin fiberboard and cores made from honeycomb paper, very light wood species or foams like the polystyrene one. A third way to produce a light structure is to reduce the core drastically, using predesigned skeletons with special shapes and connections to the faces. The engines for these developments are on the one hand the fast growing market of knockdown furniture and on the other hand the increasing costs for energy and raw materials. Additional factors that make weight saving a primary economical objective for most producers are transportation costs, easier handling and higher acceptance among the end users. Moreover, customers demand more for ergonomical solutions regarding packaging. Many patents were generated by researchers and developers for new one-stage production processes for sandwich panels with wood- and impregnated paper-based facings made from veneers, particles or fibres and a core consisting of expandable foams, particles or embedded hard skeletons. These ideas or prototypes could be integrated in existing continuous pressing lines for wood based panels keeping some of the advantages of the continuous production technique in matters of efficiency. Some of the challenges of the light weight wooden structure are the connection in half or final parts, resistance to

  20. Preparation and applications of wood-polyester composites

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1982-01-01

    Optimum processing parameters were searched for the pilot-scale production of wood-polyester composites by irradiation of resin-impregnated wood material. The radiation initiation of the following systems were examined in wood and without wood matrix: methyl methacrylate, mixture of styrene and acrylonitryle, and their combination with unsaturated polyester. In the most cases the over-all rate of the complete polymerization process in wood matrix is proportional to the square root of the initiation rate. The parameters of the radiation technology of wood-polyester composites have been determined, using 260 TBq (7 kCi) 60 Co radiation source. A pilot plant has been constructed using an underwater irradiation system of 1.85 PBq (50 kCi) 60 Co. The successful production rate of 200 kg wood-polyester composite per day, as well as the application tests have demonstrated the technical feasibility of this new structural material. (author)

  1. Wood-related occupations, wood dust exposure, and sinonasal cancer.

    Science.gov (United States)

    Hayes, R B; Gerin, M; Raatgever, J W; de Bruyn, A

    1986-10-01

    A case-control study was conducted to examine the relations between type of woodworking and the extent of wood dust exposure to the risks for specific histologic types of sinonasal cancer. In cooperation with the major treatment centers in the Netherlands, 116 male patients newly diagnosed between 1978 and 1981 with primary malignancies of epithelial origin of this site were identified for study. Living controls were selected from the municipal registries, and deceased controls were selected from the national death registry. Interviews were completed for 91 (78%) cases and 195 (75%) controls. Job histories were coded by industry and occupation. An index of exposure was developed to classify the extent of occupational exposure to wood dust. When necessary, adjustment was made for age and usual cigarette use. The risk for nasal adenocarcinoma was elevated by industry for the wood and paper industry (odds ratio (OR) = 11.9) and by occupation for those employed in furniture and cabinet making (OR = 139.8), in factory joinery and carpentry work (OR = 16.3), and in association with high-level wood dust exposure (OR = 26.3). Other types of nasal cancer were not found to be associated with wood-related industries or occupations. A moderate excess in risk for squamous cell cancer (OR = 2.5) was associated with low-level wood dust exposure; however, no dose-response relation was evident. The association between wood dust and adenocarcinoma was strongest for those employed in wood dust-related occupations between 1930 and 1941. The risk of adenocarcinoma did not appear to decrease for at least 15 years after termination of exposure to wood dust. No cases of nasal adenocarcinoma were observed in men whose first exposure to wood dust occurred after 1941.

  2. Wood Identification of 18th Century Furniture. Interpreting Wood Naming Inventoires

    Directory of Open Access Journals (Sweden)

    Rocio Astrid BERNAL

    2011-09-01

    Full Text Available The 18th century Portuguese church furniture represents an extraordinary richness recognised worldwide, which demands safeguarding and valorisation. The identification of the wood of furniture artworks is the most important component for its comprehension and preservation. In this work wood anatomical characters of an 18th century Portuguese decorative furniture set from the Colegiada de São Martinho de Cedofeita, in Porto, were analysed to identify the woods used for manufacturing and to clarify their common names. Furthermore, the objectives were to recognise some of the criteria for choice of wood as well as the source of each wood. The woods identified from 16 fragments belong to Apuleia sp., Acacia sp., Neolamarckia sp. and Castanea sativa. Apuleia sp. and Acacia sp. woods most likely arrived from Brazil, while the Neolamarckia sp. woods likely arrived from India and the C. sativa woods from Portugal. The results are in accordance with the known Portuguese colonial sea routes of the 15th -18th centuries. Interestingly the terms found in the inventories can refer to finishing methods instead to the name of the woods, as for instance “oil wood” can refer to “oiled wood” or “linseed oiled wood”. The species choice may be related to the mechanical properties of the wood as well as the original tree size. Two large planks of Acacia sp. were used for the top of the “Portuguese arcaz”, and Apuleia sp. was found on main structural elements of this set of furniture, suggesting that wood colour was also important. Woods from Neolamarckia sp. and C. sativa, were also identified, being Castanea wood present only in the most recent pieces of the furniture set.

  3. Elucidating How Wood Adhesives Bond to Wood Cell Walls using High-Resolution Solution-State NMR Spectroscopy

    Science.gov (United States)

    Daniel J. Yelle

    2013-01-01

    Some extensively used wood adhesives, such as pMDI (polymeric methylene diphenyl diisocyanate) and PF (phenol formaldehyde) have shown excellent adhesion properties with wood. However, distinguishing whether the strength is due to physical bonds (i.e., van der Waals, London, or hydrogen bond forces) or covalent bonds between the adherend and the adhesive is not fully...

  4. A new aspects for project of subsequent thermal resistance extension at old-timer timbering constructions of wood

    Directory of Open Access Journals (Sweden)

    Zdeňka Havířová

    2006-01-01

    Full Text Available To ensure the reliability of subsequent thermal resistance extension at old-timer timbering constructions of wood for the period of their supposed service life a more profound analysis of construction is necessary from the aspect of a global thermal/technical evaluation. Service life of these buildings is dependent on temperature and moisture conditions in layers of the building cladding where the wood framework is built in. Temperature/moisture conditions or the corresponding equilibrium moisture content (EMC of the construction show considerable effects on the functional reliability of the whole building from the viewpoint of mechanical resistance and stability, energy savings and thermal protection and hygiene, health and environment protection.

  5. Biomass is beginning to threaten the wood-processors

    International Nuclear Information System (INIS)

    Beer, G.; Sobinkovic, B.

    2004-01-01

    In this issue an exploitation of biomass in Slovak Republic is analysed. Some new projects of constructing of the stoke-holds for biomass processing are published. The grants for biomass are ascending the prices of wood raw material, which is thus becoming less accessible for the wood-processors. An excessive wood export threatens the domestic processors

  6. Wood biomass use in Slovenia and new challenges for the future

    International Nuclear Information System (INIS)

    Krajnc, N.

    2005-01-01

    In the last decades, wood has been substituted by other materials in many fields of utilization (construction, furniture, energy production). In Slovenia, which is markedly wooded, the process of substituting wood as a raw material started later but has been rather intense in the last twenty years. Substitution of wood in industry and in energy production has several consequences. Among the most distinctive ones are pollution of environment because of increased utilization of fossil fuels, and low realization of cut in forests. In this article we would like to present wood biomass use in Slovenia and some actions which were taken on both micro and macro level in last few years to overcome social and economical barriers for enlarge use of wood biomass.(author)

  7. Preservation of beech and spruce wood by allyl alcohol-based copolymers

    International Nuclear Information System (INIS)

    Solpan, Dilek; Gueven, Olgun

    1999-01-01

    Allyl alcohol (AA), acrylonitrile (AN), methyl methacrylate (MMA), monomers and monomer mixtures AA+AN, AA+MMA were used to conserve and consolidate Beech and Spruce. After impregnation, copolymerisation and polymerisation were accomplished by gamma irradiation. The fine structure of wood+polymer(copolymer) composites was investigated by Scanning Electron Microscopy (SEM). It was observed that copolymer obtained from AA+MMA monomer mixture showed the optimum compatibility. The compressional strength and Brinell Hardness Numbers determined for untreated and treated wood samples indicated that the mechanical strength of wood+copolymer composites was increased. It was found that the mechanical strength of the wood samples containing the AA+MMA copolymer was higher than the others. In the presence of P(AA/MMA), at highest conversion, the compressive strength perpendicular to the fibres in Beech and Spruce increased approximately 100 times. The water uptake capacity of wood+copolymer composites was observed to decrease by more than 50% relative to the original samples, and biodegradation did not take place

  8. Energy wood. Part 2b: Wood pellets and pellet space-heating systems

    International Nuclear Information System (INIS)

    Nussbaumer, T.

    2002-01-01

    The paper gives an overview on pellet utilization including all relevant process steps: Potential and properties of saw dust as raw material, pellet production with drying and pelletizing, standardization of wood pellets, storage and handling of pellets, combustion of wood pellets in stoves and boilers and applications for residential heating. In comparison to other wood fuels, wood pellets show several advantages: Low water content and high heating value, high energy density, and homogeneous properties thus enabling stationary combustion conditions. However, quality control is needed to ensure constant properties of the pellets and to avoid the utilization of contaminated raw materials for the pellet production. Typical data of efficiencies and emissions of pellet stoves and boilers are given and a life cycle analysis (LCA) of wood pellets in comparison to log wood and wood chips is described. The LCA shows that wood pellets are advantageous thanks to relatively low emissions. Hence, the utilization of wood pellet is proposed as a complementary technology to the combustion of wood chips and log wood. Finally, typical fuel cost of wood pellets in Switzerland are given and compared with light fuel oil. (author)

  9. WOOD BIOMASS FOR ENERGY IN MONTENEGRO

    Directory of Open Access Journals (Sweden)

    Gradimir Danon

    2010-01-01

    Full Text Available Wood biomass has got its place in the energy balance of Montenegro. A little more than 6% of the total energy consumption is obtained by burning wood. Along with the appropriate state measures, it is economically and environmentally justified to expect Montenegro to more than double the utilization of the existing renewable energy sources including wood biomass, in the near future. For the purpose of achieving this goal, ‘Commercial Utilisation of the Wood Residue as a Resource for Economic Development in the North of Montenegro' project was carried out in 2007. The results of this project were included in the plan of the necessary interventions of the Government and its Agencies, associations or clusters, non-government organisations and interested enterprises. The plan was made on the basis of the wood residue at disposal and the attitude of individual subjects to produce and/or use solid bio-fuels and consists of a proposal of collection and utilisation of the wood residue for each individual district in the north of Montenegro. The basic factors of sustainability of future commercialisation of the wood residue were: availability of the wood raw material, and thereby the wood residue; the development of wood-based fuel markets, and the size of the profit.

  10. Micromechanical measurement of wood substructure properties.

    Science.gov (United States)

    David E. Kretschmann; Troy W. Schmidt; Roderic S. Lakes; Steven M. Cramer

    2002-01-01

    The annual rings of softwoods are visually obvious and represent cylindrical layers of primarily cellulosic material that possess significantly different properties. For simplicity, wood construction products are designed assuming a material homogeneity that does not exist. As rapidly grown plantation trees are used for wood products, fewer rings are contained in an...

  11. Theoretical modeling and experimental analyses of laminated wood composite poles

    Science.gov (United States)

    Cheng Piao; Todd F. Shupe; Vijaya Gopu; Chung Y. Hse

    2005-01-01

    Wood laminated composite poles consist of trapezoid-shaped wood strips bonded with synthetic resin. The thick-walled hollow poles had adequate strength and stiffness properties and were a promising substitute for solid wood poles. It was necessary to develop theoretical models to facilitate the manufacture and future installation and maintenance of this novel...

  12. An Analysis of the U.S. Wood Products Import Sector: Prospects for Tropical Wood Products Exporters

    Directory of Open Access Journals (Sweden)

    W.A.R.T.W. Bandara

    2012-10-01

    Full Text Available The U.S. has dramatically altered its wood product imports and exports during the past few years,and at present, it is the second largest wood product importer in the world. Hence, an understanding ofmarket structures, factors in selecting foreign suppliers, and the emphasis placed on environmentalissues/certification are critical to understand from the perspective of wood products importers in the U.S.This study provides an analysis of the U.S. wood products import sector with special emphasis on currentand future opportunities for tropical wood products exporters to the U.S. market.In this study, 158 wood products importers in the U.S. were surveyed using a mailingquestionnaire. The adjusted response rate was 40.6 percent. Results indicated that most of the respondentswere small to medium scale firms, but major importers of wood products. According to respondents,wood products to the U.S. mainly come from Brazil, Chile, and China. From the importers’ perspective,Brazilian wood products ranked first for its quality followed by wood products from Chile and Finland.Product quality, long term customer relationships, on-time delivery of orders, fair prices, and supplierreputation were the factors deemed important in selecting overseas suppliers. Majority of respondentswere importing certified wood products. FSC, SFI, and ISO 14000 were the mostly accepted certificationprograms. However, certification was not a major factor in foreign supplier selection criteria. Whenconsidered the U.S. wood products importers’ tendency to diversify their products and species imported,attractive opportunities exist for wood products suppliers from tropical countries.

  13. Fracture mechanics and statistical modeling of ternary blends of polylactide/ethylene-acrylate copolymer /wood-flour composites

    Science.gov (United States)

    Afrifah, Kojo Agyapong

    amorphous grade. The semicrystalline blends showed decreased tensile strength and modulus with increased impact modifier content. In contrast, the ductility, elongation at break, and energy to break increased significantly. Mechanisms of toughening of PLA with EAC included impact modifier debonding, fibrillization, crack bridging and matrix shear yielding resulting in a ductile behavior. Increasing the EAC content in PLA/wood-flour composites enhanced the impact strength and elongation at break, but reduced the tensile modulus and strength of the composites. Composites with fine wood particles showed greater improvement in elongation at break than those with coarse particles; an opposite trend was observed for impact strength, tensile modulus and tensile strength. Numerical optimization produced two scenarios based on materials compositions to produce composites with similar mechanical properties as unfilled PLA. These optimization solutions were successfully validated experimentally. The crack initiation (Jin) and complete fracture (Jf) energies of unmodified PLA/wood-flour composites showed the deleterious effect of wood fiber incorporation into the plastic matrix by significantly decreasing the fracture toughness of PLA as the wood flour content increased. By contrast, impact modification of wood plastic composites with EAC significantly increased both the resistance to crack initiation (Jin) and complete fracture (Jf). Microscopic morphological studies revealed that the major mechanisms of toughening was through the EAC existing as separate domains in the bulk matrix of the composites which tended to act as stress concentrators that initiated local yielding of the matrix around crack tips and enhanced the toughness of the composites.

  14. Recycling of wood products. Final report of the preliminary study project partly financed by the Finnish Wood Research Oy; Puutuotteiden kierraetys. Finnish Wood Research Oy:n osarahoittaman esiselvityshankkeen loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Pirhonen, I.; Heraejaervi, H.; Saukkola, P.; Raety, T.; Verkasalo, E., Email: henrik.herajarvi@metla.fi

    2011-07-01

    The objective of this preliminary study was to clarify the present state of recycling of wood in Finland and Europe. In the work the control measures of recycling were examined. In Finland there will be a total amount of 850 000 tons of waste wood per year. Of this amount 670 000 tons is from construction and demolishing of buildings. Burning the wood to energy is technically and economically the most reasonable use of waste wood in Finland and in several other European countries where there is a long heating season. A lot of work has been done to find new ways of utilization. The objective of the European Union to increase the use of renewable natural resources in the energy production creates an additional demand to all kinds of wood, including waste wood. The waste legislation of Finland and EU is directing to recycling, not restricting it. Furthermore, the systems to try to create markets for products containing recycled materials are under development. In the future it is expected that the legislation is tightening and the burning of waste wood is no longer calculated as acceptable recycling. Other ways to utilize wood waste should then already be developed. Furthermore, the development and introduction of new recycling methods are of important significance also when marketing wood and wood products. The recycling should be taken into consideration already at the planning stage of the building

  15. [Phosphorus transfer between mixed poplar and black locust seedlings].

    Science.gov (United States)

    He, Wei; Jia, Liming; Hao, Baogang; Wen, Xuejun; Zhai, Mingpu

    2003-04-01

    In this paper, the 32P radio-tracer technique was applied to study the ways of phosphorus transfer between poplar (Populus euramericana cv. 'I-214') and black locust (Robinia pseudoacacia). A five compartment root box (18 cm x 18 cm x 26 cm) was used for testing the existence of the hyphal links between the roots of two tree species when inoculated with vesicular-arbuscular (VA) mycorrhizal fungus (Glomus mosseae). Populus I-214 (donor) and Robinia pseudoacacia (receiver) were grown in two terminal compartments, separated by a 2 cm root-free soil layer. The root compartments were lined with bags of nylon mesh (38 microns) that allowed the passage of hyphae but not roots. The top soil of a mixed stand of poplar and black locust, autoclaved at 121 degrees C for one hour, was used for growing seedlings for testing. In 5 compartment root box, mycorrhizal root colonization of poplar was 34%, in which VA mycorrhizal fungus was inoculated, whereas 26% mycorrhizal root colonization was observed in black locust, the other terminal compartment, 20 weeks after planting. No root colonization was observed in non-inoculated plant pairs. This indicated that the mycorrhizal root colonization of black locust was caused by hyphal spreading from the poplar. Test of tracer isotope of 32P showed that the radioactivity of the treatment significantly higher than that of the control (P mycorrhizal fungus was inoculated in poplar root. Furthermore, mycorrhizal interconnections between the roots of poplar and black locust seedlings was observed in situ by binocular in root box. All these experiments showed that the hyphal links was formed between the roots of two species of trees inoculated by VA mycorrhizal fungus. Four treatments were designed according to if there were two nets (mesh 38 microns), 2 cm apart, between the poplar and black locust, and if the soil in root box was pasteurized. Most significant differences of radioactivity among four treatments appeared 44 days after feeding

  16. Wood supply at the edge of the world

    DEFF Research Database (Denmark)

    Pinta, Elie; Baittinger, Claudia

    Wood used in construction and boat building, in domestic productions or as a fuel resource was a key material for medieval North European societies. For people living in Medieval Scandinavia, trees and timber were common in both landscapes and mythology and therefore essential cultural items...... is to present the current research on the identification of wood species (both local and imported) used by European settlers in Greenland. An analysis of wood will help us to understand and retrace the origin and circulation of wood resources in the Norse settlements. What was the nature of woodworking...

  17. Preparation of starch-g-polyacrylamide and its utilization as an adhesive for wood, paper and glass

    International Nuclear Information System (INIS)

    Abu-Ayana, Y.M.; Abou Zeid, N.Y.; Asran, A.Sh.; Aly, A.S.

    2005-01-01

    Starch- based adhesives are capable of wetting polar surfaces such as cellulose, penetrating pores, and forming strong bonds through mechanical and physical bonds. This paper studies the modification of starch by grafting with acrylamide, and the relation between modification and adhesion properties. Six formulae are prepared from modified and unmodified starch, and evaluated as adhesives for wood, glass, carton, and paper. Study of the factors affecting the adhesive bond is performed. Promising results are obtained. The adhesive formulae I-VI can be used successfully as paper and carton adhesives. Formulae I, TI and III can be used as wood adhesives. Excellent value for shear strength using formula No. I, comparable with other known thermoplastic and thermoset adhesives., formula I also can be used as glass adhesive, but in narrow applications and in absence of water

  18. Potential wood protection strategies using physiological requirements of wood degrading fungi

    NARCIS (Netherlands)

    Sailer, M.F.; Etten, B.D. van

    2004-01-01

    Due to the increasing restrictions in the use of wood preserving biocides a number of potential biocide free wood preserving alternatives are currently assessed. Wood degrading fungi require certain conditions in the wood in order to be able to use wood as a food source. This paper discusses the

  19. Finishing of wood

    Science.gov (United States)

    R. Sam Williams

    1999-01-01

    The primary function of any wood finish (paint, varnish, and stain, for example) is to protect the wood surface, help maintain a certain appearance, and provide a cleanable surface. Although wood can be used both outdoors and indoors without finishing, unfinished wood surfaces exposed to the weather change color, are roughened by photodegradation and surface checking,...

  20. Wood pellet seminar

    International Nuclear Information System (INIS)

    Aarniala, M.; Puhakka, A.

    2001-01-01

    The objective of the wood pellet seminar, arranged by OPET Finland and North Karelia Polytechnic, was to deliver information on wood pellets, pellet burners and boilers, heating systems and building, as well as on the activities of wood energy advisors. The first day of the seminar consisted of presentations of equipment and products, and of advisory desks for builders. The second day of the seminar consisted of presentations held by wood pellet experts. Pellet markets, the economy and production, the development of the pellet markets and their problems (in Austria), the economy of heating of real estates by different fuel alternatives, the production, delivery and marketing of wood pellets, the utilization of wood pellet in different utilization sites, the use of wood pellets in detached houses, pellet burners and fireplaces, and conversion of communal real estate houses to use wood pellets were discussed in the presentations. The presentations held in the third day discussed the utilization of wood pellets in power plants, the regional promotion of the production and the use of pellets. The seminar consisted also of visits to pellet manufacturing plant and two pellet burning heating plants

  1. Thermophotovoltaics, wood powder and fuel quality

    Energy Technology Data Exchange (ETDEWEB)

    Marks, J [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Operational Efficiency; Broman, L; Jarefors, K [Solar Energy Research Center, Borlaenge (Sweden)

    1998-06-01

    PV cells can be used for electricity production based on other heat sources than the sun. If the temperature of the source is around 1500 K it is possible to get reasonably high conversion efficiency from heat radiation to electricity. This is due to recent advances in low-bandgap PV cells and selectively emitting fibrous emissive burners. There are some different biomass fuels capable of producing this temperature in the flame, especially gas and liquid fuels of different kinds. Wood powder is the only solid wood fuel with a sufficiently stable quality and properties for this high temperature combustion. A joint project between SERC, SLU and National Renewable Energy Laboratory NREL in Golden, Colorado, USA aims at building a wood powder fuelled thermophotovoltaic (TPV) generator for cogeneration of heat and electricity. A stable flame temperature of 1500 K has been achieved in a prototype pilot-scale burner that includes feeder and combustion chamber. Furthermore, a setup for measuring TPV cell efficiency for a wide region of black body emitter temperatures and cell irradiation has been constructed and several 0.6 eV GaInAs TPV cells have been investigated. A setup for testing the chain IR emitter - selectively reflecting filter - TPV cell has been designed. In order to limit the region of filter incident angles, which will make the filter act more efficiently, a special geometry of the internally reflecting tube that transmits the radiation is considered 23 refs, 4 figs

  2. Wood for the trees

    Directory of Open Access Journals (Sweden)

    Rob Garbutt

    2013-10-01

    Full Text Available Our paper focuses on the materiality, cultural history and cultural relations of selected artworks in the exhibition Wood for the trees (Lismore Regional Gallery, New South Wales, Australia, 10 June – 17 July 2011. The title of the exhibition, intentionally misreading the aphorism “Can’t see the wood for the trees”, by reading the wood for the resource rather than the collective wood[s], implies conservation, preservation, and the need for sustaining the originating resource. These ideas have particular resonance on the NSW far north coast, a region once rich in rainforest. While the Indigenous population had sustainable practices of forest and land management, the colonists deployed felling and harvesting in order to convert the value of the local, abundant rainforest trees into high-value timber. By the late twentieth century, however, a new wave of settlers launched a protest movements against the proposed logging of remnant rainforest at Terania Creek and elsewhere in the region. Wood for the trees, curated by Gallery Director Brett Adlington, plays on this dynamic relationship between wood, trees and people. We discuss the way selected artworks give expression to the themes or concepts of productive labour, nature and culture, conservation and sustainability, and memory. The artworks include Watjinbuy Marrawilil’s (1980 Carved ancestral figure ceremonial pole, Elizabeth Stops’ (2009/10 Explorations into colonisation, Hossein Valamanesh’s (2008 Memory stick, and AñA Wojak’s (2008 Unread book (in a forgotten language. Our art writing on the works, a practice informed by Bal (2002, Muecke (2008 and Papastergiadis (2004, becomes a conversation between the works and the themes or concepts. As a form of material excess of the most productive kind (Grosz, 2008, p. 7, art seeds a response to that which is in the air waiting to be said of the past, present and future.

  3. Wood for fuel

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, D

    1986-01-01

    Growing wood for energy could contribute three million tonnes of coal equivalent per year by the end of the century. Research programmes in the UK involved with energy forestry are reported. Three systems of wood energy, modified conventional forestry, single stem timber cropping and short rotation coppicing are being investigated. The short rotation coppicing requires inputs similar to those of agricultural crops and the machinery geared towards agricultural operations is compatible with it. Single stem forestry has a medium rotation period of 20 years. The production of coppice wood fuels is discussed in further detail for different parts of the UK with recommendations for species selection and adaption of existing farming practices. A coppice willow harvester has been developed for harvesting during November - February. Weed control and fertilizer application are also briefly mentioned.

  4. Young's modulus of BF wood material by longitudinal vibration

    International Nuclear Information System (INIS)

    Phadke, Sushil; Shrivastava, Bhakt Darshan; Mishra, Ashutosh; Dagaonkar, N

    2014-01-01

    All engineered structures are designed and built with consideration of resisting the same fundamental forces of tension, compression, shear, bending and torsion. Structural design is a balance of these internal and external forces. So, it is interesting to calculate the Young's moduli of Borassus Flabellifier BF wood are quite important from the application point of view. The ultrasonic waves are closely related with the elastic and inelastic properties of the materials. In the present study, we measured longitudinal wave ultrasonic velocities in BF wood material by longitudinal vibration method. After measuring ultrasonic velocity in BF wood material, we calculated Young's modulus of Borassus Flabellifier BF wood material. We used ultrasonic interferometer for measuring longitudinal wave ultrasonic velocity in BF wood material made by Mittal Enterprises, New Delhi, India in our laboratory. Borassus Flabellifier BF wood material was collected from Dhar district of Madhya Pradesh, India.

  5. Tolerance of Serpula lacrymans to copper-based wood preservatives

    Science.gov (United States)

    Anne Christine Steenkjaer Hastrup; Frederick Green; Carol A. Clausen; Bo Jensen

    2005-01-01

    Serpula lacrymans, the dry rot fungus, is considered the most economically important wood decay fungus in certain temperate regions of the world, namely northern Europe, Japan, and Australia. Previously, copper-based wood preservatives were commonly used for pressure treatment of wood for building construction, but some decay fungi are known to be copper tolerant. In...

  6. Waste-wood resource supply assessment. Final report

    International Nuclear Information System (INIS)

    1991-08-01

    The report documents and analyzes the availability and supply of wood waste in New York State to determine the type and amount currently generated to estimate its potential future use as a fuel. Detailed, current information is included on the availability, quantity and price of wood waste. Topics include wood waste markets; the harvesting and supply infrastructure; current and project prices; competing markets; environmental impacts of harvesting, processing and burning wood waste for fuel; and factors affecting long-term availability and supply. New York State's waste wood resource was evaluated to complete the Energy Authority's recent investigation of the potential role of wood in producing electric power. In 1989 approximately 11.8 million tons of wood waste were generated in New York State. More than 8 million tons or 68 percent, were disposed of by municipal solid waste and construction and demolition debris facilities. Just under 3.8 million tons or 32 percent, were reused and/or recycled. More than 25.7 million tons of wood waste could be available annually for fuel. Of the amount, more than 17.2 million tons per year, or 67 percent, could be produced by silvicultural activities that improve the health and productivity of forests

  7. Wood fuels utilization in Central Europe - the wood fuels consumption and the targets of utilization

    International Nuclear Information System (INIS)

    Alakangas, E.

    1999-01-01

    Following subjects are discussed in this presentation: The share of bioenergy of the total energy consumption in EU region; the wood fuels consumption in EU region in 1995; the division of bioenergy utilization (households, wood- based district heating, wood consumption in industry, power generation from wood and residues, biofuels, biogas and sludges); wood fuels consumption in households in EU countries in 1995; wood consumption in France; the additional wood fuel consumption potential in France; Blan bois - wood energy program; French wood energy markets; German wood energy markets; energy consumption in Germany; wood consumption in Bavaria; the wood fuels potential in Bavaria; wood fuels consumption in households in Bavaria; wood fuels consumption for district heating in Bavaria; fuel prices in Bavaria; Environmental regulations in Germany; small boiler markets in Germany; Energy consumption in Austria; small-scale utilization of wood fuels; utilization of wood energy. (Slides, additional information from the author)

  8. Pengaruh Cekaman Kekeringan terhadap Perilaku Fisiologis dan Pertumbuhan Bibit Black Locust (Robinia pseudoacacia

    Directory of Open Access Journals (Sweden)

    Novita Anggraini

    2015-01-01

    Full Text Available Black locust (Robinia pseudoacacia is a native species from North America and it has spread to Europe and Asia. Black locust is also one species used for land rehabilitation in semiarid and arid areas. However, adaptability of black locust on their distribution area is quite disturbing due to its invasive potential that tends to suppress the growth of native plants. The purpose of this study is to examine the effect of drought stress through watering volume and watering intervals treatments on physiological behavior and growth of black locust seedlings, and to analyze the level of black locust on drought tolerance through water use efficiency (WUE character and chlorophyll content. The watering volumes are 30-40 % of field capacity representing drought conditions and 70-80 % of field capacity representing good water conditions, while the watering intervals are 1, 3 and 7 days. Trend analysis is used to analyze the data. The results indicate that the lower watering volume (30-40 % and the longer the watering interval (for 7 days, the lower the photosynthesis and transpiration rate, stomatal conductance and growth (height, diameter, shoot dry weight and root of plants, but the higher the WUE and chlorophyll content. Increasing WUE and chlorophyll content are two indicators indicating that black locust is able to adapt (tolerant to drought stress situations. Therefore, the use of black locust for dry land reclamation requires special attention and careful strategy to avoid its invasive impact in the future.

  9. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Science.gov (United States)

    Ribera, Javier; Fink, Siegfried; Bas, Maria Del Carmen; Schwarze, Francis W M R

    2017-01-01

    The production of new generation of wood preservatives (without addition of a co-biocide) in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720) was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium). T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%). Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens previously exposed to T

  10. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Javier Ribera

    Full Text Available The production of new generation of wood preservatives (without addition of a co-biocide in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720 was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium. T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%. Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens

  11. Characterization and potential recycling of home building wood waste

    Science.gov (United States)

    Philip A. Araman; D.P. Hindman; M.F. Winn

    2010-01-01

    Construction waste represents a significant portion of landfill waste, estimated as 17% of the total waste stream. Wood construction waste of a 2000 square foot single family home we found to be 1500-3700 lbs of solid-sawn wood, and 1000-1800 lbs of engineered wood products (EWP). Much of the solid-sawn lumber and EWPs could be recycled into several products. Through a...

  12. Bacteria in decomposing wood and their interactions with wood-decay fungi.

    Science.gov (United States)

    Johnston, Sarah R; Boddy, Lynne; Weightman, Andrew J

    2016-11-01

    The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Justification of the Production Process of Pressed Wood and Study of its Properties

    Science.gov (United States)

    Polilov, A. N.; Dornyak, O. R.; Shamaev, V. A.; Rumachik, M. M.

    2018-05-01

    Results of a numerical analysis of the stress-strain state of wood during its pressing in different symmetry directions of the anisotropic material are presented. It is shown that the anisotropy of mechanical properties of wood is an important factor determining both the structural characteristics of the porous system and its strength. A mathematical modeling of the process of pressing wood as a three-phase anisotropic rheologically complex capillary-porous system allows one to predict parameters of the resulting wood composite. The compressed wood obtained by the production modes developed has a tensile strength eight times greater than that of the natural one, which is comparable to the strength of the St3 steel, but its specific strength is higher than that of the St45 steel. Compression and impregnation of softwood species with an aqueous solution of carbamide allows one to harden them. This kind of treatment endows the wood with enhanced strength characteristics comparable to the characteristics of the St3 steel. The special features of tensile tests used to estimate the elastic modulus and strength characteristics of such materials are considered. Data obtained by different testing methods are correlated, and characteristics of the strengthened wood and some brends of steel are compared.

  14. Wood for sound.

    Science.gov (United States)

    Wegst, Ulrike G K

    2006-10-01

    The unique mechanical and acoustical properties of wood and its aesthetic appeal still make it the material of choice for musical instruments and the interior of concert halls. Worldwide, several hundred wood species are available for making wind, string, or percussion instruments. Over generations, first by trial and error and more recently by scientific approach, the most appropriate species were found for each instrument and application. Using material property charts on which acoustic properties such as the speed of sound, the characteristic impedance, the sound radiation coefficient, and the loss coefficient are plotted against one another for woods. We analyze and explain why spruce is the preferred choice for soundboards, why tropical species are favored for xylophone bars and woodwind instruments, why violinists still prefer pernambuco over other species as a bow material, and why hornbeam and birch are used in piano actions.

  15. Studies of properties of rubber wood with impregnation of polymer

    Indian Academy of Sciences (India)

    Impregnation of rubber wood has been carried out under different conditions by using styrene as grafting monomer and glycidyl methacrylate (GMA) as crosslinker. Properties such as dimensional stability, water absorption, hardness, tensile strength, flexural strength, etc of the impregnated wood have been checked and ...

  16. Equilibrium moisture content of wood at different temperature/moisture conditions in the cladding of wooden constructions and in the relation to their reliability and service life

    Directory of Open Access Journals (Sweden)

    Zdeňka Havířová

    2010-01-01

    Full Text Available One of the natural properties of wood and wood-based materials is their soaking capacity (hy­gro­sco­pi­ci­ty. The moisture content of wood and building constructions of wood and wood based materials significantly influences the service life and reliability of these constructions and buildings. The equilibrium weight moisture content of built-in wood corresponding to temperature/moisture conditions inside the cladding has therefore a decisive influence on the basic requirements placed on building constructions. The wood in wooden frame cladding changes its moisture content depending on temperature and moisture conditions of the environment it is built into. The water vapor condensation doesn’t necessarily have to occur right in the wooden framework of the cladding for the equilibrium moisture content to rise over the level permissible for the reliable function of a given construction. In spite of the fact that the common heat-technical assessment cannot be considered fully capable of detecting the effects of these factors on the functional reliability of wood-based constructions and buildings, an extension has been proposed of the present method of design an assessment of building constructions according to the ČSN 73 0540 standard regarding the interpretation of equilibrium moisture content in relation to the temperature/moisture conditions and their time behavior inside a construction.

  17. Lignin-Retaining Transparent Wood.

    Science.gov (United States)

    Li, Yuanyuan; Fu, Qiliang; Rojas, Ramiro; Yan, Min; Lawoko, Martin; Berglund, Lars

    2017-09-11

    Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light-transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high-lignin-content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK -1 , and work-tofracture of 1.2 MJ m -3 (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy-saving buildings. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Effect of wood flour content on the optical color, surface chemistry, mechanical and morphological properties of wood flour/recycled high density polyethylene (rHDPE) composite

    Science.gov (United States)

    Sheng, Chan Kok; Amin, Khairul Anuar Mat; Kee, Kwa Bee; Hassan, Mohd Faiz; Ali, E. Ghapur E.

    2018-05-01

    In this study, effect of wood flour content on the color, surface chemistry, mechanical properties and surface morphology of wood-plastic composite (WPC) on different mixture ratios of recycled high density polyethylene (rHDPE) and wood flour were investigated in detail. The presence of wood flour in the composite indicates a significant total color change and a decrease of lightness. Functional groups of wood flour in WPC can be seen clearer from the Fourier transform infrared (FTIR) spectra as the wood flour content increases. The mechanical tensile testing shows that the tensile strength of Young's modulus is improved, whereas the strain and elongation at break were reduced by the addition of wood flour. The gap between the wood flour microvoid fibre and rHDPE matrix becomes closer when the wood flour content is increased as observed by scanning electron microscope (SEM) image. This finding implies a significant improvement on the interaction of interfacial adhesion between the rHDPE matrix and wood flour filler in the present WPC.

  19. COMPARISON BETWEEN TEST METHODS TO DETERMINE WOOD EMBEDMENT STRENGTH PARALLEL TO THE GRAIN

    Directory of Open Access Journals (Sweden)

    Diego Henrique de Almeida

    Full Text Available ABSTRACT This study compares the test methods according to the ABNT NBR 7190:1997, EN 383:2007, ASTM D5764:2007, EUROCODE 5:2004, NDS:2001 standards in order to provide support to establish a new test method for determining the embedment strength of wood parallel to the grain. Parallel-to-grain tests were carried out for six wood species (Schizolobium amazonicum; Pinus elliottii; Pinus oocarpa; Hymenaea spp.; Lyptus(r: hybrid Eucalyptus grandis and Eucalyptus urophylla, and Goupia glabra using four diameters (8 mm, 10 mm, 12 mm and 16 mm for the metal pin fasteners (bolts. The experimental results obtained according to the EN 383:2007 standard were closer to the specific values for the metal-dowel connections design used by ABNT NBR 7190:1997, which are considered equal compression parallel to the grain. The use of maximum embedment force or the force causing displacement of 5 mm between the bolt and the test-piece as criteria for determining embedment strength for EN 383:2007 appears to be more appropriate than the criteria used by the Brazilian and American Standards.

  20. 24 CFR 3280.308 - Formaldehyde emission controls for certain wood products.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Formaldehyde emission controls for certain wood products. 3280.308 Section 3280.308 Housing and Urban Development Regulations Relating to... Body and Frame Construction Requirements § 3280.308 Formaldehyde emission controls for certain wood...

  1. Thermal Properties of Wood-Plastic Composites Prepared from Hemicellulose-extracted Wood Flour

    Directory of Open Access Journals (Sweden)

    A.A. Enayati

    2013-01-01

    Full Text Available Hemicellulose of Southern Yellow Pine wood spices was extracted by pressurized hot water at three different temperatures: 140°C, 155°C and 170°C. Compounding with PP (polypropylene was performed by extrusion after preparing wood flour and sieving to determine its mesh size. The ratio of wood to polymer was 50:50 based on oven-dry weight of wood flour. All extraction treatments and control samples were compounded under two sets of conditions, without and with 2% MAPP as coupling agent. Injection molding was used to make tensile test samples (dogbone from the pellets made by extrusion. Thermal properties of wood-plastic composites were studied by TGA and DSC while the thermal stability of pretreated wood flours, PP and MAPP were studied by TGA as well. The greater weight loss of wood materials was an indication that higher treatment temperature increases the extractability of hemicellulose. The removal of hemicellulose by extraction improves thermal stability of wood flour, especially for extraction at 170°C. Wood-plastic composites made from extracted fibers at 170°C showed the highest thermal stability. Coupling agent did not have a significant effect on thermal stability but it improved the degree of crystallinity of the composites.Surface roughness of wood fiber increased after treatment. Extraction of hemicellulose increased the degree of crystallinity but it was not significant except for samples from treated wood flour at 170°C and with MAPP.

  2. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  3. Online resources for the identification of North American wood decay fungi

    Science.gov (United States)

    Jessie A. Glaeser

    2012-01-01

    The ability to identify wood decay fungi is an important skill for an arborist. Knowing which fungus is colonizing a tree can be used to better assess the type, amount, and position of decay in the tree, and its subsequent effects on wood strength. Distinguishing species of fungi that colonize sapwood, heartwood, or roots can provide information to improve the quality...

  4. HIGH RESOLUTION MICROTOMOGRAPHY FOR DENSITY AND SPATIAL INFORMATION ABOUT WOOD STRUCTURES.

    Energy Technology Data Exchange (ETDEWEB)

    ILLMAN,B.

    1999-07-22

    Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A beamline at the National Synchrotron Light Source (NSLS). The beamline is equipped with high-flux x-ray monochromator based on multilayer optics developed for this application. The sample is mounted on a translation stage with which to center the sample rotation, a rotation stage to perform the rotation during data collection and a motorized goniometer head for small alignment motions. The absorption image is recorded by a single-crystal scintillator, an optical microscope and a cooled CCD array detector. Data reconstruction has provided three-dimensional geometry of the heterogeneous wood matrix in microtomographic images. Wood is a heterogeneous material composed of long lignocellulose vessels. Although wood is a strong natural product, fungi have evolved chemical systems that weaken the strength properties of wood by degrading structural vessels. Tomographic images with a resolution of three microns were obtained nonintrusively to characterize the compromised structural integrity of wood. Computational tools developed by Lindquist et al (1996) applied to characterize the microstructure of the tomographic volumes.

  5. Environmental impact of preservative-treated wood in a wetland boardwalk.

    Science.gov (United States)

    Stan T. Lebow; Patricia K. Lebow; Daniel O. Foster; Kenneth M. Brooks

    Forest Service, Bureau of Land Management, and industry partners are cooperating in a study of the leaching and environmental effects of a wetland boardwalk. The construction project is considered bworst casec because the site has high rainfall and large volumes of treated wood were used. Separate boardwalk test sections were constructed using untreated wood or wood...

  6. Wood Flour Moulding Technology: Implications for Technical ...

    African Journals Online (AJOL)

    The intent of this article is to demonstrate how wood waste called sawdust or wood flour can be transformed by plastic moulding machine into items of economic value. Wood flour is wood reduced to very fine particle form. It can be waste product from saw mills, wood working plants or produced from selected dry wood by ...

  7. Users guide for WoodCite, a product cost quotation tool for wood component manufacturers [computer program

    Science.gov (United States)

    Jeff Palmer; Adrienn Andersch; Jan Wiedenbeck; Urs. Buehlmann

    2014-01-01

    WoodCite is a Microsoft® Access-based application that allows wood component manufacturers to develop product price quotations for their current and potential customers. The application was developed by the U.S. Forest Service and Virginia Polytechnic Institute and State University, in cooperation with the Wood Components Manufacturers Association.

  8. Environmental assessment of domestic wood heating

    International Nuclear Information System (INIS)

    Labouze, E.; Le Guerin, Y.

    2009-01-01

    In France, more than 6 million families are concerned with the domestic use of wood energy. The wood energy plan of ADEME aims at encouraging the development of wood energy in three sectors: domestic, collective/tertiary, industrial. In that context, ADEME commissioned BIO Intelligence Service a life cycle assessment of collective and industrial heating in order to give objective environmental information and to analyse the strength and weakness of wood heating. Three scenarios were defined according to the origin of wood: firewood, granules and sawmill chips. The study also proposes a comparison to other heating systems: gas, fuel oil and electricity. The life cycle analysis applied to domestic heating consists in quantifying the environmental impacts of the whole linked steps: extraction of fuel, distribution, final use... Every system under study has been divided according to three main stages: - Extraction of raw materials; - Transport of fuels until the place of storage or distribution; - Use (combustion or upstream production of energy in the case of electricity). The environmental impacts are estimated with the following indicators: - Non renewable primary energy balance sheet; - Global warming potential; - Air acidification potential; - Eutrophication potential; - Emissions of toxic metals in air and in soils. The results show that wood heating have the best energy and global warming balance sheets. For air acidification, the combustion stage is pre-dominant regardless of the energy resource. This is mainly due to nitrogen and sulphur oxides airborne emissions. For wood heating, preparation requires fuel consumption which also contributes significantly to nitrogen oxides emissions. The comparison with conventional energy shows that the wood scenarios are well positioned in relation to fuel and electricity for this indicator. Gas appears to be the best heating option for this indicator. The contribution eutrophication is also due to nitrogen oxides airborne

  9. Mechanics of Wood Machining

    CERN Document Server

    Csanády, Etele

    2013-01-01

    Wood is one of the most valuable materials for mankind, and since our earliest days wood materials have been widely used. Today we have modern woodworking machine and tools; however, the raw wood materials available are continuously declining. Therefore we are forced to use this precious material more economically, reducing waste wherever possible. This new textbook on the “Mechanics of Wood Machining” combines the quantitative, mathematical analysis of the mechanisms of wood processing with practical recommendations and solutions. Bringing together materials from many sources, the book contains new theoretical and experimental approaches and offers a clear and systematic overview of the theory of wood cutting, thermal loading in wood-cutting tools, dynamic behaviour of tool and work piece, optimum choice of operational parameters and energy consumption, the wear process of the tools, and the general regularities of wood surface roughness. Diagrams are provided for the quick estimation of various process ...

  10. Ancient wood of the Acqualadrone rostrum: materials history through gas chromatography/mass spectrometry and sulfur X-ray absorption spectroscopy.

    Science.gov (United States)

    Frank, Patrick; Caruso, Francesco; Caponetti, Eugenio

    2012-05-15

    In 2008 the rostrum from an ancient warship was recovered from the Mediterranean near Acqualadrone, Sicily. To establish its provenance and condition, samples of black and brown rostrum wood were examined using sulfur K-edge X-ray absorption spectroscopy (XAS) and gas chromatography/mass spectrometry (GC/MS). GC/MS of pyrolytic volatiles yielded only guaiacyl derivatives, indicating construction from pinewood. A derivatized extract of black wood yielded forms of abietic acid and sandaracopimaric acid consistent with pine pitch waterproofing. Numerical fits to the sulfur K-edge XAS spectra showed that about 65% of the endogenous sulfur consisted of thiols and disulfides. Elemental sulfur was about 2% and 7% in black and brown wood, respectively, while pyritic sulfur was about 12% and 6%. About 2% of the sulfur in both wood types was modeled as trimethylsulfonium, possibly reflecting biogenic (dimethylsulfonio)propionate. High-valent sulfur was exclusively represented by sulfate esters, consistent with bacterial sulfotransferase activity. Traces of chloride were detected, but no free sulfate ion. In summary, the rostrum was manufactured of pine wood and subsequently waterproofed with pine pitch. The subsequent 2300 years included battle, foundering, and marine burial followed by anoxia, bacterial colonization, sulfate reduction, and mobilization of transition metals, which produced pyrite and copious appended sulfur functionality.

  11. The Ancient Wood of the Acqualadrone Rostrum: A Materials History Through GC-MS and Sulfur X-ray Absorption Spectroscopy

    Science.gov (United States)

    Frank, Patrick; Caruso, Francesco; Caponetti, Eugenio

    2012-01-01

    In 2008 the rostrum from an ancient warship was recovered from the Mediterranean near Acqualadrone, Sicily. To establish its provenance and condition, samples of black and brown rostrum wood were examined using sulfur K-edge x-ray absorption spectroscopy (XAS) and GC-MS. GC-MS of pyrolytic volatiles yielded only guaiacyl derivatives, indicating construction from pinewood. A derivatized extract of black wood yielded forms of abietic acid and sandaracopimaric acid consistent with pine pitch waterproofing. Numerical fits to the sulfur K-edge XAS spectra showed that about 65% of the endogenous sulfur consisted of thiols and disulfides. Elemental sulfur was about 2% and 7% in black and brown wood, respectively, while pyritic sulfur was about 12% and 6%. About 2% of the sulfur in both wood types was modeled as trimethylsulfonium, possibly reflecting biogenic dimethylsulfonio-propionate. High valent sulfur was exclusively represented by sulfate esters, consistent with bacterial sulfotransferase activity. Traces of chloride were detected, but no free sulfate ion. In summary, the rostrum was manufactured of pine wood and subsequently waterproofed with pine pitch. The subsequent 2300 years included battle, foundering, and marine burial followed by anoxia, bacterial colonization, sulfate reduction, and mobilization of transition metals, which produced pyrite and copious appended sulfur functionality. PMID:22545724

  12. Wood chemistry symposium: from muka to lignin

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, M.

    1979-01-01

    The Canadian Wood Chemistry Symposium held during September, 1979, is reviewed. The chemical and physical explanations of delignification were debated. Problems of mechanical pulping include insufficient brightness, yellowing, and low strength relative to energy consumption. A session on chemicals, energy, and food from wood began with criteria for a viable project, which included adequate return on investment, modest capital investment requirements, identified pre-existing markets, and favorable thermodynamic balances. The pulp and paper industry should improve its methods of using bark and wood waste in direct combustion (by pre-drying wastes and improving furnace efficiency) rather than supporting oil-from-wood projects, since using a waste for fuel will free fossil fuels for uses in synthetic fibers and thermoplastics. In the area of food, there are modest successes with cellulose fiber additives to bread and snack food and single cell protein (which, though made from wastes, cannot compete with soy protein). However, making monomeric sugars from wood polysaccharides is not an efficient process, and muka, animal feed supplement from foliage, is successful only in Russia. In Canada it cannot compete with agricultural products. Alpha cellulose is a major wood chemical product. Promising uses include cellulose derived thermoplastics and lignosulphonates for secondary oil recovery. Instead of breaking wood polysaccharides and lignin into monomers and then repolymerizing them, it is possible to use the pre-built polymers; such an approach is illustrated by use of lignin in polyurethane foams, adhesives, and coatings.

  13. Wood energy-commercial applications

    Science.gov (United States)

    Kennel, R. P.

    1978-01-01

    Wood energy is being widely investigated in many areas of the country because of the many obvious benefits of wood fuel such as the low price per million Btus relative to coal, oil, and gas; the wide availability of noncommercial wood and the proven ability to harvest it; established technology which is reliable and free of pollution; renewable resources; better conservation for harvested land; and the potential for jobs creation. The Southeastern United States has a specific leadership role in wood energy based on its established forest products industry experience and the potential application of wood energy to other industries and institutions. Significant questions about the widespread usage of wood energy are being answered in demonstrations around the country as well as the Southeast in areas of wood storage and bulk handling; high capitalization costs for harvesting and combustion equipment; long term supply and demand contracts; and the economic feasibility of wood energy outside the forest products industry.

  14. Radiographic testing of wood

    International Nuclear Information System (INIS)

    Osterloh, K.; Zscherpel, U.; Raedel, C.; Weidemann, G.; Meinel, D.; Goebbels, J.; Ewert, U.; Hasenstab, A.; Buecherl, T.

    2007-01-01

    Wood is an old and established consumption and construction material. It is still the most common material for constructing furniture, roofs, playgrounds and mine supports. In contrast to steel and concrete, wood warns of extreme loads by creaking. Its mechanical stability is more influenced by decay than by peripheral cracks. While external cracks are visible, internal decay by fungus growth is undetectable from outside. This may be a safety problem in supporting structures. The best analysis of the internal structure is provided by computed tomography, but this is also the most complex method, much more so than simple radiographic testing. However, the latter is made inaccurate by scattered radiation resulting from internal moisture. With the image processing options of digital radiographic techniques, the structural information can be separated effectively from noise. In contrast to X-ray and gamma radiography, neutron radiography provides information on the spatial distribution of moisture. In healthy wood, water is conducted in the sapwood while the hardwood is dry. Moisture in hardwood is caused by infestations, e.g. fungus growth. The contribution presents a comparative analysis of the available radiographic methods. (orig.)

  15. Equilibrium moisture content of wood at different temperature/moisture conditions in the cladding of wooden constructions and in the relation to their reliability and service life

    OpenAIRE

    Zdeňka Havířová; Pavel Kubů

    2010-01-01

    One of the natural properties of wood and wood-based materials is their soaking capacity (hy­gro­sco­pi­ci­ty). The moisture content of wood and building constructions of wood and wood based materials significantly influences the service life and reliability of these constructions and buildings. The equilibrium weight moisture content of built-in wood corresponding to temperature/moisture conditions inside the cladding has therefore a decisive influence on the basic requirements placed on bui...

  16. Guide for construction of wood power systems. Construction - economic efficiency - technology; Leitfaden fuer die Errichtung von Holzenergie-Anlagen. Umsetzung - Wirtschaftlichkeit - Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Ruchser, M. [Forum fuer Zukunftsenergien e.V., Bonn (Germany)

    2001-07-01

    The Guidebook serves as a handbook for the entire operational sequence, which is necessary for the establishment of a wood combustion plant in Germany with an installed capacity larger than 100 kW{sub th}, for the use of fuel woods such as forest chips, wood and forest residues, pellets, wood waste, etc. within the limits of the laws and regulations prescribed for the respective performance classes. The Guidebook's purpose is to give potential investors and operators of wood combustion plants as well as the appropriate authorities a quick and global overview of the energetic use of wood in order to contribute to an increased application of this technology. The Guidebook introduces a Quality Model in Chapters 2 and 3, which describes the establishment of a wood combustion system in six phases. Eleven Management Aspects are differentiated, which can be helpful during the conversion of a project. Thus, potential investors and operators of wood combustion plants become acquainted with the most important aspects of this kind of project conversion. In addition, Chapter 4 provides an overview of the operating costs of wood combustion plants. The relevant licensing and planning procedures depending on the installed capacity and fuelwood use are comprehensively described in Chapter 5. Chapter 6 supplies a concrete overview of the environmental aspects and emissions of wood combustion. Since wood combustion plants must be - as all other investments - financially secured Chapter 7 provides a description of the relevant information on public means and subsidies. Besides all important promotion programmes, the new German Renewable Energy Law (Erneuerbare-Energien-Gesetz - EEG) of April 2000 is described in detail. Many examples of already realised wood combustion plant projects are described in Chapter 8. As an additional service, all significant addresses from ministries to energy agencies and associations are listed in Chapter 9. (orig.)

  17. Comparing energy use and environmental emissions of reinforced wood doors and steel doors

    Science.gov (United States)

    Lynn Knight; Melissa Huff; Janet I. Stockhausen; Robert J. Ross

    2005-01-01

    The USDA Forest Service Forest Products Laboratory has patented a technology that incorporates fiberglass-reinforced wood into the structure of wood doors and other wood building products. The process of reinforcing wood doors with epoxy and fiberglass increases the strength and durability of the product. Also, it allows the use of low-value, small-diameter wood which...

  18. Energy from wood - an overview

    International Nuclear Information System (INIS)

    Nussbaumer, T.

    2000-01-01

    The present publication is the introduction to a series of papers on fundamentals and applications of wood energy. It summarizes figures and data of the actual situation of fuel wood utilization in Switzerland and its potential for the future. Further, the advantages of bio-energy are discussed and the possibilities of funding for bio-energy in Switzerland are described. Wood contributes with 2.5% to the total energy demand in Switzerland nowadays. However, the utilization of wood energy can be more than doubled, which is one of the targets of the Swiss energy policy. The supply chains for the different types of fuel wood are described and specifications and prices of log wood, forestry wood chips and wood residues are presented. The main applications of wood energy are residential heating with manually operated wood boilers and stoves, on the one hand, and heat production with automatic wood furnaces in industry and communities, on the other hand. Automatic furnaces have been promoted in the past ten years and hence they contribute nowadays with more than 50% to the energy supply from wood with a further growing share. As an assistance for further information, a list of institutions and addresses in the field of wood energy in Switzerland is given in the paper. (author)

  19. Advanced wood- and bio-composites : enhanced performance and sustainability

    Science.gov (United States)

    Jerrold E. Winandy

    2006-01-01

    Use of wood-based-composites technology to create value-added commodities and traditional construction materials is generally accepted worldwide. Engineered wood- and lignocellulosic-composite technologies allow users to add considerable value to a diverse number of wood- and lignocellulosic feedstocks including small-diameter timber, fast plantation-grown timber,...

  20. Influence of xylem ray integrity and degree of polymerization on bending strength of beech wood decayed by Pleurotus ostreatus and Trametes versicolor

    Science.gov (United States)

    Ehsan Bari; Reza Oladi; Olaf Schmidt; Carol A. Clausen; Katie Ohno; Darrel D. Nicholas; Mehrdad Ghodskhah Daryaei; Maryam Karim

    2015-01-01

    The scope of this research was to evaluate the influence of xylem ray (XR) and degree of polymerization (DP) of holocellulose in Oriental beech wood (Fagus orientalis Lipsky.) on impact bending strength against two white-rot fungi. Beech wood specimens, exposed to Pleurotus ostreatus and Trametes versicolor, were evaluated for...

  1. The case for wood-fuelled heating

    International Nuclear Information System (INIS)

    Bent, Ewan

    2001-01-01

    This article looks at the wood heating industry in the UK and examines the heat market and the growth potential in the domestic, public, agricultural and commercial sectors. The current status of wood-fueled heating technology is considered, along with log and chip boilers, and the use of pellet fuel. The economics of wood-fuelled heating, the higher level of utilisation of wood-fuelled heating by utilities in northern European countries compared with the UK, and the barriers to the exploitation of wood fuelled heating are examined

  2. Controversy. The wood war; Polemique - la guerre du bois

    Energy Technology Data Exchange (ETDEWEB)

    James, O.

    2010-12-15

    The author comments the conflict emerging in France between industries exploiting wood for construction and those exploiting it as a heating material for power generation. The first ones accuse the others to steal their raw material, to pull the prices up, and to destabilize the sector. This conflict takes place notably around sawmill wastes which are used either by wood panel fabricators or by wood pellets producers. Both sectors are claiming they are creating more jobs than the other. The French forest indeed offers good opportunities for both sectors, but other countries which are lacking forest surfaces, are buying wood in France. Several issues are matter of discussion: burning wood seems to go against the reduction of greenhouse gas emissions, subsidies awarded to big heater projects. The situation of the wood sector in Austria, Finland and Poland is briefly presented

  3. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Elena Manaila

    2016-06-01

    Full Text Available The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  4. Continued growth expected for wood energy despite turbulence of the economic crisis : wood energy markets, 2008-2009

    Science.gov (United States)

    Rens Hartkamp; Bengt Hillring; Warren Mabee; Olle Olsson; Kenneth Skog; Henry Spelter; Johan Vinterback; Antje Wahl

    2009-01-01

    The economic crisis has not reduced the demand for wood energy, which is expected to continue to grow. The downturn in sawmill production caused a shortage of raw material supply for wood pellet producers. With decreased demand for pulpwood-quality roundwood for wood and paper products in 2009, some pulpwood is being converted into wood energy. Economies of scale are...

  5. Wood waste: A disposal problem or an opportunity?

    International Nuclear Information System (INIS)

    Vajda, P.

    1989-01-01

    The utilization of wood wastes in North America is reviewed, with a focus on the wood products industry and markets. On the whole, wood mill residues in North America have always been utilized except for a period from the 1940s to the 1970s oil crisis. In the latter period, low cost electric power and hydrocarbon fuels rendered uneconomical the use of wood wastes as fuel. As a response to the problem of disposing these wastes, a number of innovations occurred in that period, including the use of wood chips for manufacturing pulp and particleboard, and the use of sawdust and shavings for manufacturing hardboard and medium density fiberboard. Uses for bark, except as fuel, have not been successfully developed. Since the 1970s, wood waste in the USA is essentially all used for composite board products and fuel. This is also true in eastern Canada, which is close to the wood products markets and which has fairly high oil and gas costs. However, in western Canada, low energy costs and small internal markets have led to a serious wood waste disposal problem. A survey of wood waste supply and demand shows large surpluses in mill residues in western Canada and some remote locations in northern Ontario and Quebec. The Pacific Rim countries are identified as a potential market for western Canadian composite board production. The use of other sources of wood waste (forestry or logging residues, which are costly to collect, and municipal construction waste) is briefly discussed

  6. DNA Damage among Wood Workers Assessed with the Comet Assay

    Science.gov (United States)

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027

  7. Basalt FRP Spike Repairing of Wood Beams

    Directory of Open Access Journals (Sweden)

    Luca Righetti

    2015-08-01

    Full Text Available This article describes aspects within an experimental program aimed at improving the structural performance of cracked solid fir-wood beams repaired with Basalt Fiber Reinforced Polymer (BFRP spikes. Fir wood is characterized by its low density, low compression strength, and high level of defects, and it is likely to distort when dried and tends to fail under tension due to the presence of cracks, knots, or grain deviation. The proposed repair technique consists of the insertion of BFRP spikes into timber beams to restore the continuity of cracked sections. The experimental efforts deal with the evaluation of the bending strength and deformation properties of 24 timber beams. An artificially simulated cracking was produced by cutting the wood beams in half or notching. The obtained results for the repaired beams were compared with those of solid undamaged and damaged beams, and increases of beam capacity, bending strength and of modulus of elasticity, and analysis of failure modes was discussed. For notched beams, the application of the BFRP spikes was able to restore the original bending capacity of undamaged beams, while only a small part of the original capacity was recovered for beams that were cut in half.

  8. Occurrence patterns of dead wood and wood-dependent lichens in managed boreal forest landscapes

    OpenAIRE

    Svensson, Måns

    2013-01-01

    Dead wood is a key resource for biodiversity, on which thousands of forest organisms are dependent. Because of current forest management, there has been a large-scale change in dead wood amounts and qualities, and consequently, many wood-dependent species are threatened. The general aim of this thesis is to increase our understanding of habitat requirements and occurrence patterns of wood-dependent lichens in managed, boreal forest landscapes. We surveyed dead wood and wood-dependent lichens ...

  9. Microbuckling compression failure of a radiation-induced wood/polymer composite

    International Nuclear Information System (INIS)

    Boey, F.Y.C.

    1990-01-01

    A wood/polymer composite was produced by impregnating Ramin wood with methyl methacrylate monomer and subsequently polymerizing it by gamma irradiation. To assess the improvement in compression strength of the wood caused by the polymer impregnation, a microbuckling compression failure mechanism was used to model the compression failure of the composite. Such a mechanism was found to predict a linear relationship between the compression strength and the percentage polymer impregnation (by weight). Uniaxial compression test results at 45(±5)% and 90(±5)% relative humidity levels, after being statistically analysed, showed that such a linear relationship was valid for up to 100% polymer impregnation. (author)

  10. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb Jr.

    2005-02-10

    Phase I of this project began by obtaining R&D variances for permits at the NIOSH boilerplant (NBP), Emery Tree Service (ETS) and the J. A. Rutter Company (JARC) for their portions of the project. Wood for the test burn was obtained from the JARC inventory (pallets), Thompson Properties and Seven D Corporation (construction wood), and the Arlington Heights Housing Project (demolition wood). The wood was ground at ETS and JARC, delivered to the Three Rivers Terminal and blended with coal. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NBP. Blends using hammermilled wood were operationally successful. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and evaluated. During the first year of Phase II the principal work focused upon searching for a replacement boilerplant and developing a commercial supply of demolition wood. The NBP withdrew from the project and a search began for another stoker boilerplant in Pennsylvania to replace it on the project. Three potential commercial demolition wood providers were contacted. Two were not be able to supply wood. At the end of the first year of Phase II, discussions were continuing with the third one, a commercial demolition wood provider from northern New Jersey. During the two-and-a-third years of the contract extension it was determined that the demolition wood from northern New Jersey was impractical for use in Pittsburgh, in another power plant in central New Jersey, and in a new wood gasifier being planned in Philadelphia. However, the project team did identify sufficient wood from other sources for the gasifier project. The Principal Investigator of this project assisted a feasibility study of wood gasification in Clarion County, Pennsylvania. As a result of the study, an independent power producer in the county has initiated a small wood

  11. Eco-friendly materials for large area piezoelectronics: self-oriented Rochelle salt in wood

    Science.gov (United States)

    Lemaire, E.; Ayela, C.; Atli, A.

    2018-02-01

    Upgraded biodegradable piezoelectric composite materials elaborated by incorporation of Rochelle salt (RS, Sodium potassium tartrate tetrahydrate) in wood were reported. RS crystals, known as the first discovered piezoelectric material, were grown in the micro-cavities of wood, having naturally a tubular structure, by soaking the wood into RS saturated water. Since most of the cavities in wood are oriented in the same direction, the piezoelectric effect was improved when the cavities were filled by RS crystals. The mechanical, structural and piezoelectric properties of RS incorporated wood composite samples were characterized. Both direct and converse piezoelectric effects are illustrated. The wood-base composite exhibits an effective piezoelectric constant d 33 of 11 pC N-1. Also, the flexural strength and modulus of elasticity were enhanced by inserting RS into the wood, nevertheless the samples became more brittle. The wood-based piezoelectric samples prepared in this work can be used as actuators, sensors or energy harvesters. The process developed here permits us to manufacture large area piezoelectric devices which are environmentally and economically unsurpassed.

  12. Fabrication and Spectral Properties of Wood-Based Luminescent Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xianjun Li

    2014-01-01

    Full Text Available Pressure impregnation pretreatment is a conventional method to fabricate wood-based nanocomposites. In this paper, the wood-based luminescent nanocomposites were fabricated with the method and its spectral properties were investigated. The results show that it is feasible to fabricate wood-based luminescent nanocomposites using microwave modified wood and nanophosphor powders. The luminescent strength is in positive correlation with the amount of phosphor powders dispersed in urea-formaldehyde resin. Phosphors absorb UV and blue light efficiently in the range of 400–470 nm and show a broad band of bluish-green emission centered at 500 nm, which makes them good candidates for potential blue-green luminescent materials.

  13. Environmental impact assessment of wood ash utilization in forest road construction and maintenance--A field study.

    Science.gov (United States)

    Oburger, Eva; Jäger, Anna; Pasch, Alexander; Dellantonio, Alex; Stampfer, Karl; Wenzel, Walter W

    2016-02-15

    The ever increasing use of wood material as fuel for green energy production requires innovative, environmentally safe strategies for recycling of the remaining wood ash. Utilizing wood ash in forest road construction and maintenance to improve mechanical stability has been suggested as a feasible recycling option. To investigate the environmental impact of wood ash application in forest road maintenance, a two-year field experiment was conducted at two Austrian forest sites (Kobernausserwald (KO) (soil pH 5.5) and Weyregg (WE) (pH 7.7)) differing in their soil chemical properties. Two different ashes, one produced by grate incineration (GA) and the other by fluidized bed incineration in a mixture with 15 vol% burnt lime (FBA), were incorporated in repeated road sections at a 15:85% (V/V) ash-to-soil rate. Leaching waters from the road body were collected and analyzed for 32 environmentally relevant parameters over two years. Upon termination of the experiment, sub-road soil samples were collected and analyzed for ash-related changes in soil chemistry. Even though a larger number of parameters was affected by the ash application at the alkaline site (WE), we observed the most pronounced initial increases of pH as well as Al, As, Fe, Mn, Ni, Co, Cu, Mo, and NO2(−) concentrations in leachates beneath GA-treated road bodies at Kobernausserwald due to the lower soil buffer capacity at this site. Despite the observed effects our results indicate that, when specific requirements are met (i.e. appropriate ash quality, sufficient soil buffer capacity below the road body, and single time-point ash incorporation within several decades), wood ash application in forest road construction is generally environmentally acceptable.

  14. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States

    International Nuclear Information System (INIS)

    Upton, Brad; Miner, Reid; Spinney, Mike; Heath, Linda S.

    2008-01-01

    Data developed by the Consortium for Research on Renewable Industrial Materials were used to estimate savings of greenhouse gas emissions and energy consumption associated with use of wood-based building materials in residential construction in the United States. Results indicate that houses with wood-based wall systems require 15-16% less total energy for non-heating/cooling purposes than thermally comparable houses employing alternative steel- or concrete-based building systems. Results for non-renewable energy consumption are essentially the same as those for total energy, reflecting the fact that most of the displaced energy is in fossil fuels. Over a 100-year period, net greenhouse gas emissions associated with wood-based houses are 20-50% lower than emissions associated with thermally comparable houses employing steel- or concrete-based building systems. Assuming 1.5 million single-family housing starts per year, the difference between wood and non-wood building systems represents about 9.6 Mt of CO 2 equivalents per year. The corresponding energy benefit associated with wood-based building materials is approximately 132 PJ year -1 . These estimates represent about 22% of embodied energy and 27% of embodied greenhouse gas emissions in the residential sector of the US economy. The results of the analysis are very sensitive to assumptions and uncertainties regarding the fate of forestland that is taken out of wood production due to reduced demand for wood, the continued production of co-products where demand for wood products is reduced, and the rate at which carbon accumulates in forests

  15. Wood energy x 2 - Scenario for the development of wood energy use in Switzerland

    International Nuclear Information System (INIS)

    2004-01-01

    This study for the Swiss Agency for the Environment, Forests and Landscapes (SAEFL) and the Swiss wood-energy association (Holzenergie Schweiz) presents the results of a scenario-study that examined if, and under what conditions, doubling the use of wood energy in Switzerland could help reach carbon dioxide reduction targets. Two scenarios are presented that are based on high and low rates of growth for the number of automatic wood-chipping or pellets-fired installations. For both scenarios, figures are presented on the amount of wood used and the heating energy generated. The political and financial prerequisites for the scenarios are discussed and other boundary conditions are defined. The report draws conclusions from the study of the two scenarios and summarises the political action deemed necessary

  16. Wood composites

    Science.gov (United States)

    Lars Berglund; Roger M. Rowell

    2005-01-01

    A composite can be defined as two or more elements held together by a matrix. By this definition, what we call “solid wood” is a composite. Solid wood is a three-dimensional composite composed of cellulose, hemicelluloses and lignin (with smaller amounts of inorganics and extractives), held together by a lignin matrix. The advantages of developing wood composites are (...

  17. Using wood products to mitigate climate change: External costs and structural change

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, 831 25 Oestersund (Sweden)

    2009-02-15

    In this study we examine the use of wood products as a means to mitigate climate change. We describe the life cycle of wood products including forest growth, wood harvest and processing, and product use and disposal, focusing on the multiple roles of wood as both material and fuel. We present a comparative case study of a building constructed with either a wood or a reinforced concrete frame. We find that the production of wood building material uses less energy and emits less carbon than the production of reinforced concrete material. We compare the relative cost of the two building methods without environmental taxation, under the current Swedish industrial energy taxation regime, and in scenarios that incorporate estimates of the full social cost of carbon emission. We find that the inclusion of climate-related external costs improves the economic standing of wood construction vis-a-vis concrete construction. We conclude that policy instruments that internalise the external costs of carbon emission should encourage a structural change toward the increased use of sustainably produced wood products. (author)

  18. EFFECT OF CHEMICAL MODIFICATION AND HOT-PRESS DRYING ON POPLAR WOOD

    Directory of Open Access Journals (Sweden)

    Guo-Feng Wu

    2010-11-01

    Full Text Available Urea-formaldehyde prepolymer and hot-press drying were used to improve the properties of poplar wood. The wood was impregnated with the prepolymer using a pulse-dipping machine. The impregnated timbers were compressed and dried by a multilayer hot-press drying kiln. The drying rate was more rapid during the chemical modification and hot-press drying than conventional kiln-drying. In addition, the properties of timber were also enhanced obviously. When the compression rate was 28.6%, the basic density, oven dry density and air-dried density of modified wood improved 22%, 71%, and 70%, respectively. The bending strength and compressive strength parallel to grain increased 60% and 40%. The water uptake of treated wood was significantly decreased compared with the untreated wood. The FTIR analysis successfully showed that the intensity of hydroxyl and carbonyl absorption peaks decreased significantly, which was attributed to a reaction of the NHCH2OH of urea-formaldehyde prepolymer with the wood carboxyl (C=O and hydroxyl (-OH groups. The XRD results indicated that the degree of crystallinity increased from 35.09% to 36.91%. The morphologic models of chemical within wood were discovered by SEM.

  19. Chapter 02: Basic wood biology—Anatomy for identification

    Science.gov (United States)

    Alex Wiedenhoeft

    2011-01-01

    Before the topics of using a hand lens, preparing wood for observation, and understanding the characters used in wood identification can be tackled, a general introduction to the biology of wood must be undertaken. The woods in commercial trade in Central America come almost exclusively from trees, so the discussion of wood biology is restricted to trees here, though...

  20. In situ polymerization of polyaniline in wood veneers.

    Science.gov (United States)

    Trey, Stacy; Jafarzadeh, Shadi; Johansson, Mats

    2012-03-01

    The present study describes the possibility to polymerize aniline within wood veneers to obtain a semi-conducting material with solid wood acting as the base template. It was determined that it is possible to synthesize the intrinsically conductive polymer (ICP) polyaniline in situ within the wood structure of Southern yellow pine veneers, combining the strength of the natural wood structure with the conductivity of the impregnated polymer. It was found that polyaniline is uniformly dispersed within the wood structure by light microscopy and FT-IR imaging. A weight percent gain in the range of 3-12 wt % was obtained with a preferential formation in the wood structure and cell wall, rather than in the lumen. The modified wood was found to be less hydrophilic with the addition of phosphate doped polyaniline as observed by equilibrium water swelling studies. While wood itself is insulating, the modified veneers had conductivities of 1 × 10(-4) to 1 × 10(-9) S cm(-1), demonstrating the ability to tune the conductivity and allowing for materials with a wide range of applications, from anti-static to charge-dispersing materials. Furthermore, the modified veneers had lower total and peak heat releases, as determined by cone calorimetry, because of the char properties of the ICP. This is of interest if these materials are to be used in building and furniture applications where flame retardance is of importance. © 2012 American Chemical Society

  1. Some Properties of Astronium graveolens Wood Along the Stem

    OpenAIRE

    Longui,Eduardo Luiz; Gondo,Cássia Christine Schmidt; Luiz de Lima,Israel; Freitas,Miguel Luiz Menezes; Florsheim,Sandra Monteiro Borges; Zanatto,Antonio Carlos Scatena; Garcia,José Nivaldo

    2016-01-01

    ABSTRACT We investigated the axial variation of specific gravity, shear parallel to the grain and anatomical features of Astronium graveolens wood and related these properties to the anatomy along the stem. We felled five 20-year-old trees and cut discs from four different stem heights, including stem base, 1 meter, 2 meters and 3 meters, for a total of 20 discs, and studied wood samples near the bark and at the base of trunk. Axial variations found appear to provide a balance between mechani...

  2. Coal and wood fuel for electricity production: An environmentally sound solution for waste and demolition wood

    Energy Technology Data Exchange (ETDEWEB)

    Penninks, F.W.M. [EPON, Zwolle (Netherlands)

    1997-12-31

    Waste wood from primary wood processing and demolition presents both a problem and a potential. If disposed in landfills, it consumes large volumes and decays, producing CH{sub 4}, CO{sub 2} and other greenhouse gases. As an energy source used in a coal fired power plant it reduces the consumption of fossil fuels reducing the greenhouse effect significantly. Additional advantages are a reduction of the ash volume and the SO{sub 2} and NO{sub x} emissions. The waste wood requires collection, storage, processing and burning. This paper describes a unique project which is carried out in the Netherlands at EPON`s Gelderland Power Plant (635 MW{sub e}) where 60 000 tonnes of waste and demolition wood will be used annually. Special emphasis is given to the processing of the powdered wood fuel. Therefore, most waste and demolition wood can be converted from an environmental liability to an environmental and economic asset. (author)

  3. Coal and wood fuel for electricity production: An environmentally sound solution for waste and demolition wood

    Energy Technology Data Exchange (ETDEWEB)

    Penninks, F W.M. [EPON, Zwolle (Netherlands)

    1998-12-31

    Waste wood from primary wood processing and demolition presents both a problem and a potential. If disposed in landfills, it consumes large volumes and decays, producing CH{sub 4}, CO{sub 2} and other greenhouse gases. As an energy source used in a coal fired power plant it reduces the consumption of fossil fuels reducing the greenhouse effect significantly. Additional advantages are a reduction of the ash volume and the SO{sub 2} and NO{sub x} emissions. The waste wood requires collection, storage, processing and burning. This paper describes a unique project which is carried out in the Netherlands at EPON`s Gelderland Power Plant (635 MW{sub e}) where 60 000 tonnes of waste and demolition wood will be used annually. Special emphasis is given to the processing of the powdered wood fuel. Therefore, most waste and demolition wood can be converted from an environmental liability to an environmental and economic asset. (author)

  4. Image analysis of multiple moving wood pieces in real time

    Science.gov (United States)

    Wang, Weixing

    2006-02-01

    This paper presents algorithms for image processing and image analysis of wood piece materials. The algorithms were designed for auto-detection of wood piece materials on a moving conveyor belt or a truck. When wood objects on moving, the hard task is to trace the contours of the objects in n optimal way. To make the algorithms work efficiently in the plant, a flexible online system was designed and developed, which mainly consists of image acquisition, image processing, object delineation and analysis. A number of newly-developed algorithms can delineate wood objects with high accuracy and high speed, and in the wood piece analysis part, each wood piece can be characterized by a number of visual parameters which can also be used for constructing experimental models directly in the system.

  5. Monitoring the Error Rate of Modern Methods of Construction Based on Wood

    Science.gov (United States)

    Švajlenka, Jozef; Kozlovská, Mária

    2017-06-01

    A range of new and innovative construction systems, currently developed, represent modern methods of construction (MMC), which has the ambition to improve the performance parameters of buildings throughout their life cycle. Regarding the implementation modern methods of construction in Slovakia, assembled buildings based on wood seem to be the most preferred construction system. In the study, presented in the paper, were searched already built and lived-in wood based family houses. The residents' attitudes to such type of buildings in the context with declared designing and qualitative parameters of efficiency and sustainability are overlooked. The methodology of the research study is based on the socio-economic survey carried out during the years 2015 - 2017 within the Slovak Republic. Due to the large extent of data collected through questionnaire, only selected parts of the survey results are evaluated and discussed in the paper. This paper is aimed at evaluating the quality of buildings expressed in a view of users of existing wooden buildings. Research indicates some defects, which can be eliminated in the next production process. Research indicates, that some defects occur, so the production process quality should be improved in the future development.

  6. Qualidade de juntas coladas com lâminas de madeira oriundas de três regiões do tronco de Eucalyptus grandis, Eucalyptus saligna e Pinus elliottii Quality of wood joints glued with wood veneers from three trunk regions of Eucalyptus grandis, Eucalyptus saligna and Pinus elliottii

    Directory of Open Access Journals (Sweden)

    Benedito Rocha Vital

    2006-08-01

    Full Text Available Este experimento teve como objetivo avaliar a resistência de juntas coladas formadas pelas combinações de lâminas provenientes de três posições no tronco da madeira de Eucalyptus grandis, Eucalyptus saligna e Pinus elliottii. Foram empregados adesivos à base de poliacetato de vinila de média e alta viscosidade e resorcinol-formaldeído nas gramaturas de 150 g/m², em face simples para o poliacetato de vinila de média e alta viscosidades e 300 g/m², em face dupla, para o adesivo resorcinólico. O teor médio de umidade das lâminas, no momento da colagem, foi igual a 14%. Os valores médios mais elevados de resistência ao cisalhamento foram obtidos nas juntas produzidas com madeira de Eucalyptus saligna, coladas com adesivos de poliacetato de média viscosidade e resorcinol-formaldeído. A maior porcentagem de falha profunda na madeira foi obtida em juntas de madeira de Pinus elliottii, unidas com adesivo de poliacetato de alta viscosidade, seguidas das juntas de Eucalyptus grandis e coladas com adesivo de poliacetato de média viscosidade. As combinações de lâminas oriundas das seguintes posições no tronco: medula e casca, intermediária e casca e casca e casca resultaram em linhas de cola com maiores resistências ao cisalhamento.The objective of this work was to evaluate the shear strength of glued wood joints from pith, outer and intermediary wood of Eucalyptus saligna, Eucalyptus grandis and Pinus elliottii. High and medium viscosity polyvinyl acetate and resorcinol-phenol adhesives were applied at spread rate of 150 g/m² in single line and at spread rate of 300 g/m² in double glue line for the resorcinolic adhesive. The mean wood moisture content was 14%. Higher shear strength was obtained with Eucalyptus saligna veneer glued with medium viscosity polyvinyl resorcinolic adhesive. The highest percentage of wood failure was found on Pinus elliottii veneer glued with high viscosity polyvinyl acetate adhesive followed by

  7. Optimization of wood plastic composite decks

    Science.gov (United States)

    Ravivarman, S.; Venkatesh, G. S.; Karmarkar, A.; Shivkumar N., D.; Abhilash R., M.

    2018-04-01

    Wood Plastic Composite (WPC) is a new class of natural fibre based composite material that contains plastic matrix reinforced with wood fibres or wood flour. In the present work, Wood Plastic Composite was prepared with 70-wt% of wood flour reinforced in polypropylene matrix. Mechanical characterization of the composite was done by carrying out laboratory tests such as tensile test and flexural test as per the American Society for Testing and Materials (ASTM) standards. Computer Aided Design (CAD) model of the laboratory test specimen (tensile test) was created and explicit finite element analysis was carried out on the finite element model in non-linear Explicit FE code LS - DYNA. The piecewise linear plasticity (MAT 24) material model was identified as a suitable model in LS-DYNA material library, describing the material behavior of the developed composite. The composite structures for decking application in construction industry were then optimized for cross sectional area and distance between two successive supports (span length) by carrying out various numerical experiments in LS-DYNA. The optimized WPC deck (Elliptical channel-2 E10) has 45% reduced weight than the baseline model (solid cross-section) considered in this study with the load carrying capacity meeting acceptance criterion (allowable deflection & stress) for outdoor decking application.

  8. Relationship between radial compressive modulus of elasticity and shear modulus of wood

    Science.gov (United States)

    Jen Y. Liu; Robert J. Ross

    2005-01-01

    Wood properties in transverse compression are difficult to determine because of such factors as anatomical complexity, specimen geometry, and loading conditions. The mechanical properties of wood, considered as an anisotropic or orthotropic material, are related by certain tensor transformation rules when the reference coordinate system changes its orientation. In this...

  9. Wood fuelled boiler operating costs

    International Nuclear Information System (INIS)

    Sandars, D.L.

    1995-01-01

    This report is a management study into the operating costs of wood-fired boilers. Data obtained from existing wood-fired plant has been analysed and interpreted using the principles of machinery management and the science that underlies the key differences between this fuel and any other. A set of budgeting principles has been developed for the key areas of labour requirement, insurance, maintenance and repair and electricity consumption. Other lesser cost centres such as the provision of shelter and the effects of neglect and accidents have also been considered, and a model constructed. (author)

  10. NorWood: a gene expression resource for evo-devo studies of conifer wood development.

    Science.gov (United States)

    Jokipii-Lukkari, Soile; Sundell, David; Nilsson, Ove; Hvidsten, Torgeir R; Street, Nathaniel R; Tuominen, Hannele

    2017-10-01

    The secondary xylem of conifers is composed mainly of tracheids that differ anatomically and chemically from angiosperm xylem cells. There is currently no high-spatial-resolution data available profiling gene expression during wood formation for any coniferous species, which limits insight into tracheid development. RNA-sequencing data from replicated, high-spatial-resolution section series throughout the cambial and woody tissues of Picea abies were used to generate the NorWood.conGenIE.org web resource, which facilitates exploration of the associated gene expression profiles and co-expression networks. Integration within PlantGenIE.org enabled a comparative regulomics analysis, revealing divergent co-expression networks between P. abies and the two angiosperm species Arabidopsis thaliana and Populus tremula for the secondary cell wall (SCW) master regulator NAC Class IIB transcription factors. The SCW cellulose synthase genes (CesAs) were located in the neighbourhoods of the NAC factors in A. thaliana and P. tremula, but not in P. abies. The NorWood co-expression network enabled identification of potential SCW CesA regulators in P. abies. The NorWood web resource represents a powerful community tool for generating evo-devo insights into the divergence of wood formation between angiosperms and gymnosperms and for advancing understanding of the regulation of wood development in P. abies. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Hydroponic screening of black locust families for heavy metal tolerance and accumulation.

    Science.gov (United States)

    Župunski, Milan; Borišev, Milan; Orlović, Saša; Arsenov, Danijela; Nikolić, Nataša; Pilipović, Andrej; Pajević, Slobodanka

    2016-01-01

    Present work examines phytoextraction potential of four black locust families (half-sibs 54, 56, 115, and 135) grown hydroponically. Plants were treated with 6 ppm of cadmium (Cd), 100 ppm of nickel (Ni), and 40 ppm of lead (Pb) added in Hoagland nutrient solution, accompanying with simultaneously applied all three metals. Responses to metals exposure among families were different, ranging from severe to slight reduction of root and shoot biomass production of treated plants. Calculated tolerance indices are indicating tested families as highly tolerant (Ti > 60). Family 135 had the lowest tolerance index, pointing that it was highly susceptible to applied metals. Comparing photosynthetic activities of tested families it has been noticed that they were highly sensitive to stress induced by heavy metals. Net photosynthetic rate of nickel treated plants was the most affected by applied concentration. Cadmium and nickel concentrations in stems and leaves of black locust families exceeded 100 mg Cd kg(-1) and 1000 mg Ni kg(-1), in both single and multipollution context. On the contrary, accumulation of lead in above ground biomass was highly affected by multipollution treatment. Tf and BCF significantly varied between investigated treatments and families of black locust. Concerning obtained results of heavy metals accumulation and tolerance of black locust families can be concluded that tested families might be a promising tool for phytoextraction purposes, but it takes to be further confirmed in field trials.

  12. Wood pellets for stoker burner

    International Nuclear Information System (INIS)

    Nykaenen, S.

    2000-01-01

    The author of this article has had a stoker for several years. Wood chips and sod peat has been used as fuels in the stoker, either separately or mixed. Last winter there occurred problems with the sod peat due to poor quality. Wood pellets, delivered by Vapo Oy were tested in the stoker. The price of the pellets seemed to be a little high 400 FIM/500 kg large sack. If the sack is returned in good condition 50 FIM deposit will be repaid to the customer. However, Vapo Oy informed that the calorific value of wood pellets is three times higher than that of sod peat so it should not be more expensive than sod peat. When testing the wood pellets in the stoker, the silo of the stoker was filled with wood pellets. The adjustments were first left to position used for sod peat. However, after the fire had ignited well, the adjustments had to be decreased. The content of the silo was combusted totally. The combustion of the content of the 400 litter silo took 4 days and 22 hours. Respectively combustion of 400 l silo of good quality sod peat took 2 days. The water temperature with wood pellets remained at 80 deg C, while with sod peat it dropped to 70 deg C. The main disadvantage of peat with small loads is the unhomogenous composition of the peat. The results of this test showed that wood pellets will give better efficiency than peat, especially when using small burner heads. The utilization of them is easier, and the amount of ash formed in combustion is significantly smaller than with peat. Wood pellets are always homogenous and dry if you do not spoil it with unproper storage. Pellets do not require large storages, the storage volume needed being less than a half of the volume needed for sod peat. When using large sacks the amount needed can even be transported at the trunk of a passenger car. Depending on the area to be heated, a large sack is sufficient for heating for 2-3 weeks. Filling of stoker every 2-5 day is not an enormous task

  13. Characteristics and modeling of spruce wood under dynamic compression load

    International Nuclear Information System (INIS)

    Eisenacher, Germar

    2014-01-01

    Spruce wood is frequently used as an energy absorbing material in impact limiters of packages for the transportation of radioactive material. A 9m drop test onto an unyielding target is mandatory for the packages. The impact results in a dynamic compression load of the spruce wood inside the impact limiter. The lateral dilation of the wood is restrained thereby due to encasing steel sheets. This work's objective was to provide a material model for spruce wood based on experimental investigations to enable the calculation of such loading conditions. About 600 crush tests with cubical spruce wood specimens were performed to characterize the material. The compression was up to 70% and the material was assumed to be transversely isotropic. Particularly the lateral constraint showed to have an important effect: the material develops a high lateral dilation without lateral constraint. The force-displacement characteristics show a comparably low force level and no or only slight hardening. Distinctive softening occurs after the linear-elastic region when loaded parallel to the fiber. On the other hand, using a lateral constraint results in significantly higher general force levels, distinctive hardening and lateral forces. The softening effect when loaded parallel to the fiber is less distinctive. Strain rate and temperature raise or lower the strength level, which was quantified for the applicable ranges of impact limiters. The hypothesis of an uncoupled evolution of the yield surface was proposed based on the experimental findings. It postulates an independent strength evolution with deviatoric and volumetric deformation. The hypothesis could be established using the first modeling approach, the modified LS-DYNA material model MAT075. A transversely isotropic material model was developed based thereupon and implemented in LS-DYNA. The material characteristics of spruce wood were considered using a multi-surface yield criterion and a non-associated flow rule. The yield

  14. Soil-wood interactions

    NARCIS (Netherlands)

    Wal, van der Annemieke; klein Gunnewiek, Paulien; Boer, de Wietse

    2017-01-01

    Wood-inhabiting fungi may affect soil fungal communities directly underneath decaying wood via their exploratory hyphae. In addition, differences in wood leachates between decaying tree species may influence soil fungal communities. We determined the composition of fungi in 4-yr old decaying logs

  15. European wood-fuel trade

    International Nuclear Information System (INIS)

    Hillring, B.; Vinterbaeck, J.

    2001-01-01

    This paper discusses research carried out during the l990s on European wood fuel trade at the Department of Forest Management and Products, SLU, in Sweden. Utilisation of wood-fuels and other biofuels increased very rapidly in some regions during that period. Biofuels are replacing fossil fuels which is an effective way to reduce the future influence of green house gases on the climate. The results indicate a rapid increase in wood-fuel trade in Europe from low levels and with a limited number of countries involved. The chief products traded are wood pellets, wood chips and recycled wood. The main trading countries are, for export, Germany and the Baltic states and, for import, Sweden, Denmark and to some extent the Netherlands. In the future, the increased use of biofuel in European countries is expected to intensify activity in this trade. (orig.)

  16. Radioactivity of Wood and Environment

    International Nuclear Information System (INIS)

    Hus, M.; Kosutic, K.; Lulic, S.

    2003-01-01

    Nuclear experiments in the atmosphere and nuclear accidents caused global deposition of artificial radionuclides in the soil of Earth's northern hemisphere, the territory of the Republic of Croatia included. Soil contamination by radionuclides resulted in their deposition in plants growing on the contaminated soil as well as in the trees. Large area of the Republic of Croatia is covered with wood, which is exploited in manufacture of industrial wood and for firewood. From approximately 3 million cubic metres of wood exploited annually, nearly one third serves for firewood. In the process of burning a smaller portion of radionuclides deposited in the wood evaporates and goes to atmosphere while a larger portion is retained in the ash. In this paper are presented the results of natural radionuclides 4 0K , 2 32T h and 2 38U as well as of artificial radionuclide 1 37C s content determination in the wood, wood briquette, charcoal and in ash remained after burning the wood, wood briquette and charcoal. The obtained results are discussed from wood radiocontamination aspect and from the aspect of potential environmental radiocontamination by the products from wood burning process. (author)

  17. How spectroscopy and microspectroscopy of degraded wood contribute to understand fungal wood decay.

    Science.gov (United States)

    Fackler, Karin; Schwanninger, Manfred

    2012-11-01

    Nuclear magnetic resonance, mid and near infrared, and ultra violet (UV) spectra of wood contain information on its chemistry and composition. When solid wood samples are analysed, information on the molecular structure of the lignocellulose complex of wood e.g. crystallinity of polysaccharides and the orientation of the polymers in wood cell walls can also be gained. UV and infrared spectroscopy allow also for spatially resolved spectroscopy, and state-of-the-art mapping and imaging systems have been able to provide local information on wood chemistry and structure at the level of wood cells (with IR) or cell wall layers (with UV). During the last decades, these methods have also proven useful to follow alterations of the composition, chemistry and physics of the substrate wood after fungi had grown on it as well as changes of the interactions between the wood polymers within the lignocellulose complex caused by decay fungi. This review provides an overview on how molecular spectroscopic methods could contribute to understand these degradation processes and were able to characterise and localise fungal wood decay in its various stages starting from the incipient and early ones even if the major share of research focussed on advanced decay. Practical issues such as requirements in terms of sample preparation and sample form and present examples of optimised data analysis will also be addressed to be able to detect and characterise the generally highly variable microbial degradation processes within their highly variable substrate wood.

  18. NANOCOATING PROCESS FOR TEXTILES APPLICATIONS AND WOOD PROTECTION

    Directory of Open Access Journals (Sweden)

    NICULESCU Claudia

    2014-05-01

    Full Text Available This paper presents the research results obtained in ERA NET MANUCOAT project, coordinated by INCDTP in collaboration with the following partners: INCDMNR-IMNR, SC MGM STAR CONSTRUCT SRL –Romania and IRIS-Spain. The objective of the research was to develop and obtain textile and wood surfaces with self-cleaning, photo catalytic, antibacterial and antifungal properties. An innovative method of manufacturing nanoparticles by hydrothermal process in a single step without any further heat treatment and controlled stoichiometry, tested spray coating technology (sputtering were developed. Full characterization of nanostructured powders in terms of chemical, physical, structural, thermal and technological characteristics was performed. The most important features to be considered in the treatment of wood by sputtering in order to deposit thin layers of TiO2 NPs or TiO2/Ag as the humidity should be below 12% and the maximum roughness P150, depending on the species of wood. Future works envisage optimizing the existing sputtering systems for pilot stage, in order to make nanoparticles deposits on large areas of textile and wood. The results of the research are photocatalytic textiles for surgical gowns, operative fields, hospital bed sheets and curtains and drapes for public spaces.

  19. Reliable and non-destructive positioning of larvae of wood-destroying beetles in wood

    International Nuclear Information System (INIS)

    Kerner, G.; Thiele, H.; Unger, W.

    1980-01-01

    Living larvae of wood-destroying insects (house longhorn beetle, deathwatch) can be determined in wood by both X-ray technique and vibration measurements. For such examinations convenient commercial devices were used and tested under laboratory conditions. The methods complement each other and lead to a rationalization of the tests of wood preservatives against wood-destroying insects. It seems to be promising to apply the test methods also to timber already used for building

  20. Fuzzy Rule Suram for Wood Drying

    Science.gov (United States)

    Situmorang, Zakarias

    2017-12-01

    Implemented of fuzzy rule must used a look-up table as defuzzification analysis. Look-up table is the actuator plant to doing the value of fuzzification. Rule suram based of fuzzy logic with variables of weather is temperature ambient and humidity ambient, it implemented for wood drying process. The membership function of variable of state represented in error value and change error with typical map of triangle and map of trapezium. Result of analysis to reach 4 fuzzy rule in 81 conditions to control the output system can be constructed in a number of way of weather and conditions of air. It used to minimum of the consumption of electric energy by heater. One cycle of schedule drying is a serial of condition of chamber to process as use as a wood species.

  1. Manufacture of wood-pellets doubles. Biowatti Oy started a wood pellet plant in Turenki

    International Nuclear Information System (INIS)

    Rantanen, M.

    1999-01-01

    Wood pellets have many advantages compared to other fuels. It is longest processed biofuel with favorable energy content. It is simple to use, transport and store. Heating with wood pellets is cheaper than with light fuel oil, and approximately as cheap as utilization of heavy fuel oil, about 110 FIM/MWh. The taxable price of wood pellets is about 550 FIM/t. Stokers and American iron stoves are equally suitable for combustion of wood pellets. Chip fueled stokers are preferred in Finland, but they are also suitable for the combustion of wood pellets. Wood pellets is an environmentally friendly product, because it does not increase the CO 2 load in the atmosphere, and its sulfur and soot emissions are relatively small. The wood pelletizing plant of Biowatti Oy in Turenki was started in an old sugar mill. The Turenki sugar mill was chosen because the technology of the closed sugar factory was suitable for production of wood pellets nearly as such, and required only by slight modifications. A press, designed for briquetting of sugar beat clippings makes the pellets. The Turenki mill will double the volume of wood pellet manufacture in Finland during the next few years. At the start the annual wood pellet production will be 20 000 tons, but the environmental permit allows the production to be increased to 70 000 tons. At first the mill uses planing machine chips as a raw material in the production. It is the most suitable raw material, because it is already dry (moisture content 8-10%), and all it needs is milling and pelletizing. Another possible raw material is sawdust, which moisture content is higher than with planing machine chips. Most of the wood pellets produced are exported e.g. to Sweden, Denmark and Middle Europe. In Sweden there are over 10 000 single-family houses using wood pellets. Biowatti's largest customer is a power plant located in Stockholm, which combusts annually about 200 000 tons of wood pellets

  2. Weathering methods for preservative treated wood and their applicability for fire retarded wood

    NARCIS (Netherlands)

    Voss, A.

    1999-01-01

    preservative treated wood. The aim of the presentation is to inform you about current testing methods and to discuss their applicability to test fire retarded wood in outdoor use. Assuming that fire retardants will only be used in out of ground contact, only those methods are mentioned, which fit

  3. Who's Counting Dead Wood ?

    OpenAIRE

    Woodall, C. W.; Verkerk, H.; Rondeux, Jacques; Ståhl, G.

    2009-01-01

    Dead wood in forests is a critical component of biodiversity, carbon and nutrient cycles, stand structure, and fuel loadings. Until recently, very few countries have conducted systematic inventories of dead wood resources across their forest lands. This may be changing as an increasing number of countries implement dead wood inventories. A recent survey looks at the status and attributes of forest dead wood inventories in over 60 countries. About 13 percent of countries inventory dead wood gl...

  4. Concepts in the development of new accelerated test methods for wood decay

    Science.gov (United States)

    Darrel D. Nicholas; Douglas Crawford

    2003-01-01

    Efforts to develop new environmentally friendly wood preservatives are seriously handicapped by the extended time period required to carry out the evaluation needed to establish confidence in the long term performance of new preservative systems. Studies in our laboratory have shown that using strength loss as a measure of the extent of wood decay makes it possible to...

  5. Wood pellets : is it a reliable, sustainable, green energy option?

    International Nuclear Information System (INIS)

    Swaan, J.

    2006-01-01

    The Wood Pellet Association of Canada was formerly called the BC Pellet Fuel Manufacturers Association, and was renamed and re-organized in January 2006. The association serves as an advocate for the wood pellet industry in addition to conducting research projects. This power point presentation presented an overview of the wood pellet industry in North America and Europe. Canada's 23 pellet plants currently produce just over 1,000,000 tons of wood pellets annually. Pellet producers in the United States produce approximately 800,000 tons annually for the residential bagged market. There are currently 240 pellet plants in Europe, and district heating is the largest growth market for wood pellets in Europe. British Columbia (BC) pellet producers will ship 450,000 tons to European power plants in 2005. Wood pellet specifications were presented, with details of calorific values, moisture and ash contents. An outline of wood pellet production processes was provided. New pellet plants currently under construction were reviewed. Domestic, North American and overseas exports were discussed, along with production estimates for BC for the next 5 years. A chart of world production and consumption of wood pellets between 2000 to 2010 was presented. North American wood pellet technologies were described. The impact of the pine beetle infestation in BC on the wood pellet industry was evaluated, and a worldwide wood pellet production growth forecast was presented. Issues concerning off-gassing, emissions, and torrifracation were also discussed. tabs., figs

  6. Variation of moisture content of some varnished woods in indoor climatic conditions

    Directory of Open Access Journals (Sweden)

    Kemal Üçüncü

    2017-11-01

    Full Text Available In this study, moisture change of varnished wood of black poplar (Populus nigra and yellow pine (Pinus silvestris L. used in indoor climate conditions with central heating in Trabzon (Turkey were investigated. 300 mm length wood specimens, with cross section of 12.5 mm in tangential and in radial and with the square sections of 25mm and 50 mm, were obtained from two species grown in Kanuni Campus of the Karadeniz Technical University. In this research, un-varnished wood samples were also used for reference. The wood moisture content was determined by the weighing method, the wood equilibrium moisture content by the Hailwood-Horrobin equation, and the relative humidity in the indoor climatic conditions by humid air thermodynamic principles. As a result; it was observed that the moisture content of varnished wood samples has a strong relationship with equilibrium moisture content, temperature and relative humidity. It was found that the moisture content of varnished woods was higher than the moisture content of un-varnished woods in the same climatic conditions. It was observed that the difference between the monthly average moisture content was lower in varnished woods in proportion to un-varnished woods. According to these results, it can be indicated that it would be more appropriate to select higher moisture content in the drying of wood than the equilibrium moisture content. Such an application would also reduce drying costs. Further, it can be recommended to use varnished wood in various applications because the low change range of average moisture content can affect the swelling or shrinking of wood.

  7. Impregnating Systems for Producing Wood-Plastic Composite Materials and Resinified Woods by Radiochemical Means

    International Nuclear Information System (INIS)

    Laizier, J.; Laroche, R.; Marchand, J.

    1969-01-01

    The effect of the nature of the components in the impregnation mixture on the characteristics of wood-plastic combinations has been studied in the case of beech by applying a wide variety of compositions. In particular, the effect of water (in the impregnator, and in the form of moisture in the wood) on the characteristics of the products obtained has been determined. It has been shown that, in place of the conventional method for preparing resinified woods (using a ternary monomer-solvent-water mixture), it is possible to use a method involving comonomers, which obviate the need to dry the wood after treatment. The evaluation of the results obtained is based on the value of the impregnation rate and on the modifications in microscopic structure; these emphasize the differences between the types of filler and enable comparisons to be drawn with the dimensional stabilities observed. Measurements of variations in dimensions and the recurrence of moisture have made it possible to establish a classification based on the types of monomer used and the operating conditions. It is shown that a whole range of products is obtained, the properties of which differ widely and are comparatively easily adaptable to the purpose specified. These properties illustrate clearly the differences and characteristics of resinified woods as opposed to conventional wood-plastic materials. (author) [fr

  8. Selection and application of exterior stains for wood

    Science.gov (United States)

    R. Sam. Williams; William C. Feist

    1999-01-01

    Exterior stains for wood protect the wood surface from sunlight and moisture. Because stains are formulated to penetrate the wood surface, they are not prone to crack or peel as can film-forming finishes, such as paints. This publication describes the properties of stains and wood, methods for applying stains, and the expected service life of stains.

  9. What Next for Wood Construction/Demolition Debris?

    OpenAIRE

    Martin A. Hubbe

    2014-01-01

    Residents in localities throughout the world voluntarily participate in the routine recycling of household wastes, such as paper, metals, and plastics containers. But when a house in their neighborhood gets built or torn down, most of the debris – including wood waste – gets landfilled. Such a waste of material suggests that there are opportunities to add value to these under-utilized resources. The great variability, as well as contamination, pose major challenges. It is recommended that rec...

  10. 21 CFR 178.3800 - Preservatives for wood.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Preservatives for wood. 178.3800 Section 178.3800... Certain Adjuvants and Production Aids § 178.3800 Preservatives for wood. Preservatives may be safely used... to accomplish the technical effect of protecting the wood from decay, mildew, and water absorption...

  11. Wood fuel and the environment

    International Nuclear Information System (INIS)

    Foster, C.A.

    1992-01-01

    The purpose of this paper is to try and demonstrate the role that the use of Wood as a Fuel can play in our environment. The term ''Wood Fuel'', for the purposes of these proceedings, refers to the use of wood obtained from the forest or the farm. It does not refer to waste wood from for example buildings. The role of wood fuel in the environment can be assessed at many different levels. In this paper three different scales of ''Environment'' and the role of wood fuel in each, will be considered. These three scales are namely the global environment, the local environment, and the National (community) environment. (Author)

  12. Preliminary studies of Brazilian wood using different radioisotopic sources

    International Nuclear Information System (INIS)

    Carvalho, Gilberto; Silva, Leonardo Gondim de Andrade e

    2013-01-01

    Due to availability and particular features, wood was one of the first materials used by mankind with a wide variety of applications. It can be used as raw material for paper and cellulose manufacturing; in industries such as chemical, naval, furniture, sports goods, toys, and musical instrument; in building construction and in the distribution of electric energy. Wood has been widely researched; therefore, wood researchers know that several aspects such as temperature, latitude, longitude, altitude, sunlight, soil, and rainfall index interfere with the growth of trees. This behavior explains why average physical-chemical properties are important when wood is studied. The majority of researchers consider density to be the most important wood property because of its straight relationship with the physical and mechanical properties of wood. There are three types of wood density: basic, apparent and green. The apparent density was used here at 12% of moisture content. In this study, four different types of wood were used: 'freijo', 'jequetiba', 'muiracatiara' and 'ipe'. For wood density determination by non-conventional method, Am-241, Ba-133 and Cs-137 radioisotopic sources; a NaI scintillation detector and a counter were used. The results demonstrated this technique to be quick and accurate. By considering the nuclear parameters obtained as half value layers and linear absorption coefficients, Cs-137 radioisotopic source demonstrated to be the best option to be used for inspection of the physical integrity of electric wooden poles and live trees for future works. (author)

  13. Durable protection of the surface of wood used outdoors: material constraints, problems and approaches to solutions

    Directory of Open Access Journals (Sweden)

    Merlin A.

    2018-01-01

    Full Text Available The aesthetic durability of wooden structures is a major challenge for the use of this material in construction. Wood is used for its technical performances but also for its architectural qualities and its aesthetic perception. The premature aging of the wooden structures is detrimental because these disorders, even if they do not affect the strength of the structures, are mostly irremediable. The surface protection of wood is generally ensured by the use of a finish, whose essential role is to protect wood from climatic aggressions (water, solar radiation, oxygen, .... The secondary wood processing industry consists of a series of manufacturing and processing activities, each containing a portion of the added value of the product. The application of a finish on a wood-based work is usually the last and most visible step in this value chain.In outdoor use, the protection of the wood surface with transparent finishes is not yet sufficiently durable to be able to compete with materials used in industrial carpentry such as PVC or aluminum. Opaque finishes generally provide more durable protection but they mask the appearance of the wood sought by users.With the aim of positioning wood in this construction sector, research on transparent finishes has focused on the efficiency and improvement of the durability of the protection of the surface appearance of structures. Faced with climatic aggressions, the optimum conservation of a structure is not only linked to the performance of the finish but also to the characteristics of the wood material. In particular, in order to fulfill its protective function, the finish film must be able to follow the dimensional variations of the wood it covers without breaking and without detachment. In addition to the criteria for the effectiveness of finishes in the protection of structures, the environmental impact must be considered with increasing attention. Currently, more than 80% of composite or solid wood

  14. Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive.

    Science.gov (United States)

    Hazwan Hussin, M; Samad, Noraini Abdul; Latif, Nur Hanis Abd; Rozuli, Nurul Adilla; Yusoff, Siti Baidurah; Gambier, François; Brosse, Nicolas

    2018-07-01

    Lignocellulosic materials can significantly contribute to the development of eco-friendly wood adhesives. In this work, glyoxal-phenolic resins for plywood were prepared using organosolv lignin, which was isolated from black liquor recovered from organosolv pulping of oil palm fronds (OPF) and considered to be an alternative to phenol. Glyoxal, which is a dialdehyde obtained from several natural resources, was used as substitute for formaldehyde. The structure of organosolv lignin and the resins were characterized by FTIR and NMR, and for thermal stability by TGA and DSC. The resins were further studied for their viscosity, pH, solids content and gel times. The resins performance as wood adhesive was further established from mechanical test in terms of tensile strength and modulus of elasticity (MOE) to obtain the optimum ratios of organosolv lignin, which replaces phenol in organosolv lignin phenol glyoxal (OLPG) resins. The adhesive composition having 50% (w/w) of phenol substituted by organosolv lignin, termed as 50% OLPG showed highest adhesive strength compared to phenol formaldehyde (PF) commercial adhesive. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  16. Wood Smoke

    Science.gov (United States)

    Smoke is made up of a complex mixture of gases and fine, microscopic particles produced when wood and other organic matter burn. The biggest health threat from wood smoke comes from fine particles (also called particulate matter).

  17. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  18. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  19. CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES

    OpenAIRE

    Tadeu Mascia,Nilson

    2003-01-01

    Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...

  20. Water repellents and water-repellent preservatives for wood

    Science.gov (United States)

    R. Sam. Williams; William C. Feist

    1999-01-01

    Water repellents and water-repellent preservatives increase the durability of wood by enabling the wood to repel liquid water. This report focuses on water-repellent finishes for wood exposed outdoors above ground. The report includes a discussion of the effects of outdoor exposure on wood, the characteristics of water repellent and water-repellent preservative...

  1. Predictive Modeling of Black Spruce (Picea mariana (Mill. B.S.P. Wood Density Using Stand Structure Variables Derived from Airborne LiDAR Data in Boreal Forests of Ontario

    Directory of Open Access Journals (Sweden)

    Bharat Pokharel

    2016-12-01

    Full Text Available Our objective was to model the average wood density in black spruce trees in representative stands across a boreal forest landscape based on relationships with predictor variables extracted from airborne light detection and ranging (LiDAR point cloud data. Increment core samples were collected from dominant or co-dominant black spruce trees in a network of 400 m2 plots distributed among forest stands representing the full range of species composition and stand development across a 1,231,707 ha forest management unit in northeastern Ontario, Canada. Wood quality data were generated from optical microscopy, image analysis, X-ray densitometry and diffractometry as employed in SilviScan™. Each increment core was associated with a set of field measurements at the plot level as well as a suite of LiDAR-derived variables calculated on a 20 × 20 m raster from a wall-to-wall coverage at a resolution of ~1 point m−2. We used a multiple linear regression approach to identify important predictor variables and describe relationships between stand structure and wood density for average black spruce trees in the stands we observed. A hierarchical classification model was then fitted using random forests to make spatial predictions of mean wood density for average trees in black spruce stands. The model explained 39 percent of the variance in the response variable, with an estimated root mean square error of 38.8 (kg·m−3. Among the predictor variables, P20 (second decile LiDAR height in m and quadratic mean diameter were most important. Other predictors describing canopy depth and cover were of secondary importance and differed according to the modeling approach. LiDAR-derived variables appear to capture differences in stand structure that reflect different constraints on growth rates, determining the proportion of thin-walled earlywood cells in black spruce stems, and ultimately influencing the pattern of variation in important wood quality attributes

  2. Band reporting probablilities of mallards, American black ducks, and wood ducks in eastern North America

    Science.gov (United States)

    Garrettson, Pamela R.; Raftovich, Robert V.; Hines, James; Zimmerman, Guthrie S.

    2014-01-01

    Estimates of band reporting probabilities are used for managing North American waterfowl to convert band recovery probabilities into harvest probabilities, which are used to set harvest regulations. Band reporting probability is the probability that someone who has shot and retrieved a banded bird will report the band. This probability can vary relative to a number of factors, particularly the inscription on the band and the ease with which it can be reported. Other factors, such as geographic reporting region, and species and sex of the bird may also play a role. We tested whether reporting probabilities of wood ducks (Aix sponsa) and American black ducks (black ducks; Anas rubripes) differed from those of mallards (Anas platyrhynchos) and whether band reporting varied geographically or by the sex of the banded bird. In the analysis of spatially comparable wood duck and mallard data, a band reporting probability of 0.73 (95% CI = 0.67–0.78) was appropriate for use across species, sex, and reporting region within the United States. In the black duck–mallard comparison, the band reporting probability of black ducks in Eastern Canada (0.50, 95% CI = 0.44–0.57) was lower than in the Eastern United States (0.73, 95% CI = 0.62–0.83). These estimates reflected an increase in overall band reporting probability following the addition of a toll-free telephone number to band inscriptions. Lower reporting in Eastern Canada may be because of cultural, linguistic, or logistical barriers.

  3. Advances in the study of mechanical properties and constitutive law in the field of wood research

    Science.gov (United States)

    Zhao, S.; Zhao, J. X.; Han, G. Z.

    2016-07-01

    This paper presents an overview of mechanical properties and constitutive law for wood. Current research on the mechanical properties of wood have mostly focused on density, grain, moisture, and other natural factors. It has been established that high density, dense grain, and high moisture lead to higher strength. In most literature, wood has been regarded as an anisotropic material because of its fiber. A microscopic view is used in research of wood today, in this way, which has allowed for clear observation of anisotropy. In general, wood has higher strength under a dynamic load, and no densification. The constitutive model is the basis of numerical analysis. An anisotropic model of porous and composite materials has been used for wood, but results were poor, and new constitutions have been introduced. According to the literature, there is no single theory that is widely accepted for the dynamic load. Research has shown that grain and moisture are key factors in wood strength, but there has not been enough study on dynamic loads so far. Hill law has been the most common method of simulation. Models that consider high strain rate are attracting more and more attention.

  4. Lateral-Torsional Buckling Instability Caused by Individuals Walking on Wood Composite I-Joists

    Science.gov (United States)

    Villasenor Aguilar, Jose Maria

    Recent research has shown that a significant number of the falls from elevation occur when laborers are working on unfinished structures. Workers walking on wood I-joists on roofs and floors are prone to fall hazards. Wood I-joists have been replacing dimension lumber for many floor systems and a substantial number of roof systems in light-frame construction. Wood I-joists are designed to resist axial stresses on the flanges and shear stresses on the web while minimizing material used. However, wood I-joists have poor resistance to applied lateral and torsional loads and are susceptible to lateral-torsional buckling instability. Workers walking on unbraced or partially braced wood I-joists can induce axial and lateral forces as well as twist. Experimental testing demonstrated that workers cause lateral-torsional buckling instability in wood I-joists. However, no research was found related to the lateral-torsional buckling instability induced by individuals walking on the wood I-joists. Furthermore, no research was found considering the effects of the supported end conditions and partial bracing in the lateral-torsional buckling instability of wood I-joists. The goal of this research was to derive mathematical models to predict the dynamic lateral-torsional buckling instability of wood composite I-joists loaded by individuals walking considering different supported end conditions and bracing system configurations. The dynamic lateral-torsional buckling instability was analyzed by linearly combining the static lateral-torsional buckling instability with the lateral bending motion of the wood Ijoists. Mathematical models were derived to calculate the static critical loads for the simply supported end condition and four wood I-joist hanger supported end conditions. Additionally, mathematical models were derived to calculate the dynamic maximum lateral displacements and positions of the individual walking on the wood Ijoists for the same five different supported end

  5. Effects of different black mediators on the shear strength of orthodontic bracket to the enamel treated with Nd-Yag laser

    Science.gov (United States)

    Huang, Shun-Te; Lin, I.-Shueng; Tsai, Chi-Cheng

    1995-04-01

    The Nd:YAG laser has ablation, crack, and crater effects on the dental enamel through black mediators which are very similar to the acid etching effects of phosphoric acid. This study was designed for searching how the different black mediators influence the shear strengths of the brackets bound to the enamel surfaces which were treated with the Nd:YAG laser. 90 bovine enamels divided into 5 groups were painted with 5 kinds of black mediators including Chinese ink, oil ink, black ball pen, water ink and black transfer paper. The enamel surfaces painted with black mediators were then radiated by Nd:YAG laser (ADL; American Dental Laser 300dl, power: 20 pps, 87.5 mj). Orthodontic brackets were bonded to the radiated surfaces. Then the shear strengths of the brackets to the enamels were measured by Instron. The results showed that the Chinese ink group and oil ink group has the strongest shear strength, ball pen group and water ink group showed the second strength, and the transfer paper group has the lowest shear strength. In addition, scanning electronic microscope also was used to observe the topographic changes of the enamel surfaces induced by the laser ablation.

  6. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  7. Service Life Prediction of Wood Claddings by in-situ Measurement of Wood Moisture Content

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Lindegaard, Berit; Morsing, Niels

    2009-01-01

    of wood moisture are done by in-situ resistance moisture meters (Lindegaard and Morsing 2006). The aim is that the test should form the basis of evaluation of the maintenance requirements and the prediction of service life of the surface treatment and the wood/construction. At the moment 60 test racks...... are exposed. This study examines the data from the first five years of outdoor exposure using data from a test rack with a water-borne acrylic coating and a test rack with ICP coating for case studies. The moisture content data was converted into weekly average and weekly variation values which gave a deeper...

  8. Tolerance of Serpula lacrymans to copper-based wood preservatives

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Green, Frederick; Clausen, Carol A.

    2005-01-01

    construction, but some decay fungi are known to be copper tolerant. In this study, soil-block tests were undertaken to clarify the effect of copper, copper citrate, and alkaline copper quaternary-type D (ACQ-D) on the decay capabilities of S. lacrymans compared with an alternative wood preservative......Serpula lacrymans, the dry rot fungus, is considered the most economically important wood decay fungus in certain temperate regions of the world, namely northern Europe, Japan, and Australia. Previously, copper-based wood preservatives were commonly used for pressure treatment of wood for building...... not containing copper. Twelve isolates of the dry rot fungus S. lacrymans and four other brown-rot species were evaluated for weight loss on wood treated with 1.2% copper citrate, 0.5% ACQ-D, and 0.5% naphthaloylhydroxylamine (NHA). Eleven out of 12 isolates of S. lacrymans were shown to be tolerant towards...

  9. Evaluation of various fire retardants for use in wood flour--polyethylene composites

    Science.gov (United States)

    Nicole M. Stark; Robert H. White; Scott A. Mueller; Tim A. Osswald

    2010-01-01

    Wood-plastic composites represent a growing class of materials used by the residential construction industry and the furniture industry. For some applications in these industries, the fire performance of the material must be known, and in some cases improved. However, the fire performance of wood-plastic composites is not well understood, and there is little...

  10. Guide for minimizing the effect of preservative-treated wood on sensitive environments

    Science.gov (United States)

    Stan T. Lebow; Michael Tippie

    2001-01-01

    Preservative-treated wood is often used for construction of highway and foot bridges, wetland boardwalks, and other structures in or over water or sensitive environments. In these applications it is important that release of preservative from the wood into the environment is minimized. This publication addresses this concern by describing the various types of pressure-...

  11. PHYSICAL AND MECHANICAL PROPERTIES OF Araucaria angustifolia (Bertol. WOOD FOR THREE STRATUM PHYTOSOCIOLOGICAL

    Directory of Open Access Journals (Sweden)

    Rafael Beltrame

    2010-11-01

    Full Text Available The study of physical and mechanical properties of wood is essential for industrial use both in construction and the manufacture of furniture. Thus, the study aimed to determine the physical and mechanical properties of the Araucaria angustifolia wood in terms of three strata phytosociological. For this, 15 trees were felled, five belonging to the upper stratum, the middle stratum five and five for the lower strata. The trees were deployed for the preparation of specimens used for mechanical testing. In the mechanical characterization of the species assays were performed for impact resistance, static bending, compression axial and perpendicular to the fibers. As for the characterization of physical properties, determined the apparent specific gravity at 12% relative humidity for each extract. The results did not show significant differences in the tests of impact resistance and static bending to the strata phytosociological. As for the apparent specific gravity, compression axial and perpendicular there was a change in the values of propertiesbetween the strata phytosociological, is generally butter in the middle and upper strata. Therefore the physical and mechanical properties tend to present higher values these two strata. The data analysis allowed of Araucaria angustifolia wood has moderate mechanical strength when compared with other species studies.

  12. Adhesives for Achieving Durable Bonds with Acetylated Wood

    Science.gov (United States)

    Charles Frihart; Rishawn Brandon; James Beecher; Rebecca Ibach

    2017-01-01

    Acetylation of wood imparts moisture durability, decay resistance, and dimensional stability to wood; however, making durable adhesive bonds with acetylated wood can be more difficult than with unmodified wood. The usual explanation is that the acetylated surface has fewer hydroxyl groups, resulting in a harder-to-wet surface and in fewer hydrogen bonds between wood...

  13. Wood and concrete polymer composites

    International Nuclear Information System (INIS)

    Singer, K.

    1974-01-01

    There are several ways to prepare and use wood and concrete polymer composites. The most important improvements in the case of concrete polymer composites are obtained for compressive and tensile strengths. The progress in this field in United States and other countries is discussed in this rview. (M.S.)

  14. Bio-energy in the wood processing industry. Manual for energy production from residual matter for the wood processing industry

    International Nuclear Information System (INIS)

    Van Halen, C.J.G.; Arninkhof, M.J.C.; Rommens, P.J.M.; Karsch, P.

    2000-04-01

    This manual is published within the framework of a project, financed by Novem (EWAB programme) and the European Commission (Altener programme). Similar manuals were drafted in Germany, England and Sweden. The basis of the project was the manual 'Quality manual for small-scale wood incineration and wood gasification', published by Novem in 1998. That quality manual was drafted on the basis of an evaluation of a number of wood combustion and wood gasification projects. The original manual has been improved as a result of comments made by experts in the field of bio-energy. Updated information was added with respect to legislation, financing options and new technology. Also the manual is focused more on the wood processing industry

  15. Factors affecting sodium hypochlorite extraction of CCA from treated wood.

    Science.gov (United States)

    Gezer, E D; Cooper, P A

    2009-12-01

    Significant amounts of chromated copper arsenate (CCA) treated wood products, such as utility poles and residential construction wood, remain in service. There is increasing public concern about environmental contamination from CCA-treated wood when it is removed from service for reuse or recycling, placed in landfills or burned in commercial incinerators. In this paper, we investigated the effects of time, temperature and sodium hypochlorite concentration on chromium oxidation and extraction of chromated copper arsenate from CCA-treated wood (Type C) removed from service. Of the conditions evaluated, reaction of milled wood with sodium hypochlorite for one hour at room temperature followed by heating at 75 degrees C for two hours gave the highest extraction efficiency. An average of 95% Cr, 99% Cu and 96% As could be removed from CCA-treated, milled wood by this process. Most of the extracted chromium was oxidized to the hexavalent state and could therefore be recycled in a CCA treating solution. Sodium hypochlorite extracting solutions could be reused several times to extract CCA components from additional treated wood samples.

  16. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Roger M. Rowell

    2010-01-01

    The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....

  17. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    International Nuclear Information System (INIS)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; William P. Barry; Jun Wang; Hongming Li

    2001-01-01

    During the third quarter, important preparatory work was continued so that the experimental activities can begin early in the fourth quarter. Authorization was awaited in response to the letter that was submitted to the Allegheny County Health Department (ACHD) seeking an R and D variance for the air permit at the Bellefield Boiler Plant (BBP). Verbal authorizations were received from the Pennsylvania Department of Environmental Protection (PADEP) for R and D variances for solid waste permits at the J. A. Rutter Company (JARC), and Emery Tree Service (ETS). Construction wood was acquired from Thompson Properties and Seven D Corporation. Forty tons of pallet and construction wood were ground to produce BioGrind Wood Chips at JARC and delivered to Mon Valley Transportation Company (MVTC). Five tons of construction wood were milled at ETS and half of the product delivered to MVTC. Discussions were held with BBP and Energy Systems Associates (ESA) about the test program. Material and energy balances on Boiler No.1 and a plan for data collection were prepared. Presentations describing the University of Pittsburgh Wood/Coal Co-Firing Program were provided to the Pittsburgh Chapter of the Pennsylvania Society of Professional Engineers, and the Upgraded Coal Interest Group and the Biomass Interest Group (BIG) of the Electric Power Research Institute (EPRI). An article describing the program appeared in the Pittsburgh Post-Gazette. An application was submitted for authorization for a Pennsylvania Switchgrass Energy and Conservation Program

  18. Mechanical characterization and structural assessment of biocomposites for construction

    Science.gov (United States)

    Christian, Sarah Jane

    . While the biocomposite strengths in flexure, compression, and shear were comparable to the strengths of wood and wood-based products parallel to grain, the biocomposite strengths exceeded the strengths perpendicular to the wood grain, as would be expected with fabric reinforcement. The biocomposite moduli of elasticity were between 35% and 75% of the wood moduli parallel to grain. While structural shape of the biocomposites could be manipulated to achieve a comparable structural stiffness to replace wood and short fiber FRPs, the biocomposites have comparable stiffness to the engineered wood-products. Thus, in terms of mechanical properties, the biocomposites can be used in place of engineered-wood products. Yet, the higher densities of the biocomposites as compared to wood and engineered-wood products may limit their implementation in construction. The diffusion coefficients for both biocomposites were comparable to wood and higher than the coefficients for synthetic composites as expected due to the hydrophilicity of the natural fibers. Significantly greater moisture absorption of the hemp/cellulose acetate composite as compared to the hemp/PHB composite was attributed to the cellulose acetate itself being hydrophilic whereas PHB is hydrophobic. The rate of diffusion for both materials was found to increase with increasing temperature. Moisture absorption negatively affected the biocomposites as shown through lower initial stiffnesses and higher strains at failure of saturated specimens. The hemp/cellulose acetate composites were much more affected by moisture absorption than the hemp/PHB composites likely because the moisture plasticized the cellulose acetate and also weakened the interfacial fiber-matrix bond. Moisture was assumed to cause permanent damage because the stress-strain behavior did not return to the unconditioned behavior upon drying of the saturated specimens. The degradation of mechanical properties upon introduction to humid environments limits the

  19. The use of wood waste for energy production

    International Nuclear Information System (INIS)

    Karlopoulos, E.; Pavloudakis, F.

    1999-01-01

    The paper presents some technical aspects and management issues of wood waste reuse end disposal. It refers to the Greek and European legislation which determines the framework for rational and environmental friendly practices for woos waste management. It refers also to the wood waste classification systems and the currently applied methods of wood waste disposal and reuse. Emphasis is given to the wood waste-to-energy conversion system, particularly to the pretreatment requirements, the combustion techniques, and the environmental constrains. Finally, the decision making process for the investments in the wood waste firing thermal units is discussed

  20. Physical, mechanical, and biodegradable properties of meranti wood polymer composites

    International Nuclear Information System (INIS)

    Enamul Hoque, M.; Aminudin, M.A.M.; Jawaid, M.; Islam, M.S.; Saba, N.; Paridah, M.T.

    2014-01-01

    Highlights: • In-situ polymerization and solution casting method used to manufacture WPC. • In-situ WPC exhibited better properties compared to pure wood, 5% WPC and 20% WPC. • Lowest water absorption and least biodegradability shown by In-situ wood. - Abstract: In-situ polymerization and solution casting techniques are two effective methods to manufacture wood polymer composites (WPCs). In this study, wood polymer composites (WPCs) were manufactured from meranti sapwood by solution casting and in-situ polymerization process using methyl methacrylate (MMA) and epoxy matrix respectively. Physical, mechanical, and morphological characterizations of fabricated WPCs were then carried out to analyse their properties. Morphological properties of composites samples were analyzed through scanning electron microscopy (SEM). The result reveals that in-situ wood composite exhibited better properties compared to pure wood, 5% WPC and 20% WPC. Moreover, in-situ WPC had lowest water absorption and least biodegraded. Conversely, pure wood shown moderate mechanical strength, high biodegradation and water absorption rate. In term of biodegradation, earth-medium brought more severe effect than water in deteriorating the properties of the specimens

  1. A synthesis of research on wood products and greenhouse gas impacts

    International Nuclear Information System (INIS)

    Sathre, R.; O'Connor, J.

    2008-11-01

    Existing scientific literature on the wood products industry was reviewed in an effort to summarize consensus findings, or range of findings, addressing the net life cycle greenhouse gas footprint of wood construction products. The report sought to clarify whether actively managing forests for wood production was better, worse or neutral for climate change than leaving the forest in its natural state. In addition, it sought to quantify the greenhouse gas emissions avoided per unit of wood substituted for non-wood materials. Forty-eight international studies were examined in terms of fossil energy used in wood manufacturing and compared alternatives, such as the avoidance of industrial process carbon emissions as with cement manufacturing; the storage of carbon in forests and forest products; the use of wood by-products as a biofuel replacement for fossil fuels; and carbon storage and emission due to forest products in landfills. The report presented a list of studies reviewed and individual summaries of study findings. A meta-analysis of displacement factors of wood product use was also presented. It was concluded from all of the studies reviewed, that the production of wood-based materials and products results in less greenhouse gas emission than the production of functionally comparable non-wood materials and products. 48 refs., 1 tab.

  2. Wood pellets : a worldwide fuel commodity

    International Nuclear Information System (INIS)

    Melin, S.

    2005-01-01

    Aspects of the wood pellet industry were discussed in this PowerPoint presentation. Details of wood pellets specifications were presented, and the wood pellet manufacturing process was outlined. An overview of research and development activities for wood pellets was presented, and issues concerning quality control were discussed. A chart of the effective calorific value of various fuels was provided. Data for wood pellet mill production in Canada, the United States and the European Union were provided, and various markets for Canadian wood pellets were evaluated. Residential sales as well as Canadian overseas exports were reviewed. Production revenues for British Columbia and Alberta were provided. Wood pellet heat and electricity production were discussed with reference to prefabricated boilers, stoves and fireplaces. Consumption rates, greenhouse gas (GHG) emissions, and fuel ratios for wood pellets and fossil fuels were compared. Price regulating policies for electricity and fossil fuels have prevented the domestic expansion of the wood pellet industry. There are currently no incentives for advanced biomass combustion to enter British Columbia markets, and this has led to the export of wood pellets. It was concluded that climate change mitigation policies will be a driving force behind market expansion for wood pellets. tabs., figs

  3. Urban wood: Fuel from landscapers and land fills

    International Nuclear Information System (INIS)

    Miles, T.R.; Miles, T.R. Jr.

    1991-01-01

    Wood recovered from urban landscaping, construction and building demolition has become an important fuel for several new power plants. Sources, composition, and requirements for fuel preparation, handling, firing and emissions control are described from experience at several plants. Urban wood waste fuels are suitable for steam and power generation if precautions are taken to process the fuel and provide uniform flow to the boiler

  4. ANATOMICAL AND PHYSICAL PROPERTIESOF BISBUL WOOD (Diospyros blancoi A.DC.

    Directory of Open Access Journals (Sweden)

    Krisdianto Krisdianto

    2005-03-01

    Full Text Available Ebony (Diospyros sp.  is a heavy hardwood that is  popularly known as blackwood. Diospyros consists of over 300 species spread throughout tropics area and about 100 species occur in Indonesia. Bisbul wood (Diospyros btancoi A.DC. is one species of  streaked ebony that is locally known as 'buah mentega'.  The anatomical and physical properties of  bisbul  were studied to collect information  for wood identification  and to support appropriate use of the timber. Anatomical properties were studied from microtome sectioned samples, which have been coloured by safranin and mounted by entellan, while fiber dimensions  were studied from macerated samples.  Physical properties  of  bisbul wood studied include moisture content, density and percentage of volumetric shrinkage. Moisture content and density were studied from 20 x 20 x 20 mm samples based on wet and oven dry condition. Volumetric shrinkage was measured from dimension changes in radial, tangential and longitudinal shrinkage of 20 x 20 x 40 mm samples. The samples were measured in wet and oven dry conditions. The main anatomical characteristics to identify bisbul wood were black wood with pinkish streaked, heavy and very hard,  very fine texture, even, lustrous surface and glossy, distinct growth ring, small size of vessels, apotracheal parenchyma forming reticulate pattern. The average moisture content was 59.86 ± 2.84%,  the density average was 0.74 ± 0.04 gr/cm3  and volumetric shrinkage was 10.41±0.70%.   The higher the stem, the more moisture  content and the lower the density will be. Sapwood density was lower and had more moisture  content than heartwood. The black pinkish heavy wood, bisbul was recommended to be used for carvings, sculpture, souvenir and luxuryinterior products.

  5. Mechanical behaviour of wood T-joints. Experimental and numerical investigation

    Directory of Open Access Journals (Sweden)

    C.L. dos Santos

    2015-01-01

    Full Text Available Results of a double-shear single-dowel wood connection tested under monotonic quasi-static compression loading are presented and discussed in this paper. The wood used in this study was a pine wood, namely the Pinus pinaster species, which is one of the most important Portuguese species. Each connection (specimen consists of three wood members: a centre member, loaded in compression along the parallel-tograin direction and two simply supported side members, loaded along the perpendicular-to-grain direction (Tconnection. The load transfer between wood members was assured by means of a steel dowel, which is representative of the most common joining technique applied for structural details in wooden structures. The complete load-slip behaviour of the joint is obtained until failure. In particular, the values of the stiffness, the ultimate loads and the ductility were evaluated. Additionally, this investigation proposed non-linear 3D finite element models to simulate the T-joint behaviour. The interaction between the dowel and the wood members was simulated using contact finite elements. A plasticity model, based on Hill’s criterion, was used to simulate the joint ductility and cohesive damage modelling was applied to simulate the brittle failure modes (splitting observed in the side members of the joint. The simulation procedure allowed a satisfactory description of the non-linear behaviour of the T-joint including the collapse prediction.

  6. Economy of wood supply

    International Nuclear Information System (INIS)

    Imponen, V.

    1993-01-01

    Research and development of wood fuels production was vigorous in the beginning of the 1980's. Techniques and working methods used in combined harvesting and transportation of energy and merchantable wood were developed in addition to separate energy wood delivery. After a ten year silent period the research on this field was started again. At present the underutilization of forest supplies and the environmental effects of energy production based on fossil fuels caused the rebeginning of the research. One alternative for reduction of the price of wood fuels at the utilization site is the integration of energy and merchantable wood deliveries together. Hence the harvesting and transportation devices can be operated effectively, and the organizational costs are decreased as well. The wood delivery costs consist of the stumpage price, the harvesting and transportation costs, and of general expenses. The stumpage price form the largest cost category (over 50 %) of the industrial merchantable wood delivery, and the harvesting and transportation costs in the case of thinningwood delivery. Forest transportation is the largest part of the delivery costs of logging residues. The general expenses, consisting of the management costs and the interest costs of the capital bound to the storages, form a remarkable cost category in delivery of low-rank wood for energy or conversion purposes. The costs caused by the harvesting of thinningwood, the logging residues, chipping and crushing, the lorry transportation are reviewed in this presentation

  7. Moisture Transport in Wood

    DEFF Research Database (Denmark)

    Astrup, Thomas; Hansen, Kurt Kielsgaard; Hoffmeyer, Preben

    2005-01-01

    Modelling of moisture transport in wood is of great importance as most mechanical and physical properties of wood depend on moisture content. Moisture transport in porous materials is often described by Ficks second law, but several observations indicate that this does not apply very well to wood....... Recently at the Technical University of Denmark, Department of Civil Engineering, a new model for moisture transport in wood has been developed. The model divides the transport into two phases, namely water vapour in the cell lumens and bound water in the cell walls....

  8. Comparison the biodiversity of hardwood floodplain forests and black locust forests

    International Nuclear Information System (INIS)

    Bazalova, D.

    2015-01-01

    The introduction of non-native species starts in the context of global changes in the world. These nonnative species, that have come to our country, whether intentionally or unintentionally, are responsible for the loss of biodiversity, changes in trophic levels and in nutrient cycle, hydrology, hybridizations, and at last could have an impact on the economy. The species black locust (Robinia pseudoaccacia) was introduced to Europe in 1601, first for horticultural purposes, and later broke into forestry. However, due to its ability to effectively spread the vegetative and generative root sprouts seeds and without the presence of natural pest may be occurrence of black locust in European forests highly questionable. Primarily we tried to identify differences in species composition and biodiversity among indigenous hardwood floodplain forest and non-native black locust forest based on numerical methods. In the results we were able to demonstrate more biodiversity in hardwood floodplain forests. (authors)

  9. LCA-based optimization of wood utilization under special consideration of a cascading use of wood.

    Science.gov (United States)

    Höglmeier, Karin; Steubing, Bernhard; Weber-Blaschke, Gabriele; Richter, Klaus

    2015-04-01

    Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Preliminary studies of Brazilian wood using different radioisotopic sources

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Gilberto; Silva, Leonardo Gondim de Andrade e, E-mail: gcarval@ipen.br, E-mail: ftgasilva@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Due to availability and particular features, wood was one of the first materials used by mankind with a wide variety of applications. It can be used as raw material for paper and cellulose manufacturing; in industries such as chemical, naval, furniture, sports goods, toys, and musical instrument; in building construction and in the distribution of electric energy. Wood has been widely researched; therefore, wood researchers know that several aspects such as temperature, latitude, longitude, altitude, sunlight, soil, and rainfall index interfere with the growth of trees. This behavior explains why average physical-chemical properties are important when wood is studied. The majority of researchers consider density to be the most important wood property because of its straight relationship with the physical and mechanical properties of wood. There are three types of wood density: basic, apparent and green. The apparent density was used here at 12% of moisture content. In this study, four different types of wood were used: 'freijo', 'jequetiba', 'muiracatiara' and 'ipe'. For wood density determination by non-conventional method, Am-241, Ba-133 and Cs-137 radioisotopic sources; a NaI scintillation detector and a counter were used. The results demonstrated this technique to be quick and accurate. By considering the nuclear parameters obtained as half value layers and linear absorption coefficients, Cs-137 radioisotopic source demonstrated to be the best option to be used for inspection of the physical integrity of electric wooden poles and live trees for future works. (author)

  11. Build Green: Wood Can Last for Centuries

    Science.gov (United States)

    Carol A. Clausen; Samuel V. Glass

    2012-01-01

    This report updates and revises information from the 1976 Forest Service publication by Rodney C. DeGroot, “Your Wood Can Last for Centuries.” It explains why wood decays, alerts the homeowner to conditions that can result in decay in buildings, and describes measures to prevent moisture-related damage to wood.

  12. Modeling the Effect of Nail Corrosion on the Lateral Strength of Joints

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2012-01-01

    This article describes a theoretical method of linking fastener corrosion in wood connections to potential reduction in lateral shear strength. It builds upon published quantitative data of corrosion rates of metals in contact with treated wood for several different wood preservatives. These corrosion rates are then combined with yield theory equations to calculate a...

  13. Baseline effects on carbon footprints of biofuels: The case of wood

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Eric, E-mail: johnsonatlantic@gmail.com [Atlantic Consulting, 8136 Gattikon (Switzerland); Tschudi, Daniel [ETH, Berghaldenstrasse 46, 8800 Thalwil (Switzerland)

    2012-11-15

    As biofuel usage has boomed over the past decade, so has research and regulatory interest in its carbon accounting. This paper examines one aspect of that carbon accounting: the baseline, i.e. the reference case against which other conditions or changes can be compared. A literature search and analysis identified four baseline types: no baseline; reference point; marginal fossil fuel; and biomass opportunity cost. The fourth one, biomass opportunity cost, is defined in more detail, because this is not done elsewhere in the literature. The four baselines are then applied to the carbon footprint of a wood-fired power plant. The footprint of the resulting wood-fired electricity varies dramatically, according to the type of baseline. Baseline type is also found to be the footprint's most significant sensitivity. Other significant sensitivities are: efficiency of the power plant; the growth (or re-growth) rate of the forest that supplies the wood; and the residue fraction of the wood. Length of the policy horizon is also an important factor in determining the footprint. The paper concludes that because of their significance and variability, baseline choices should be made very explicit in biofuel carbon footprints. - Highlights: Black-Right-Pointing-Pointer Four baseline types for biofuel footprinting are identified. Black-Right-Pointing-Pointer One type, 'biomass opportunity cost', is defined mathematically and graphically. Black-Right-Pointing-Pointer Choice of baseline can dramatically affect the footprint result. Black-Right-Pointing-Pointer The 'no baseline' approach is not acceptable. Black-Right-Pointing-Pointer Choice between the other three baselines depends on the question being addressed.

  14. Investigating Potential Toxicity of Leachate from Wood Chip Piles Generated by Roadside Biomass Operations

    Directory of Open Access Journals (Sweden)

    John Rex

    2016-02-01

    Full Text Available Roadside processing of wood biomass leaves chip piles of varying size depending upon whether they were created for temporary storage, spillage, or equipment maintenance. Wood chips left in these piles can generate leachate that contaminates streams when processing sites are connected to waterways. Leachate toxicity and chemistry were assessed for pure aspen (Populus tremuloides Michx., lodgepole pine (Pinus contorta Dougl., hybrid white spruce (Picea engelmannii x glauca Parry, and black spruce (Picea mariana (Mill. Britton as well as from two wood chipping sites using mixes of lodgepole pine and hybrid or black spruce. Leachate was generated using rainfall simulation, a static 28-day laboratory assay, and a field-based exposure. Leachate generated by these exposures was analyzed for organic matter content, phenols, ammonia, pH, and toxicity. Findings indicate that all wood chip types produced a toxic leachate despite differences in their chemistry. The consistent toxicity response highlights the need for runoff management that will disconnect processing sites from aquatic environments.

  15. Revealing organization of cellulose in wood cell walls by Raman imaging

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph

    2007-01-01

    Anisotropy of cellulose organization in mature black spruce wood cell wall was investigated by Raman imaging using a 1 [mu]m lateral-resolution capable confocal Raman microscope. In these studies, wood cross sections (CS) and radial longitudinal sections (LS) that were partially delignified by acid chlorite treatment were used. In the case of CS where latewood cells...

  16. Impact of chromated copper arsenate (CCA) in wood mulch.

    Science.gov (United States)

    Townsend, Timothy G; Solo-Gabriele, Helena; Tolaymat, Thabet; Stook, Kristin

    2003-06-20

    The production of landscape mulch is a major market for the recycling of yard trash and waste wood. When wood recovered from construction and demolition (C&D) debris is used as mulch, it sometimes contains chromated copper arsenate (CCA)-treated wood. The presence of CCA-treated wood may cause some potential environmental problems as a result of the chromium, copper, and arsenic present. Research was performed to examine the leachability of the three metals from a variety of processed wood mixtures in Florida. The mixtures tested included mixed wood from C&D debris recycling facilities and mulch purchased from retail outlets. The synthetic precipitation leaching procedure (SPLP) was performed to examine the leaching of chromium, copper and arsenic. Results were compared to Florida's groundwater cleanup target levels (GWCTLs). Eighteen of the 22 samples collected from C&D debris processing facilities leached arsenic at concentrations greater than Florida's GWCTL of 50 microg/l. The mean leachable arsenic concentration for the C&D debris samples was 153 microg/l with a maximum of 558 microg/l. One of the colored mulch samples purchased from a retail outlet leached arsenic above 50 microg/l, while purchased mulch samples derived from virgin materials did not leach detectable arsenic (<5 microg/l). A mass balance approach was used to compute the potential metal concentrations (mg/kg) that would result from CCA-treated wood being present in wood mulch. Less than 0.1% CCA-treated wood would cause a mulch to exceed Florida's residential clean soil guideline for arsenic (0.8 mg/kg).

  17. Adhesive interactions with wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    While the chemistry for the polymerization of wood adhesives has been studied systematically and extensively, the critical aspects of the interaction of adhesives with wood are less clearly understood. General theories of bond formation need to be modified to take into account the porosity of wood and the ability of chemicals to be absorbed into the cell wall....

  18. Many Roles of Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  19. Acoustic and adsorption properties of submerged wood

    Science.gov (United States)

    Hilde, Calvin Patrick

    Wood is a common material for the manufacture of many products. Submerged wood, in particular, is used in niche markets, such as the creation of musical instruments. An initial study performed on submerged wood from Ootsa Lake, British Columbia, provided results that showed that the wood was not suitable for musical instruments. This thesis re-examined the submerged wood samples. After allowing the wood to age unabated in a laboratory setting, the wood was retested under the hypothesis that the physical acoustic characteristics would improve. It was shown, however, that the acoustic properties became less adequate after being left to sit. The adsorption properties of the submerged wood were examined to show that the submerged wood had a larger accessible area of wood than that of control wood samples. This implied a lower amount of crystalline area within the submerged wood. From the combined adsorption and acoustic data for the submerged wood, relationships between the moisture content and speed of sound were created and combined with previous research to create a proposed model to describe how the speed of sound varies with temperature, moisture content and the moisture content corresponding to complete hydration of sorption sites within the wood.

  20. Improvement of wood quality used in Syria by irradiation polymerization

    International Nuclear Information System (INIS)

    Bakarji, E. H.

    2002-06-01

    Wood plastic composites (WPC) have been prepared with five low-grade woods, native to Syria, and with Okoume (aucoumea klaineana pierre) imported to Syria in large quantities. Three monomer systems; acrylamide, butylmethacrylate, and styrene were used. polymerization was induced at various radiation doses (10, 20, and 30 kGy) to study the role of radiation doses using a 60 Co gamma radiation source. Some physical properties of WPC, namely polymer loading and compression strength or tensile strength of the obtained wood polymer composites (WPC) were studied. The effect of the additives, sulfuric acid (H + ), N-vinyl pyrrolidone (NVP), trimethyolpropane triacrylate (TMPTA), urea (U), lithium nitrate (LiNo 3 ), copper sulfate (CuSO 4 ) and co-additives on monomer system polymerization were also investigated. Methanol, water and water/methanol mixtures were used as the swelling agents. In general, the use of additives and co-additives brought about an enhancement of tensile strength or compression strength and polymer loading of the composites. In some cases, additives also lowered the monomer concentration and the gamma radiation dose required for polymerization (author)

  1. State-of-the-art of the European regulation on wood wastes and wood ashes valorization. Synthesis

    International Nuclear Information System (INIS)

    Mousseau, S.

    2007-01-01

    This study has the objective of comparing the regulations of 10 European countries with that of France, in relation to the classification and recycling of wood waste, in particular lightly treated wood, as well as recycling of wood ash. The first part relating to wood waste presents a detailed analysis by country as well as a summary, on the one hand, of the various sectors for recycling waste wood and, on the other, the emission limits for their energy recovery. Generally, there is a distinction between waste covered by the incineration directive, and the others, without any particular category for lightly treated wood. However, recommendations emerge from this that are based essentially on the regulations or guidelines observed in Germany, Austria and the United Kingdom. The second part relating to wood ash also a presents a detailed analysis by country as well as a summary of the various sectors of recycling and limit values for spreading. Ash is generally considered as waste, and is recycled on a case-by case basis. Only Germany and Austria have clearly integrated wood ash in their regulatory framework. Overall this study shows the need for uniform regulation at European level, establishing environment requirements for recycling wood waste and wood ash, in order to encourage development of the use of biomass

  2. Composite structure of wood cells in petrified wood

    International Nuclear Information System (INIS)

    Nowak, Jakub; Florek, Marek; Kwiatek, Wojciech; Lekki, Janusz; Chevallier, Pierre; Zieba, Emil; Mestres, Narcis; Dutkiewicz, E.M.; Kuczumow, Andrzej

    2005-01-01

    Special kinds of petrified wood of complex structure were investigated. All the samples were composed of at least two different inorganic substances. The original cell structure was preserved in each case. The remnants of the original biological material were detected in some locations, especially in the cell walls. The complex inorganic structure was superimposed on the remnant organic network. The first inorganic component was located in the lumena (l.) of the cells while another one in the walls (w.) of the cells. The investigated arrangements were as follows: calcite (l.)-goethite-hematite (w.)-wood from Dunarobba, Italy; pyrite (l.)-calcite (w.)-wood from Lukow, Poland; goethite (l.)-silica (w.)-wood from Kwaczala, Poland. The inorganic composition was analysed and spatially located by the use of three spectral methods: electron microprobe, X-ray synchrotron-based microprobe, μ-PIXE microprobe. The accurate mappings presenting 2D distribution of the chemical species were presented for each case. Trace elements were detected and correlated with the distribution of the main elements. In addition, the identification of phases was done by the use of μ-Raman and μ-XRD techniques for selected and representative points. The possible mechanisms of the described arrangements are considered. The potential synthesis of similar structures and their possible applications are suggested

  3. Composite structure of wood cells in petrified wood

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Jakub [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Florek, Marek [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Kwiatek, Wojciech [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Lekki, Janusz [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Chevallier, Pierre [LPS, CEN Saclay et LURE, Universite Paris-Sud, Bat 209D, F-91405 Orsay (France); Zieba, Emil [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Mestres, Narcis [Institut de Ciencia de Materials de Barcelona (ICMAB), Campus de la UAB, E-08193-Bellaterra (Spain); Dutkiewicz, E.M. [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Kuczumow, Andrzej [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland)

    2005-04-28

    Special kinds of petrified wood of complex structure were investigated. All the samples were composed of at least two different inorganic substances. The original cell structure was preserved in each case. The remnants of the original biological material were detected in some locations, especially in the cell walls. The complex inorganic structure was superimposed on the remnant organic network. The first inorganic component was located in the lumena (l.) of the cells while another one in the walls (w.) of the cells. The investigated arrangements were as follows: calcite (l.)-goethite-hematite (w.)-wood from Dunarobba, Italy; pyrite (l.)-calcite (w.)-wood from Lukow, Poland; goethite (l.)-silica (w.)-wood from Kwaczala, Poland. The inorganic composition was analysed and spatially located by the use of three spectral methods: electron microprobe, X-ray synchrotron-based microprobe, {mu}-PIXE microprobe. The accurate mappings presenting 2D distribution of the chemical species were presented for each case. Trace elements were detected and correlated with the distribution of the main elements. In addition, the identification of phases was done by the use of {mu}-Raman and {mu}-XRD techniques for selected and representative points. The possible mechanisms of the described arrangements are considered. The potential synthesis of similar structures and their possible applications are suggested.

  4. PCM/wood composite to store thermal energy in passive building envelopes

    Science.gov (United States)

    Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.

    2017-10-01

    The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.

  5. Chapter 9: Wood Energy

    Science.gov (United States)

    Francisco X. Aguilar; Karen Abt; Branko Glavonjic; Eugene Lopatin; Warren  Mabee

    2016-01-01

    The availabilty of information on wood energy continues to improve, particularly for commoditized woodfuels.  Wood energy consumption and production vary in the UNECE region because demand is strngly affected by weather and the prices of competing energy sources.  There has been an increase in wood energy in the power-and-heat sector in the EU28 and North American...

  6. Inside the guts of wood-eating catfishes: can they digest wood?

    Science.gov (United States)

    German, Donovan P

    2009-11-01

    To better understand the structure and function of the gastrointestinal (GI) tracts of wood-eating catfishes, the gross morphology, length, and microvilli surface area (MVSA) of the intestines of wild-caught Panaque nocturnus, P. cf. nigrolineatus "Marañon", and Hypostomus pyrineusi were measured, and contrasted against these same metrics of a closely related detritivore, Pterygoplichthys disjunctivus. All four species had anatomically unspecialized intestines with no kinks, valves, or ceca of any kind. The wood-eating catfishes had body size-corrected intestinal lengths that were 35% shorter than the detritivore. The MVSA of all four species decreased distally in the intestine, indicating that nutrient absorption preferentially takes place in the proximal and mid-intestine, consistent with digestive enzyme activity and luminal carbohydrate profiles for these same species. Wild-caught Pt. disjunctivus, and P. nigrolineatus obtained via the aquarium trade, poorly digested wood cellulose (<33% digestibility) in laboratory feeding trials, lost weight when consuming wood, and passed stained wood through their digestive tracts in less than 4 h. Furthermore, no selective retention of small particles was observed in either species in any region of the gut. Collectively, these results corroborate digestive enzyme activity profiles and gastrointestinal fermentation levels in the fishes' GI tracts, suggesting that the wood-eating catfishes are not true xylivores such as beavers and termites, but rather, are detritivores like so many other fishes from the family Loricariidae.

  7. In vitro wood decay of teak (Tectona grandis by Rigidoporus cf. microporus (Meripiliaceae, Polyporales, Basidiomycota

    Directory of Open Access Journals (Sweden)

    E. Sarmiento S

    2016-03-01

    Full Text Available The use of exotic species like teak for industry demands has increased over the last decades in Central America, however its vulnerability to decay by saprophytic fungi has not been well studied. Among these fungi, Rigidoporus spp. have been described as white rotters of dead hardwoods and conifers worldwide. In Costa Rica, R. microporus has been found growing on teak stumps. The aim of this study was to determine the effects of this white rot fungus on the chemical, mechanical and physical properties of teak wood from trees of different ages. Six and ten year old sapwood and heartwood samples were used in the assays. Severe anatomical damage and the highest weight and resistance losses were observed on 6 yr. old sapwood samples. There was an increase in the quantity of soluble materials in 1% NaOH (relative values and lignin content in all the samples analyzed, after 3 months exposure and up to the end of the experiment. Mass loss reduction and increased resistance of wood to compressive strength parallel to the grain were related to both the type of wood and the age of the tree. Knowledge of the potential damage that this fungus can cause to teak wood might help in a better selection of wood and developing more effective protection measures against decay in the field or in construction wood.

  8. Wood wastes: Uses

    International Nuclear Information System (INIS)

    Cipro, A.

    1993-01-01

    The 1,500 industrial firms manufacturing furniture in the Italian Province of Treviso can generate up to 190,000 tonnes of wood wastes annually. In line with the energy conservation-environmental protection measures contained in Italian Law No. 475/88, this paper indicates convenient uses for these wood wastes - as a raw material for fibreboards or as a fuel to be used in the furniture manufacturing plants themselves and in kilns producing lime. Reference is made to the wood wastes gasification/power generation system being developed by ENEA (the Italian Agency for New Technology, Energy and the Environment)

  9. 2006 : Wood Products Used in New Residential Construction U.S. and Canada, with Comparisons to 1995, 1998 and 2003 : Executive Summary

    Science.gov (United States)

    Craig Adair; David B. McKeever

    2009-01-01

    The construction of new single family, multifamily, and manufactured housing is an important market for wood products in both the United States and Canada. Annual wood products consumption is dependent on many factors, including the number of new units started, the size of units started, architectural characteristics, and consumer preferences. In 2006, about 39 percent...

  10. Creation of Wood Dust during Wood Processing: Size Analysis, Dust Separation, and Occupational Health

    Directory of Open Access Journals (Sweden)

    Eva Mračková

    2015-11-01

    Full Text Available Mechanical separators and fabric filters are being used to remove airborne fine particles generated during the processing and handling of wood. Such particles might have a harmful effect on employee health, not only in small- but also in large-scale wood processing facilities. The amount of wood dust and its dispersion conditions vary according to geometric boundary conditions. Thus, the dispersion conditions could be changed by changing the linear size of the particles. Moreover, the smaller the particles are, the more harmful they can be. It is necessary to become familiar with properties, from a health point of view, of wood dust generated from processing. Wood dust has to be sucked away from the processing area. The fractional separation efficiency of wood dust can be improved using exhaust and filtering devices. Filtration efficiency depends on moisture content, particle size, and device performance. Because of the carcinogenicity of wood dust, the concentration of wood dust in air has to be monitored regularly. Based on the results hereof, a conclusion can be made that both mechanical separators of types SEA and SEB as well as the fabric filters with FINET PES 1 textile are suitable for the separation of wet saw dust from all types of wooden waste produced within the process.

  11. Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels

    Directory of Open Access Journals (Sweden)

    Maame Adwoa Bentumah Animpong

    2017-12-01

    Full Text Available We demonstrated the formulation of wood plastic composite (WPC materials with flexural strength of 13.69 ± 0.09 MPa for applications in outdoor fencing using municipal waste precursors like low density polyethylene (LDPE plastics (54.0 wt. %, sawn wood dust with particle size between 64 and 500 μm derived from variable hardwood species (36.0 wt. % and used automotive engine oil (10 wt. %. The WPC panels were prepared by pre-compounding, extruding at a screw auger torque of 79.8 Nm and pressing through a rectangular mould of dimension 132 mm × 37 mm × 5 mm at temperature 150 °C. The efficacy of black waste oil, as a coupling agent, was demonstrated by the absence of voids and pull-outs on microscopic examination using scanning electron microscopy. No hazardous substances were exhaled during thermo-gravimetric mass spectrometry analysis. The percentage crystallinity of the LDPE in the as-prepared material determined by differential scanning calorimetry was 11.3%. Keywords: Wood plastic composites, Low density polyethylene, Wood dust, Physical, Thermal and mechanical properties

  12. Climate effects of wood used for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Ros, Jan P.M.; Van Minnen, Jelle G. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Arets, Eric J.M.M. [Alterra, Wageningen University WUR, Wageningen (Netherlands)

    2013-08-15

    Wood growth and natural decay both take time, and this is an important aspect of sustainability assessments of wood used for energy. Wood taken from forests is a carbon-neutral energy source in the long term, but there are many examples of potential sources of wood used for bioenergy for which net emission reductions are not achieved in 10 to 40 years - the time frame for most climate policy mitigation targets. This is caused by two factors. The first factor relates to the fact that the carbon cycles of wood have a long time span. After final felling, CO2 fixation rates are initially relatively low, but increase again as forests regrow. This regrowth takes many years, sometimes more than a century. Wood residues can either be used or left in the forest. By using them, the emissions from the otherwise decaying residues (taking 2 to 30 years) would be avoided. The second factor concerns the fact that, if the wood is used for bioenergy, then fossil energy emissions are being avoided. However, the direct emission levels from bioenergy are higher than those related to the fossil energy it replaces. These additional emissions also have to be compensated. The carbon debt caused by both factors has to be paid back first, before actual emission reductions can be realised. For wood residues (from harvesting or thinning) that are used to replace coal or oil products, these payback times are relatively short, of the order of 5 to 25 years, mainly depending on location and type of residue (longer if they replace gas). This is also the case when using wood from salvage logging. In most cases, when using wood from final felling directly for energy production, payback times could be many decades to more than a century, with substantial increases in net CO2 emissions, in the meantime. This is especially the case for many forests in Europe, because they are currently an effective carbon sink. Additional felling reduces average growth rates in these forests and thus the sequestration

  13. Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland

    International Nuclear Information System (INIS)

    Kaerkkaeinen, Leena; Nuutinen, Tuula; Matala, Juho; Kellomaeki, Seppo; Haerkoenen, Kari

    2008-01-01

    The aim of this study was to estimate the simultaneous recovery of industrial wood and raw material for energy wood from cuttings in Finland during the next 50 years. Two cutting scenarios (maximum and sustainable cuttings) and two climate scenarios (current and changing climate) were analysed to determine their impacts on harvesting potential. The analysis was carried out using sample plot and tree data from the ninth National Forest Inventory and a management-oriented large-scale forestry model (MELA) into which the transfer functions based on physiological modelling were incorporated to describe the impacts of climate change. Depending on the climate scenario, the volume of potential recovery of industrial wood in the maximum cutting scenario during the period 2003-2013 varied from 103 to 105 million m 3 a -1 , while the amount of potential energy wood raw material was 35 Tg a -1 . During the period 2043-2053, in the current climate scenario, the potential recovery of industrial wood was 64 million m 3 a -1 and energy wood raw material 22 Tg a -1 , and in the changing climate scenario, 85 million m 3 a -1 and 29 Tg a -1 , respectively. In the sustainable cutting scenario, depending on the climate scenario used, the potential recovery of industrial wood during the period 2003-2013 varied from 74 to 76 million m 3 a -1 , while the amount of potential energy wood was 25 Tg a -1 . During the period 2043-2053, in the current climate scenario, the potential recovery of industrial wood was 80 million m 3 a -1 and energy wood raw material 26 Tg a -1 , and in the changing climate scenario, 88 million m 3 a -1 and 29 Tg a -1 , respectively. (author)

  14. Fire resistance of wood members with directly applied protection

    Science.gov (United States)

    Robert H. White

    2009-01-01

    Fire-resistive wood construction is achieved either by having the structural elements be part of fire-rated assemblies or by using elements of sufficient size that the elements themselves have the required fire-resistance ratings. For exposed structural wood elements, the ratings in the United States are calculated using either the T.T. Lie method or the National...

  15. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILERPLANT

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; Thomas Stickle; Jun Wang; Hongming Li; William P. Barry

    2002-06-13

    During the third quarter, the experimental portion of the project was carried out. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NIOSH Boiler Plant (NBP). Blends using hammer-milled wood were operationally successful and can form the basis of Phase II. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and the mathematical modeling of mercury speciation reactions continued, yielding many interesting results. Material and energy balances for the test periods at the NBP, as well as at the Bellefield Boiler Plant, were prepared. Steps were taken to remove severe constraints from the Pennsylvania Switchgrass Energy and Conservation Project and to organize the supplying of landfill gas to the Bruceton federal complex. Two presentations were made to meetings of the Electric Power Research Institute and the National Energy Technology Laboratory.

  16. On-line automatic detection of wood pellets in pneumatically conveyed wood dust flow

    Science.gov (United States)

    Sun, Duo; Yan, Yong; Carter, Robert M.; Gao, Lingjun; Qian, Xiangchen; Lu, Gang

    2014-04-01

    This paper presents a piezoelectric transducer based system for on-line automatic detection of wood pellets in wood dust flow in pneumatic conveying pipelines. The piezoelectric transducer senses non-intrusively the collisions between wood pellets and the pipe wall. Wavelet-based denoising is adopted to eliminate environmental noise and recover the collision events. Then the wood pellets are identified by sliding a time window through the denoised signal with a suitable threshold. Experiments were carried out on a laboratory test rig and on an industrial pneumatic conveying pipeline to assess the effectiveness and operability of the system.

  17. Wood Programs. Courseware Evaluation for Vocational and Technical Education.

    Science.gov (United States)

    Kaylor, Robert; And Others

    This courseware evaluation rates the Wood Programs software developed by the Iowa Department of Public Instruction. (These programs--not contained in this document--include understanding board feet, wood characteristics, wood safety drill, wood dimensions, wood moisture, operating the table saw, radial arm, measurement drill, fraction drill, and…

  18. Influence of extractives on wood gluing and finishing- a review

    Science.gov (United States)

    Chung-Yun Hse; Mon-Lin Kuo

    1988-01-01

    Migration of extractives to the wood surface alters the properties of wood as an adherent. Extractives change the wettability and the curing properties of adhesives. A desirable wettability-permeability relationship is sometimes affected by extractives, thus reducing the gluebond strength and performance. Past efforts to determine which of the components of extractives...

  19. The effect of crosslinker on mechanical and morphological properties of tropical wood material composites

    International Nuclear Information System (INIS)

    Islam, Md. Saiful; Hamdan, Sinin; Rahman, Md. Rezaur; Jusoh, Ismail; Ahmed, Abu Saleh

    2011-01-01

    In this study, wood polymer composites (WPCs) based on five kinds of selected tropical wood species, namely Jelutong (Dyera costulata), Terbulan (Endospermum diadenum), Batai (Paraserianthes moluccana), Rubber (Hevea brasiliensis), and Pulai (Alstonia pneumatophora), were impregnated with methyl methacrylate (MMA) and hexamethylene diisocyanate (HMDIC) monomers mixture in the ratio of 1:1 for composite manufacturing. All these tropical wood reacted with hexamethylene diisocyanate and crosslinked with MMA which enhanced the hydrophobic (restrained water) nature of wood. The vacuum-pressure method was used to impregnate the samples with monomer mixture. The monomer mixture loading achievable was found to be dependent on the properties of wood species. Low loading was observed for the high density wood species. Mechanical strength of fabricated wood polymer composites (WPCs) in term of modulus of elasticity (MOE) and modulus of rupture (MOR) were found to be significantly improved. The wood-polymer interaction was confirmed by Fourier transform infrared (FTIR) spectroscopy. Morphological properties of raw wood and WPC samples were evaluated by scanning electron microscopy (SEM) and XRD analysis and an improvement in morphological properties was also observed for WPC.

  20. Thermal load histories for North American roof assembles using various cladding materials including wood-thermoplastic composite shingles

    Science.gov (United States)

    J. E. Winandy

    2006-01-01

    Since 1991, thermal load histories for various roof cladding types have been monitored in outdoor attic structures that simulate classic North American light-framed construction. In this paper, the 2005 thermal loads for wood-based composite roof sheathing, wood rafters, and attics under wood-plastic composite shingles are compared to common North American roof...

  1. Radiation protection of waterlogged archaeological catalpa wood uncovered from Changtaiguan Xingyang

    International Nuclear Information System (INIS)

    Zhao Hongying; Wang Jingwu; Cui Guoshi

    2008-01-01

    Waterlogged archaeological catalpa wood uncovered from Changtaiguan was tentatively treated by gradient dehydration of ethanol concentration, replacement of PEG200DMA gradually, and 60 Co γ-rays radiation cur- ing with absorbed dose 30.72 kGy at dose rate 90.35 Gy/min. It can be found that the color and appearance of rein- forced archaeological wood with clear texture looks like original one. There is no cracking, no warping, and no glare on the wood surface. The Compression strength of reinforced ancient wood (33.06 MPa) is close to that of modem Catalpa wood. The maximum linear shrinkage of reinforced ancient wood is 1.05% in grain direction, 4.10% in radial direction, and 4.32% in tangential direction respectively compared with that of original sample. The linear shrinkage under the condition of 180 days storage in the ambient temperature and humidity is 0.076% in grain direction, 1.17% in radial direction, and 1.86% in tangential direction respectively. The linear shrinkage under the condition of 90 days storage in the temperature (25 ± 2) degree C and relative humidity (5 ± 2)% is 0.066% in grain direction, 0.115% in radial di- rection, and 0.279% in tangential direction respectively. The linear swelling ratio after 90 days storage in the temperature (25 ± 2) degree C and relative humidity (98 ± 2)% is 1.79% in grain direction, 2.42% in radial direction, and 2.61% in tangential direction respectively. It is confirmed by microstructure study that capillaries in residual wood has been filled with polymers, so that the wood mechanical strength and the shape stability is improved respectively. (authors)

  2. Efficiency Assessment of Support Mechanisms for Wood-Fired Cogeneration Development in Estonia

    Science.gov (United States)

    Volkova, Anna; Siirde, Andres

    2010-01-01

    There are various support mechanisms for wood-fired cogeneration plants, which include both support for cogeneration development and stimulation for increasing consumption of renewable energy sources. The efficiency of these mechanisms is analysed in the paper. Overview of cogeneration development in Estonia is given with the focus on wood-fired cogeneration. Legislation acts and amendments, related to cogeneration support schemes, were described. For evaluating the efficiency of support mechanisms an indicator - fuel cost factor was defined. This indicator includes the costs related to the chosen fuel influence on the final electricity generation costs without any support mechanisms. The wood fuel cost factors were compared with the fuel cost factors for peat and oil shale. For calculating the fuel cost factors, various data sources were used. The fuel prices data were based on the average cost of fuels in Estonia for the period from 2000 till 2008. The data about operating and maintenance costs, related to the fuel type in the case of comparing wood fuel and oil shale fuel were taken from the CHP Balti and Eesti reports. The data about operating and maintenance costs used for peat and wood fuel comparison were taken from the Tallinn Elektrijaam reports. As a result, the diagrams were built for comparing wood and its competitive fuels. The decision boundary lines were constructed on the diagram for the situation, when no support was provided for wood fuels and for the situations, when various support mechanisms were provided during the last 12 years.

  3. ELASTIC CHARACTERIZATION OF Eucalyptus citriodora WOOD

    Directory of Open Access Journals (Sweden)

    Adriano Wagner Ballarin

    2003-01-01

    Full Text Available This paper contributed to the elastic characterization of Eucalyptus citriodora grown inBrazil, considering an orthotropic model and evaluating its most important elastic constants.Considering this as a reference work to establish basic elastic ratios — several important elasticconstants of Brazilian woods were not determined yet - the experimental set-up utilized one tree of 65years old from plantations of “Horto Florestal Navarro de Andrade”, at Rio Claro-SP, Brazil. All theexperimental procedures attended NBR 7190/97 – Brazilian Code for wooden structures –withconventional tension and compression tests. Results showed statistical identity between compressionand tension modulus of elasticity. The relation observed between longitudinal and radial modulus ofelasticity was 10 (EL/ER ≈ 10 and same relation, considering shear modulus (modulus of rigidity was20 (EL/GLR ≈ 20. These results, associated with Poisson’s ratios herein determined, allow theoreticalmodeling of wood mechanical behavior in structures.

  4. Wood power in North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, J.G.; Guessous, L. [Research Triangle Institute, Research Triangle Park, NC (United States)

    1993-12-31

    North Carolina (NC) is one of the most forested states, and supports a major wood products industry. The NC Department of Natural Resources sponsored a study by Research Triangle Institute to examine new, productive uses of the State`s wood resources, especially electric power generation by co-firing with coal. This paper summarizes our research of the main factors influencing wood power generation opportunities, i.e., (1) electricity demand; (2) initiative and experience of developers; (3) available fuel resources; (4) incentives for alternate fuels; and (5) power plant technology and economics. The results cover NC forests, short rotation woody crops, existing wood energy facilities, electrical power requirements, and environmental regulations/incentives. Quantitative assessments are based on the interests of government agencies, utilities, electric cooperatives, developers and independent power producers, forest products industries, and the general public. Several specific, new opportunities for wood-to-electricity in the State are identified and described. Comparisons are made with nationwide resources and wood energy operations. Preferred approaches in NC are co-generation in existing or modified boilers and in dedicated wood power plants in forest industry regions. Co-firing is mainly an option for supplementing unreliable primary fuel supplies to existing boilers.

  5. Modeling Wood Fibre Length in Black Spruce (Picea mariana (Mill. BSP Based on Ecological Land Classification

    Directory of Open Access Journals (Sweden)

    Elisha Townshend

    2015-09-01

    Full Text Available Effective planning to optimize the forest value chain requires accurate and detailed information about the resource; however, estimates of the distribution of fibre properties on the landscape are largely unavailable prior to harvest. Our objective was to fit a model of the tree-level average fibre length related to ecosite classification and other forest inventory variables depicted at the landscape scale. A series of black spruce increment cores were collected at breast height from trees in nine different ecosite groups within the boreal forest of northeastern Ontario, and processed using standard techniques for maceration and fibre length measurement. Regression tree analysis and random forests were used to fit hierarchical classification models and find the most important predictor variables for the response variable area-weighted mean stem-level fibre length. Ecosite group was the best predictor in the regression tree. Longer mean fibre-length was associated with more productive ecosites that supported faster growth. The explanatory power of the model of fitted data was good; however, random forests simulations indicated poor generalizability. These results suggest the potential to develop localized models linking wood fibre length in black spruce to landscape-level attributes, and improve the sustainability of forest management by identifying ideal locations to harvest wood that has desirable fibre characteristics.

  6. Status of wood energy applications

    International Nuclear Information System (INIS)

    Zerbe, J.I.

    1991-01-01

    In this address, the potential of wood and wood residues to supply future energy needs is examined. In addition, the possible environmental impact of the use of wood fuels on global climate change is discussed. Technologies for the development of new fuels are described

  7. The influence of irradiated wood filler on some properties of polypropylene - wood composites

    Directory of Open Access Journals (Sweden)

    Điporović-Momčilović Milanka

    2007-01-01

    Full Text Available The problem of compatibility between the wood filler and thermoplastic matrix is of essential importance in composite production. Numerous methods have been developed for increasing this compatibility, which is still representing a challenging objective of composite research throughout the world. The research into these methods is primarily directed towards their efficiency from the viewpoint of the composite performance and their economical acceptability. The latter is of particular importance for the composite production in the developing countries with respect to the shortage of the corresponding funds. With this respect, the utilization of ionizing radiation might have considerable advantages. In this research, the beech wood flour was irradiated by a dose of 10 kGy of 60Co gamma rays for purpose of provoking the changes by the ionizing effect. The effects of ionizing radiation upon the properties of wood particles have been examined by IR spectroscopy and by determination of contents of hydroxyl groups in wood by acetylating as an indirect method. All these methods have been expected to reveal the chemical effects of the applied radiation treatment. The irradiated and the control wood flour were used in order to produce the samples of composite with polypropylene. The polypropylene-wood flour (PP-WF composites were produced with 40% of wood particles having fraction size 0.3 mm. The melt-blended composites were modified with amido-acrylic acid (AMACA as a new coupling agent synthesized for this propose in amount of 6 wt.% (based on wood filler and successively with 0.05 wt.% (based on PP of organic peroxide during mixing step. The composites containing coupling agents showed superior mechanical properties, compared to the untreated one. The highest extent of improvement of tensile was achieved in PP-WFl composites modified with AMACA coupling agent.

  8. Wood for energy production. Technology - environment - economy[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  9. Energy capacity of black wattle wood and bark in different spacing plantations

    Directory of Open Access Journals (Sweden)

    Elder Eloy

    2015-06-01

    Full Text Available The study aimed at the energetic description of wood and bark biomass of Acacia mearnsii De Wild. in two spacing plantations: 2.0 m × 3.0 m × 1.0 m and 1.5 m, during 36 months after the planting. The experiment was conducted in the municipality of Frederico Westphalen, state of Rio Grande do Sul, Brazil. Biomass (BIO, calorific value, basic density, ash content, volatile matter and fixed carbon content and energy density (ED of wood and bark were determined. The smallest spacing plantation presented the highest production per unit area of BIO and ED of wood and bark.

  10. Serpula lacrymans, the dry rot fungus and tolerance towards copper-based wood preservatives

    Science.gov (United States)

    Anne Christine Steenkjaer Hastrup; Frederick Green; Carol Clausen; Bo Jensen

    2005-01-01

    Serpula lacrymans (Wulfen : Fries) Schröter, the dry rot fungus, is considered the most economically important wood decay fungus in temperate regions of the world i.e. northern Europe, Japan and Australia. Previously copper based wood preservatives were the most commonly used preservatives for pressure treatment of wood for building constructions. Because of a...

  11. Wood's lamp examination

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003386.htm Wood lamp examination To use the sharing features on this page, please enable JavaScript. A Wood lamp examination is a test that uses ultraviolet ( ...

  12. Wood preservation

    Science.gov (United States)

    Rebecca E. Ibach

    1999-01-01

    When left untreated in many outdoor applications, wood becomes subject to degradation by a variety of natural causes. Although some trees possess naturally occurring resistance to decay (Ch. 3, Decay Resistance), many are in short supply or are not grown in ready proximity to markets. Because most commonly used wood species, such as Southern Pine, ponderosa pine, and...

  13. PHYSICAL AND STRENGTH PROPERTIES OF BRICKS PRODUCED FROM PORTLAND CEMENT AND SAW DUST OF DANIELIA OLIVERII WOOD

    Directory of Open Access Journals (Sweden)

    David Oriabure EKHUEMELO

    2016-12-01

    Full Text Available This study investigated the use of sawdust as partial replacement for sand in wood-concrete hollow blocks. Sharp sand, ordinary Portland cement (binder and sawdust were used as raw materials. Sawdust was treated by boiling then sieved after drying using British Standard sieve of 3.35mm to remove sticky wood capable of causing pores. The quantities of sawdust used were 0%, 5%, 10%, 15% and 20%. A mixing proportion of 1:8 cement sand ratio, moulding machine with single 6” (450mm x 225mm x 150mm mould and vibrated with 5.0KW power machine for adequate compaction were used. Wood-concrete block was cured for 28 days. The blocks produced were tested for compressive strength and water absorption. The results showed that mean compressive strength of 100% sand was 2.81N/mm2 followed by 95% sand and 5% sawdust replacement with 1.58N/mm2 ; 90% Sand and 10% sawdust replacement with 0.55N/mm2 ; 85% sand and 15% sawdust replacement with 0.43 N/mm2 and 80% sand 20% sawdust replacement with 0.24N/mm2 . The result further showed that as the percentage of sawdust increased, the compressive strength decreased. At 28 days, the compressive strength of blocks with 5% SD replacement satisfied meets Ghana Building Code for non- load bearing walls. The results also reveals that blocks with 80% sand 20% sawdust replacement level has the highest water absorption (23.72% followed by 85% Sand and 15% sawdust replacement (20.40%; 90% sand and 10% sawdust replacement (18.0%; 95% sand and 5% sawdust replacement (12.12% and 100% sand and 0% sawdust replacement (11.43%. It was concluded that 5% sawdust (8kg replacement and cured 28 days could be used for non-load bearing walls. It was recommended that further research should be carried out to evaluate sawdust replacement level within the range of 1-4% to ascertain results that could be used for various other purposes.

  14. Physical and Strength Properties of Bricks Produced from Portland Cement and Saw Dust of Danielia Oliverii Wood

    Directory of Open Access Journals (Sweden)

    David Oriabure EKHUEMELO

    2016-12-01

    Full Text Available This study investigated the use of sawdust as partial replacement for sand in wood-concrete hollow blocks. Sharp sand, ordinary Portland cement (binder and sawdust were used as raw materials. Sawdust was treated by boiling then sieved after drying using British Standard sieve of 3.35mm to remove sticky wood capable of causing pores. The quantities of sawdust used were 0%, 5%, 10%, 15% and 20%. A mixing proportion of 1:8 cement sand ratio, moulding machine with single 6” (450mm x 225mm x 150mm mould and vibrated with 5.0KW power machine for adequate compaction were used. Wood-concrete block was cured for 28 days. The blocks produced were tested for compressive strength and water absorption. The results showed that mean compressive strength of 100% sand was 2.81N/mm2 followed by 95% sand and 5% sawdust replacement with 1.58N/mm2 ; 90% Sand and 10% sawdust replacement with 0.55N/mm2 ; 85% sand and 15% sawdust replacement with 0.43 N/mm2 and 80% sand 20% sawdust replacement with 0.24N/mm2 . The result further showed that as the percentage of sawdust increased, the compressive strength decreased. At 28 days, the compressive strength of blocks with 5% SD replacement satisfied meets Ghana Building Code for non- load bearing walls. The results also reveals that blocks with 80% sand 20% sawdust replacement level has the highest water absorption (23.72% followed by 85% Sand and 15% sawdust replacement (20.40%; 90% sand and 10% sawdust replacement (18.0%; 95% sand and 5% sawdust replacement (12.12% and 100% sand and 0% sawdust replacement (11.43%. It was concluded that 5% sawdust (8kg replacement and cured 28 days could be used for non-load bearing walls. It was recommended that further research should be carried out to evaluate sawdust replacement level within the range of 1-4% to ascertain results that could be used for various other purposes.

  15. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  16. State forests deal cards for future of wood-industry

    International Nuclear Information System (INIS)

    Beer, G.; Sobinkovic, B.

    2004-01-01

    A decision to be made by Director of state-owned company Lesy SR Banska Bystrica (Slovak Forests), Karol Vins and the company management will influence the development of Slovak wood-processing industry for many years to come. He has to decide who will belong to an elite group of Slovak wood-processing companies. Those will be given a strategic advantage compared to their competitors: middle-term contracts for deliveries of wood from state forests. Majority of local wood-processing companies do not have longer than quarterly contracts signed for deliveries of wood from state-owned forests. And so they would like to introduce new business rules for Lesy SR by the end of this year. But K. Vins claims that the decision about key customers has to be made by Ministries of Economy and Land Management. Lesy SR cut about 50 percent of all wood cut in Slovakia and are therefore the most important supplier of this material on the market. And so all the major companies on the market focusing on immediate processing of wood are interested in it. . In general their prices are a few percent below the level as the volumes they offer are also lower. And so consumers complain mainly about high prices and the fact that they are not allowed to sign long-term contracts for wood deliveries. They also complain that the management of Lesy SR is not able to set realistic wood prices as it does not know the actual costs of wood and cutting price per 1 cubic meter of wood. Lesy SR are facing a major transformation. The management asked for a change organisation of the company, concentration of sale of wood, decreasing the number of staff by 3 600 people. The sale of redundant property should earn the company 1,4 bn Sk (35.03 mn Eur). The final decision on how the organization and economy of the company will change has to be made by the cabinet

  17. The central role of wood biology in understanding the durability of wood-coating interactions

    Science.gov (United States)

    Alex C. Wiedenhoeft

    2007-01-01

    To design effectively for durability, one must actively and honestly assess the material properties and limitations of each of the components in the design system; wood or wood composite, and the coating. Inasmuch as wood coatings are manufactured to specified tolerances from known materials, we have control of that component of the system. Compared to manmade...

  18. Wood plastic combination

    International Nuclear Information System (INIS)

    Cunanan, S.A.; Bonoan, L.S.; Verceluz, F.P.; Azucena, E.A.

    1976-03-01

    The purpose of this study is to improve the physical and mechaniproperties of local inferior quality wood species by radiation-induced graft polymerization with plastic monomers. The process involves the following: 1) Preparation of sample; 2) Impregnation of sample with the monomers; 3) Irradiation of the impregnated sample with the use of 20,000 curie Co-60 as gamma-source; 4) Drying of irradiated sample to remove the unpolymerized monomer. Experimentation on different wood species were undertaken and the results given. From the results obtained, it can be concluded that the monomers systems MMA, MMA-USP, and styrene-USP are suitable for graft polymerization with the wood species almon, apitong, bagtikan, mayapis, red lauan, and tanguile. This is shown by their maximum conversion value which range from 86% to 96% with the optimum dose range of 1 to 2 Mrads. However, in the application of WPC process, properties that are required in a given wood product must be considered, thus aid in the selection of the monomer system to be used with a particular wood species. Some promising applications of WPC is in the manufacture of picker sticks, shuttles, and bobbins for the textile industry. However, there is a need for a pilot plant scale study so that an economic assessment of the commercial feasibility of this process can be made

  19. Reliability and service life of wood structures and buildings

    OpenAIRE

    Zdeňka Havířová; Pavel Kubů

    2005-01-01

    Service life of constructions and buildings of wood is dependent on temperature and moisture conditions in layers of the building cladding where the wood framework is built in. Temperature/moisture conditions or the corresponding equilibrium moisture content (EMC) of the construction show considerable effects on the functional reliability of the whole building from the viewpoint of mechanical resistance and stability (ER1), energy savings and thermal protection (ER6) and hygiene, health and e...

  20. Sunken wood habitat for thiotrophic symbiosis in mangrove swamps.

    Science.gov (United States)

    Laurent, Mélina C Z; Gros, Olivier; Brulport, Jean-Pierre; Gaill, Françoise; Bris, Nadine Le

    2009-03-01

    Large organic falls to the benthic environment, such as dead wood or whale bones, harbour organisms relying on sulfide-oxidizing symbionts. Nothing is known however, concerning sulfide enrichment at the wood surface and its relation to wood colonization by sulfide-oxidizing symbiotic organisms. In this study we combined in situ hydrogen sulfide and pH measurements on sunken wood, with associated fauna microscopy analyses in a tropical mangrove swamp. This shallow environment is known to harbour thiotrophic symbioses and is also abundantly supplied with sunken wood. A significant sulfide enrichment at the wood surface was revealed. A 72h sequence of measurements emphasized the wide fluctuation of sulfide levels (0.1->100muM) over time with both a tidal influence and rapid fluctuations. Protozoans observed on the wood surface were similar to Zoothamnium niveum and to vorticellids. Our SEM observations revealed their association with ectosymbiotic bacteria, which are likely to be sulfide-oxidizers. These results support the idea that sunken wood surfaces constitute an environment suitable for sulfide-oxidizing symbioses.

  1. Wood moisture monitoring during log house thermal insulation mounting

    Directory of Open Access Journals (Sweden)

    Pavla Kotásková

    2011-01-01

    Full Text Available The current designs of thermal insulation for buildings concentrate on the achievement of the required heat transmission coefficient. However, another factor that cannot be neglected is the assessment of the possible water vapour condensation inside the construction. The aim of the study was to find out whether the designed modification of the cladding structure of an existing log house will or will not lead to a risk of possible water vapour condensation in the walls after an additional thermal insulation mounting. The condensation could result in the increase in moisture of the walls and consequently the constructional timber, which would lead to the reduction of the timber construction strength, wood degradation by biotic factors – wood-destroying insects, mildew or wood-destroying fungi. The main task was to compare the theoretically established values of moisture of the constructional timber with the values measured inside the construction using a specific example of a thermal insulated log house. Three versions of thermal insulation were explored to find the solution of a log house reconstruction which would be the optimum for living purposes. Two versions deal with the cladding structure with the insulation from the interior, the third version deals with an external insulation.In a calculation model the results can be affected to a great degree by input values (boundary conditions. This especially concerns the factor of vapour barrier diffusion resistance, which is entered in accordance with the producer’s specifications; however, its real value can be lower as it depends on the perfectness and correctness of the technological procedure. That is why the study also includes thermal technical calculations of all designed insulation versions in the most unfavourable situation, which includes the degradation of the vapour barrier down to 10% efficiency, i.e. the reduction of the diffusion resistance factor to 10% of the original value

  2. EFFECT OF FERTILIZATION ON MECHANICAL PROPERTIES OF THE WOOD OF Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    Israel Luiz de Lima

    2011-09-01

    Full Text Available The effect of the fertilization in the amount and quality of the produced wood is one of the questions to be considered in the research of the Eucalyptus grandis. The present work aimed to evaluate the fertilization effect in the mechanical properties of Eucalyptus grandis. The population of Eucalyptus grandis was 21 years old and was managed under the system of selective thinning, with application of fertilizers. The factors used in this study were: presence or absence of fertilizers, two positions of log and five radial positions. The influences of the factors and of their combinations were evaluated regarding to compression strength, shear strength, modulus of rupture and modulus of elasticity in static banding. The compressive strength and the modulus of elasticity had been influenced by the factors: fertilizer and radial positions of the log. There was also an increase in the direction of the pith-bark in all studied properties. A good positive relationship was found to exist among the compression strength, the shear, the modulus of rupture and the modulus of elasticity with radial position.

  3. Environmental controls on sap flow in black locust forest in Loess Plateau, China.

    Science.gov (United States)

    Ma, Changkun; Luo, Yi; Shao, Mingan; Li, Xiangdong; Sun, Lin; Jia, Xiaoxu

    2017-10-13

    Black locust accounts for over 90% of artificial forests in China's Loess Plateau region. However, water use of black locust is an uphill challenge for this semi-arid region. To accurately quantify tree water use and to explain the related hydrological processes, it is important to collect reliable data for application in the estimation of sap flow and its response to environmental factors. This study measured sap flow in black locust in the 2015 and 2016 growth seasons using the thermal dissipation probes technique and laboratory-calibrated Granier's equation. The study showed that the laboratory calibrated coefficient α was much larger than the original value presented by Granier, while the coefficient β was similar to the original one. The average daily transpiration was 2.1 mm day -1 for 2015 and 1.6 mm day -1 for 2016. Net solar radiation (Rn) was the key meteorological factor controlling sap flow, followed by vapor pressure deficit (VPD) and then temperature (T). VPD had a threshold control on sap flow at threshold values of 1.9 kPa for 2015 and 1.6 kPa for 2016. The effects of diurnal hysteresis of Rn, VPD and T on sap flow were evident, indicating that black locust water use was conservative.

  4. Robert Williams Wood: pioneer of invisible light.

    Science.gov (United States)

    Sharma, Shruti; Sharma, Amit

    2016-03-01

    The Wood's lamp aids in the diagnosis of multiple infectious, inflammatory and neoplastic dermatologic conditions. Although the Wood's lamp has many applications, which have improved both the diagnosis and management of disease, the man credited for its invention is relatively unknown in medicine. Robert Williams Wood, a prominent physicist of the early 20th century, is credited for the invention of the Wood's lamp. Wood was the father of infrared and ultraviolet photography and made significant contributions to other areas in optics and spectroscopy. Wood's work encompassed the formative years of American Physics; he published over 200 original papers over his lifetime. A few years after the invention of the Wood's lamp for ultraviolet photography, physicians in Europe adopted the Wood's lamp for dermatologic applications. Wood's lamp remains popular in clinics globally, given its ease of use and ability to improve diagnostic precision. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Wood Flour Moulding Technology: Implications for Technical ...

    African Journals Online (AJOL)

    User

    2011-04-19

    Apr 19, 2011 ... be waste product from saw mills, wood working plants or produced from selected dry wood by .... Stop watch-used to indicate the exact time the mould has remained in the press before wood .... There is abundance of saw dust the source of which is the ... Madison, Wisconsin: Wiley Interscience. Usoro, H. S. ...

  6. Reactivity and burnout of wood fuels

    DEFF Research Database (Denmark)

    Dall'Ora, Michelangelo

    This thesis deals with the combustion of wood in pulverised fuel power plants. In this type of boiler, the slowest step in the wood conversion process is char combustion, which is one of the factors that not only determine the degree of fuel burnout, but also affect the heat release profile...... of different aspects relevant to wood combustion, including wood structure and composition, wood pyrolysis, wood char properties and wood char oxidation. The full scale campaign, which is the subject of Chapter 3, included sampling of wood fuel before and after milling and sampling of gas and particles...... at the top of the combustion chamber. The collected samples and data are used to obtain an evaluation of the mills in operation at the power plant, the particle size distribution of the wood fuel, as well as the char conversion attained in the furnace. In Chapter 4 an experimental investigation...

  7. Energy cogeneration contributions in the wood quality as civil construction material; Contribuicoes da cogeracao de energia na qualidade da madeira como material de construcao civil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Carlos Roberto de

    1993-07-01

    This work presents the practicable technical alternative for the improvement of solid wood quality used in the building construction. Through the reality of the solid wood Amazon Region's production and actual generation conception; cogeneration, economy and efficiency on the energy application; the alternative displayed proposes the modification on the lay-out production and production process seeking the best quality obtention of the solid wood; the replace of the petroleum derived energetics by biomass (residues) and the introduction on the production site, the solid wood drying process. The production alternatives proposed can contribute for the solid wood production cost reduction, through the fuel economy, the imperfect number piece reduction and transportation cost production reduction. Contributing significantly for the cost/benefit/quality wood relations, enabling its placement of the consuming market on the Northeast, Southeast, South and Middle west Regions and so on the international market with competitive costs. (author)

  8. Energy cogeneration contributions in the wood quality as civil construction material; Contribuicoes da cogeracao de energia na qualidade da madeira como material de construcao civil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Carlos Roberto de

    1993-07-01

    This work presents the practicable technical alternative for the improvement of solid wood quality used in the building construction. Through the reality of the solid wood Amazon Region's production and actual generation conception; cogeneration, economy and efficiency on the energy application; the alternative displayed proposes the modification on the lay-out production and production process seeking the best quality obtention of the solid wood; the replace of the petroleum derived energetics by biomass (residues) and the introduction on the production site, the solid wood drying process. The production alternatives proposed can contribute for the solid wood production cost reduction, through the fuel economy, the imperfect number piece reduction and transportation cost production reduction. Contributing significantly for the cost/benefit/quality wood relations, enabling its placement of the consuming market on the Northeast, Southeast, South and Middle west Regions and so on the international market with competitive costs. (author)

  9. A look at worldwide usage of residual wood for energy

    International Nuclear Information System (INIS)

    Ekstrom, H.; Hall, M.M.

    2007-01-01

    Wood Resources International was established in 1987, offering on-site evaluation services of forest resources and forest industry developments in over 20 countries worldwide. This presentation reviewed residual wood markets in North America and Europe. Wood chip trade and wood pellet markets were also reviewed. It is estimated that more than 50 per cent of the wood harvested worldwide is used for heating and cooking. Although sawmill wood residue has been typically used for particle board manufacturing, the energy sector in North America and Europe is now competing for low cost residuals, including sawdust, shavings and wood chips. With demand for renewable resources increasing, district heating plants have revived an interest in collecting the nearly 35 per cent of biomass left behind after traditional clear cutting. This biomass represents branches, tops and stumps left behind after the roundwood has been removed. In Canada, demand for mill residuals has grown and wood pellet manufacturers have the opportunity to invest in capacity while continuing to produce competitively priced pellets for the European market. It is anticipated that in the next decade, large volumes of beetle-killed wood are going to be available in British Columbia for energy consumption, including wood pellet production. Prices for sawdust have doubled over the past 3 years as a result of increased competition. The biomass supply potential in the United States is 7 times the current consumption. There is an increased interest in bioenergy in California due to the declining lumber sector. As such, the use of forest and agricultural waste is on the rise, along with prices for wood residues. There has also been a large increase in demand for wood biomass in Europe over the past 5 years, resulting in higher costs of all wood fiber sources used for energy. By 2020, Europe has set a target that all energy should come from renewable energy sources, with a minimum of 10 per cent being biofuel for

  10. Physical and mechanical properties of bio-composites from wood particles and liquefied wood resin

    Science.gov (United States)

    Hui Pan; Todd F. Shupe; Chung-Yun Hse

    2009-01-01

    Compression molded composites were made from wood particles and a liquefied wood/phenol/formaldehyde co-condensed resin. Based on our previous research, a phenol to wood (P/W) ratio of 2/1 was chosen for this study. The two experimental variables selected were: 1) liquefaction temperature (150o and 180oC) and 2) cooking method (atmospheric and sealed). Panels were...

  11. Efficiency analysis of wood processing industry in China during 2006-2015

    Science.gov (United States)

    Zhang, Kun; Yuan, Baolong; Li, Yanxuan

    2018-03-01

    The wood processing industry is an important industry which affects the national economy and social development. The data envelopment analysis model (DEA) is a quantitative evaluation method for studying industrial efficiency. In this paper, the wood processing industry of 8 provinces in southern China is taken as the study object, and the efficiency of each province in 2006 to 2015 was measured and calculated with the DEA method, and the efficiency changes, technological changes and Malmquist index were analyzed dynamically. The empirical results show that there is a widening gap in the efficiency of wood processing industry of the 8 provinces, and the technological progress has shown a lag in the promotion of wood processing industry. According to the research conclusion, along with the situation of domestic and foreign wood processing industry development, the government must introduce relevant policies to strengthen the construction of the wood processing industry technology innovation policy system and the industrial coordinated development system.

  12. Sustainable wood waste management in Nigeria

    Directory of Open Access Journals (Sweden)

    Owoyemi Jacob Mayowa

    2016-09-01

    Full Text Available Wood industries produce large volumes of residues which must be utilized, marketed or properly disposed of. Heaps of wood residues are common features in wood industries throughout the year. In Nigeria, this residue is generally regarded as waste and this has led to open burning practices, dumping in water bodies or dumping in an open area which constitutes environmental pollution. Sawmills in Nigeria generated over 1,000,000 m3 of wood waste in 2010 while about 5000 m3 of waste was generated in plywood mills. Nigeria generates about 1.8 million tons of sawdust annually and 5.2 million tons of wood wastes. The impact of improper disposal of waste wood on the environment affects both the aquatic and terrestrial ecosystems. Also burning of waste wood releases greenhouse gases into the atmosphere causing various health issues. Reuse/recycling of these wood residues in Nigeria will reduce the pressure on our ever decreasing forests, reduce environmental pollution, create wealth and employment. The literature available on this subject was reviewed and this article, therefore, focuses on the various methods of wood waste disposal and its utilization in Nigerian wood industries, the effects of wood waste on the environment as well as on human health and the benefits of proper wood waste management practices.

  13. Supply and demand for wood: a worldwide perspective?

    Science.gov (United States)

    Sally. Duncan

    1998-01-01

    In a unique effort to compare and contrast differing views on future supply and demand for wood, a study found that demand for wood will increase, but there is no evidence of a crisis at the world scale. Opportunities to increase wood production, however, are limited and trade-offs among competing uses of forests are inevitable. A complex of factors determine supply...

  14. Preparation of Self Hardening-modelling Polyurethane for Wood Repairing and Cracks Injection

    International Nuclear Information System (INIS)

    Meligi, G.A.; Elnahas, H.H.; Ammar, A.H.

    2014-01-01

    Self hardening composite as a modelling clay was prepared from polyurethane, two parts (A) and (B) where (A) contains polyol (polyether), vinyl acetate versatic ester copolymer (VAcVe) and magnesium silicate or wood powder and (B) contains toluene diisocyanate (TDI) as a hardening agent. The two parts mixed thoroughly giving soft putty like feel, open working time 1-2 h and cures hard overnight (24 h full cure). Factors affecting working time and full cure were evaluated. Also, measurements of surface hardness, compressive strength, scanning electron microscopy (SEM), water absorption and effect of ionizing radiation were studied. The suggestion for using the prepared polyurethane composite as clay dries as hard as a rock in the field of wood repair and cracks injection for building walls were recommended. Keywords: Polyurethane, modelling clay, radiation, wood repair and cracks injection.

  15. Radioactivity of wood ash

    International Nuclear Information System (INIS)

    Rantavaara, A.; Moring, M.

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg -1 , in decreasing order: 137 Cs, 40 K, 90 Sr, 210 Pb, 226 Ra, 232 Th, 134 Cs, 235 U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and 210 Pb was hardly detectable. The NH 4 Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  16. Tracing nitrogen accumulation in decaying wood and examining its impact on wood decomposition rate

    Science.gov (United States)

    Rinne, Katja T.; Rajala, Tiina; Peltoniemi, Krista; Chen, Janet; Smolander, Aino; Mäkipää, Raisa

    2016-04-01

    Decomposition of dead wood, which is controlled primarily by fungi is important for ecosystem carbon cycle and has potentially a significant role in nitrogen fixation via diazotrophs. Nitrogen content has been found to increase with advancing wood decay in several studies; however, the importance of this increase to decay rate and the sources of external nitrogen remain unclear. Improved knowledge of the temporal dynamics of wood decomposition rate and nitrogen accumulation in wood as well as the drivers of the two processes would be important for carbon and nitrogen models dealing with ecosystem responses to climate change. To tackle these questions we applied several analytical methods on Norway spruce logs from Lapinjärvi, Finland. We incubated wood samples (density classes from I to V, n=49) in different temperatures (from 8.5oC to 41oC, n=7). After a common seven day pre-incubation period at 14.5oC, the bottles were incubated six days in their designated temperature prior to CO2 flux measurements with GC to determine the decomposition rate. N2 fixation was measured with acetylene reduction assay after further 48 hour incubation. In addition, fungal DNA, (MiSeq Illumina) δ15N and N% composition of wood for samples incubated at 14.5oC were determined. Radiocarbon method was applied to obtain age distribution for the density classes. The asymbiotic N2 fixation rate was clearly dependent on the stage of wood decay and increased from stage I to stage IV but was substantially reduced in stage V. CO2 production was highest in the intermediate decay stage (classes II-IV). Both N2 fixation and CO2 production were highly temperature sensitive having optima in temperature 25oC and 31oC, respectively. We calculated the variation of annual levels of respiration and N2 fixation per hectare for the study site, and used the latter data together with the 14C results to determine the amount of N2 accumulated in wood in time. The proportion of total nitrogen in wood

  17. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  18. Yearbook 1998. TULISIJA Research Programme for Wood Firing Technology; Vuosikirja - Aarsbok 1997. TULISIJA

    Energy Technology Data Exchange (ETDEWEB)

    Ljung, M.; Kilpinen, P. [eds.

    1999-11-01

    TULISIJA is the 3-year national research programme for small scale wood firing technology with the aim to assist manufacturers in their efforts to develop the most emission-free, yet efficient, wood firing equipment in the world. The following ten projects have been in progress during the year 1998: The behaviour of fuel; Computational fluid dynamics simulation of combustion in small scale wood ovens; computational fluid dynamics simulation of combustion in small scale wood ovens and modelling of emission chemistry; Modelling of heat transfer in fireplace walls and constructions; Detailed emission and temperature measurements in the TULISIJA test oven; Measurement environment for fireplace testing; Reduction of emissions from soapstone fireplaces; Development of a new modular method for fireplace manufacture; Replacement of energy intensive raw material with recycled industrial waste and further development of combustion processes in fireplaces and Instructions for dimensioning and design of fireplaces for optimum living atmosphere in residences

  19. Comparative study of Danish prefab houses made of wood

    DEFF Research Database (Denmark)

    Wraber, Ida Kristina

    2011-01-01

    The use of wood in Danish prefab building projects is increasing, but there is not a strong architectural tradition in Denmark for constructing timber housing. This paper therefore contains a comparative study of various manners of incorporating architectural features in prefab houses made of wood....... In the study four Danish prefab housing concepts based on wood con¬struc¬tion is compared and discussed, in order to investigate and exemplify how it is possible to work with architectural quality in prefab timber housing and maximise the use of the material, the prefab production and the architectural values....... It was concluded that especially two aspects are of great importance for the concrete handling of the architectural quality of prefab houses made of wood; 1) flexibility in relation to user and site, and 2) the interaction between form, logics and material. It is suggested that keeping these two aspects in mind...

  20. The wood energy in France

    International Nuclear Information System (INIS)

    Douard, F.; Oremus, Y.; Garsault-Fabbi, A.

    2007-01-01

    The program law fixing the energy policy (POPE Law of the 13 july 2005) fixes an objective of 50% of growth for the renewable heat. As this renewable heat is today generated by the biomass, it seems necessary to adjust all the efforts on this sector. This document proposes to takes stock on the wood energy in France. It presents the wood fuels, an evaluation of the Wood-Energy Plan decided by the ADEME in 2000, the wood heat networks, and some example of installations. (A.L.B.)

  1. Structure and function of wood

    Science.gov (United States)

    Alex Wiedenhoeft

    2010-01-01

    Wood is a complex biological structure, a composite of many chemistries and cell types acting together to serve the needs of a living plant. Attempting to understand wood in the context of wood technology, we have often overlooked the key and basic fact that wood evolved over the course of millions of years to serve three main functions in plants― conduction of water...

  2. Combustion of Waste Wood. Second phase of the collaboration project on waste wood combustion

    International Nuclear Information System (INIS)

    Andersson, Annika; Andersson, Christer; Eriksson, Jan; Hemstroem, Bengt; Jungstedt, Jenny; Kling, Aasa; Bahr, Bo von; Ekvall, Annika; Eskilsson, David; Tullin, Claes; Harnevie, Henrik; Sieurin, Jan; Keihaes, Juha; Mueller, Christian; Berg, Magnus; Wikman, Karin

    2003-08-01

    Combustion of waste wood has during the last decade increased dramatically and this has resulted in a number of Swedish plants using this fuel, e.g. Handeloe P11 (Norrkoeping) and ldbaecken P3 (Nykoeping), and yet other plants that are under construction (e.g. Nynaeshamn). The experience from these plants are that waste wood combustion results in a number of operational problems. To some extent these problems are different compared with the problems related to combustion of other biofuels but the situation is not directly comparable to waste incinerators. The problems are mainly related to slagging and fouling of heat exchanger surfaces and accelerated corrosion at relatively low temperature compared to the situation for ordinary biofuels. In some cases an increase in the emissions of specific substances can also result in difficulties to fulfil the EC-directive on waste combustion. Within previous projects the main problems related to combustion of waste wood have been identified and to some extent the cause of these problems has been clarified. One result of this reported investigation is a deeper understanding of the actual causes of these problems. However, the most important result is a number of recommendations for different measures on how to achieve disturbance-free combustion of waste wood. These recommendations actually summarises the most important possible solutions on how to achieve a disturbance-free operation and a lower maintenance cost for boilers combusting waste wood and can thereby be regarded as a short summery of the whole project: 1) Improving fuel quality by Improved sorting at the source and Sieving of the fuel -> Reducing the amount of metals and chlorine and Separation of fines and thereby reducing the amount of metals. 2) Combustion modifications by Avoiding reducing conditions at the heat exchanger surfaces -> Minimising slagging, fouling and corrosion. 3) Additives or co-combustion by Addition of sulphur with the fuel; Injection of

  3. Application of Meta-Heuristic Hybrid Artificial Intelligence Techniques for Modeling of Bonding Strength of Plywood Panels

    Directory of Open Access Journals (Sweden)

    Cenk Demirkır

    2014-04-01

    Full Text Available Plywood, which is one of the most important wood based panels, has many usage areas changing from traffic signs to building constructions in many countries. It is known that the high quality plywood panel manufacturing has been achieved with a good bonding under the optimum pressure conditions depending on adhesive type. This is a study of determining the using possibilities of modern meta-heuristic hybrid artificial intelligence techniques such as IKE and AANN methods for prediction of bonding strength of plywood panels. This study has composed of two main parts as experimental and analytical. Scots pine, maritime pine and European black pine logs were used as wood species. The pine veneers peeled at 32°C and 50°C were dried at 110°C, 140°C and 160°C temperatures. Phenol formaldehyde and melamine urea formaldehyde resins were used as adhesive types. EN 314-1 standard was used to determine the bonding shear strength values of plywood panels in experimental part of this study. Then the intuitive k-nearest neighbor estimator (IKE and adaptive artificial neural network (AANN were used to estimate bonding strength of plywood panels. The best estimation performance was obtained from MA metric for k-value=10. The most effective factor on bonding strength was determined as adhesive type. Error rates were determined less than 5% for both of the IKE and AANN. It may be recommended that proposed methods could be used in applying to estimation of bonding strength values of plywood panels.

  4. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood.

    Directory of Open Access Journals (Sweden)

    Jean-François Bastin

    Full Text Available Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing. However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass.Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood.Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity

  5. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood.

    Science.gov (United States)

    Bastin, Jean-François; Fayolle, Adeline; Tarelkin, Yegor; Van den Bulcke, Jan; de Haulleville, Thales; Mortier, Frederic; Beeckman, Hans; Van Acker, Joris; Serckx, Adeline; Bogaert, Jan; De Cannière, Charles

    2015-01-01

    Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass. Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood). Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity variance was

  6. Methane from wood

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S

    2005-07-15

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  7. Methane from wood

    International Nuclear Information System (INIS)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S.

    2005-07-01

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  8. Variability in energy and carbon dioxide balances of wood and concrete building materials

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Sathre, Roger [Ecotechnology, Mid Sweden University, SE-831 25 OEstersund (Sweden)

    2006-07-15

    A variety of factors affect the energy and CO{sub 2} balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO{sub 2} emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO{sub 2} balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO{sub 2} balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO{sub 2} balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO{sub 2} emission to the atmosphere. (author)

  9. Variability in energy and carbon dioxide balances of wood and concrete building materials

    International Nuclear Information System (INIS)

    Gustavsson, Leif; Sathre, Roger

    2006-01-01

    A variety of factors affect the energy and CO 2 balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO 2 emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO 2 balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO 2 balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO 2 balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO 2 emission to the atmosphere. (author)

  10. Overall ecologic evaluation of cascading use of wood. Environmental impacts of substantial and energetic systems for utilization of wood in comparison; Gesamtoekologische Bewertung der Kaskadennutzung von Holz. Umweltauswirkungen stofflicher und energetischer Holznutzungssysteme im Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, Sven; Hienz, Gunnar; Keller, Heiko; Mueller-Lindenlauf, Maria

    2013-01-15

    Wood demand is rising and its production can only be extended to a certain degree. This requires a prioritisation of wood use options. Therefore, the environmental aspects of using wood for energy production or as a material with and without cascading recycling steps of stepwise lower value are studied in a comprehensive life cycle assessment (LCA). In addition, the environmental impacts of tapping new wood resources are assessed qualitatively. The results show that under most conditions the environmental impacts are the lower the more steps of a high-value material use are performed before the wood is used for energy production. One has to consider, though, that extended material use cascades can cause decades of delays of the energy recovery step, which may lead to the replacement of cleaner energy sources in the future and thus impair the results for the long-lived wood products. At the same time, wood products can represent a temporary or even - if material wood use generally increases - a long-term carbon stock. This leads to a delay of the greenhouse effect. Depending on the assessment method, these opposing effects result in unchanged to diminished impacts of long-lived wood products on the climate. Nevertheless, from an environmental point of view, high-value material use is advantageous compared to a direct use of wood for energy production independent of the assessment method. When comparing material use options of wood, especially the high-quality use of high-value wood assortments (e.g. solid wood as construction wood) is associated with positive results from an environmental perspective. In this context, the main effects on the LCA results come from the choice of the non-wood reference product and its associated environmental impacts. Regarding the direct use of wood for energy production, the most advantageous option from an environmental point of view is a combined heat and power plant (CHP) with a high overall efficiency.

  11. Moisture Performance of wood-plastic composites reinforced with extracted and delignified wood flour

    Science.gov (United States)

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    This study investigated the effect of using extracted and delignified wood flour on water sorption properties of wood–plastic composites. Wood flour (WF) extraction was performed with three solvent systems: toluene/ethanol (TE), acetone/water (AW), and hot water (HW); delignification was conducted using sodium chlorite/acetic acid solution. A 24 full-factorial...

  12. Survival, growth, wood basic density and wood biomass of seven ...

    African Journals Online (AJOL)

    A performance comparison of seven-year-old individuals of 13 Casuarina species/provenances in terms of survival, growth (diameter, height and volume), wood basic density and wood biomass was undertaken at Kongowe, Kibaha, Tanzania. The trial was laid out using a randomised complete block design with four ...

  13. Inventory of usage pattern for wood burning appliances

    International Nuclear Information System (INIS)

    Cooper, David; Joeborn, Inger; Sjoedin, Aake; Munkhammar, Inger; Gustavsson, Lennart

    2005-02-01

    The Swedish Environmental Research Institute (IVL) in co-operation with the Swedish National Testing and Research Institute (SP) and Statistics Sweden (SCB) have investigated the use of domestic wood burning for wood stoves and open fireplaces. The results from a closer examination of existing national energy statistics for residential heating has enabled a division of the average consumption of firewood for each house by the category 'fireplace for open fire' and 'tiled stove/heating stove/fireplace for wood'. The estimation of emissions can therefore be improved by differentiating emission factors for different wood stoves and open fireplaces. Today, only one emission factor is used. An insight into general firing procedures, wood storage routines etc. was investigated using a questionnaire for the Teleborg area of the city Vaexjoe. The results of this study provide a foundation for further work, which will subsequently enable improvements for emission inventories on small-scale biomass combustion from household appliances

  14. Manufacturing of golf club using wood-plastic combination produced by γ-irradiation

    International Nuclear Information System (INIS)

    Yamagami, Masayuki; Tsujii, Yukio; Ohnishi, Tokuhiro; Miyoshi, Hirofumi; Chubachi, Mitsuo; Takada, Hisatoshi.

    1992-01-01

    Wood-plastic combination (WPC) was produced by γ-irradiation of persimmon impregnated with acrylonitrile and styrene. The hardness and strength of WPC obtained were higher than those of an unmodified wood. Thus, it was found that the WPC is suited for a head of golf club, because the Shore hardness value of WPC is 36% greater than that of unmodified wood. An impregnation method of monomers with some pigments could produce colored WPC without diminishing natural grain. Head of golf club could be manufactured from colored WPC in practice. (auhtor)

  15. Preservation of forest wood chips

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, P.D.; Thomsen, I.M.; Ohlsson, C.; Leer, E.; Ravn Schmidt, E.; Soerensen, M.; Knudsen, P.

    1999-01-01

    As part of the Danish Energy Research Programme on biomass utilisation for energy production (EFP), this project concerns problems connected to the handling and storing of wood chips. In this project, the possibility of preserving wood chips of the Norway Spruce (Picea Abies) is addressed, and the potential improvements by anaerobic storage are tested. Preservation of wood chips aims at reducing dry matter losses from extensive heating during storage and to reduce production of fungal spores. Fungal spores pose a health hazards to workers handling the chips. Further the producers of wood chips are interested in such a method since it would enable them to give a guarantee for the delivery of homogeneous wood chips also during the winter period. Three different types of wood chips were stored airtight and further one of these was stored in accordance with normal practise and use as reference. The results showed that airtight storage had a beneficial impact on the quality of the chips: no redistribution of moisture, low dry matter losses, unfavourable conditions for microbial activity of most fungi, and the promotion of yeasts instead of fungi with airborne spores. Likewise the firing tests showed that no combustion problems, and no increased risk to the environment or to the health of staff is caused by anaerobic storage of wood chips. In all, the tests of the anaerobic storage method of forest wood chips were a success and a large-scale test of the method will be carried out in 1999. (au)

  16. Robert Wood Johnson Foundation

    Science.gov (United States)

    Robert Wood Johnson Foundation Search How We Work Our Focus Areas About RWJF Search Menu How We Work Grants ... Learn more For Grantees and Grantseekers The Robert Wood Johnson Foundation funds a wide array of programs ...

  17. Wood pellets in a power plant - mixed combustion of coal and wood pellets

    International Nuclear Information System (INIS)

    Nupponen, M.

    2001-01-01

    The author reviews in his presentation the development of Turku Energia, the organization of the company, the key figures of the company in 2000, as well as the purchase of energy in 2000. He also presents the purchase of basic heat load, the energy production plants of the company, the sales of heat in 2000, the emissions of the plants, and the fuel consumption of the plants in 2000. The operating experiences of the plants are also presented. The experiences gained in Turku Energia on mixed combustion of coal and wood pellets show that the mixing ratios, used at the plants, have no effect on the burning properties of the boiler, and the use of wood pellets with coal reduce the SO 2 and NO x emissions slightly. Simultaneously the CO 2 share of the wood pellets is removed from the emissions calculations. Several positive effects were observed, including the disappearance of the coal smell of the bunker, positive publicity of the utilization of wood pellets, and the subsidies for utilization of indigenous fuels in power generation. The problems seen include the tendency of wood pellets to arc the silos, especially when the pellets include high quantities of dust, and the loading of the trucks and the pneumatic unloading of the trucks break the pellets. Additionally the wood pellets bounce on the conveyor so they drop easily from the conveyor, the screw conveyors designed for conveying grain are too weak and they get stuck easily, and static electricity is easily generated in the plastic pipe used as the discharge pipe for wood pellet (sparkling tendency). This disadvantage has been overcome by using metal net and grounding

  18. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Steef V. [Radboud Univ., Nijmegen (Netherlands). Dept. of Environmental Science, Faculty of Science; Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Duden, Anna S. [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Junginger, Martin [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Dale, Virginia H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division, Center for BioEnergy Sustainability; van der Hilst, Floor [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences

    2016-12-29

    Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood-pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth, and avoided GHG emissions through replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood, commercial thinnings, harvest residues, and mill residues. Per feedstock, the GHG balance of wood-pellet electricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative fates of the feedstock material, such as in-forest decomposition, or the production of paper or wood panels like oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for this feedstock. Results indicate that the GHG balance of wood-pellet electricity equals that of alternative scenarios within 0 to 21 years (the GHG parity time), after which wood-pellet electricity has sustained climate benefits. Parity times increase by a maximum of twelve years when varying key variables (emissions associated with paper and panels, soil carbon increase via feedstock decomposition, wood-pellet electricity supply chain emissions) within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock leads to the shortest GHG parity times (0-6 years) and fastest GHG benefits from wood-pellet electricity. Here, we find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alternative land

  19. Economic impact of industrial wood energy use in the Southeast region of the United States

    International Nuclear Information System (INIS)

    Stephenson, C.D.

    1991-01-01

    More than 1,000 commercial and industrial installations in the Southeast burn wood fuels. Collectively, these facilities consume 44.3 million green tons of fuelwood and 41.7 million tons per year of 'black liquor' residues. Considering the entire direct and indirect impacts of industrial wood energy expenditures as they ripple through the economy, activities associated with the use of industrial wood energy resulted in the production of over 71,000 jobs and $1 billion in personal income for the Southeast region in 1987. In addition, a total of $237 million in State and Federal tax revenues were generated through wood energy related economic activities. Growth projections indicate that by the year 2000, industrial wood energy utilization will generate approximately 97,000 jobs and $1.4 billion in income in the Southeast region

  20. Advantages of the use of energy wood

    International Nuclear Information System (INIS)

    Kaerhae, K.; Aarnio, J.; Maekinen, P.

    2000-01-01

    According to the Regional Forestry Associations it would be possible to develop the harvesting of energy wood by increasing the use of it. The study was made at the areas of 34 regional forestry associations as an inquiry to the executive managers, as well as the persons responsible for timber trade, harvesting or regional affairs. The inquiries studied the use of energy wood and the user of them at the areas of the associations, as well as the amounts of harvesting and the realization of it. Only a third of the associations have large energy wood consuming plants (using more than 500 m 3 energy wood per year). The closest large energy wood consuming plant was in the average 31 km from the office of the association. The average energy wood use of the plant was 20 000 m 3 /a, the variation being 700 - 200 000 m 3 /a. The energy wood purchase range of the plants varied from few kilometers to hundred kilometers, the average being 47 km. Most of the energy wood was harvested from forest regeneration areas. Some of the energy wood is also harvested from young forest maintenance and thinning areas. The estimated harvesting of energy wood in 1999 was 6300 m 3 . A part of the energy wood is used for heating the farms and other small real estates, and a part is used for heating larger buildings like schools, hospitals, factories. The fees to the associations for purchase of energy wood varied significantly. The range was 2.00 - 11.00 FIM/m 3 . One association charged 300 FIM/parcel, and in one association the price depend on the amount of wood acquired from the lot, the unit price being 0.5 FIM/m 3 . It appeared that the associations estimated the use of energy wood to increase. The level in 1999 was 6300 m 3 and it is estimated to increase to 14 300 m 3 in 2005. The associations estimated that the levels can only be achieved if the stumpage price of energy wood may not be 0.0 FIM. Even a marginal price would lead to an increased harvesting of energy wood. The associations

  1. Reliability and service life of wood structures and buildings

    Directory of Open Access Journals (Sweden)

    Zdeňka Havířová

    2005-01-01

    Full Text Available Service life of constructions and buildings of wood is dependent on temperature and moisture conditions in layers of the building cladding where the wood framework is built in. Temperature/moisture conditions or the corresponding equilibrium moisture content (EMC of the construction show considerable effects on the functional reliability of the whole building from the viewpoint of mechanical resistance and stability (ER1, energy savings and thermal protection (ER6 and hygiene, health and environment protection (ER3. To ensure the reliability of constructions and buildings for the period of their supposed service life a more profound analysis of constructions is necessary from the aspect of a global thermal/technical evaluation.

  2. Abundance of large old trees in wood-pastures of Transylvania (Romania).

    Science.gov (United States)

    Hartel, Tibor; Hanspach, Jan; Moga, Cosmin I; Holban, Lucian; Szapanyos, Árpád; Tamás, Réka; Hováth, Csaba; Réti, Kinga-Olga

    2018-02-01

    Wood-pastures are special types of agroforestry systems that integrate trees with livestock grazing. Wood pastures can be hotspots for large old tree abundance and have exceptional natural values; but they are declining all over Europe. While presence of large old trees in wood-pastures can provide arguments for their maintenance, actual data on their distribution and abundance are sparse. Our study is the first to survey large old trees in Eastern Europe over such a large area. We surveyed 97 wood-pastures in Transylvania (Romania) in order to (i) provide a descriptive overview of the large old tree abundance; and (ii) to explore the environmental determinants of the abundance and persistence of large old trees in wood-pastures. We identified 2520 large old trees belonging to 16 taxonomic groups. Oak was present in 66% of the wood-pastures, followed by beech (33%), hornbeam (24%) and pear (22%). For each of these four species we constructed a generalized linear model with quasi-Poisson error distribution to explain individual tree abundance. Oak trees were most abundant in large wood-pastures and in wood-pastures from the Saxon cultural region of Transylvania. Beech abundance related positively to elevation and to proximity of human settlements. Abundance of hornbeam was highest in large wood-pastures, in wood-pastures from the Saxon cultural region, and in places with high cover of adjacent forest and a low human population density. Large old pear trees were most abundant in large wood-pastures that were close to paved roads. The maintenance of large old trees in production landscapes is a challenge for science, policy and local people, but it also can serve as an impetus for integrating economic, ecological and social goals within a landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Use of wood ash for road stabilisation

    International Nuclear Information System (INIS)

    Lagerkvist, A.; Lind, B.

    2009-01-01

    Due to warmer winters in Sweden, the bearing capacity of forestry roads has become increasingly problematic in recent years. Road stabilization is needed in order to get timber out from the forests. This usually involves the addition of cement to the road body. However, wood ash is a possible substitute for cement because it has similar properties. Using wood ash has the added advantage of saving landfill space. This paper presented an ongoing laboratory study on leaching and mechanical stability, as well as frost-sensitivity using a 30 per cent ash addition to natural soils for reinforcing a forestry road near Timra in central Sweden. The road was being monitored with regard to environmental impact and mechanical properties. The paper discussed the potential of biofuel ashes and the increasing need to reinforce infrastructure due to climate change. The environmental impact from ash use in road constructions was then addressed. It was concluded that the application of ash in road construction would help to strengthen forest roads, make them more resistant to climatic change and render them accessible year-round. 32 refs., 3 tabs., 2 figs.

  4. 76 FR 76690 - Multilayered Wood Flooring From the People's Republic of China: Amended Final Determination of...

    Science.gov (United States)

    2011-12-08

    ... construction or locking joints). All multilayered wood flooring is included within the definition of the... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... is issuing an antidumping duty order on multilayered wood flooring (``wood flooring'') from the...

  5. Inoculation Expedition of Agar wood

    International Nuclear Information System (INIS)

    Peng, C.S.; Mohd Fajri Osman; Rusli Zakaria

    2015-01-01

    Inoculation expedition of agar wood is a main field works for researcher in Nuclear Malaysia to prove the real inoculation of agar wood in real jungle. These expeditions was conducted fourth times in the jungles of Malaysia including Gunung Tebu in Terengganu, Murum in Belaga, Sarawak, Kampung Timbang in Kota Belud, Sabah and Nuclear Malaysia itself. This expedition starts from preparation of samples and equipment, transportation into the jungle, searching and recognition of agar wood and lastly, inoculation of the agar wood. Safety aspects precedence set out in the preparation and implementation of this expedition. (author)

  6. The economic potential of wood pellet production from alternative, low-value wood sources in the southeast of the US

    NARCIS (Netherlands)

    Hoefnagels, Ric; Junginger, Martin; Faaij, Andre

    2014-01-01

    The global demand for wood pellets used for energy purposes is growing. Therefore, increased amounts of wood pellets are produced from primary forestry products, such as pulp wood. The present analysis demonstrates that substantial amounts of alternative, low-value wood resources are available that

  7. A Review of Wood Plastic Composites effect on the Environment

    Directory of Open Access Journals (Sweden)

    Ahmed Taifor Azeez

    2017-05-01

    Full Text Available Wood Plastic Composites (WPCs are environmentally friend materials with a wide range of applications in the field of constructions, comprising high mechanical and physical properties with low cost raw materials as plastic wastes and different carpentry process wood reminder. The effects of wood, plastic waste and additives on various properties of the material such as mechanical (modulus of elasticity and modulus of rupture, physical (moisture absorption and fire retardancy have been investigated in order to push the output functions of the products to the limits of work conditions requirements. This study, overviews the importance of Wood Plastic Composites in conserving the environment by depletion post consume plastics from landfills, and the impact of these composites in developing the economic via opening new flourished markets for modern products. Both the ecological and economical requirements oblige the Iraqi government to replace the negatively healthy effects formaldehyde wood composites (medium density fiberboard MDF which are widely consumed in Iraqi markets with Wood Plastic Composites. a long-term strategy plan in which the researchers and the capitals meet under supervision of the government is very necessary and recommended in this paper to establish and develop WPCs industry in Iraq.

  8. Energy wood procurement in connection with conventional wood procurement; Energiapuun hankinnan organisointi muun puunhankinnan yhteydessae - PUUT02

    Energy Technology Data Exchange (ETDEWEB)

    Maekinen, P. [Finnish Forest Research Institute, Vantaa (Finland)

    2001-07-01

    The research consisted of two sub-projects. The present role of forestry associations in procurement of energy wood was investigated in the first sub- project. The possibilities and willingness of them to increase the energy wood procurement were also studied. The role of forest machine and forestry service entrepreneurs in procurement of energy wood was investigated in the second sub-project. The effects of energy wood procurement on the operation of the forest machine companies in general were also studied in this sub-project. The sub-project three studied the requirements of the customer companies for the energy wood suppliers. All the material of the sub-projects was collected by personal inquiries. According to the executive directors of the forestry associations the role of the forestry associations in energy wood procurement varied between a by-stander and active participant. Active forestry associations announced the companies for stands available for cutting. They told also that they directed the harvesting to correct sites and deliver stems at the roadside. The role of the forestry association was emphasised especially when the associations on the basis of a letter of attorney carried out the timber trade. It was estimated that in the near future the operation of forest machine entrepreneurs in harvesting of energy wood would increase significantly. From the employment and turnover point of view the role of harvesting of energy wood was not seen as a significant matter. On the other hand, that harvesting of energy wood impede the harvesting of commercial timber was seen as a more significant matter. In the future the end-users of energy wood would like to have more competition in the energy wood markets. However, the energy wood suppliers were desired to be relative large so that the reliability of deliveries could be ensured. Simultaneously as the end-users wanted to decrease the price of forest chips, the machine entrepreneurs estimated the price to

  9. PHYSICAL AND MECHANICAL PROPERTIES OF JUVENILE Schizolobium amazonicum WOOD

    Directory of Open Access Journals (Sweden)

    Graziela Baptista Vidaurre

    2018-03-01

    Full Text Available ABSTRACT Growth in world demand for wood implies a search for new fast growing species with silvicultural potential, and in this scenario for native species such as Paricá . Thus, the objective of this study was determining the physical and mechanical wood properties of the Schizolobium amazonicum species (known as Paricá in Brazil. Trees were collected from commercial plantations located in the north of Brazil with ages of 5, 7, 9 and 11 years. Four logs from trees of each age in the longitudinal direction of the trees were obtained, and later a diametrical plank of each log was taken to manufacture the specimens which were used to evaluate some physical and mechanical properties of the wood. The basic density of Paricá was reduced in the basetop direction and no difference between the radial positions was observed, while the average basic density of this wood was characterized as low. The region close to the bark showed less longitudinal contraction and also greater homogeneity of this property along the trunk, while for tangential contraction the smallest variation was found in the region near the pith. Paricá wood contraction was characterized as low. Age influenced most of the mechanical properties, where logs from the base had the highest values of mechanical strength.

  10. Fire Safety Design of Wood Structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections.......Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections....

  11. The Swedish wood fuel market

    International Nuclear Information System (INIS)

    Hillring, Bengt

    1999-01-01

    In Sweden, wood fuels are traditionally used in the Swedish forest products industry and for heating of single-family houses. More recently they are also become established as an energy source for district heating and electricity production. Energy policy, especially the energy taxation system, has favoured wood fuels and other biofuels, mainly for environmental reasons. There is now an established commercial market for wood fuels in the district heating sector, which amounts to 45 PJ and is growing 20 per cent annually. Price levels have been stable in current prices for a decade, mainly because of good access to wood fuels. Price levels are dominated by production costs on a market that is largely governed by the buyer. It is expected that the use of wood fuels will increased in Sweden in the future, which will push a further development of this section on the market and bring about technological changes in the area. (Author)

  12. How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory.

    Science.gov (United States)

    Filipiak, Michał; Weiner, January

    2014-01-01

    The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates.

  13. Corrosion of Fasteners in Wood Treated with Newer Wood Preservatives

    Science.gov (United States)

    Samuel L. Zelinka

    2013-01-01

    This document compiles recent research findings related to corrosion of metals in preservative treated wood into a single report on corrosion of metals in wood. The research was conducted as part of the Research, Technology and Education portion of the National Historic Covered Bridge Preservation (NHCBP) Program administered by the Federal Highway Administration. The...

  14. Scarcity on the market for wood wastes

    International Nuclear Information System (INIS)

    De Boer, A.

    2004-01-01

    An overview is given of the market for wood wastes in the Netherlands and how this affects the targets to use biomass. Several types of biomass must be imported, not only wood wastes, but also e.g. olive stones and cacao shells [nl

  15. Tensile and impact properties of three-component PP/wood/elastomer composites

    Directory of Open Access Journals (Sweden)

    B. Pukanszky

    2012-03-01

    Full Text Available Polypropylene (PP was reinforced with wood flour and impact modified with elastomers to increase stiffness and impact resistance simultaneously. Elastomer content changed in four (0, 5, 10 and 20 wt%, while that of wood content in seven steps, the latter from 0 to 60 wt% in 10 wt% steps. Structure and adhesion were controlled by the addition of functionalized (maleated polymers. Composites were homogenized in a twin-screw extruder and then injection molded to tensile bars. Fracture resistance was characterized by standard and instrumented impact tests. The results showed that the components are dispersed independently of each other even when a functionalized elastomer is used for impact modification, at least under the conditions of this study. Impact resistance does not change much as a function of wood content in PP/wood composites, but decreases drastically from the very high level of the PP/elastomer blend to almost the same value obtained without impact modifier in the three-component materials. Increasing stiffness and fiber related local deformation processes led to small fracture toughness at large wood content. Micromechanical deformation processes depend mainly on the strength of PP/wood interaction; debonding and pull-out take place at poor adhesion, while fiber fracture dominates when adhesion is strong. Composites with sufficiently large impact resistance cannot be prepared in the usual range of wood contents (50–60 wt%.

  16. Quantifying arthropod contributions to wood decay

    Science.gov (United States)

    Michael Ulyshen; Terry Wagner

    2013-01-01

    Termites carry large amounts of soil into dead wood, and this behaviour complicates efforts to measure their contributions to wood decay. A novel method for isolating termite soil by burning the wood is described, and some preliminary results are presented.

  17. Radon reduction in wood foundation system

    International Nuclear Information System (INIS)

    Clark, R.J.

    1990-01-01

    Radon, an issue of growing concern to the building industry. Silently, invisibly, it invades existing structures as it will future foundation structures. This paper addresses the nature and causes of radon, and cost-effective prevention and retrofit techniques used for wood foundation systems. Radon also can enter homes with foundations that use the under-floor as an air distribution system. These building practices will be shown; even materials used in construction may release radon, for example, this may be a problem in a house that has a solar heating system in which its heat is stored in large beds of stone. Stone is most often used in wood foundation construction. The common radon entry points will be looked at, and the latest prevention techniques will be illustrated, such as natural and forced ventilation, sealing major radon sources and entry routes, and sub-slab and sump crock ventilations

  18. Environmental issues: New techniques for managing and using wood fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Fehrs, J.E.; Donovan, C.T. [C.T. Donovan Associates, Inc., Burlington, VT (United States)

    1993-12-31

    Continued research and development of environmentally-acceptable and cost-effective end uses for wood ash is having a significant affect on the ability to use wood and wood waste for fuel. This is particularly true for ash resulting from treated wood combustion. Concerns about the contents of ash from wood containing paint, stain, preservatives, or other chemicals is one of the largest regulatory barriers to its use as fuel. The purpose of this paper is to: (1) Identify the physical and chemical characteristics of ashes produced from the combustion of untreated and treated wood; (2) Explain the types of {open_quotes}clean, untreated{close_quotes} and {open_quotes}treated{close_quotes} wood that are likely to produce ash that can beneficially used; (3) Describe existing and potential products and end uses for untreated and treated wood ash.

  19. Power generation from waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Nitsche, H

    1980-04-18

    Since the energy crisis, power generation from waste wood has become increasingly important. The most profitable way to use waste wood in woodworking plants with an annual production of 100 to 150,000 m/sup 3/ solid measure of wood chips and bark is by combustion and thermal energy recovery. In plants with an annual production of 10,000 m/sup 3/ solid measure of wood chips and bark, electric power generation is a suitable application.

  20. Decay extent evaluation of wood degraded by a fungal community using NIRS: application for ecological engineering structures used for natural hazard mitigation

    Science.gov (United States)

    Baptiste Barré, Jean; Bourrier, Franck; Bertrand, David; Rey, Freddy

    2015-04-01

    Ecological engineering corresponds to the design of efficient solutions for protection against natural hazards such as shallow landslides and soil erosion. In particular, bioengineering structures can be composed of a living part, made of plants, cuttings or seeds, and an inert part, a timber logs structure. As wood is not treated by preservatives, fungal degradation can occur from the start of the construction. It results in wood strength loss, which practitioners try to evaluate with non-destructive tools (NDT). Classical NDT are mainly based on density measurements. However, the fungal activity reduces the mechanical properties (modulus of elasticity - MOE) well before well before a density change could be measured. In this context, it would be useful to provide a tool for assessing the residual mechanical strength at different decay stages due to a fungal community. Near-infrared spectroscopy (NIRS) can be used for that purpose, as it can allow evaluating wood mechanical properties as well as wood chemical changes due to brown and white rots. We monitored 160 silver fir samples (30x30x6000mm) from green state to different levels of decay. The degradation process took place in a greenhouse and samples were inoculated with silver fir decayed debris in order to accelerate the process. For each sample, we calculated the normalized bending modulus of elasticity loss (Dw moe) and defined it as decay extent. Near infrared spectra collected from both green and decayed ground samples were corrected by the subtraction of baseline offset. Spectra of green samples were averaged into one mean spectrum and decayed spectra were subtracted from the mean spectrum to calculate the absorption loss. Partial least square regression (PLSR) has been performed between the normalized MOE loss Dw moe (0 wood decay extent in the context of ecological engineering structures used for natural hazard mitigation.

  1. Variation in Wood Quality in White Spruce (Picea Glauca (Moench Voss. Part I. Defining the Juvenile–Mature Wood Transition Based on Tracheid Length

    Directory of Open Access Journals (Sweden)

    Cyriac Serge Mvolo

    2015-01-01

    Full Text Available Estimations of transition age (TA and juvenile wood proportion (JWP are important for wood industries due to their impact on end-product quality. However, the relationships between analytical determination of TA based on tracheid length (TL and recognized thresholds for adequate end products have not yet been established. In this study, we used three different statistical models to estimate TA in white spruce (Picea glauca (Moench Voss based on TL radial variation. We compared the results with technological maturity. A two-millimeter threshold, previously suggested for good paper tear strength, was used. Tracheid length increased from pith to bark and from breast height to upper height. Juvenile wood (JW was conical with the three models. At breast height, TA ranged from 11 to 27 years and JWP ranged from 15.3% to 47.5% across the three models. The linear mixed model produced more conservative estimates than the maximum-quadratic-linear (M_Q_L model. Both the linear mixed model and the M_Q_L model produced more conservative TA estimates than the piecewise model. TA estimates by the MIXED model, and to a lesser extent by the M_Q_L model, were equivalent to those for real mature wood, whereas TA estimates by the piecewise model were considerably lower, falling into the transition wood area.

  2. Discover the benefits of residential wood heating

    International Nuclear Information System (INIS)

    2003-01-01

    This publication described how residential wood-heating systems are being used to reduce energy costs and increase home comfort. Biomass energy refers to all forms are renewable energy that is derived from plant materials. The source of fuel may include sawmills, woodworking shops, forest operations and farms. The combustion of biomass is also considered to be carbon dioxide neutral, and is not considered to be a major producer of greenhouse gases (GHG) linked to global climate change. Wood burning does, however, release air pollutants, particularly if they are incompletely burned. Incomplete combustion of wood results in dense smoke consisting of toxic gases. Natural Resources Canada helped create new safety standards and the development of the Wood Energy Technical Training Program to ensure that all types of wood-burning appliances are installed correctly and safely to reduce the risk of fire and for effective wood heating. In Canada, more than 3 million families heat with wood as a primary or secondary heating source in homes and cottages. Wood heating offers security from energy price fluctuations and electrical power failures. This paper described the benefits of fireplace inserts that can transform old fireplaces into modern heating systems. It also demonstrated how an add-on wood furnace can be installed next to oil furnaces to convert an oil-only heating system to a wood-oil combination system, thereby saving thousands of dollars in heating costs. Wood pellet stoves are another wood burning option. The fuel for the stoves is produced from dried, finely ground wood waste that is compressed into hard pellets that are loaded into a hopper. The stove can run automatically for up to 24 hours. New high-efficiency advanced fireplaces also offer an alternative heating system that can reduce heating costs while preserving Canada's limited supply of fossil fuels such as oil and gas. 13 figs

  3. On Erdos–Wood's conjecture

    Indian Academy of Sciences (India)

    In this article, we prove that infinite number of integers satsify Erdős–Woods conjecture. Moreover, it follows that the number of natural numbers ≤ satisfies Erdős–Woods conjecture with = 2 is at least /(log ) for some positive constant > 2.

  4. VOC emissions from residential combustion of Southern and mid-European woods

    Science.gov (United States)

    Evtyugina, Margarita; Alves, Célia; Calvo, Ana; Nunes, Teresa; Tarelho, Luís; Duarte, Márcio; Prozil, Sónia O.; Evtuguin, Dmitry V.; Pio, Casimiro

    2014-02-01

    Emissions of trace gases (carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC)), and volatile organic compounds (VOCs) from combustion of European beech, Pyrenean oak and black poplar in a domestic woodstove and fireplace were studied. These woods are widely used as biofuel in residential combustion in Southern and mid-European countries. VOCs in the flue gases were collected in Tedlar bags, concentrated in sorbent tubes and analysed by thermal desorption-gas chromatography-flame ionisation detection (GC-FID). CO2 emissions ranged from 1415 ± 136 to 1879 ± 29 g kg-1 (dry basis). The highest emission factors for CO and THC, 115.8 ± 11.7 and 95.6 24.7 ± 6.3 g kg-1 (dry basis), respectively, were obtained during the combustion of black poplar in the fireplace. European beech presented the lowest CO and THC emission factors for both burning appliances. Significant differences in emissions of VOCs were observed among wood species burnt and combustion devices. In general the highest emission factors were obtained from the combustion of Pyrenean oak in the woodstove. Among the VOCs identified, benzene and related compounds were always the most abundant group, followed by oxygenated compounds and aliphatic hydrocarbons. The amount and the composition of emitted VOCs were strongly affected by the wood composition, the type of burning device and operating conditions. Emission data obtained in this work are useful for modelling the impact of residential wood combustion on air quality and tropospheric ozone formation.

  5. Chapter 6: Above Ground Deterioration of Wood and Wood-Based Materials

    Science.gov (United States)

    Grant Kirker; Jerrold Winandy

    2014-01-01

    Wood as a material has unique properties that make it ideal for above ground exposure in a wide range of structural and non-strucutral applications. However, no material is without limitations. Wood is a bio-polymer which is subject to degradative processes, both abiotic and biotic. This chapter is a general summary of the abiotic and biotic factors that impact service...

  6. Assessment and management of dead-wood habitat

    Science.gov (United States)

    Hagar, Joan

    2007-01-01

    The Bureau of Land Management (BLM) is in the process of revising its resource management plans for six districts in western and southern Oregon as the result of the settlement of a lawsuit brought by the American Forest Resource Council. A range of management alternatives is being considered and evaluated including at least one that will minimize reserves on O&C lands. In order to develop the bases for evaluating management alternatives, the agency needs to derive a reasonable range of objectives for key issues and resources. Dead-wood habitat for wildlife has been identified as a key resource for which decision-making tools and techniques need to be refined and clarified. Under the Northwest Forest Plan, reserves were to play an important role in providing habitat for species associated with dead wood (U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, 1994). Thus, the BLM needs to: 1) address the question of how dead wood will be provided if reserves are not included as a management strategy in the revised Resource Management Plan, and 2) be able to evaluate the effects of alternative land management approaches. Dead wood has become an increasingly important conservation issue in managed forests, as awareness of its function in providing wildlife habitat and in basic ecological processes has dramatically increased over the last several decades (Laudenslayer et al., 2002). A major concern of forest managers is providing dead wood habitat for terrestrial wildlife. Wildlife in Pacific Northwest forests have evolved with disturbances that create large amounts of dead wood; so, it is not surprising that many species are closely associated with standing (snags) or down, dead wood. In general, the occurrence or abundance of one-quarter to one-third of forest-dwelling vertebrate wildlife species, is strongly associated with availability of suitable dead-wood habitat (Bunnell et al., 1999; Rose et al., 2001). In

  7. Modelling inorganic biocide emission from treated wood in water

    Energy Technology Data Exchange (ETDEWEB)

    Tiruta-Barna, Ligia, E-mail: Ligia.barna@insa-toulouse.fr [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR792, Laboratoire d' Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Universite Paris-Est, CSTB- Scientific and Technical Centre for the Building Industry, ESE/Environment, 24, rue Joseph Fourier, 38400 Saint Martin d' Heres (France)

    2011-09-15

    Highlights: {center_dot} We developed a mechanistic model for biocide metals fixation/mobilisation in wood. {center_dot} This is the first chemical model explaining the biocide leaching from treated wood. {center_dot} The main fixation mechanism is the surface complexation with wood polymers. {center_dot} The biocide mobilization is due to metal-DOC complexation and pH effect. - Abstract: The objective of this work is to develop a chemical model for explaining the leaching behaviour of inorganic biocides from treated wood. The standard leaching test XP CEN/TS14429 was applied to a commercial construction material made of treated Pinus sylvestris (Copper Boron Azole preservative). The experimental results were used for developing a chemical model under PHREEQC (a geochemical software, with LLNL, MINTEQ data bases) by considering the released species detected in the eluates: main biocides Cu and B, other trace biocides (Cr and Zn), other elements like Ca, K, Cl, SO{sub 4}{sup -2}, dissolved organic matter (DOC). The model is based on chemical phenomena at liquid/solid interfaces (complexation, ion exchange and hydrolysis) and is satisfactory for the leaching behaviour representation. The simulation results confronted with the experiments confirmed the hypotheses of: (1) biocide fixation by surface complexation reactions with wood specific sites (carboxyl and phenol for Cu, Zn, Cr(III), aliphatic hydroxyl for B, ion exchange to a lesser extent) and (2) biocide mobilisation by extractives (DOC) coming from the wood. The maximum of Cu, Cr(III) and Zn fixation occurred at neutral pH (including the natural pH of wood), while B fixation was favoured at alkaline pH.

  8. Refraction and absorption of microwaves in wood

    International Nuclear Information System (INIS)

    Ziherl, Saša; Bajc, Jurij; Čepič, Mojca

    2013-01-01

    A demonstration experiment for physics students showing the dependence of the refractive index and absorption coefficient of wood on the direction of microwaves is presented. Wood and microwaves enable study of anisotropic properties, which are typically found in crystals. Wood is used as the persuasive representative of uniaxial anisotropic materials due to its visible structure and its consequent anisotropic properties. Wood can be cut in a general direction and wooden plates a few centimetres thick with well-defined fibre orientation are easily prepared. Microwaves are used because wood is transparent for microwaves and their centimetre-scale wavelength is comparable to the wood structure. (paper)

  9. Choosing Wood Burning Appliances

    Science.gov (United States)

    Information to assist consumers in choosing a wood burning appliance, including types of appliances, the differences between certified and non-certified appliances, and alternative wood heating options.

  10. Yield prediction of young black locust (Robinia pseudoacacia L. plantations for woody biomass production using allometric relations

    Directory of Open Access Journals (Sweden)

    Christian Böhm

    2013-12-01

    Full Text Available Black locust (Robinia pseudoacacia L. is an increasingly popular tree species for the production of woody biomass for bioenergy generation with short rotation coppices. Due to its potential to produce large amounts of biomass yields even under unfavourable growth conditions, this tree species is especially suitable for marginal sites, such as can be found in the post mining area of NE-Germany. Current research aims to reliably predict the yield potential of black locust short rotation coppices, but suffers from a lack of sufficient exact allometric functions until recently. This is especially true for the early growth years, which are of special importance for short rotation coppices. The objective of this study was to develop allometric equations based on tree height and shoot basal diameter (SBD for estimating yields of young black locust plantations. Therefore, dendrometric data were collected in a two, three, four and fourteen years old black locust short rotation forest located in the reclamation area of an opencast-lignite mining area in the Lower Lusatian region (Germany and used for equation developing. Until measurement, none of the plantations had been harvested. Closed correlations between SBD and tree height were observed, as well as between these parameters and single tree mass. The scattering of single tree masses could be explained slightly better by the SBD than by the tree height. In the year before a harvest an even better prediction probability of woody biomass was obtainable when both parameters were simultaneously interrelated with the single tree mass. The results illustrate that the woody above ground biomass of young black locust plantations can be estimated sufficiently precisely based on the easy determinable parameters tree height and particularly SBD.

  11. How the climate limits the wood density of angiosperms

    Science.gov (United States)

    Choi, Jin Woo; Kim, Ho-Young

    2017-11-01

    Flowering trees have various types of wood structure to perform multiple functions under their environmental conditions. In addition to transporting water from the roots to the canopy and providing mechanical support, the structure should provide resistance to embolism to maintain soil-plant-atmosphere continuum. By investigating existing data of the resistivity to embolism and wood density of 165 angiosperm species, here we show that the climate can limit the intrinsic properties of trees. Trees living in the dry environments require a high wood density to slow down the pressure decrease as it loses water relatively fast by evaporation. However, building too much tissues will result in the decrease of hydraulic conductivity and moisture concentration around mesophyll cells. To rationalize the biologically observed lower bound of the wood density, we construct a mechanical model to predict the wood density as a function of the vulnerability to embolism and the time for the recovery. Also, we build an artificial system using hydrogel microchannels that can test the probability of embolism as a function of conduit distributions. Our theoretical prediction is shown to be consistent with the results obtained from the artificial system and the biological data.

  12. Bacterial Community Succession in Pine-Wood Decomposition.

    Science.gov (United States)

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  13. Improved Water Consumption Estimates of Black Locust Plantations in China’s Loess Plateau

    Directory of Open Access Journals (Sweden)

    Kai Schwärzel

    2018-04-01

    Full Text Available Black locust (Robinia pseudoacacia L. is a major tree species in China’s large-scale afforestation. Despite its significance, black locust is underrepresented in sap flow literature; moreover, the published water consumption data might be biased. We applied two field methods to estimate water consumption of black locust during the growing seasons in 2012 and 2013. The application of Granier’s original sap flow method produced a very low transpiration rate (0.08 mm d−1 while the soil water balance method yielded a much higher rate (1.4 mm d−1. A dye experiment to determine the active sapwood area showed that only the outermost annual ring is responsible for conducting water, which was not considered in many previous studies. Moreover, an in situ calibration experiment was conducted to improve the reliability of Granier’s method. Validation showed a good agreement in estimates of the transpiration rate between the different methods. It is known from many studies that black locust plantations contribute to the significant decline of discharge in the Yellow River basin. Our estimate of tree transpiration at stand scale confirms these results. This study provides a basis for and advances the argument for the development of more sustainable forest management strategies, which better balance forest-related ecosystem services such as soil conservation and water supply.

  14. The Carbon Impacts of Wood Products

    Science.gov (United States)

    Richard Bergman; Maureen Puettmann; Adam Taylor; Kenneth E. Skog

    2014-01-01

    Wood products have many environmental advantages over nonwood alternatives. Documenting and publicizing these merits helps the future competitiveness of wood when climate change impacts are being considered. The manufacture of wood products requires less fossil fuel than nonwood alternative building materials such as concrete, metals, or plastics. By nature, wood is...

  15. Temperature effects on wood anatomy, wood density, photosynthesis and biomass partitioning of Eucalyptus grandis seedlings.

    Science.gov (United States)

    Thomas, D S; Montagu, K D; Conroy, J P

    2007-02-01

    Wood density, a gross measure of wood mass relative to wood volume, is important in our understanding of stem volume growth, carbon sequestration and leaf water supply. Disproportionate changes in the ratio of wood mass to volume may occur at the level of the whole stem or the individual cell. In general, there is a positive relationship between temperature and wood density of eucalypts, although this relationship has broken down in recent years with wood density decreasing as global temperatures have risen. To determine the anatomical causes of the effects of temperature on wood density, Eucalyptus grandis W. Hill ex Maiden seedlings were grown in controlled-environment cabinets at constant temperatures from 10 to 35 degrees C. The 20% increase in wood density of E. grandis seedlings grown at the higher temperatures was variously related to a 40% reduction in lumen area of xylem vessels, a 10% reduction in the lumen area of fiber cells and a 10% increase in fiber cell wall thickness. The changes in cell wall characteristics could be considered analogous to changes in carbon supply. Lumen area of fiber cells declined because of reduced fiber cell expansion and increased fiber cell wall thickening. Fiber cell wall thickness was positively related to canopy CO2 assimilation rate (Ac), which increased 26-fold because of a 24-fold increase in leaf area and a doubling in leaf CO2 assimilation rate from minima at 10 and 35 degrees C to maxima at 25 and 30 degrees C. Increased Ac increased seedling volume, biomass and wood density; but increased wood density was also related to a shift in partitioning of seedling biomass from roots to stems as temperature increased.

  16. Management alternatives of energy wood thinning stands

    International Nuclear Information System (INIS)

    Heikkilae, Jani; Siren, Matti; Aeijaelae, Olli

    2007-01-01

    Energy wood thinning has become a feasible treatment alternative of young stands in Finland. Energy wood thinnings have been carried out mainly in stands where precommercial thinning has been neglected and the harvesting conditions for industrial wood thinning are difficult. Despite of its positive effects on harvesting costs and on renewable energy potential, whole-tree harvesting has been constantly criticized for causing growth loss. In this paper, the profitability of energy wood thinning was studied in 20 Scots pine-dominated stands where energy wood thinning was carried out. The growth of the stands after thinning was predicted with the help of Motti-stand simulator. Entire rotation time of the stands was simulated with different management alternatives. The intensity of first thinning and recovery level of logging residues varied between alternatives. In order to attain acceptable harvesting conditions, industrial wood thinning had to be delayed. The effect of energy wood thinning on subsequent stem wood growth was almost the same as in conventional thinning. Whole-tree harvesting for energy proved to be profitable alternative if the stumpage price is around 3EUR m -3 , the interest rate is 3% or 5% and the removal of pulpwood is less than 20 m 3 ha -1 . If the harvestable pulpwood yield is over 20 m 3 ha -1 , integrated harvesting of industrial and energy wood or delayed industrial wood harvesting becomes more profitable. (author)

  17. Property improvement by gamma polymerization of methyl methacrylate impregnated local Thai wood Yang (Dipterocarpus Sp.)

    International Nuclear Information System (INIS)

    Saisomboon, S.; Sumitra, T.

    1990-01-01

    Property improvement of a local Thai wood (Yang-Dipterocarpus Sp.) was studied by impregnating with methyl methacrylate before polymerizing with gamma ray. The polymer loading were 126 and 68 percent for sapwood and heart wood, respectively. Significant improvements in impact, compressive and bending strength were observed in the wood polymer composite (WPC). In addition, the microstructure and the impact fractured-surfaces of WPC were also carried with a scanning electron-microscope

  18. A new material for chemical industry - wood polymer composites

    International Nuclear Information System (INIS)

    Majali, A.B.; Patil, N.D.

    1979-01-01

    The paper outlines the advantages of the radiation cured wood-polymer composites (WPC) for application in certain critical areas of chemical industry. The wood-polymer composite made filterpress frames and plates were tested in a chemical plant. The entire exercise is elaborated. The radiation cured wood exhibited a considerably extended useful life in alkaline and acidic solutions. Composites based on teak wood showed a remarkable improvement with a nominal polymer loading of 10%. The reports of accelerated aging test of WPC are also presented. (auth.)

  19. DecAID advisor: a tool for managing snags, down wood and wood decay in PNW forests.

    Science.gov (United States)

    Bruce G. Marcot; Grant Gunderson; Kim Mellen; Janet L. Ohmann

    2004-01-01

    Past tools for modeling and setting guidelines for snag and down wood management have been based on theory, professional judgment, models of wildlife species use as habitat and empirical data. However, recent studies reveal that guidelines for amounts of snags and down wood on national forests of Washington and Oregon may have been lower than the new field data on use...

  20. Wood as a home heating fuel

    International Nuclear Information System (INIS)

    Wood, K.

    1991-01-01

    This article describes the development of clean-burning technology in three types of wood-burning appliances: catalytic, non-catalytic, and pellet stoves. A recent study by the Washington State Energy Extension Office concluded that in homes that use both electricity and wood, 73 megawatts of electricity/yr were saved by using wood. Since wood-burning stoves can now meet air quality standards, wood could be considered to be a greenhouse-neutral fuel if more trees are planted as they are consumed

  1. Switzerland's largest wood-pellet factory in Balsthal

    International Nuclear Information System (INIS)

    Stohler, F.

    2004-01-01

    This article describes how a small Swiss electricity utility has broken out of its traditional role in power generation and the distribution of electricity and gone into the production of wood pellets. The pellets, which are made from waste wood (sawdust) available from wood processing companies, are produced on a large scale in one of Europe's largest pellets production facilities. The boom in the use of wood pellets for heating purposes is discussed. The article discusses this unusual approach for a Swiss power utility, which also operates a wood-fired power station and is even involved in an incineration plant for household wastes. The markets being aimed for in Switzerland and in Europe are described, including modern low-energy-consumption housing projects. A further project is described that is to use waste wood available from a large wood processing facility planned in the utility's own region

  2. Microbial Communities in Sunken Wood Are Structured by Wood-Boring Bivalves and Location in a Submarine Canyon

    Science.gov (United States)

    Fagervold, Sonja K.; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E.

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  3. Reinforcement of Bolted Timber Joints Using GFRP Sheets in Poplar and Pine Woods

    Directory of Open Access Journals (Sweden)

    Mehrab Madhoushi

    2013-01-01

    Full Text Available Failure in timber structures occurs mainly in crucial points such as joints areas. Therefore, the idea of using composite sheets in timber joints has been intro-duced as a method in order to increase the strength and ductility behaviour of timber joints. This research aims to study the behaviour of bolted joints in poplar and pine woods, which are reinforced by two types of GFRP sheets. A single shear bolted joint consisted of 3 timber members whose length and width were 30 cm in length and 5 cm in width. The thickness of each member was 4 cm for internal part and 2 cm for external part. The employed steel bolt was 10 cm in length and 1 cm in diameter. In this respect, one layer of GFRP sheet was used to be bonded to timber members by using epoxy resin and left between the clamps for 24 hours. They were then kept at room temperature for three weeks. Also the effect of adding a wood veneer on the reinforced joints was investigated. The tensile strength of the reinforced and control samples (un-reinforced joints was measured according to ASTM D5652-92 standard. The results show that the reinforced samples have higher tensile strength compared to that of reinforced joints, although it is not statistically signifcant. Also, two types of sheets infuence the joint behaviour as the reinforced joints display more ductility behaviour.

  4. Moisture measurement in wood, wood-based materials and building materials - a literature review

    International Nuclear Information System (INIS)

    Kober, A.; Mehlhorn, L.; Plinke, B.

    1989-10-01

    Methods of moisture measurement in solid substances, especially on wood, wood-based materials and building materials were examined and evaluated according to the literature available. The question was which methods of examining the moisture distribution in building elements at climate loading offer the best accuracy and spatial resolution as well as which methods are the most appropriate at present and in future for the solution of measurement problems in the wood and wood-based industry. The most common methods are electric measurement methods which are utilizing either the moisture-depending conductivity or the dielectric constant or the reflectivity of the material for infrared radiation but they offer only a limited accuracy. The same is valid for the rarely used microwave methods or X-ray and NMR tomography. Simple electric methods will further on play an important role in the industrial process measuring technique. For the examination of building elements, methods using nuclear radiation still offer possibilities for a further development. (orig.) With 207 refs., 13 figs [de

  5. Implementing Strategies for Drying and Pressing Wood Without Emissions Controls

    Energy Technology Data Exchange (ETDEWEB)

    Sujit Banerjee; Terrance Conners

    2007-09-07

    Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal

  6. Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal

    Energy Technology Data Exchange (ETDEWEB)

    Janin, Amelie, E-mail: amelie.janin@ete.inrs.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Coudert, Lucie, E-mail: lucie.coudert@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Riche, Pauline, E-mail: pauline.riche@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Mercier, Guy, E-mail: guy_mercier@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Cooper, Paul, E-mail: p.cooper@utoronto.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Blais, Jean-Francois, E-mail: blaisjf@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada)

    2011-02-28

    Research highlights: {yields} This paper describes a process for the metal removal from treated (CA-, ACQ- or MCQ-) wood wastes. {yields} This sulfuric acid leaching process is simple and economic. {yields} The remediated wood could be recycled in the industry. - Abstract: Chromated copper arsenate (CCA)-treated wood was widely used until 2004 for residential and industrial applications. Since 2004, CCA was replaced by alternative copper preservatives such as alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ), for residential applications due to health concerns. Treated wood waste disposal is becoming an issue. Previous studies identified a chemical process for decontaminating CCA-treated wood waste based on sulfuric acid leaching. The potential application of this process to wood treated with the copper-based preservatives (alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ)) is investigated here. Three consecutive leaching steps with 0.1 M sulfuric acid at 75 deg, C for 2 h were successful for all the types of treated wood and achieved more than 98% copper solubilisation. The different acidic leachates produced were successively treated by coagulation using ferric chloride and precipitation (pH = 7) using sodium hydroxide. Between 94 and 99% of copper in leachates could be recovered by electrodeposition after 90 min using 2 A electrical current. Thus, the process previously developed for CCA-treated wood waste decontamination could be efficiently applied for CA-, ACQ- or MCQ-treated wood.

  7. GLASS FIBERS – MODERN METHOD IN THE WOOD BEAMS REINFORCEMENT

    Directory of Open Access Journals (Sweden)

    Cătălina IANĂŞI

    2017-05-01

    Full Text Available : One of the defining goals of this paper is getting new resistant material which combine the qualities of basic materials that get into its composition but not to borrow from them their negative properties. Specifically, the use of GFRP composite materials as reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. The results obtained in this paper indicate that the behavior of reinforced beams is totally different from that of un-reinforced one. The main conclusion of the tests is that the tensioning forces allow beam taking a maximum load for a while, something that is particularly useful when we consider a real construction, The experiments have shown that the method of increasing resistance of wood constructions with composite materials is good for it and easy to implement.

  8. Wood-energy - The sector get worried

    International Nuclear Information System (INIS)

    Mary, Olivier; Signoret, Stephane; Bohlinger, Philippe; Guilhem, Jean; De Santis, Audrey; Sredojevic, Alexandre; Defaye, Serge; Maindrault, Marc

    2017-01-01

    Wood energy is, today and certainly also tomorrow, one of the most important renewable energies in France. However, the wood-energy sector seems to slow down as hydrocarbon prices stay extremely low. This document presents 8 articles, describing the context and the characteristics of this evolution, plus some examples of developments in France. The themes of the articles are: the activity of the wood-energy sector should be reinforced to meet the objectives of the French energy multi-year plan; The 2035 prospective of the wood yield in the French forest will meet the future demand, however this evaluation does not take into consideration the effects of the climatic change; the conversion to biomass of the 'Fort de l'Est' (near Paris) heating system (equipped with a boiling fluidized bed boiler) has enabled the heat network to beat the 50 pc share of renewable energy; wood-energy professionals use the 'quality' lever to challenge their fossil fuel competitors; the city of Orleans is now equipped with an innovative biomass cogeneration plant; the example of wood waste valorization in a French sawmill; the French ONF (Forest Administration) Wood-Energy actor has just inaugurated its largest biomass dryer, in order to develop the domestic market for wood as a fuel; analysis of the technical and economical feasibility of using wood to generate electric power or replacing electric space heating by heat network

  9. Least cost supply strategies for wood chips

    DEFF Research Database (Denmark)

    Möller, Bernd

    The abstract presents a study based on a geographical information system, which produce  cost-supply curves by location for forest woods chips in Denmark.......The abstract presents a study based on a geographical information system, which produce  cost-supply curves by location for forest woods chips in Denmark....

  10. Wood pellet use in Sweden. A systems approach to the residential sector

    International Nuclear Information System (INIS)

    Vinterbaeck, Johan

    2000-01-01

    This empirically based thesis deals with a biofuel market in a systems context with focus on Sweden. Fuel pellets is a new consumer market for wood products. Initially used mainly by large-scale heating plants, wood pellets expanded into the Swedish residential heating market in the mid 1990s. The overall aim of this work is to provide a deeper understanding of the system for small-scale use of densified wood fuels. The objective was to provide a mapping and logistic analysis of fuel and delivery chains primarily for wood pellets. The description includes both technical as well as economic and organisational aspects. The thesis in particular investigates (i) experience from practical densification operations in the past, (ii) wood pellet retailers in Sweden, (iii) wood pellet consumers in Austria, Sweden and the United States, (iv) imports of wood pellets, and (v) forecasting of pellet consumption and inventory management for wood pellet distributors. Previous international studies revealed that the availability of cheap raw materials for fuel production and the price and availability of the most important competing fuels: coal, oil and natural gas were important factors that have guided production and use of densified wood and bark fuels. A major network of wood pellet distributors was mapped. It was concluded from a survey to these retailers that the Swedish residential market was now firmly in place and that the price of wood pellets was competitive with prices of traditional national fuels. A majority of pellet users in Austria, Sweden and the United States were pleased with pellet heating. One way to improve pellet distribution systems would be to optimise inventory management. An internal model for optimising inventory management, Pell-Sim, was constructed. For Sweden, wood pellets in 1997 represented the second most traded biofuel assortment, with 4.35 PJ or 18% of the total biofuel imports. Contrary to trade with other biofuel assortments, wood pellet trade

  11. Wood products and other building materials used in new residential construction in Canada, with comparison to previous studies

    Science.gov (United States)

    Joe Elling; David B. McKeever

    2015-01-01

    New residential construction is a critical driver of the demand for lumber, structural panels and engineered wood products in Canada. For the period 2010 through 2013, residential construction accounted for roughly 23 percent of the lumber consumed in Canada and 47 percent of structural panel usage. Insufficient data concerning imports and exports prevent estimates of...

  12. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites.

    Science.gov (United States)

    Sommerhuber, Philipp F; Welling, Johannes; Krause, Andreas

    2015-12-01

    The market share of Wood-Plastic Composites (WPC) is small but expected to grow sharply in Europe. This raises some concerns about suitable wood particles needed in the wood-based panels industry in Europe. Concerns are stimulated by the competition between the promotion of wooden products through the European Bioeconomy Strategy and wood as an energy carrier through the Renewable Energy Directive. Cascade use of resources and valorisation of waste are potential strategies to overcome resource scarcity. Under experimental design conditions, WPC made from post-consumer recycled wood and plastic (HDPE) were compared to WPC made from virgin resources. Wood content in the polymer matrix was raised in two steps from 0% to 30% and 60%. Mechanical and physical properties and colour differences were characterized. The feasibility of using cascaded resources for WPC is discussed. Results indicate the technical and economic feasibility of using recycled HDPE from packaging waste for WPC. Based on technical properties, 30% recycled wood content for WPC is feasible, but economic and political barriers of efficient cascading of biomass need to be overcome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluating the efficacy of wood shreds for mitigating erosion.

    Science.gov (United States)

    Foltz, Randy B; Copeland, Natalie S

    2009-02-01

    An erosion control product made by shredding on-site woody materials was evaluated for mitigating erosion through a series of rainfall simulations. Tests were conducted on bare soil and soil with 30, 50, and 70% cover on a coarse and a fine-grained soil. Results indicated that the wood product known as wood shreds reduced runoff and soil loss from both soil types. Erosion mitigation ranged from 60 to nearly 100% depending on the soil type and amount of concentrated flow and wood shred cover. Wood shreds appear to be a viable alternative to agricultural straw. A wood shred cover of 50% appears optimal, but the appropriate coverage rate will depend on the amount of expected concentrated flow and soil type.

  14. Shear design of wood beams : state of the art

    Science.gov (United States)

    Lawrence A. Soltis; Terry D. Gerhardt

    1988-01-01

    Current shear design technology in the United States for lumber or glued- laminated beams is confusing. This report summarizes shear stress and strength research including both analytical and experimental approaches. Both checked and unchecked beams are included. The analytical work has been experimentally verified for only limited load conditions and span-to- depth...

  15. Waste-wood-derived fillers for plastics

    Science.gov (United States)

    Brent English; Craig M. Clemons; Nicole Stark; James P. Schneider

    1996-01-01

    Filled thermoplastic composites are stiffer, stronger, and more dimensionally stable than their unfilled counterparts. Such thermoplastics are usually provided to the end-user as a precompounded, pelletized feedstock. Typical reinforcing fillers are inorganic materials like talc or fiberglass, but materials derived from waste wood, such as wood flour and recycled paper...

  16. Bacterial community succession in pine-wood decomposition

    Directory of Open Access Journals (Sweden)

    Anna eKielak

    2016-03-01

    Full Text Available Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  17. Macrophotographic wood atlas of Annonaceae.

    NARCIS (Netherlands)

    Koek-Noorman, J.; Westra, L.I.T.

    2012-01-01

    In this article, a general description of the microscopic wood anatomy of Annonaceae is given. We provide a description of the wood anatomical features of the family and of all subfamilies and tribes, all from material in the Utrecht Wood collection. Hand-lens images can be an important help in

  18. The challenge of bonding treated wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    Wood products are quite durable if exposure to moisture is minimized; however, most uses of wood involve considerable exposure to moisture. To preserve the wood, chemicals are used to minimize moisture pickup, to prevent insect attack, and/or to resist microbial growth. The chemicals used as preservatives can interfere with adhesive bonds to wood. Given the many...

  19. FIRE INSURANCE AND WOOD SCHOOL BUILDINGS.

    Science.gov (United States)

    PURCELL, FRANK X.

    A COMPARISON OF FIRE INSURANCE COSTS OF WOOD, MASONRY, STEEL AND CONCRETE STRUCTURES SHOWS FIRE INSURANCE PREMIMUMS ON WOOD STRUCTURES TEND TO BE HIGHER THAN PREMIUMS ON MASONRY, STEEL AND CONCRETE BUILDINGS, HOWEVER, THE INITIAL COST OF THE WOOD BUILDINGS IS LOWER. DATA SHOW THAT THE SAVINGS ACHIEVED IN THE INITIAL COST OF WOOD STRUCTURES OFFSET…

  20. EVALUATION OF CEMENT-BONDED PARTICLE BOARD PRODUCED FROM AFZELIA AFRICANA WOOD RESIDUES

    Directory of Open Access Journals (Sweden)

    OLUFEMI A. SOTANNDE

    2012-12-01

    Full Text Available The study was design to evaluate the physical and mechanical properties of cement-bonded particleboards produced from Afzelia africana wood residues. The production variables investigated were three wood particle types (flakes, flake-sawdust mix and sawdust, three chemical accelerators (CaCl2, MgCl2 and AlCl3 and four wood-cement ratios (1:2.0, 1:2.5, 1:3.0 and 1:3.5. The accelerators were based on 2% by weight of cement used. The boards produced were subjected to physical tests such as density, percentage water absorption and thickness swelling. Mechanical properties evaluated were modulus of rupture, internal bonding strength and compressive strength. The results revealed that the type of particle used, wood-cement ratio and chemical additives had a marked influence on the physical and mechanical properties of the boards (p < 0.05. From quality view point, flake-sawdust composite ranked best while flake boards ranked least. Similarly, CaCl2 had the best influence on the setting of the boards followed by MgCl2 and AlCl3. Finally, it has been shown that particle boards that satisfied the BISON type HZ requirement and ISO 8335 can be produced from Afzelia africana particularly at wood-cement of 1:2.5 and above.

  1. Micrandra inundata (Euphorbiaceae), a new species with unusual wood anatomy from black-water river banks in southern Venezuela

    Science.gov (United States)

    Paul E. Berry; Alex C. Wiedenhoeft

    2004-01-01

    Micrandra inundata is a distinctive new species adapted to seasonally flooded black-water river banks in southern Venezuela. Trees rarely exceed 10 m in height but have thick basal trunks composed of very lightweight wood. It has the smallest leaves and fruits of any known Micrandra species and appears to be most closely related to M. minor Benth. The botanical...

  2. X-ray initiated polymerization of wood impregnants

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Marshall R.; Galloway, Richard A. [IBA Industrial, Inc., Edgewood, NY (United States); Berejka, Anthony J. [Ionicorp, Huntington, NY 11743 (United States)], E-mail: berejka@msn.com; Montoney, Daniel [Strathmore Products, Syracuse, NY (United States); Driscoll, Mark; Smith, Leonard; Scott Larsen, L. [State University of New York, SUNY-ESF, Syracuse, NY (United States)

    2009-07-15

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  3. X-ray initiated polymerization of wood impregnants

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Galloway, Richard A.; Berejka, Anthony J.; Montoney, Daniel; Driscoll, Mark; Smith, Leonard; Scott Larsen, L.

    2009-01-01

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  4. QUALITY OF REACTION WOOD IN EucalyptusTREES TILTED BY WIND FOR PULP PRODUCTION

    Directory of Open Access Journals (Sweden)

    Walter Torezani Neto Boschetti

    2017-09-01

    Full Text Available This study aims to evaluate the quality of normal, tension and opposite wood of eucalyptus trees lengthwise, in straight and inclined stems, affected by wind action. It also aims to explain the pulping parameters resultant from the quality of the wood. The trees were grouped into four tilt ranges, ranging from 0 to 50º, and the basic density, chemical composition of the wood, and performance in kraft pulping were assessed. Normal and tension wood had similar basic densities; while for opposite wood, the density was lower, being responsible for a decrease in reaction wood density. The chemical composition of the wood was influenced by the presence of reaction wood in the stem.Tension and opposite wood showed lower levels of extractives and lignin and higher holocellulose content when compared to normal wood, with favorable wood quality for pulping. The increase in holocellulose content and the reduction of lignin and extractives content contributed positively to a more delignified pulp and reduction of the Kappa number. However, after cooking the reaction wood under the same conditions as those of normal wood, reaction wood pulping tends to have a lower screen yields. Due to differences in basic density and chemical constituents between opposite and normal wood, it is recommended not to designate the opposite wood as normal wood.

  5. Woods and Camping Safety for the Whole Family

    Science.gov (United States)

    ... for Educators Search English Español Woods and Camping Safety for the Whole Family KidsHealth / For Parents / Woods ... products before hiking that will act as a barrier against the oils of the plants. Any area ...

  6. Harvested wood products : basis for future methodological development

    Science.gov (United States)

    Kenneth E. Skog

    2003-01-01

    The IPCC Guidelines (IPCC 1997) provide an outline of how harvested wood could be treated in national greenhouse gas (GHG) inventories. This section shows the relation of that outline to the approaches and estimation methods to be presented in this Appendix. Wood and paper products are referred to as harvested wood products (HWP). It does not include carbon in...

  7. Protecting wood fences for yard and garden

    Science.gov (United States)

    R. C. De Groot; W. C. Feist; W. E. Eslyn; L. R. Gjovik

    For maximum protection against wood decay and termites, use posts that have an in-depth preservative treatment, preferably a pressure treatment for below ground use. When selecting posts of naturally decay-resistant woods, choose posts with mostly heartwood. Horizontal rails require more protection from decay than do vertical boards. In regions of high and moderate...

  8. Photodegradation of wood and depth profile analysis

    International Nuclear Information System (INIS)

    Kataoka, Y.

    2008-01-01

    Photochemical degradation is a key process of the weathering that occurs when wood is exposed outdoors. It is also a major cause of the discoloration of wood in indoor applications. The effects of sunlight on the chemical composition of wood are superficial in nature, but estimates of the depth at which photodegradation occurs in wood vary greatly from 80 microm to as much as 2540 mic rom. Better understanding of the photodegradation of wood through depth profile analysis is desirable because it would allow the development of more effective photo-protective treatments that target the surface layers of wood most susceptible to photodegradation. This paper briefly describes fundamental aspects of photodegradation of wood and reviews progress made in the field of depth profile study on the photodegradation of wood. (author)

  9. Wood and Sediment Dynamics in River Corridors

    Science.gov (United States)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  10. Development Directions for Various Types of the Light Wood-Framed Structures

    Science.gov (United States)

    Malesza, J.; Baszeń, M.; Miedziałowski, Cz

    2017-11-01

    The paper presents current trends in the development of the wood-framed structures. Authors describe the evolution of the technology of implementation, the production process of precast elements of buildings as well as selected realization on the site of these kinds of structures. The attention has been paid to the effect of implementation phases on construction and erecting technology of the wood-framed structures. The paper draws attention to the importance and enhancement of structural analysis of structures in individual phases of building realization.

  11. 76 FR 76693 - Multilayered Wood Flooring From the People's Republic of China: Countervailing Duty Order

    Science.gov (United States)

    2011-12-08

    ..., tongue-and-groove construction or locking joints). All multilayered wood flooring is included within the... DEPARTMENT OF COMMERCE International Trade Administration [C-570-971] Multilayered Wood Flooring...''), the Department is issuing a countervailing duty (``CVD'') order on multilayered wood flooring from the...

  12. Bioremediation of treated wood with fungi

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang

    2006-01-01

    The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...

  13. Eucalyptus grandis AND Eucalyptus dunnii USE FOR WOOD-CEMENT PANELS MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2008-03-01

    Full Text Available This research evaluated the potential use of Eucalyptus grandis and Eucalyptus dunnii wood for wood-cement panelsmanufacturing. The boards were manufactured at the density of 1,20 g/cm³, using portland cement as mineral bonding and woodfurnish without treatment, treated in cold water and hot water. The wood furnish of Pinus taeda was used as control. The resultsindicated that it is not necessary to treat E. grandis and E. dunni wood for wood-cement board manufacturing. In relation to woodspecies, the board manufactured with E. dunnii showed lower values of mechanical properties. However, boards manufactured of E.grandis wood showed satisfactory results in comparison to boards of P. taeda and the referenced values of BISON process and otherproducts cited in the pertnent literature, indicating the high potential for wood-cement board manufacture of this tree species.

  14. Rapid molecular screening of black carbon (biochar) thermosequences obtained from chestnut wood and rice straw: A pyrolysis-GC/MS study

    International Nuclear Information System (INIS)

    Kaal, Joeri; Schneider, Maximilian P.W.; Schmidt, Michael W.I.

    2012-01-01

    Rice straw and chestnut wood were heated between 200 and 1000 °C (T CHAR ) to produce Black C ‘thermosequences’. The molecular properties of the charred residues were assessed by pyrolysis-GC/MS to investigate the relation between charring intensity and pyrolysis fingerprint. Samples obtained at T CHAR > 500 °C (wood) or >700 °C (straw) gave low quality pyrograms and poor reproducibility because of high thermal stability, but pyrolysis-GC/MS allowed to track the thermal degradation of the main biocomponents (polysaccharides, lignin, methylene chain-based aliphatics, triterpenoids, chlorophyll and proteins) in the lower temperature range, mostly occurring between T CHAR 250 and 500 °C. With increasing T CHAR , the charred residues of these biocomponents lose characteristic functional groups, aromatise and finally condense into non-pyrolysable biomass. The proportions of the pyrolysis products of unspecific origin (benzene, toluene, PAHs, etc.), increase with charring intensity, while the ratios that reflect the abundance of alkyl cross-linkages between aromatic moieties (e.g. benzene/toluene, naphthalene/alkylnaphthalene) decrease. These results provide the guidelines to using pyrolysis-GC/MS for the molecular characterisation of different components in Black C and biochar, which is an important parameter for predicting Black C/biochar behaviour in soil. Results are consistent with earlier studies of these samples using the BPCA (benzenepolycarboxylic acid) method and the ring current-induced 13 C benzene chemical shift NMR (Nuclear Magnetic Resonance) approach. Pyrolysis-GC/MS provides more information on molecular structures in the low temperature range (T CHAR ≤ 500 °C) while the BPCA and NMR ring current methods provide more reliable estimations of charring intensity, especially at higher temperatures (T CHAR ≥ 500 °C). -- Highlights: ► Charred rice straw and chestnut wood (200–1000 °C) analysed by pyrolysis-GC/MS. ► Pyrolysis-GC/MS allows

  15. Design considerations for the commercial production of wood acrylics

    International Nuclear Information System (INIS)

    Witt, A.E.; Bosco, L.R.

    1978-01-01

    The major application of wood acrylics is for flooring, more specifically in high traffic area. The most important property is its abrasion resistance. As for the decisions in facility design, the following considerations must be made: irradiation or heat-catalyst to polymerize, machine irradiation or isotope irradiation, and wet or dry irradiation. Then, processing considerations are made on wood type, monomer selection, dye selection, fire retardant, dose conditions and crosslinker usage. In ''PermaGrain'' production, for example, the facility has the yearly production capacity of over 4,000,000 kilograms of wood acrylic. The starting wood form is small slats or fingers. After pressure cycle, the impregnant wet wood is lowered into an irradiation pool and the product canister passes around a cobalt 60 source. After irradiation, the product is taken out of the pool and allowed to cool. Then, final sizing and finishing are carried out. (Mori, K.)

  16. Understanding wood chemistry changes during biopulping

    Science.gov (United States)

    Chris Hunt; William Kenealy; Carl Houtman

    2003-01-01

    Biopulping is the process of pretreating chips with fungus before mechanical pulping, resulting in significant energy savings and sheet strength improvements. This work presents sugar analysis, methylene blue adsorption, and titration data suggesting an increase in acid group content in wood is common with biopulping treatment. Some discussion of possible mechanisms of...

  17. Biocide leaching from CBA treated wood — A mechanistic interpretation

    International Nuclear Information System (INIS)

    Lupsea, Maria; Mathies, Helena; Schoknecht, Ute; Tiruta-Barna, Ligia; Schiopu, Nicoleta

    2013-01-01

    Treated wood is frequently used for construction. However, there is a need to ensure that biocides used for the treatment are not a threat for people or environment. The paper focused on Pinus sylvestris treated with copper–boron–azole (CBA), containing tebuconazole as organic biocide and monoethanolamine (Mea). This study investigates chemical mechanisms of fixation and mobilisation involved in the leaching process of the used inorganic and organic biocides in CBA. A pH dependent leaching test was performed, followed by a set of complementary analysis methods in order to identify and quantify the species released from wood. The main findings of this study are: -Organic compounds are released from untreated and treated wood; the quantity of released total organic carbon, carboxylic and phenolic functions increasing with the pH. -Nitrogen containing compounds, i.e. mainly Mea and its reaction products with extractives, are released in important quantities from CBA treated wood, especially at low pH. -The release of copper is the result of competitive reactions: fixation via complexation reactions and complexation with extractives in the liquid phase. The specific pH dependency of Cu leaching is explained by the competition of ligands for protonation and complexation. -Tebuconazole is released to a lesser extent relative to its initial content. Its fixation on solid wood structure seems to be influenced by pH, suggesting interactions with -OH groups on wood. Boron release appears to be pH independent and very high. This confirms its weak fixation on wood and also no or weak interaction with the extractives. - Highlights: ► A pH dependent leaching mechanism for CBA treated wood is described. ► The fixation and mobilisation of inorganic and organic biocides was investigated. ► Extractives' quantity and nature depend on pH. ► Competition of ligands for protonation and complexation explains Cu behaviour. ► Tebuconazole seems to interact with -OH groups on

  18. Biocide leaching from CBA treated wood — A mechanistic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Lupsea, Maria [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, ESE/Environment, 24 rue Joseph Fourier, F-38400 Saint Martin d' Hères (France); Mathies, Helena; Schoknecht, Ute [BAM — Federal Institute for Materials Research and Testing, Division 4.1, Unter den Eichen 87, 12205 Berlin (Germany); Tiruta-Barna, Ligia, E-mail: ligia.barna@insa-toulouse.fr [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, ESE/Environment, 24 rue Joseph Fourier, F-38400 Saint Martin d' Hères (France)

    2013-02-01

    Treated wood is frequently used for construction. However, there is a need to ensure that biocides used for the treatment are not a threat for people or environment. The paper focused on Pinus sylvestris treated with copper–boron–azole (CBA), containing tebuconazole as organic biocide and monoethanolamine (Mea). This study investigates chemical mechanisms of fixation and mobilisation involved in the leaching process of the used inorganic and organic biocides in CBA. A pH dependent leaching test was performed, followed by a set of complementary analysis methods in order to identify and quantify the species released from wood. The main findings of this study are: -Organic compounds are released from untreated and treated wood; the quantity of released total organic carbon, carboxylic and phenolic functions increasing with the pH. -Nitrogen containing compounds, i.e. mainly Mea and its reaction products with extractives, are released in important quantities from CBA treated wood, especially at low pH. -The release of copper is the result of competitive reactions: fixation via complexation reactions and complexation with extractives in the liquid phase. The specific pH dependency of Cu leaching is explained by the competition of ligands for protonation and complexation. -Tebuconazole is released to a lesser extent relative to its initial content. Its fixation on solid wood structure seems to be influenced by pH, suggesting interactions with -OH groups on wood. Boron release appears to be pH independent and very high. This confirms its weak fixation on wood and also no or weak interaction with the extractives. - Highlights: ► A pH dependent leaching mechanism for CBA treated wood is described. ► The fixation and mobilisation of inorganic and organic biocides was investigated. ► Extractives' quantity and nature depend on pH. ► Competition of ligands for protonation and complexation explains Cu behaviour. ► Tebuconazole seems to interact with -OH groups

  19. Wood's lamp illumination (image)

    Science.gov (United States)

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  20. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy

    Science.gov (United States)

    Nicole M. Stark; Laurent M. Matuana

    2004-01-01

    The use of wood-derived fillers by the thermoplastic industry has been growing, fueled in part by the use of wood-fiber–thermoplastic composites by the construction industry. As a result, the durability of wood-fiber– thermoplastic composites after ultraviolet exposure has become a concern. Samples of 100% high-density polyethylene (HDPE) and HDPE filled with 50% wood-...