WorldWideScience

Sample records for byrds flight path

  1. William Byrd: Political and Recusant Composer

    Directory of Open Access Journals (Sweden)

    Ariel Foshay Bacon

    2012-05-01

    Full Text Available Amidst the pendulum of political and religious upheaval that pervaded England throughout the sixteenth and seventeenth century, William Byrd stands as one of the best loved and lauded composers. Byrd succeeded in the secular and sacred realms, contributing great works to the Anglican Church, popularizing the English madrigal and producing prolific amounts of sacred music. However, in a time where one’s religious beliefs were often linked with political loyalty, Byrd defied his monarch’s established and enforced Protestant religion, composing politically charged music for recusant use in clandestine Catholic Church services. His themes were aligned with the Jesuit mission and his texts were often drawn from the lips of martyred Catholics at the gallows; their last words forever immortalized by Byrd for the furthering of the Jesuit cause and the Counter-Reformation. The examination of sources by prominent Byrd scholars, an analyses of Byrd’s ‘political’ compositions and a study of the social and historical background are used to place Byrd within the appropriate context, prove his recusant and political leanings, and analyze his precarious relationship with the English monarch, Elizabeth I. It is shown that Byrd could not have proceeded with his recusant practices, personally or musically, had it not been for his status as a composer, as well as Byrd’s shrewdness in procuring diplomatic relationships with high persons at court and with Queen Elizabeth I through the Chapel Royal. Finally, Byrd’s success at writing for the Anglican Church service and popular secular music showcased his ability to take a moderate stance in situations that benefitted his status with the crown

  2. Integrated flight path planning system and flight control system for unmanned helicopters.

    Science.gov (United States)

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).

  3. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    Science.gov (United States)

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029

  4. Flight Path Recovery System (FPRS) design study

    International Nuclear Information System (INIS)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented

  5. Flight Path Recovery System (FPRS) design study

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented.

  6. MATHEMATICAL MODELLING OF AIRCRAFT PILOTING PROSSESS UNDER SPECIFIED FLIGHT PATH

    Directory of Open Access Journals (Sweden)

    И. Кузнецов

    2012-04-01

    Full Text Available The author suggests mathematical model of pilot’s activity as follow up system and mathematical methods of pilot’s activity description. The main idea of the model is flight path forming and aircraft stabilization on it during instrument flight. Input of given follow up system is offered to be aircraft deflection from given path observed by pilot by means of sight and output is offered to be pilot’s regulating actions for aircraft stabilization on flight path.

  7. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  8. Combining control input with flight path data to evaluate pilot performance in transport aircraft.

    Science.gov (United States)

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2008-11-01

    When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.

  9. Functional integration of vertical flight path and speed control using energy principles

    Science.gov (United States)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  10. Northern Pintail - Flight Path Telemetry [ds117

    Data.gov (United States)

    California Natural Resource Agency — North-south flight paths of radio-tagged female northern pintails were monitored in a section of Highway 152 near Los Banos, California during 4 and 11 November and...

  11. Investigation of controlled flight into terrain : descriptions of flight paths for selected controlled flight into terrain (CFIT) aircraft accidents, 1985-1997

    Science.gov (United States)

    1999-03-01

    This report documents an investigation of the flight paths of 13 selected controlled flight into terrain (CFIT) aircraft accidents that occurred between 1985 and 1997. The Operations Assessment Division (DTS-43) and the Aviation Safety Division (DTS-...

  12. Rules for Flight Paths and Time of Flight for Flows in Porous Media with Heterogeneous Permeability and Porosity

    Directory of Open Access Journals (Sweden)

    Lihua Zuo

    2017-01-01

    Full Text Available Porous media like hydrocarbon reservoirs may be composed of a wide variety of rocks with different porosity and permeability. Our study shows in algorithms and in synthetic numerical simulations that the flow pattern of any particular porous medium, assuming constant fluid properties and standardized boundary and initial conditions, is not affected by any spatial porosity changes but will vary only according to spatial permeability changes. In contrast, the time of flight along the streamline will be affected by both the permeability and porosity, albeit in opposite directions. A theoretical framework is presented with evidence from flow visualizations. A series of strategically chosen streamline simulations, including systematic spatial variations of porosity and permeability, visualizes the respective effects on the flight path and time of flight. Two practical rules are formulated. Rule  1 states that an increase in permeability decreases the time of flight, whereas an increase in porosity increases the time of flight. Rule  2 states that the permeability uniquely controls the flight path of fluid flow in porous media; local porosity variations do not affect the streamline path. The two rules are essential for understanding fluid transport mechanisms, and their rigorous validation therefore is merited.

  13. Quantifying the Jakobshavn Effect: Jakobshavn Isbrae, Greenland, compared to Byrd Glacier, Antarctica

    Science.gov (United States)

    Hughes, T.; Sargent, A.; Fastook, J.; Purdon, K.; Li, J.; Yan, J.-B.; Gogineni, S.

    2014-04-01

    The Jakobshavn Effect is a series of positive feedback mechanisms that was first observed on Jakobshavn Isbrae, which drains the west-central part of the Greenland Ice Sheet and enters Jakobshavn Isfjord at 69°10'. These mechanisms fall into two categories, reductions of ice-bed coupling beneath an ice stream due to surface meltwater reaching the bed, and reductions in ice-shelf buttressing beyond an ice stream due to disintegration of a laterally confined and locally pinned ice shelf. These uncoupling and unbuttressing mechanisms have recently taken place for Byrd Glacier in Antarctica and Jakobshavn Isbrae in Greenland, respectively. For Byrd Glacier, no surface meltwater reaches the bed. That water is supplied by drainage of two large subglacial lakes where East Antarctic ice converges strongly on Byrd Glacier. Results from modeling both mechanisms are presented here. We find that the Jakobshavn Effect is not active for Byrd Glacier, but is active for Jakobshavn Isbrae, at least for now. Our treatment is holistic in the sense it provides continuity from sheet flow to stream flow to shelf flow. It relies primarily on a force balance, so our results cannot be used to predict long-term behavior of these ice streams. The treatment uses geometrical representations of gravitational and resisting forces that provide a visual understanding of these forces, without involving partial differential equations and continuum mechanics. The Jakobshavn Effect was proposed to facilitate terminations of glaciation cycles during the Quaternary Ice Age by collapsing marine parts of ice sheets. This is unlikely for the Antarctic and Greenland ice sheets, based on our results for Byrd Glacier and Jakobshavn Isbrae, without drastic climate warming in high polar latitudes. Warming would affect other Antarctic ice streams already weakly buttressed or unbuttressed by an ice shelf. Ross Ice Shelf would still protect Byrd Glacier.

  14. NASA-FAA helicopter Microwave Landing System curved path flight test

    Science.gov (United States)

    Swenson, H. N.; Hamlin, J. R.; Wilson, G. W.

    1984-01-01

    An ongoing series of joint NASA/FAA helicopter Microwave Landing System (MLS) flight tests was conducted at Ames Research Center. This paper deals with tests done from the spring through the fall of 1983. This flight test investigated and developed solutions to the problem of manually flying curved-path and steep glide slope approaches into the terminal area using the MLS and flight director guidance. An MLS-equipped Bell UH-1H helicopter flown by NASA test pilots was used to develop approaches and procedures for flying these approaches. The approaches took the form of Straight-in, U-turn, and S-turn flightpaths with glide slopes of 6 deg, 9 deg, and 12 deg. These procedures were evaluated by 18 pilots from various elements of the helicopter community, flying a total of 221 hooded instrument approaches. Flying these curved path and steep glide slopes was found to be operationally acceptable with flight director guidance using the MLS.

  15. Quad-rotor flight path energy optimization

    Science.gov (United States)

    Kemper, Edward

    Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.

  16. Enroute flight-path planning - Cooperative performance of flight crews and knowledge-based systems

    Science.gov (United States)

    Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Galdes, Deb

    1989-01-01

    Interface design issues associated with the introduction of knowledge-based systems into the cockpit are discussed. Such issues include not only questions about display and control design, they also include deeper system design issues such as questions about the alternative roles and responsibilities of the flight crew and the computer system. In addition, the feasibility of using enroute flight path planning as a context for exploring such research questions is considered. In particular, the development of a prototyping shell that allows rapid design and study of alternative interfaces and system designs is discussed.

  17. Neutron capture studies with a short flight path

    Science.gov (United States)

    Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René

    The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.

  18. Sensitivity of peak positions to flight-path parameters in a deep-inelastic scattering neutron TOF spectrometer

    International Nuclear Information System (INIS)

    Gray, E.MacA.; Chatzidimitriou-Dreismann, C.A.; Blach, T.P.

    2012-01-01

    The effects of small changes in flight-path parameters (primary and secondary flight paths, detector angles), and of displacement of the sample along the beam axis away from its ideal position, are examined for an inelastic time-of-flight (TOF) neutron spectrometer, emphasising the deep-inelastic regime. The aim was to develop a rational basis for deciding what measured shifts in the positions of spectral peaks could be regarded as reliable in the light of the uncertainties in the calibrated flight-path parameters. Uncertainty in the length of the primary or secondary flight path has the least effect on the positions of the peaks of H, D and He, which are dominated by the accuracy of the calibration of the detector angles. This aspect of the calibration of a TOF spectrometer therefore demands close attention to achieve reliable outcomes where the position of the peaks is of significant scientific interest and is discussed in detail. The corresponding sensitivities of the position of peak of the Compton profile, J(y), to flight-path parameters and sample position are also examined, focusing on the comparability across experiments of results for H, D and He. We show that positioning the sample to within a few mm of the ideal position is required to ensure good comparability between experiments if data from detectors at high forward angles are to be reliably interpreted.

  19. 78 FR 60686 - Regulations Implementing the Byrd Amendments to the Black Lung Benefits Act: Determining Coal...

    Science.gov (United States)

    2013-10-02

    ...-AA04 Regulations Implementing the Byrd Amendments to the Black Lung Benefits Act: Determining Coal... correcting the preamble to a final rule implementing amendments to the Black Lung Benefits Act that appeared... the Byrd Amendments to the Black Lung Benefits Act: Determining Coal Miners' and Survivors...

  20. Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes

    Science.gov (United States)

    Kitamura, Tasuku; Imafuku, Michio

    2015-01-01

    Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly. PMID:26041360

  1. 77 FR 19455 - Regulations Implementing the Byrd Amendments to the Black Lung Benefits Act: Determining Coal...

    Science.gov (United States)

    2012-03-30

    ... Programs 20 CFR Parts 718 and 725 Regulations Implementing the Byrd Amendments to the Black Lung Benefits... Implementing the Byrd Amendments to the Black Lung Benefits Act: Determining Coal Miners' and Survivors... amendments to the Black Lung Benefits Act (BLBA or Act) made by the Patient Protection and Affordable Care...

  2. Deployment of Autonomous GPS Stations in Marie Byrd Land, Antartica

    Science.gov (United States)

    Donnellan, A.; Luyendyk, B.; Smith, M.; Dace, G.

    1999-01-01

    During the 1998-1999 Antarctic field season, we installed three autonomous GPS stations in Marie Byrd Land, West Antarctica to measure glacio-isostatic rebound and rates of spreading across the West Antartic Rift System.

  3. Optimization of the Flight Path of an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Vasyl Myklukha

    2017-09-01

    Full Text Available The article describes the features of optimizing the flight path of an unmanned aerial vehicle. The paper analyzes the composition and designation of main equipment and payload of unmanned aerial vehicle. In particular, attention is drawn to the basic requirements that relate to the unmanned aerial vehicle today.

  4. PRELIMINARY PROJECT PLAN FOR LANSCE INTEGRATED FLIGHT PATHS 11A, 11B, 12, and 13

    International Nuclear Information System (INIS)

    Bultman, D. H.; Weinacht, D.

    2000-01-01

    This Preliminary Project Plan Summarizes the Technical, Cost, and Schedule baselines for an integrated approach to developing several flight paths at the Manual Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. For example, the cost estimate is intended to serve only as a rough order of magnitude assessment of the cost that might be incurred as the flight paths are developed. Further refinement of the requirements and interfaces for each beamline will permit additional refinement and confidence in the accuracy of all three baselines (Technical, Cost, Schedule)

  5. Entropy Minimizing Curves with Application to Flight Path Design and Clustering

    Directory of Open Access Journals (Sweden)

    Stéphane Puechmorel

    2016-09-01

    Full Text Available Air traffic management (ATM aims at providing companies with a safe and ideally optimal aircraft trajectory planning. Air traffic controllers act on flight paths in such a way that no pair of aircraft come closer than the regulatory separation norms. With the increase of traffic, it is expected that the system will reach its limits in the near future: a paradigm change in ATM is planned with the introduction of trajectory-based operations. In this context, sets of well-separated flight paths are computed in advance, tremendously reducing the number of unsafe situations that must be dealt with by controllers. Unfortunately, automated tools used to generate such planning generally issue trajectories not complying with operational practices or even flight dynamics. In this paper, a means of producing realistic air routes from the output of an automated trajectory design tool is investigated. For that purpose, the entropy of a system of curves is first defined, and a mean of iteratively minimizing it is presented. The resulting curves form a route network that is suitable for use in a semi-automated ATM system with human in the loop. The tool introduced in this work is quite versatile and may be applied also to unsupervised classification of curves: an example is given for French traffic.

  6. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    Science.gov (United States)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  7. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    Science.gov (United States)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows

  8. Empirical analysis of the effect of descent flight path angle on primary gaseous emissions of commercial aircraft.

    Science.gov (United States)

    Turgut, Enis T; Usanmaz, Oznur; Rosen, Marc A

    2018-05-01

    In this study, the effects of descent flight path angle (between 1.25° and 4.25°) on aircraft gaseous emissions (carbon monoxide, total hydrocarbons and nitrogen oxides) are explored using actual flight data from aircraft flight data recording system and emissions indices from the International Civil Aviation Organization. All emissions parameters are corrected to flight conditions using Boeing Fuel Flow Method2, where the ambient air pressure, temperature and humidity data are obtained from long-term radiosonde data measured close to the arrival airport. The main findings highlight that the higher the flight path angle, the higher the emission indices of CO and HC, whereas the lower the emissions index of NO x and fuel consumption. Furthermore, during a descent, a heavier aircraft tends to emit less CO and HC, and more NO x . For a five-tonne aircraft mass increase, the average change in emissions indices are found to be -4.1% and -5.7% (CO), -5.4% and -8.2% (HC), and +1.1% and +1.6% (NO x ) for high and low flight path angle groups, respectively. The average emissions indices for CO, HC and NO x during descent are calculated to be 24.5, 1.7 and 5.6 g/kg of fuel, whereas the average emissions for descending from 32,000 ft (9.7 km) and 24,000 ft (7.3 km) are calculated to be 7-8 kg (CO), ∼0.5 kg (HC) and ∼3 kg (NO x ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. PRINCIPLES OF INDICATION FOR EN-ROUTE FLIGHT PATHS OF THE AIRCRAFT ON THE SCREEN OF ON-BOARD DISPLAY DEVICES

    Directory of Open Access Journals (Sweden)

    V. V. Markelov

    2016-01-01

    Full Text Available Subject of Research.We consider the principles and algorithms for construction of en-route flight paths of an aircraft (airplane in a horizontal plane for their subsequent display on the navigation situation indicators in the cockpit. Navigation situation indicatorsaredisplay devices designed on the basis of flat liquid crystal panel. Methods. Flight trajectory display by on-board multifunction indicators is performed by successive drawing of graphic primitives available in the library and defined in accordance with an array of data to display the route. An array of data is generated by on-board software complex based on the information provided in the flight task and the corresponding «Jeppesen» database or analogous one. Formation of the array is carried out by bringing the set of trajectory paths to the format of three typical trajectories described. In addition, each of the types of trajectories has a standard description of the algorithm for calculating the parameters that make up an array of data to display.Main Results.The algorithms of forming and calculating the amounts of data of routing paths required for their construction and display on the multifunction indicators applied in avionics.Practical Relevance.These novel routing algorithms for constructing trajectory paths unify algorithms of generating information for display on the navigation situation indicators and optimize a set of calculated data for flight control at the trajectory in the horizontal plane.

  10. Optimal Paths in Gliding Flight

    Science.gov (United States)

    Wolek, Artur

    Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.

  11. High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations

    Science.gov (United States)

    Linford, Joel

    2010-10-01

    Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.

  12. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  13. Oscillation Susceptibility Analysis of the ADMIRE Aircraft along the Path of Longitudinal Flight Equilibriums in Two Different Mathematical Models

    Directory of Open Access Journals (Sweden)

    Achim Ionita

    2009-01-01

    Full Text Available The oscillation susceptibility of the ADMIRE aircraft along the path of longitudinal flight equilibriums is analyzed numerically in the general and in a simplified flight model. More precisely, the longitudinal flight equilibriums, the stability of these equilibriums, and the existence of bifurcations along the path of these equilibriums are researched in both models. Maneuvers and appropriate piloting tasks for the touch-down moment are simulated in both models. The computed results obtained in the models are compared in order to see if the movement concerning the landing phase computed in the simplified model is similar to that computed in the general model. The similarity we find is not a proof of the structural stability of the simplified system, what as far we know never been made, but can increase the confidence that the simplified system correctly describes the real phenomenon.

  14. An adaptive dual-optimal path-planning technique for unmanned air vehicles

    Directory of Open Access Journals (Sweden)

    Whitfield Clifford A.

    2016-01-01

    Full Text Available A multi-objective technique for unmanned air vehicle path-planning generation through task allocation has been developed. The dual-optimal path-planning technique generates real-time adaptive flight paths based on available flight windows and environmental influenced objectives. The environmentally-influenced flight condition determines the aircraft optimal orientation within a downstream virtual window of possible vehicle destinations that is based on the vehicle’s kinematics. The intermittent results are then pursued by a dynamic optimization technique to determine the flight path. This path-planning technique is a multi-objective optimization procedure consisting of two goals that do not require additional information to combine the conflicting objectives into a single-objective. The technique was applied to solar-regenerative high altitude long endurance flight which can benefit significantly from an adaptive real-time path-planning technique. The objectives were to determine the minimum power required flight paths while maintaining maximum solar power for continual surveillance over an area of interest (AOI. The simulated path generation technique prolonged the flight duration over a sustained turn loiter flight path by approximately 2 months for a year of flight. The potential for prolonged solar powered flight was consistent for all latitude locations, including 2 months of available flight at 60° latitude, where sustained turn flight was no longer capable.

  15. NASA flight controllers - Meeting cultural and leadership challenges on the critical path to mission success

    Science.gov (United States)

    Clement, James L., Jr.; Ritsher, Jennifer Boyd

    2006-01-01

    As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.

  16. Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.

    Directory of Open Access Journals (Sweden)

    Nicole Blaser

    Full Text Available The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.

  17. Speed and path control for conflict-free flight in high air traffic demand in terminal airspace

    Science.gov (United States)

    Rezaei, Ali

    To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new

  18. Flight path control strategies and preliminary deltaV requirements for the 2007 Mars Phoenix (PHX) mission

    Science.gov (United States)

    Raofi, Behzad

    2005-01-01

    This paper describes the methods used to estimate the statistical deltaV requirements for the propulsive maneuvers that will deliver the spacecraft to its target landing site while satisfying planetary protection requirements. the paper presents flight path control analysis results for three different trajectories, open, middle, and close of launch period for the mission.

  19. Mathematic Model of Technical Process of Heavy Mixtures Classifying on the Basis of Dispersion of Particles Flight Path

    OpenAIRE

    Normahmad Ravshanov; Bozorboy Palvanov; Gulnora Shermatova

    2014-01-01

    The article presents mathematic model and results of computer calculations of heavy mixtures classifying and farm crops full seeds selection. They enable to determine major process parameters and variation range, providing maximum dispersion of particles flight path, depending on feedstock modules.

  20. Mathematic Model of Technical Process of Heavy Mixtures Classifying on the Basis of Dispersion of Particles Flight Path

    Directory of Open Access Journals (Sweden)

    Normahmad Ravshanov

    2014-05-01

    Full Text Available The article presents mathematic model and results of computer calculations of heavy mixtures classifying and farm crops full seeds selection. They enable to determine major process parameters and variation range, providing maximum dispersion of particles flight path, depending on feedstock modules.

  1. UAV Inspection of Electrical Transmission Infrastructure with Path Conformance Autonomy and Lidar-Based Geofences NASA Report on UTM Reference Mission Flights at Southern Company Flights November 2016

    Science.gov (United States)

    Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul

    2017-01-01

    Flights at low altitudes in close proximity to electrical transmission infrastructure present serious navigational challenges: GPS and radio communication quality is variable and yet tight position control is needed to measure defects while avoiding collisions with ground structures. To advance unmanned aerial vehicle (UAV) navigation technology while accomplishing a task with economic and societal benefit, a high voltage electrical infrastructure inspection reference mission was designed. An integrated air-ground platform was developed for this mission and tested in two days of experimental flights to determine whether navigational augmentation was needed to successfully conduct a controlled inspection experiment. The airborne component of the platform was a multirotor UAV built from commercial off-the-shelf hardware and software, and the ground component was a commercial laptop running open source software. A compact ultraviolet sensor mounted on the UAV can locate 'hot spots' (potential failure points in the electric grid), so long as the UAV flight path adequately samples the airspace near the power grid structures. To improve navigation, the platform was supplemented with two navigation technologies: lidar-to-polyhedron preflight processing for obstacle demarcation and inspection distance planning, and trajectory management software to enforce inspection standoff distance. Both navigation technologies were essential to obtaining useful results from the hot spot sensor in this obstacle-rich, low-altitude airspace. Because the electrical grid extends into crowded airspaces, the UAV position was tracked with NASA unmanned aerial system traffic management (UTM) technology. The following results were obtained: (1) Inspection of high-voltage electrical transmission infrastructure to locate 'hot spots' of ultraviolet emission requires navigation methods that are not broadly available and are not needed at higher altitude flights above ground structures. (2) The

  2. Archive of Geosample Data and Information from the Ohio State University Byrd Polar and Climate Research Center (BPCRC) Sediment Core Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Byrd Polar and Climate Research Center (BPCRC) Sediment Core Repository operated by the Ohio State University is a partner in the Index to Marine and Lacustrine...

  3. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  4. Archive of information about geological samples available for research from the Ohio State University Byrd Polar and Climate Research Center (BPCRC) Polar Rock Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar Rock Repository (PRR) operated by the Byrd Polar and Climate Research Center (BPCRC) at the Ohio State University is a partner in the Index to Marine and...

  5. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  6. Flight Planning

    Science.gov (United States)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  7. System and Method for Aiding Pilot Preview, Rehearsal, Review, and Real-Time Visual Acquisition of Flight Mission Progress

    Science.gov (United States)

    Prinzel, III, Lawrence J. (Inventor); Pope, Alan T. (Inventor); Williams, Steven P. (Inventor); Bailey, Randall E. (Inventor); Arthur, Jarvis J. (Inventor); Kramer, Lynda J. (Inventor); Schutte, Paul C. (Inventor)

    2012-01-01

    Embodiments of the invention permit flight paths (current and planned) to be viewed from various orientations to provide improved path and terrain awareness via graphical two-dimensional or three-dimensional perspective display formats. By coupling the flight path information with a terrain database, uncompromising terrain awareness relative to the path and ownship is provided. In addition, missed approaches, path deviations, and any navigational path can be reviewed and rehearsed before performing the actual task. By rehearsing a particular mission, check list items can be reviewed, terrain awareness can be highlighted, and missed approach procedures can be discussed by the flight crew. Further, the use of Controller Pilot Datalink Communications enables data-linked path, flight plan changes, and Air Traffic Control requests to be integrated into the flight display of the present invention.

  8. Flying Boresight for Advanced Testing and Calibration of Tracking Antennas and Flight Path Simulations

    Science.gov (United States)

    Hafner, D.

    2015-09-01

    The application of ground-based boresight sources for calibration and testing of tracking antennas usually entails various difficulties, mostly due to unwanted ground effects. To avoid this problem, DLR MORABA developed a small, lightweight, frequency-adjustable S-band boresight source, mounted on a small remote-controlled multirotor aircraft. Highly accurate GPS-supported, position and altitude control functions allow both, very steady positioning of the aircraft in mid-air, and precise waypoint-based, semi-autonomous flights. In contrast to fixed near-ground boresight sources this flying setup enables to avoid obstructions in the Fresnel zone between source and antenna. Further, it minimizes ground reflections and other multipath effects which can affect antenna calibration. In addition, the large operating range of a flying boresight simplifies measurements in the far field of the antenna and permits undisturbed antenna pattern tests. A unique application is the realistic simulation of sophisticated flight paths, including overhead tracking and demanding trajectories of fast objects such as sounding rockets. Likewise, dynamic tracking tests are feasible which provide crucial information about the antenna pedestal performance — particularly at high elevations — and reveal weaknesses in the autotrack control loop of tracking antenna systems. During acceptance tests of MORABA's new tracking antennas, a manned aircraft was never used, since the Flying Boresight surpassed all expectations regarding usability, efficiency, and precision. Hence, it became an integral part of MORABA's standard antenna setup and calibration procedures.

  9. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition

    Directory of Open Access Journals (Sweden)

    John F. McEvoy

    2016-03-01

    Full Text Available The use of unmanned aerial vehicles (UAVs for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models or 40m above individuals (multirotor models. Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys.

  10. Multimodal Displays for Target Localization in a Flight Test

    National Research Council Canada - National Science Library

    Tannen, Robert

    2001-01-01

    ... Synthesized Immersion Research Environment (SIRE) facility. Twelve pilots with a mean of 2652 flight hours performed a simulated flight task in which they were instructed to maintain a prescribed flight path, air speed, and altitude...

  11. Design and analysis of advanced flight planning concepts

    Science.gov (United States)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  12. Magnetic anomaly patterns over crustal blocks of the King Edward VII Peninsula, Marie Byrd Land, West Antarctica

    Directory of Open Access Journals (Sweden)

    M. Spano

    2000-06-01

    Full Text Available Within the framework of the GITARA II project an aeromagnetic survey was performed during the GANOVEXVII expedition (1992/1993 over the King Edward VII Peninsula in northwestern Marie Byrd Land (West Antarctica. This region which may represent the eastern flank of the Ross Sea rift system had previously been explored only at reconnaissance level. New total field and upward continued (10 km magnetic anomaly maps are produced and interpreted here to map and discuss the crustal structure of the Edward VII Peninsula. Tworound-shaped, high-amplitude magnetic anomalies are recognised over the Alexandra Mountains block. The anomalies are difficult to interpret since susceptibility data indicate the prevalence of non-magnetic rocks at the surface. A possible interpretation is that the anomalies are due to Cretaceous mafic intrusives distinct from weakly magnetic Byrd Coast Granite of the adjacent Rockefeller Mountains block. Alternatively the anomalies could be related to buried pluton-sized Devonian Ford Granodiorite intruded by dikes. If Cretaceous in age, the former intrusives revealed from the magnetics could also be responsible for contact metamorphism of the adjacent Alexandra Mountains migmatites. Lower amplitude circular anomalies over the Central Plateau and Prestrud Inlet are likely to be caused by unexposed Devonian Ford Granodiorite which crops out in the Ford Ranges. Elongated high-frequency anomalies of the Sulzberger Bay are similar to those recognised over seismically constrained Cenozoic rift-related volcanics of the Ross Sea. A broad magnetic low over the Sulzberger Ice Shelf may be indicative of a fault bounded graben-like basin with sedimentary infill. Overall recognition of magnetic anomaly patterns and trends reveals segmentation of the Edward VII Peninsula and of the adjacent marine areas in distinct crustal blocks. Faults may separate these blocks and they are interpreted to reflect multiple Cretaceous and maybe Cenozoic crustal

  13. Bats Use Path Integration Rather Than Acoustic Flow to Assess Flight Distance along Flyways.

    Science.gov (United States)

    Aharon, Gal; Sadot, Meshi; Yovel, Yossi

    2017-12-04

    Navigation can be achieved using different strategies from simple beaconing to complex map-based movement [1-4]. Bats display remarkable navigation capabilities, ranging from nightly commutes of several kilometers and up to seasonal migrations over thousands of kilometers [5]. Many bats have been suggested to fly along fixed routes termed "flyways," when flying from their roost to their foraging sites [6]. Flyways commonly stretch along linear landscape elements such as tree lines, hedges, or rivers [7]. When flying along a flyway, bats must estimate the distance they have traveled in order to determine when to turn. This can be especially challenging when moving along a repetitive landscape. Some bats, like Kuhl's pipistrelles, which we studied here, have limited vision [8] and were suggested to rely on bio-sonar for navigation. These bats could therefore estimate distance using three main sensory-navigation strategies, all of which we have examined: acoustic flow, acoustic landmarks, or path integration. We trained bats to fly along a linear flyway and land on a platform. We then tested their behavior when the platform was removed under different manipulations, including changing the acoustic flow, moving the start point, and adding wind. We found that bats do not require acoustic flow, which was hypothesized to be important for their navigation [9-15], and that they can perform the task without landmarks. Our results suggest that Kuhl's pipistrelles use internal self-motion cues-also known as path integration-rather than external information to estimate flight distance for at least dozens of meters when navigating along linear flyways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Randomized path optimization for thevMitigated counter detection of UAVS

    Science.gov (United States)

    2017-06-01

    to tracking, such as sea state, altitude, and the position of the sun, could all be used 1 in designing a program that allows for the recovery of...qgoal , an infinite set of possible paths exists in between them. In order to scale down the problem from an infinite number of paths, a polynomial path...flight to a vehicle that used 70%. With 100 potential waypoints and five different time profiles, the set of infinite paths was narrowed down to a set

  15. Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment. [flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time

    Science.gov (United States)

    Knox, C. E.; Cannon, D. G.

    1979-01-01

    A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.

  16. Tradução e adaptação transcultural do "Harris Hip Score modificado por Byrd" Translation and transcultural adaptation of the modified Harris Hip Score

    Directory of Open Access Journals (Sweden)

    Rodrigo Pereira Guimarães

    2010-01-01

    Full Text Available OBJETIVO: As artroscopias do quadril têm sido utilizadas tanto para fins diagnósticos, como para fins terapêuticos, fazendo parte do arsenal rotineiro dos cirurgiões do quadril. Devido a necessidade de avaliação dos resultados artroscópicos, Byrd propôs a modificação do "Harris Hip Score", realizando a avaliação da dor e função. O objetivo deste estudo foi traduzir e adaptar transculturalmente o protocolo de avaliação do "Harris Hip Score" modificado por Byrd, utilizado nas artroscopias do quadril. MÉTODO: O método utilizado constituiu em: 1 tradução inicial, 2 retrotradução, 3 pré - teste e 4 teste definitivo. RESULTADOS: A versão em português foi aplicada em 30 pacientes com afecções do quadril para verificar o nível de compreensão do protocolo. Foram realizadas mudanças e substituições de termos e expressões que não foram entendidas pelos pacientes durante o pré-teste e realizada a versão final em consenso. Novamente a versão final do questionário foi aplicada com 100% de entendimento pelos pacientes. CONCLUSÃO: disponibiliza-se assim a versão final em português do questionário "Harris Hip Score" modificado por Byrd. A validação desta versão já está em desenvolvimento.OBJECTIVE: Hip arthroscopy has been used for diagnostic as well as therapeutic purposes, and it is part of the daily arsenal of hip surgeons. Due to the need for arthroscopic evaluation of the results, Byrd proposed a modification of the Harris Hip Score by assessing pain and function. This study aimed to translate and cross-culturally adapt the evaluation protocol of the modified Harris Hip Score used in hip arthroscopies. METHOD: The method used consisted of: 1 an initial translation, 2 a back translation, 3 a pre-test and 4 a final test. RESULTS: The Portuguese version was used with 30 patients with hip disorders to determine the level of comprehension of the protocol. Expressions which were not understood by patients during the

  17. A neutron time of flight spectrometer appropriate for D-T plasma diagnostics

    International Nuclear Information System (INIS)

    Elevant, T.

    1984-02-01

    A neutron time-of-flight spectrometer with 2 m flight path for diagnostics of deuterium plasmas in JET is presently under construction. An upgrade of this spectrometer to make it appropriate for 14-MeV neutron spectroscopy is presented here. It is suggested to use backscattering in a deuterium based scintillator. The flight path length is 1-2 m and the efficiency is of the order of 2.10 -5 cm -5 . Results from test of principle are presented with estimates for neutron and gamma backgrounds

  18. Sensors for in-flight lightning detection on aircraft

    NARCIS (Netherlands)

    Stelmashuk, V.; Deursen, van A.P.J.; Webster, M.

    2008-01-01

    Commercial passenger aircraft are on average struck by lightning once a year. The In-flight Lightning Strike Damage Assessment System (ILDAS) project is to develop and validate a prototype of a system capable of in-flight measurement of the current waveform and reconstruction of the path of

  19. Active Path Planning for Drones in Object Search

    OpenAIRE

    Wang, Zeyangyi

    2017-01-01

    Object searching is one of the most popular applications of unmanned aerial vehicles. Low cost small drones are particularly suited for surveying tasks in difficult conditions. With their limited on-board processing power and battery life, there is a need for more efficient search algorithm. The proposed path planning algorithm utilizes AZ-net, a deep learning network to process images captured on drones for adaptive flight path planning. Search simulation based on videos and actual experimen...

  20. Reflector construction by sound path curves - A method of manual reflector evaluation in the field

    International Nuclear Information System (INIS)

    Siciliano, F.; Heumuller, R.

    1985-01-01

    In order to describe the time-of-flight behavior of various reflectors we have set up models and derived from them analytical and graphic approaches to reflector reconstruction. In the course of this work, maximum achievable accuracy and possible simplifications were investigated. The aim of the time-of-flight reconstruction method is to determine the points of a reflector on the basis of a sound path function (sound path as the function of the probe index position). This method can only be used on materials which are isotropic in terms of sound velocity since the method relies on time of flight being converted into sound path. This paper deals only with two-dimensional reconstruction, in other words all statements relate to the plane of incidence. The method is based on the fact that the geometrical location of the points equidistant from a certain probe index position is a circle. If circles with radiuses equal to the associated sound path are drawn for various search unit positions the points of intersection of the circles are the desired reflector points

  1. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    Science.gov (United States)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  2. Aircraft path planning for optimal imaging using dynamic cost functions

    Science.gov (United States)

    Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin

    2015-05-01

    Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.

  3. Flight Measurements of the Effect of a Controllable Thrust Reverser on the Flight Characteristics of a Single-Engine Jet Airplane

    Science.gov (United States)

    Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.

    1959-01-01

    A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.

  4. The deep fovea, sideways vision and spiral flight paths in raptors.

    Science.gov (United States)

    Tucker, V A

    2000-12-01

    the raptor down. Raptors could resolve this conflict by diving along a logarithmic spiral path with their head straight and one eye looking sideways at the prey, rather than following the straight path to the prey with their head turned sideways. Although the spiral path is longer than the straight path, a mathematical model for an 'ideal falcon' shows that the falcon could reach the prey more quickly along the spiral path because the speed advantage of a straight head more than compensates for the longer path.

  5. Path planning for persistent surveillance applications using fixed-wing unmanned aerial vehicles

    Science.gov (United States)

    Keller, James F.

    This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C 2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length. • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction. • A smooth path generator that provides C 2 routes that satisfy user specified curvature constraints. C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles. C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have developed a diverse range of solutions for persistent

  6. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments

    DEFF Research Database (Denmark)

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie

    2014-01-01

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information....... The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment........ In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim...

  7. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  8. No Bursts Detected from FRB121102 in Two 5 hr Observing Campaigns with the Robert C. Byrd Green Bank Telescope

    Science.gov (United States)

    Price, Danny C.; Gajjar, Vishal; Rosenthal, Lee; Hallinan, Gregg; Croft, Steve; DeBoer, David; Hellbourg, Greg; Isaacson, Howard; Lebofsky, Matt; Lynch, Ryan; MacMahon, David H. E.; Men, Yunpeng; Xu, Yonghua; Liu, Zhiyong; Lee, Kejia; Siemion, Andrew

    2018-02-01

    Here, we report non-detection of radio bursts from Fast Radio Burst FRB 121102 during two 5-hour observation sessions on the Robert C. Byrd 100-m Green Bank Telescope in West Virginia, USA, on December 11, 2017, and January 12, 2018. In addition, we report non-detection during an abutting 10-hour observation with the Kunming 40-m telescope in China, which commenced UTC 10:00 January 12, 2018. These are among the longest published contiguous observations of FRB 121102, and support the notion that FRB 121102 bursts are episodic. These observations were part of a simultaneous optical and radio monitoring campaign with the the Caltech HIgh- speed Multi-color CamERA (CHIMERA) instrument on the Hale 5.1-m telescope.

  9. The Aerodynamics of Frisbee Flight

    Directory of Open Access Journals (Sweden)

    Kathleen Baumback

    2010-01-01

    Full Text Available This project will describe the physics of a common Frisbee in flight. The aerodynamic forces acting on the Frisbee are lift and drag, with lift being explained by Bernoulli‘s equation and drag by the Prandtl relationship. Using V. R. Morrison‘s model for the 2-dimensional trajectory of a Frisbee, equations for the x- and y- components of the Frisbee‘s motion were written in Microsoft Excel and the path of the Frisbee was illustrated. Variables such as angle of attack, area, and attack velocity were altered to see their effect on the Frisbee‘s path and to speculate on ways to achieve maximum distance and height.

  10. Optimal Wind Corrected Flight Path Planning for Autonomous Micro Air Vehicles

    National Research Council Canada - National Science Library

    Zollars, Michael D

    2007-01-01

    ...) fixed sensor on a target in the presence of a constant wind. Autonomous flight is quickly becoming the future of air power and over the past several years, the size and weight of autonomous vehicles has decreased dramatically...

  11. Real-Time Trajectory Generation for Autonomous Nonlinear Flight Systems

    National Research Council Canada - National Science Library

    Larsen, Michael; Beard, Randal W; McLain, Timothy W

    2006-01-01

    ... to mobile threats such as radar, jammers, and unfriendly aircraft. In Phase 1 of this STTR project, real-time path planning and trajectory generation techniques for two dimensional flight were developed and demonstrated in software simulation...

  12. Detailed investigation of a time-of-flight neutron spectrometer

    International Nuclear Information System (INIS)

    Elevant, T.; Trostell, B.

    1981-02-01

    Properties of a neutron spectrometer and telescope, based on double neutron interaction in hydrogen based scintillators and neutron time-of-flight technique, have been investigated in detail. Theoretical scaling of the resolutions with the flight path length and scattering angle have been confirmed by experimental results. Important parameters in connection with calibration of the spectrometer are discussed and calculated relative resolutions of the ion temperature are shown when applied to a fusion deuterium plasma. (Auth.)

  13. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    Science.gov (United States)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  14. A bat algorithm with mutation for UCAV path planning.

    Science.gov (United States)

    Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi

    2012-01-01

    Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models.

  15. A Flight Dynamic Model of Aircraft Spinning

    Science.gov (United States)

    1990-06-01

    r Zaw rate about body axes S Aircraft wing area V Flight path velocity 3 a Angle of attack Sideslip angle 6, Aileron deflection, positive when right...Tests, May/June 1983 PartI. Unpublished data report. 6. MARTIN, C.A. and SECOMB, D.A. ; RAAF BPTA Phase II Wind Tun - nel Tests: Rotary Balance Tests

  16. Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus.

    Directory of Open Access Journals (Sweden)

    Benjamin Ponitz

    Full Text Available This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.

  17. Time recording unit for a neutron time of flight spectrometer

    International Nuclear Information System (INIS)

    Puranik, Praful; Ajit Kiran, S.; Chandak, R.M.; Poudel, S.K.; Mukhopadhyay, R.

    2011-01-01

    Here the architecture and design of Time Recording Unit for a Neutron Time of Flight Spectrometer have been described. The Spectrometer would have an array of 50 Nos. of one meter long linear Position Sensitive Detector (PSD) placed vertically around the sample at a distance of 2000 mm. The sample receives periodic pulsed neutron beam coming through a Fermi chopper. The time and zone of detection of a scattered neutron in a PSD gives information of its flight time and path length, which will be used to calculate its energy. A neutron event zone (position) and time detection module for each PSD provides a 2 bit position/zone code and an event timing pulse. The path length assigned to a neutron detected in a zone (Z1, Z2 etc) in the PSD is the mean path length seen by the neutrons detected in that zone of the PSD. A Time recording unit described here receives event zone code and timing pulse for all the 50 detectors, tags a proper time window code to it, before streaming it to computer for calculation of the energy distribution of neutrons scattered from the sample

  18. Using wide area differential GPS to improve total system error for precision flight operations

    Science.gov (United States)

    Alter, Keith Warren

    Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.

  19. Flight mechanics of a tailless articulated wing aircraft

    International Nuclear Information System (INIS)

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S

    2011-01-01

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  20. Flight mechanics of a tailless articulated wing aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S, E-mail: sjchung@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  1. HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data

    Science.gov (United States)

    Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Schiller, Cornelius; Krämer, Martina; Ebert, Volker

    2017-01-01

    The novel Hygrometer for Atmospheric Investigation (HAI) realizes a unique concept for simultaneous gas-phase and total (gas-phase + evaporated cloud particles) water measurements. It has been developed and successfully deployed for the first time on the German HALO research aircraft. This new instrument combines direct tunable diode laser absorption spectroscopy (dTDLAS) with a first-principle evaluation method to allow absolute water vapor measurements without any initial or repetitive sensor calibration using a reference gas or a reference humidity generator. HAI contains two completely independent dual-channel (closed-path, open-path) spectrometers, one at 1.4 and one at 2.6 µm, which together allow us to cover the entire atmospheric H2O range from 1 to 40 000 ppmv with a single instrument. Both spectrometers each comprise a separate, wavelength-individual extractive, closed-path cell for total water (ice and gas-phase) measurements. Additionally, both spectrometers couple light into a common open-path cell outside of the aircraft fuselage for a direct, sampling-free, and contactless determination of the gas-phase water content. This novel twin dual-channel setup allows for the first time multiple self-validation functions, in particular a reliable, direct, in-flight validation of the open-path channels. During the first field campaigns, the in-flight deviations between the independent and calibration-free channels (i.e., closed-path to closed-path and open-path to closed-path) were on average in the 2 % range. Further, the fully autonomous HAI hygrometer allows measurements up to 240 Hz with a minimal integration time of 1.4 ms. The best precision is achieved by the 1.4 µm closed-path cell at 3.8 Hz (0.18 ppmv) and by the 2.6 µm closed-path cell at 13 Hz (0.055 ppmv). The requirements, design, operation principle, and first in-flight performance of the hygrometer are described and discussed in this work.

  2. A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.

    Science.gov (United States)

    Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen

    2012-01-01

    Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.

  3. Conformal flight path symbology for head-up displays: Defining the distribution of visual attention in three-dimensional space

    Science.gov (United States)

    Ververs, Patricia May

    An extensive investigation of the format for head-up display (HUD) instrumentation was conducted in a two-part experiment. First, a pilot's information requirements for the tasks of approach, landing, and taxi were determined through a survey administered to professional commercial pilots via the world wide web. The results of the survey were applied in the development of two symbology sets, one set for flight navigation and the second for ground navigation. Second, twenty pilots from the University of Illinois at Urbana-Champaign were recruited to participate in a 3-day experiment. The study was designed to investigate the format for symbology on HUDs and the performance effects of using conformal and partially conformal symbology to support the pilots' tasks. In addition, two different methods were investigated for supporting the pilots' transition between the task of flying and the task of landing. A seamless transition used visual momentum techniques to smoothly guide the pilots' cognitive transition between the serial displays and the associated tasks. A seamed approach employed an abrupt change between the displays to alert the pilots of the task switch. The results indicate that incorporating a virtually conformal, tunnel-in-the-sky symbology into a complete HUD instrumentation set offers promising pilot performance effects. Pilots easily navigated the complex curved approaches with little to no deviation from the flight path (approximately 10 feet), while performing the secondary tasks of the scanning their instruments and the environment. The seamless transition between the flight and ground symbology offered the pilots a preview of the upcoming landing task, thereby preparing them for the task switch. On the ground, the perspective (scene-linked) symbology set supported landing and taxi navigation tasks with the equal efficiency to the plan view display but with much greater precision. Theories of allocation of attention were used to interpret the

  4. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    Science.gov (United States)

    Thorsen, Adam

    This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight

  5. A community responds to collective trauma: an ecological analysis of the James Byrd murder in Jasper, Texas.

    Science.gov (United States)

    Wicke, Thomas; Silver, Roxane Cohen

    2009-12-01

    The brutal murder of James Byrd Jr. in June 1998 unleashed a storm of media, interest groups, high profile individuals and criticism on the Southeast Texas community of Jasper. The crime and subsequent response-from within the community as well as across the world-engulfed the entire town in a collective trauma. Using natural disaster literature/theory and employing an ecological approach, Jasper, Texas was investigated via an interrupted time series analysis to identify how the community changed as compared to a control community (Center, Texas) on crime, economic, health, educational, and social capital measures collected at multiple pre- and post-crime time points between 1995 and 2003. Differences-in-differences (DD) analysis revealed significant post-event changes in Jasper, as well as a surprising degree of resilience and lack of negative consequences. Interviews with residents conducted between March 2005 and 2007 identified how the community responded to the crisis and augmented quantitative findings with qualitative, field-informed interpretation. Interviews suggest the intervention of external organizations exacerbated the severity of the events. However, using strengths of specific local social institutions-including faith based, law enforcement, media, business sector and civic government organizations-the community effectively responded to the initial threat and to the potential negative ramifications of external entities.

  6. KELVIN rare gas time-of-flight program

    International Nuclear Information System (INIS)

    Vernon, M.

    1981-03-01

    The purpose of this appendix is to explain in detail the procedure for performing time-of-flight (TOF) calibration measurements. The result of the calibration measurements is to assign a correct length (L) to the path the molecules travel in a particular experimental configuration. In conjunction with time information (t) a velocity distribution (L/t) can then be determined. The program KELVIN is listed

  7. Flight Management System Execution of Idle-Thrust Descents in Operations

    Science.gov (United States)

    Stell, Laurel L.

    2011-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.

  8. Development and test results of a flight management algorithm for fuel conservative descents in a time-based metered traffic environment

    Science.gov (United States)

    Knox, C. E.; Cannon, D. G.

    1980-01-01

    A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.

  9. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    Science.gov (United States)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  10. NASA/FAA Tailplane Icing Program: Flight Test Report

    Science.gov (United States)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Sim, Alex

    2000-01-01

    This report presents results from research flights that explored the characteristics of an ice-contaminated tailplane using various simulated ice shapes attached to the leading edge of the horizontal tailplane. A clean leading edge provided the baseline case, then three ice shapes were flown in order of increasing severity. Flight tests included both steady state and dynamic maneuvers. The steady state points were 1G wings level and steady heading sideslips. The primary dynamic maneuvers were pushovers to various G-levels; elevator doublets; and thrust transitions. These maneuvers were conducted for a full range of flap positions and aircraft angle of attack where possible. The analysis of this data set has clearly demonstrated the detrimental effects of ice contamination on aircraft stability and controllability. Paths to tailplane stall were revealed through parameter isolation and transition studies. These paths are (1) increasing ice shape severity, (2) increasing flap deflection, (3) high or low speeds, depending on whether the aircraft is in a steady state (high speed) or pushover maneuver (low speed), and (4) increasing thrust. The flight research effort was very comprehensive, but did not examine effects of tailplane design and location, or other aircraft geometry configuration effects. However, this effort provided the role of some of the parameters in promoting tailplane stall. The lessons learned will provide guidance to regulatory agencies, aircraft manufacturers, and operators on ice-contaminated tailplane stall in the effort to increase aviation safety and reduce the fatal accident rate.

  11. Crustal structure of the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: constraints on shear wave velocities, Poisson's ratios and Moho depths

    Science.gov (United States)

    Ramirez, C.; Nyblade, A.; Emry, E. L.; Julià, J.; Sun, X.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Winberry, P.; Wilson, T.

    2017-12-01

    A uniform set of crustal parameters for seismic stations deployed on rock in West Antarctica and the Transantarctic Mountains (TAM) has been obtained to help elucidate similarities and differences in crustal structure within and between several tectonic blocks that make up these regions. P-wave receiver functions have been analysed using the H-κ stacking method to develop estimates of thickness and bulk Poisson's ratio for the crust, and jointly inverted with surface wave dispersion measurements to obtain depth-dependent shear wave velocity models for the crust and uppermost mantle. The results from 33 stations are reported, including three stations for which no previous results were available. The average crustal thickness is 30 ± 5 km along the TAM front, and 38 ± 2 km in the interior of the mountain range. The average Poisson's ratios for these two regions are 0.25 ± 0.03 and 0.26 ± 0.02, respectively, and they have similar average crustal Vs of 3.7 ± 0.1 km s-1. At multiple stations within the TAM, we observe evidence for mafic layering within or at the base of the crust, which may have resulted from the Ferrar magmatic event. The Ellsworth Mountains have an average crustal thickness of 37 ± 2 km, a Poisson's ratio of 0.27, and average crustal Vs of 3.7 ± 0.1 km s-1, similar to the TAM. This similarity is consistent with interpretations of the Ellsworth Mountains as a tectonically rotated TAM block. The Ross Island region has an average Moho depth of 25 ± 1 km, an average crustal Vs of 3.6 ± 0.1 km s-1 and Poisson's ratio of 0.30, consistent with the mafic Cenozoic volcanism found there and its proximity to the Terror Rift. Marie Byrd Land has an average crustal thickness of 30 ± 2 km, Poisson's ratio of 0.25 ± 0.04 and crustal Vs of 3.7 ± 0.1 km s-1. One station (SILY) in Marie Byrd Land is near an area of recent volcanism and deep (25-40 km) seismicity, and has a high Poisson's ratio, consistent with the presence of partial melt in the crust.

  12. Control-oriented reduced order modeling of dipteran flapping flight

    Science.gov (United States)

    Faruque, Imraan

    Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs.

  13. Recycling Flight Hardware Components and Systems to Reduce Next Generation Research Costs

    Science.gov (United States)

    Turner, Wlat

    2011-01-01

    With the recent 'new direction' put forth by President Obama identifying NASA's new focus in research rather than continuing on a path to return to the Moon and Mars, the focus of work at Kennedy Space Center (KSC) may be changing dramatically. Research opportunities within the micro-gravity community potentially stands at the threshold of resurgence when the new direction of the agency takes hold for the next generation of experimenters. This presentation defines a strategy for recycling flight experiment components or part numbers, in order to reduce research project costs, not just in component selection and fabrication, but in expediting qualification of hardware for flight. A key component of the strategy is effective communication of relevant flight hardware information and available flight hardware components to researchers, with the goal of 'short circuiting' the design process for flight experiments

  14. Development of a detector in order to investigate (n,γ)-cross sections by ToF method with a very short flight path

    Science.gov (United States)

    Wolf, C.; Glorius, J.; Reifarth, R.; Weigand, M.

    2018-01-01

    The determination of neutron capture cross sections of some radioactive isotopes like 85Kr is very important to improve the knowledge about the s process. Based on its own radioactive decay these isotopes can only be used in small samples inside a TOF facility, which is why the neutron flux of these facilities has to be very high. Unfortunately the neutron flux of the FRANZ setup at Goethe University Frankfurt, which will offer the highest neutron flux in astrophysical energy regions (keV region) [1], is still to low to investigate isotopes like 85Kr. Therefore a new setup called NAUTILUS is under development, which will reduce the flight path from 80 cm to a few centimeter to enhance the angular coverage of the sample and therefore increase the neutron flux by a factor of nearly 100. This implies a higher intensity of the γ-flash energy inside the detector and the neutron induced background. Hence the geometry, the scintillator material and the moderator were optimized by GEANT3 simulations.

  15. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    Science.gov (United States)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  16. Proof-of-Concept Demonstrations of a Flight Adjustment Logging and Communication Network

    Science.gov (United States)

    Underwood, Matthew C.; Merlino, Daniel K.; Carboneau, Lindsey M.; Wilson, C. Logan; Wilder, Andrew J.

    2016-01-01

    The National Airspace System is a highly complex system of systems within which a number of participants with widely varying business and operating models exist. From the airspace user's perspective, a means by which to operate flights in a more flexible and efficient manner is highly desired to meet their business objectives. From the air navigation service provider's viewpoint, there is a need for increasing the capacity of the airspace, while maintaining or increasing the levels of efficiency and safety that currently exist in order to meet the charter under which they operate. Enhancing the communication between airspace operators and users is essential in order to meet these demands. In the spring of 2015, a prototype system that implemented an airborne tool to optimize en-route flight paths for fuel and time savings was designed and tested. The system utilized in-flight Internet as a high-bandwidth data link to facilitate collaborative decision making between the flight deck and an airline dispatcher. The system was tested and demonstrated in a laboratory environment, as well as in-situ. Initial results from these tests indicate that this system is not only feasible, but could also serve as a growth path and testbed for future air traffic management concepts that rely on shared situational awareness through data exchange and electronic negotiation between multiple entities operating within the National Airspace System.

  17. The IRK time-of-flight facility for measurements of double-differential neutron emission cross sections

    International Nuclear Information System (INIS)

    Pavlik, A.; Priller, A.; Steier, P.; Vonach, H.; Winkler, G.

    1994-01-01

    In order to improve the present experimental data base of energy- and angle-differential neutron emission cross sections at 14 MeV incident-neutron energy, a new time-of-flight (TOF) facility was installed at the Institut fuer Radiumforschung und Kernphysik (IRK), Vienna. The set-up was particularly designed to more precisely measure the high-energy part of the secondary neutron spectra and consists of three main components: (1) a pulsed neutron generator of Cockcroft-Walton type producing primary neutrons via the T(d,n)-reaction, (2) a tube system which can be evacuated containing the neutron flight path, the sample, collimators and the sample positioning system, and (3) the neutron detectors with the data acquisition equipment. Removing the air along the neutron flight path results in a drastic suppression of background due to air-scattered neutrons in the spectrum of the secondary neutrons. For every secondary neutron detected in the main detector, the time-of-flight, the pulse-shape information and the recoil energy are recorded in list-mode via a CAMAC system connected to a PDP 11/34 on-line computer. Using a Micro VAX, the multiparameter data are sorted and reduced to double-differential cross sections

  18. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    Science.gov (United States)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  19. Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions

    Science.gov (United States)

    Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.

    2014-01-01

    In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

  20. Path coupling and aggregate path coupling

    CERN Document Server

    Kovchegov, Yevgeniy

    2018-01-01

    This book describes and characterizes an extension to the classical path coupling method applied to statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, the aggregate path coupling method is used to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The book shows how the parameter regions for rapid mixing for several classes of statistical mechanical models are derived using the aggregate path coupling method.

  1. A biomimetic, energy-harvesting, obstacle-avoiding, path-planning algorithm for UAVs

    Science.gov (United States)

    Gudmundsson, Snorri

    This dissertation presents two new approaches to energy harvesting for Unmanned Aerial Vehicles (UAV). One method is based on the Potential Flow Method (PFM); the other method seeds a wind-field map based on updraft peak analysis and then applies a variant of the Bellman-Ford algorithm to find the minimum-cost path. Both methods are enhanced by taking into account the performance characteristics of the aircraft using advanced performance theory. The combined approach yields five possible trajectories from which the one with the minimum energy cost is selected. The dissertation concludes by using the developed theory and modeling tools to simulate the flight paths of two small Unmanned Aerial Vehicles (sUAV) in the 500 kg and 250 kg class. The results show that, in mountainous regions, substantial energy can be recovered, depending on topography and wind characteristics. For the examples presented, as much as 50% of the energy was recovered for a complex, multi-heading, multi-altitude, 170 km mission in an average wind speed of 9 m/s. The algorithms constitute a Generic Intelligent Control Algorithm (GICA) for autonomous unmanned aerial vehicles that enables an extraction of atmospheric energy while completing a mission trajectory. At the same time, the algorithm. automatically adjusts the flight path in order to avoid obstacles, in a fashion not unlike what one would expect from living organisms, such as birds and insects. This multi-disciplinary approach renders the approach biomimetic, i.e. it constitutes a synthetic system that “mimics the formation and function of biological mechanisms and processes.”.

  2. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    Science.gov (United States)

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  3. Vehicle path-planning in three dimensions using optics analogs for optimizing visibility and energy cost

    Science.gov (United States)

    Rowe, Neil C.; Lewis, David H.

    1989-01-01

    Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.

  4. Path Creation, Path Dependence and Breaking Away from the Path

    OpenAIRE

    Wang, Jens; Hedman, Jonas; Tuunainen, Virpi Kristiina

    2016-01-01

    The explanation of how and why firms succeed or fail is a recurrent research challenge. This is particularly important in the context of technological innovations. We focus on the role of historical events and decisions in explaining such success and failure. Using a case study of Nokia, we develop and extend a multi-layer path dependence framework. We identify four layers of path dependence: technical, strategic and leadership, organizational, and external collaboration. We show how path dep...

  5. An Efficient Energy Constraint Based UAV Path Planning for Search and Coverage

    Directory of Open Access Journals (Sweden)

    German Gramajo

    2017-01-01

    Full Text Available A path planning strategy for a search and coverage mission for a small UAV that maximizes the area covered based on stored energy and maneuverability constraints is presented. The proposed formulation has a high level of autonomy, without requiring an exact choice of optimization parameters, and is appropriate for real-time implementation. The computed trajectory maximizes spatial coverage while closely satisfying terminal constraints on the position of the vehicle and minimizing the time of flight. Comparisons of this formulation to a path planning algorithm based on those with time constraint show equivalent coverage performance but improvement in prediction of overall mission duration and accuracy of the terminal position of the vehicle.

  6. Ion microtomography using ion time-of-flight

    International Nuclear Information System (INIS)

    Roberts, M.L.; Heikkinen, D.W.; Proctor, I.D.; Pontau, A.E.; Olona, G.T.; Felter, T.E.; Morse, D.H.; Hess, B.V.

    1992-01-01

    We have developed and are in the process of testing an ion time-of-flight (TOF) detector system for use in our ion microtomography measurements. Using TOF, ion energy is determined by measurement of the ion's flight time over a certain path length. For ion microtomography, the principle advantage of TOF analysis is that ion count rates of several hundred thousand counts per second can be achieved as compared to a limit of about ten thousand ions per second when using a solid-state silicon surface barrier detector and associated electronics. This greater than 10 fold increase in count rate correspondingly shortens sample analysis time or increases the amount of data that can be collected on a given sample. Details of the system and progress to date are described

  7. The Breakthrough Listen Search for Intelligent Life: A Wideband Data Recorder System for the Robert C. Byrd Green Bank Telescope

    Science.gov (United States)

    MacMahon, David H. E.; Price, Danny C.; Lebofsky, Matthew; Siemion, Andrew P. V.; Croft, Steve; DeBoer, David; Enriquez, J. Emilio; Gajjar, Vishal; Hellbourg, Gregory; Isaacson, Howard; Werthimer, Dan; Abdurashidova, Zuhra; Bloss, Marty; Brandt, Joe; Creager, Ramon; Ford, John; Lynch, Ryan S.; Maddalena, Ronald J.; McCullough, Randy; Ray, Jason; Whitehead, Mark; Woody, Dave

    2018-04-01

    The Breakthrough Listen Initiative is undertaking a comprehensive search for radio and optical signatures from extraterrestrial civilizations. An integral component of the project is the design and implementation of wide-bandwidth data recorder and signal processing systems. The capabilities of these systems, particularly at radio frequencies, directly determine survey speed; further, given a fixed observing time and spectral coverage, they determine sensitivity as well. Here, we detail the Breakthrough Listen wide-bandwidth data recording system deployed at the 100 m aperture Robert C. Byrd Green Bank Telescope. The system digitizes up to 6 GHz of bandwidth at 8 bits for both polarizations, storing the resultant 24 GB s‑1 of data to disk. This system is among the highest data rate baseband recording systems in use in radio astronomy. A future system expansion will double recording capacity, to achieve a total Nyquist bandwidth of 12 GHz in two polarizations. In this paper, we present details of the system architecture, along with salient configuration and disk-write optimizations used to achieve high-throughput data capture on commodity compute servers and consumer-class hard disk drives.

  8. A Time of flight spectrometer for measurements of double differential neutron scattering cross sections

    International Nuclear Information System (INIS)

    Padron, I.; Dominguez, O.; Sarria, P. Sandin, C.

    1996-01-01

    The time -of-Flight neutron spectrometry technique by associated particle method was improved using a D-T neutron generator at Laboratory of Nuclear Analysis. This technique was implemented for double differential cross section measurements and supported by the IAEA Project CUB/01/005. An stilbene scintillation detector (dia=100 mm, length=50 mm) was used as principal neutron detector detector and was situated outside a hole in the concrete wall. This way the fligth path was extended and the scattered neutron cone accurate collimated throught the 2 m concrete wall. For the associated particle α detection a thin plastic NE-102 scint illator was used, as well as, two scintilation detectors and a long counter for the neutron flux monitoring. In this TOF neutron spectrometer (3.40 m flight path) a 1.7 nseg. temporal resolution was obtained

  9. Leisure pilot license proposed for Europe: do you want such pilots crossing your flight path?

    Science.gov (United States)

    Simons, Ries; Maher, Declan; Stüben, Uwe; Herbert, Kevin C

    2009-07-01

    In a Notice of Proposed Amendment, the European Aviation Safety Agency proposes to introduce a Leisure Pilot License (LPL). Holders of a LPL for airplanes will be allowed to fly single-engine piston airplanes with a maximum takeoff mass of 2000 kg or less, carrying a maximum of three passengers. In this commentary paper, we express significant concern about the flight safety consequences of the proposed aeromedical requirements of the LPL. We argue that the proposed minimum age, validity period of the medical certificate, and issuance of certificates by general practitioners may increase the flight safety risk. Major revision of the proposed LPL regulation is recommended.

  10. Path Dependency

    OpenAIRE

    Mark Setterfield

    2015-01-01

    Path dependency is defined, and three different specific concepts of path dependency – cumulative causation, lock in, and hysteresis – are analyzed. The relationships between path dependency and equilibrium, and path dependency and fundamental uncertainty are also discussed. Finally, a typology of dynamical systems is developed to clarify these relationships.

  11. Rapid fabrication of flight worthy composite parts

    Science.gov (United States)

    Jouin, Pierre H.; Heigl, John C.; Youtsey, Timothy L.

    A 3D surfaced-model representation of aircraft composite structural components can be used to generate machining paths in a system which reduces paperwork and errors, and enhances accuracy and speed. Illustrative cases are presented for the use of such a system in the design and production of the Longbow radar housing, the fabrication of the flight test hardware for the 'no tail-rotor' helicopter control system, and the machining of a honeycomb core structure for a composite helicopter rotor blade.

  12. Classification of Birds and Bats Using Flight Tracks

    Energy Technology Data Exchange (ETDEWEB)

    Cullinan, Valerie I.; Matzner, Shari; Duberstein, Corey A.

    2015-05-01

    Classification of birds and bats that use areas targeted for offshore wind farm development and the inference of their behavior is essential to evaluating the potential effects of development. The current approach to assessing the number and distribution of birds at sea involves transect surveys using trained individuals in boats or airplanes or using high-resolution imagery. These approaches are costly and have safety concerns. Based on a limited annotated library extracted from a single-camera thermal video, we provide a framework for building models that classify birds and bats and their associated behaviors. As an example, we developed a discriminant model for theoretical flight paths and applied it to data (N = 64 tracks) extracted from 5-min video clips. The agreement between model- and observer-classified path types was initially only 41%, but it increased to 73% when small-scale jitter was censored and path types were combined. Classification of 46 tracks of bats, swallows, gulls, and terns on average was 82% accurate, based on a jackknife cross-validation. Model classification of bats and terns (N = 4 and 2, respectively) was 94% and 91% correct, respectively; however, the variance associated with the tracks from these targets is poorly estimated. Model classification of gulls and swallows (N ≥ 18) was on average 73% and 85% correct, respectively. The models developed here should be considered preliminary because they are based on a small data set both in terms of the numbers of species and the identified flight tracks. Future classification models would be greatly improved by including a measure of distance between the camera and the target.

  13. Ares-I-X Stability and Control Flight Test: Analysis and Plans

    Science.gov (United States)

    Brandon, Jay M.; Derry, Stephen D.; Heim, Eugene H.; Hueschen, Richard M.; Bacon, Barton J.

    2008-01-01

    The flight test of the Ares I-X vehicle provides a unique opportunity to reduce risk of the design of the Ares I vehicle and test out design, math modeling, and analysis methods. One of the key features of the Ares I design is the significant static aerodynamic instability coupled with the relatively flexible vehicle - potentially resulting in a challenging controls problem to provide adequate flight path performance while also providing adequate structural mode damping and preventing adverse control coupling to the flexible structural modes. Another challenge is to obtain enough data from the single flight to be able to conduct analysis showing the effectiveness of the controls solutions and have data to inform design decisions for Ares I. This paper will outline the modeling approaches and control system design to conduct this flight test, and also the system identification techniques developed to extract key information such as control system performance (gain/phase margins, for example), structural dynamics responses, and aerodynamic model estimations.

  14. Pulse Based Time-of-Flight Range Sensing.

    Science.gov (United States)

    Sarbolandi, Hamed; Plack, Markus; Kolb, Andreas

    2018-05-23

    Pulse-based Time-of-Flight (PB-ToF) cameras are an attractive alternative range imaging approach, compared to the widely commercialized Amplitude Modulated Continuous-Wave Time-of-Flight (AMCW-ToF) approach. This paper presents an in-depth evaluation of a PB-ToF camera prototype based on the Hamamatsu area sensor S11963-01CR. We evaluate different ToF-related effects, i.e., temperature drift, systematic error, depth inhomogeneity, multi-path effects, and motion artefacts. Furthermore, we evaluate the systematic error of the system in more detail, and introduce novel concepts to improve the quality of range measurements by modifying the mode of operation of the PB-ToF camera. Finally, we describe the means of measuring the gate response of the PB-ToF sensor and using this information for PB-ToF sensor simulation.

  15. Optimal path planning for video-guided smart munitions via multitarget tracking

    Science.gov (United States)

    Borkowski, Jeffrey M.; Vasquez, Juan R.

    2006-05-01

    An advent in the development of smart munitions entails autonomously modifying target selection during flight in order to maximize the value of the target being destroyed. A unique guidance law can be constructed that exploits both attribute and kinematic data obtained from an onboard video sensor. An optimal path planning algorithm has been developed with the goals of obstacle avoidance and maximizing the value of the target impacted by the munition. Target identification and classification provides a basis for target value which is used in conjunction with multi-target tracks to determine an optimal waypoint for the munition. A dynamically feasible trajectory is computed to provide constraints on the waypoint selection. Results demonstrate the ability of the autonomous system to avoid moving obstacles and revise target selection in flight.

  16. An Anatomically Constrained Model for Path Integration in the Bee Brain.

    Science.gov (United States)

    Stone, Thomas; Webb, Barbara; Adden, Andrea; Weddig, Nicolai Ben; Honkanen, Anna; Templin, Rachel; Wcislo, William; Scimeca, Luca; Warrant, Eric; Heinze, Stanley

    2017-10-23

    Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Quivers of Bound Path Algebras and Bound Path Coalgebras

    Directory of Open Access Journals (Sweden)

    Dr. Intan Muchtadi

    2010-09-01

    Full Text Available bras and coalgebras can be represented as quiver (directed graph, and from quiver we can construct algebras and coalgebras called path algebras and path coalgebras. In this paper we show that the quiver of a bound path coalgebra (resp. algebra is the dual quiver of its bound path algebra (resp. coalgebra.

  18. Fractional path planning and path tracking

    International Nuclear Information System (INIS)

    Melchior, P.; Jallouli-Khlif, R.; Metoui, B.

    2011-01-01

    This paper presents the main results of the application of fractional approach in path planning and path tracking. A new robust path planning design for mobile robot was studied in dynamic environment. The normalized attractive force applied to the robot is based on a fictitious fractional attractive potential. This method allows to obtain robust path planning despite robot mass variation. The danger level of each obstacles is characterized by the fractional order of the repulsive potential of the obstacles. Under these conditions, the robot dynamic behavior was studied by analyzing its X - Y path planning with dynamic target or dynamic obstacles. The case of simultaneously mobile obstacles and target is also considered. The influence of the robot mass variation is studied and the robustness analysis of the obtained path shows the robustness improvement due to the non integer order properties. Pre shaping approach is used to reduce system vibration in motion control. Desired systems inputs are altered so that the system finishes the requested move without residual vibration. This technique, developed by N.C. Singer and W.P.Seering, is used for flexible structure control, particularly in the aerospace field. In a previous work, this method was extended for explicit fractional derivative systems and applied to second generation CRONE control, the robustness was also studied. CRONE (the French acronym of C ommande Robuste d'Ordre Non Entier ) control system design is a frequency-domain based methodology using complex fractional integration.

  19. Ultrasonic divergent-beam scanner for time-of-flight tomography with computer evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Glover, G H

    1978-03-02

    The rotatable ultrasonic divergent-beam scanner is designed for time-of-flight tomography with computer evaluation. With it there can be measured parameters that are of importance for the structure of soft tissues, e.g. time as a function of the velocity distribution along a certain path of flight(the method is analogous to the transaxial X-ray tomography). Moreover it permits to perform the quantitative measurement of two-dimensional velocity distributions and may therefore be applied to serial examinations for detecting cancer of the breast. As computers digital memories as well as analog-digital-hybrid systems are suitable.

  20. An evaluation of flight path management automation in transport category aircraft

    Science.gov (United States)

    Chandra, D.; Bussolari, S. R.

    1991-01-01

    A desk-top simulation of a Boeing 757/767 Electronic Flight Instrumentation System (EFIS) and Control Display Unit (CDU) was used in an experiment to compare three modes of communication for the clearance amendment process: standard voice procedures, a textual delivery method, and a graphical delivery method. Eight qualified Boeing 757/767 pilots served as subjects. Each flew nine landing scenarios with three amendments given in each scenario. Both acceptable and unacceptable clearance amendments were presented in order to assess situational awareness. Times for comprehension and execution of the amendment were recorded along with workload ratings, responses to unacceptable amendments, and subjective impressions. The graphical mode was found to be superior in terms of the time measures and subjective ratings. No difference was found between the modes in the ability to detect unacceptable clearances.

  1. Feynman's path integrals and Bohm's particle paths

    International Nuclear Information System (INIS)

    Tumulka, Roderich

    2005-01-01

    Both Bohmian mechanics, a version of quantum mechanics with trajectories, and Feynman's path integral formalism have something to do with particle paths in space and time. The question thus arises how the two ideas relate to each other. In short, the answer is, path integrals provide a re-formulation of Schroedinger's equation, which is half of the defining equations of Bohmian mechanics. I try to give a clear and concise description of the various aspects of the situation. (letters and comments)

  2. Early Cretaceous paleomagnetic results from Marie Byrd Land, West Antarctica: Implications for the Weddellia collage of crustal blocks

    Science.gov (United States)

    Divenere, Vic; Kent, Dennis V.; Dalziel, Ian W. D.

    1995-05-01

    A new approximately 117 Ma paleomagnetic pole has been defined from the study of volcanic and plutonic rocks from the eastern portion Marie Byrd Land (MBL). The new pole (185.6 deg E/56.8 deg S, A(sub 95) = 8.7 deg) implies that the eastern portion of MBL was an integral part of Weddellia, which included the ancestral Antarctic Peninsula, Thurston Island, and Ellsworth-Whitmore Mountains blocks of West Antarctica. This pole is generally similar to a approximately 125 Ma pole from Thurston Island. Both poles call for major clockwise rotation and poleward motion of eastern MBL and Thurston Island between the Early Cretaceous (125-117 Ma) and the mid-Cretaceous (110-100 Ma). We propose that in the Early Cretaceous, eastern MBL and the Eastern Province of New Zealand were part of a continuous active Pacific margin of Gondwana, connecting with the Antarctic Peninsula, and distinct from western MBL, the Western Province of New Zealand, and North Victoria Land. These western terranes are thought to have accreted to Gondwana in the Devonian. Eastern MBL and the Eastern Province of New Zealand amalgamated with western MBL and the Western Province of New Zealand by the mid-Cretaceous. Major Early Cretaceous motions of the Weddellia blocks postdate the estimated initiation of seafloor spreading in the Weddell Sea and therefore may be the result of plate reorganization during the Cretaceous Quiet Zone.

  3. Optimal path planning for single and multiple aircraft using a reduced order formulation

    Science.gov (United States)

    Twigg, Shannon S.

    High-flying unmanned reconnaissance and surveillance systems are now being used extensively in the United States military. Current development programs are producing demonstrations of next-generation unmanned flight systems that are designed to perform combat missions. Their use in first-strike combat operations will dictate operations in densely cluttered environments that include unknown obstacles and threats, and will require the use of terrain for masking. The demand for autonomy of operations in such environments dictates the need for advanced trajectory optimization capabilities. In addition, the ability to coordinate the movements of more than one aircraft in the same area is an emerging challenge. This thesis examines using an analytical reduced order formulation for trajectory generation for minimum time and terrain masking cases. First, pseudo-3D constant velocity equations of motion are used for path planning for a single vehicle. In addition, the inclusion of winds, moving targets and moving threats is considered. Then, this formulation is increased to using 3D equations of motion, both with a constant velocity and with a simplified varying velocity model. Next, the constant velocity equations of motion are expanded to include the simultaneous path planning of an unspecified number of vehicles, for both aircraft avoidance situations and formation flight cases.

  4. Multi-Dimensional Path Queries

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    1998-01-01

    to create nested path structures. We present an SQL-like query language that is based on path expressions and we show how to use it to express multi-dimensional path queries that are suited for advanced data analysis in decision support environments like data warehousing environments......We present the path-relationship model that supports multi-dimensional data modeling and querying. A path-relationship database is composed of sets of paths and sets of relationships. A path is a sequence of related elements (atoms, paths, and sets of paths). A relationship is a binary path...

  5. Polygonal-path approximations on the path spaces of quantum-mechanical systems: properties of the polygonal paths

    International Nuclear Information System (INIS)

    Exner, P.; Kolerov, G.I.

    1981-01-01

    Properties of the subset of polygonal paths in the Hilbert space H of paths referring to a d-dimensional quantum-mechanical system are examined. Using the reproduction kernel technique we prove that each element of H is approximated by polygonal paths uniformly with respect to the ''norm'' of time-interval partitions. This result will be applied in the second part of the present paper to prove consistency of the uniform polygonal-path extension of the Feynman maps [ru

  6. A Time-of-Flight System for Low Energy Charged Particles

    Science.gov (United States)

    Giordano, Micheal; Sadwick, Krystalyn; Fletcher, Kurt; Padalino, Stephen

    2013-10-01

    A time-of-flight system has been developed to measure the energy of charged particles in the keV range. Positively charged ions passing through very thin carbon films mounted on grids generate secondary electrons. These electrons are accelerated by a -2000 V grid bias towards a grounded channeltron electron multiplier (CEM) which amplifies the signal. Two CEM detector assemblies are mounted 23.1 cm apart along the path of the ions. An ion generates a start signal by passing through the first CEM and a stop signal by passing through the second. The start and stop signals generate a time-of-flight spectrum via conventional electronics. Higher energy alpha particles from radioactive sources have been used to test the system. This time-of-flight system will be deployed to measure the energies of 15 to 30 keV ions produced by a duoplasmatron ion source that is used to characterize ICF detectors.

  7. Exposure to the atmospheric ionizing radiation environment: a study on Italian civilian aviation flight personnel

    International Nuclear Information System (INIS)

    De Angelis, G.; Caldora, M.; Santaquilani, M.; Scipione, R.; Verdecchia, A.

    2003-01-01

    A study of the effects of high-LET, low-dose and low-dose-rate ionizing radiation and associated risk analysis is underway. This study involves analyzing the atmospheric ionizing radiation exposure (including high-energy neutrons) and associated effects for members of civilian aviation flight personnel, in an attempt to better understand low-dose long-term radiation effects on human subjects. The study population includes all Italian civilian airline flight personnel, both cockpit and cabin crew members, whose work history records and actual flights (route, aircraft type, and date for each individual flight for each person where possible) are available. The dose calculations are performed along specific flight legs, taking into account the actual flight profiles for all different routes and the variations with time of solar and geomagnetic parameters. Dose values for each flight are applied to the flight history of study participants in order to estimate the individual annual and lifetime occupational radiation dose. An update of the study of the physical atmospheric ionizing radiation exposure is given here, in terms of environmental modeling, flight routes, radiation dose evaluation along different flight paths, and exposure matrix construction. The exposure analysis is still in progress, and the first results are expected soon

  8. Homing pigeons externally exposed to Deepwater Horizon crude oil change flight performance and behavior.

    Science.gov (United States)

    Perez, Cristina R; Moye, John K; Cacela, Dave; Dean, Karen M; Pritsos, Chris A

    2017-11-01

    The Deepwater Horizon oil spill was the largest in U.S. history, contaminating thousands of miles of coastal habitat and affecting the lives of many avian species. The Gulf of Mexico is a critical bird migration route area and migrants that were oiled but did not suffer mortality as a direct result of the spill faced unpredictable fates. This study utilized homing pigeons as a surrogate species for migratory birds to investigate the effects a single low level external oiling event has on the flight performance and behavior of birds flying repeated 161 km flights. Data from GPS data loggers showed that lightly oiled pigeons changed their flight paths, increased their flight durations by 2.6 fold, increased their flight distances by 28 km and subsequently decreased their route efficiencies. Oiled birds also exhibited reduced rate of weight gain between flights. Our data suggest that contaminated birds surviving the oil spill may have experienced flight impairment and reduced refueling abilities, likely reducing overall migration speed. Our findings contribute new information on how oil spills affect avian species, as the effects of oil on the flight behavior of long distance free-flying birds have not been previously described. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Pulled Motzkin paths

    International Nuclear Information System (INIS)

    Janse van Rensburg, E J

    2010-01-01

    In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.

  10. Pulled Motzkin paths

    Energy Technology Data Exchange (ETDEWEB)

    Janse van Rensburg, E J, E-mail: rensburg@yorku.c [Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3 (Canada)

    2010-08-20

    In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) {yields} f as f {yields} {infinity}, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) {yields} 2f as f {yields} {infinity}, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.

  11. Pulled Motzkin paths

    Science.gov (United States)

    Janse van Rensburg, E. J.

    2010-08-01

    In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.

  12. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Kuo-Lung Huang

    2015-07-01

    Full Text Available The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft’s nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft’s nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

  13. Interior near-field acoustical holography in flight.

    Science.gov (United States)

    Williams, E G; Houston, B H; Herdic, P C; Raveendra, S T; Gardner, B

    2000-10-01

    In this paper boundary element methods (BEM) are mated with near-field acoustical holography (NAH) in order to determine the normal velocity over a large area of a fuselage of a turboprop airplane from a measurement of the pressure (hologram) on a concentric surface in the interior of the aircraft. This work represents the first time NAH has been applied in situ, in-flight. The normal fuselage velocity was successfully reconstructed at the blade passage frequency (BPF) of the propeller and its first two harmonics. This reconstructed velocity reveals structure-borne and airborne sound-transmission paths from the engine to the interior space.

  14. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    Science.gov (United States)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  15. Optimal path planning for a mobile robot using cuckoo search algorithm

    Science.gov (United States)

    Mohanty, Prases K.; Parhi, Dayal R.

    2016-03-01

    The shortest/optimal path planning is essential for efficient operation of autonomous vehicles. In this article, a new nature-inspired meta-heuristic algorithm has been applied for mobile robot path planning in an unknown or partially known environment populated by a variety of static obstacles. This meta-heuristic algorithm is based on the levy flight behaviour and brood parasitic behaviour of cuckoos. A new objective function has been formulated between the robots and the target and obstacles, which satisfied the conditions of obstacle avoidance and target-seeking behaviour of robots present in the terrain. Depending upon the objective function value of each nest (cuckoo) in the swarm, the robot avoids obstacles and proceeds towards the target. The smooth optimal trajectory is framed with this algorithm when the robot reaches its goal. Some simulation and experimental results are presented at the end of the paper to show the effectiveness of the proposed navigational controller.

  16. Fast neutron measurements at the nELBE time-of-flight facility

    Directory of Open Access Journals (Sweden)

    Junghansa A. R.

    2015-01-01

    Full Text Available The compact neutron-time-of-flight facility nELBE at the superconducting electron accelerator ELBE of Helmholtz-Zentrum Dresden-Rossendorf has been rebuilt. A new enlarged experimental hall with a flight path of up to 10 m is available for neutron time-of-flight experiments in the fast energy range from about 50 keV to 10 MeV. nELBE is intended to deliver nuclear data of fast neutron nuclear interactions e.g. for the transmutation of nuclear waste and improvement of neutron physical simulations of innovative nuclear systems. The experimental programme consists of transmission measurements of neutron total cross sections, elastic and inelastic scattering cross section measurements, and neutron induced fission cross sections. The inelastic scattering to the first few excited states in 56Fe was investigated by measuring the gamma production cross section with an HPGe detector. The neutron induced fission of 242Pu was studied using fast ionisation chambers with large homogeneous actinide deposits.

  17. Path Expressions

    Science.gov (United States)

    1975-06-01

    Traditionally, synchronization of concurrent processes is coded in line by operations on semaphores or similar objects. Path expressions move the...discussion about a variety of synchronization primitives . An analysis of their relative power is found in [3]. Path expressions do not introduce yet...another synchronization primitive . A path expression relates to such primitives as a for- or while-statement of an ALGOL-like language relates to a JUMP

  18. Total aircraft flight-control system - Balanced open- and closed-loop control with dynamic trim maps

    Science.gov (United States)

    Smith, G. A.; Meyer, G.

    1979-01-01

    The availability of the airborne digital computer has made possible a Total Aircraft Flight Control System (TAFCOS) that uses virtually the complete nonlinear propulsive and aerodynamic data for the aircraft to construct dynamic trim maps that represent an inversion of the aircraft model. The trim maps, in series with the aircraft, provide essentially a linear feed-forward path. Basically, open-loop trajectory control is employed with only a small perturbation feedback signal required to compensate for inaccuracy in the aircraft model and for external disturbances. Simulation results for application to an automatic carrier-landing system are presented. Flight-test results for a STOL aircraft operating automatically over a major portion of its flight regime are presented. The concept promises a more rapid and straightforward design from aerodynamic principles, particularly for highly nonlinear configurations, and requires substantially less digital computer capacity than conventional automatic flight-control system designs.

  19. Computer vision techniques for rotorcraft low altitude flight

    Science.gov (United States)

    Sridhar, Banavar

    1990-01-01

    Rotorcraft operating in high-threat environments fly close to the earth's surface to utilize surrounding terrain, vegetation, or manmade objects to minimize the risk of being detected by an enemy. Increasing levels of concealment are achieved by adopting different tactics during low-altitude flight. Rotorcraft employ three tactics during low-altitude flight: low-level, contour, and nap-of-the-earth (NOE). The key feature distinguishing the NOE mode from the other two modes is that the whole rotorcraft, including the main rotor, is below tree-top whenever possible. This leads to the use of lateral maneuvers for avoiding obstacles, which in fact constitutes the means for concealment. The piloting of the rotorcraft is at best a very demanding task and the pilot will need help from onboard automation tools in order to devote more time to mission-related activities. The development of an automation tool which has the potential to detect obstacles in the rotorcraft flight path, warn the crew, and interact with the guidance system to avoid detected obstacles, presents challenging problems. Research is described which applies techniques from computer vision to automation of rotorcraft navigtion. The effort emphasizes the development of a methodology for detecting the ranges to obstacles in the region of interest based on the maximum utilization of passive sensors. The range map derived from the obstacle-detection approach can be used as obstacle data for the obstacle avoidance in an automatic guidance system and as advisory display to the pilot. The lack of suitable flight imagery data presents a problem in the verification of concepts for obstacle detection. This problem is being addressed by the development of an adequate flight database and by preprocessing of currently available flight imagery. The presentation concludes with some comments on future work and how research in this area relates to the guidance of other autonomous vehicles.

  20. Zero-Slack, Noncritical Paths

    Science.gov (United States)

    Simons, Jacob V., Jr.

    2017-01-01

    The critical path method/program evaluation and review technique method of project scheduling is based on the importance of managing a project's critical path(s). Although a critical path is the longest path through a network, its location in large projects is facilitated by the computation of activity slack. However, logical fallacies in…

  1. Multiple-ion-beam time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Rohrbacher, Andreas; Continetti, Robert E.

    2001-01-01

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti + and Cr + ) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix

  2. Path Creation, Path Dependence and Breaking Away from the Path: Re-Examining the Case of Nokia

    OpenAIRE

    Wang, Jens; Hedman, Jonas; Tuunainen, Virpi Kristiina

    2016-01-01

    The explanation of how and why firms succeed or fail is a recurrent research challenge. This is particularly important in the context of technological innovations. We focus on the role of historical events and decisions in explaining such success and failure. Using a case study of Nokia, we develop and extend a multi-layer path dependence framework. We identify four layers of path dependence: technical, strategic and leadership, organizational, and external collaboration. We show how path dep...

  3. Path-dependent functions

    International Nuclear Information System (INIS)

    Khrapko, R.I.

    1985-01-01

    A uniform description of various path-dependent functions is presented with the help of expansion of the type of the Taylor series. So called ''path-integrals'' and ''path-tensor'' are introduced which are systems of many-component quantities whose values are defined for arbitrary paths in coordinated region of space in such a way that they contain a complete information on the path. These constructions are considered as elementary path-dependent functions and are used instead of power monomials in the usual Taylor series. Coefficients of such an expansion are interpreted as partial derivatives dependent on the order of the differentiations or else as nonstandard cavariant derivatives called two-point derivatives. Some examples of pathdependent functions are presented.Space curvature tensor is considered whose geometrica properties are determined by the (non-transitive) translator of parallel transport of a general type. Covariant operation leading to the ''extension'' of tensor fiels is pointed out

  4. My IGY in Antarctica

    Science.gov (United States)

    Bentley, Charles

    2012-01-01

    Dr Charles Bentley is the A.P. Crary Professor Emeritus of Geophysics, Department of Geology and Geophysics, University of Wisconsin-Madison. Dr. Bentley joined the Arctic Institute of North America in 1956 to participate in International Geophysical Year (IGY)-related activities in the Antarctic. He wintered over consecutively in 1957 and 1958 at Byrd Station, a station in the interior of West Antarctica that housed 24 men each winter - 12 Navy support people and 12 civilian scientists/technicians. During the austral summers, he also participated in over-snow traverses, first as co-leader, then leader (the other coleader went home after the first year). These traverses consisted of six men and three vehicles, and lasted several months. These traverses covered more than 1609 kilometers (1000 miles) of largely unmapped and unphotographed terrain. During these traverses, connections to Byrd Station were by radio (daily, when the transmission conditions were good enough) and roughly every 2 weeks by resupply flight.

  5. Design, analysis and control of large transports so that control of engine thrust can be used as a back-up of the primary flight controls. Ph.D. Thesis

    Science.gov (United States)

    Roskam, Jan; Ackers, Deane E.; Gerren, Donna S.

    1995-01-01

    A propulsion controlled aircraft (PCA) system has been developed at NASA Dryden Flight Research Center at Edwards Air Force Base, California, to provide safe, emergency landing capability should the primary flight control system of the aircraft fail. As a result of the successful PCA work being done at NASA Dryden, this project investigated the possibility of incorporating the PCA system as a backup flight control system in the design of a large, ultra-high capacity megatransport in such a way that flight path control using only the engines is not only possible, but meets MIL-Spec Level 1 or Level 2 handling quality requirements. An 800 passenger megatransport aircraft was designed and programmed into the NASA Dryden simulator. Many different analysis methods were used to evaluate the flying qualities of the megatransport while using engine thrust for flight path control, including: (1) Bode and root locus plot analysis to evaluate the frequency and damping ratio response of the megatransport; (2) analysis of actual simulator strip chart recordings to evaluate the time history response of the megatransport; and (3) analysis of Cooper-Harper pilot ratings by two NaSA test pilots.

  6. MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways

    Science.gov (United States)

    Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George

    2016-01-01

    Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the

  7. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    Science.gov (United States)

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  8. Time-of-flight position-sensitive x-ray detection

    International Nuclear Information System (INIS)

    Mowat, J.W.

    1981-01-01

    A new method for recording beam-foil time-of-flight data is described. A stationary, side-window, position-senstive proportional counter, oriented with anode wire parallel to the ion beam, views the decay in flight of excited ions through a Soller slit x-ray collimator. In contrast to the standard method, the exciter foil, placed within or upstream from the field of view, is not moved during the acquisition of a decay curve. Each point on the anode acts like an independent detector seeing a unique segment of the ion beam. The correspondence between the downstream distance at which an ion decays and the position along the anode at which the x-ray is detected makes a pulse-height spectrum of position pulses equivalent to a time-of-flight decay curve. Thus an entire decay curve can now be acquired without moving the foil. Increased efficiency is the most significant improvement over the standard method in which the radiation detector views only a small segment of the flight path at any one time. Experiments using translating foils are subject to a spurious dependence of x-ray intensity on foil position if the foil is non-uniform (or non-uniformly aged) and wobbles as it moves. This effect is eliminated here. Foil aging effects which influence excitation rates and introduce a slowly varying time dependence of the x-ray intensity are automatically normalized by this multichannel technique. The application of this method to metastable x-ray emitting states of low-Z ions are discussed

  9. Multi-AGV path planning with double-path constraints by using an improved genetic algorithm.

    Directory of Open Access Journals (Sweden)

    Zengliang Han

    Full Text Available This paper investigates an improved genetic algorithm on multiple automated guided vehicle (multi-AGV path planning. The innovations embody in two aspects. First, three-exchange crossover heuristic operators are used to produce more optimal offsprings for getting more information than with the traditional two-exchange crossover heuristic operators in the improved genetic algorithm. Second, double-path constraints of both minimizing the total path distance of all AGVs and minimizing single path distances of each AGV are exerted, gaining the optimal shortest total path distance. The simulation results show that the total path distance of all AGVs and the longest single AGV path distance are shortened by using the improved genetic algorithm.

  10. Integral transforms of the quantum mechanical path integral: Hit function and path-averaged potential

    Science.gov (United States)

    Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel

    2018-04-01

    We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).

  11. Upper-stratospheric glider flights for low-g experimentation

    Science.gov (United States)

    Loesch, Adam

    Near Space Corporation's fully-operational High Altitude Shuttle System (HASS) consists of a glider carried to 100,000ft by a high altitude balloon. Originally intended to safely return sensitive instrumentation from altitude back to Earth, the glider provides the opportunity to fly ultra-smooth "parabolas" for low-g experimentation. This work models the dynamic behavior of the glider using aerodynamic parameters of a scaled F-4 Phantom to determine the optimal flight path during descent. Low-g parabola and pull-up pairs are flown until the altitude drops below 18km, approaching the maximum altitude of controlled airspace. With this model, it was found that eleven low-g parabolas can be flown to yield 137 seconds of total test time at an average RMS g-loading of 4.9x10 -2. By changing the weighting factor of the merit function, a tradeoff can be made to increase total test time at the expense of increasing g-loading, or vice-versa. A preliminary design exercise for an improved glider is conducted based on lessons learned from the scaled F-4 flight results.

  12. Full-scale flight tests of aircraft morphing structures using SMA actuators

    Science.gov (United States)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.

    2007-04-01

    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration

  13. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  14. A passion for space adventures of a pioneering female NASA flight controller

    CERN Document Server

    Dyson, Marianne J

    2016-01-01

    Marianne J. Dyson recounts for us a time when women were making the first inroads into space flight control, a previously male-dominated profession. The story begins with the inspiration of the Apollo 11 landing on the Moon and follows the challenges of pursuing a science career as a woman in the 70s and 80s, when it was far from an easy path.  Dyson relates the first five space shuttle flights from the personal perspective of mission planning and operations in Houston at the Johnson Space Center, based almost exclusively on original sources such as journals and NASA weekly activity reports. The book’s historical details about astronaut and flight controller training exemplify both the humorous and serious aspects of space operations up through the Challenger disaster, including the almost unknown fire in Mission Control during STS-5 that nearly caused an emergency entry of the shuttle.  From an insider with a unique perspective and credentials to match, this a must-read for anyone interested in the worki...

  15. Path-based Queries on Trajectory Data

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Pelekis, Nikos; Theodoridis, Yannis

    2014-01-01

    In traffic research, management, and planning a number of path-based analyses are heavily used, e.g., for computing turn-times, evaluating green waves, or studying traffic flow. These analyses require retrieving the trajectories that follow the full path being analyzed. Existing path queries cannot...... sufficiently support such path-based analyses because they retrieve all trajectories that touch any edge in the path. In this paper, we define and formalize the strict path query. This is a novel query type tailored to support path-based analysis, where trajectories must follow all edges in the path...... a specific path by only retrieving data from the first and last edge in the path. To correctly answer strict path queries existing network-constrained trajectory indexes must retrieve data from all edges in the path. An extensive performance study of NETTRA using a very large real-world trajectory data set...

  16. Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2017-09-01

    Full Text Available Current research on Unmanned Aerial Vehicles (UAVs shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically.

  17. Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor.

    Science.gov (United States)

    Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas

    2017-09-28

    Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically.

  18. Equipment for testing the indications accuracy of speedometers and altimeters existing on board aircraft and the tightness of the related pneumatic paths

    Directory of Open Access Journals (Sweden)

    Constantin PETRE

    2011-03-01

    Full Text Available The equipment is intended to testing the tightness of the catchment pneumatic system (Pitot tube, the transmission (pneumatic paths and the total and static air pressures processing (aircrafttype instruments in order to establish the main flight parameters and checking the correctness of the operation of related aircraft instruments: the altimeter and the speedometer.

  19. Path integration quantization

    International Nuclear Information System (INIS)

    DeWitt-Morette, C.

    1983-01-01

    Much is expected of path integration as a quantization procedure. Much more is possible if one recognizes that path integration is at the crossroad of stochastic and differential calculus and uses the full power of both stochastic and differential calculus in setting up and computing path integrals. In contrast to differential calculus, stochastic calculus has only comparatively recently become an instrument of thought. It has nevertheless already been used in a variety of challenging problems, for instance in the quantization problem. The author presents some applications of the stochastic scheme. (Auth.)

  20. Flight simulation using a Brain-Computer Interface: A pilot, pilot study.

    Science.gov (United States)

    Kryger, Michael; Wester, Brock; Pohlmeyer, Eric A; Rich, Matthew; John, Brendan; Beaty, James; McLoughlin, Michael; Boninger, Michael; Tyler-Kabara, Elizabeth C

    2017-01-01

    As Brain-Computer Interface (BCI) systems advance for uses such as robotic arm control it is postulated that the control paradigms could apply to other scenarios, such as control of video games, wheelchair movement or even flight. The purpose of this pilot study was to determine whether our BCI system, which involves decoding the signals of two 96-microelectrode arrays implanted into the motor cortex of a subject, could also be used to control an aircraft in a flight simulator environment. The study involved six sessions in which various parameters were modified in order to achieve the best flight control, including plane type, view, control paradigm, gains, and limits. Successful flight was determined qualitatively by evaluating the subject's ability to perform requested maneuvers, maintain flight paths, and avoid control losses such as dives, spins and crashes. By the end of the study, it was found that the subject could successfully control an aircraft. The subject could use both the jet and propeller plane with different views, adopting an intuitive control paradigm. From the subject's perspective, this was one of the most exciting and entertaining experiments she had performed in two years of research. In conclusion, this study provides a proof-of-concept that traditional motor cortex signals combined with a decoding paradigm can be used to control systems besides a robotic arm for which the decoder was developed. Aside from possible functional benefits, it also shows the potential for a new recreational activity for individuals with disabilities who are able to master BCI control. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Energy measurement using a resonator based time-of-flight system

    International Nuclear Information System (INIS)

    Pardo, R.C.; Clifft, B.; Johnson, K.W.; Lewis, R.N.

    1983-01-01

    A resonant pick-up time-of-flight system has been developed for the precise measurement of beam energy at the Argonne Tandem-Linac Accelerator System (ATLAS). The excellent timing characteristics available with ATLAS beams make it desirable to design the beam transport system to be isochronous. The advantages of the resonant time-of-flight system over other energy analysis systems such as the dispersive magnet system are numerous. The system is non-interceptive and non-destructive and preserves the beam phase space. It is non-dispersive. Path length variations are not introduced into the beam which would reduce the timing resolution. It has a large signal-to-noise ratio when compared to non-resonant beam pick-up techniques. It provides the means to precisely set the linac energy and potentially to control the energy in a feedback loop. Finally, the resonant pick-up time-of-flight system is less expensive than an equivalent magnetic system. It consists of two beam-excited resonators, associated electronics to decode the information, a computer interface to the linac PDP 11/34 control computer, and software to analyze the information and deduce the measured beam energy. This report describes the system and its components and gives a schematic overview

  2. A new approach for accurate mass assignment on a multi-turn time-of-flight mass spectrometer.

    Science.gov (United States)

    Hondo, Toshinobu; Jensen, Kirk R; Aoki, Jun; Toyoda, Michisato

    2017-12-01

    A simple, effective accurate mass assignment procedure for a time-of-flight mass spectrometer is desirable. External mass calibration using a mass calibration standard together with an internal mass reference (lock mass) is a common technique for mass assignment, however, using polynomial fitting can result in mass-dependent errors. By using the multi-turn time-of-flight mass spectrometer infiTOF-UHV, we were able to obtain multiple time-of-flight data from an ion monitored under several different numbers of laps that was then used to calculate a mass calibration equation. We have developed a data acquisition system that simultaneously monitors spectra at several different lap conditions with on-the-fly centroid determination and scan law estimation, which is a function of acceleration voltage, flight path, and instrumental time delay. Less than 0.9 mDa mass errors were observed for assigned mass to charge ratios ( m/z) ranging between 4 and 134 using only 40 Ar + as a reference. It was also observed that estimating the scan law on-the-fly provides excellent mass drift compensation.

  3. Reparametrization in the path integral

    International Nuclear Information System (INIS)

    Storchak, S.N.

    1983-01-01

    The question of the invariance of a measure in the n-dimensional path integral under the path reparametrization is considered. The non-invariance of the measure through the jacobian is suggeste. After the path integral reparametrization the representatioq for the Green's function of the Hamilton operator in terms of the path integral with the classical Hamiltonian has been obtained

  4. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  5. Energy measurement using a resonator-based time-of-flight system

    International Nuclear Information System (INIS)

    Pardo, R.C.; Lewis, R.N.; Johnson, K.W.; Clifft, B.

    1983-01-01

    The resonant time-of-flight system which has been developed has several advantages over other potential approaches. The system is non-interceptive and nondestructive. The beam phase space is preserved. It is non-dispersive. Path length variations are not introduced into the beam transport which would reduce the timing resolution. It has a large signal-to-noise ratio when compared to non-resonant beam pick-up techniques. It provides the means to precisely set the linac energy and, potentially, to control the energy in a feedback loop is desired. It is less expensive than an equivalent magnetic system

  6. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  7. An improved artificial bee colony algorithm based on balance-evolution strategy for unmanned combat aerial vehicle path planning.

    Science.gov (United States)

    Li, Bai; Gong, Li-gang; Yang, Wen-lun

    2014-01-01

    Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.

  8. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  9. PROCEDURE ENABLING SIMULATION AND IN-DEPTH ANALYSIS OF OPTICAL EFFECTS IN CAMERA-BASED TIME-OF-FLIGHT SENSORS

    Directory of Open Access Journals (Sweden)

    M. Baumgart

    2018-05-01

    Full Text Available This paper presents a simulation approach for Time-of-Flight cameras to estimate sensor performance and accuracy, as well as to help understanding experimentally discovered effects. The main scope is the detailed simulation of the optical signals. We use a raytracing-based approach and use the optical path length as the master parameter for depth calculations. The procedure is described in detail with references to our implementation in Zemax OpticStudio and Python. Our simulation approach supports multiple and extended light sources and allows accounting for all effects within the geometrical optics model. Especially multi-object reflection/scattering ray-paths, translucent objects, and aberration effects (e.g. distortion caused by the ToF lens are supported. The optical path length approach also enables the implementation of different ToF senor types and transient imaging evaluations. The main features are demonstrated on a simple 3D test scene.

  10. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    Science.gov (United States)

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  11. Iterated Leavitt Path Algebras

    International Nuclear Information System (INIS)

    Hazrat, R.

    2009-11-01

    Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)

  12. Path Dependence

    DEFF Research Database (Denmark)

    Madsen, Mogens Ove

    Begrebet Path Dependence blev oprindelig udviklet inden for New Institutionel Economics af bl.a. David, Arthur og North. Begrebet har spredt sig vidt i samfundsvidenskaberne og undergået en udvikling. Dette paper propagerer for at der er sket så en så omfattende udvikling af begrebet, at man nu kan...... tale om 1. og 2. generation af Path Dependence begrebet. Den nyeste udvikling af begrebet har relevans for metodologi-diskusionerne i relation til Keynes...

  13. Characteristics of the early flight phase in the Olympic ski jumping competition.

    Science.gov (United States)

    Virmavirta, Mikko; Isolehto, Juha; Komi, Paavo; Brüggemann, Gert-Peter; Müller, Erich; Schwameder, Hermann

    2005-11-01

    Early flight phase (approximately 40 m) of the athletes participating in the final round of the individual large hill ski jumping competition in Salt Lake City Olympics was filmed with two high-speed pan & tilt video cameras. The results showed that jumpers' steady flight position was almost completed within 0.5s. The most significant correlation with the length of the jump was found in the angle between the skis and body (r=.714, p.001 at 1.1s after the take-off). This particular phase seemed to be important because the ski angle of attack was also related to the jumping distance at the same phase. Although the more upright ski position relative to flight path resulted in longer jumping distance, the winner of the competition had significantly lower ski position as compared to the other good jumpers. This may be due to the high altitude (>2000 m) of the ski jumping stadium in this competition. Because of the low air density, the aerodynamic forces were also low and this probably caused less skillful jumpers to lean too much forward at this phase. Maintenance of speed seemed to be emphasized in this particular competition.

  14. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    Science.gov (United States)

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  15. Shortest Paths and Vehicle Routing

    DEFF Research Database (Denmark)

    Petersen, Bjørn

    This thesis presents how to parallelize a shortest path labeling algorithm. It is shown how to handle Chvátal-Gomory rank-1 cuts in a column generation context. A Branch-and-Cut algorithm is given for the Elementary Shortest Paths Problem with Capacity Constraint. A reformulation of the Vehicle...... Routing Problem based on partial paths is presented. Finally, a practical application of finding shortest paths in the telecommunication industry is shown....

  16. [Dual insertion paths design characteristics and short-term clinical observation of rotational path removable partial dentures].

    Science.gov (United States)

    Li, Jian; Jiang, Ting; Li, Sai; Chen, Wei

    2013-02-18

    To investigate design methods of dual insertion paths and observe a short-term clinic overview of rotational path removable partial dentures (RPDs). In the study, 40 patients with partial edentulous arches were included and divided into two groups. The patients in group one were restored with rotational path RPDs (10 Kennedy class III and 10 Kennedy class IV respectively). The patients in group two (20 patients), whose edentulous area was matched with the patients' in group one, were restored with the linear path RPDs. After surveying and simulative preparation on diagnostic casts, the basic laws of designing rotational path RPDs were summarized. The oral preparation was accurately performed under the guidance of indices made on diagnostic casts after simulative preparation. The 40 dentures were recalled two weeks and one year after the insertion. The evaluations of the clinic outcome, including retention, stability, mastication function, esthetics and wearing convenience, were marked out as good, acceptable, and poor. The comparison of the evaluation results was performed between the two groups. In the rotational path design for Kennedy class III or IV RPDs, the angles (α) of dual insertion paths should be designed within a scope, approximate 10°-15°.When the angle (α) became larger, the denture retention turned to be better, but accordingly the posterior abutments needed more preparation. In the clinical application, the first insertions of the 40 dentures were all favorably accomplished. When the rotational path RPDs were compared to linear path RPDs, the time consuming on first insertion had no statistical difference[(32±8) min and (33±8) min respectively, P>0.05]. Recalled two weeks and one year after the insertion, in the esthetics evaluation, 20 rotational path RPDs were all evaluated as "A", but only 7(two weeks after) and 6 (one year after) linear path RPDs were evaluated as "A"(P<0.05). There was no significant difference in other evaluation results

  17. Path planning in changeable environments

    NARCIS (Netherlands)

    Nieuwenhuisen, D.

    2007-01-01

    This thesis addresses path planning in changeable environments. In contrast to traditional path planning that deals with static environments, in changeable environments objects are allowed to change their configurations over time. In many cases, path planning algorithms must facilitate quick

  18. Investigation of time-of-flight lifetime measurement methods of charged π mesons at the Phasotron of JINR

    International Nuclear Information System (INIS)

    Evtukhovich, P.G.; Kallies, W.; Kononenko, G.A.; Samojlov, V.N.; Sapogov, A.S.

    2003-01-01

    The methods of time-of-flight lifetime measurement of charged π mesons that have been realized at the Phasotron of the Laboratory of Nuclear Problems (LNP) of JINR are described. The distinguishing feature of the given methods consists in the use of the following technique: 1) time-of-flight investigation of particle beam composition for relatively long flight path (base); 2) an optimal choice (for the given base) of beam geometry under investigation; 3) monitoring of π-meson momentum along the whole explored trajectory; 4) the use of high resolution scintillation detectors. This technique together with correct mathematical calculations provided a possibility of controlling the influence of main systematic factors on the precision of the data obtained. These methods allow one to compute an amount of sampling that requisites a given precision based on preliminary evaluations of random and systematic errors of charged π-mesons measured lifetime

  19. Application of lidar techniques to time-of-flight range imaging.

    Science.gov (United States)

    Whyte, Refael; Streeter, Lee; Cree, Michael J; Dorrington, Adrian A

    2015-11-20

    Amplitude-modulated continuous wave (AMCW) time-of-flight (ToF) range imaging cameras measure distance by illuminating the scene with amplitude-modulated light and measuring the phase difference between the transmitted and reflected modulation envelope. This method of optical range measurement suffers from errors caused by multiple propagation paths, motion, phase wrapping, and nonideal amplitude modulation. In this paper a ToF camera is modified to operate in modes analogous to continuous wave (CW) and stepped frequency continuous wave (SFCW) lidar. In CW operation the velocity of objects can be measured. CW measurement of velocity was linear with true velocity (R2=0.9969). Qualitative analysis of a complex scene confirms that range measured by SFCW is resilient to errors caused by multiple propagation paths, phase wrapping, and nonideal amplitude modulation which plague AMCW operation. In viewing a complicated scene through a translucent sheet, quantitative comparison of AMCW with SFCW demonstrated a reduction in the median error from -1.3  m to -0.06  m with interquartile range of error reduced from 4.0 m to 0.18 m.

  20. Comparison of classical reaction paths and tunneling paths studied with the semiclassical instanton theory.

    Science.gov (United States)

    Meisner, Jan; Markmeyer, Max N; Bohner, Matthias U; Kästner, Johannes

    2017-08-30

    Atom tunneling in the hydrogen atom transfer reaction of the 2,4,6-tri-tert-butylphenyl radical to 3,5-di-tert-butylneophyl, which has a short but strongly curved reaction path, was investigated using instanton theory. We found the tunneling path to deviate qualitatively from the classical intrinsic reaction coordinate, the steepest-descent path in mass-weighted Cartesian coordinates. To perform that comparison, we implemented a new variant of the predictor-corrector algorithm for the calculation of the intrinsic reaction coordinate. We used the reaction force analysis method as a means to decompose the reaction barrier into structural and electronic components. Due to the narrow energy barrier, atom tunneling is important in the abovementioned reaction, even above room temperature. Our calculated rate constants between 350 K and 100 K agree well with experimental values. We found a H/D kinetic isotope effect of almost 10 6 at 100 K. Tunneling dominates the protium transfer below 400 K and the deuterium transfer below 300 K. We compared the lengths of the tunneling path and the classical path for the hydrogen atom transfer in the reaction HCl + Cl and quantified the corner cutting in this reaction. At low temperature, the tunneling path is about 40% shorter than the classical path.

  1. DiversePathsJ: diverse shortest paths for bioimage analysis.

    Science.gov (United States)

    Uhlmann, Virginie; Haubold, Carsten; Hamprecht, Fred A; Unser, Michael

    2018-02-01

    We introduce a formulation for the general task of finding diverse shortest paths between two end-points. Our approach is not linked to a specific biological problem and can be applied to a large variety of images thanks to its generic implementation as a user-friendly ImageJ/Fiji plugin. It relies on the introduction of additional layers in a Viterbi path graph, which requires slight modifications to the standard Viterbi algorithm rules. This layered graph construction allows for the specification of various constraints imposing diversity between solutions. The software allows obtaining a collection of diverse shortest paths under some user-defined constraints through a convenient and user-friendly interface. It can be used alone or be integrated into larger image analysis pipelines. http://bigwww.epfl.ch/algorithms/diversepathsj. michael.unser@epfl.ch or fred.hamprecht@iwr.uni-heidelberg.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  2. HAI: A novel airborne multi-channel hygrometer for fast multi-phase H2O quantification: Performance of the HAI instrument during the first flights on the German HALO aircraft

    Science.gov (United States)

    Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.

    2014-12-01

    Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.

  3. Path integrals on curved manifolds

    International Nuclear Information System (INIS)

    Grosche, C.; Steiner, F.

    1987-01-01

    A general framework for treating path integrals on curved manifolds is presented. We also show how to perform general coordinate and space-time transformations in path integrals. The main result is that one has to subtract a quantum correction ΔV ∝ ℎ 2 from the classical Lagrangian L, i.e. the correct effective Lagrangian to be used in the path integral is L eff = L-ΔV. A general prescription for calculating the quantum correction ΔV is given. It is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined by the midpoint prescription. The general framework is illustrated by several examples: The d-dimensional rotator, i.e. the motion on the sphere S d-1 , the path integral in d-dimensional polar coordinates, the exact treatment of the hydrogen atom in R 2 and R 3 by performing a Kustaanheimo-Stiefel transformation, the Langer transformation and the path integral for the Morse potential. (orig.)

  4. An Improved Artificial Bee Colony Algorithm Based on Balance-Evolution Strategy for Unmanned Combat Aerial Vehicle Path Planning

    Directory of Open Access Journals (Sweden)

    Bai Li

    2014-01-01

    Full Text Available Unmanned combat aerial vehicles (UCAVs have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC algorithm improved by a balance-evolution strategy (BES is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.

  5. Welding Robot Collision-Free Path Optimization

    Directory of Open Access Journals (Sweden)

    Xuewu Wang

    2017-02-01

    Full Text Available Reasonable welding path has a significant impact on welding efficiency, and a collision-free path should be considered first in the process of welding robot path planning. The shortest path length is considered as an optimization objective, and obstacle avoidance is considered as the constraint condition in this paper. First, a grid method is used as a modeling method after the optimization objective is analyzed. For local collision-free path planning, an ant colony algorithm is selected as the search strategy. Then, to overcome the shortcomings of the ant colony algorithm, a secondary optimization is presented to improve the optimization performance. Finally, the particle swarm optimization algorithm is used to realize global path planning. Simulation results show that the desired welding path can be obtained based on the optimization strategy.

  6. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: algorithm development and flight test results

    Energy Technology Data Exchange (ETDEWEB)

    Knox, C.E.; Vicroy, D.D.; Simmon, D.A.

    1985-05-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  7. Hamiltonian path integrals

    International Nuclear Information System (INIS)

    Prokhorov, L.V.

    1982-01-01

    The properties of path integrals associated with the allowance for nonstandard terms reflecting the operator nature of the canonical variables are considered. Rules for treating such terms (''equivalence rules'') are formulated. Problems with a boundary, the behavior of path integrals under canonical transformations, and the problem of quantization of dynamical systems with constraints are considered in the framework of the method

  8. Spreading paths in partially observed social networks

    Science.gov (United States)

    Onnela, Jukka-Pekka; Christakis, Nicholas A.

    2012-03-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.

  9. Spreading paths in partially observed social networks.

    Science.gov (United States)

    Onnela, Jukka-Pekka; Christakis, Nicholas A

    2012-03-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.

  10. Symbolic PathFinder v7

    DEFF Research Database (Denmark)

    Luckow, Kasper Søe; Păsăreanu, Corina

    2014-01-01

    We describe Symbolic PathFinder v7 in terms of its updated design addressing the changes of Java PathFinder v7 and of its new optimization when computing path conditions. Furthermore, we describe the Symbolic Execution Tree Extension; a newly added feature that allows for outputting the symbolic...... execution tree that characterizes the execution paths covered during symbolic execution. The new extension can be tailored to the needs of subsequent analyses/processing facilities, and we demonstrate this by presenting SPF-Visualizer, which is a tool for customizable visualization of the symbolic execution...

  11. The ontogeny of bumblebee flight trajectories: from naïve explorers to experienced foragers.

    Directory of Open Access Journals (Sweden)

    Juliet L Osborne

    Full Text Available Understanding strategies used by animals to explore their landscape is essential to predict how they exploit patchy resources, and consequently how they are likely to respond to changes in resource distribution. Social bees provide a good model for this and, whilst there are published descriptions of their behaviour on initial learning flights close to the colony, it is still unclear how bees find floral resources over hundreds of metres and how these flights become directed foraging trips. We investigated the spatial ecology of exploration by radar tracking bumblebees, and comparing the flight trajectories of bees with differing experience. The bees left the colony within a day or two of eclosion and flew in complex loops of ever-increasing size around the colony, exhibiting Lévy-flight characteristics constituting an optimal searching strategy. This mathematical pattern can be used to predict how animals exploring individually might exploit a patchy landscape. The bees' groundspeed, maximum displacement from the nest and total distance travelled on a trip increased significantly with experience. More experienced bees flew direct paths, predominantly flying upwind on their outward trips although forage was available in all directions. The flights differed from those of naïve honeybees: they occurred at an earlier age, showed more complex looping, and resulted in earlier returns of pollen to the colony. In summary bumblebees learn to find home and food rapidly, though phases of orientation, learning and searching were not easily separable, suggesting some multi-tasking.

  12. MEASURING PATH DEPENDENCY

    Directory of Open Access Journals (Sweden)

    Peter Juhasz

    2017-03-01

    Full Text Available While risk management gained popularity during the last decades even some of the basic risk types are still far out of focus. One of these is path dependency that refers to the uncertainty of how we reach a certain level of total performance over time. While decision makers are careful in accessing how their position will look like the end of certain periods, little attention is given how they will get there through the period. The uncertainty of how a process will develop across a shorter period of time is often “eliminated” by simply choosing a longer planning time interval, what makes path dependency is one of the most often overlooked business risk types. After reviewing the origin of the problem we propose and compare seven risk measures to access path. Traditional risk measures like standard deviation of sub period cash flows fail to capture this risk type. We conclude that in most cases considering the distribution of the expected cash flow effect caused by the path dependency may offer the best method, but we may need to use several measures at the same time to include all the optimisation limits of the given firm

  13. Passive Attenuating Communication Earphone (PACE): Noise Attenuation and Speech Intelligibility Performance When Worn in Conjunction with the HGU-56/P and HGU-55/P Flight Helmets

    Science.gov (United States)

    2013-10-16

    right) eartips The purpose of this study was to integrate the HGU-56/P and HGU-55/P flight helmets with PACE to measure the noise attenuation and...55/P flight helmet integrated with PACE 2.0 METHODS 2.1 Subjects Twenty paid volunteer subjects (9 male, 11 female) participated in the study ...Pan Pad Pat Path Pack Pass Buff Bus But Bug Buck Bun Sat Sag Sass Sack Sad Sap Run Sun Bun Gun Fun Nun 8 Distribution A: Approved for

  14. Path integration in conical space

    International Nuclear Information System (INIS)

    Inomata, Akira; Junker, Georg

    2012-01-01

    Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can be reduced to a form identical with that in flat space when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular momentum. The effective potential is found proportional to the squared mean curvature of the conical surface embedded in Euclidean space. The path integral calculation is compatible with the Schrödinger equation modified with the Gaussian and the mean curvature. -- Highlights: ► We study quantum mechanics on a cone by the path integral approach. ► The path integral depends only on the metric and the curvature effect is built in. ► The approach is consistent with the Schrödinger equation modified by an effective potential. ► The effective potential is found to be of the “Jensen–Koppe” and “da Costa” type.

  15. Miracle Flights

    Science.gov (United States)

    ... a Flight Get Involved Events Shop Miles Contact Miracle Flights Blog Giving Tuesday 800-359-1711 Thousands of children have been saved, but we still have miles to go. Request a Flight Click Here to Donate - Your ...

  16. Two dimensional simplicial paths

    International Nuclear Information System (INIS)

    Piso, M.I.

    1994-07-01

    Paths on the R 3 real Euclidean manifold are defined as 2-dimensional simplicial strips which are orbits of the action of a discrete one-parameter group. It is proven that there exists at least one embedding of R 3 in the free Z-module generated by S 2 (x 0 ). The speed is defined as the simplicial derivative of the path. If mass is attached to the simplex, the free Lagrangian is proportional to the width of the path. In the continuum limit, the relativistic form of the Lagrangian is recovered. (author). 7 refs

  17. Time optimal paths for high speed maneuvering

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.

  18. Cooperative organic mine avoidance path planning

    Science.gov (United States)

    McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David

    2005-06-01

    The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.

  19. The effect of solar and lunar currents on simultaneous phase path, group path and amplitude measurements

    International Nuclear Information System (INIS)

    Baulch, R.N.E.; Butcher, E.C.

    1984-01-01

    The solar and lunar variations in the phase path, group path and amplitude of a fixed frequency transmission were obtained at the September equinox over a slightly oblique path. The phase of the lunar semi-diurnal tide in the phase path and amplitude were similar, the maxima occurring near 0200 lunar time, whereas the group path had a maximum near 0800 lunar time. These results were compared with other results obtained near the same location. The results suggest a complex situation in the E-region, where the height of the lunar current depends on season, and also suggest that the location and distribution of the solar and lunar currents may be different. (author)

  20. Formal language constrained path problems

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, C.; Jacob, R.; Marathe, M.

    1997-07-08

    In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.

  1. On the structure of path-like trees

    OpenAIRE

    Muntaner Batle, Francesc Antoni; Rius Font, Miquel

    2007-01-01

    We study the structure of path-like trees. In order to do this, we introduce a set of trees that we call expandable trees. In this paper we also generalize the concept of path-like trees and we call such generalization generalized path-like trees. As in the case of path-like trees, generalized path-like trees, have very nice labeling properties.

  2. Radar speed gun true velocity measurements of sports-balls in flight: application to tennis

    International Nuclear Information System (INIS)

    Robinson, Garry; Robinson, Ian

    2016-01-01

    Spectators of ball-games often seem to be fascinated by the speed of delivery of the ball. They appear to be less interested in or even oblivious to the mechanism and accuracy of the measurement or where in the flight path of the ball the measurement is actually made. Radar speed guns using the Doppler effect are often employed for such speed measurements. It is well known that such guns virtually always measure the line-of-sight or radial velocity of the ball and as such will return a reading less than or equal to the true speed of the ball. In this paper, using only basic physics principles we investigate such measurements, in particular those associated with the service stroke in tennis. For the service trajectories employed here, a single radar gun located in line with the centre-line of the court in fact under-estimates the speed of a wide serve by about 3.4% at the point of delivery, and by about 14.3% on impact with the court. However, we demonstrate that both the magnitude and direction of the true velocity of the ball throughout its entire flight path may be obtained, at least in principle, by the use of four suitably placed radar speed guns. These four guns must be able to measure the ‘range’ to the ball, enabling its position in flight to be determined, and three of them must be able to measure the radial velocity of the ball. Restrictions on the locations of the speed guns are discussed. Such restrictions are quite liberal, although there are certain configurations of the radar gun positions which cannot be used. Importantly, with the one proviso that no speed gun can be directly in the path of the ball (not only for the obvious reasons), we find that if the speed of the ball can be determined for one point in the trajectory, it can also be determined for all points. The accuracy of the range and radial velocity measurements required to give meaningful results for the true velocity are also briefly discussed. It is found that the accuracy required

  3. Observation of sandhill cranes' (Grus canadensis) flight behavior in heavy fog

    Science.gov (United States)

    Kirsch, Eileen M.; Wellik, Mike J.; Suarez, Manuel J.; Diehl, Robert H.; Lutes, Jim; Woyczik, Wendy; Krapfl, Jon; Sojda, Richard S.

    2015-01-01

    The behaviors of birds flying in low visibility conditions remain poorly understood. We had the opportunity to monitor Sandhill Cranes (Grus canadensis) flying in heavy fog with very low visibility during a comprehensive landscape use study of refuging cranes in the Horicon Marsh in southeastern Wisconsin. As part of the study, we recorded flight patterns of cranes with a portable marine radar at various locations and times of day, and visually counted cranes as they departed the roost in the morning. We compared flight patterns during a fog event with those recorded during clear conditions. In good visibility, cranes usually departed the night roost shortly after sunrise and flew in relatively straight paths toward foraging areas. In fog, cranes departed the roost later in the day, did not venture far from the roost, engaged in significantly more circling flight, and returned to the roost site rather than proceeding to foraging areas. We also noted that compared to mornings with good visibility, cranes flying in fog called more frequently than usual. The only time in this 2-year study that observers heard young of the year calling was during the fog event. The observed behavior of cranes circling and lingering in an area while flying in poor visibility conditions suggests that such situations may increase chances of colliding with natural or anthropogenic obstacles in the vicinity.

  4. Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence

    NARCIS (Netherlands)

    Kaspers, O. P.; Sterenborg, H. J. C. M.; Amelink, A.

    2008-01-01

    We have characterized the path length for the differential path-length spectroscopy (DPS) fiber optic geometry for a wide range of optical properties and for fiber diameters ranging from 200 mu m to 1000 mu m. Phantom measurements show that the path length is nearly constant for scattering

  5. Walking path-planning method for multiple radiation areas

    International Nuclear Information System (INIS)

    Liu, Yong-kuo; Li, Meng-kun; Peng, Min-jun; Xie, Chun-li; Yuan, Cheng-qian; Wang, Shuang-yu; Chao, Nan

    2016-01-01

    Highlights: • Radiation environment modeling method is designed. • Path-evaluating method and segmented path-planning method are proposed. • Path-planning simulation platform for radiation environment is built. • The method avoids to be misled by minimum dose path in single area. - Abstract: Based on minimum dose path-searching method, walking path-planning method for multiple radiation areas was designed to solve minimum dose path problem in single area and find minimum dose path in the whole space in this paper. Path-planning simulation platform was built using C# programming language and DirectX engine. The simulation platform was used in simulations dealing with virtual nuclear facilities. Simulation results indicated that the walking-path planning method is effective in providing safety for people walking in nuclear facilities.

  6. Back pain in space and post-flight spine injury: Mechanisms and countermeasure development

    Science.gov (United States)

    Sayson, Jojo V.; Lotz, Jeffrey; Parazynski, Scott; Hargens, Alan R.

    2013-05-01

    During spaceflight many astronauts experience moderate to severe lumbar pain and deconditioning of paraspinal muscles. There is also a significant incidence of herniated nucleus pulposus (HNP) in astronauts post-flight being most prevalent in cervical discs. Relief of in-flight lumbar back pain is facilitated by assuming a knee-to-chest position. The pathogenesis of lumbar back pain during spaceflight is most likely discogenic and somatic referred (from the sinuvertebral nerves) due to supra-physiologic swelling of the lumbar intervertebral discs (IVDs) due to removal of gravitational compressive loads in microgravity. The knee-to-chest position may reduce lumbar back pain by redistributing stresses through compressive loading to the IVDs, possibly reducing disc volume by fluid outflow across IVD endplates. IVD stress redistribution may reduce Type IV mechanoreceptor nerve impulse propagation in the annulus fibrosus and vertebral endplate resulting in centrally mediated pain inhibition during spinal flexion. Countermeasures for lumbar back pain may include in-flight use of: (1) an axial compression harness to prevent excessive IVD expansion and spinal column elongation; (2) the use of an adjustable pulley exercise developed to prevent atrophy of spine muscle stabilisers; and (3) other exercises that provide Earth-like annular stress with low-load repetitive active spine rotation movements. The overall objective of these countermeasures is to promote IVD health and to prevent degenerative changes that may lead to HNPs post-flight. In response to "NASA's Critical Path Roadmap Risks and Questions" regarding disc injury and higher incidence of HNPs after space flight (Integrated Research Plan Gap-B4), future studies will incorporate pre- and post-flight imaging of International Space Station long-duration crew members to investigate mechanisms of lumbar back pain as well as degeneration and damage to spinal structures. Quantitative results on morphological, biochemical

  7. Cooperative path planning of unmanned aerial vehicles

    CERN Document Server

    Tsourdos, Antonios; Shanmugavel, Madhavan

    2010-01-01

    An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in...

  8. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  9. Time-of-flight data acquisition unit (DAU) for neutron scattering experiments. Specification of the requirements and design concept. Version 3.1

    International Nuclear Information System (INIS)

    Herdam, G.; Klessmann, H.; Wawer, W.; Adebayo, J.; David, G.; Szatmari, F.

    1989-12-01

    This specification describes the requirements for the Data Acquisition Unit (DAU) and defines the design concept for the functional units involved. The Data Acquisition Unit will be used in the following neutron scattering experiments: Time-of-Flight Spectrometer NEAT, Time-of-Flight Spectrometer SPAN. In addition, the data of the SPAN spectrometer in Spin Echo experiments will be accumulated. The Data Acquisition Unit can be characterised by the following requirements: Time-of-flight measurement with high time resolution (125 ns), sorting the time-of-flight in up to 4096 time channels (channel width ≥ 1 μs), selection of different time channel widths for peak and background, on-line time-of-flight correction for neutron flight paths of different lengths, sorting the detector position information in up to 4096 position channels, accumulation of two-dimensional spectra in a 32 Mbyte RAM memory (4 K time channels*4 K position channels*16 bits). Because of the stringent timing requirements the functional units of the DAU are hardware controlled via tables. The DAU is part of a process control system which has access to the functional units via the VMEbus in order to initialise, to load tables and control information, and to read status information and spectra. (orig.) With 18 figs

  10. Energy consumption of ProTaper Next X1 after glide path with PathFiles and ProGlider.

    Science.gov (United States)

    Berutti, Elio; Alovisi, Mario; Pastorelli, Michele Angelo; Chiandussi, Giorgio; Scotti, Nicola; Pasqualini, Damiano

    2014-12-01

    Instrument failure caused by excessive torsional stress can be controlled by creating a manual or mechanical glide path. The ProGlider single-file system (Dentsply Maillefer, Ballaigues, Switzerland) was recently introduced to perform a mechanical glide path. This study was designed to compare the effect of a glide path performed with PathFiles (Dentsply Maillefer) and ProGlider on torque, time, and pecking motion required for ProTaper Next X1 (Dentsply Maillefer) to reach the full working length in simulated root canals. Forty Endo Training Blocks (Dentsply Maillefer) were used. Twenty were prepared with a mechanical glide path using PathFiles 1 and 2 (the PathFile group), and 20 were prepared with a mechanical glide path using a ProGlider single file (the ProGlider group). All samples were shaped with ProTaper Next X1 driven by an endodontic motor connected to a digital wattmeter. The required torque for root canal instrumentation was analyzed by evaluating the electrical power consumption of the endodontic engine. Electric power consumption (mW/h), elapsed time (seconds), and number of pecking motions required to reach the full working length with ProTaper Next X1 were calculated. Differences among groups were analyzed with the parametric Student t test for independent data (P < .05). Elapsed time and electric power consumption were significantly different between groups (P = .0001 for both). ProGlider appears to perform more efficiently than PathFiles in decreasing electric power consumption of ProTaper Next X1 to reach the full working length. This study confirmed the ability of ProGlider to reduce stress in ProTaper Next X1 during shaping through a glide path and preliminary middle and coronal preflaring. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Strain path dependency in metal plasticity

    NARCIS (Netherlands)

    Viatkina, E.M.; Brekelmans, W.A.M.; Geers, M.G.D.

    2003-01-01

    A change in strain path has a significant effect on the mechanical response of metals. Strain path change effects physically originate from a complex microstructure evolution. This paper deals with the contribution of cell structure evolution to the strain path change effect. The material with cells

  12. Path-Goal Theory of Leadership

    Science.gov (United States)

    1975-04-01

    Leadership and Turnover Among Managers ," Organization Behavior and Human Performance, 10(1973), pp. 184-200; R. J. House, "A Path-Goal Theory of...of Leadership ." 6R. J. House and G. Dessler, "Path-Goal Theory of Leadership " R. M. Stqg- dill. Managers , Employees, Organization (Ohio State...of Control." 23 R. J. House, "Notes on the Path-Goal Theory of Leadership " (University of Toronto, Faculty of Management Studies, May 1974). 24 R

  13. Path integral in Snyder space

    Energy Technology Data Exchange (ETDEWEB)

    Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)

    2016-04-29

    The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.

  14. Path integral in Snyder space

    International Nuclear Information System (INIS)

    Mignemi, S.; Štrajn, R.

    2016-01-01

    The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.

  15. Leavitt path algebras

    CERN Document Server

    Abrams, Gene; Siles Molina, Mercedes

    2017-01-01

    This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

  16. Paths correlation matrix.

    Science.gov (United States)

    Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang

    2015-09-15

    Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions.

  17. Techniques and applications of path integration

    CERN Document Server

    Schulman, L S

    2005-01-01

    A book of techniques and applications, this text defines the path integral and illustrates its uses by example. It is suitable for advanced undergraduates and graduate students in physics; its sole prerequisite is a first course in quantum mechanics. For applications requiring specialized knowledge, the author supplies background material.The first part of the book develops the techniques of path integration. Topics include probability amplitudes for paths and the correspondence limit for the path integral; vector potentials; the Ito integral and gauge transformations; free particle and quadra

  18. Joint modeling of constrained path enumeration and path choice behavior: a semi-compensatory approach

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2010-01-01

    A behavioural and a modelling framework are proposed for representing route choice from a path set that satisfies travellers’ spatiotemporal constraints. Within the proposed framework, travellers’ master sets are constructed by path generation, consideration sets are delimited according to spatio...

  19. Isomorphisms and traversability of directed path graphs

    NARCIS (Netherlands)

    Broersma, Haitze J.; Li, Xueliang; Li, X.

    1998-01-01

    The concept of a line digraph is generalized to that of a directed path graph. The directed path graph $\\forw P_k(D)$ of a digraph $D$ is obtained by representing the directed paths on $k$ vertices of $D$ by vertices. Two vertices are joined by an arc whenever the corresponding directed paths in $D$

  20. Engine Installation Effects of Four Civil Transport Airplanes: Wallops Flight Facility Study

    Science.gov (United States)

    Fleming, Gregg G.; Senzig, David A.; McCurdy, David A.; Roof, Christopher J.; Rapoza, Amanda S.

    2003-01-01

    The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), the Environmental Measurement and Modeling Division of the United States Department of Transportation s John A. Volpe National Transportation Systems Center (Volpe), and several other organizations (see Appendix A for a complete list of participating organizations and individuals) conducted a noise measurement study at NASA s Wallops Flight Facility (Wallops) near Chincoteague, Virginia during September 2000. This test was intended to determine engine installation effects on four civil transport airplanes: a Boeing 767-400, a McDonnell-Douglas DC9, a Dassault Falcon 2000, and a Beechcraft King Air. Wallops was chosen for this study because of the relatively low ambient noise of the site and the degree of control over airplane operating procedures enabled by operating over a runway closed to other uses during the test period. Measurements were conducted using a twenty microphone U-shaped array oriented perpendicular to the flight path; microphones were mounted such that ground effects were minimized and low elevation angles were observed.

  1. A Survey of Open-Source UAV Flight Controllers and Flight Simulators

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Terkildsen, Kristian Husum

    2018-01-01

    , which are all tightly linked to the UAV flight controller hardware and software. The lack of standardization of flight controller architectures and the use of proprietary closed-source flight controllers on many UAV platforms, however, complicates this work: solutions developed for one flight controller...... may be difficult to port to another without substantial extra development and testing. Using open-source flight controllers mitigates some of these challenges and enables other researchers to validate and build upon existing research. This paper presents a survey of the publicly available open...

  2. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    Science.gov (United States)

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  3. Radford McAlester flight paths

    Data.gov (United States)

    U.S. Environmental Protection Agency — Heights and position of UAS from starting point. This dataset is associated with the following publication: Aurell, J., B. Mitchell, V. Chirayath, J. Jonsson, D....

  4. Theseus in Flight

    Science.gov (United States)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  5. Graphs with not all possible path-kernels

    DEFF Research Database (Denmark)

    Aldred, Robert; Thomassen, Carsten

    2004-01-01

    The Path Partition Conjecture states that the vertices of a graph G with longest path of length c may be partitioned into two parts X and Y such that the longest path in the subgraph of G induced by X has length at most a and the longest path in the subgraph of G induced by Y has length at most b...

  6. A Simple Flight Mill for the Study of Tethered Flight in Insects.

    Science.gov (United States)

    Attisano, Alfredo; Murphy, James T; Vickers, Andrew; Moore, Patricia J

    2015-12-10

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

  7. In-Flight Observation of Gamma Ray Glows by ILDAS

    Science.gov (United States)

    Kochkin, Pavlo; van Deursen, A. P. J.; Marisaldi, M.; Ursi, A.; de Boer, A. I.; Bardet, M.; Allasia, C.; Boissin, J.-F.; Flourens, F.; Østgaard, N.

    2017-12-01

    An Airbus A340 aircraft flew over Northern Australia with the In-Flight Lightning Damage Assessment System (ILDAS) installed onboard. A long-duration gamma ray emission was detected. The most intense emission was observed at 12 km altitude and lasted for 20 s. Its intensity was 20 times the background counts, and it was abruptly terminated by a distant lightning flash. In this work we reconstruct the aircraft path and event timeline. The glow-terminating flash triggered a discharge from the aircraft wing that was recorded by a video camera operating onboard. Another count rate increase was observed 6 min later and lasted for 30 s. The lightning activity as reported by ground networks in this region was analyzed. The measured spectra characteristics of the emission were estimated.

  8. Design of Active N-path Filters

    NARCIS (Netherlands)

    Darvishi, M.; van der Zee, Ronan A.R.; Nauta, Bram

    2013-01-01

    A design methodology for synthesis of active N-path bandpass filters is introduced. Based on this methodology, a 0.1-to-1.2 GHz tunable 6th-order N-path channel-select filter in 65 nm LP CMOS is introduced. It is based on coupling N-path filters with gyrators, achieving a “flat‿ passband shape and

  9. Second Annual Transformative Vertical Flight Concepts Workshop: Enabling New Flight Concepts Through Novel Propulsion and Energy Architectures

    Science.gov (United States)

    Dudley, Michael R. (Editor); Duffy, Michael; Hirschberg, Michael; Moore, Mark; German, Brian; Goodrich, Ken; Gunnarson, Tom; Petermaier,Korbinian; Stoll, Alex; Fredericks, Bill; hide

    2015-01-01

    On August 3rd and 4th, 2015, a workshop was held at the NASA Ames Research Center, located at the Moffett Federal Airfield in California to explore the aviation communities interest in Transformative Vertical Flight (TVF) Concepts. The Workshop was sponsored by the AHS International (AHS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), and hosted by the NASA Aeronautics Research Institute (NARI). This second annual workshop built on the success and enthusiasm generated by the first TVF Workshop held in Washington, DC in August of 2014. The previous Workshop identified the existence of a multi-disciplinary community interested in this topic and established a consensus among the participants that opportunities to establish further collaborations in this area are warranted. The desire to conduct a series of annual workshops augmented by online virtual technical seminars to strengthen the TVF community and continue planning for advocacy and collaboration was a direct outcome of the first Workshop. The second Workshop organizers focused on four desired action-oriented outcomes. The first was to establish and document common stakeholder needs and areas of potential collaborations. This includes advocacy strategies to encourage the future success of unconventional vertiport capable flight concept solutions that are enabled by emerging technologies. The second was to assemble a community that can collaborate on new conceptual design and analysis tools to permit novel configuration paths with far greater multi-disciplinary coupling (i.e., aero-propulsive-control) to be investigated. The third was to establish a community to develop and deploy regulatory guidelines. This community would have the potential to initiate formation of an American Society for Testing and Materials (ASTM) F44 Committee Subgroup for the development of consensus-based certification standards for General Aviation scale vertiport

  10. Path integrals and geometry of trajectories

    International Nuclear Information System (INIS)

    Blau, M.; Keski-Vakkuri, E.; Niemi, A.J.

    1990-01-01

    A geometrical interpretation of path integrals is developed in the space of trajectories. This yields a supersymmetric formulation of a generic path integral, with the supersymmetry resembling the BRST supersymmetry of a first class constrained system. If the classical equation of motion is a Killing vector field in the space of trajectories, the supersymmetry localizes the path integral to classical trajectories and the WKB approximation becomes exact. This can be viewed as a path integral generalization of the Duistermaat-Heckman theorem, which states the conditions for the exactness of the WKB approximation for integrals in a compact phase space. (orig.)

  11. Perfect discretization of path integrals

    International Nuclear Information System (INIS)

    Steinhaus, Sebastian

    2012-01-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.

  12. Perfect discretization of path integrals

    Science.gov (United States)

    Steinhaus, Sebastian

    2012-05-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.

  13. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  14. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  15. On Hilbert space of paths

    International Nuclear Information System (INIS)

    Exner, P.; Kolerov, G.I.

    1980-01-01

    A Hilbert space of paths, the elements of which are determined by trigonometric series, was proposed and used recently by Truman. This space is shown to consist precisely of all absolutely continuous paths ending in the origin with square-integrable derivatives

  16. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  17. Tool path in torus tool CNC machining

    Directory of Open Access Journals (Sweden)

    XU Ying

    2016-10-01

    Full Text Available This paper is about tool path in torus tool CNC machining.The mathematical model of torus tool is established.The tool path planning algorithm is determined through calculation of the cutter location,boundary discretization,calculation of adjacent tool path and so on,according to the conversion formula,the cutter contact point will be converted to the cutter location point and then these points fit a toolpath.Lastly,the path planning algorithm is implemented by using Matlab programming.The cutter location points for torus tool are calculated by Matlab,and then fit these points to a toolpath.While using UG software,another tool path of free surface is simulated of the same data.It is drew compared the two tool paths that using torus tool is more efficient.

  18. Path Creation

    DEFF Research Database (Denmark)

    Karnøe, Peter; Garud, Raghu

    2012-01-01

    This paper employs path creation as a lens to follow the emergence of the Danish wind turbine cluster. Supplier competencies, regulations, user preferences and a market for wind power did not pre-exist; all had to emerge in a tranformative manner involving multiple actors and artefacts. Competenc......This paper employs path creation as a lens to follow the emergence of the Danish wind turbine cluster. Supplier competencies, regulations, user preferences and a market for wind power did not pre-exist; all had to emerge in a tranformative manner involving multiple actors and artefacts....... Competencies emerged through processes and mechanisms such as co-creation that implicated multiple learning processes. The process was not an orderly linear one as emergent contingencies influenced the learning processes. An implication is that public policy to catalyse clusters cannot be based...

  19. A Time of flight spectrometer for measurements of double differential neutron scattering cross sections; Montaje de un espectrometro por tiempo de vuelo para la medicion de secciones doble diferenciales de dispersion de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Padron, I; Dominguez, O; Sarria, P. Sandin, C. [Centro de Estudios Aplicados al Desarrollo Nuclear (CEADEN), La Habana (Cuba)

    1996-05-01

    The time -of-Flight neutron spectrometry technique by associated particle method was improved using a D-T neutron generator at Laboratory of Nuclear Analysis. This technique was implemented for double differential cross section measurements and supported by the IAEA Project CUB/01/005. An stilbene scintillation detector (dia=100 mm, length=50 mm) was used as principal neutron detector detector and was situated outside a hole in the concrete wall. This way the fligth path was extended and the scattered neutron cone accurate collimated throught the 2 m concrete wall. For the associated particle {alpha} detection a thin plastic NE-102 scint illator was used, as well as, two scintilation detectors and a long counter for the neutron flux monitoring. In this TOF neutron spectrometer (3.40 m flight path) a 1.7 nseg. temporal resolution was obtained.

  20. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  1. Flight Paths of Migrating Golden Eagles and the Risk Associated with Wind Energy Development in the Rocky Mountains

    Directory of Open Access Journals (Sweden)

    Naira N. Johnston

    2013-12-01

    Full Text Available In recent years, the eastern foothills of the Rocky Mountains in northeastern British Columbia have received interest as a site of industrial wind energy development but, simultaneously, have been the subject of concern about wind development coinciding with a known migratory corridor of Golden Eagles (Aquila chrysaetos. We tracked and quantified eagle flights that crossed or followed ridgelines slated for one such wind development. We found that hourly passage rates during fall migration peaked at midday and increased by 17% with each 1 km/h increase in wind speed and by 11% with each 1°C increase in temperature. The propensity to cross the ridge tops where turbines would be situated differed between age classes, with juvenile eagles almost twice as likely to traverse the ridge-top area as adults or subadults. During fall migration, Golden Eagles were more likely to cross ridges at turbine heights (risk zone, < 150 m above ground under headwinds or tailwinds, but this likelihood decreased with increasing temperature. Conversely, during spring migration, eagles were more likely to move within the ridge-top area under eastern crosswinds. Identifying Golden Eagle flight routes and altitudes with respect to major weather systems and local topography in the Rockies may help identify scenarios in which the potential for collisions is greatest at this and other installations.

  2. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  3. How to solve path integrals in quantum mechanics

    International Nuclear Information System (INIS)

    Grosche, C.

    1994-10-01

    A systematic classification of Feynman path integrals in quantum mechanics is presented and a table of solvable path integrals is given which reflects the progress made during the last 15 years, including, of course, the main contributions since the invention of the path integral by Feynman in 1942. An outline of the general theory is given which will serve as a quick reference for solving path integrals. Explicit formulae for the so-called basic path integrals are presented on which our general scheme to classify and calculate path integrals in quantum mechanics is based. (orig.)

  4. Path integrals for arbitrary canonical transformations

    International Nuclear Information System (INIS)

    Oliveira, L.A.R. de.

    1980-01-01

    Some aspects of the path integral formulation of quantum mechanics are studied. This formalism is generalized to arbitrary canonical transformations, by means of an association between path integral probalility amplitudes and classical generators of transformations, analogous to the usual Hamiltonian time development phase space expression. Such association turns out to be equivalent to the Weyl quantization rule, and it is also shown that this formalism furnishes a path integral representation for a Lie algebra of a given set of classical generators. Some physical considerations about the path integral quantization procedure and about the relationship between classical and quantum dynamical structures are also discussed. (Author) [pt

  5. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing.

    Science.gov (United States)

    Tian, B; Schnitzler, H U

    1997-04-01

    Echolocation signals of horseshoe bats (Rhinolophidae) consist of a relatively long component of constant frequency (CF) which is preceded by an initial frequency-modulated (iFM) component and followed by a terminal frequency-modulated (tFM) component. To examine the role of these components in echolocation, four bats were trained to fly from a perch to a landing bar. A dual camera system allowed reconstruction of the flight paths in three dimensions. Echolocation signals were recorded, analyzed, and correlated with the flight behavior of the bats. It was confirmed that during flight the bats compensate the Doppler shifts which are produced by their own flight movement. In free flight they emit per wing beat one single signal of long duration, with little variation in the three signal components. In approach flight the bats reduce pulse duration and interval with decreasing target range. The iFM is not varied with respect to target range, suggesting that this component plays little role in the processing of echolocating a target of interest. The bandwidth of the tFM component is increased while its duration is shortened in proportion to decreasing target range, so that the signal-echo overlap of the FM component is avoided down to a target distance of 15 cm. These concurrent changes suggest that the tFM component is used for ranging. During the last 60 cm of the approach the bats compensated for the increase of echo SPL by lowering the emission level of the CF component by 6-9 dB and that of the tFM component by 9-11 dB per halving of range. The specific signal structure of horseshoe bats is discussed as an adaptation for the hunting of fluttering insects in highly cluttered environments.

  6. Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living.

    Science.gov (United States)

    Shepard, Emily L C; Williamson, Cara; Windsor, Shane P

    2016-09-26

    Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the three-dimensional trajectories of gulls flying along a built-up coastline, and used computational fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  7. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  8. Path probability distribution of stochastic motion of non dissipative systems: a classical analog of Feynman factor of path integral

    International Nuclear Information System (INIS)

    Lin, T.L.; Wang, R.; Bi, W.P.; El Kaabouchi, A.; Pujos, C.; Calvayrac, F.; Wang, Q.A.

    2013-01-01

    We investigate, by numerical simulation, the path probability of non dissipative mechanical systems undergoing stochastic motion. The aim is to search for the relationship between this probability and the usual mechanical action. The model of simulation is a one-dimensional particle subject to conservative force and Gaussian random displacement. The probability that a sample path between two fixed points is taken is computed from the number of particles moving along this path, an output of the simulation, divided by the total number of particles arriving at the final point. It is found that the path probability decays exponentially with increasing action of the sample paths. The decay rate increases with decreasing randomness. This result supports the existence of a classical analog of the Feynman factor in the path integral formulation of quantum mechanics for Hamiltonian systems

  9. Path Integral Formulation of Anomalous Diffusion Processes

    OpenAIRE

    Friedrich, Rudolf; Eule, Stephan

    2011-01-01

    We present the path integral formulation of a broad class of generalized diffusion processes. Employing the path integral we derive exact expressions for the path probability densities and joint probability distributions for the class of processes under consideration. We show that Continuous Time Random Walks (CTRWs) are included in our framework. A closed expression for the path probability distribution of CTRWs is found in terms of their waiting time distribution as the solution of a Dyson ...

  10. Strategic Team AI Path Plans: Probabilistic Pathfinding

    Directory of Open Access Journals (Sweden)

    Tng C. H. John

    2008-01-01

    Full Text Available This paper proposes a novel method to generate strategic team AI pathfinding plans for computer games and simulations using probabilistic pathfinding. This method is inspired by genetic algorithms (Russell and Norvig, 2002, in that, a fitness function is used to test the quality of the path plans. The method generates high-quality path plans by eliminating the low-quality ones. The path plans are generated by probabilistic pathfinding, and the elimination is done by a fitness test of the path plans. This path plan generation method has the ability to generate variation or different high-quality paths, which is desired for games to increase replay values. This work is an extension of our earlier work on team AI: probabilistic pathfinding (John et al., 2006. We explore ways to combine probabilistic pathfinding and genetic algorithm to create a new method to generate strategic team AI pathfinding plans.

  11. Reconciling the shadow of a subduction signature with rift geochemistry and tectonic environment in Eastern Marie Byrd Land, Antarctica

    Science.gov (United States)

    LeMasurier, Wesley E.; Choi, Sung Hi; Hart, Stanley R.; Mukasa, Sam; Rogers, Nick

    2016-09-01

    Basalt-trachyte volcanoes in the Marie Byrd Land (MBL) Cenozoic province lie along the Amundsen Sea coast on the north flank of the West Antarctic rift. Basalts here are characterized by OIB-like geochemistry, restricted ranges of 87Sr/86Sr (0.702535-0.703284) and 143Nd/144Nd (0.512839-0.513008) and a wide range of 206Pb/204Pb (19.357-20.934). Basalts at three MBL volcanoes display two anomalies compared with the above and with all other basalts in West Antarctica. They include 143Nd/144Nd (0.512778-0.512789) values at Mt. Takahe and Mt. Siple that are 2σ lower than other West Antarctic basalts, and Ba/Nb, Ba/La, and Ba/Th values at Mt. Murphy and Mt. Takahe that are 3-8 times higher than normal OIB. Isotope and trace element data do not support crustal and lithospheric mantle contamination, or the presence of residual mantle amphibole or phlogopite as explanations of these anomalies. The apparent coincidence of these anomalies with the site of a pre-Cenozoic convergence zone along the Gondwanaland margin suggests a subduction influence. Major episodes of subduction and granitic plutonism took place in MBL during the Devonian, Permian, and Late Cretaceous. Relicts in the source region, of components from these subducted slabs, provide a credible explanation for the uncoupling of Ba from other large ion lithophile elements (LILE), for its erratic distribution, and for the anomalously low 143Nd/144Nd at Mt. Takahe. The last episode of subduction ended 85 Ma, and was followed by continental break-up, rifting and lithospheric attenuation that produced the West Antarctic rift as we know it today. Thus, the enigmatic geochemical signatures in these three volcanoes seem to have been preserved roughly 61-85 m.y. after subduction ended. New calculations of source melting depth and a new determination of lithospheric thickness suggest that the source of the anomalies resides in a fossil mélange diapir that rose from the Cretaceous subducting slab, became attached to the

  12. Two Generations of Path Dependence

    DEFF Research Database (Denmark)

    Madsen, Mogens Ove

      Even if there is no fully articulated and generally accepted theory of Path Dependence it has eagerly been taken up across a wide range of social sciences - primarily coming from economics. Path Dependence is most of all a metaphor that offers reason to believe, that some political, social...

  13. Partial Path Column Generation for the ESPPRC

    DEFF Research Database (Denmark)

    Jepsen, Mads Kehlet; Petersen, Bjørn

    This talk introduces a decomposition of the Elementary Shortest Path Problem with Resource Constraints(ESPPRC), where the path is combined by smaller sub paths. We show computational result by comparing different approaches for the decomposition and compare the best of these with existing algorit...

  14. An integrated systems approach to risk management within a technology driven industry using the design structure matrix and fuzzy logic

    OpenAIRE

    2012-01-01

    D.Ing. “Innovation is the act of introducing something new” (Byrd & Brown, 2003). When companies are competing on the technology “playground” they need to be innovative. By analysis according to Byrd & Brown (Byrd & Brown, 2003) the “act of introducing”, relates to risk taking, and the “new” relates to creativity, and therefore these concepts, creativity and risk taking, in combination, are what innovation is all about. Risk management has become one of the greatest challenges of the 21st ...

  15. Path integration on hyperbolic spaces

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1991-11-01

    Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S{sub 1} {approx equal} SO (n,1)/SO(n) and S{sub 2} {approx equal} SU(n,1)/S(U(1) x U(n)) in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E{sub O} = h{sup 2} /8m(m{sub {alpha}} +2m{sub 2} {alpha}){sup 2} (m {alpha} and m{sub 2}{alpha} denote the dimension of the root subspace corresponding to the roots {alpha} and 2{alpha}, respectively). I also discuss the case, where a constant magnetic field on H{sup n} is incorporated. (orig.).

  16. Path integration on hyperbolic spaces

    International Nuclear Information System (INIS)

    Grosche, C.

    1991-11-01

    Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S 1 ≅ SO (n,1)/SO(n) and S 2 ≅ SU(n,1)/S[U(1) x U(n)] in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E O = h 2 /8m(m α +2m 2 α) 2 (m α and m 2 α denote the dimension of the root subspace corresponding to the roots α and 2α, respectively). I also discuss the case, where a constant magnetic field on H n is incorporated. (orig.)

  17. Improved initial guess for minimum energy path calculations

    International Nuclear Information System (INIS)

    Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt; Jónsson, Hannes

    2014-01-01

    A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used

  18. Flight Planning in the Cloud

    Science.gov (United States)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  19. Path Integration on the Upper Half-Plane

    OpenAIRE

    Reijiro, KUBO; Research Institute for Theoretical Physics Hiroshima University

    1987-01-01

    Feynman's path integral is considered on the Poincare upper half-plane. It is shown that the fundamental solution to the heat equation ∂f/∂t=Δ_Hf can be expressed in terms of a path integral. A simple relation between the path integral and the Selberg trace formula is discussed briefly.

  20. Pedestrian paths: why path-dependence theory leaves health policy analysis lost in space.

    Science.gov (United States)

    Brown, Lawrence D

    2010-08-01

    Path dependence, a model first advanced to explain puzzles in the diffusion of technology, has lately won allegiance among analysts of the politics of public policy, including health care policy. Though the central premise of the model--that past events and decisions shape options for innovation in the present and future--is indisputable (indeed path dependence is, so to speak, too shallow to be false), the approach, at least as applied to health policy, suffers from ambiguities that undercut its claims to illuminate policy projects such as managed care, on which this article focuses. Because path dependence adds little more than marginal value to familiar images of the politics of policy--incrementalism, for one--analysts might do well to put it on the back burner and pursue instead "thick descriptions" that help them to distinguish different degrees of openness to exogenous change among diverse policy arenas.

  1. The Thinnest Path Problem

    Science.gov (United States)

    2016-07-22

    be reduced to TP in -D UDH for any . We then show that the 2-D disk hypergraph constructed in the proof of Theorem 1 can be modified to an exposed...transmission range that induces hy- peredge , i.e., (3) GAO et al.: THINNEST PATH PROBLEM 1181 Theorem 5 shows that the covered area of the path...representation of (the two hyperedges rooted at from the example given in Fig. 6 are illustrated in green and blue, respectively). step, we show in this

  2. Curvature-Continuous 3D Path-Planning Using QPMI Method

    Directory of Open Access Journals (Sweden)

    Seong-Ryong Chang

    2015-06-01

    Full Text Available It is impossible to achieve vertex movement and rapid velocity control in aerial robots and aerial vehicles because of momentum from the air. A continuous-curvature path ensures such robots and vehicles can fly with stable and continuous movements. General continuous path-planning methods use spline interpolation, for example B-spline and Bézier curves. However, these methods cannot be directly applied to continuous path planning in a 3D space. These methods use a subset of the waypoints to decide curvature and some waypoints are not included in the planned path. This paper proposes a method for constructing a curvature-continuous path in 3D space that includes every waypoint. The movements in each axis, x, y and z, are separated by the parameter u. Waypoint groups are formed, each with its own continuous path derived using quadratic polynomial interpolation. The membership function then combines each continuous path into one continuous path. The continuity of the path is verified and the curvature-continuous path is produced using the proposed method.

  3. Path integration on the upper half-plane

    International Nuclear Information System (INIS)

    Kubo, Reijiro.

    1987-06-01

    Feynman's path integral is considered on the Poincare upper half-plane. It is shown that the fundamental solution to the heat equation δf/δt = Δ H f can be expressed in terms of a path integral. A simple relation between the path integral and the Selberg trace formula is discussed briefly. (author)

  4. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...

  5. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  6. Path diversity improves the identification of influential spreaders

    Science.gov (United States)

    Chen, Duan-Bing; Xiao, Rui; Zeng, An; Zhang, Yi-Cheng

    2013-12-01

    Identifying influential spreaders in complex networks is a crucial problem which relates to wide applications. Many methods based on the global information such as K-shell and PageRank have been applied to rank spreaders. However, most of the related previous works overwhelmingly focus on the number of paths for propagation, while whether the paths are diverse enough is usually overlooked. Generally, the spreading ability of a node might not be strong if its propagation depends on one or two paths while the other paths are dead ends. In this letter, we introduced the concept of path diversity and find that it can largely improve the ranking accuracy. We further propose a local method combining the information of path number and path diversity to identify influential nodes in complex networks. This method is shown to outperform many well-known methods in both undirected and directed networks. Moreover, the efficiency of our method makes it possible to apply it to very large systems.

  7. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    Flight (S2F) initiative with the objective of developing a 100-500 We Stirling generator system. Additionally, a different approach is being devised for this initiative to avoid pitfalls of the past, and apply lessons learned from the recent ASRG experience. Two key aspects of this initiative are a Stirling System Technology Maturation Effort, and a Surrogate Mission Team (SMT) intended to provide clear mission pull and requirements context. The S2F project seeks to lead directly into a DOE flight system development of a new SRG. This paper will detail the proposed S2F initiative, and provide specifics on the key efforts designed to pave a forward path for bringing Stirling technology to flight.

  8. Flight control actuation system

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  9. Electron Inelastic-Mean-Free-Path Database

    Science.gov (United States)

    SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge)   This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.

  10. Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation

    International Nuclear Information System (INIS)

    Fulton, J.C.

    1994-10-01

    Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II

  11. Understanding and applying open-path optical sensing data

    Science.gov (United States)

    Virag, Peter; Kricks, Robert J.

    1999-02-01

    During the last 10 years, open-path air monitors have evolved to yield reliable and effective measurements of single and multiple compounds on a real-time basis. To many individuals within the optical remote sensing community, the attributes of open-path and its the potential uses seem unlimited. Then why has the market has been stagnant for the last few years? The reason may center on how open-path information is applied and how well the end user understands that information. We constantly try to compare open-path data to risk/health or safety levels that are based for use at a single point and for a specific averaging period often far longer than a typical open-path data point. Often this approach is perceived as putting a square peg in a round hole. This perception may be well founded, as open-path data at times may need to go through extensive data manipulation and assumptions before it can be applied. This paper will review pervious open-path monitoring programs and their success in applying the data collected. We will also look at how open-path data is being currently used, some previous pitfalls in data use, alternate methods of data interpretation, and how open-path data can be best practically applied to fit current needs.

  12. Unusual bond paths in organolithium compounds

    International Nuclear Information System (INIS)

    Bachrach, S.M.; Ritchie, J.P.

    1986-01-01

    We have applied the topological method to a number of organolithium compounds. The wavefunctions were determined with GAUSSIAN-82 using 3-21G basis set and fully optimized geometries. Gradient paths were obtained using the RHODER package and critical points were located using EXTREME. These results indicate the unusual nature of organolithium compounds. The strange bond paths arise mainly from the ionic nature of the C-Li interaction. We suggest that the term ''bond path'' may best be suited for covalent bonds. 4 figs., 1 tab

  13. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  14. Two-path plasmonic interferometer with integrated detector

    Science.gov (United States)

    Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory

    2016-03-29

    An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.

  15. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  16. Flight research and testing

    Science.gov (United States)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  17. Optimization of educational paths for higher education

    Science.gov (United States)

    Tarasyev, Alexandr A.; Agarkov, Gavriil; Medvedev, Aleksandr

    2017-11-01

    In our research, we combine the theory of economic behavior and the methodology of increasing efficiency of the human capital to estimate the optimal educational paths. We provide an optimization model for higher education process to analyze possible educational paths for each rational individual. The preferences of each rational individual are compared to the best economically possible educational path. The main factor of the individual choice, which is formed by the formation of optimal educational path, deals with higher salaries level in the chosen economic sector after graduation. Another factor that influences on the economic profit is the reduction of educational costs or the possibility of the budget support for the student. The main outcome of this research consists in correction of the governmental policy of investment in human capital based on the results of educational paths optimal control.

  18. Path operator algebras in conformal quantum field theories

    International Nuclear Information System (INIS)

    Roesgen, M.

    2000-10-01

    Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.)

  19. Flight Characteristics Analysis Based on QAR Data of a Jet Transport During Landing at a High-altitude Airport

    Institute of Scientific and Technical Information of China (English)

    C. Edward Lan; WU Kaiyuan; YU Jiang

    2012-01-01

    Flight data of a twin-jet transport aircraft in revenue flight are analyzed for potential safety problems.Data from the quick access recorder (QAR) are first filtered through the kinematic compatibility analysis.The filtered data are then organized into longitudinal- and lateral-directional aerodynamic model data with dynamic ground effect.The dynamic ground effect requires the radio height and sink rate in the models.The model data ere then refined into numerical models through a funzzy logic algorithm without data smoothing in advance.These numerical models describe nonlinear and unsteady aerodynamics and are used in nonlinear flight dynamics simulation.For the jet transport under study,it is found that the effect of crosswind is significant enough to excite the Dutch roll motion.Through a linearized analysis in flight dynamics at every instant of time,the Dutch roll motion is found to be in nonlinear oscillation without clear damping of the amplitude.In the analysis,all stability derivatives vary with time and hence are nonlinear functions of state variables.Since the Dutch roll motion is not damped despite the fact that a full-time yaw damper is engaged,it is concluded that the design data for the yaw damper is not sufficiendy realistic and the contribution of time derivative of sideslip angle to damping should be considered.As a result of nonlinear flight simulation,the vertical wind acting on the aircrafl is estimated to be mostly updraft which varies along the flight path before touchdown.Varying updraft appears to make the descent rate more difficult to control to result in a higher g-load at touchdown.

  20. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in...

  1. The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science

    Science.gov (United States)

    He, M.; Goodman, H. M.; Blakeslee, R.; Hall, J. M.

    2010-12-01

    NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA’s well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when “chasing” a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool

  2. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    Science.gov (United States)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  3. Computing the optimal path in stochastic dynamical systems

    International Nuclear Information System (INIS)

    Bauver, Martha; Forgoston, Eric; Billings, Lora

    2016-01-01

    In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.

  4. Path lumping: An efficient algorithm to identify metastable path channels for conformational dynamics of multi-body systems

    Science.gov (United States)

    Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui

    2017-07-01

    Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.

  5. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  6. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    Science.gov (United States)

    Larrabee, Trenton Jameson

    Wind turbulence including atmospheric turbulence and wake turbulence have been widely investigated; however, only recently it become possible to use Unmanned Aerial Vehicles (UAVs) as a validation tool for research in this area. Wind can be a major contributing factor of adverse weather for aircraft. More importantly, it is an even greater risk towards UAVs because of their small size and weight. Being able to estimate wind fields and gusts can potentially provide substantial benefits for both unmanned and manned aviation. Possible applications include gust suppression for improving handling qualities, a better warning system for high wind encounters, and enhanced control for small UAVs during flight. On the other hand, the existence of wind can be advantageous since it can lead to fuel savings and longer duration flights through dynamic soaring or thermal soaring. Wakes are an effect of the lift distribution across an aircraft's wing or tail. Wakes can cause substantial disturbances when multiple aircraft are moving through the same airspace. In fact, the perils from an aircraft flying through the wake of another aircraft is a leading cause of the delay between takeoff times at airports. Similar to wind, though, wakes can be useful for energy harvesting and increasing an aircraft's endurance when flying in formation which can be a great advantage to UAVs because they are often limited in flight time due to small payload capacity. Formation flight can most often be seen in manned aircraft but can be adopted for use with unmanned systems. Autonomous flight is needed for flying in the "sweet spot" of the generated wakes for energy harvesting as well as for thermal soaring during long duration flights. For the research presented here formation flight was implemented for the study of wake sensing and gust alleviation. The major contributions of this research are in the areas of a novel technique to estimate wind using an Unscented Kalman filter and experimental wake

  7. Moments of inertia and the shapes of Brownian paths

    International Nuclear Information System (INIS)

    Fougere, F.; Desbois, J.

    1993-01-01

    The joint probability law of the principal moments of inertia of Brownian paths (open or closed) is computed, using constrained path integrals and Random Matrix Theory. The case of two-dimensional paths is discussed in detail. In particular, it is shown that the ratio of the average values of the largest and smallest moments is equal to 4.99 (open paths) and 3.07 (closed paths). Results of numerical simulations are also presented, which include investigation of the relationships between the moments of inertia and the arithmetic area enclosed by a path. (authors) 28 refs., 2 figs

  8. X-43A Flight Controls

    Science.gov (United States)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  9. F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)

    Science.gov (United States)

    1997-01-01

    After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.

  10. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  11. Path Integrals in Quantum Mechanics

    International Nuclear Information System (INIS)

    Louko, J

    2005-01-01

    Jean Zinn-Justin's textbook Path Integrals in Quantum Mechanics aims to familiarize the reader with the path integral as a calculational tool in quantum mechanics and field theory. The emphasis is on quantum statistical mechanics, starting with the partition function Tr exp(-β H) and proceeding through the diffusion equation to barrier penetration problems and their semiclassical limit. The 'real time' path integral is defined via analytic continuation and used for the path-integral representation of the nonrelativistic S-matrix and its perturbative expansion. Holomorphic and Grassmannian path integrals are introduced and applied to nonrelativistic quantum field theory. There is also a brief discussion of path integrals in phase space. The introduction includes a brief historical review of path integrals, supported by a bibliography with some 40 entries. As emphasized in the introduction, mathematical rigour is not a central issue in the book. This allows the text to present the calculational techniques in a very readable manner: much of the text consists of worked-out examples, such as the quartic anharmonic oscillator in the barrier penetration chapter. At the end of each chapter there are exercises, some of which are of elementary coursework type, but the majority are more in the style of extended examples. Most of the exercises indeed include the solution or a sketch thereof. The book assumes minimal previous knowledge of quantum mechanics, and some basic quantum mechanical notation is collected in an appendix. The material has a large overlap with selected chapters in the author's thousand-page textbook Quantum Field Theory and Critical Phenomena (2002 Oxford: Clarendon). The stand-alone scope of the present work has, however, allowed a more focussed organization of this material, especially in the chapters on, respectively, holomorphic and Grassmannian path integrals. In my view the book accomplishes its aim admirably and is eminently usable as a textbook

  12. 76 FR 17064 - Shared Use Path Accessibility Guidelines

    Science.gov (United States)

    2011-03-28

    ...] RIN 3014-AA41 Shared Use Path Accessibility Guidelines AGENCY: Architectural and Transportation... (ANPRM) to develop accessibility guidelines for shared use paths. Shared use paths are designed for both... users. The guidelines will include technical provisions for making newly constructed and altered shared...

  13. A focussed dynamic path finding algorithm with constraints

    CSIR Research Space (South Africa)

    Leenen, L

    2013-11-01

    Full Text Available heuristic to focus the search for an optimal path. Existing approaches to solving path planning problems tend to combine path costs with various other criteria such as obstacle avoidance in the objective function which is being optimised. The authors...

  14. Path probability of stochastic motion: A functional approach

    Science.gov (United States)

    Hattori, Masayuki; Abe, Sumiyoshi

    2016-06-01

    The path probability of a particle undergoing stochastic motion is studied by the use of functional technique, and the general formula is derived for the path probability distribution functional. The probability of finding paths inside a tube/band, the center of which is stipulated by a given path, is analytically evaluated in a way analogous to continuous measurements in quantum mechanics. Then, the formalism developed here is applied to the stochastic dynamics of stock price in finance.

  15. Using convolutional neural networks to estimate time-of-flight from PET detector waveforms

    Science.gov (United States)

    Berg, Eric; Cherry, Simon R.

    2018-01-01

    Although there have been impressive strides in detector development for time-of-flight positron emission tomography, most detectors still make use of simple signal processing methods to extract the time-of-flight information from the detector signals. In most cases, the timing pick-off for each waveform is computed using leading edge discrimination or constant fraction discrimination, as these were historically easily implemented with analog pulse processing electronics. However, now with the availability of fast waveform digitizers, there is opportunity to make use of more of the timing information contained in the coincident detector waveforms with advanced signal processing techniques. Here we describe the application of deep convolutional neural networks (CNNs), a type of machine learning, to estimate time-of-flight directly from the pair of digitized detector waveforms for a coincident event. One of the key features of this approach is the simplicity in obtaining ground-truth-labeled data needed to train the CNN: the true time-of-flight is determined from the difference in path length between the positron emission and each of the coincident detectors, which can be easily controlled experimentally. The experimental setup used here made use of two photomultiplier tube-based scintillation detectors, and a point source, stepped in 5 mm increments over a 15 cm range between the two detectors. The detector waveforms were digitized at 10 GS s-1 using a bench-top oscilloscope. The results shown here demonstrate that CNN-based time-of-flight estimation improves timing resolution by 20% compared to leading edge discrimination (231 ps versus 185 ps), and 23% compared to constant fraction discrimination (242 ps versus 185 ps). By comparing several different CNN architectures, we also showed that CNN depth (number of convolutional and fully connected layers) had the largest impact on timing resolution, while the exact network parameters, such as convolutional

  16. Flapping wing flight can save aerodynamic power compared to steady flight.

    Science.gov (United States)

    Pesavento, Umberto; Wang, Z Jane

    2009-09-11

    Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aerodynamic power needed to support a specified weight. While most flapping wing motions are more costly than the optimal steady wing motion, we find that optimized flapping wing motions can save up to 27% of the aerodynamic power required by the optimal steady flight. We explain the cause of this energetic advantage.

  17. Land-mobile satellite excess path loss measurements

    Science.gov (United States)

    Hess, G. C.

    1980-05-01

    An experiment conducted with the ATS-6 satellite to determine the additional path loss over free-space loss experienced by land-mobile communication links is described. This excess path loss is measured as a function of 1) local environment, 2) vehicle heading, 3) link frequency, 4) satellite elevation angle, and 5) street side. A statistical description of excess loss developed from the data shows that the first two parameters dominate. Excess path loss on the order of 25 dB is typical in urban situations, but decreases to under 10 dB in suburban/rural areas. Spaced antenna selection diversity is found to provide only a slight decrease (4 dB, typically) in the urban excess path loss observed. Level crossing rates are depressed in satellite links relative to those of Rayleigh-faded terrestrial links, but increases in average fade durations tend to offset that advantage. The measurements show that the excess path loss difference between 860-MHz links and 1550-MHz links is generally negligible.

  18. Perfect discretization of reparametrization invariant path integrals

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-01-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  19. Perfect discretization of reparametrization invariant path integrals

    Science.gov (United States)

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-05-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  20. Path integral for relativistic particle theory

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.; Shvartsman, Sh.M.

    1990-06-01

    An action for a relativistic spinning particle interacting with external electromagnetic field is considered in reparametrization and local supergauge invariant form. It is shown that various path integral representations derived for the causal Green function correspond to the different forms of the relativistic particle action. The analogy of the path integral derived with the Lagrangian path integral of the field theory is discussed. It is shown that to obtain the causal propagator, the integration over the null mode of the Lagrangian multiplier corresponding to the reparametrization invariance, has to be performed in the (0,+infinity) limits. (author). 23 refs

  1. Positroids Induced by Rational Dyck Paths

    OpenAIRE

    Gotti, Felix

    2017-01-01

    A rational Dyck path of type $(m,d)$ is an increasing unit-step lattice path from $(0,0)$ to $(m,d) \\in \\mathbb{Z}^2$ that never goes above the diagonal line $y = (d/m)x$. On the other hand, a positroid of rank $d$ on the ground set $[d+m]$ is a special type of matroid coming from the totally nonnegative Grassmannian. In this paper we describe how to naturally assign a rank $d$ positroid on the ground set $[d+m]$, which we name rational Dyck positroid, to each rational Dyck path of type $(m,d...

  2. Realizing spaces as path-component spaces

    OpenAIRE

    Banakh, Taras; Brazas, Jeremy

    2018-01-01

    The path component space of a topological space $X$ is the quotient space $\\pi_0(X)$ whose points are the path components of $X$. We show that every Tychonoff space $X$ is the path-component space of a Tychonoff space $Y$ of weight $w(Y)=w(X)$ such that the natural quotient map $Y\\to \\pi_0(Y)=X$ is a perfect map. Hence, many topological properties of $X$ transfer to $Y$. We apply this result to construct a compact space $X\\subset \\mathbb{R}^3$ for which the fundamental group $\\pi_1(X,x_0)$ is...

  3. Flight code validation simulator

    Science.gov (United States)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  4. Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?

    Science.gov (United States)

    Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.

    2017-07-01

    It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.

  5. Purely geometric path integral for spin-foams

    International Nuclear Information System (INIS)

    Shirazi, Atousa Chaharsough; Engle, Jonathan

    2014-01-01

    Spin-foams are a proposal for defining the dynamics of loop quantum gravity via path integral. In order for a path integral to be at least formally equivalent to the corresponding canonical quantization, at each point in the space of histories it is important that the integrand have not only the correct phase—a topic of recent focus in spin-foams—but also the correct modulus, usually referred to as the measure factor. The correct measure factor descends from the Liouville measure on the reduced phase space, and its calculation is a task of canonical analysis. The covariant formulation of gravity from which spin-foams are derived is the Plebanski–Holst formulation, in which the basic variables are a Lorentz connection and a Lorentz-algebra valued 2-form, called the Plebanski 2-form. However, in the final spin-foam sum, one usually sums over only spins and intertwiners, which label eigenstates of the Plebanski 2-form alone. The spin-foam sum is therefore a discretized version of a Plebanski–Holst path integral in which only the Plebanski 2-form appears, and in which the connection degrees of freedom have been integrated out. We call this a purely geometric Plebanski–Holst path integral. In prior work in which one of the authors was involved, the measure factor for the Plebanski–Holst path integral with both connection and 2-form variables was calculated. Before one discretizes this measure and incorporates it into a spin-foam sum, however, one must integrate out the connection in order to obtain the purely geometric version of the path integral. To calculate this purely geometric path integral is the principal task of the present paper, and it is done in two independent ways. Background independence of the resulting path integral is discussed in the final section, and gauge-fixing is discussed in appendix B. (paper)

  6. Acquisition Path Analysis as a Collaborative Activity

    International Nuclear Information System (INIS)

    Nakao, A.; Grundule, R.; Gushchyn, K.; El Gebaly, A.; Higgy, R.; Tsvetkov, I.; Mandl, W.

    2015-01-01

    In the International Atomic Energy Agency, acquisition path analysis (APA) is indispensable to safeguards implementation. It is an integral part of both State evaluation process and the development of State level safeguards approaches, all performed through ongoing collaborative analysis of all available safeguards relevant information by State evaluation groups (SEG) with participation of other contributors, as required. To perform comprehensive State evaluation, to develop and revise State-level safeguards approaches, and to prepare annual implementation plans, the SEG in its collaborative analysis follows accepted safeguards methodology and guidance. In particular, the guide ''Performing Acquisition Path Analysis for the Development of a State-level Safeguards Approach for a State with a CSA'' is used. This guide identifies four major steps of the APA process: 1. Consolidating information about the State's past, present and planned nuclear fuel cycle-related capabilities and infrastructure; 2. Identifying and visually presenting technically plausible acquisition paths for the State; 3. Assessing acquisition path steps (State's technical capabilities and possible actions) along the identified acquisition paths; and 4. Assessing the time needed to accomplish each identified technically plausible acquisition path for the State. The paper reports on SEG members' and other contributors' experience with APA when following the above steps, including the identification of plausible acquisition pathways, estimation of time frames for all identified steps and determination of the time needed to accomplish each acquisition path. The difficulties that the SEG encountered during the process of performing the APA are also addressed. Feedback in the form of practical suggestions for improving the clarity of the acquisition path step assessment forms and a proposal for software support are also included. (author)

  7. Perseus in Flight

    Science.gov (United States)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  8. Prediction of crack paths in WC-Co alloys

    International Nuclear Information System (INIS)

    Spiegler, R.; Fischmeister, H.F.

    1992-01-01

    This paper reports on a crack propagating through the WC-o microstructure which has to choose between paths along the binder/carbide interface and paths across binder regions. The latter paths are selected when the crack enters a binder region at a large angle from the nearest carbide interface, while the interface paths are preferred by cracks entering at a small angle. A critical angle can be defined for the switch from one type of crack path to the other. Empirical data for the area fractions of the two crack paths in widely different WC-Co alloys can be accounted for by a single critical angle, var-phi c = 25 degrees. Finite element analysis of the stress field in a region of binder enclosed between carbide grains shows that the preferred site for the growth of stress-induced microvoids will move from the carbide grain flanks to the interior of the binder region when the entry angle of the crack exceeds 24 degrees. Thus the observation of a critical angle deciding the crack path is verified by the stress field analysis and given a physical explanation in terms of the most likely site for microvoid formation

  9. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  10. Quantum cosmology based on discrete Feynman paths

    International Nuclear Information System (INIS)

    Chew, Geoffrey F.

    2002-01-01

    Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''

  11. Path dependence and creation

    DEFF Research Database (Denmark)

    Garud, Raghu; Karnøe, Peter

    This edited volume stems from a conference held in Copenhagen that the authors ran in August of 1997. The authors, aware of the recent work in evolutionary theory and the science of chaos and complexity, challenge the sometimes deterministic flavour of this work. They are interested in uncovering...... the place of agency in these theories that take history so seriously. In the end, they are as interested in path creation and destruction as they are in path dependence. This book is compiled of both theoretical and empirical writing. It shows relatively well-known industries such as the automobile...

  12. Strain path and work-hardening behavior of brass

    International Nuclear Information System (INIS)

    Sakharova, N.A.; Fernandes, J.V.; Vieira, M.F.

    2009-01-01

    Plastic straining in metal forming usually includes changes of strain path, which are frequently not taken into account in the analysis of forming processes. Moreover, strain path change can significantly affect the mechanical behavior and microstructural evolution of the material. For this reason, a combination of several simple loading test sequences is an effective way to investigate the dislocation microstructure of sheet metals under such forming conditions. Pure tension and rolling strain paths and rolling-tension strain path sequences were performed on brass sheets. A study of mechanical behavior and microstructural evolution during the simple and the complex strain paths was carried out, within a wide range of strain values. The appearance and development of deformation twinning was evident. It was shown that strain path change promotes the onset of premature twinning. The work-hardening behavior is discussed in terms of the twinning and dislocation microstructure evolution, as revealed by transmission electron microscopy

  13. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    Science.gov (United States)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.

  14. Capital Flight and Economic Performance

    OpenAIRE

    Beja, Edsel Jr.

    2007-01-01

    Capital flight aggravates resource constraints and contributes to undermine long-term economic growth. Counterfactual calculations on the Philippines suggest that capital flight contributed to lower the quality of long-term economic growth. Sustained capital flight over three decades means that capital flight had a role for the Philippines to lose the opportunities to achieve economic takeoff. Unless decisive policy actions are taken up to address enduring capital flight and manage the macroe...

  15. Recent estimates of capital flight

    OpenAIRE

    Claessens, Stijn; Naude, David

    1993-01-01

    Researchers and policymakers have in recent years paid considerable attention to the phenomenon of capital flight. Researchers have focused on four questions: What concept should be used to measure capital flight? What figure for capital flight will emerge, using this measure? Can the occurrence and magnitude of capital flight be explained by certain (economic) variables? What policy changes can be useful to reverse capital flight? The authors focus strictly on presenting estimates of capital...

  16. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes.

    Directory of Open Access Journals (Sweden)

    Adam E Duerr

    Full Text Available To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring. It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.

  17. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes.

    Science.gov (United States)

    Duerr, Adam E; Miller, Tricia A; Lanzone, Michael; Brandes, Dave; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Katzner, Todd

    2012-01-01

    To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.

  18. The relationship of certified flight instructors' emotional intelligence levels on flight student advancement

    Science.gov (United States)

    Hokeness, Mark Merrill

    Aviation researchers estimate airline companies will require nearly 500,000 pilots in the next 20 years. The role of a Certified Flight Instructor (CFI) is to move student pilots to professional pilots with training typically conducted in one-on-one student and instructor sessions. The knowledge of aviation, professionalism as a teacher, and the CFI’s interpersonal skills can directly affect the successes and advancement of a student pilot. A new and emerging assessment of people skills is known as emotional intelligence (EI). The EI of the CFI can and will affect a flight students’ learning experiences. With knowledge of emotional intelligence and its effect on flight training, student pilot dropouts from aviation may be reduced, thus helping to ensure an adequate supply of pilots. Without pilots, the growth of the commercial aviation industry will be restricted. This mixed method research study established the correlation between a CFI’s measured EI levels and the advancement of flight students. The elements contributing to a CFI’s EI level were not found to be teaching or flight-related experiences, suggesting other life factors are drawn upon by the CFI and are reflected in their emotional intelligence levels presented to flight students. Students respond positively to CFIs with higher levels of emotional intelligence. Awareness of EI skills by both the CFI and flight student contribute to flight student successes and advancement.

  19. Insect flight muscle metabolism

    NARCIS (Netherlands)

    Horst, D.J. van der; Beenakkers, A.M.Th.; Marrewijk, W.J.A. van

    1984-01-01

    The flight of an insect is of a very complicated and extremely energy-demanding nature. Wingbeat frequency may differ between various species but values up to 1000 Hz have been measured. Consequently metabolic activity may be very high during flight and the transition from rest to flight is

  20. An experimental study of transmission, reflection and scattering of sound in a free jet flight simulation facility and comparison with theory

    Science.gov (United States)

    Ahuja, K. K.; Tanna, H. K.; Tester, B. J.

    1981-01-01

    When a free jet (or open jet) is used as a wind tunnel to simulate the effects of flight on model noise sources, it is necessary to calibrate out the effects of the free jet shear layer on the transmitted sound, since the shear layer is absent in the real flight case. In this paper, a theoretical calibration procedure for this purpose is first summarized; following this, the results of an experimental program, designed to test the validity of the various components of the calibration procedure, are described. The experiments are conducted by using a point sound source located at various axial positions within the free jet potential core. By using broadband excitation and cross-correlation methods, the angle changes associated with ray paths across the shear layer are first established. Measurements are then made simultaneously inside and outside the free jet along the proper ray paths to determine the amplitude changes across the shear layer. It is shown that both the angle and amplitude changes can be predicted accurately by theory. It is also found that internal reflection at the shear layer is significant only for large ray angles in the forward quadrant where total internal reflection occurs. Finally, the effects of sound absorption and scattering by the shear layer turbulence are also examined experimentally.

  1. 14 CFR 63.23 - Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered...

    Science.gov (United States)

    2010-01-01

    ... purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil airplanes... flight engineer or flight navigator duties on a civil airplane of U.S. registry, leased to a person not a... certificate holder is performing flight engineer or flight navigator duties on the U.S.-registered civil...

  2. Perfect discretization of path integrals

    OpenAIRE

    Steinhaus, Sebastian

    2011-01-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discu...

  3. 78 FR 22554 - Nationwide Differential Global Positioning System (NDGPS)

    Science.gov (United States)

    2013-04-16

    ... accuracy and integrity of the Global Positioning System (GPS) derived positions for surface transportation..., contact LT Luke Byrd, Coast Guard, NDGPS Program Manager, telephone 202-372-1547 or email Robert.l.byrd... The NDGPS augments GPS with an additional differential correction signal. Differential GPS (DGPS...

  4. 28 CFR 36.403 - Alterations: Path of travel.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Alterations: Path of travel. 36.403... Alterations: Path of travel. (a) General. An alteration that affects or could affect the usability of or... the maximum extent feasible, the path of travel to the altered area and the restrooms, telephones, and...

  5. Paths and cycles in colored graphs

    NARCIS (Netherlands)

    Li, Xueliang; Zhang, Shenggui; Hurink, Johann L.; Pickl, Stefan; Broersma, Haitze J.; Faigle, U.

    2001-01-01

    Let G be an (edge-)colored graph. A path (cycle) is called monochromatic if all the edges of it have the same color, and is called heterochromatic if all the edges of it have different colors. In this note, some sufficient conditions for the existence of monochromatic and heterochromatic paths and

  6. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... they are capable of withstanding the effects of a fire. Engine vibration isolators must incorporate...

  7. Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?

    International Nuclear Information System (INIS)

    Penney, Mark D; Koh, Dax Enshan; Spekkens, Robert W

    2017-01-01

    It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits. (paper)

  8. The formal path integral and quantum mechanics

    International Nuclear Information System (INIS)

    Johnson-Freyd, Theo

    2010-01-01

    Given an arbitrary Lagrangian function on R d and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.

  9. A New Method of Global Path Planning for AGV

    Institute of Scientific and Technical Information of China (English)

    SHI En-xiu; HUANG Yu-mei

    2006-01-01

    Path planning is important in the research of a mobile robot (MR). Methods for it have been used in different applications. An automated guided vehicle(AGV), which is a kind of MR, is used in a flexible manufacturing system(FMS). Path planning for it is essential to improve the efficiency of FMS. A new method was proposed with known obstacle space FMS in this paper. FMS is described by the Augmented Pos Matrix of a Machine (APMM) and Relative Pos Matrix of Machines (RPMM), which is smaller. The optimum path can be obtained according to the probability of the path and the maximal probability path. The suggested algorithm of path planning was good performance through simulation result: simplicity, saving time and reliability.

  10. Phase-space path-integral calculation of the Wigner function

    International Nuclear Information System (INIS)

    Samson, J H

    2003-01-01

    The Wigner function W(q, p) is formulated as a phase-space path integral, whereby its sign oscillations can be seen to follow from interference between the geometrical phases of the paths. The approach has similarities to the path-centroid method in the configuration-space path integral. Paths can be classified by the midpoint of their ends; short paths where the midpoint is close to (q, p) and which lie in regions of low energy (low P function of the Hamiltonian) will dominate, and the enclosed area will determine the sign of the Wigner function. As a demonstration, the method is applied to a sequence of density matrices interpolating between a Poissonian number distribution and a number state, each member of which can be represented exactly by a discretized path integral with a finite number of vertices. Saddle-point evaluation of these integrals recovers (up to a constant factor) the WKB approximation to the Wigner function of a number state

  11. Aviator's Fluid Balance During Military Flight.

    Science.gov (United States)

    Levkovsky, Anna; Abot-Barkan, Sivan; Chapnik, Leah; Doron, Omer; Levy, Yuval; Heled, Yuval; Gordon, Barak

    2018-02-01

    A loss of 1% or more of bodyweight due to dehydration has a negative effect on cognitive performance, which could critically affect flight safety. There is no mention in the literature concerning the amounts of military pilots' fluid loss during flight. The aim of this study was to quantify fluid loss of pilots during military flight. There were 48 aviators (mean age 23.9) from the Israeli Air Force who participated in the study, which included 104 training flights in various flight platforms. Bodyweight, urine specific gravity, and environmental heat strain were measured before and after each flight. Fluid loss was calculated as the weight differences before and after the flight. We used a univariate and one-way ANOVA to analyze the effect of different variables on the fluid loss. The mean fluid loss rate was 462 ml · h-1. The results varied among different aircraft platforms and depended on flight duration. Blackhawk pilots lost the highest amount of fluids per flight, albeit had longer flights (mean 108 min compared to 35.5 in fighter jets). Jet fighter pilots had the highest rate of fluid loss per hour of flight (up to 692 ml, extrapolated). Overall, at 11 flights (11%) aircrew completed their flight with a meaningful fluid loss. We conclude that military flights may be associated with significant amount of fluid loss among aircrew.Levkovsky A, Abot-Barkan S, Chapnik L, Doron O, Levy Y, Heled Y, Gordon B. Aviator's fluid balance during military flight. Aerosp Med Hum Perform. 2018; 89(2):9498.

  12. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  13. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  14. Multi-scale path planning for reduced environmental impact of aviation

    Science.gov (United States)

    Campbell, Scot Edward

    A future air traffic management system capable of rerouting aircraft trajectories in real-time in response to transient and evolving events would result in increased aircraft efficiency, better utilization of the airspace, and decreased environmental impact. Mixed-integer linear programming (MILP) is used within a receding horizon framework to form aircraft trajectories which mitigate persistent contrail formation, avoid areas of convective weather, and seek a minimum fuel solution. Areas conducive to persistent contrail formation and areas of convective weather occur at disparate temporal and spatial scales, and thereby require the receding horizon controller to be adaptable to multi-scale events. In response, a novel adaptable receding horizon controller was developed to account for multi-scale disturbances, as well as generate trajectories using both a penalty function approach for obstacle penetration and hard obstacle avoidance constraints. A realistic aircraft fuel burn model based on aircraft data and engine performance simulations is used to form the cost function in the MILP optimization. The performance of the receding horizon algorithm is tested through simulation. A scalability analysis of the algorithm is conducted to ensure the tractability of the path planner. The adaptable receding horizon algorithm is shown to successfully negotiate multi-scale environments with performance exceeding static receding horizon solutions. The path planner is applied to realistic scenarios involving real atmospheric data. A single flight example for persistent contrail mitigation shows that fuel burn increases 1.48% when approximately 50% of persistent contrails are avoided, but 6.19% when 100% of persistent contrails are avoided. Persistent contrail mitigating trajectories are generated for multiple days of data, and the research shows that 58% of persistent contrails are avoided with a 0.48% increase in fuel consumption when averaged over a year.

  15. Modeling and Solving the Train Pathing Problem

    Directory of Open Access Journals (Sweden)

    Chuen-Yih Chen

    2009-04-01

    Full Text Available In a railroad system, train pathing is concerned with the assignment of trains to links and tracks, and train timetabling allocates time slots to trains. In this paper, we present an optimization heuristic to solve the train pathing and timetabling problem. This heuristic allows the dwell time of trains in a station or link to be dependent on the assigned tracks. It also allows the minimum clearance time between the trains to depend on their relative status. The heuristic generates a number of alternative paths for each train service in the initialization phase. Then it uses a neighborhood search approach to find good feasible combinations of these paths. A linear program is developed to evaluate the quality of each combination that is encountered. Numerical examples are provided.

  16. IRVE-II Post-Flight Trajectory Reconstruction

    Science.gov (United States)

    O'Keefe, Stephen A.; Bose, David M.

    2010-01-01

    NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations

  17. Special cases of the quadratic shortest path problem

    NARCIS (Netherlands)

    Sotirov, Renata; Hu, Hao

    2017-01-01

    The quadratic shortest path problem (QSPP) is the problem of finding a path with prespecified start vertex s and end vertex t in a digraph such that the sum of weights of arcs and the sum of interaction costs over all pairs of arcs on the path is minimized. We first consider a variant of the QSPP

  18. Differential neural network configuration during human path integration

    Science.gov (United States)

    Arnold, Aiden E. G. F; Burles, Ford; Bray, Signe; Levy, Richard M.; Iaria, Giuseppe

    2014-01-01

    Path integration is a fundamental skill for navigation in both humans and animals. Despite recent advances in unraveling the neural basis of path integration in animal models, relatively little is known about how path integration operates at a neural level in humans. Previous attempts to characterize the neural mechanisms used by humans to visually path integrate have suggested a central role of the hippocampus in allowing accurate performance, broadly resembling results from animal data. However, in recent years both the central role of the hippocampus and the perspective that animals and humans share similar neural mechanisms for path integration has come into question. The present study uses a data driven analysis to investigate the neural systems engaged during visual path integration in humans, allowing for an unbiased estimate of neural activity across the entire brain. Our results suggest that humans employ common task control, attention and spatial working memory systems across a frontoparietal network during path integration. However, individuals differed in how these systems are configured into functional networks. High performing individuals were found to more broadly express spatial working memory systems in prefrontal cortex, while low performing individuals engaged an allocentric memory system based primarily in the medial occipito-temporal region. These findings suggest that visual path integration in humans over short distances can operate through a spatial working memory system engaging primarily the prefrontal cortex and that the differential configuration of memory systems recruited by task control networks may help explain individual biases in spatial learning strategies. PMID:24808849

  19. Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean

    2017-01-01

    As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag

  20. A Key Event Path Analysis Approach for Integrated Systems

    Directory of Open Access Journals (Sweden)

    Jingjing Liao

    2012-01-01

    Full Text Available By studying the key event paths of probabilistic event structure graphs (PESGs, a key event path analysis approach for integrated system models is proposed. According to translation rules concluded from integrated system architecture descriptions, the corresponding PESGs are constructed from the colored Petri Net (CPN models. Then the definitions of cycle event paths, sequence event paths, and key event paths are given. Whereafter based on the statistic results after the simulation of CPN models, key event paths are found out by the sensitive analysis approach. This approach focuses on the logic structures of CPN models, which is reliable and could be the basis of structured analysis for discrete event systems. An example of radar model is given to characterize the application of this approach, and the results are worthy of trust.

  1. Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators

    Science.gov (United States)

    2017-07-07

    IFR ) IFR Instrument Flight Rules LED Light Emitting Diode LEP Laser Eye Protection MAPP Model Assessing Pilot Performance OD Optical Density...LEP and then use them to assess the impact of wearing LEP in a flight simulator environment. 2 Pending Distribution, A: Approved for public...2005). LEP has the potential to alter distinct characteristics of the visual environment, giving rise to concerns over the impact on flight tasks and

  2. Quickly Planning TF/TA2 Trajectory by Artificial Immune Algorithm

    Directory of Open Access Journals (Sweden)

    LIU Lifeng

    2015-04-01

    Full Text Available Flight path planning by artificial immune algorithm approach met the requirements of aircraft's flyability and operation is proposed for the problem of single and double TF/TA2 flight path planning. Punishment function (affinity function with comprehensive 3D threat information is designed. A comprehensive threat model is formed including dynamic and static threats and no-fly-zone. Accordingly, single and dual flight paths are planned by AIA, which have been compared with the paths by GA. The results show that, GA's planned a quick and longer path compared under simple threat environment; in complex environments, GA has high failure rate (greater than 95% for single aircraft, but it is failed for double aircrafts. For the single and double aircrafts, AIA can provides one optimal and more candidate optimal flight paths.

  3. Comparison of tool feed influence in CNC polishing between a novel circular-random path and other pseudo-random paths.

    Science.gov (United States)

    Takizawa, Ken; Beaucamp, Anthony

    2017-09-18

    A new category of circular pseudo-random paths is proposed in order to suppress repetitive patterns and improve surface waviness on ultra-precision polished surfaces. Random paths in prior research had many corners, therefore deceleration of the polishing tool affected the surface waviness. The new random path can suppress velocity changes of the polishing tool and thus restrict degradation of the surface waviness, making it suitable for applications with stringent mid-spatial-frequency requirements such as photomask blanks for EUV lithography.

  4. Wind Corrections in Flight Path Planning

    Directory of Open Access Journals (Sweden)

    Martin Selecký

    2013-05-01

    Full Text Available Abstract When operating autonomous unmanned aerial vehicles (UAVs in real environments it is necessary to deal with the effects of wind that causes the aircraft to drift in a certain direction. In such conditions it is hard or even impossible for UAVs with a bounded turning rate to follow certain trajectories. We designed a method based on an Accelerated A* algorithm that allows the trajectory planner to take the wind effects into account and to generate states that are reachable by UAV. This method was tested on hardware UAV and the reachability of its generated trajectories was compared to the trajectories computed by the original Accelerated A*.

  5. IceBridge Mission Flight Reports

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Mission Flight Reports data set contains flight reports from NASA Operation IceBridge Greenland, Arctic, Antarctic, and Alaska missions. Flight reports...

  6. Evaluation of Calcine Disposition Path Forward

    International Nuclear Information System (INIS)

    Birrer, S.A.; Heiser, M.B.

    2003-01-01

    This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward

  7. Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search.

    Directory of Open Access Journals (Sweden)

    Andy M Reynolds

    2007-04-01

    Full Text Available During their trajectories in still air, fruit flies (Drosophila melanogaster explore their landscape using a series of straight flight paths punctuated by rapid 90 degrees body-saccades [1]. Some saccades are triggered by visual expansion associated with collision avoidance. Yet many saccades are not triggered by visual cues, but rather appear spontaneously. Our analysis reveals that the control of these visually independent saccades and the flight intervals between them constitute an optimal scale-free active searching strategy. Two characteristics of mathematical optimality that are apparent during free-flight in Drosophila are inter-saccade interval lengths distributed according to an inverse square law, which does not vary across landscape scale, and 90 degrees saccade angles, which increase the likelihood that territory will be revisited and thereby reduce the likelihood that near-by targets will be missed. We also show that searching is intermittent, such that active searching phases randomly alternate with relocation phases. Behaviorally, this intermittency is reflected in frequently occurring short, slow speed inter-saccade intervals randomly alternating with rarer, longer, faster inter-saccade intervals. Searching patterns that scale similarly across orders of magnitude of length (i.e., scale-free have been revealed in animals as diverse as microzooplankton, bumblebees, albatrosses, and spider monkeys, but these do not appear to be optimised with respect to turning angle, whereas Drosophila free-flight search does. Also, intermittent searching patterns, such as those reported here for Drosophila, have been observed in foragers such as planktivorous fish and ground foraging birds. Our results with freely flying Drosophila may constitute the first reported example of searching behaviour that is both scale-free and intermittent.

  8. Path probabilities of continuous time random walks

    International Nuclear Information System (INIS)

    Eule, Stephan; Friedrich, Rudolf

    2014-01-01

    Employing the path integral formulation of a broad class of anomalous diffusion processes, we derive the exact relations for the path probability densities of these processes. In particular, we obtain a closed analytical solution for the path probability distribution of a Continuous Time Random Walk (CTRW) process. This solution is given in terms of its waiting time distribution and short time propagator of the corresponding random walk as a solution of a Dyson equation. Applying our analytical solution we derive generalized Feynman–Kac formulae. (paper)

  9. Path-integral approach to resonant electron-molecule scattering

    International Nuclear Information System (INIS)

    Winterstetter, M.; Domcke, W.

    1993-01-01

    A path-integral formulation of resonant electron-molecule scattering is developed within the framework of the projection-operator formalism of scattering theory. The formation and decay of resonances is treated in real time as a quantum-mechanical electronic-tunneling process, modified by the coupling of the electronic motion with the nuclear degrees of freedom. It is shown that the electronic continuum can be summed over in the path-integral formulation, resulting formally in the path integral for an effective two-state system with coupling to vibrations. The harmonic-oscillator approximation is adopted for the vibrational motion in the present work. Approximation methods are introduced which render the numerical evaluation of the sum over paths feasible for up to ∼10 3 elementary time slices. The theory is numerically realized for simple but nontrivial models representing the 2 Π g d-wave shape resonance in e - +N 2 collisions and the 2 Σ u + p-wave shape resonance in e - +H 2 collisions, respectively. The accuracy of the path-integral results is assessed by comparison with exact numerical reference data for these models. The essential virtue of the path-integral approach is the fact that the computational effort scales at most linearly with the number of vibrational degrees of freedom. The path-integral method is thus well suited to treat electron collisions with polyatomic molecules and molecular aggregates

  10. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  11. The flights before the flight - An overview of shuttle astronaut training

    Science.gov (United States)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  12. Quadcopter Path Following Control Design Using Output Feedback with Command Generator Tracker LOS Based At Square Path

    Science.gov (United States)

    Nugraha, A. T.; Agustinah, T.

    2018-01-01

    Quadcopter an unstable system, underactuated and nonlinear in quadcopter control research developments become an important focus of attention. In this study, following the path control method for position on the X and Y axis, used structure-Generator Tracker Command (CGT) is tested. Attitude control and position feedback quadcopter is compared using the optimal output. The addition of the H∞ performance optimal output feedback control is used to maintain the stability and robustness of quadcopter. Iterative numerical techniques Linear Matrix Inequality (LMI) is used to find the gain controller. The following path control problems is solved using the method of LQ regulators with output feedback. Simulations show that the control system can follow the paths that have been defined in the form of a reference signal square shape. The result of the simulation suggest that the method which used can bring the yaw angle at the expected value algorithm. Quadcopter can do automatically following path with cross track error mean X=0.5 m and Y=0.2 m.

  13. Bosonic path integral for spin-1/2 particles

    International Nuclear Information System (INIS)

    Jacobson, T.

    1989-01-01

    The 3D Dirac propagator is expressed as a path integral over curves of commuting two-component spinors. This is related to the path integral recently employed by Polyakov to demonstrate Fermi-Bose transmutation for solitons in the gauged CP 1 model with Chern-Simons term. Several difficulties concerning the latter path integral are identified and corrected from our point of view. (orig.)

  14. Forces in Motzkin paths in a wedge

    International Nuclear Information System (INIS)

    Janse van Rensburg, E J

    2006-01-01

    Entropic forces in models of Motzkin paths in a wedge geometry are considered as models of forces in polymers in confined geometries. A Motzkin path in the square lattice is a path from the origin to a point in the line Y = X while it never visits sites below this line, and it is constrained to give unit length steps only in the north and east directions and steps of length √2 in the north-east direction. Motzkin path models may be generalized to ensembles of NE-oriented paths above the line Y = rX, where r > 0 is an irrational number. These are paths giving east, north and north-east steps from the origin in the square lattice, and confined to the r-wedge formed by the Y-axis and the line Y = rX. The generating function g r of these paths is not known, but if r > 1, then I determine its radius of convergence to be t r = min (r-1)/r≤y≤r/(r+1) [y y (1-r(1-y)) 1-r(1-y) (r(1-y)-y) r(1-y)-y ] and if r is an element of (0, 1), then t r = 1/3. The entropic force the path exerts on the line Y rX may be computed from this. An asymptotic expression for the force for large values of r is given by F(r) = log(2r)/r 2 - (1+2log(2r))/2r 3 + O (log(2r)/r 4 ). In terms of the vertex angle α of the r-wedge, the moment of the force about the origin has leading terms F(α) log(2/α) - (α/2)(1+2log(2/α)) + O(α 2 log(2/α)) as α → 0 + and F(α) = 0 if α is element of [π/4, π/2]. Moreover, numerical integration of the force shows that the total work done by closing the wedge is 1.085 07... lattice units. An alternative ensemble of NE-oriented paths may be defined by slightly changing the generating function g r . In this model, it is possible to determine closed-form expressions for the limiting free energy and the force. The leading term in an asymptotic expansions for this force agrees with the leading term in the asymptotic expansion of the above model, and the subleading term only differs by a factor of 2

  15. A middle path for electricity options and sustainable development

    International Nuclear Information System (INIS)

    Mills, J.I.; Herring, J.S.

    1994-01-01

    In a landmark article in Foreign Affairs in October 1976, Amory Lovins presented his vision of two vastly different and seemingly irreconcilable paths that energy provision might take into the future. One path was a ''hard'' path, characterized by extensive development of large, capital-intensive centralized electrical generating facilities and their peripherals, designed with little consideration given to the matching of these facilities to the requirements of the end-use needs. The second, ''soft'' path was characterized by energy technologies that are diverse, operate on renewable energy flows, are relatively simple, less capital-intensive, and matched in scale and energy quality to end-use needs. One of the most controversial arguments in the Lovins' paper was that the ''hard'' and ''soft'' paths are culturally and institutionally antagonistic. In retrospect, it seems this argument was self-fulfilling, for the history of the energy debate throughout the developed world since the appearance of the Lovins' article has been marked by an either-or antagonism that has left little room for serious discussion of a ''middle-path.'' In this paper, we argue that ''middle-path,'' paved with elements of both the soft and hard, is especially suited for developing countries, since they do not now carry the burden of an existing and extensive ''hard path'' energy infrastructure

  16. Computing Diffeomorphic Paths for Large Motion Interpolation.

    Science.gov (United States)

    Seo, Dohyung; Jeffrey, Ho; Vemuri, Baba C

    2013-06-01

    In this paper, we introduce a novel framework for computing a path of diffeomorphisms between a pair of input diffeomorphisms. Direct computation of a geodesic path on the space of diffeomorphisms Diff (Ω) is difficult, and it can be attributed mainly to the infinite dimensionality of Diff (Ω). Our proposed framework, to some degree, bypasses this difficulty using the quotient map of Diff (Ω) to the quotient space Diff ( M )/ Diff ( M ) μ obtained by quotienting out the subgroup of volume-preserving diffeomorphisms Diff ( M ) μ . This quotient space was recently identified as the unit sphere in a Hilbert space in mathematics literature, a space with well-known geometric properties. Our framework leverages this recent result by computing the diffeomorphic path in two stages. First, we project the given diffeomorphism pair onto this sphere and then compute the geodesic path between these projected points. Second, we lift the geodesic on the sphere back to the space of diffeomerphisms, by solving a quadratic programming problem with bilinear constraints using the augmented Lagrangian technique with penalty terms. In this way, we can estimate the path of diffeomorphisms, first, staying in the space of diffeomorphisms, and second, preserving shapes/volumes in the deformed images along the path as much as possible. We have applied our framework to interpolate intermediate frames of frame-sub-sampled video sequences. In the reported experiments, our approach compares favorably with the popular Large Deformation Diffeomorphic Metric Mapping framework (LDDMM).

  17. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Part 1: Flight software equations, flight test description and selected flight test data

    Science.gov (United States)

    Hueschen, R. M.

    1986-01-01

    Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating Systems (ATOPS) Transportation Research Vehicle (TSRV) -- a modified Boeing 737 aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the microwave landing system (MLS) installation on runway 22. This report describes the flight software equations of the DIALS which was designed using modern control theory direct-digital design methods and employed a constant gain Kalman filter. Selected flight test performance data is presented for localizer (runway centerline) capture and track at various intercept angles, for glideslope capture and track of 3, 4.5, and 5 degree glideslopes, for the decrab maneuver, and for the flare maneuver. Data is also presented to illustrate the system performance in the presence of cross, gust, and shear winds. The mean and standard deviation of the peak position errors for localizer capture were, respectively, 24 feet and 26 feet. For mild wind conditions, glideslope and localizer tracking position errors did not exceed, respectively, 5 and 20 feet. For gusty wind conditions (8 to 10 knots), these errors were, respectively, 10 and 30 feet. Ten hands off automatic lands were performed. The standard deviation of the touchdown position and velocity errors from the mean values were, respectively, 244 feet and 0.7 feet/sec.

  18. Path integral discussion for Smorodinsky-Winternitz potentials. Pt. 1

    International Nuclear Information System (INIS)

    Grosche, C.; Pogosyan, G.S.; Sissakian, A.N.

    1994-02-01

    Path integral formulations for the Smorodinsky-Winternitz potentials in two- and three-dimensional Euclidean space are presented. We mention all coordinate systems which separate the Smorodinsky-Winternitz potentials and state the corresponding path integral formulations. Whereas in many coordinate systems an explicit path integralformulation is not possible, we list in all soluble cases the path integral evaluations explicity in terms of the propagators and the spectral expansions into the wave-functions. (orig.)

  19. Theseus Landing Following Maiden Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it comes in for a landing on Rogers Dry Lake after its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able

  20. Preparation and tomographic reconstruction of an arbitrary single-photon path qubit

    International Nuclear Information System (INIS)

    Baek, So-Young; Kim, Yoon-Ho

    2011-01-01

    We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. The arbitrary single-photon path qubit is prepared losslessly by passing the heralded single-photon state from spontaneous parametric down-conversion through variable beam splitter. Quantum state tomography of the single-photon path qubit is implemented by introducing path-projection measurements based on the first-order single-photon quantum interference. Using the state preparation and path-projection measurements methods for the single-photon path qubit, we demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity. -- Highlights: → We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. → We implement path-projection measurements based on the first-order single-photon quantum interference. → We demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity.

  1. Walking paths to and from a goal differ: on the role of bearing angle in the formation of human locomotion paths.

    Directory of Open Access Journals (Sweden)

    Manish Sreenivasa

    Full Text Available The path that humans take while walking to a goal is the result of a cognitive process modulated by the perception of the environment and physiological constraints. The path shape and timing implicitly embeds aspects of the architecture behind this process. Here, locomotion paths were investigated during a simple task of walking to and from a goal, by looking at the evolution of the position of the human on a horizontal (x,y plane. We found that the path while walking to a goal was not the same as that while returning from it. Forward-return paths were systematically separated by 0.5-1.9m, or about 5% of the goal distance. We show that this path separation occurs as a consequence of anticipating the desired body orientation at the goal while keeping the target in view. The magnitude of this separation was strongly influenced by the bearing angle (difference between body orientation and angle to goal and the final orientation imposed at the goal. This phenomenon highlights the impact of a trade-off between a directional perceptual apparatus-eyes in the head on the shoulders-and and physiological limitations, in the formation of human locomotion paths. Our results give an insight into the influence of environmental and perceptual variables on human locomotion and provide a basis for further mathematical study of these mechanisms.

  2. Path integral representations on the complex sphere

    International Nuclear Information System (INIS)

    Grosche, C.

    2007-08-01

    In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S 3C . The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

  3. Social network analysis using k-Path centrality method

    Science.gov (United States)

    Taniarza, Natya; Adiwijaya; Maharani, Warih

    2018-03-01

    k-Path centrality is deemed as one of the effective methods to be applied in centrality measurement in which the influential node is estimated as the node that is being passed by information path frequently. Regarding this, k-Path centrality has been employed in the analysis of this paper specifically by adapting random-algorithm approach in order to: (1) determine the influential user’s ranking in a social media Twitter; and (2) ascertain the influence of parameter α in the numeration of k-Path centrality. According to the analysis, the findings showed that the method of k-Path centrality with random-algorithm approach can be used to determine user’s ranking which influences in the dissemination of information in Twitter. Furthermore, the findings also showed that parameter α influenced the duration and the ranking results: the less the α value, the longer the duration, yet the ranking results were more stable.

  4. Path Planning Method in Multi-obstacle Marine Environment

    Science.gov (United States)

    Zhang, Jinpeng; Sun, Hanxv

    2017-12-01

    In this paper, an improved algorithm for particle swarm optimization is proposed for the application of underwater robot in the complex marine environment. Not only did consider to avoid obstacles when path planning, but also considered the current direction and the size effect on the performance of the robot dynamics. The algorithm uses the trunk binary tree structure to construct the path search space and A * heuristic search method is used in the search space to find a evaluation standard path. Then the particle swarm algorithm to optimize the path by adjusting evaluation function, which makes the underwater robot in the current navigation easier to control, and consume less energy.

  5. Lifetime and Path Length of the Virtual Particle

    International Nuclear Information System (INIS)

    Lyuboshitz, V.L.; Lyuboshitz, V.V.

    2005-01-01

    The concepts of the lifetime and path length of a virtual particle are introduced. It is shown that, near the mass surface of the real particle, these quantities constitute a 4-vector. At very high energies, the virtual particle can propagate over considerable (even macroscopic) distances. The formulas for the lifetime and path length of an ultrarelativistic virtual electron in the process of bremsstrahlung in the Coulomb field of a nucleus are obtained. The lifetime and path length of the virtual photon at its conversion into an electron-positron pair are discussed. The connection between the path length of the virtual particle and the coherence length (formation length) is analyzed

  6. Cooperative random Levy flight searches and the flight patterns of honeybees

    International Nuclear Information System (INIS)

    Reynolds, A.M.

    2006-01-01

    The most efficient Levy flight (scale-free) searching strategy for N independent searchers to adopt when target sites are randomly and sparsely distributed is identified. For N=1, it is well known that the optimal searching strategy is attained when μ=2, where the exponent μ characterizes the Levy distribution, P(l)=l -μ , of flight-lengths. For N>1, the optimal searching strategy is attained as μ->1. It is suggested that the orientation flights of honeybees can be understood within the context of such an optimal cooperative random Levy flight searching strategy. Upon returning to their hive after surveying a landscape honeybees can exchange information about the locations of target sites through the waggle dance. In accordance with observations it is predicted that the waggle dance can be disrupted without noticeable influence on a hive's ability to maintain weight when forage is plentiful

  7. Feasible Path Generation Using Bezier Curves for Car-Like Vehicle

    Science.gov (United States)

    Latip, Nor Badariyah Abdul; Omar, Rosli

    2017-08-01

    When planning a collision-free path for an autonomous vehicle, the main criteria that have to be considered are the shortest distance, lower computation time and completeness, i.e. a path can be found if one exists. Besides that, a feasible path for the autonomous vehicle is also crucial to guarantee that the vehicle can reach the target destination considering its kinematic constraints such as non-holonomic and minimum turning radius. In order to address these constraints, Bezier curves is applied. In this paper, Bezier curves are modeled and simulated using Matlab software and the feasibility of the resulting path is analyzed. Bezier curve is derived from a piece-wise linear pre-planned path. It is found that the Bezier curves has the capability of making the planned path feasible and could be embedded in a path planning algorithm for an autonomous vehicle with kinematic constraints. It is concluded that the length of segments of the pre-planned path have to be greater than a nominal value, derived from the vehicle wheelbase, maximum steering angle and maximum speed to ensure the path for the autonomous car is feasible.

  8. X-36 in Flight over Mojave Desert during 5th Flight

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 Tailless Fighter Agility Research Aircraft contrast sharply with the desert floor as the remotely-piloted aircraft flies over the Mojave Desert on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  9. Points-Based Safe Path Planning of Continuum Robots

    Directory of Open Access Journals (Sweden)

    Khuram Shahzad

    2015-07-01

    Full Text Available Continuum robots exhibit great potential in a number of challenging applications where traditional rigid link robots pose certain limitations, e.g., working in unstructured environments. In order to enable the usage of continuum robots in safety-critical applications, such as surgery and nuclear decontamination, it is extremely important to ensure a safe path for the robot's movement. Existing algorithms for continuum robot path planning have certain limitations that need to be addressed. These include the fact that none of the algorithms provide safety assurance parameters and control for path planning. They are computationally expensive, applicable to a specific type of continuum robots, and mostly they do not incorporate design and kinematics constraints. In this paper, we propose a points-based path planning (PoPP algorithm for continuum robots that computes the path by imposing safety constraints and improves upon the limitations of existing approaches. In the algorithm, we exploit the constant curvature-bending property of continuum robots in their path planning process. The algorithm is computationally efficient and provides a good tradeoff between accuracy and efficiency that can be implemented to enable the safety-critical application of continuum robots. This algorithm also provides information regarding path volume and flexibility in movement. Simulation results confirm that the algorithm possesses promising potential for all types of continuum robots (following the constant curvature-bending property. We believe that this effectively balances the desired safety and efficiency requirements.

  10. Path integral measure for first-order and metric gravities

    International Nuclear Information System (INIS)

    Aros, Rodrigo; Contreras, Mauricio; Zanelli, Jorge

    2003-01-01

    The equivalence between the path integrals for first-order gravity and the standard torsion-free, metric gravity in 3 + 1 dimensions is analysed. Starting with the path integral for first-order gravity, the correct measure for the path integral of the metric theory is obtained

  11. Extremal and Degree Conditions for Path Extendability in Digraphs

    NARCIS (Netherlands)

    Zhang, Zan-Bo; Zhang, Xiaoyan; Broersma, Hajo; Lou, Dingjun

    2017-01-01

    In the study of cycles and paths, the meta-conjecture of Bondy that sufficient conditions for Hamiltonicity often imply pancyclicity has motivated research on the existence of cycles and paths of many lengths. Hendry further introduced the stronger concepts of cycle extendability and path

  12. Differential flight responses of spring staging Teal Anas crecca and Wigeon A. penelope to human vs. natural disturbance

    DEFF Research Database (Denmark)

    Bregnballe, Thomas; Speich, Charlotte; Horsten, Anders

    2017-01-01

    (anglers, cyclists, farming activity) on the flight responses and displacement distances of ducks within uniform habitat along a public path were compared with the birds’ reaction to natural stimuli such as mammals or birds of prey. Excluding the controlled disturbance by a pedestrian, undertaken as part...... of the study, the main cause of flushing in Wigeon was a response to the movements of birds of prey and other birds, especially Lapwings Vanellus vanellus performing flight displays. For Teal, birds of prey accounted for around half of the flushes, with other birds accounting for one third of the flushes....... Wigeon and Teal were displaced significantly farther by human activities than by natural causes. We tested whether the ducks reacted differently to natural disturbances shortly after disturbance by a pedestrian by comparing response patterns to natural stimuli within the first hour following disturbance...

  13. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    Science.gov (United States)

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations. © 2013 European Sleep Research Society.

  14. Teleconnection Paths via Climate Network Direct Link Detection.

    Science.gov (United States)

    Zhou, Dong; Gozolchiani, Avi; Ashkenazy, Yosef; Havlin, Shlomo

    2015-12-31

    Teleconnections describe remote connections (typically thousands of kilometers) of the climate system. These are of great importance in climate dynamics as they reflect the transportation of energy and climate change on global scales (like the El Niño phenomenon). Yet, the path of influence propagation between such remote regions, and weighting associated with different paths, are only partially known. Here we propose a systematic climate network approach to find and quantify the optimal paths between remotely distant interacting locations. Specifically, we separate the correlations between two grid points into direct and indirect components, where the optimal path is found based on a minimal total cost function of the direct links. We demonstrate our method using near surface air temperature reanalysis data, on identifying cross-latitude teleconnections and their corresponding optimal paths. The proposed method may be used to quantify and improve our understanding regarding the emergence of climate patterns on global scales.

  15. Survey of Robot 3D Path Planning Algorithms

    Directory of Open Access Journals (Sweden)

    Liang Yang

    2016-01-01

    Full Text Available Robot 3D (three-dimension path planning targets for finding an optimal and collision-free path in a 3D workspace while taking into account kinematic constraints (including geometric, physical, and temporal constraints. The purpose of path planning, unlike motion planning which must be taken into consideration of dynamics, is to find a kinematically optimal path with the least time as well as model the environment completely. We discuss the fundamentals of these most successful robot 3D path planning algorithms which have been developed in recent years and concentrate on universally applicable algorithms which can be implemented in aerial robots, ground robots, and underwater robots. This paper classifies all the methods into five categories based on their exploring mechanisms and proposes a category, called multifusion based algorithms. For all these algorithms, they are analyzed from a time efficiency and implementable area perspective. Furthermore a comprehensive applicable analysis for each kind of method is presented after considering their merits and weaknesses.

  16. Path entanglement of photons by non-local bunching

    International Nuclear Information System (INIS)

    Eisenberg, H.; Hodelin, J.; Khoury, G.; Bouwmeester, D.

    2005-01-01

    Full Text:Path entangled photon states can be used to overcome classical limits on the accuracy of interferometric measurements such as the diffraction limit. These states are superpositions of finding n photons in one out of two (or more) paths. Using stimulated parametric down-conversion, we propose and demonstrate a method for generating heralded multiphoton path entanglement, without applying post-selection. parametric down-conversion is relatively easy to produce compared to pure Fock states as demanded by other proposals. By a special coincidence detection at one down converted arm, the photons of the second arm non-locally bunch into the desired state. Entanglement in photon number is created between two polarization modes rather than two paths. A polarization beam-splitter and a 2 wave plate can translate between the two representations. The experimental generation of a two-photon path entangled state was detected by observing interference at half the photon wavelength. The scheme is generally extendable to higher photon numbers

  17. Tornado intensity estimated from damage path dimensions.

    Science.gov (United States)

    Elsner, James B; Jagger, Thomas H; Elsner, Ian J

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.

  18. Tornado intensity estimated from damage path dimensions.

    Directory of Open Access Journals (Sweden)

    James B Elsner

    Full Text Available The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93 [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.

  19. A fast spectrum dual path flow cermet reactor

    International Nuclear Information System (INIS)

    Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.

    1993-01-01

    A cermet fueled, dual path fast reactor for space nuclear propulsion applications is conceptually designed. The reactor utilizes an outer annulus core and an inner cylindrical core with radial and axial reflector. The dual path flow minimizes the impact of power peaking near the radial reflector. Basic neutronics and core design aspects of the reactor are discussed. The dual path reactor is integrated into a 25000 lbf thrust nuclear rocket

  20. Polymer quantum mechanics some examples using path integrals

    International Nuclear Information System (INIS)

    Parra, Lorena; Vergara, J. David

    2014-01-01

    In this work we analyze several physical systems in the context of polymer quantum mechanics using path integrals. First we introduce the group averaging method to quantize constrained systems with path integrals and later we use this procedure to compute the effective actions for the polymer non-relativistic particle and the polymer harmonic oscillator. We analyze the measure of the path integral and we describe the semiclassical dynamics of the systems

  1. From path integrals to anyons

    International Nuclear Information System (INIS)

    Canright, G.S.

    1992-01-01

    I offer a pedagogical review of the homotopy arguments for fractional statistics in two dimensions. These arguments arise naturally in path-integral language since they necessarily consider the properties of paths rather than simply permutations. The braid group replaces the permutation group as the basic structure for quantum statistics; hence properties of the braid group on several surfaces are briefly discussed. Finally, the question of multiple (real-space) occupancy is addressed; I suggest that the ''traditional'' treatment of this question (ie, an assumption that many-anyon wavefunctions necessarily vanish for multiple occupancy) needs reexamination

  2. Multiagent path-finding in strategic games

    OpenAIRE

    Mihevc, Simon

    2014-01-01

    In this thesis I worked on creating, comparing and improving algorithms for multi-agent path planning on a domain typical for real-time strategy games. I implemented and compared Multiagent pathfinding using clearance and Multiagent pathfinding using independence detection and operator decomposition. I discovered that they had problems maintaining group compactness and took too long to calculate the path. I considerably improved the efficiency of both algorithms.

  3. Multi-rate path-following control for unmanned air vehicles

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Silvestre, C.J.; Cunha, R.

    2008-01-01

    A methodology is provided to tackle the path-following integrated guidance and control problem for unmanned air vehicles with measured outputs available at different rates. The path-following problem is addressed by defining a suitable non-linear path dependent error space to express the vehicle’s

  4. Space-efficient path-reporting approximate distance oracles

    DEFF Research Database (Denmark)

    Elkin, Michael; Neiman, Ofer; Wulff-Nilsen, Christian

    2016-01-01

    We consider approximate path-reporting distance oracles, distance labeling and labeled routing with extremely low space requirements, for general undirected graphs. For distance oracles, we show how to break the nlog⁡n space bound of Thorup and Zwick if approximate paths rather than distances need...

  5. The Orion Exploration Flight Test Post Flight Solid Particle Flight Environment Inspection and Analysis

    Science.gov (United States)

    Miller, Joshua E.

    2016-01-01

    Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.

  6. Integrated robust controller for vehicle path following

    Energy Technology Data Exchange (ETDEWEB)

    Mashadi, Behrooz; Ahmadizadeh, Pouyan, E-mail: p-ahmadizadeh@iust.ac.ir; Majidi, Majid, E-mail: m-majidi@iust.ac.ir [Iran University of Science and Technology, School of Automotive Engineering (Iran, Islamic Republic of); Mahmoodi-Kaleybar, Mehdi, E-mail: m-mahmoodi-k@iust.ac.ir [Iran University of Science and Technology, School of Mechanical Engineering (Iran, Islamic Republic of)

    2015-02-15

    The design of an integrated 4WS+DYC control system to guide a vehicle on a desired path is presented. The lateral dynamics of the path follower vehicle is formulated by considering important parameters. To reduce the effect of uncertainties in vehicle parameters, a robust controller is designed based on a μ-synthesis approach. Numerical simulations are performed using a nonlinear vehicle model in MATLAB environment in order to investigate the effectiveness of the designed controller. Results of simulations show that the controller has a profound ability to making the vehicle track the desired path in the presence of uncertainties.

  7. Integrated robust controller for vehicle path following

    International Nuclear Information System (INIS)

    Mashadi, Behrooz; Ahmadizadeh, Pouyan; Majidi, Majid; Mahmoodi-Kaleybar, Mehdi

    2015-01-01

    The design of an integrated 4WS+DYC control system to guide a vehicle on a desired path is presented. The lateral dynamics of the path follower vehicle is formulated by considering important parameters. To reduce the effect of uncertainties in vehicle parameters, a robust controller is designed based on a μ-synthesis approach. Numerical simulations are performed using a nonlinear vehicle model in MATLAB environment in order to investigate the effectiveness of the designed controller. Results of simulations show that the controller has a profound ability to making the vehicle track the desired path in the presence of uncertainties

  8. Path integral representations on the complex sphere

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2007-08-15

    In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S{sub 3C}. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

  9. Path optimization method for the sign problem

    Directory of Open Access Journals (Sweden)

    Ohnishi Akira

    2018-01-01

    Full Text Available We propose a path optimization method (POM to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t(f ϵ R and by optimizing f(t to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.

  10. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  11. Minimum dose method for walking-path planning of nuclear facilities

    International Nuclear Information System (INIS)

    Liu, Yong-kuo; Li, Meng-kun; Xie, Chun-li; Peng, Min-jun; Wang, Shuang-yu; Chao, Nan; Liu, Zhong-kun

    2015-01-01

    Highlights: • For radiation environment, the environment model is proposed. • For the least dose walking path problem, a path-planning method is designed. • The path-planning virtual–real mixed simulation program is developed. • The program can plan walking path and simulate. - Abstract: A minimum dose method based on staff walking road network model was proposed for the walking-path planning in nuclear facilities. A virtual–reality simulation program was developed using C# programming language and Direct X engine. The simulation program was used in simulations dealing with virtual nuclear facilities. Simulation results indicated that the walking-path planning method was effective in providing safety for people walking in nuclear facilities

  12. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    Science.gov (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  13. In-flight Assessment of Lower Body Negative Pressure as a Countermeasure for Post-flight Orthostatic Intolerance

    Science.gov (United States)

    Charles, J. B.; Stenger, M. B.; Phillips, T. R.; Arzeno, N. M.; Lee, S. M. C.

    2009-01-01

    Introduction. We investigated the efficacy of combining fluid loading with sustained lower body negative pressure (LBNP) to reverse orthostatic intolerance associated with weightlessness during and immediately after Space Shuttle missions. Methods. Shuttle astronauts (n=13) underwent 4 hours of LBNP at -30 mm(Hg) and ingested water and salt ( soak treatment) during flight in two complementary studies. In the first study (n=8), pre-flight heart rate (HR) and blood pressure (BP) responses to an LBNP ramp (5-min stages of -10 mm(Hg) steps to -50 mm(Hg) were compared to responses in-flight one and two days after LBNP soak treatment. In the second study (n=5), the soak was performed 24 hr before landing, and post-flight stand test results of soak subjects were compared with those of an untreated cohort (n=7). In both studies, the soak was scheduled late in the mission and was preceded by LBNP ramp tests at approximately 3-day intervals to document the in-flight loss of orthostatic tolerance. Results. Increased HR and decreased BP responses to LBNP were evident early in-flight. In-flight, one day after LBNP soak, HR and BP responses to LBNP were not different from pre-flight, but the effect was absent the second day after treatment. Post-flight there were no between-group differences in HR and BP responses to standing, but all 5 treatment subjects completed the 5-minute stand test whereas 2 of 7 untreated cohort subjects did not. Discussion. Exaggerated HR and BP responses to LBNP were evident within the first few days of space flight, extending results from Skylab. The combined LBNP and fluid ingestion countermeasure restored in-flight LBNP HR and BP responses to pre-flight levels and provided protection of post-landing orthostatic function. Unfortunately, any benefits of the combined countermeasure were offset by the complexity of its implementation, making it inappropriate for routine application during Shuttle flights.

  14. Vision based flight procedure stereo display system

    Science.gov (United States)

    Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng

    2008-03-01

    A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.

  15. Review on flight simulators (today and tomorrow); Flight simulatior no genjo to kongo

    Energy Technology Data Exchange (ETDEWEB)

    Komura, T. [Mitsubishi Precision Company Limited, Tokyo (Japan)

    2000-04-05

    This paper presents various flight simulators. A flight simulator is classified into that for R and D on aircraft and that for flight training according to its usage. As an example of the former, the general-purpose flight simulation test facility of National Aerospace Laboratory, Science and Technology Agency is in use for development of the STOL experimental aircraft 'Asuka' and simulation experiments for space development. A civil aircraft simulator simulating the interior of a cockpit, operation feeling of piloting devices, flight performance, dynamic characteristics, an engine system and a hydraulic system like a real aircraft is in wide use for training pilots. A fighter simulator for air force is used for training detection of enemy's aircraft by radar, and missile shooting. An antisubmarine patrol aircraft simulator is used for training detection of submarines by sonic detector and magnetic detector, and torpedo air-launching. For both simulators, real simulation of detection sensors or battle environment is required. (NEDO)

  16. A Path Space Extension for Robust Light Transport Simulation

    DEFF Research Database (Denmark)

    Hachisuka, Toshiya; Pantaleoni, Jacopo; Jensen, Henrik Wann

    2012-01-01

    We present a new sampling space for light transport paths that makes it possible to describe Monte Carlo path integration and photon density estimation in the same framework. A key contribution of our paper is the introduction of vertex perturbations, which extends the space of paths with loosely...

  17. Flight Muscle Dimorphism and Heterogeneity in Flight Initiation of Field-Collected Triatoma infestans (Hemiptera: Reduviidae)

    OpenAIRE

    Gurevitz, Juan M.; Kitron, Uriel; Gürtler, Ricardo E.

    2007-01-01

    Recent experiments demonstrated that most field-collected Triatoma infestans (Klug) (Hemiptera: Reduviidae) adults from northern Argentina either never initiated flight or did so repeatedly in both sexes. This pattern could not be explained by sex, adult age, weight, weight-to-length ratio (W/L), or chance. We examined whether bugs that never initiated flight possessed developed flight muscles, and whether flight muscle mass relative to total body mass (FMR) was related to the probability of ...

  18. Variational nature, integration, and properties of Newton reaction path.

    Science.gov (United States)

    Bofill, Josep Maria; Quapp, Wolfgang

    2011-02-21

    The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.

  19. Variational nature, integration, and properties of Newton reaction path

    Science.gov (United States)

    Bofill, Josep Maria; Quapp, Wolfgang

    2011-02-01

    The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.

  20. Quantum mechanics on the half-line using path integrals

    International Nuclear Information System (INIS)

    Clark, T.E.; Menikoff, R.; Sharp, D.H.

    1980-01-01

    We study the Feynman path-integral formalism for the constrained problem of a free particle moving on the half-line. It is shown that the effect of the boundary condition at the origin can be incorporated into the path integral by a simple modification of the action. The small-time behavior of the Green's function can be obtained from the stationary-phase evaluation of our expression for the path integral, which in this case includes contributions from both the direct and reflected classical paths

  1. Automated path length and M56 measurements at Jefferson Lab

    International Nuclear Information System (INIS)

    Hardy, D.; Tang, J.; Legg, R.

    1997-01-01

    Accurate measurement of path length and path length changes versus momentum (M 56 ) are critical for maintaining minimum beam energy spread in the CEBAF (Continuous Electron Beam Accelerator Facility) accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The relative path length for each circuit of the beam (1256m) must be equal within 1.5 degrees of 1497 MHz RF phase. A relative path length measurement is made by measuring the relative phases of RF signals from a cavity that is separately excited for each pass of a 4.2 μs pulsed beam. This method distinguishes the path length to less than 0.5 path length error. The development of a VME based automated measurement system for path length and M 56 has contributed to faster machine setup time and has the potential for use as a feedback parameter for automated control

  2. Hot gas path component having near wall cooling features

    Science.gov (United States)

    Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul

    2017-11-28

    A method for providing micro-channels in a hot gas path component includes forming a first micro-channel in an exterior surface of a substrate of the hot gas path component. A second micro-channel is formed in the exterior surface of the hot gas path component such that it is separated from the first micro-channel by a surface gap having a first width. The method also includes disposing a braze sheet onto the exterior surface of the hot gas path component such that the braze sheet covers at least of portion of the first and second micro-channels, and heating the braze sheet to bond it to at least a portion of the exterior surface of the hot gas path component.

  3. 14 CFR 27.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 27.151 Section 27.151... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  4. 14 CFR 29.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 29.151 Section 29.151... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  5. Capital Flight from Russia

    OpenAIRE

    Prakash Loungani; Paolo Mauro

    2000-01-01

    This paper documents the scale of capital flight from Russia, compares it with that observed in other countries, and reviews policy options. The evidence from other countries suggests that capital flight can be reversed once reforms take hold. The paper argues that capital flight from Russia can only be curbed through a medium-term reform strategy aimed at improving governance and macroeconomic performance, and strengthening the banking system. Capital controls result in costly distortions an...

  6. Generalized measures and the Feynman path integral

    International Nuclear Information System (INIS)

    Maslov, V.P.; Chebotarev, A.M.

    1976-01-01

    Generalizations are obtained for the earlier results by the authors concerning the inclusion of the Feynmann path integral in the momentum representation into the general integration theory. Feynmann path integrals are considered which do not represent T-products. Generalized Feynmann measure in the configuration representation is introduced

  7. Approximate shortest homotopic paths in weighted regions

    KAUST Repository

    Cheng, Siuwing; Jin, Jiongxin; Vigneron, Antoine E.; Wang, Yajun

    2012-01-01

    A path P between two points s and t in a polygonal subdivision T with obstacles and weighted regions defines a class of paths that can be deformed to P without passing over any obstacle. We present the first algorithm that, given P and a relative

  8. Nonadiabatic transition path sampling

    International Nuclear Information System (INIS)

    Sherman, M. C.; Corcelli, S. A.

    2016-01-01

    Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase.

  9. New newtron time-of-flight (NTOF) facilities at the Brookhaven 200-MeV Linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Snead, C.L.; Tsoupas, N.; Zucker, M.

    1988-01-01

    The installation of a new beam chopper and radio-frequency quadrupole (RFQ) preinjector (750 keV) at the Brookhaven National Laboratory (BNL) 200-MeV Linac will enable single micropulse selection (pulse width 9 pμ pulse with dc-average beam currents of 50 nA-1 μA routinely available. The NTOF facilities consists of 30-100 meter flight paths at angles of 0, 12, 30, 45, 90, and 135/degree/. Lower energies of 93, 117, 139, 161, and 181 MeV are also available as well as polarized beams at much reduced intensities. The present paper describes the new facilities, and the capabilities of future improvements and upgrades, for use in the BNL intermediate energy (p,n) experimental program. 7 refs., 2 figs., 1 tab

  10. Line-of-Sight Path Following for Dubins Paths with Adaptive Sideslip Compensation of Drift Forces

    DEFF Research Database (Denmark)

    Fossen, Thor Inge; Pettersen, Kristin Ytterstad; Galeazzi, Roberto

    2015-01-01

    guidance law is intended for maneuvering in the horizontal-plane at given speeds and typical applications are marine craft, autonomous underwater vehicles (AUVs), unmanned aerial vehicles (UAVs) as well as other vehicles and craft where the goal is to follow a predefined parametrized curve without time......-sight (LOS) guidance principle used by ancient navigators, which is here extended to path following of Dubins paths. The unknown sideslip angle is treated as a constant parameter, which is estimated using an adaptation law. The equilibrium points of the cross-track and parameter estimation errors are proven...

  11. Passengers waste production during flights.

    Science.gov (United States)

    Tofalli, Niki; Loizia, Pantelitsa; Zorpas, Antonis A

    2017-12-20

    We assume that during flights the amount of waste that is produced is limited. However, daily, approximately 8000 commercial airplanes fly above Europe's airspace while at the same time, more than 17,000 commercial flights exist in the entire world. Using primary data from airlines, which use the Larnaca's International Airport (LIA) in Cyprus, we have tried to understand why wastes are produced during a typical flight such as food waste, paper, and plastics, as well as how passengers affect the production of those wastes. The compositional analysis took place on 27 flights of 4 different airlines which used LIA as final destination. The evaluation indicated that the passenger's habits and ethics, and the policy of each airline produced different kinds of waste during the flights and especially food waste (FW). Furthermore, it was observed that the only waste management strategy that exists in place in the airport is the collection and the transportation of all those wastes from aircrafts and from the airport in the central unit for further treatment. Hence, this research indicated extremely difficulties to implement any specific waste minimization, or prevention practice or other sorting methods during the flights due to the limited time of the most flights (less than 3 h), the limited available space within the aircrafts, and the strictly safety roles that exist during the flights.

  12. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    Science.gov (United States)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  13. Path Integrals in Quantum Mechanics

    International Nuclear Information System (INIS)

    Chetouani, L

    2005-01-01

    By treating path integrals the author, in this book, places at the disposal of the reader a modern tool for the comprehension of standard quantum mechanics. Thus the most important applications, such as the tunnel effect, the diffusion matrix, etc, are presented from an original point of view on the action S of classical mechanics while having it play a central role in quantum mechanics. What also emerges is that the path integral describes these applications more richly than are described traditionally by differential equations, and consequently explains them more fully. The book is certainly of high quality in all aspects: original in presentation, rigorous in the demonstrations, judicious in the choice of exercises and, finally, modern, for example in the treatment of the tunnel effect by the method of instantons. Moreover, the correspondence that exists between classical and quantum mechanics is well underlined. I thus highly recommend this book (the French version being already available) to those who wish to familiarize themselves with formulation by path integrals. They will find, in addition, interesting topics suitable for exploring further. (book review)

  14. Distribution definition of path integrals

    International Nuclear Information System (INIS)

    Kerler, W.

    1979-01-01

    By starting from quantum mechanics it turns out that a rather general definition of quantum functional integrals can be given which is based on distribution theory. It applies also to curved space and provides clear rules for non-linear transformations. The refinements necessary in usual definitions of path integrals are pointed out. Since the quantum nature requires special care with time sequences, it is not the classical phase space which occurs in the phase-space form of the path integral. Feynman's configuration-space form only applies to a highly specialized situation, and therefore is not a very advantageous starting point for general investigations. It is shown that the commonly used substitutions of variables do not properly account for quantum effects. The relation to the traditional ordering problem is clarified. The distribution formulation has allowed to treat constrained systems directly at the quantum level, to complete the path integral formulation of the equivalence theorem, and to define functional integrals also for space translation after the transition to fields. (orig.)

  15. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    Science.gov (United States)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  16. 76 FR 16236 - Prohibition Against Certain Flights Within the Tripoli (HLLL) Flight Information Region (FIR)

    Science.gov (United States)

    2011-03-23

    ... Tripoli (HLLL) Flight Information Region (FIR) AGENCY: Federal Aviation Administration (FAA), Department... the Tripoli (HLLL) Flight Information Region (FIR) by all U.S. air carriers; U.S. commercial operators...) Flight Information Region (FIR). (a) Applicability. This section applies to the following persons: (1...

  17. 78 FR 66261 - Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online...

    Science.gov (United States)

    2013-11-05

    ...-0780; Amdt. No. 61-131] RIN 2120-AK23 Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online Services; Confirmation of Effective Date AGENCY: Federal Aviation...-calendar month flight review requirements. This rule also clarifies that the generally applicable recent...

  18. 78 FR 56822 - Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online...

    Science.gov (United States)

    2013-09-16

    ...-0780; Amdt. No. 61-131] RIN 2120-AK23 Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... review requirements. This rule also clarifies that the generally applicable recent flight experience...

  19. Flight to Safety from European Stock Markets

    DEFF Research Database (Denmark)

    Aslanidis, Nektarios; Christiansen, Charlotte

    -return trade-off is positive and during flight-to-safety episodes it is negative. The effects of flight-to-safety episodes on the risk-return trade-off are qualitatively similar for own country flight-to-safety episodes, for flight from own country stock market to the US bond market, and for US flight......This paper investigates flight-to-safety from stocks to bonds in seven European markets. We use quantile regressions to identify flight-to-safety episodes. The simple risk-return trade-off on the stock markets is negative which is caused by flight-to-safety episodes: During normal periods, the risk...

  20. High resolution time-of-flight (TOF) detector for particle identification

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Merlin; Lehmann, Albert; Pfaffinger, Markus; Uhlig, Fred [Physikalisches Institut, Universitaet Erlangen-Nuernberg (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    Several prototype tests were performed with the PANDA DIRC detectors at the CERN T9 beam line. A mixed hadron beam with pions, kaons and protons was used at momenta from 2 to 10 GeV/c. For these tests a good particle identification was mandatory. We report about a high resolution TOF detector built especially for this purpose. It consists of two stations each consisting of a Cherenkov radiator read out by a Microchannel-Plate Photomultiplier (MCP-PMT) and a Scintillating Tile (SciTil) counter read out by silicon photomultipliers (SiPMs). With a flight path of 29 m a pion/kaon separation up to 5 GeV/c and a pion/proton separation up to 10 GeV/c was obtained. From the TOF resolutions of different counter combinations the time resolution (sigma) of the individual MCP-PMTs and SciTils was determined. The best counter reached a time resolution of 50 ps.

  1. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    Science.gov (United States)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  2. Technology Paths in Energy-Efficient and Sustainable Construction

    DEFF Research Database (Denmark)

    Holm, Jesper; Lund Sørensen, Runa Cecilie

    2015-01-01

    Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing......Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing...

  3. Approximate Shortest Homotopic Paths in Weighted Regions

    KAUST Repository

    Cheng, Siu-Wing; Jin, Jiongxin; Vigneron, Antoine; Wang, Yajun

    2010-01-01

    Let P be a path between two points s and t in a polygonal subdivision T with obstacles and weighted regions. Given a relative error tolerance ε ∈(0,1), we present the first algorithm to compute a path between s and t that can be deformed to P

  4. Two Generations of Path Dependence in Economics?

    DEFF Research Database (Denmark)

    Madsen, Mogens Ove

    2010-01-01

    Even if there is no fully articulated and generally accepted theory of Path Dependence it has eagerly been taken up across a wide range of social sciences – primarily coming from economics. Path Dependence is most of all a metaphor that offers reason to believe, that some political, social...

  5. from synchronic variation to a grammaticalization path

    African Journals Online (AJOL)

    Kate H

    Abstract. The authors argue that the synchronic variation of cognate objects of weather verbs exhibited in six African languages of South Africa (Sepedi, Sesotho, Tshivenda, isiXhosa, Xitsonga, and. isiZulu) has a diachronic explanation, and may be represented as a grammaticalization path. This path gradually leads from ...

  6. Solar array flight dynamic experiment

    Science.gov (United States)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  7. System Identification of Flight Mechanical Characteristics

    OpenAIRE

    Larsson, Roger

    2013-01-01

    With the demand for more advanced fighter aircraft, relying on relaxed stability or even unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelop. For today’s newly developed fighter...

  8. Reactive Path Planning Approach for Docking Robots in Unknown Environment

    Directory of Open Access Journals (Sweden)

    Peng Cui

    2017-01-01

    Full Text Available Autonomous robots need to be recharged and exchange information with the host through docking in the long-distance tasks. Therefore, feasible path is required in the docking process to guide the robot and adjust its pose. However, when there are unknown obstacles in the work area, it becomes difficult to determine the feasible path for docking. This paper presents a reactive path planning approach named Dubins-APF (DAPF to solve the path planning problem for docking in unknown environment with obstacles. In this proposed approach the Dubins curves are combined with the designed obstacle avoidance potential field to plan the feasible path. Firstly, an initial path is planned and followed according to the configurations of the robot and the docking station. Then when the followed path is evaluated to be infeasible, the intermediate configuration is calculated as well as the replanned path based on the obstacle avoidance potential field. The robot will be navigated to the docking station with proper pose eventually via the DAPF approach. The proposed DAPF approach is efficient and does not require the prior knowledge about the environment. Simulation results are given to validate the effectiveness and feasibility of the proposed approach.

  9. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  10. Some instructive examples of Mayer's interference in path integral

    International Nuclear Information System (INIS)

    Fiziev, P.P.

    1984-01-01

    A new technique of path integral evaluation by a discretization procedure is proposed. It is based on the requirement, found previously, to single out the set of classical trajectories over which the summation is performed. The notion of Mayer's interference is introduced and illustrated by a number of simple examples. The choice of the set of paths is shown to induce a corresponding quantization procedure and this line is followed to demonstrate its connection with the symmetries of the problem. The possibility of extracting information on the space of quantum states from path integrals has been reviewed. A class of paths has been found; the summation over these paths within the framework of the suggested approach produces the well known results for the motion in a homogeneous field and for the harmonic oscillator

  11. Directed paths in a layered environment

    International Nuclear Information System (INIS)

    Alvarez, J; Janse van Rensburg, E J

    2008-01-01

    A polymer in a layered environment is modeled as a directed path in a layered square lattice composed of alternating A-layers of width w a and B-layers of width w b . In this paper we consider general cases of this model, where edges in the path interact with the layers, and vertices in the path interact with interfaces between adjacent layers. The phase diagram exhibits different regimes. In particular, we found that the path may be localized to one layer, be adsorbed on an interface between two layers or be delocalized across layers. We examine special aspects of the model in detail: the asymptotic regimes of the models are examined, and entropic forces on the interfaces are determined. We focus on several different cases, including models with layers of equal or similar width. More general models of layers with different but finite widths, or with one layer of infinite width, are also examined in detail. Several of these models exhibit phase behavior which relate to well-studied polymer phase behavior such as adsorption at an impenetrable wall, pinning at an interface between two immiscible solvents, steric stabilization of colloidal particles and sensitized flocculation of colloidal particles by polymers

  12. New framework for the Feynman path integral

    International Nuclear Information System (INIS)

    Shaharir, M.Z.

    1986-01-01

    The well-known Fourier integral solution of the free diffusion equation in an arbitrary Euclidean space is reduced to Feynmannian integrals using the method partly contained in the formulation of the Fresnelian integral. By replacing the standard Hilbert space underlying the present mathematical formulation of the Feynman path integral by a new Hilbert space, the space of classical paths on the tangent bundle to the Euclidean space (and more general to an arbitrary Riemannian manifold) equipped with a natural inner product, we show that our Feynmannian integral is in better agreement with the qualitative features of the original Feynman path integral than the previous formulations of the integral

  13. Path space measures for Dirac and Schroedinger equations: Nonstandard analytical approach

    International Nuclear Information System (INIS)

    Nakamura, T.

    1997-01-01

    A nonstandard path space *-measure is constructed to justify the path integral formula for the Dirac equation in two-dimensional space endash time. A standard measure as well as a standard path integral is obtained from it. We also show that, even for the Schroedinger equation, for which there is no standard measure appropriate for a path integral, there exists a nonstandard measure to define a *-path integral whose standard part agrees with the ordinary path integral as defined by a limit from time-slice approximant. copyright 1997 American Institute of Physics

  14. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    Science.gov (United States)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  15. Orion Exploration Flight Test Reaction Control System Jet Interaction Heating Environment from Flight Data

    Science.gov (United States)

    White, Molly E.; Hyatt, Andrew J.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-­-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.

  16. Analysis Of Economic Motivation When Individuals Choose An Educational Path

    Directory of Open Access Journals (Sweden)

    Viktor Anatolyevich Koksharov

    2015-03-01

    Full Text Available The authors consider the economic motivations when individuals choose an educational path. This line of research is relevant from both, the point of view of science — research of economic behavior of an individual, and the point of view of practice — allows to increase efficiency of investments in a human capital. The authors have developed the economic and mathematical model of choice of optimum educational paths by individuals. The model is realized in the software and approved on real data on more than 5,5 thousand students. For the analysis of the importance of rational economic expectations when an educational path has to be chosen, the paths chosen by students is compared and the educational paths optimum from the point of view of economic rationality are calculated. The analysis of the results has showed that mainly, the choice of educational paths happens according to the economic motivations. On the considered selection, 66 % of prospective students have chosen an optimum path from the point of view of economic preferences. The most significant factor providing development of optimum educational paths is an expectation of higher income upon completion of education — 22 % of all educational paths, and a possibility of cost-cutting of educating or state-subsidized education — 12 %. In our opinion, one of the most important practical results of the research of optimum educational path is the need to consider expectations of students and prospective student when developing a state policy of investment in human capital.

  17. Reaction path simulations in multicomponent materials

    International Nuclear Information System (INIS)

    Seifert, H.J.

    1999-01-01

    The CALPHAD (calculation of phase diagrams) method is used in combination with selected experimental investigations to derive reaction paths in multicomponent systems. The method is illustrated by applying computerized thermodynamic databases and suitable software to explain quantitatively the thermal degradation of precursor-derived Si-C-N ceramics and the nitridation of titanium carbide. Reaction sequences in the Si 3 N 4 -SiC-TiC x N l-x -C-N system are illustrated by graphical representation of compatibility regions and indicated reaction paths. From these results the experimentally known microstructure development of TiC reinforced Si 3 N 4 ceramics is explained and quantitative information is provided to optimize the microstructure of such materials. The concept of reaction paths for the understanding of rapid solidification processes is shown by the example of AZ type Mg casting alloys. (orig.)

  18. In-flight performance optimization for rotorcraft with redundant controls

    Science.gov (United States)

    Ozdemir, Gurbuz Taha

    A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to

  19. Interactions of information transfer along separable causal paths

    Science.gov (United States)

    Jiang, Peishi; Kumar, Praveen

    2018-04-01

    Complex systems arise as a result of interdependences between multiple variables, whose causal interactions can be visualized in a time-series graph. Transfer entropy and information partitioning approaches have been used to characterize such dependences. However, these approaches capture net information transfer occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within a subgraph of interest through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [Phys. Rev. E 92, 062829 (2015), 10.1103/PhysRevE.92.062829] to develop a framework for quantifying information partitioning along separable causal paths. Momentary information transfer along causal paths captures the amount of information transfer between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique, and redundant information transfer through separable causal paths. Through a graphical model, we analyze the impact of the separable and nonseparable causal paths and the causality structure embedded in the graph as well as the noise effect on information partitioning by using synthetic data generated from two coupled logistic equation models. Our approach can provide a valuable reference for an autonomous information partitioning along separable causal paths which form a causal subgraph influencing a target.

  20. Low level constraints on dynamic contour path integration.

    Directory of Open Access Journals (Sweden)

    Sophie Hall

    Full Text Available Contour integration is a fundamental visual process. The constraints on integrating discrete contour elements and the associated neural mechanisms have typically been investigated using static contour paths. However, in our dynamic natural environment objects and scenes vary over space and time. With the aim of investigating the parameters affecting spatiotemporal contour path integration, we measured human contrast detection performance of a briefly presented foveal target embedded in dynamic collinear stimulus sequences (comprising five short 'predictor' bars appearing consecutively towards the fovea, followed by the 'target' bar in four experiments. The data showed that participants' target detection performance was relatively unchanged when individual contour elements were separated by up to 2° spatial gap or 200 ms temporal gap. Randomising the luminance contrast or colour of the predictors, on the other hand, had similar detrimental effect on grouping dynamic contour path and subsequent target detection performance. Randomising the orientation of the predictors reduced target detection performance greater than introducing misalignment relative to the contour path. The results suggest that the visual system integrates dynamic path elements to bias target detection even when the continuity of path is disrupted in terms of spatial (2°, temporal (200 ms, colour (over 10 colours and luminance (-25% to 25% information. We discuss how the findings can be largely reconciled within the functioning of V1 horizontal connections.

  1. Transition paths in single-molecule force spectroscopy.

    Science.gov (United States)

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2018-03-28

    In a typical single-molecule force spectroscopy experiment, the ends of the molecule of interest are connected by long polymer linkers to a pair of mesoscopic beads trapped in the focus of two laser beams. At constant force load, the total extension, i.e., the end-to-end distance of the molecule plus linkers, is measured as a function of time. In the simplest systems, the measured extension fluctuates about two values characteristic of folded and unfolded states, with occasional transitions between them. We have recently shown that molecular (un)folding rates can be recovered from such trajectories, with a small linker correction, as long as the characteristic time of the bead fluctuations is shorter than the residence time in the unfolded (folded) state. Here, we show that accurate measurements of the molecular transition path times require an even faster apparatus response. Transition paths, the trajectory segments in which the molecule (un)folds, are properly resolved only if the beads fluctuate more rapidly than the end-to-end distance of the molecule. Therefore, over a wide regime, the measured rates may be meaningful but not the transition path times. Analytic expressions for the measured mean transition path times are obtained for systems diffusing anisotropically on a two-dimensional free energy surface. The transition path times depend on the properties both of the molecule and of the pulling device.

  2. A career path in clinical pathways.

    Science.gov (United States)

    Bower, K A

    1998-03-01

    Much like the development of a clinical path, the creation of a career path requires knowledge of patterns of behavior, needs for standardized education and skill development, along with variance analysis and individualized care. This nationally known nursing entrepreneur tells the story of her involvement in the development of case management and clinical pathways and how she turned that into a successful business that has changed how patient care is managed nationally and internationally.

  3. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    Science.gov (United States)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  4. Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).

    Science.gov (United States)

    Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko

    2010-10-11

    We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.

  5. comparative analysis and implementation of dijkstra's shortest path

    African Journals Online (AJOL)

    user

    path problem requires finding a single shortest-path between given vertices s and t; ... Bridge in 1735, [5 – 10]. This problem led to the .... their advancements from new design paradigms, data structures ..... .

  6. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    Science.gov (United States)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  7. Toward solving the sign problem with path optimization method

    Science.gov (United States)

    Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira

    2017-12-01

    We propose a new approach to circumvent the sign problem in which the integration path is optimized to control the sign problem. We give a trial function specifying the integration path in the complex plane and tune it to optimize the cost function which represents the seriousness of the sign problem. We call it the path optimization method. In this method, we do not need to solve the gradient flow required in the Lefschetz-thimble method and then the construction of the integration-path contour arrives at the optimization problem where several efficient methods can be applied. In a simple model with a serious sign problem, the path optimization method is demonstrated to work well; the residual sign problem is resolved and precise results can be obtained even in the region where the global sign problem is serious.

  8. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Science.gov (United States)

    2010-01-01

    ..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...

  9. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    Science.gov (United States)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  10. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  11. Path Following in the Exact Penalty Method of Convex Programming.

    Science.gov (United States)

    Zhou, Hua; Lange, Kenneth

    2015-07-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.

  12. Automatic path proposal computation for CT-guided percutaneous liver biopsy.

    Science.gov (United States)

    Helck, A; Schumann, C; Aumann, J; Thierfelder, K; Strobl, F F; Braunagel, M; Niethammer, M; Clevert, D A; Hoffmann, R T; Reiser, M; Sandner, T; Trumm, C

    2016-12-01

    To evaluate feasibility of automatic software-based path proposals for CT-guided percutaneous biopsies. Thirty-three patients (60 [Formula: see text] 12 years) referred for CT-guided biopsy of focal liver lesions were consecutively included. Pre-interventional CT and dedicated software (FraunhoferMeVis Pathfinder) were used for (semi)automatic segmentation of relevant structures. The software subsequently generated three path proposals in downward quality for CT-guided biopsy. Proposed needle paths were compared with consensus proposal of two experts (comparable, less suitable, not feasible). In case of comparable results, equivalent approach to software-based path proposal was used. Quality of segmentation process was evaluated (Likert scale, 1 [Formula: see text] best, 6 [Formula: see text] worst), and time for processing was registered. All biopsies were performed successfully without complications. In 91 % one of the three automatic path proposals was rated comparable to experts' proposal. None of the first proposals was rated not feasible, and 76 % were rated comparable to the experts' proposal. 7 % automatic path proposals were rated not feasible, all being second choice ([Formula: see text]) or third choice ([Formula: see text]). In 79 %, segmentation at least was good. Average total time for establishing automatic path proposal was 42 [Formula: see text] 9 s. Automatic software-based path proposal for CT-guided liver biopsies in the majority provides path proposals that are easy to establish and comparable to experts' insertion trajectories.

  13. Which coordinate system for modelling path integration?

    Science.gov (United States)

    Vickerstaff, Robert J; Cheung, Allen

    2010-03-21

    Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. Copyright 2009 Elsevier Ltd

  14. X-1A in flight with flight data superimposed

    Science.gov (United States)

    1953-01-01

    This photo of the X-1A includes graphs of the flight data from Maj. Charles E. Yeager's Mach 2.44 flight on December 12, 1953. (This was only a few days short of the 50th anniversary of the Wright brothers' first powered flight.) After reaching Mach 2.44, then the highest speed ever reached by a piloted aircraft, the X-1A tumbled completely out of control. The motions were so violent that Yeager cracked the plastic canopy with his helmet. He finally recovered from a inverted spin and landed on Rogers Dry Lakebed. Among the data shown are Mach number and altitude (the two top graphs). The speed and altitude changes due to the tumble are visible as jagged lines. The third graph from the bottom shows the G-forces on the airplane. During the tumble, these twice reached 8 Gs or 8 times the normal pull of gravity at sea level. (At these G forces, a 200-pound human would, in effect, weigh 1,600 pounds if a scale were placed under him in the direction of the force vector.) Producing these graphs was a slow, difficult process. The raw data from on-board instrumentation recorded on oscillograph film. Human computers then reduced the data and recorded it on data sheets, correcting for such factors as temperature and instrument errors. They used adding machines or slide rules for their calculations, pocket calculators being 20 years in the future. Three second generation Bell Aircraft Corporations X-1s were built, though four were requested. They were the X-1A (48-1384); X-1B (48-1385); X-1C (canceled and never built); X-1D (48-1386). These aircraft were similar to the X-1s, except they were five feet longer, had conventional canopies, and were powered by Reaction Motors, Inc. XLR11-RM-5 rocket engines. The RM-5, like the previous engines, had no throttle and was controlled by igniting one or more of the four thrust chambers at will. The original program outline called for the X-1A and X-1B to be used for dynamic stability and air loads investigations. The X-1D was to be used

  15. 14 CFR 63.43 - Flight engineer courses.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  16. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    Science.gov (United States)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  17. Continuous-Curvature Path Generation Using Fermat's Spiral

    Directory of Open Access Journals (Sweden)

    Anastasios M. Lekkas

    2013-10-01

    Full Text Available This paper proposes a novel methodology, based on Fermat's spiral (FS, for constructing curvature-continuous parametric paths in a plane. FS has a zero curvature at its origin, a property that allows it to be connected with a straight line smoothly, that is, without the curvature discontinuity which occurs at the transition point between a line and a circular arc when constructing Dubins paths. Furthermore, contrary to the computationally expensive clothoids, FS is described by very simple parametric equations that are trivial to compute. On the downside, computing the length of an FS arc involves a Gaussian hypergeometric function. However, this function is absolutely convergent and it is also shown that it poses no restrictions to the domain within which the length can be calculated. In addition, we present an alternative parametrization of FS which eliminates the parametric speed singularity at the origin, hence making the spiral suitable for path-tracking applications. A detailed description of how to construct curvature-continuous paths with FS is given.

  18. Feasible Path Planning for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Vu Trieu Minh

    2014-01-01

    Full Text Available The objective of this paper is to find feasible path planning algorithms for nonholonomic vehicles including flatness, polynomial, and symmetric polynomial trajectories subject to the real vehicle dynamical constraints. Performances of these path planning methods are simulated and compared to evaluate the more realistic and smoother generated trajectories. Results show that the symmetric polynomial algorithm provides the smoothest trajectory. Therefore, this algorithm is recommended for the development of an automatic control for autonomous vehicles.

  19. Lattice Paths and the Constant Term

    International Nuclear Information System (INIS)

    Brak, R; Essam, J; Osborn, J; Owczarek, A L; Rechnitzer, A

    2006-01-01

    We firstly review the constant term method (CTM), illustrating its combinatorial connections and show how it can be used to solve a certain class of lattice path problems. We show the connection between the CTM, the transfer matrix method (eigenvectors and eigenvalues), partial difference equations, the Bethe Ansatz and orthogonal polynomials. Secondly, we solve a lattice path problem first posed in 1971. The model stated in 1971 was only solved for a special case - we solve the full model

  20. Path integral solution of the Dirichlet problem

    International Nuclear Information System (INIS)

    LaChapelle, J.

    1997-01-01

    A scheme for functional integration developed by Cartier/DeWitt-Morette is first reviewed and then employed to construct the path integral representation for the solution of the Dirichlet problem in terms of first exit time. The path integral solution is then applied to calculate the fixed-energy point-to-point transition amplitude both in configuration and phase space. The path integral solution can also be derived using physical principles based on Feynman close-quote s original reasoning. We check that the Fourier transform in energy of the fixed-energy point-to-point transition amplitude gives the well known time-dependent transition amplitude, and calculate the WKB approximation. copyright 1997 Academic Press, Inc

  1. A taxonomy of integral reaction path analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grcar, Joseph F.; Day, Marcus S.; Bell, John B.

    2004-12-23

    W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.

  2. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  3. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  4. Space-time transformations in radial path integrals

    International Nuclear Information System (INIS)

    Steiner, F.

    1984-09-01

    Nonlinear space-time transformations in the radial path integral are discussed. A transformation formula is derived, which relates the original path integral to the Green's function of a new quantum system with an effective potential containing an observable quantum correction proportional(h/2π) 2 . As an example the formula is applied to spherical Brownian motion. (orig.)

  5. MM98.36 Strain Paths in Extrusion

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    1998-01-01

    The extrusion process has been investigated for different geometries, in order to study the strain path of different material elements during their movements through the plastic zone. This is done by using the FEM code DEFORM and physical simulation with wax togehter with the coefficient method. ....... Calculations of strain paths have also been performed by ABAQUS....

  6. Path Minima Queries in Dynamic Weighted Trees

    DEFF Research Database (Denmark)

    Davoodi, Pooya; Brodal, Gerth Stølting; Satti, Srinivasa Rao

    2011-01-01

    In the path minima problem on a tree, each edge is assigned a weight and a query asks for the edge with minimum weight on a path between two nodes. For the dynamic version of the problem, where the edge weights can be updated, we give data structures that achieve optimal query time\\todo{what about...

  7. Nonperturbative path integral expansion II

    International Nuclear Information System (INIS)

    Kaiser, H.J.

    1976-05-01

    The Feynman path integral representation of the 2-point function for a self-interacting Bose field is investigated using an expansion ('Path Integral Expansion', PIE) of the exponential of the kinetic term of the Lagrangian. This leads to a series - illustrated by a graph scheme - involving successively a coupling of more and more points of the lattice space commonly employed in the evaluation of path integrals. The values of the individual PIE graphs depend of course on the lattice constant. Two methods - Pade approximation and Borel-type extrapolation - are proposed to extract information about the continuum limit from a finite-order PIE. A more flexible PIE is possible by expanding besides the kinetic term a suitably chosen part of the interaction term too. In particular, if the co-expanded part is a mass term the calculation becomes only slightly more complicated than in the original formulation and the appearance of the graph scheme is unchanged. A significant reduction of the number of graphs and an improvement of the convergence of the PIE can be achieved by performing certain sums over an infinity of graph elements. (author)

  8. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    Science.gov (United States)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  9. Advanced in-flight measurement techniques

    CERN Document Server

    Lawson, Nicholas; Jentink, Henk; Kompenhans, Jürgen

    2013-01-01

    The book presents a synopsis of the main results achieved during the 3 year EU-project "Advanced Inflight Measurement Techniques (AIM)" which applied advanced image based measurement techniques to industrial flight testing. The book is intended to be not only an overview on the AIM activities but also a guide on the application of advanced optical measurement techniques for future flight testing. Furthermore it is a useful guide for engineers in the field of experimental methods and flight testing who face the challenge of a future requirement for the development of highly accurate non-intrusive in-flight measurement techniques.

  10. Two path transport measurements on a triple quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, Maximilian C.; Haug, Rolf J. [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2008-07-01

    We present a novel triple quantum dot device made with local anodic oxidation on a GaAs/AlGaAs heterostructure. The geometry provides two path transport via a three lead setup with each lead connected to one of the three quantum dots. In addition charge detection is implemented via a quantum point contact. One lead is used as a common source contact, the other two are used as two separate drain contacts with independent current measurement. Thus two paths are formed with two dots in each path. Along both paths serial transport is observed at the triple points of the two corresponding dots. With four side gates a wide tunability is given. Thus the system can be tuned in and out of triple dot resonances. When all three dots come into resonance, quadruple points are formed with simultaneous transport along both paths. The data are analysed in combined two colour plots and compared to the charge detection showing sets of three different lines, one for each dot. This way the two path setup allows to investigate the transition from double dot physics to triple dot physics.

  11. Learning to improve path planning performance

    International Nuclear Information System (INIS)

    Chen, Pang C.

    1995-04-01

    In robotics, path planning refers to finding a short. collision-free path from an initial robot configuration to a desired configuratioin. It has to be fast to support real-time task-level robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To remedy this situation, we present and analyze a learning algorithm that uses past experience to increase future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a speedup-learning framework in which a slow but capable planner may be improved both cost-wise and capability-wise by a faster but less capable planner coupled with experience. The basic algorithm is suitable for stationary environments, and can be extended to accommodate changing environments with on-demand experience repair and object-attached experience abstraction. To analyze the algorithm, we characterize the situations in which the adaptive planner is useful, provide quantitative bounds to predict its behavior, and confirm our theoretical results with experiments in path planning of manipulators. Our algorithm and analysis are sufficiently, general that they may also be applied to other planning domains in which experience is useful

  12. Covariant path integrals on hyperbolic surfaces

    Science.gov (United States)

    Schaefer, Joe

    1997-11-01

    DeWitt's covariant formulation of path integration [B. De Witt, "Dynamical theory in curved spaces. I. A review of the classical and quantum action principles," Rev. Mod. Phys. 29, 377-397 (1957)] has two practical advantages over the traditional methods of "lattice approximations;" there is no ordering problem, and classical symmetries are manifestly preserved at the quantum level. Applying the spectral theorem for unbounded self-adjoint operators, we provide a rigorous proof of the convergence of certain path integrals on Riemann surfaces of constant curvature -1. The Pauli-DeWitt curvature correction term arises, as in DeWitt's work. Introducing a Fuchsian group Γ of the first kind, and a continuous, bounded, Γ-automorphic potential V, we obtain a Feynman-Kac formula for the automorphic Schrödinger equation on the Riemann surface ΓH. We analyze the Wick rotation and prove the strong convergence of the so-called Feynman maps [K. D. Elworthy, Path Integration on Manifolds, Mathematical Aspects of Superspace, edited by Seifert, Clarke, and Rosenblum (Reidel, Boston, 1983), pp. 47-90] on a dense set of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner, "The path integral on the Poincare upper half plane and for Liouville quantum mechanics," Phys. Lett. A 123, 319-328 (1987).

  13. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    Science.gov (United States)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  14. Retrieval of an ice water path over the ocean from ISMAR and MARSS millimeter and submillimeter brightness temperatures

    Science.gov (United States)

    Brath, Manfred; Fox, Stuart; Eriksson, Patrick; Chawn Harlow, R.; Burgdorf, Martin; Buehler, Stefan A.

    2018-02-01

    A neural-network-based retrieval method to determine the snow ice water path (SIWP), liquid water path (LWP), and integrated water vapor (IWV) from millimeter and submillimeter brightness temperatures, measured by using airborne radiometers (ISMAR and MARSS), is presented. The neural networks were trained by using atmospheric profiles from the ICON numerical weather prediction (NWP) model and by radiative transfer simulations using the Atmospheric Radiative Transfer Simulator (ARTS). The basic performance of the retrieval method was analyzed in terms of offset (bias) and the median fractional error (MFE), and the benefit of using submillimeter channels was studied in comparison to pure microwave retrievals. The retrieval is offset-free for SIWP > 0.01 kg m-2, LWP > 0.1 kg m-2, and IWV > 3 kg m-2. The MFE of SIWP decreases from 100 % at SIWP = 0.01 kg m-2 to 20 % at SIWP = 1 kg m-2 and the MFE of LWP from 100 % at LWP = 0.05 kg m-2 to 30 % at LWP = 1 kg m-2. The MFE of IWV for IWV > 3 kg m-2 is 5 to 8 %. The SIWP retrieval strongly benefits from submillimeter channels, which reduce the MFE by a factor of 2, compared to pure microwave retrievals. The IWV and the LWP retrievals also benefit from submillimeter channels, albeit to a lesser degree. The retrieval was applied to ISMAR and MARSS brightness temperatures from FAAM flight B897 on 18 March 2015 of a precipitating frontal system west of the coast of Iceland. Considering the given uncertainties, the retrieval is in reasonable agreement with the SIWP, LWP, and IWV values simulated by the ICON NWP model for that flight. A comparison of the retrieved IWV with IWV from 12 dropsonde measurements shows an offset of 0.5 kg m-2 and an RMS difference of 0.8 kg m-2, showing that the retrieval of IWV is highly effective even under cloudy conditions.

  15. Flight simulation program for high altitude long endurance unmanned vehicle; Kokodo mujinki no hiko simulation program

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Hashidate, M. [National Aerospace Laboratory, Tokyo (Japan)

    1995-11-01

    An altitude of about 20 km has the atmospheric density too dilute for common aircraft, and the air resistance too great for satellites. Attention has been drawn in recent years on a high-altitude long-endurance unmanned vehicle that flies at this altitude for a long period of time to serve as a wave relaying base and perform traffic control. Therefore, a development was made on a flight simulation program to evaluate and discuss the guidance and control laws for the high-altitude unmanned vehicle. Equations of motion were derived for three-dimensional six freedom and three-dimensional three freedom. Aerodynamic characteristics of an unmanned vehicle having a Rectenna wing were estimated, and formulation was made according to the past research results on data of winds that the unmanned vehicle is anticipated to encounter at an altitude of 20 km. Noticing the inside of a horizontal plane, a proposal was given on a guidance law that follows a given path. A flight simulation was carried out to have attained a prospect that the unmanned vehicle may be enclosed in a limited space even if the vehicle is encountered with a relatively strong wind. 18 refs., 20 figs., 1 tab.

  16. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    Science.gov (United States)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  17. Quantifying Pilot Contribution to Flight Safety During an In-Flight Airspeed Failure

    Science.gov (United States)

    Etherington, Timothy J.; Kramer, Lynda J.; Bailey, Randall E.; Kennedey, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport fatal accidents. Yet a well-trained and well-qualified crew is acknowledged as the critical center point of aircraft systems safety and an integral component of the entire commercial aviation system. A human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to system failures. To quantify the human's contribution, crew complement was used as an independent variable in a between-subjects design. This paper details the crew's actions and responses while dealing with an in-flight airspeed failure. Accident statistics often cite flight crew error (Baker, 2001) as the primary contributor in accidents and incidents in transport category aircraft. However, the Air Line Pilots Association (2011) suggests "a well-trained and well-qualified pilot is acknowledged as the critical center point of the aircraft systems safety and an integral safety component of the entire commercial aviation system." This is generally acknowledged but cannot be verified because little or no quantitative data exists on how or how many accidents/incidents are averted by crew actions. Anecdotal evidence suggest crews handle failures on a daily basis and Aviation Safety Action Program data generally supports this assertion, even if the data is not released to the public. However without hard evidence, the contribution and means by which pilots achieve safety of flight is difficult to define. Thus, ways to improve the human ability to contribute or overcome deficiencies are ill-defined.

  18. Motif Penggunaan dan Kepuasan Menggunakan Path (Studi Korelasional Tentang Pengaruh Motif Penggunaan dan Kepuasan Menggunakan Jejaring sosial Path di Kalangan Masyarakat Pasar VI Kelurahan Padang Bulan Medan)

    OpenAIRE

    Dipta, Anna Mira

    2015-01-01

    This study entitled Effect of using and gratification of using social networking Path among the people in Padang Bulan Medan (CorrelationalEffect of using and gratification of using social networking Path among the people in Padang Bulan Medan). Path is a social network similar to its predecessor facebook. Path exclusive can only be used with smartphones based on IOS and android operating system. Path is a private social networking service application designed to bring users closer to family....

  19. Theseus First Flight - May 24, 1996

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it lifts off from Rogers Dry Lake during its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to

  20. Optimal Path Determination for Flying Vehicle to Search an Object

    Science.gov (United States)

    Heru Tjahjana, R.; Heri Soelistyo U, R.; Ratnasari, L.; Irawanto, B.

    2018-01-01

    In this paper, a method to determine optimal path for flying vehicle to search an object is proposed. Background of the paper is controlling air vehicle to search an object. Optimal path determination is one of the most popular problem in optimization. This paper describe model of control design for a flying vehicle to search an object, and focus on the optimal path that used to search an object. In this paper, optimal control model is used to control flying vehicle to make the vehicle move in optimal path. If the vehicle move in optimal path, then the path to reach the searched object also optimal. The cost Functional is one of the most important things in optimal control design, in this paper the cost functional make the air vehicle can move as soon as possible to reach the object. The axis reference of flying vehicle uses N-E-D (North-East-Down) coordinate system. The result of this paper are the theorems which say that the cost functional make the control optimal and make the vehicle move in optimal path are proved analytically. The other result of this paper also shows the cost functional which used is convex. The convexity of the cost functional is use for guarantee the existence of optimal control. This paper also expose some simulations to show an optimal path for flying vehicle to search an object. The optimization method which used to find the optimal control and optimal path vehicle in this paper is Pontryagin Minimum Principle.

  1. Path Transmissibility Analysis Considering Two Types of Correlations in Hydropower Stations

    Directory of Open Access Journals (Sweden)

    Baoping Zhi

    2013-01-01

    Full Text Available A new vibration model is built by introducing the head-cover vibration transfer path based on a previous analysis of the vertical vibration model for hydropower station units and powerhouses. This research focuses on disturbance- and parameter-related transfer paths in a practical situation. In a complex situation, the application of the stochastic perturbation method is expanded using an algebra synthesis method the Hadamard product, and theoretical analyses, and numerical simulations of transfer paths in the new vibration model are carried out through the expanded perturbation method. The path transfer force, the path transmissibility, and the path disturbance ranges in the frequency domain are provided. The results indicate that the methods proposed in this study can efficiently reduce the disturbance range and can accurately analyze the transfer paths of hydraulic-source vertical vibration in hydropower stations.

  2. Canonical transformations and hamiltonian path integrals

    International Nuclear Information System (INIS)

    Prokhorov, L.V.

    1982-01-01

    Behaviour of the Hamiltonian path integrals under canonical transformations produced by a generator, is investigated. An exact form is determined for the kernel of the unitary operator realizing the corresponding quantum transformation. Equivalence rules are found (the Hamiltonian formalism, one-dimensional case) enabling one to exclude non-standard terms from the action. It is shown that the Hamiltonian path integral changes its form under cononical transformations: in the transformed expression besides the classical Hamiltonian function there appear some non-classical terms

  3. Analysis of construction dynamic plan using fuzzy critical path method

    Directory of Open Access Journals (Sweden)

    Kurij Kazimir V.

    2014-01-01

    Full Text Available Critical Path Method (CPM technique has become widely recognized as valuable tool for the planning and scheduling large construction projects. The aim of this paper is to present an analytical method for finding the Critical Path in the precedence network diagram where the duration of each activity is represented by a trapezoidal fuzzy number. This Fuzzy Critical Path Method (FCPM uses a defuzzification formula for trapezoidal fuzzy number and applies it on the total float (slack time for each activity in the fuzzy precedence network to find the critical path. The method presented in this paper is very effective in determining the critical activities and finding the critical paths.

  4. Altitude exposures during commercial flight: a reappraisal.

    Science.gov (United States)

    Hampson, Neil B; Kregenow, David A; Mahoney, Anne M; Kirtland, Steven H; Horan, Kathleen L; Holm, James R; Gerbino, Anthony J

    2013-01-01

    Hypobaric hypoxia during commercial air travel has the potential to cause or worsen hypoxemia in individuals with pre-existing cardiopulmonary compromise. Knowledge of cabin altitude pressures aboard contemporary flights is essential to counseling patients accurately about flying safety. The objective of the study was to measure peak cabin altitudes during U.S. domestic commercial flights on a variety of aircraft. A handheld mountaineering altimeter was carried by the investigators in the plane cabin during commercial air travel and peak cabin altitude measured. The values were then compared between aircraft models, aircraft classes, and distances flown. The average peak cabin altitude on 207 flights aboard 17 different aircraft was 6341 +/- 1813 ft (1933 m +/- 553 m), significantly higher than when measured in a similar fashion in 1988. Peak cabin altitude was significantly higher for flights longer than 750 mi (7085 +/- 801 ft) compared to shorter flights (5160 +/- 2290 ft/1573 +/- 698 m). Cabin altitude increased linearly with flight distance for flights up to 750 mi in length, but was independent of flight distance for flights exceeding 750 mi. Peak cabin altitude was less than 5000 ft (1524 m) in 70% of flights shorter than 500 mi. Peak cabin altitudes greater than 8000 ft (2438 m) were measured on approximately 10% of the total flights. Peak cabin altitude on commercial aircraft flights has risen over time. Cabin altitude is lower with flights of shorter distance. Physicians should take these factors into account when determining an individual's need for supplemental oxygen during commercial air travel.

  5. Poor flight performance in deep-diving cormorants.

    Science.gov (United States)

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.

  6. Master equations and the theory of stochastic path integrals

    Science.gov (United States)

    Weber, Markus F.; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from

  7. Master equations and the theory of stochastic path integrals.

    Science.gov (United States)

    Weber, Markus F; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon

  8. Groebner Finite Path Algebras

    OpenAIRE

    Leamer, Micah J.

    2004-01-01

    Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS

  9. Paths to Licensure: Things Physicists Should Know

    Science.gov (United States)

    Stewart, Gay; Stewart, John

    2016-03-01

    The path to licensure can be quite complicated, and can thwart a physics department's efforts to produce more and better prepared high school physics teachers. Each state has different pathways to licensure. Acronyms like CAEP and SPA are not within the normal physicist's vocabulary. Some understanding of this topic can allow physics faculty advisers to help our students so that fewer are derailed on their path to the classroom, or take a path that will leave them less well prepared if they do find themselves there. Examples of different approaches that work within state licensure systems from two different states will be presented. Physics teacher preparation efforts in both Arkansas and West Virginia have been supported in part by the Physics Teacher Education Coalition (PhysTEC).

  10. Defending Tor from Network Adversaries: A Case Study of Network Path Prediction

    Directory of Open Access Journals (Sweden)

    Juen Joshua

    2015-06-01

    Full Text Available The Tor anonymity network has been shown vulnerable to traffic analysis attacks by autonomous systems (ASes and Internet exchanges (IXes, which can observe different overlay hops belonging to the same circuit. We evaluate whether network path prediction techniques provide an accurate picture of the threat from such adversaries, and whether they can be used to avoid this threat. We perform a measurement study by collecting 17.2 million traceroutes from Tor relays to destinations around the Internet. We compare the collected traceroute paths to predicted paths using state-of-the-art path inference techniques. We find that traceroutes present a very different picture, with the set of ASes seen in the traceroute path differing from the predicted path 80% of the time. We also consider the impact that prediction errors have on Tor security. Using a simulator to choose paths over a week, our traceroutes indicate a user has nearly a 100% chance of at least one compromise in a week with 11% of total paths containing an AS compromise and less than 1% containing an IX compromise when using default Tor selection. We find modifying the path selection to choose paths predicted to be safe lowers total paths with an AS compromise to 0.14% but still presents a 5–11% chance of at least one compromise in a week while making 5% of paths fail, with 96% of failures due to false positives in path inferences. Our results demonstrate more measurement and better path prediction is necessary to mitigate the risk of AS and IX adversaries to Tor.

  11. Path integral solution for some time-dependent potential

    International Nuclear Information System (INIS)

    Storchak, S.N.

    1989-12-01

    The quantum-mechanical problem with a time-dependent potential is solved by the path integral method. The solution is obtained by the application of the previously derived general formula for rheonomic homogeneous point transformation and reparametrization in the path integral. (author). 4 refs

  12. Autonomous path planning solution for industrial robot manipulator using backpropagation algorithm

    Directory of Open Access Journals (Sweden)

    PeiJiang Yuan

    2015-12-01

    Full Text Available Here, we propose an autonomous path planning solution using backpropagation algorithm. The mechanism of movement used by humans in controlling their arms is analyzed and then applied to control a robot manipulator. Autonomous path planning solution is a numerical method. The model of industrial robot manipulator used in this article is a KUKA KR 210 R2700 EXTRA robot. In order to show the performance of the autonomous path planning solution, an experiment validation of path tracking is provided. Experiment validation consists of implementation of the autonomous path planning solution and the control of physical robot. The process of converging to target solution is provided. The mean absolute error of position for tool center point is also analyzed. Comparison between autonomous path planning solution and the numerical methods based on Newton–Raphson algorithm is provided to demonstrate the efficiency and accuracy of the autonomous path planning solution.

  13. Lévy flights in a box

    International Nuclear Information System (INIS)

    Iomin, Alexander

    2015-01-01

    Highlights: •A quantum Lévy process in a box involves topological constraints in space. •The eigenvalue problem is formulated for the Lévy process in the box. •The path integral formalism with the Lévy measure is constructed. •The evolution operator is obtained in the path integral presentation. -- Abstract: It is shown that a quantum Lévy process in a box leads to a problem involving topological constraints in space, and its treatment in the framework of the path integral formalism with the Lévy measure is suggested. The eigenvalue problem for the infinite potential well is properly defined and solved. An analytical expression for the evolution operator is obtained in the path integral presentation, and the path integral takes the correct limit of the local quantum mechanics with topological constraints. An example of the Lévy process in oscillating walls is also considered in the adiabatic approximation

  14. Path connectivity based spectral defragmentation in flexible bandwidth networks.

    Science.gov (United States)

    Wang, Ying; Zhang, Jie; Zhao, Yongli; Zhang, Jiawei; Zhao, Jie; Wang, Xinbo; Gu, Wanyi

    2013-01-28

    Optical networks with flexible bandwidth provisioning have become a very promising networking architecture. It enables efficient resource utilization and supports heterogeneous bandwidth demands. In this paper, two novel spectrum defragmentation approaches, i.e. Maximum Path Connectivity (MPC) algorithm and Path Connectivity Triggering (PCT) algorithm, are proposed based on the notion of Path Connectivity, which is defined to represent the maximum variation of node switching ability along the path in flexible bandwidth networks. A cost-performance-ratio based profitability model is given to denote the prons and cons of spectrum defragmentation. We compare these two proposed algorithms with non-defragmentation algorithm in terms of blocking probability. Then we analyze the differences of defragmentation profitability between MPC and PCT algorithms.

  15. Nutritional Biochemistry of Space Flight

    Science.gov (United States)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  16. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    Science.gov (United States)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  17. Ants Colony Optimisation of a Measuring Path of Prismatic Parts on a CMM

    Directory of Open Access Journals (Sweden)

    Stojadinovic Slavenko M.

    2016-03-01

    Full Text Available This paper presents optimisation of a measuring probe path in inspecting the prismatic parts on a CMM. The optimisation model is based on: (i the mathematical model that establishes an initial collision-free path presented by a set of points, and (ii the solution of Travelling Salesman Problem (TSP obtained with Ant Colony Optimisation (ACO. In order to solve TSP, an ACO algorithm that aims to find the shortest path of ant colony movement (i.e. the optimised path is applied. Then, the optimised path is compared with the measuring path obtained with online programming on CMM ZEISS UMM500 and with the measuring path obtained in the CMM inspection module of Pro/ENGINEER® software. The results of comparing the optimised path with the other two generated paths show that the optimised path is at least 20% shorter than the path obtained by on-line programming on CMM ZEISS UMM500, and at least 10% shorter than the path obtained by using the CMM module in Pro/ENGINEER®.

  18. A path finding implementation for multi-layer networks

    NARCIS (Netherlands)

    Dijkstra, F.; van der Ham, J.; Grosso, P.; de Laat, C.

    2009-01-01

    The goal of the OptIPuter project is to tightly couple research applications with dynamically allocated paths. Since OptIPuter is a multi-disciplinary project, the paths through the network often span multiple network domains, and the applications are challenged to find valid network connections

  19. A path finding implementation for multi-layer network

    NARCIS (Netherlands)

    Dijkstra, F.; Ham, J.J. van der; Grosso, P.; Laat, C. de

    2009-01-01

    The goal of the OptIPuter project is to tightly couple research applications with dynamically allocated paths. Since OptIPuter is a multi-disciplinary project, the paths through the network often span multiple network domains, and the applications are challenged to find valid network connections

  20. Road networks as collections of minimum cost paths

    Science.gov (United States)

    Wegner, Jan Dirk; Montoya-Zegarra, Javier Alexander; Schindler, Konrad

    2015-10-01

    We present a probabilistic representation of network structures in images. Our target application is the extraction of urban roads from aerial images. Roads appear as thin, elongated, partially curved structures forming a loopy graph, and this complex layout requires a prior that goes beyond standard smoothness and co-occurrence assumptions. In the proposed model the network is represented as a union of 1D paths connecting distant (super-)pixels. A large set of putative candidate paths is constructed in such a way that they include the true network as much as possible, by searching for minimum cost paths in the foreground (road) likelihood. Selecting the optimal subset of candidate paths is posed as MAP inference in a higher-order conditional random field. Each path forms a higher-order clique with a type of clique potential, which attracts the member nodes of cliques with high cumulative road evidence to the foreground label. That formulation induces a robust PN -Potts model, for which a global MAP solution can be found efficiently with graph cuts. Experiments with two road data sets show that the proposed model significantly improves per-pixel accuracies as well as the overall topological network quality with respect to several baselines.