WorldWideScience

Sample records for by-products anaerobic digestion

  1. Anaerobic digestion of slaughterhouse by-products

    DEFF Research Database (Denmark)

    Hejnfelt, Anette; Angelidaki, Irini

    2009-01-01

    Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 degrees C and for some experiments also at 37 degrees C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone...

  2. Anaerobic digestion of slaughterhouse by-products

    International Nuclear Information System (INIS)

    Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 oC and for some experiments also at 37 oC. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497, 487, 561, 582, 575, 359, 619 dm3 kg-1 respectively, corresponding to 50-100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm-3 and 7 g N dm-3 respectively. Pretreatment (pasteurization: 70 oC, sterilization: 133 oC, and alkali hydrolysis (NaOH) had no effect on achieved methane yields. Mesophilic digestion was more stable than thermophilic digestion, and higher methane yield was noticed at high waste concentrations. The lower yield at thermophilic temperature and high waste concentration was due to ammonia inhibition. Co-digestion of 5% pork by-products mixed with pig manure at 37 oC showed 40% higher methane production compared to digestion of manure alone.

  3. Anaerobic digestion of animal by-products : pre-treatments and co-digestion

    OpenAIRE

    Rodríguez Abalde, Ángela

    2013-01-01

    The meat sector is one of the most important industrial sectors in Europe and it is associated with the generation of large quantities of animal by-products not intended for human consumption (ABPs). The increasing demand of renewable energy sources and reuse of wastes require good technological solutions for energy production such as anaerobic digestion (AD), which is included in the current European regulation as one of the allowed methods to valorize ABPs. Due to their composition, with hi...

  4. Anaerobic digestion of by-products of sugar beet and starch potato processing

    Energy Technology Data Exchange (ETDEWEB)

    Kryvoruchko, Vitaliy; Machmueller, Andrea; Bodiroza, Vitomir; Amon, Barbara; Amon, Thomas [Division of Agricultural Engineering, Department of Sustainable Agricultural Systems, University of Natural Resources and Applied Life Sciences, Peter-Jordan Strasse 82, A-1190 Vienna (Austria)

    2009-04-15

    Anaerobic digestion (AD) is a promising option for the environmentally friendly recycling of agricultural by-products. However, overloading of the digester with sugar, starch or protein might cause inhibition of the anaerobic processes. The aim of the present project was to investigate the AD of sugar beet, starch potato by-products and effect of pre-treatment by steam on methane yield of potatoes pulp. The investigated by-products have been: sugar beet pulp silage (SBP), sugar beet tail silage (SBT), potato pulp (PP), potato peel pulp (PPP) and potato fruit water (PFW). All by-products were digested in 1 l eudiometer-batch digesters at 37.5 C during 28-38 days. The specific methane yields of SBP and SBT were 430 and 481 l{sub N} kg{sup -1} volatile solids (VS), respectively. The specific methane yields of PP, PPP and PFW were 332, 377 and 323 l{sub N} (kg VS){sup -1}. A steam pre-treatment significantly increased the specific methane yield of PP up to 373 l{sub N} (kg VS){sup -1}. (author)

  5. Anaerobic digestion of organic by-products from meat-processing industry. The effect of pre-treatments and co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Luste, S.

    2011-07-01

    Anaerobic digestion is a multi-beneficial biological treatment during which micro-organisms degrade organic material producing biogas (i.e. methane) and stabilised end-product (i.e. digestate). Methane is a versatile renewable energy source and digestate can be used as an organic fertiliser and/or soil improver. Because of the increasing consumption and tightening environment and health legislation, production of organic wastes suitable for anaerobic digestion increases. Animal by-products (ABP) from the meat-processing industry are often rendered (contaminated material), used as feedstock (in fur breeding), or composted. However, ABPs studied could not be utilised in fodder or in animal food production and have currently been rendered or directed to composting, despite being mostly considered unsuitable for composting. Many ABPs are energy-rich, wet and pasty materials and suitable for the anaerobic digestion process. Moreover, suitable pre-treatment to hydrolyse solid materials and/or co-digestion of two or several materials may improve the anaerobic digestion with ultimate goal to increase the methane production, stabilisation and reusability of digestate. The case chosen for more detailed research was that of a middle-sized Finnish meat-processing industry. The aim of the thesis was to evaluate the feasibility of different ABPs presently available for treatment as raw material for anaerobic digestion. Another objective was to enhance the anaerobic digestion process via specific pre-treatments and co-digestion cases with the ultimate aim to increase the methane production and the quality of the digestate. The general goal was to observe the overall process from the perspective of real-circumstances in Finland to rise to needs in practice and to produce exploitable information for adopting sustainable development locally and case-specifically into practice via versatile anaerobic digestion technology. The ABPs studied were highly bio-degradable and especially

  6. Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure

    Energy Technology Data Exchange (ETDEWEB)

    Kaparaju, Prasad; Rintala, Jukka [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland)

    2005-01-01

    The possible use of potato tuber and its industrial by-products (potato stillage and potato peels) on farm-scale co-digestion with pig manure was evaluated in a laboratory study. The methane yields (m{sup 3}kg{sup -1} volatile solids (VS){sub addedwaste}) achieved on semi-continuous co-digestion at loading rate of 2kgVSm{sup -3}day{sup -1} in continuously stirred tank reactors at 35{sup o}C were 0.13-0.15 at 100:0 (VS% pig manure to VS% potato co-substrate), 0.21-0.24 at 85:15 and 0.30-0.33 at 80:20 feed ratio. Increasing the loading rate from 2 to 3kgVSm{sup -3}day{sup -1} at a feed VS ratio of 80:20 (pig manure to potato waste) produced methane yields of 0.28-0.30m{sup 3}kg{sup -1} VS{sub addedwaste}. Post-digestion (60 days) of the digested materials in batches produced 0.12-0.15m{sup 3}kg{sup -1} VS{sub addedwaste} of methane at 35{sup o}C. The results suggest that successful digester operation can be achieved with feed containing potato material up to 15-20% of the feed VS and that under similar feed VS, loading rate, retention time and feed VS ratio, the methane yields and process performance for potato tuber would be similar to that of its industrial residues. Thus, co-digestion of potatoes and/or its industrial by-products with manures on a farm-scale level would generate renewable energy and provide a means of waste treatment for industry.

  7. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid with...... very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9.......6 addresses the mass balances and environmental aspects of anaerobic digestion....

  8. Anaerobes beyond anaerobic digestion

    OpenAIRE

    Sousa, D. Z.; Pereira, M A; Alves, M.M.

    2009-01-01

    Anaerobic microorganisms are widespread in nature. Sediments, gastrointestinal tracks, volcanic vents, geothermal sources are examples of habitats where anaerobic metabolism prevail, in some cases at extreme temperature, pH and pressure conditions. In such microbial ecosystems waste of some is food for others in a true integrated structure. Anaerobic microorganisms are able to use a wide variety of organic and inorganic compounds. Recalcitrant compounds, such as hydrocarbons, a...

  9. Anaerobic co-digestion of agricultural by-products with manure, for enhanced biogas production

    DEFF Research Database (Denmark)

    Søndergaard, Marie M.; Fotidis, Ioannis; Kovalovszki, Adam;

    2015-01-01

    Biogas is extensively promoted as a promising renewable energy. Therefore, the search of appropriate co-substrates has come into focus. In this study, we examined the potential of using agricultural byproducts as alternative co-substrates for increased biogas production. The biochemical methane...... all mono-substrates tested. On the basis of BMP, the substrates ranked as follows: meadow grass > spring barley, winter wheat, winter barley, ryegrass > rapeseed > manure. Co-digestion of manure with byproducts resulted in only an additive and not synergistic methane production. Continuous co......-digestion of 34 g L–1 raw meadow grass with manure increased the methane production rate of the CSTR reactor by 114% compared to the manure alone....

  10. Anaerobic co-digestion of by-products from sugar production with cow manure

    DEFF Research Database (Denmark)

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    determined by batch assays was found to be 490, 500 and 240 mL-CH4/gVS-added respectively. Three reactor experiments were carried out to investigate the effect of co-digestion of SBP, DM and manure at different ratios, on biogas process efficiency and stability. The results showed that DM was potentially...... inhibiting the biogas process and the co-digestion of SBP and DM was only successful at high dilution with manure or water. In contrast, SBP was shown to be a good substrate for biogas production and the methane yield of 280 mL-CH4/gVS-added was obtained in a thermophilic continuously operated reactor, co...

  11. Perspectives for anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    2003-01-01

    to the soil. Anaerobic digestion (AD) is one way of achieving this goal and it will furthermore, reduce energy consumption or may even be net energy producing. This chapter aims at provide a basic understanding of the world in which anaerobic digestion is operating today. The newest process developments...

  12. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  13. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  14. Mitigation strategies in the agro-food sector: The anaerobic digestion of tomato purée by-products. An Italian case study

    International Nuclear Information System (INIS)

    Tomato processing involves a significant production of residues, mainly constituted by discarded tomatoes, skins, seeds and pulp. Often, these residues are not valorized and represent an added cost for manufacturing companies because of disposal processes, with environmental issues due to the difficult management. The exploitation of these residual materials results complex as their availability is mainly concentrated in few months. A possible solution is the production of biogas employed in a Combine Heat and Power engine for energy production, in line with the 2020 targets of European Union in terms of promotion of energy from renewable resources and greenhouse gas emission reduction. The tomato by-product utilization for energy production as a strategy to reduce the environmental load of tomato purée was evaluated by means of Life Cycle Assessment. Two scenarios were considered: Baseline Scenario — tomato by-products are sent back to the tomato fields as organic fertilizers; Alternative Scenario — tomato by-products are employed in a nearby biogas plant for energy production. Methane production of tomato by-products was assessed by means of specific laboratory tests. The comparison between the two scenarios highlighted reductions for all the impact categories with the Alternative Scenario. The most important reductions are related to particulate matter (− 5.3%), climate change (− 6.4%) and ozone depletion (− 13.4%). Although small, the reduction of the environmental impact cannot be neglected; for example for climate change, the anaerobic digestion of by-products allows a saving of GHG emissions that, over the whole year, is equal to 1.567 tons of CO2 eq. The results of this study could be up-scaled to the food industries with high heat demand producing considerable amounts of fermentable by-products employable as feedstock for biogas production. - Highlights: • Tomato processing generates byproducts, whose residual mass is 2–5%. • Anaerobic

  15. Mitigation strategies in the agro-food sector: The anaerobic digestion of tomato purée by-products. An Italian case study

    Energy Technology Data Exchange (ETDEWEB)

    Bacenetti, Jacopo, E-mail: jacopo.bacenetti@unimi.it [Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan (Italy); Duca, Daniele [Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona (Italy); Negri, Marco [Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan (Italy); Fusi, Alessandra [School of Chemical Engineering and Analytical Science, The Mill, Sackville Street, The University of Manchester, Manchester M13 9PL (United Kingdom); Fiala, Marco [Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan (Italy)

    2015-09-01

    Tomato processing involves a significant production of residues, mainly constituted by discarded tomatoes, skins, seeds and pulp. Often, these residues are not valorized and represent an added cost for manufacturing companies because of disposal processes, with environmental issues due to the difficult management. The exploitation of these residual materials results complex as their availability is mainly concentrated in few months. A possible solution is the production of biogas employed in a Combine Heat and Power engine for energy production, in line with the 2020 targets of European Union in terms of promotion of energy from renewable resources and greenhouse gas emission reduction. The tomato by-product utilization for energy production as a strategy to reduce the environmental load of tomato purée was evaluated by means of Life Cycle Assessment. Two scenarios were considered: Baseline Scenario — tomato by-products are sent back to the tomato fields as organic fertilizers; Alternative Scenario — tomato by-products are employed in a nearby biogas plant for energy production. Methane production of tomato by-products was assessed by means of specific laboratory tests. The comparison between the two scenarios highlighted reductions for all the impact categories with the Alternative Scenario. The most important reductions are related to particulate matter (− 5.3%), climate change (− 6.4%) and ozone depletion (− 13.4%). Although small, the reduction of the environmental impact cannot be neglected; for example for climate change, the anaerobic digestion of by-products allows a saving of GHG emissions that, over the whole year, is equal to 1.567 tons of CO{sub 2} eq. The results of this study could be up-scaled to the food industries with high heat demand producing considerable amounts of fermentable by-products employable as feedstock for biogas production. - Highlights: • Tomato processing generates byproducts, whose residual mass is 2–5%.

  16. Anaerobic digestion of coffee waste

    OpenAIRE

    L. Neves; Ribeiro, R.; Oliveira, Rosário; Alves, M. M.

    2005-01-01

    The anaerobic co-digestion of five different by-products from instant coffee substitutes production was studied in mesophilic conditions. The co-substrate was the excess of sewage sludge from the wastewater treatment plant located in the same coffee factory. Four of the tested wastes produced methane in the range of 0.24-0.28 m³CH4(STP)/kgVSinitial . Reduction of 50-73% in total solids and 75-80% in volatile solids were obtained and the hydrolysis rate constants were in the ran...

  17. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  18. Mitigation strategies in the agro-food sector: The anaerobic digestion of tomato purée by-products. An Italian case study.

    Science.gov (United States)

    Bacenetti, Jacopo; Duca, Daniele; Negri, Marco; Fusi, Alessandra; Fiala, Marco

    2015-09-01

    Tomato processing involves a significant production of residues, mainly constituted by discarded tomatoes, skins, seeds and pulp. Often, these residues are not valorized and represent an added cost for manufacturing companies because of disposal processes, with environmental issues due to the difficult management. The exploitation of these residual materials results complex as their availability is mainly concentrated in few months. A possible solution is the production of biogas employed in a Combine Heat and Power engine for energy production, in line with the 2020 targets of European Union in terms of promotion of energy from renewable resources and greenhouse gas emission reduction. The tomato by-product utilization for energy production as a strategy to reduce the environmental load of tomato purée was evaluated by means of Life Cycle Assessment. Two scenarios were considered: Baseline Scenario - tomato by-products are sent back to the tomato fields as organic fertilizers; Alternative Scenario - tomato by-products are employed in a nearby biogas plant for energy production. Methane production of tomato by-products was assessed by means of specific laboratory tests. The comparison between the two scenarios highlighted reductions for all the impact categories with the Alternative Scenario. The most important reductions are related to particulate matter (-5.3%), climate change (-6.4%) and ozone depletion (-13.4%). Although small, the reduction of the environmental impact cannot be neglected; for example for climate change, the anaerobic digestion of by-products allows a saving of GHG emissions that, over the whole year, is equal to 1.567 tons of CO2 eq. The results of this study could be up-scaled to the food industries with high heat demand producing considerable amounts of fermentable by-products employable as feedstock for biogas production. PMID:25918896

  19. Anaerobic digestion in sustainable biomass chains

    NARCIS (Netherlands)

    Pabon Pereira, C.P.

    2009-01-01

    This thesis evaluates the potential contribution of anaerobic digestion (AD) to the sustainability of biomass chains. Results provide insights in the technological potential to recover energy and valuable by-products from energy crops and residues, and evaluate biomass cascades involving AD technolo

  20. Anaerobic Digestion of Piggery Waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes an

  1. Anaerobic Digestion of Piggery Waste

    OpenAIRE

    Velsen, van, L.S.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes and lake sediments. Microbial formation of methane also plays a role in the ruminant digestion.In digestion units, the external conditions acting upon the process can be regulated to speed it up as c...

  2. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær;

    2001-01-01

    requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader......The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...

  3. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.;

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... improve the continuous flow reactor performance at the relatively low influent methanogenic biomass concentration. In the continuously stirred tank reactor (CSTR) there are two steady states with and without methane production at slightly different values of initial methanogenic biomass concentration....... In the system, the threshold methanogenic biomass concentration existed because of inhibition by high VFA concentration. High methanogenic biomass concentration is required for efficient anaerobic digestion of MSW in order to avoid possible inhibition due to high VFA build-up. Thus, CSTR configuration might...

  4. Evaluation of methane generation and process stability from anaerobic co-digestion of sugar beet by-product and cow manure.

    Science.gov (United States)

    Aboudi, Kaoutar; Álvarez-Gallego, Carlos José; Romero-García, Luis Isidoro

    2016-05-01

    The effect of mesophilic anaerobic co-digestion of dried pellets of exhausted sugar beet cossettes (ESBC-DP) and cow manure (CM) on the enhancement of methane generation and process stability were studied with the aim to select the best substrate mixture ratio. A series of batch experiments was conducted using the following five mixture ratios of ESBC-DP:CM: 0:100; 25:75; 50:50; 75:25 and 100:0. Best results were obtained from mixture ratios with ESBC-DP proportions in the range of 25-50%. Mixture ratio of 50:50 showed a specific methane production (SMP) increase of 81.4% and 25.5%, respectively, in comparison with mono-digestion of ESBC-DP and CM. Evolution of the indirect parameter named acidogenic substrate as carbon (ASC) could be used to provide more insight about the process stability of anaerobic digestion. ASC accumulation was observed in reactors with higher ESBC-DP proportions leading to a delay in VFAs consumption and conversion into methane. PMID:26711843

  5. Anaerobic digestion in sustainable biomass chains

    OpenAIRE

    Pabon Pereira, C.P.

    2009-01-01

    This thesis evaluates the potential contribution of anaerobic digestion (AD) to the sustainability of biomass chains. Results provide insights in the technological potential to recover energy and valuable by-products from energy crops and residues, and evaluate biomass cascades involving AD technology for their feasibility and desirability. Embedding AD in biomass chains addresses current constraints towards increased use of biomass for energy production considering land competition and envir...

  6. Anaerobic digestion in Denmark

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.

    2002-01-01

    Centralized biogas plants (CBP) in Denmark codigest mainly manure, together with other organic waste such as industrial organic waste, source sorted household waste and sewage sludge. Today 22 large scale CBP's are in operation in Denmark and in 2001 they treated approx. 1.2 mio tonnes of manure ...... comprises about 80% of this potential. Special emphasis has been paid to establish good sanitation and pathogen reduction of the digested material, to avoid risk of spreading pathogens when applying the digested manure as fertilizer to agricultural soils....

  7. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.; Angelidaki, Irini

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... improve the continuous flow reactor performance at the relatively low influent methanogenic biomass concentration. In the continuously stirred tank reactor (CSTR) there are two steady states with and without methane production at slightly different values of initial methanogenic biomass concentration. In...... failure. According to the distributed models a plug-flow reactor with non-uniform influent concentration distributions where methanogenic and hydrolytic microorganisms are separated has significant methane production and solids removal at the relatively low influent methanogenic biomass concentration...

  8. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...

  9. Olive mill wastewater anaerobically digested : phenolic compounds with antiradical activity

    OpenAIRE

    La Cara, Francesco; Ionata, Elena; Del Monaco, Giovanni; Marcolongo, Loredana; Gonçalves, Marta R.; Marques, I. P.

    2012-01-01

    The recovery of phenolic compounds, present in the olive fruits and its by-products, has been intensively studied by the antioxidant properties. Olive mill wastewater (OMW) is a phenolic-rich industrial effluent that can be advantageously valorized by the anaerobic digestion to the methane and agricultural fertilizer productions. The objective of this work was to evaluate the antiradical activity of OMW after anaerobic digestion in order to maximize the valorization of this type o...

  10. Anaerobic digestion of aliphatic polyesters.

    Science.gov (United States)

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry. PMID:27191559

  11. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  12. Comparative Studies of Alternative Anaerobic Digestion Technologies

    OpenAIRE

    Inman, David C.

    2004-01-01

    Washington D.C. Water and Sewage Authority is planning to construct a new anaerobic digestion facility at its Blue Plains WWTP by 2008. The research conducted in this study is to aid the designers of this facility by evaluating alternative digestion technologies. Alternative anaerobic digestion technologies include thermophilic, acid/gas phased, and temperature phased digestion. In order to evaluate the relative merits of each, a year long study evaluated the performance of bench scale dig...

  13. Prospects of Anaerobic Digestion Technology in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the world's largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteristics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environmental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from biowaste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.

  14. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  15. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  16. Biochar from anaerobically digested sugarcane bagasse.

    Science.gov (United States)

    Inyang, Mandu; Gao, Bin; Pullammanappallil, Pratap; Ding, Wenchuan; Zimmerman, Andrew R

    2010-11-01

    This study was designed to investigate the effect of anaerobic digestion on biochar produced from sugarcane bagasse. Sugarcane bagasse was anaerobically digested to produce methane. The digested residue and fresh bagasse was pyrolyzed separately into biochar at 600 degrees C in nitrogen environment. The digested bagasse biochar (DBC) and undigested bagasse biochar (BC) were characterized to determine their physicochemical properties. Although biochar was produced from the digested residue (18% by weight) and the raw bagasse (23%) at a similar rate, there were many physiochemical differences between them. Compared to BC, DBC had higher pH, surface area, cation exchange capacity (CEC), anion exchange capacity (AEC), hydrophobicity and more negative surface charge, all properties that are generally desirable for soil amelioration, contaminant remediation or wastewater treatment. Thus, these results suggest that the pyrolysis of anaerobic digestion residues to produce biochar may be an economically and environmentally beneficial use of agricultural wastes. PMID:20634061

  17. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  18. Anaerobic was co-digestion with OMW and glycerol

    International Nuclear Information System (INIS)

    The main by-product of any biological wastewater treatment is waste activated sludge (WAS). Anaerobic digestion is the most common treatment technique for sludge stabilization, resulting in a reduction in the amount of volatile solids (VS) with biogas production, at the same time. On the other hand, many agro-industrial organic wastes are readily biodegradable and as a result, anaerobic co-digestion of sludge with agro-industrial wastes is being developed potential advantages such as increased biogas production and improved nutrience balance. (Author)

  19. Anaerobic Digestion: Mass Balances and Products

    DEFF Research Database (Denmark)

    Møller, Jacob; Christensen, Thomas Højlund; Jansen, Jes la Cour

    2011-01-01

    While the basic processes involved in anaerobic digestion of waste are described in Chapter 9.4 and the main digestion technologies are presented in Chapter 9.5, this chapter focuses on mass balances, gas production and energy aspects, environmental emissions and unit process inventories...

  20. Anaerobic digestion of agricultural wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, P.N.

    1984-01-01

    Farm digesters can operate satisfactorily and have a useful role on the farm. Gas production from the farm digester treating animal slurries could be boosted by adding silage liquid, old potatoes, waste cabbages and other crop wastes to the slurry, although the energy economics of maceration have not been calculated. Pollution control and types of digester are discussed. Uses of digested slurry other than for fertilizers are being tested - as protein supplement to farm animal feeds, silage making, hydroponics, fish farming and growing of worms on algae. Overall, digestion could be a contributor to power requirements especially in countries with high all year round crop production.

  1. Multivariate monitoring of anaerobic co-digestion

    DEFF Research Database (Denmark)

    Madsen, Michael; Holm-Nielsen, Jens Bo

    warming and environmental concerns. Anaerobic digestion applied in agriculture can simultaneously convert heterogeneous biomasses and wastes from the primary agricultural sector and from the bio processing industries, for instance food processing, pharma, and biofuel production, into valuable organic...... fertiliser and renewable energy. Meanwhile, in order for the biogas sector to become a significant player in the energy supply chain, the anaerobic digestion process has to be controlled to a greater extent than what is implemented as state-of-the-art today. Through application of the philosophy behind...

  2. Anaerobic digestion of food and vegetable waste

    OpenAIRE

    Jiang, Ying

    2012-01-01

    Food and vegetable wastes contribute a large percentage of the organic fraction of municipal solid waste (OFMSW), and anaerobic digestion potentially offers an ideal method for their management. Their chemical composition can, however, lead to unstable operation and in extreme cases complete process failure has been reported with this type of substrate. Semi-continuous trials on vegetable waste were carried out in laboratory-scale digesters with daily feed additions at different organic loadi...

  3. The Financial Feasibility of Anaerobic Digestion for Ontario's Livestock Industries

    OpenAIRE

    Weersink, Alfons; Mallon, Shawn

    2007-01-01

    This report is an investigation of the financial feasibility of farm based anaerobic digestion investments under Ontario's Standard Offer Contract electricity prices. Using Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) Agricultural Anaerobic Digestion Calculation Spreadsheet (AADCS) anaerobic digestion inputs, outputs, cost and revenues were estimated and used to conduct a financial analysis on the feasibility of four sized farm base anaerobic digestion investments. The res...

  4. The IWA Anaerobic digestion model no 1. (ADM1)

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Keller, J.; Angelidaki, Irini;

    2002-01-01

    The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well...

  5. Applications of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.; Ahring, Birgitte Kiær

    2003-01-01

    and resource/energy recovery have been developed. Treatment of biowastes by anaerobic digestion processes is in many cases the optimal way to convert organic waste into useful products such as energy (in the form of biogas) and a fertilizer product. Other waste management options, such as land filling...

  6. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the conversion of th

  7. Anaerobic Digestion in a Flooded Densified Leachbed

    Science.gov (United States)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  8. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus, the...... first models were very simple and consisted of a limited number of equations. During the past thirty years much research has been conducted on the peculiarities of the process and on the factors that influence it on the one hand while an enormous progress took place in computer science on the other. The...... combination of both parameters resulted in the development of more and more concise and complex models. In this chapter the most important models found in the literature are described starting from the simplest and oldest to the more recent and complex ones....

  9. Instrumentation and Control in Anaerobic Digestion

    DEFF Research Database (Denmark)

    Anaerobic digestion is a multistep process, and is most applied to solids destruction and wastewater treatment for energy production. Despite wide application, and long-term industrial proof of application, some industries are still reluctant to apply this technology. One of the classical reasons...... benchmark. There has therefore been, overall, a quantum advance in application and sophistication of instrumentation and control in anaerobic digestion, and it is an effective option for improved process loading rate and conversion efficiency....... are still a limitation, but this is being partly addressed by the increased complexity of digestion processes. Methods for control benchmarking have also been improved, as there is now an industry standard model (the IWA ADM1), and this is being applied in an improved whole wastewater treatment plant...

  10. Robust regulation of anaerobic digestion processes.

    Science.gov (United States)

    Mailleret, L; Bernard, O; Steyer, J P

    2003-01-01

    This paper deals with the problem of controlling anaerobic digestion processes. A two-step (i.e. acidogenesis-methanization) mass balance model is considered for a 1 m3 fixed bed digester treating industrial wine distillery wastewater. The control law aims at regulating the organic pollution level while avoiding washout of biomass. To this end, a simple output feedback controller is considered which regulates a variable strongly related to the Chemical Oxygen Demand (COD). Numerical simulations assuming noisy measurements first illustrate the robustness of this control procedure. Then, the regulating procedure is implemented on the considered anaerobic digestion process in order to validate and demonstrate its efficiency in real life experiments. PMID:14640204

  11. Anaerobic digestion of catering wastes

    OpenAIRE

    Climenhaga, Martha Anne

    2008-01-01

    This research addresses gaps in current knowledge regarding process issues associated with long term semi-continuous digestion of food waste as a sole substrate, and the role of trace elements and biomass retention in digestion of food wastes. Source segregated food wastes were collected from a university catering facility and found, in characterisation studies, to have a total solids (TS) content of 28.1±0.25 %, a volatile solids (VS) content of 95.5±0.06% of TS and a chemica...

  12. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible. PMID:27396682

  13. Transforming anaerobic digestion with the Model T of digesters

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.F.; Ciotola, R.; Castano, J.; Eger, C.; Schlea, D. [Ohio State Univ., Columbus, OH (United States). Ecological Engineering Program

    2010-07-01

    Most livestock farmers in the United States do not take advantage of anaerobic digester technology because of the high cost and large scale. These limitations therefore reduce the production of renewable energy from farmlands. In order to expand anaerobic digestion methods and improve environmental quality, affordable and smaller-scale digesters should be developed to enable most livestock farmers to convert manure to methane. Doing so would improve their economic efficiency and environmental sustainability. This paper provided an analogy to the development of the Model T to better explain the need and potential for this technology. A modified fixed-dome digester was installed on the Ohio State University dairy in Columbus, Ohio. The digester was unheated, buried, had a volume of 1 m{sup 3} and received diluted dairy manure as feedstock. Biogas was produced at digester temperatures as low 10 degrees C during colder ambient temperatures. Water quality also improved. Results from the first year of operation will be analyzed to improve performance and enable future development of this technology.

  14. Comparative economic analysis: Anaerobic digester case study

    International Nuclear Information System (INIS)

    An economic guide is developed to assess the value of anaerobic digesters used on dairy farms. Two varieties of anaerobic digesters, a conventional mixed-tank mesophilic and an innovative earthen psychrophilic, are comparatively evaluated using a cost-effectiveness index. The two case study examples are also evaluated using three other investment merit statistics: simple payback period, net present value, and internal rate of return. Life-cycle savings are estimated for both varieties, with sensitivities considered for investment risk. The conclusion is that an earthen psychrophilic digester can have a significant economic advantage over a mixed-tank mesophilic digester because of lower capital cost and reduced operation and maintenance expenses. Because of this economic advantage, additional projects are being conducted in North Carolina to increase the rate of biogas utilization. The initial step includes using biogas for milk cooling at the dairy farm where the existing psychrophilic digester is located. Further, a new project is being initiated for electricity production with thermal reclaim at a swine operation

  15. Improvement of anaerobic digestion of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Dohanyos, Michael; Zabranska, Jana; Kutil, Josef; Jenicek, Pavel

    2003-07-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of process conditions is frequently used pretreatment of input sludge and increase of process temperature. Thermophilic process brings a higher solids reduction and biogas production, the high resistance to foaming, no problems with odour, the higher effect of destroying pathogens and the improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in lysate centrifuge was proved in full-scale conditions causing increase of biogas production. The rapid thermal conditioning of digested sludge is acceptable method of particulate matter disintegration and solubilization. (author)

  16. Anaerobic co-digestion of organic wastes

    OpenAIRE

    L. Neves

    2009-01-01

    Tese de doutoramento em Engenharia Química e Biológica Anaerobic digestion is an already established process but the increasing need of bio‐waste recovery has determined the emergence of new substrates, revamping the research in this field. Contrary to some other European countries, in Portugal this technology is still scarcely in use. Nonetheless, the current legislation endorses this application as a waste management and as an energy recovery process. The rapid growth of the ...

  17. The anaerobic digestion of solid organic waste.

    Science.gov (United States)

    Khalid, Azeem; Arshad, Muhammad; Anjum, Muzammil; Mahmood, Tariq; Dawson, Lorna

    2011-08-01

    The accumulation of solid organic waste is thought to be reaching critical levels in almost all regions of the world. These organic wastes require to be managed in a sustainable way to avoid depletion of natural resources, minimize risk to human health, reduce environmental burdens and maintain an overall balance in the ecosystem. A number of methods are currently applied to the treatment and management of solid organic waste. This review focuses on the process of anaerobic digestion which is considered to be one of the most viable options for recycling the organic fraction of solid waste. This manuscript provides a broad overview of the digestibility and energy production (biogas) yield of a range of substrates and the digester configurations that achieve these yields. The involvement of a diverse array of microorganisms and effects of co-substrates and environmental factors on the efficiency of the process has been comprehensively addressed. The recent literature indicates that anaerobic digestion could be an appealing option for converting raw solid organic wastes into useful products such as biogas and other energy-rich compounds, which may play a critical role in meeting the world's ever-increasing energy requirements in the future. PMID:21530224

  18. CFD simulation of mixing in anaerobic digesters.

    Science.gov (United States)

    Terashima, Mitsuharu; Goel, Rajeev; Komatsu, Kazuya; Yasui, Hidenari; Takahashi, Hiroshi; Li, Y Y; Noike, Tatsuya

    2009-04-01

    A three-dimensional CFD model incorporating the rheological properties of sludge was developed and applied to quantify mixing in a full-scale anaerobic digester. The results of the model were found to be in good agreement with experimental tracer response curve. In order to predict the dynamics of mixing, a new parameter, UI (uniformity index) was defined. The visual patterns of tracer mixing in simulation were well reflected in the dynamic variation in the value of UI. The developed model and methods were applied to determine the required time for complete mixing in a full-scale digester at different solid concentrations. This information on mixing time is considered to be useful in optimizing the feeding cycles for better digester performance. PMID:19081247

  19. Anaerobic Digestion of Paper Mill Wastewater

    Directory of Open Access Journals (Sweden)

    Shreeshivadasan Chelliapan

    2012-01-01

    Full Text Available In general, paper mill wastewater contains complex organic substances which could not be treated completely using conventional treatment processes, e.g. aerobic processes. As a result, anaerobic technology is a promising alternative for paper mill wastewater treatment due to its ability to degrade hard organic compounds. In the present study, treatment of paper mill wastewater using a stage anaerobic reactor was investigated. The more specific objectives of this study were to confirm whether paper mill wastewater can be tolerated by methanogenic sludge and to assess the stability of reactor for measured parameters (e.g. COD removal, and methane composition. Results showed up to 98% COD removal efficiency in the anaerobic reactor when the reactor was operated at an OLR of 1.560 kg COD/m3.d. Anaerobic digestion can provide high treatment efficiency for recalcitrant substrates, which generates robust microorganism (acidogenesis and methanogenesis, for the degradation of recalcitrant compounds such as in the paper mill wastewater.

  20. The anaerobic digestion of sugar beet pulp

    OpenAIRE

    Suhartini, Sri

    2014-01-01

    World-wide there are substantial quantities of sugar beet pulp, which arises as a residue after the processing of whole beet to extract sugar for refining as a foodstuff or for use in fermentation, in particular for the production of ethanol for the biofuel market. In both cases the resulting pulp residue is still rich in pentose sugars and fibre, and the research considered anaerobic digestion (AD) as a potential technology for the conversion of this material into renewable energy in the for...

  1. Arsenic volatilization in model anaerobic biogas digesters

    International Nuclear Information System (INIS)

    Highlights: • Arsenic is volatilized form all model anaerobic digesters, including the non-treated ones. • Volatile As species can be identified and quantified in all digesters. • Non-arsenic treated digesters volatilization rates are higher than Roxarsone treated ones. - Abstract: Arsenic is a class 1 non-threshold carcinogen which is highly ubiquitous. Arsenic undergoes many different transformations (biotic or abiotic) between and within environmental compartments, leading to a number of different chemical species possessing different properties and toxicities. One specific transformation is As biotic volatilization which is coupled with As biomethylation and has been scarcely studied due to inherent sampling issues. Arsenic methylation/volatilization is also linked with methanogenesis and occurs in anaerobic environments. In China, rice straw and animal manure are very often used to produce biogas and both can contain high amounts of As, especially if the rice is grown in areas with heavy mining or smelting industries and if Roxarsone is fed to the animals. Roxarsone is an As-containing drug which is widely used in China to control coccidian intestinal parasites, to improve feed efficiency and to promote rapid growth. Previous work has shown that this compound degrades to inorganic As under anaerobic conditions. In this study the focus is on biotic transformations of As in small microcosms designed as biogas digester models (BDMs) using recently validated As traps, thus, enabling direct quantification and identification of volatile As species. It is shown that although there was a loss of soluble As in the BDMs, their conditions favored biomethylation. All reactors produced volatile As, especially the monomethylarsonic acid spiked ones with 413 ± 148 ng As (mean ± SD, n = 3) which suggest that the first methylation step, from inorganic As, is a limiting factor. The most abundant species was trimethylarsine, but the toxic arsine was present in the

  2. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    Science.gov (United States)

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  3. Anaerobic digestion: biodegradability and biogas production of model wastes

    OpenAIRE

    Lausund, Erlend

    2014-01-01

    Anaerobic digestion is a desirable treatment practice in terms of minimizing volume, treating of pollutants and biogas production. In this thesis model wastes have been investigated with respect to biogas and methane production in order to find out what wastes are suitable for anaerobic digestion, and discussing ways to further the research to optimize the production of renewable energy.

  4. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Carlos, E-mail: carllosmendez@gmail.com; Esquerre, Karla, E-mail: karlaesquerre@ufba.br; Matos Queiroz, Luciano, E-mail: lmqueiroz@ufba.br

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  5. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    International Nuclear Information System (INIS)

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m3 day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m3 day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge

  6. Anaerobic digestion of cellulosic wastes: laboratory tests

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 10 references, 17 figures, 4 tables

  7. Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion.

    Science.gov (United States)

    Onyeche, T I; Schläfer, O; Bormann, H; Schröder, C; Sievers, M

    2002-05-01

    The world-wide increasing environmental awareness and its subsequent regulations have led to the application of improved technologies in wastewater purification plants. This has resulted in higher wastewater and sludge productions. Sludge is the by-product of such plants and it is not only rich in organic carbon and pathogens but also in heavy metals and other environmental pollutants. In Europe, agricultural application of dried sludge (bio-solids) is confronted with negative reactions from the citizens, governmental organisations, farmers and the food industry. Ultrasonic disruption of sludge is a popular mechanical disruption process in sludge treatment. During ultrasonic treatment, high frequency acoustic signals are used to initiate the cavitation process. The applied ultrasonic field leads to a breakdown of cohesive forces of the liquid molecules resulting in the generation of cavitation bubbles. A shock wave is released by the collapse of the cavitation bubbles and propagates in the surrounding medium forming jet streams that cause the disruption of cells in sludge. Disruption of sludge cells enables the release of light organic substances into the sludge water thereby exposing them for further anaerobic digestion. This paper presents results on the disruption of conventionally stabilised sludge through the application of the ultrasonic field. In order to reduce the specific energy input (i.e. ratio of the consumed energy during ultrasonic disruption to the input sludge mass) and improve biogas production, the total solids content of the stabilised sludge was increased before disruption. The anaerobic digestion of sludge samples was carried out in a set of specially constructed laboratory anaerobic digesters. Results showed that subsequent anaerobic digestion of the ultrasonically disrupted sludge could improve biogas production with reduced sludge quantity that is vital to the economic consideration of the wastewater treatment plants. This process

  8. INCREASING ANAEROBIC DIGESTION PERFORMANCE OF WASTEWATER WITH CO-DIGESTION USING DECANTER CAKE

    OpenAIRE

    Thaniya Kaosol; Narumol Sohgrathok

    2014-01-01

    Low biogas production in the frozen seafood wastewater anaerobic digestion is observed due to the low organic and Total Solids (TS) contents in the wastewater. In this research the decanter cake will be used in the anaerobic co-digestion process to improve the biogas production rate. The effect of co-digestion and Hydraulic Retention Time (HRT) will be investigated using the continuously stirred tank reactors under anaerobic conditions. Moreover, the study determines the biogas production pot...

  9. Design considerations and operational performance of Anaerobic Digester: A Review

    OpenAIRE

    Muzaffar Ahmad Mir; Athar Hussain; Chanchal Verma

    2016-01-01

    Due to the decline in fossil fuel reservoirs, the researchers emphasized more on the production of biogas from organic waste. Producing the renewable energy from biodegradable waste helps to overcome the energy crisis and solid waste management, done by anaerobic digestion. Anaerobic digestion is controlled breakdown of organic matter into methane gas (60%), carbon dioxide (40%), trace components along with digested used as soil conditioner. However there is vast dearth of literature regardin...

  10. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg-1, respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg-1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K+ and Mg2+, with the maximum concentration of 1.35 and 0.43 g L-1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  11. Comparison of digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters as inocula for solid state anaerobic digestion of yard trimmings.

    Science.gov (United States)

    Xu, Fuqing; Wang, Feng; Lin, Long; Li, Yebo

    2016-01-01

    To select a proper inoculum for the solid state anaerobic digestion (SS-AD) of yard trimmings, digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters were compared at substrate-to-inoculum (S/I) ratios from 0.2 to 2 (dry basis), and total solids (TS) contents from 20% to 35%. The highest methane yield of around 244L/kg VSfeed was obtained at an S/I ratio of 0.2 and TS content of 20% for both types of inoculum. The highest volumetric methane productivity was obtained with dewatered effluent at an S/I ratio of 0.6 and TS content of 24%. The two types of inoculum were found comparable regarding methane yields and volumetric methane productivities at each S/I ratio, while using dewatered effluent as inoculum reduced the startup time. An S/I ratio of 1 was determined to be a critical level and should be set as the upper limit for mesophilic SS-AD of yard trimmings. PMID:26575617

  12. Mathematical modelling of anaerobic digestion processes: applications and future needs

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Puyol, Daniel; Flores Alsina, Xavier;

    2015-01-01

    of the role of the central carbon catabolic metabolism in anaerobic digestion, with an increased importance of phosphorous, sulfur, and metals as electron source and sink, and consideration of hydrogen and methane as potential electron sources. The paradigm of anaerobic digestion is challenged by anoxygenic...... phototrophism, where energy is relatively cheap, but electron transfer is expensive. These new processes are commonly not compatible with the existing structure of anaerobic digestion models. These core issues extend to application of anaerobic digestion in domestic plant-wide modelling, with the need......Anaerobic process modelling is a mature and well-established field, largely guided by a mechanistic model structure that is defined by our understanding of underlying processes. This led to publication of the IWA ADM1, and strong supporting, analytical, and extension research in the 15 years since...

  13. INCREASING ANAEROBIC DIGESTION PERFORMANCE OF WASTEWATER WITH CO-DIGESTION USING DECANTER CAKE

    Directory of Open Access Journals (Sweden)

    Thaniya Kaosol

    2014-01-01

    Full Text Available Low biogas production in the frozen seafood wastewater anaerobic digestion is observed due to the low organic and Total Solids (TS contents in the wastewater. In this research the decanter cake will be used in the anaerobic co-digestion process to improve the biogas production rate. The effect of co-digestion and Hydraulic Retention Time (HRT will be investigated using the continuously stirred tank reactors under anaerobic conditions. Moreover, the study determines the biogas production potential of different HRTs and that of wastewater digestion alone. The anaerobic co-digestion is operated in continuous with continuously stirred reactors at HRT of 10, 20 and 30 days. The mechanical stirring units of all reactors are operated automatically. The stirring action occurred continuously during the experiments. The anaerobic co-digestion results show that the anaerobic co-digestion provides higher biogas production rate and higher methane yield than that of the wastewater digestion alone. The optimum HRT of the anaerobic co-digestion is 20 days. This reactor produces 2.88 L day-1, with 64.5% of methane and the maximum methane production rate of 1.87 L day-1 and the methane yield of 0.321 l CH4/g CODremoved. The anaerobic co-digestion of wastewater with decanter cake provides the higher methane yield potential production than that provided by the wastewater digestion alone at the ambient temperature. The best HRT is 20 days for anaerobic co-digestion between the wastewater and decanter cake. The experimental results reveal that HRT and co-digestion are the parameters that can affect the biogas production and methane yield.

  14. [Anaerobic digestion of animal manure contaminated by tetracyclines].

    Science.gov (United States)

    Tong, Zi-Lin; Liu, Yuan-Lu; Hu, Zhen-Hu; Yuan, Shou-Jun

    2012-03-01

    Anaerobic digestion of pig manure spiked with tetracycline (TC) and chlortetracycline (CTC) and the degradation of the two antibiotics during the anaerobic digestion at 35 degrees C were investigated. The results indicate that propionate was the main volatile fatty acid produced during the anaerobic digestion followed by acetate. Compared with the CTC addition, TC + CTC addition showed obvious inhibitory effect on the hydrolysis and acidification of easily digestible organic components of pig manure. The cumulative methane production of TC, CTC, TC + CTC and CK2 during anaerobic digestion was 386.4 mL, 406.0 mL, 412.1 mL and 464.6 mL, respectively. Degradation of TC and CTC followed the first-order kinetic equation. The half-life of TC and CTC was 14-18 days and 10 days, respectively. After the treatment of 45-day anaerobic digestion, the degradation efficiency of TC was 88.6%-91.6% with 97.7%-98.2% of CTC. Therefore, anaerobic digestion shows the benefit on the management of animal manures contaminated by tetracyclines. PMID:22624404

  15. Fate of pathogens and micro-pollutants during organic wastes and by-products anaerobic digestion - a review; Etat des connaissances sur le devenir des germes pathogenes et des micropolluants au cours de la methanisation des dechets et sous-produits organiques

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Ch.; Galtier, L.

    1998-09-01

    Based on 300 scientific papers, the following bibliographical research deals with the fate of micro-pollutants (pathogens, heavy metals, organic pollutants) during anaerobic digestion. Different biological and chemical mechanisms allow organic compounds elimination, except from some Polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals which are fixed to the solid biomass, permitting water contamination risks attenuation. Unlike mesophilic digestion, thermophilic digestion is a 'sanitation' process regarding pathogens elimination. However, mesophilic digestion offers an important reliability compared with competitive or complementary processes. In particular, energy recovery from anaerobic digestion allows temperature control and makes easier further sanitation heat treatments. In general, anaerobic digestion represents a tool which can be included in an organic waste treatment line assuming waste selection and good agricultural practices. Otherwise, sanitation problem is still badly handled by waste operators and constructors which have been consulted. Research orientations seem especially interesting in improving knowledge of real industrial processes performances. (author)

  16. Application of natural zeolites in anaerobic digestion processes: A review

    OpenAIRE

    Montalvo, Silvio; Borja Padilla, Rafael; Sánchez, Enrique; Milán, Zhenia; Cortés, Isel; Rubia, M. Ángeles de la

    2012-01-01

    This paper reviews the most relevant uses and applications of zeolites in anaerobic digestion processes. The feasibility of using natural zeolites as support media for the immobilization of microorganisms in different high-rate reactor configurations (fixed bed, fluidized bed, etc.) is also reviewed. Zeolite, with its favorable characteristics for microorganism adhesion, has also been widely used as an ion exchanger for the removal of ammonium in anaerobic digestion due to the presence of Na ...

  17. Anaerobic digestion of organic solid waste for energy production

    OpenAIRE

    Nayono, Satoto Endar

    2009-01-01

    This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms of its energy recovery, either by investigating the maximum organic loading rate or by co-digestion with other types of wastes for energy recovery. In order to reach the research purpose, several experiments such as characteristics examination of different organic solid wastes, which are potential substrates for anaerobic digestion.

  18. Increased Anaerobic Digestion Efficiency via the Use of Thermal Hydrolysis

    OpenAIRE

    Fraser, Kino Dwayne

    2010-01-01

    Waste sludge is frequently treated by anaerobic digestion to kill pathogens, generate methane gas and reduce odors so the sludge can be safely land applied. In an attempt to reduce sludge volumes and improve sludge dewatering properties, the use of thermal hydrolysis (TH), a sludge pretreatment method, has been adopted by numerous wastewater treatment plants, among them being the District of Columbia Water and Sewage Authority (DC WASA). The use of anaerobic digestion in collaboration wi...

  19. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E. [VFA Services Ltd., Herts (United Kingdom)

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  20. Expert system for control of anaerobic digesters.

    Science.gov (United States)

    Pullammanappallil, P C; Svoronos, S A; Chynoweth, D P; Lyberatos, G

    1998-04-01

    Continuous anaerobic digesters are systems that present challenging control problems including the possibility that an unmeasured disturbance can change the sign of the steady-state process gain. An expert system is developed that recognizes changes in the sign of process gain and implements appropriate control laws. The sole on-line measured variable is the methane production rate, and the manipulated input is the dilution rate. The expert system changes the dilution rate according to one of four possible strategies: a constrained conventional set-point control law, a constant yield control law (CYCL) that is nearly optimal for the most common cause of change in the sign of the process gain, batch operation, or constant dilution rate. The algorithm uses a t test for determining when to switch to the CYCL and returns to the conventional set-point control law with bumpless transfer. The expert system has proved successful in several experimental tests: severe overload; mild, moderate, and severe underload; and addition of phenol in low and high levels. Phenol is an inhibitor that in high concentrations changes the sign of the process gain. PMID:10099257

  1. Anaerobic digestion of onion residuals using a mesophilic Anaerobic Phased Solids Digester

    International Nuclear Information System (INIS)

    The anaerobic digestion of onion residual from an onion processing plant was studied under batch-fed and continuously-fed mesophilic (35 ± 2 oC) conditions in an Anaerobic Phased Solids (APS) Digester. The batch digestion tests were performed at an initial loading of 2.8 gVS L-1 and retention time of 14 days. The biogas and methane yields, and volatile solids reduction from the onion residual were determined to be 0.69 ± 0.06 L gVS-1, 0.38 ± 0.05 L CH4 gVS-1, and 64 ± 17%, respectively. Continuous digestion tests were carried out at organic loading rates (OLRs) of 0.5-2.0 gVS L-1 d-1. Hydrated lime (Ca(OH)2) was added to the APS-Digester along with the onion residual at 16 mg Ca(OH)2 gVS-1 to control the pH of the biogasification reactor above 7.0. At steady state the average biogas yields were 0.51, 0.56, and 0.62 L gVS-1 for the OLRs of 0.5, 1.0, and 2.0 gVS L-1 d-1 respectively. The methane yields at steady state were 0.29, 0.32, and 0.31 L CH4 gVS-1 for the OLRs of 0.5, 1.0, and 2.0 gVS L-1 d-1 respectively. The study shows that the digestion of onion residual required proper alkalinity and pH control, which was possible through the use of caustic chemicals. However, such chemicals will begin to have an inhibitory effect on the microbial population at high loading rates, and therefore alternative operational parameters are needed. -- Highlights: → An APS-Digester was used to study biogas production from onion solid residues. → Biogas and methane yields from onion solids were determined. → Study showed substantial findings for treating onion solid residues.

  2. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    Science.gov (United States)

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR). PMID:26707985

  3. Characterization of food waste as feedstock for anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Ruihong Zhang; El-Mashad, H.M.; Hartman, K.; Fengyu Wang; Guangqing Liu [University of California (United States). Biological and Agricultural Engineering; Choate, C.; Gamble, P. [Norcal Waste Systems, Inc., Dixon, CA (United States)

    2007-03-15

    Food waste collected in the City of San Francisco, California, was characterized for its potential for use as a feedstock for anaerobic digestion processes. The daily and weekly variations of food waste composition over a two-month period were measured. The anaerobic digestibility and biogas and methane yields of the food waste were evaluated using batch anaerobic digestion tests performed at 50 {sup o}C. The daily average moisture content (MC) and the ratio of volatile solids to total solids (VS/TS) determined from a week-long sampling were 70% and 83%, respectively. The nutrient content analysis showed that the food waste contained well balanced nutrients for anaerobic microorganisms. The methane yield was determined to be 348 and 435 mL/g VS, respectively, after 10 and 28 days of digestion. The average methane content of biogas was 73%. The average VS destruction was 81% at the end of the 28-day digestion test. The results of this study indicate that the food waste is a highly desirable substrate for anaerobic digester with regards to its high biodegradability and methane yield. (author)

  4. Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Ahring, Birgitte Kiær

    2002-01-01

    it is important to investigate the effect of these xenobiotic compounds on an anaerobic environment. The inhibitory effect of Linear Alkylbenzene Sulfonates (LAS) on the acetogenic and methanogenic step of the anaerobic digestion process was studied. LAS inhibit both acetogenesis from propionate...... of the anaerobic digestion process should be seriously taken into consideration when wastewater from a surfactant producing industry is to be treated biologically or enter a municipal wastewater treatment plant that employs anaerobic technology. The upper allowable biomass specific LAS concentration should be 14......Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore...

  5. Anaerobic respirometry as a tool for substrate characterisation aiming at modelling of manures anaerobic modelling of manures anaerobic digestion

    OpenAIRE

    Girault, R.; Sadowski, A.G.; Béline, F.

    2010-01-01

    Modelling of anaerobic digestion is more and more used as a tool for process optimization or interpreting observed phenomena within research projects. The most used model is the Anaerobic Digestion Model n°1 (ADM1) but some other models are also available (either simpler or more complex). Whatever the model, one of the major key issue is the fractionation and characterisation of the influent. For substrates like activated sludge from wastewater treatment plants, detailed influent characterisa...

  6. Anaerobic Co-Digestion of the Microalgae Scenedesmus Sp.

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Suarez, J. L.; Carreras, N.

    2011-06-07

    Microalgae biomass has been widely studied for biogas production over the last years and results show that anaerobic digestion is often limited by the low C/N ratio of this type of biomass. Therefore, codigestion with substrates of high C/N ratio is necessary. The objectives of this study are to set up an experimental method that ease reproducibility and control of anaerobic digestion processes in laboratory conditions and to determine the biodegradability and biogas production potential of the co-digestion process of microalgae Scenedesmus sp. and energy crop Opuntia ficus indica (L.) Miller. Results obtained showed that higher C/N ratios are preferred in order to maximize methane production. Highest methane yield obtained was 0.252m3CH4/Kg VS and degradability expressed as percentage COD reduced is around 30% for the ideal mixture found, made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. A laboratory setup using MicroOxymax respirometer, after its adaptation to work under anaerobic conditions, can be used for the monitoring of anaerobic digestion processes. Scenedesmus sp. as sole substrate for anaerobic digestion does not give good results due to low C/N ratio. However, when codigesting it with O. ficus-indica methane production is satisfactory. Best mixture was made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. (Author)

  7. Testing low cost anaerobic digestion (AD) systems

    Science.gov (United States)

    To evaluate the potential for low technology and low cost digesters for small dairies, BARC and researchers from the University of Maryland installed six modified Taiwanese-model field-scale (FS) digesters near the original dairy manure digester. The FS units receive the same post-separated liquid ...

  8. Anaerobic co-digestion of dairy manure and potato waste

    Science.gov (United States)

    Yadanaparthi, Sai Krishna Reddy

    Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ▸ The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ▸ In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow

  9. Effect of digestion time on anaerobic digestion with high ammonia concentration

    Science.gov (United States)

    Oktavitri, Nur Indradewi; Purnobasuki, Hery; Kuncoro, Eko Prasetyo; Purnamasari, Indah; Semma Hadinnata, P.

    2016-03-01

    Anaerobic digestion was developed to treat high concentration organic compound efficiently in certain Digestion Time (DT). High ammonia concentration could influenced removal organic compound in digestion. This bench scale study investigated the effect of digestion time on anaerobic batch reactor with high ammonia concentration. Total Ammonia Nitrogen (TAN) concentration was adjusted 4000 and 5000 mg/1, Digestion time was ranged from 0-26 d, operation temperature was ranged from 28-29°C, inoculum was collected from slaughter house sludge. The degradation of Chemical Oxygen Demand (COD) correlated with digestion time. The concentration of TAN from synthetic wastewater contain 5000 mg/1 of TAN more fluctuated than those use 4000 mg/1 of TAN. However, the biogas production from wastewater contained 4000 mg/1 of TAN gradually increased until 24 d of DT. The reactor contain 5000 mg/1 of TAN only growth until 12 d and steady state at over 12 d of digestion time.

  10. Animal and industrial waste anaerobic digestion: USA status report

    Energy Technology Data Exchange (ETDEWEB)

    Lusk, P.D. [Resource Development Associates, Washington, DC (United States)

    1996-01-01

    Pollutants from unmanaged animal and bio-based industrial wastes can degrade the environment, and methane emitted from decomposing wastes may contribute to global climate change. One waste management system prevents pollution and converts a disposal problem into a new profit center. Case studies of operating systems indicate that the anaerobic digestion of animal and industrial wastes is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel. Growth and concentration of the livestock industry create opportunities to properly dispose of the large quantities of manures generated at dairy, swine, and poultry farms. Beyond the farm, extension of the anaerobic digestion process to recover methane has considerable potential for certain classified industries - with a waste stream characterization similar to livestock manures. More than 35 example industries have been identified, and include processors of chemicals, fiber, food, meat, milk, and pharmaceuticals. Some of these industries already recover methane for energy. This status report examines some current opportunities for recovering methane from the anaerobic digestion of animal and industrial wastes in the US. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned,{close_quotes} are included as a reality check. Factors necessary for successful projects, as well as a list of reasons explaining why some anaerobic digestion projects fail, are provided. The role of management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at facilities willing to incorporate the uncertainties of a new technology. Anaerobic digestion can provide monetary benefits and mitigate possible pollution problems, thereby sustaining development while maintaining environmental quality.

  11. Detoxifying CO2 capture reclaimer waste by anaerobic digestion.

    Science.gov (United States)

    Wang, Shuai; Hovland, Jon; Brooks, Steven; Bakke, Rune

    2014-01-01

    The decrease in toxicity of carbon capture reclaimer monoethanolamine (MEA) waste (MEAw) during anaerobic degradation of such waste together with easily degradable organics was investigated. Samples were collected from a bioreactor at steady state with 86 % organic chemical oxygen demand removal at room temperature, which had been running on MEAw for 2 years. The toxicity of the digester effluents were 126, 42 and 10 times lower than that of the MEAw to the tested freshwater trophic groups of Pseudokirchneriella subcapitata, Daphnia magna and embryos of Danio rerio, respectively. The toxicity of the tested taxonomic groups after anaerobic digestion was mainly attributed to the ammonia generated by the degradation of MEAw. PMID:24122630

  12. Design considerations and operational performance of Anaerobic Digester: A Review

    Directory of Open Access Journals (Sweden)

    Muzaffar Ahmad Mir

    2016-04-01

    Full Text Available Due to the decline in fossil fuel reservoirs, the researchers emphasized more on the production of biogas from organic waste. Producing the renewable energy from biodegradable waste helps to overcome the energy crisis and solid waste management, done by anaerobic digestion. Anaerobic digestion is controlled breakdown of organic matter into methane gas (60%, carbon dioxide (40%, trace components along with digested used as soil conditioner. However there is vast dearth of literature regarding the design considerations. The batch digestion system yields a cost-effective and economically viable means for conversion of the food waste to useful energy. It is therefore recommended that such process can be increasingly employed in order to get and simultaneously protect the environment .This paper aims to draw key analysis and concern about the design considerations, analysis of gas production, substrates and inoculums utilization, uses and impacts of biogas.

  13. Diagnosis of Two Stage Anaerobic Digester in WWTP using Radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Seop; Kim, Jong Bum; Jung, Sung Hee; Kim, Jae Ho

    2005-12-15

    The long time operation of an anaerobic digester causes stagnant zone(or inactive volume) which reduces effective reaction volume and treatment efficiency. Therefore it is important to understand fluid mechanics and quantify stagnant zone in a digester for the optimal maintenance and effective operation. It is, however, almost impossible to check the inside of a digester with high precision during its operation. Upon this problem, a practical and novel alternative is the radiotracer method which is recognized as an applicable technique to various industries and environmental facilities. A radioisotope tracer behaves physico chemically same to the system interested, then successfully indicates the flow mechanics of it. The aims of this study are to assess the existence and location of the stagnant zone by estimating of MRT(mean residence time) on the two stage anaerobic digester and the result would be used as informative clue for the better operation.

  14. Diagnosis of Two Stage Anaerobic Digester in WWTP using Radiotracer

    International Nuclear Information System (INIS)

    The long time operation of an anaerobic digester causes stagnant zone(or inactive volume) which reduces effective reaction volume and treatment efficiency. Therefore it is important to understand fluid mechanics and quantify stagnant zone in a digester for the optimal maintenance and effective operation. It is, however, almost impossible to check the inside of a digester with high precision during its operation. Upon this problem, a practical and novel alternative is the radiotracer method which is recognized as an applicable technique to various industries and environmental facilities. A radioisotope tracer behaves physico chemically same to the system interested, then successfully indicates the flow mechanics of it. The aims of this study are to assess the existence and location of the stagnant zone by estimating of MRT(mean residence time) on the two stage anaerobic digester and the result would be used as informative clue for the better operation

  15. Waste heat utilization in an anaerobic digestion system

    Science.gov (United States)

    Boissevain, Brett

    Anaerobic digestion has great potential as an energy source. Not only does it provide an effective method for waste mitigation, but it has the potential to generate significant quantities of fuel and electricity. In order to ensure efficient digestion and biomass utilization, however, the system must be continuously maintained at elevated temperatures. It is technically feasible to supplement such a system with outside energy, but it is more cost effective to heat the system using only the produced biogas. While there is considerable literature covering the theory of anaerobic digestion, there are very few practical studies to show how heat utilization affects system operation. This study considers the effect of major design variables (i.e. heat exchanger efficiencies and biogas conditioning) on promoting a completely self-sustaining digestion system. The thesis considers a real world system and analyzes how it can be improved to avoid the need of an external energy source.

  16. Anaerobic digester for treatment of organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. K. [Indian Insitute of Technology, Delhi (India)]|[ENEA, Centro Ricerche Trisaia, Matera (Italy); Fortuna, F.; Canditelli, M.; Cornacchia, G. [ENEA, Centro Ricerche Trisaia, Matera (Italy). Dipt. Ambiente; Farina, R. [ENEA, centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente

    1997-09-01

    The essential features of both new and more efficient reactor systems and their appropriate applications for various organic waste management situations, description of several working plants are discussed in the present communication. It is hoped that significant development reported here would be useful in opening a new vista to the application of anaerobic biotechnology for the waste treatment of both low/high organic strength and specialized treatment for toxic substances, using appropriate anaerobic methods.

  17. Anaerobic Digestion of Paper Mill Wastewater

    OpenAIRE

    Shreeshivadasan Chelliapan; Siti Baizura Mahat; Md. Fadjil Md. Din; A. Yuzir; Othman, N.

    2012-01-01

    In general, paper mill wastewater contains complex organic substances which could not be treated completely using conventional treatment processes, e.g. aerobic processes. As a result, anaerobic technology is a promising alternative for paper mill wastewater treatment due to its ability to degrade hard organic compounds. In the present study, treatment of paper mill wastewater using a stage anaerobic reactor was investigated. The more specific objectives of this study were to confirm whether ...

  18. Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution

    DEFF Research Database (Denmark)

    Møller, Jacob; Boldrin, Alessio; Christensen, Thomas Højlund

    2009-01-01

    Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW...

  19. Anaerobic digestion of manure - consequences for plant production

    OpenAIRE

    Løes, Anne-Kristin; Johansen, A.; Pommeresche, R.; Riley, H

    2013-01-01

    Organic farming systems are today dependent upon fossil energy. Another challenge are soil nutrient concentrations, which may be depleted with time even in animal husbandry systems (Løes & Øgaard 2001). Anaerobic digestion (AD) of animal manure may produce biogas to replace fossil fuels, and reduce methane (CH4) emissions during manure storage. Co-digestion of substrates rich in energy increases the economic viability of the biogas plant, and off-farm substrates such as fish silage or househo...

  20. Anaerobic digestion of two biodegradable municipal waste streams

    OpenAIRE

    Zhang, Yue; Banks, Charles J.; Heaven, Sonia

    2012-01-01

    Landfill avoidance for organic wastes is now a high priority worldwide. Two fractions of the municipal waste stream were considered with respect to their potential for diversion through controlled anaerobic digestion. The physical and chemical properties of source segregated domestic food waste (ss-FW) and of the mechanically-recovered organic fraction of municipal solid waste (mr-OFMSW) were analysed, and their methane yields determined in both batch and semi-continuous digestion. Methane po...

  1. Microbial community analysis of ambient temperature anaerobic digesters

    Energy Technology Data Exchange (ETDEWEB)

    Ciotola, R. [Ohio State Univ., Columbus, OH (United States). Dept. of Food, Agriculture and Biological Engineering

    2010-07-01

    This paper reported on a study in which designs for Chinese and Indian fixed-dome anaerobic digesters were modified in an effort to produce smaller and more affordable digesters. While these types of systems are common in tropical regions of developing countries, they have not been used in colder climates because of the low biogas yield during the winter months. Although there is evidence that sufficient biogas production can be maintained in colder temperatures through design and operational changes, there is a lack of knowledge about the seasonal changes in the composition of the microbial communities in ambient temperature digesters. More knowledge is needed to design and operate systems for maximum biogas yield in temperate climates. The purpose of this study was to cultivate a microbial community that maximizes biogas production at psychrophilic temperatures. The study was conducted on a 300 gallon experimental anaerobic digester on the campus of Ohio State University. Culture-independent methods were used on weekly samples collected from the digester in order to examine microbial community response to changes in ambient temperature. Microbial community profiles were established using universal bacterial and archaeal primers that targeted the 16S rRNA gene. In addition to the methanogenic archaea, this analysis also targeted some of the other numerically and functionally important microbial taxa in anaerobic digesters, such as hydrolytic, fermentative, acetogenic and sulfate reducing bacteria. According to preliminary results, the composition of the microbial community shifts with changes in seasonal temperature.

  2. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1).

    Science.gov (United States)

    Blumensaat, F; Keller, J

    2005-01-01

    The aim of the study presented was to implement a process model to simulate the dynamic behaviour of a pilot-scale process for anaerobic two-stage digestion of sewage sludge. The model implemented was initiated to support experimental investigations of the anaerobic two-stage digestion process. The model concept implemented in the simulation software package MATLAB/Simulink is a derivative of the IWA Anaerobic Digestion Model No.1 (ADM1) that has been developed by the IWA task group for mathematical modelling of anaerobic processes. In the present study the original model concept has been adapted and applied to replicate a two-stage digestion process. Testing procedures, including balance checks and 'benchmarking' tests were carried out to verify the accuracy of the implementation. These combined measures ensured a faultless model implementation without numerical inconsistencies. Parameters for both, the thermophilic and the mesophilic process stage, have been estimated successfully using data from lab-scale experiments described in literature. Due to the high number of parameters in the structured model, it was necessary to develop a customised procedure that limited the range of parameters to be estimated. The accuracy of the optimised parameter sets has been assessed against experimental data from pilot-scale experiments. Under these conditions, the model predicted reasonably well the dynamic behaviour of a two-stage digestion process in pilot scale. PMID:15607176

  3. Wet and Dry Anaerobic Digestion of Biowaste and of Co-substrates

    OpenAIRE

    Li, Chaoran

    2015-01-01

    Treatment of municipal solid waste by anaerobic digestion can solve the environmental problems caused by this organic solid waste and also supply biogas as renewable energy for a sustainable development. In this study the improvement of wet anaerobic digestion by addition of co-substrates and the effect of moisture on dry anaerobic digestion were investigated.

  4. Anaerobic digestion of organic solid waste for energy production

    OpenAIRE

    Nayono, Satoto Endar

    2010-01-01

    Anaerobic digestion of the organic fraction of municipal solid waste as such or together with food waste, press water or patatoes sludge was investigated to equilibrate methane production within a day or over the weekend, when no OFMSW was available. A stable co-digestion process could be achieved with COD degradation between 60 and 80 %. The max. organic loading rates were 28 kg COD/L,d. For stable methane production the OLR during Co-digestion should not excede 22,5 kg/L,d.

  5. Agro-industrial anaerobic digestion cost benefits: Technology utilization in distillery; Aspetti economici della digestione anaerobica nell`agroindustria: Applicazione di una nuova tecnologia in una distilleria

    Energy Technology Data Exchange (ETDEWEB)

    De Poli, F.; Mela, E.; Pasqualini, S.

    1991-02-01

    Anaerobic digestion, followed by aerobic post treatment, is widely used as a treatment technology of distillery wastes. An economic comparison between two different treatment processes; a traditional concentration unit and the termophilic hybrid anaerobic digester, was done. The costs/benefits balance shows the strong advantage of the anaerobic process, even if the value of by-products from the concentrator is higher than the ones from the digester; the operation costs (mainly labour and energy) of the concentrator are strongly higher, and the balance becomes negative. The NPV of the two plants shows always negative values for the concentrator, while the digester can become convenient under some conditions.

  6. Status on Science and Application of Thermophilic Anaerobic Digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1994-01-01

    Thermophilic anaerobic processes are often regarded as less stable than mesophilic processes. In the paper this postulate is examined and disproved based on real operational data from of full-scale mesophilic and thermophilic biogas plants. The start-up produce for the thermophilic plants was...... for thermophilic digestion along with the implications for the methanogenic bacteria active at these temperatures....

  7. The future of anaerobic digestion and biogas utilization

    DEFF Research Database (Denmark)

    Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, Piotr

    2009-01-01

    and to redistribute the excess of nutrients from manure and to optimize their recycling. Anaerobic digestion of animal manure and slurries offers several benefits by improving their fertilizer qualities, reducing odors and pathogens and producing a renewable fuel – the biogas. The EU policies concerning renewable...

  8. The future of anaerobic digestion and biogas utilisation

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Al Seadi, Teodorita; Oleskowicz-Popiel, Piotr

    2009-01-01

    and to redistribute the excess of nutrients from manure and to optimize their recycling. Anaerobic digestion of animal manure and slurries offers several benefits by improving their fertilizer qualities, reducing odors and pathogens and producing a renewable fuel - the biogas. The EU policies concerning renewable...

  9. Identifying anaerobic digestion models using simultaneous batch experiments

    International Nuclear Information System (INIS)

    As in other wastewater treatment processes, anaerobic digestion models have become a valuable tool to increase the understanding of complex biodegradation processes, to teach and to communicate using a common language, to optimize design plants and operating strategies and for trying operators and process engineers. Models require accurate and significant parameter values for being useful. (Author) 2 refs.

  10. INCREASE OF INDICATOR ORGANISMS FOLLOWING ANAEROBIC DIGESTION AND CENTRIFUGE DEWATERING.

    Science.gov (United States)

    The Water Environment Research Foundation (WERF) recently published a report titled “Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges”. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bac...

  11. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  12. Assessment of hydrogen metabolism in commercial anaerobic digesters.

    Science.gov (United States)

    Kern, Tobias; Theiss, Juliane; Röske, Kerstin; Rother, Michael

    2016-05-01

    Degradation of biomass in the absence of exogenous electron acceptors via anaerobic digestion involves a syntrophic association of a plethora of anaerobic microorganisms. The commercial application of this process is the large-scale production of biogas from renewable feedstock as an alternative to fossil fuels. After hydrolysis of polymers, monomers are fermented to short-chain fatty acids and alcohols, which are further oxidized to acetate. Carbon dioxide, molecular hydrogen (H2), and acetate generated during the process are converted to methane by methanogenic archaea. Since many of the metabolic pathways as well as the syntrophic interactions and dependencies during anaerobic digestion involve formation, utilization, or transfer of H2, its metabolism and the methanogenic population were assessed in various samples from three commercial biogas plants. Addition of H2 significantly increased the rate of methane formation, which suggested that hydrogenotrophic methanogenesis is not a rate-limiting step during biogas formation. Methanoculleus and Methanosarcina appeared to numerically dominate the archaeal population of the three digesters, but their proportion and the Bacteria-to-Archaea ratio did not correlate with the methane productivity. Instead, hydrogenase activity in cell-free extracts from digester sludge correlated with methane productivity in a positive fashion. Since most microorganisms involved in biogas formation contain this activity, it approximates the overall anaerobic metabolic activity and may, thus, be suitable for monitoring biogas reactor performance. PMID:26995607

  13. Anaerobic Digestion. Instructor's Guide. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This instructor's guide contains materials needed to teach a four-lesson unit on anaerobic digestion control. These materials include: (1) unit overview; (2) lesson plans; (3) lecture outlines; (4) student worksheets for each lesson (with answers); and (5) two copies of a final quiz (with and without answers). Lesson 1 is a review of the theory of…

  14. Anaerobic Digestion of Food Waste-recycling Wastewater

    Science.gov (United States)

    Han, Gyuseong; Shin, Seung Gu; Lim, Juntaek; Jo, Minho; Hwang, Seokhwan

    2010-11-01

    Food waste-recycling (FWR) wastewater was evaluated as feedstock for two-stage anaerobic digestion at different hydraulic retention times (HRTs). The FWR wastewater tested contained high concentrations of organic materials and had chemical oxygen demand (COD) >130 g/L and volatile solids (VS) >55 g/L. Two identical two-stage anaerobic digesters were operated to investigate the performance at six HRTs ranging from 10-25 days. In the acidogenic reactor, the total carbohydrate reduction efficiency and volatile fatty acid production dramatically decreased when acidogenic HRT was two-stage HRT = 15 days). High organic removal ratios of 75.5-85.9% for COD and 68.8-83.6% for VS were achieved throughout the two-stage process. Methane production rate of 1.7-3.6 L-gas/L-reactorṡd was observed. These results suggested that two-stage anaerobic process was successful at the laboratory scale with FWR wastewater as feedstock.

  15. Proceedings of the 10. world congress on anaerobic digestion 2004 : anaerobic bioconversion, answer for sustainability

    International Nuclear Information System (INIS)

    This conference reviewed the broad scope of anaerobic process-related activities taking place globally and confirmed the possibilities of using anaerobic processes to add value to industrial wastewaters, municipal solid wastes and organic wastes while minimizing pollution and greenhouse gases. It focused on biomolecular tools, instrumentation of anaerobic digestion processes, anaerobic bioremediation of chlorinated organics, and thermophilic and mesophilic digestion. Several papers focused on the feasibility of using waste products to produce hydrogen and methane for electricity generation. The sessions of the conference were entitled acidogenesis; microbial ecology; process control; sulfur content; technical development; domestic wastewater; agricultural waste; organic municipal solid wastes; instrumentation; molecular biology; sludges; agricultural feedstock; bioremediation; industrial wastewater; hydrogen production; pretreatments; sustainability; and integrated systems. The conference featured 387 posters and 192 oral presentations, of which 111 have been indexed separately for inclusion in this database. refs., tabs., figs

  16. Modeling flow inside an anaerobic digester by CFD techniques

    Directory of Open Access Journals (Sweden)

    Alexandra Martínez Mendoza, Tatiana Montoya Martínez, Vicente Fajardo Montañana, P. Amparo López Jiménez

    2011-11-01

    Full Text Available Anaerobic processes are used to treat high strength organic wastewater as well as for the treatment of primary and secondary sludge from conventional wastewater treatment plants. In these processes, heterotrophic microorganisms convert biodegradable organic matter to methane and carbon dioxide in the absence of dissolved oxygen and nitrate. Some of the most important aspects of the design of anaerobic digesters are related to hydraulic considerations. In spite of its important role in performance, hydraulics of flow inside digesters has not been quantified or adequately characterized. In this contribution a three-dimensional steady-state computational fluid dynamics (CFD simulation has been performed for a particular anaerobic digester, in order to visualize the flow patterns. Flow and velocities profiles have been represented inside the digester to identify possible dead zones or stratifications. The geometry of a real digester installed in Valencia Waste Water Treatment Plant (located in Quart-Benager, Valencia, Spain has been used in order to consider the proposed methodology.

  17. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  18. Predicting the apparent viscosity and yield stress of mixtures of primary, secondary and anaerobically digested sewage sludge: Simulating anaerobic digesters.

    Science.gov (United States)

    Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky

    2016-09-01

    Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. PMID:27243386

  19. A bio-electrochemical system for removing inhibitors of anaerobic digestion processes from anaerobic reactors

    DEFF Research Database (Denmark)

    2014-01-01

    reactor to recover ammonia from anaerobic digestion reactor, and thereby alleviate or counteract ammonia inhibition and enhance the conversion of ammonia-rich wastes to biogas. The invention may further reduce overall cost, giving synergistic advantages for both ammonia recycling and biogas plants......Inhibition of anaerobic digestion process by high level of ammonia (NH4 +/I\\IH3) is the most serious problem existing in biogas plants. No viable/applicable method to overcome this problem has been found up to now. This invention proposes an innovative submersible bio-electrochemical membrane...

  20. Two-phase anaerobic digestion of coffee wet wastewater: Effect of recycle on anaerobic process performance

    OpenAIRE

    Yans Guardia Puebla; Suyén Rodríguez Pérez; Yennys Cuscó Varona; Janet Jiménez Hernández; Víctor Sánchez Girón

    2014-01-01

    The present work shows the results of the two-phase anaerobic digestion assessment for the treatment of coffee wet wastewater. The effect of recycle on the anaerobic digestion process was studied. Twooverall organic loading rate (OLR) values of 4,2 and 5,7 kgCOD·m -3 ·d -1 , with same overall hydraulic retention time (HRT) of 21,5 h was evaluated.In a two-phase system wereapplied two recycle rate of 0,4 and 1,0, of the effluent of an UASB-UAF methanogenic hybrid reactor towards an UASB acidog...

  1. Optimizing the Logistics of Anaerobic Digestion of Manure

    Science.gov (United States)

    Ghafoori, Emad; Flynn, Peter C.

    Electrical power production from the combustion of biogas from anaerobic digestion (AD) of manure is a means of recovering energy from animal waste. We evaluate the lowest cost method of moving material to and from centralized AD plants serving multiple confined feeding operations. Two areas are modeled, Lethbridge County, Alberta, Canada, an area of concentrated beef cattle feedlots, and Red Deer County, Alberta, a mixed-farming area with hog, dairy, chicken and beef cattle farms, and feedlots. We evaluate two types of AD plant: ones that return digestate to the source confined feeding operation for land spreading (current technology), and ones that process digestate to produce solid fertilizer and a dischargeable water stream (technology under development). We evaluate manure and digestate trucking, trucking of manure with return of digestate by pipelines, and pipelining of manure plus digestate. We compare the overall cost of power from these scenarios to farm or feedlot-based AD units. For a centralized AD plant with digestate return for land spreading the most economical transport option for manure plus digestate is by truck for the mixed-farming area and by pipelines for the concentrated feedlot area. For a centralized AD plant with digestate processing, the most economical transport option is trucking of manure for both cases.

  2. The pressure effects on two-phase anaerobic digestion

    International Nuclear Information System (INIS)

    Highlights: • The pressure effect on anaerobic digestion up to 9 bar was examined. • Increasing pressure decreased pH value in the anaerobic filter. • Increasing pressure increased methane content. • Increasing pressure decreased specific methane yield slightly. • The pressurized methane reactor was very stable and performed well. - Abstract: Two-phase pressurized anaerobic digestion is a novel process aimed at facilitating injection of the produced biogas into the natural gas grid by integrating the fermentative biogas production and upgrading it to substitute natural gas. In order to understand the mechanisms, knowledge of pressure effects on anaerobic digestion is required. To examine the effects of pressure on the anaerobic digestion process, a two-phase anaerobic digestion system was built up in laboratory scale, including three acidogenesis-leach-bed-reactors and one pressure-resistant anaerobic filter. Four different pressure levels (the absolute pressure of 1 bar, 3 bar, 6 bar and 9 bar) were applied to the methane reactor in sequence, with the organic loading rate maintained at approximately 5.1 kgCOD m−3 d−1. Gas production, gas quality, pH value, volatile fatty acids, alcohol, ammonium-nitrogen, chemical oxygen demand (COD) and alkaline buffer capacity were analyzed. No additional caustic chemicals were added for pH adjustment throughout the experiment. With the pressure increasing from 1.07 bar to 8.91 bar, the pH value decreased from 7.2 to 6.5, the methane content increased from 66% to 75%, and the specific methane yield was slightly reduced from 0.33 lN g−1COD to 0.31 lN g−1COD. There was almost no acid-accumulation during the entire experiment. The average COD-degradation grade was always more than 93%, and the average alkaline buffering capacity (VFA/TIC ratio) did not exceed 0.2 at any pressure level. The anaerobic filter showed a very stable performance, regardless of the pressure variation

  3. Decomposition of fresh and anaerobically digested plant biomass in soil

    International Nuclear Information System (INIS)

    Using water hyacinth [Eichhornia crassipes (Mart.) Solms] for waste water renovation produces biomass that must be disposed of. This biomass may be anaerobically digested to produce CH4 or added to soil directly as an amendment. In this study, fresh and anaerobically digested water hyacinth biomass, with either low or high N tissue content, were added to soil to evaluate C and N mineralization characteristics. The plant biomass was labeled with 15N before digestion. The fresh plant biomass and digested biomass sludge were freeze-dried and ground to pass a 0.84-mm sieve. The materials were thoroughly mixed with a Kindrick fine sand at a rate of 5 g kg-1 soil and incubated for 90 d at 270C at a moisture content adjusted to 0.01 MPa. Decomposition was evaluated by CO2 evolution and 15N mineralization. After 90 d, approximately 20% of the added C of the digested sludges had evolved as CO2 compared to 39 and 50% of the added C of the fresh plant biomass with a low and high N content, respectively. First-order kinetics were used to describe decomposition stages. Mineralization of organic 15N to 15NO3--N accounted for 8% of applied N for both digested sludges at 90 d. Nitrogen mineralization accounted for 3 and 33% of the applied organic N for fresh plant biomass with a low and high N content, respectively

  4. Dynamic simulation model for anaerobic digestion of cellulose

    International Nuclear Information System (INIS)

    A simple yet useful dynamic simulator for the anaerobic digestion of cellulosic feedstock has been developed. The incentive for this simulator is a need for guidance in design and optimization of an anaerobic digestin process for volume reduction and stabilization of low-level radioactive wastes generated at Oak Ridge National Laboratory. These wastes are primarily blotter and other paper and cotton/polyester clothing. Anaerobic digestion will convert a substantial mass (and hence volume) of waste to gaseous products which can be flared or simply released. The remaining sludge will contain the radionuclides and is expected to have only 5 to 10% of the original waste volume. This stabilized sludge will be more suitable for disposal by shallow land burial than is the original untreated waste. The liquid effluent will go to existing treatment facilities for hot liquids at Oak Ridge National Laboratory (ORNL). An anaerobic digestion process can be scaled to handle small or modest quantities of waste and is expected to be vastly superior to incineration in this regard

  5. Anaerobic digestion in mesophilic and room temperature conditions: Digestion performance and soil-borne pathogen survival.

    Science.gov (United States)

    Chen, Le; Jian, Shanshan; Bi, Jinhua; Li, Yunlong; Chang, Zhizhou; He, Jian; Ye, Xiaomei

    2016-05-01

    Tomato plant waste (TPW) was used as the feedstock of a batch anaerobic reactor to evaluate the effect of anaerobic digestion on Ralstonia solanacearum and Phytophthora capsici survival. Batch experiments were carried out for TS (total solid) concentrations of 2%, 4% and 6% respectively, at mesophilic (37±1°C) and room (20-25°C) temperatures. Results showed that higher digestion performance was achieved under mesophilic digestion temperature and lower TS concentration conditions. The biogas production ranged from 71 to 416L/kg VS (volatile solids). The inactivation of anaerobic digestion tended to increase as digestion performance improved. The maximum log copies reduction of R. solanacearum and P. capsici detected by quantitative PCR (polymerase chain reaction) were 3.80 and 4.08 respectively in reactors with 4% TS concentration at mesophilic temperatures. However, both in mesophilic and room temperature conditions, the lowest reduction of R. solanacearum was found in the reactors with 6% TS concentration, which possessed the highest VFA (volatile fatty acid) concentration. These findings indicated that simple accumulation of VFAs failed to restrain R. solanacearum effectively, although the VFAs were considered poisonous. P. capsici was nearly completely dead under all conditions. Based on the digestion performance and the pathogen survival rate, a model was established to evaluate the digestate biosafety. PMID:27155428

  6. Recovery of failed solid-state anaerobic digesters.

    Science.gov (United States)

    Yang, Liangcheng; Ge, Xumeng; Li, Yebo

    2016-08-01

    This study examined the performance of three methods for recovering failed solid-state anaerobic digesters. The 9-L digesters, which were fed with corn stover, failed at a feedstock/inoculum (F/I) ratio of 10 with negligible methane yields. To recover the systems, inoculum was added to bring the F/I ratio to 4. Inoculum was either added to the top of a failed digester, injected into it, or well-mixed with the existing feedstock. Digesters using top-addition and injection methods quickly resumed and achieved peak yields in 10days, while digesters using well-mixed method recovered slowly but showed 50% higher peak yields. Overall, these methods recovered 30-40% methane from failed digesters. The well-mixed method showed the highest methane yield, followed by the injection and top-addition methods. Recovered digesters outperformed digesters had a constant F/I ratio of 4. Slow mass transfer and slow growth of microbes were believed to be the major limiting factors for recovery. PMID:27155759

  7. Anaerobic digestion of pig manure and glycerol from biodiesel production

    Directory of Open Access Journals (Sweden)

    Pakamas Chetpattananondh, Sumate Chaiprapat, Chaisri Suksaroj

    2015-01-01

    Full Text Available Increasing biodiesel production causes a surplus of glycerol. This work aims to investigate the crude glycerol pretreatment method and then apply the glycerol as a co-substrate with pig manure for anaerobic digestion. The optimum crude glycerol pretreatment method was acidification with 6% of H2SO4 that highest glycerol recovery was obtained with lowest cost. Co-digestions of glycerol and pig manure enhanced biogas and methane productions compared with mono-digestions. Biogas and methane productions in semi-continuous digestions were highly effected by OLR. The optimum OLR was 3.06 kg SCOD/m3 that biogas production was maintained at 3 L/d with methane composition of 72% and SCOD removal higher than 80%.

  8. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    Science.gov (United States)

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05). PMID:25693388

  9. Two-phase anaerobic digestion of coffee wet wastewater: Effect of recycle on anaerobic process performance

    Directory of Open Access Journals (Sweden)

    Yans Guardia Puebla

    2014-01-01

    Full Text Available The present work shows the results of the two-phase anaerobic digestion assessment for the treatment of coffee wet wastewater. The effect of recycle on the anaerobic digestion process was studied. Twooverall organic loading rate (OLR values of 4,2 and 5,7 kgCOD·m -3 ·d -1 , with same overall hydraulic retention time (HRT of 21,5 h was evaluated.In a two-phase system wereapplied two recycle rate of 0,4 and 1,0, of the effluent of an UASB-UAF methanogenic hybrid reactor towards an UASB acidogenic reactor. In the anaerobic system with a recycle rate of 1,0 the total chemical oxygen demand (COD removal was 90%. The introduction of the recycle decreased the concentration of total volatile fatty acids (VFA, but it did not affect their composition, suggesting that the degradation pattern did not change. The presence of the acidogenic reactor in the two-phase system improved the stability of the anaerobic digestion process and increased the efficiency of methanogenic digester.

  10. Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution

    OpenAIRE

    Møller, Jacob; Boldrin, Alessio; Christensen, Thomas Højlund

    2009-01-01

    Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW measured in CO2-equivalents per tonne of wet waste. The GHG accounting was done by distinguishing between direct contributions at the AD facility and indirect upstream or downstream contributions. ...

  11. Microbial electrochemical monitoring of volatile fatty acids during anaerobic digestion

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Jin, Xiangdan; Angelidaki, Irini

    2015-01-01

    Due to increasing environmental concerns of using fossil fuels and decreasing in their reserves, the promotion of renewable energy technologies is crucial. Anaerobic digestion (AD), a well-developed technology converting organic waste into biogas, is gaining increased attention in recent years...... desalination cell, MDC) was built to realize the on-line measuring the concentration of volatile fatty acid (VFA). The correlation between current densities of the biosensor and VFA concentrations was firstly evaluated with synthetic digestate. Two linear relationships were observed between current densities...

  12. Monitoring of anaerobic digestion processes: A review perspective

    DEFF Research Database (Denmark)

    Madsen, Michael; Holm-Nielsen, Jens Bo; Esbensen, Kim

    2011-01-01

    The versatility of anaerobic digestion (AD) as an effective technology for solving central challenges met in applied biotechnological industry and society has been documented in numerous publications over the past many decades. Reduction of sludge volume generated from wastewater treatment...... potential is highlighted. The Danish co-digestion concept, which integrates utilisation of agricultural manure, biomass and industrial organic waste, is used as a case study. We present a first foray for the next research and development perspectives and directions for the AD bioconversion sector....

  13. ANAEROBIC CO-DIGESTION OF WASTED VEGETABLES AND ACTIVATED SLUDGE

    OpenAIRE

    Saev, M.; Koumanova, B.; Ivan, Simeonov

    2009-01-01

    Anaerobic co-digestion of activated sludge (AS) and wasted vegetables (wasted cucumbers (WC) and wasted tomatoes (WT)) was carried out at mesophilic conditions (34 ± 0.5 0C). A continuously stirred bioreactor with volume of 5 dm3 (3 dm3 working volume) was used. The digestion was examined in semi-continuous mode and 30 days hydraulic retention time. Total solids, volatile solids, COD and volatile fatty acids (VFA) were determined according to the standard methods. Daily the total biogas produ...

  14. Microbial electrochemical monitoring of volatile fatty acids during anaerobic digestion

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Angelidaki, Irini; Zhang, Yifeng

    2016-01-01

    Volatile fatty acid (VFA) concentration is known as an important indicator to control and optimize anaerobic digestion (AD) process. In this study, an innovative VFA biosensor was developed based on the principle of a microbial desalination cell. The correlation between current densities and VFA...... concentrations was firstly evaluated with synthetic digestate. Two linear relationships were observed between current densities and VFA levels from 1 to 30 mM (0.04 to 8.50 mA/m2, R2=0.97) and then from 30 to 200 mM (8.50 to 10.80 mA/m2, R2=0.95). The detection range was much broader than that of other existing...... and reliable measurement of VFA levels during AD and other anaerobic processes....

  15. Inhibitory effects on anaerobic digestion of swine manure

    International Nuclear Information System (INIS)

    This paper presents a laboratory study using anaerobic digestion for swine manure under both mesophilic and thermophilic conditions, with emphasis on the effects of inhibitory chemicals on biogas production. A series of batch tests were conducted to examine the effects of various process parameters by varying temperature, pH, ammonia and hydrogen sulfide concentrations. As well, continuous anaerobic digestion tests were conducted using a completely stirred reactor system with a sludge retention time of 15 days. The results showed that at the initial stage, biogas was generated rapidly in the thermophilic reactor, but was more and more inhibited during the later stage with the presence of ammonia and hydrogen sulfide. In contrast, the biogas production was initially delayed in the mesophilic reactor but afterwards had an even higher total gas production. In order to take advantages of both temperature effects in each reactor, the dual-stage system that consists of a thermophilic reactor followed by a mesophilic reactor was suggested. (author)

  16. CFD simulation of anaerobic digester with variable sewage sludge rheology.

    Science.gov (United States)

    Craig, K J; Nieuwoudt, M N; Niemand, L J

    2013-09-01

    A computational fluid dynamics (CFD) model that evaluates mechanical mixing in a full-scale anaerobic digester was developed to investigate the influence of sewage sludge rheology on the steady-state digester performance. Mechanical mixing is provided through an impeller located in a draft tube. Use is made of the Multiple Reference Frame model to incorporate the rotating impeller. The non-Newtonian sludge is modeled using the Hershel-Bulkley law because of the yield stress present in the fluid. Water is also used as modeling fluid to illustrate the significant non-Newtonian effects of sewage sludge on mixing patterns. The variation of the sewage sludge rheology as a result of the digestion process is considered to determine its influence on both the required impeller torque and digester mixing patterns. It was found that when modeling the fluid with the Hershel-Bulkley law, the high slope of the sewage stress-strain curve at high shear rates causes significant viscous torque on the impeller surface. Although the overall fluid shear stress property is reduced during digestion, this slope is increased with sludge age, causing an increase in impeller torque for digested sludge due to the high strain rates caused by the pumping impeller. Consideration should be given to using the Bingham law to deal with high strain rates. The overall mixing flow patterns of the digested sludge do however improve slightly. PMID:23764598

  17. Anaerobic digestion of organic solid waste for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Nayono, Satoto Endar

    2010-07-01

    The total amount of municipal solid waste is continuously rising. Consequently, there are millions of tons of solid waste being produced every year which have to be safely disposed without any negative impact to the environment. On the other hand, as one of the driving forces for economic and social development the availability of energy in sufficient and sustainable amount has been becoming world's main interest. However, depending on the way the energy is produced, distributed and used, it may contribute to environmental problems such as water, land and air pollution or even global climate change. Anaerobic digestion as a pre-treatment prior to landfill disposal or composting offers several advantages, such as minimization of masses and volume, inactivation of biological and biochemical processes in order to avoid landfill-gas and odor emissions, reduction of landfill settlements and energy production in the form of methane. Therefore, anaerobic digestion of bio-degradable solid wastes can be considered an alternative option to improve the environment condition caused by organic solid waste and at the same time taking an advantage as an environmentally-friendly resource of energy. This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms of its energy recovery, either by investigating the maximum organic loading rate or by co-digestion with other types of wastes for energy recovery. In order to reach the research purpose, several experimental activities such as characteristics examination of different organic solid wastes, which are potential substrates for anaerobic digestion and performance evaluation of the anaerobic reactors treating OFMSW were initiated. The Except for source-sorted OFMSW (later called biowaste), the substrates examined in this study were pressing leachate from an OFMSW composting plant (press water), source-sorted foodwaste

  18. Effects of spiked metals on the MSW anaerobic digestion.

    Science.gov (United States)

    Lo, H M; Chiang, C F; Tsao, H C; Pai, T Y; Liu, M H; Kurniawan, T A; Chao, K P; Liou, C T; Lin, K C; Chang, C Y; Wang, S C; Banks, C J; Lin, C Y; Liu, W F; Chen, P H; Chen, C K; Chiu, H Y; Wu, H Y; Chao, T W; Chen, Y R; Liou, D W; Lo, F C

    2012-01-01

    This study aimed to investigate the effects of eight metals on the anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) in bioreactors. Anaerobic bioreactors containing 200 mL MSW mixed completely with 200 m L sludge seeding. Ca and K (0, 1000, 2000 and 6,000 mg L(-1)) and Cr, Ni, Zn, Co, Mo and W (0, 5, 50 and 100 mg  L(-1)) of various dose were added to anaerobic bioreactors to examine their anaerobic digestion performance. Results showed that except K and Zn, Ca (~728 to ~1,461 mg  L(-1)), Cr (~0.0022 to ~0.0212 mg  L(-1)), Ni (~0.801 to ~5.362 mg  L(-1)), Co (~0.148 to ~0.580 mg  L(-1)), Mo (~0.044 to ~52.94 mg  L(-1)) and W (~0.658 to ~40.39 mg  L(-1)) had the potential to enhance the biogas production. On the other hand, except Mo and W, inhibitory concentrations IC(50) of Ca, K, Cr, Ni, Zn and Co were found to be ~3252, ~2097, ~0.124, ~7.239, ~0.482, ~8.625 mg  L(-1), respectively. Eight spiked metals showed that they were adsorbed by MSW to a different extent resulting in different liquid metals levels and potential stimulation and inhibition on MSW anaerobic digestion. These results were discussed and compared to results from literature. PMID:20880938

  19. Effect of Long-Chain Fatty Acids on Anaerobic Digestion

    OpenAIRE

    Qian, Cheng

    2013-01-01

    An investigation was carried out to study whether long-chain fatty acids (LCFAs) have an effect on digestion of waste sludge under anaerobic conditions. Four different kinds of LCFAs were used in this study. The 18 carbon series with 0, 1, 2 and 3 double bonds were studied to evaluate the degree of saturation on fatty acid degradation. Due to their molecular structure, unsaturated LCFAs are more soluble than saturated LCFAs. Oleic, linoleic, linolenic acid with an ascending number of double b...

  20. Anaerobic digestion of maize hybrids for methane production

    OpenAIRE

    P. Vindis; B. Mursec; M. Janzekovic; D. Stajnko; F. Cus

    2010-01-01

    Purpose: This research project was aimed at optimising anaerobic digestion of maize and find out which maturity class of corn and which hybrid of a particular maturity class produces the highest rate of biogas and biomethane. Also the chemical composition of gases was studied.Design/methodology/approach: Biogas and biomethane production and composition in mesophilic (35 degrees C) conditions were measured and compared. The corn hybrids of FAO 300 - FAO 600 maturity class were tested. Experime...

  1. Stability Analysis of Some Nonlinear Anaerobic Digestion Models

    OpenAIRE

    Ivan Simeonov; Sette Diop

    2010-01-01

    Abstract: The paper deals with local asymptotic stability analysis of some mass balance dynamic models (based on one and on two-stage reaction schemes) of the anaerobic digestion (AD) in CSTR. The equilibrium states for models based on one (with Monod, Contois and Haldane shapes for the specific growth rate) and on two-stage (only with Monod shapes for both the specific growth rate of acidogenic and methanogenic bacterial populations) reaction schemes have been determined solving sets of nonl...

  2. Leachate treatment and anaerobic digestion using aquatic plants and algae

    OpenAIRE

    Ström, Emma

    2010-01-01

    Phytoremediation as a way to control and lessen nutrient concentrations in landfill leachate is a cheap and environmentally sustainable method. Accumulated nutrients in the plants can then be removed by harvesting and anaerobically digesting the biomass. This study presents two aquatic plants (L. minor (L.) and P. stratiotes (L.)) and one microalgae species (C. vulgaris (L.)), their capacities for growth and nutrient removal in leachate from Häradsudden landfill, Sweden, are investigated. The...

  3. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters

    OpenAIRE

    Bryan J.K. Smith; Boothe, Melissa A; Brice A. Fiddler; Tania M. Lozano; Russel K. Rahi; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccar...

  4. Toxicity of nonylphenol diethoxylate in lab-scale anaerobic digesters

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Sanin, F. Dilek

    2014-01-01

    seen in NP1EO and NP and further accumulation of NP in the system, indicated the conversion of NP2EO to these metabolites. On the other hand, no conversion was observed in abiotic reactors. Inhibition of NP2EO for anaerobic microorganisms was not observed throughout the tests considering the biogas....... Their widespread use and disposal cause them to enter wastewater treatment systems at high concentrations. Since they are highly persistent and hydrophobic, they accumulate mostly on sludge.In this study using Anaerobic Toxicity Assay (ATA) tests, the toxicity of a model nonylphenol compound, nonylphenol...... diethoxylate (NP2EO), for anaerobic digestion of sludge was determined. The test bottles were dosed with NP2EO in acetone, with concentrations ranging from 1mgL-1 to 30mgL-1. During the tests, gas productions and compositions in terms of methane and carbon dioxide were monitored. To be able to judge about...

  5. Anaerobic digestion as final step of a cellulosic ethanol biorefinery:

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2010-01-01

    In order to lower the costs for second generation bioethanol from lignocellulosic biomass anaerobic digestion of the effluent from ethanol fermentation was implemented using an upflow anaerobic sludge blanket (UASB) reactor system in a pilot-scale biorefinery plant. Both thermophilic (538C......) and mesophilic (388C) operation of the UASB reactor was investigated. At an OLR of 3.5 kg- VS/(m3 day) a methane yield of 340 L/kg-VS was achieved for thermophilic operation (538C) while 270 L/kg-VS was obtained under mesophilic conditions (388C). For loading rates higher than 5 kg-VS/(m3 day) the methane yields...... were, however, higher under mesophilic conditions compared to thermophilic conditions. The conversion of dissolved organic matter (VSdiss) was between 68% and 91%. The effluent from the ethanol fermentation showed no signs of toxicity to the anaerobic microorganisms. However, a high content...

  6. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Michele, Pognani, E-mail: michele.pognani@unimi.it [Gruppo Ricicla – DiSAA, Università degli Studi di Milano, Soil and Env. Lab, Via Celoria, 2, 20133 Milano (Italy); Giuliana, D’Imporzano, E-mail: giuliana.dimporzano@unimi.it [Gruppo Ricicla – DiSAA, Università degli Studi di Milano, Soil and Env. Lab, Via Celoria, 2, 20133 Milano (Italy); Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi (Italy); Carlo, Minetti, E-mail: carlo.minetti@a2a.eu [Ecodeco, a2a Group, Cascina Darsena 1, 27010 Giussago, Pavia (Italy); Sergio, Scotti, E-mail: sergio.scotti@a2a.eu [Ecodeco, a2a Group, Cascina Darsena 1, 27010 Giussago, Pavia (Italy); Fabrizio, Adani, E-mail: farbrizio.adani@unimi.it [Gruppo Ricicla – DiSAA, Università degli Studi di Milano, Soil and Env. Lab, Via Celoria, 2, 20133 Milano (Italy); Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi (Italy)

    2015-01-15

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doing so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.

  7. Nitrogen in the Process of Waste Activated Sludge Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2014-07-01

    Full Text Available Primary or secondary sewage sludge in medium and large WWTP are most often processed by anaerobic digestion, as a method of conditioning, sludge quantity minimization and biogas production. With the aim to achieve the best results of sludge processing several modifications of technologies were suggested, investigated and introduced in the full technical scale. Various sludge pretreatment technologies before anaerobic treatment have been widely investigated and partially introduced. Obviously, there are always some limitations and some negative side effects. Selected aspects have been presented and discussed. The problem of nitrogen has been highlighted on the basis of the carried out investigations. The single and two step - mesophilic and thermophilic - anaerobic waste activated sludge digestion processes, preceded by preliminary hydrolysis were investigated. The aim of lab-scale experiments was pre-treatment of the sludge by means of low intensive alkaline and hydrodynamic disintegration. Depending on the pretreatment technologies and the digestion temperature large ammonia concentrations, up to 1800 mg NH4/dm3 have been measured. Return of the sludge liquor to the main sewage treatment line means additional nitrogen removal costs. Possible solutions are discussed.

  8. Biogas production from cattle manure by anaerobic digestion

    International Nuclear Information System (INIS)

    Full text: In order to deal with the energy shortage problem, we are searching for more alternative energy resources especially renewable or sustainable. Biogas is one of the solutions in dealing with the energy shortage problem. Biogas is a type of energy resources derives from organic matter during the process called anaerobic digestion. The biogas produced is mainly consisting of methane and carbon dioxide. In this research, diluted cattle manure (1:1 ration with water) was inoculated with palm oil mill (POME) activated sludge at the ratio of 1:5 and placed in a 10 liter bioreactor. The temperature and pH in the bioreactor was regulated at 6.95 and 53 degree Celsius, respectively to enhance the anaerobic digestion process. Parameters such as chemical oxygen demand, biochemical oxygen demand, total solid, volatile solid, ammonia nitrogen (NH3-N), methane (CH4) and the volume of biogas generated was monitored for effectiveness of the treatment of cattle manure via anaerobic digestion. The total volume of biogas produced in this study is 80.25 liter in 29 days while being able to treat the COD content up to 52 %. (author)

  9. Treatment of melanoidin wastewater by anaerobic digestion and coagulation.

    Science.gov (United States)

    Arimi, Milton M; Zhang, Yongjun; Götz, Gesine; Geißen, Sven-Uwe

    2015-01-01

    Melanoidins are dark-coloured recalcitrant pollutants found in many industrial wastewaters including coffee-manufacturing effluent, molasses distillery wastewater (MDWW) and other wastewater with molasses as the raw material. The wastewaters are mostly treated with anaerobic digestion after some dilution to minimize the inhibition effect. However, the dark colour and recalcitrant dissolved organic carbon (DOC) mainly caused by melanoidin are not effectively removed. The aim of this study was to investigate the removal of colour and remnant DOC by different coagulants from anaerobically digested MDWW. From the six coagulants tested, ferric chloride had the highest melanoidin (48%), colour (92.7%) and DOC (63.3%) removal at pH 5 and a dosage of 1.6 g/l. Both polymer and inorganic salt coagulants tested had optimal colour, melanoidin and DOC removal at acidic pH. The molecular size distribution of synthetic melanoidins by liquid chromatography-organic carbon detection indicated a preferential removal of high-molecular-weight melanoidins over low weight melanoidins by the coagulation. Further studies should focus on how to improve biodegradability of the treated effluent for it to be reused as dilution water for anaerobic digestion. PMID:25799161

  10. Relating methanogen community structure and anaerobic digester function.

    Science.gov (United States)

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal. PMID:25562581

  11. ANAEROBIC DIGESTION AND THE DENITRIFICATION IN UASB REACTOR

    Directory of Open Access Journals (Sweden)

    José Tavares de Sousa

    2008-01-01

    Full Text Available The environmental conditions in Brazil have been contributing to the development of anaerobic systems in the treatment of wastewaters, especially UASB - Upflow Anaerobic Sludge Blanket reactors. The classic biological process for removal of nutrients uses three reactors - Bardenpho System, therefore, this work intends an alternative system, where the anaerobic digestion and the denitrification happen in the same reactor reducing the number of reactors for two. The experimental system was constituted by two units: first one was a nitrification reactor with 35 L volume and 15 d of sludge age. This system was fed with raw sanitary waste. Second unit was an UASB, with 7.8 L and 6 h of hydraulic detention time, fed with ¾ of effluent nitrification reactor and ¼ of raw sanitary waste. This work had as objective to evaluate the performance of the UASB reactor. In terms of removal efficiency, of bath COD and nitrogen, it was verified that the anaerobic digestion process was not affected. The removal efficiency of organic material expressed in COD was 71%, performance already expected for a reactor of this type. It was also observed that the denitrification process happened; the removal nitrate efficiency was 90%. Therefore, the denitrification process in reactor UASB is viable.

  12. Anaerobic co-digestion of sewage sludge and food waste.

    Science.gov (United States)

    Prabhu, Meghanath S; Mutnuri, Srikanth

    2016-04-01

    Anaerobic co-digestion of organic matter improves digester operating characteristics and its performance. In the present work, food waste was collected from the institute cafeteria. Two types of sludge (before centrifuge and after centrifuge) were collected from the fluidised bed reactor of the institute treating sewage wastewater. Food waste and sludge were studied for their physico-chemical characteristics, such as pH, chemical oxygen demand, total solids, volatile solids, ammoniacal nitrogen, and total nitrogen. A biomethane potential assay was carried out to find out the optimum mixing ratio of food waste and sludge for anaerobic co-digestion. Results indicated that food waste mixed with sludge in the ratio of 1:2 produced the maximum biogas of 823 ml gVS(-1)(21 days) with an average methane content of 60%. Batch studies were conducted in 5 L lab-glass reactors at a mesophilic temperature. The effect of different substrate loading rates on biogas production was investigated. The mixing ratio of food waste and sludge was 1:2. A loading rate of 1 gVS L d(-1)gave the maximum biogas production of 742 ml g(-1)VS L d(-1)with a methane content of 50%, followed by 2 gVS L d(-1)with biogas of 539 ml g(-1)VS L d(-1) Microbial diversity of the reactor during fed batch studies was investigated by terminal restriction fragment length polymorphism. A pilot-scale co-digestion of food waste and sludge (before centrifuge) indicated the process stability of anaerobic digestion. PMID:26879909

  13. Instrumentation and control of anaerobic digestion processes: A review and some research challenges

    NARCIS (Netherlands)

    Jimenez, J.; Latrille, E.; Harmand, J.; Robles, A.; Ferrer, J.; Gaida, D.; Wolf, C.; Mairet, F.; Bernard, O.; Alcaraz-Gonzalez, V.; Mendez-Acosta, H.; Zitomer, D.; Totzke, D.; Spanjers, H.; Jacobi, F.; Guwy, A.; Dinsdale, R.; Premier, G.; Mazhegrane, S.; Ruiz-Filippi, G.; Seco, A.; Ribeiro, T.; Pauss, A.; Steyer, J.P.

    2015-01-01

    To enhance energy production from methane or resource recovery from digestate, anaerobic digestion processes require advanced instrumentation and control tools. Over the years, research on these topics has evolved and followed the main fields of application of anaerobic digestion processes: from mun

  14. Impact of paper and cardboard suppression on OFMSW anaerobic digestion.

    Science.gov (United States)

    Fonoll, X; Astals, S; Dosta, J; Mata-Alvarez, J

    2016-10-01

    Mechanical-biological treatment plants treat municipal solid waste to recover recyclable materials, nutrients and energy. Waste paper and cardboard (WP), the second main compound in municipal solid waste (∼30% in weight basis), is typically used for biogas generation. However, its recovery is gaining attention as it can be used to produce add-value products like bioethanol and residual derived fuel. Nevertheless, WP suppression or replacement will impact anaerobic digestion in terms of biogas production, process stability and digestate management. Two lab-scale reactors were used to assess the impact of WP in anaerobic digestion performance. A control reactor was only fed with biowaste (BioW), while a second reactor was fed with two different mixtures of BioW and WP, i.e. 85/15% and 70/30% (weight basis). Results indicate that either replacing half of the WP by BioW or removing half of the WP has little impact on the methane production. When removing half of the WP, methane production could be sustained by a larger waste biodegradability. The replacement of all WP by BioW increased the reactor methane production (∼37%), while removing all WP would have reduced the methane production about 15%. Finally, replacing WP loading rate by BioW led to a system less tolerant to instability periods and with poorer digestate quality. PMID:27290631

  15. Hygiene tests in the anaerobic digestion of household refuse

    Energy Technology Data Exchange (ETDEWEB)

    Maier, H.; Philipp, W.; Wekerle, J.; Strauch, D.

    In a pilot plant the disinfecting effect of composting the effluent of an anaerobic mesophilic digestion process of the organic fraction of household refuse was investigated. The dewatered effluent was mixed with straw as bulking material, put in not aerated windrows and aerobically composted. It was further investigated whether the influent of the digester could be disinfected with lime milk prior to the anaerobic mesophilic digestion process. For the evaluation of the disinfection salmonellas, enterococci, klebsiellas, parvo-, polio- and rotavirus were used as test agents. Temperature, total aerobic germ count, enterobacteriaceae and coliforms were also considered. The effect of lime milk in the influent on the digestion process, survival of the test bacteria and gas production was also studied. Both treatments can result in a hygienically safe product. But composting under the conditions given should not be operated during the winter period. Lime treatment of the influent results in a disinfection of the effluent which immediately can be utilized as liquid sludge in agriculture. (orig.)

  16. Anaerobic digestion of biomass for methane production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Gunaseelan, V.N. [PSG College of Arts and Science, Coimbatore (India). Dept. of Zoology

    1997-12-31

    Biological conversion of biomass to methane has received increasing attention in recent years. Hand- and mechanically-sorted municipal solid waste and nearly 100 genera of fruit and vegetable solid wastes, leaves, grasses, woods, weeds, marine and freshwater biomass have been explored for their anaerobic digestion potential to methane. In this review, the extensive literature data have been tabulated and ranked under various categories and the influence of several parameters on the methane potential of the feedstocks are presented. Almost all the land- and water-based species examined to date either have good digestion characteristics or can be pre-treated to promote digestion. This review emphasizes the urgent need for evaluating the inumerable unexplored genera of plants as potential sources for methane production. (author)

  17. CFD simulation of mixing in egg-shaped anaerobic digesters.

    Science.gov (United States)

    Wu, Binxin

    2010-03-01

    A computational fluid dynamics (CFD) model that characterizes mechanical draft tube mixing in egg-shaped anaerobic digesters was developed. Simulation of flow patterns were carried out with a propeller rotating from 400 to 750rpm, assuming liquid manure to be Newtonian (water) and non-Newtonian fluids depending on the total solids (TS) concentration. Power number and flow number of the propeller in water mixing were validated against lab specifications and experimental data from a field test. The rotational direction and placement of the propeller were examined to identify the primary pumping mode and the optimum position of the propeller fixed inside the tube. Quantitative comparisons of two mixing methods and two digester shapes indicated that mechanical draft tube mixing is more efficient than external pumped recirculation, and that the egg shape provides for more efficient mixing than the cylindrical shape. Furthermore, scale-up rules for mixing in egg-shaped digesters were investigated. PMID:19913870

  18. Digesters and demographics: identifying support for anaerobic digesters on dairy farms.

    Science.gov (United States)

    Sanders, D J; Roberts, M C; Ernst, S C; Thraen, C S

    2010-11-01

    The dairy industry in the United States is amidst a long-running trend toward fewer, larger dairy farms. This development has created a backlash in some communities over concerns such as odor, waste management, and environmental degradation. Separately, anaerobic digestion has advanced as a waste management technology that potentially offers solutions to some of these issues, providing odor control and a combustible biogas among other things. These digesters require significant capital investments. Voluntary consumer premiums for the renewable energy produced have been used in some instances as a means to move adoption of such systems toward financial feasibility. This project employed a survey to measure Ohio consumers' willingness to pay a premium for renewable energy produced by anaerobic digesters on dairy farms. Cluster analysis was used to segment consumers by willingness to pay, age, education, income, self-identified political inclination, and a composite variable that served as a proxy for respondents' environmental stewardship. Four distinctive groups emerged from the data. Older, less educated respondents were found to have the least amount of support for digesters on dairy farms, whereas politically liberal, environmentally proactive respondents demonstrated the strongest support. Well-educated, affluent respondents and young respondents fell between these 2 groups. Most large dairy farms are generally met with fairly negative responses from their local communities; in contrast, this research finds some popular support for anaerobic digestion technology. Going forward, establishing a positive link between support for anaerobic digesters and for their use on large dairies could open up a new route for less-contested large dairy farm developments. Evaluation of community demographics could become an important part of finding an optimal location for a large dairy farm. PMID:20965366

  19. Biogas recovery from microwave heated sludge by anaerobic digestion

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Biogas generated from sewage sludge,livestock waste,and food waste by anaerobic digestion is a valuable renewable energy resource.However,conventional anaerobic digestion is not an efficient process.A long hydraulic retention time and low biogas recovery rate hinder the applications of those resources.An effective pretreatment method to destroy sludge microbial cells has been one of the major concerns regarding improvement of the biogas production.This article focuses on the effects of microwave heating on sludge anaerobic digestion.Volatile suspended solid(VSS) and chemical organic demand solubilization of heated sludge were investigated.Microwave heating was found to be a rapid and efficient process for releasing organic substrates from sludge.The increase of organic dissolution ratio was not obvious when holding time was over 5 min with microwave heating.The effect of the VSS solubilization was primarily dependent on heating temperature.The highest value of VSS dissolving ratio,36.4%,was obtained at 170°C for 30 min.The COD dissolving ratio was about 25% at 170°C.Total organic carbon of treated sludge liquor was 1.98 and 2.73 g/L at 150°C and 170°C for 5 min,respectively.A biochemical methane potential(BMP) test of excess sludge and a mixture of primary and excess sludge demonstrated an increase in biogas production.The total biogas from microwave treated mixture sludge increased by 12.9% to 20.2% over control after 30 days of digestion.Biogas production was 11.1% to 25.9% higher for excess sludge than for untreated sludge.The VS removal ratios of mixture sludge and excess sludge were 12% and 11% higher,respectively,compared to the untreated sludge.

  20. Anaerobic digestion of solid biomass and biowaste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the International Trade Fair for Biogas Plant Technology from 23rd to 24th February, 2012 in Berlin, the following lectures were held: (1) Presentation and results of the EU project 24biomass'' (Claudia Lutsyuk); (2) The Polish biogas market (Tomasz Surowiec); (3) Presence and future of the biogas sector in Poland - EBE project (Eugeniusz Jedrysik); (4) Modern biogas generation in Poland - Case studies of the company Poldanor (Jens Bo Holm-Nielsen); (5) Low space requirement - The challenge in the integration of biogas plants in existing composting facilities - examples from real life (Michael Oertig); (6) Integration of biogas plants in composting facilities by partial-flow fermentation (Bruno Mattheeuws); (7) The significance of an efficient removal of foreign matter from biomass before fermentation in a waste incinerator for municipal wastes (Stephan Schulte); (8) Sustainable enhancement of the anaerobic degradation and increase of the biogas production by means of ultrasonic treatment - examples from real life (Silvana Velten); (9) Cultivation of energy plants on sandy soils in the northeastern part of Germany (Gunter Ebel); (10) Topinambur, a new sustainable energy crop for biogas generation (Vito Pignatelli); (11) Potential of biogas generation from reed (Vilis Dubrovskis); (12) Biogas generation from maize straw - a new procedure of harvesting and processing (Thomas Amon); (13) Generation of biogas by cofermentation of pig manure and grass silage: a pilot study (Ximmin Zhan); (14) Thermophilic dry fermentation of poultry litter and energy crops for the generation of biogas, organic fertilizer and protection of water resources from environmental damages in the Mid-Atlantic region of the USA (John Intersoll); (15) Energetic utilisation of horse manure (Saskia Oldenburg); (16) Realization of the greatest and most modern Hungarian biogas plant in Szarvas (Ludwig Dinkloh); (16) Biogas in Russia - The investment program of the cooperation &apos

  1. Dynamic real-time substrate feed optimization of anaerobic co-digestion plants

    OpenAIRE

    Gaida, Daniel

    2014-01-01

    In anaerobic co-digestion plants a mix of organic materials is converted to biogas using the anaerobic digestion process. These organic materials, called substrates, can be crops, sludge, manure, organic wastes and many more. They are fed on a daily basis and significantly affect the biogas production process. In this thesis dynamic real-time optimization of the substrate feed for anaerobic co-digestion plants is developed. In dynamic real-time optimization a dynamic simulation model is used ...

  2. Strategies to improve anaerobic digestion of wastes with especial attention to lignocellulosic substrates

    OpenAIRE

    Fonoll Almansa, Xavier

    2015-01-01

    The energy demand increase and the generation of wastes is being the major problem regarding the next generation sustainability. Both problems can be corrected through the implementation of anaerobic digestion, a waste treatment technology able to produce electricity, heat and a fertilizer. The anaerobic co-digestion between two wastes with complementary characteristics has been widely studied to improve the methane production in anaerobic digesters. However, to increase the methane productio...

  3. Dry anaerobic digestion of the organic fraction of municipal solid waste.

    OpenAIRE

    ten Brummeler, E.

    1993-01-01

    Anaerobic digestion is an attractive technology for solid waste management. This thesis describes the technological potentials of dry anaerobic digestion of the organic fraction of Municipal Solid Waste (MSW) using batch systems. In 1985 a research programme was started to develop the so- called BIOCEL system based on batchwise anaerobic digestion yielding biogas and compost. The research programme was financially supported by the Dutch National Programme for reuse of Waste (NOH), which is co...

  4. Growing concentrations of phenol increasingly modify microbial communities' dynamics and performances' stability of anaerobic digesters

    OpenAIRE

    Chapleur, O.; Civade, R.; Hoyos, C.; MAZEAS, L; Bouchez, T.

    2013-01-01

    13th World Congress on Anaerobic Digestion : Recovering (bio) Ressources for the World, Santiago de Compostella, ESP, 25-/06/2013 - 28/06/2013 International audience Anaerobic degradation requires a complex network of interacting and competing microorganisms. Waste anaerobic digesters are based on the intensive use of this flora. Consequently, functioning and stability of digesters are directly related to microbial populations' dynamics. The latter may be subject to external disturbance...

  5. Anaerobic digestion of crop and waste biomass: Impact of feedstock characteristics on process performance

    OpenAIRE

    Ivo Achu, Nges

    2012-01-01

    Anaerobic digestion provides an array of positive environmental benefits such as reducing greenhouse gas emissions, replacing mineral fertilizers, producing renewable energy and treating waste. However, pitfalls in anaerobic digestion such as poor methane yields, process instability, process failure and regional shortages of feedstock have limited the full exploitation of the anaerobic digestion process. The research presented in this thesis deals with the assessment of the possible n...

  6. Evaluation of Novel Inoculation Strategies for Solid State Anaerobic Digestion of Yam Peelings in Low-Tech Digesters

    OpenAIRE

    Stefan Heiske; Linas Jurgutis; Zsófia Kádár

    2015-01-01

    The operation of household scale anaerobic digesters is typically based on diluted animal dung, requiring stabled livestock and adequate water availability. This excludes many rural households in low-income countries from the benefits of a domestic biogas digester. Solid state anaerobic digestion (SSAD) can be operated with low process water demands, but the technology involves operational challenges, as e.g., risk of process acidification or low degradation rates. This study aimed at develop...

  7. Anaerobic digestion of buffalo dung: simulation of process kinetics

    International Nuclear Information System (INIS)

    Assessment of kinetic of AD (Anaerobic Digestion) is a beneficial practice to forecast the performance of the process. It is helpful in the design of AD vessels, substrate feeding and digestate exit systems. The aim of this work was to assess the kinetics of anaerobically digested buffalo dung at different quantities of water added. It comprises the assessment of the specific methane production on the basis of VS (Volatile Solids) added in each reactor by using three first order models, i.e. the modified Gompertz model, the Cone model and the Exponential Curve Factor model. The analysis was tested by using the three statistical parameters, i.e. the coefficient of multiple determinations, the standard deviation of residuals and the Akaike's Information Criteria. The result reveals that the Exponential Curve Factor model was the best model that described the experimental data well. Moreover, there was not a direct or indirect relation between the kinetic coefficients of the AD process with the varying total or volatile solid content. (author)

  8. Anaerobic Digestion of Buffalo Dung: Simulation of Process Kinetics

    Directory of Open Access Journals (Sweden)

    Abdul Razaque Sahito

    2015-01-01

    Full Text Available Assessment of kinetic of AD (Anaerobic Digestion is a beneficial practice to forecast the performance of the process. It is helpful in the design of AD vessels, substrate feeding and digestate exit systems. The aim of this work was to assess the kinetics of anaerobically digested buffalo dung at different quantities of water added. It comprises the assessment of the specific methane production on the basis of VS (Volatile Solids added in each reactor by using three first order models, i.e. the modified Gompertz model, the Cone model and the Exponential Curve Factor model. The analysis was tested by using the three statistical parameters, i.e. the coefficient of multiple determinations, the standard deviation of residuals and the Akaike?s Information Criteria. The result reveals that the Exponential Curve Factor model was the best model that described the experimental data well. Moreover, there was not a direct or indirect relation between the kinetic coefficients of the AD process with the varying total or volatile solid content

  9. Anaerobic Biodegradation of Raw and Pre-treated Brewery Spent Grain Utilizing Solid State Anaerobic Digestion.

    Science.gov (United States)

    Panjičko, Mario; Zupančič, Gregor Drago; Zelić, Bruno

    2015-01-01

    The brewery spent grain (BSG) represents approximately 85% of the total quantity of by-products from the brewing industry. The biogas production from the BSG has been the subject of several studies in recent years, due to relatively high energy consumption in the brewing process and due to the increasing energy costs. The biodegradability of raw and pre-treated BSG in a single-stage and two-stage solid-state anaerobic digestion (SS-AD) system was determined in this study. The results show that the BSG have a biogas potential of 120 L/kg(-1). In the single-stage system, the biogas yield obtained from raw BSG (87.4 L/kg(-1)) was almost equal to the yield obtained from the pre-treated BSG (89.1 L/kg(-1)), while the methane yield was 51.9 and 55.3 L/kg(-1) and the biodegradation was 62.0% and 62.2% for raw and pre-treated BSG, respectively. In two-stage SS-AD the pre-treated BSG showed better results, with the biogas yield of 103.2 L/kg(-1) and the biodegradation of 73.6%, while the biogas yield obtained from raw BSG was 89.1 L/kg(-1), with the biodegradation of 63.5%. In two-stage process the obtained methane yields from raw and pre-treated BSG were identical (58.7 L/kg(-1)). PMID:26680709

  10. Anaerobic digestion of maize hybrids for methane production

    Directory of Open Access Journals (Sweden)

    P. Vindis

    2010-05-01

    Full Text Available Purpose: This research project was aimed at optimising anaerobic digestion of maize and find out which maturity class of corn and which hybrid of a particular maturity class produces the highest rate of biogas and biomethane. Also the chemical composition of gases was studied.Design/methodology/approach: Biogas and biomethane production and composition in mesophilic (35 degrees C conditions were measured and compared. The corn hybrids of FAO 300 - FAO 600 maturity class were tested. Experiments took place in the lab, for 35 days within four series of experiments with four repetitions according to the method DIN 38 414.Findings: Results show that the highest maturity classes of corn (FAO 500 increases the amount of biogas and biomethane. The greatest gain of biogas, biomethane according to maturity class is found with hybrids of FAO 400 and FAO 500 maturity class. Among the corn hybrids of maturity class FAO 300 - FAO 400, the hybrid PR38F70 gives the greatest production of biogas and biomethane. Among the hybrids of maturity class FAO 400 - FAO 500, the greatest amount of biogas and biomethane was produced by the hybrid PIXXIA (FAO 420. Among the hybrids of maturity class FAO 500 - FAO 600 the hybrid CODISTAR (FAO 500 the highest production of biomethane. Production of biomethane, which has the main role in the production of biogas varied with corn hybrids from 50-60 % of the whole amount of produced gas.Research limitations/implications: Economic efficiency of anaerobic digestion depends on the optimum methane production and optimum anaerobic digestion process.Practical implications: The results reached serve to plan the electricity production in the biogas production plant and to achieve the highest biomethane yield per hectare of maize hybrid.Originality/value: Late ripening varieties (FAO ca. 600 make better use of their potential to produce biomass than medium or early ripening varieties.

  11. Anaerobic co-digestion of coffee waste and sewage sludge

    OpenAIRE

    Neves, L.; Oliveira, Rosário; Alves, M. M.

    2006-01-01

    The feasibility of the anaerobic co-digestion of coffee solid waste and sewage sludge was assessed. Five different solid wastes with different chemical properties were studied in mesophilic batch assays, providing basic data on the methane production, reduction of total and volatile solids and hydrolysis rate constant. Most of the wastes had a methane yield of 0.24–0.28 m³CH4(STP)/kg VSinitial and 76–89% of the theoretical methane yield was achieved. Reduction of 50–73% in total solids and 75...

  12. Anaerobic digestion of vegetation water as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    de Ursinos, J.A.F.R.; Gamero, R.N.; Cabello, R.L.; Buendia, A.J.G.; de Jauregui, G.M.M.S.

    In this work, the possibility is shown of vegetation water depuration (wastewater from the olive oil obtaining process) by anaerobic digestion. The research was carried out in a 70 cu.m capacity ''contact method'' pilot plant; during which an average of 0.85 cu.m biogas/kg of BOD removed, was obtained; at the same time the efficiency in pollution power reduction was about 80 percent. In agreement with the energy balance the application of this purification process to the oil-mills overflow would permits its electrical and calorific independence. (Refs. 14).

  13. Optimization of the Anaerobic Digestion from Olive Oil Production's wastes

    OpenAIRE

    Battista, Federico

    2015-01-01

    The aim of this thesis is the optimization of the anaerobic digestion of wastes derived from olive oil production, which represent one important economic sector of all the Mediterranean Countries. The main byproducts of this activity are the semi-solid Olive Pomace (OP), characterized by low pH, high content of organic matter and in particular of ligno-cellulosic materials, and a liquid one, the Olive Mill Waste Water (OMWW) which have a dark color, low pH and high content of polyphenolic sub...

  14. Stability Analysis of Some Nonlinear Anaerobic Digestion Models

    Directory of Open Access Journals (Sweden)

    Ivan Simeonov

    2010-04-01

    Full Text Available Abstract: The paper deals with local asymptotic stability analysis of some mass balance dynamic models (based on one and on two-stage reaction schemes of the anaerobic digestion (AD in CSTR. The equilibrium states for models based on one (with Monod, Contois and Haldane shapes for the specific growth rate and on two-stage (only with Monod shapes for both the specific growth rate of acidogenic and methanogenic bacterial populations reaction schemes have been determined solving sets of nonlinear algebraic equations using Maples. Their stability has been analyzed systematically, which provides insight and guidance for AD bioreactors design, operation and control.

  15. Biomass stabilization in the anaerobic digestion of wastewater sludges

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C. [Universidad de Sevilla (Spain). Escuela Universitaria Politecnica. Departamento de Ingenieria Quimica y Ambiental; Gutierrez, J.C. [Universidad Pablo de Olavide, Sevilla (Spain). Departamento de Ciencias Ambientales; Lebrato, J. [Universidad de Sevilla (Spain). Escuela Universitaria Politecnica

    2006-07-15

    Sludge stabilization processes include both volatile solid destruction and biomass stabilization. Traditionally, both processes have been considered together, in such a way that, when volatile solid destruction is achieved, the biomass is considered stabilized. In this study, volatile solids reduction and biomass stabilization in the anaerobic digestion of primary, secondary and mixed sludges from municipal wastewater treatment plants were researched in batch cultures by measurements of suspended solids and suspended lipid-phosphate. The estimated kinetic constants were higher in all sludge types tested for the biomass stabilization process, indicating that volatile solids destruction and biomass stabilization are not parallel processes, since the latter one is reached before the former. (author)

  16. Biomass stabilization in the anaerobic digestion of wastewater sludges

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C. [Universidad de Sevilla, Dept. de Ingenieria Quimica y Ambiental, Sevilla (Spain); Gutierrez, J.C. [Universidad Pablo de Olavide, Dept. de Ciencias Ambientales, Sevilla (Spain); Lebrato, J. [Universidad de Sevilla, Grupo Tratamiento de Aguas Residuales, Sevilla (Spain)

    2005-07-01

    Sludge stabilization processes include both volatile solid destruction and biomass stabilization. Traditionally, both processes have been considered together, in such a way that, when volatile solid destruction is achieved, the biomass is considered stabilized. In this study, volatile solids reduction and biomass stabilization in the anaerobic digestion of primary, secondary and mixed sludges from municipal wastewater treatment plants were researched in batch cultures by measurements of suspended solids and suspended lipid-phosphate. The estimated kinetic constants were higher in all sludge types tested for the biomass stabilization process, indicating that volatile solids destruction and biomass stabilization are not parallel processes, since the latter one is reached before the former. (Author)

  17. Anaerobic digestion of municipal solid waste: Technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  18. Deploying anaerobic digesters: Current status and future possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Lusk, P. [International Energy Agency, Paris (France); Wheeler, P. [ETSU (United Kingdom); Rivard, C. [National Renewable Energy Lab., Golden, CO (United States)

    1996-01-01

    Unmanaged pollutants from putrescible farm, industrial, and municipal wastes degrade in the environment, and methane emitted from their decomposition may contribute to global climate change. Under modern environmental regulations, these wastes are becoming difficult to dispose of using traditional means. One waste management system, anaerobic digestion or AD, not only provides pollution prevention but can also convert a disposal problem into a new profit center. This report is drawn from a special session of the Second Biomass Conference of the Americas. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Heiske, Stefan

    2011-01-01

    for Chaetomorpha linum and 340 ml g VS1 for Saccharina latissima following 34 days of incubation. With an organic content of 21.1% (1.5–2.8 times higher than the other algae) S. latissima seems very suitable for anaerobic digestion. However, the methane yields of U. lactuca, G. vermiculophylla and C. linum could...... be increased with 68%, 11% and 17%, respectively, by pretreatment with maceration. U. lactuca is often observed during ‘green tides’ in Europe and has a high cultivation potential at Nordic conditions. Therefore, U. lactuca was selected for further investigation and co-digested with cattle manure in a lab...

  20. Biogas plasticization coupled anaerobic digestion: batch test results.

    Science.gov (United States)

    Schimel, Keith A

    2007-06-01

    Biogas has unique properties for improving the biodegradability of biomass solids during anaerobic digestion (AD). This report presents batch test results of the first investigation into utilizing biogas plasticization to "condition" organic polymers during active digestion of waste activated sludge (WAS). Preliminary design calculations based on polymer diffusion rate limitation are presented. Analysis of the 20 degrees C batch test data determined the first order (k(1)) COD conversion coefficient to be 0.167 day(-1) with a maximum COD utilization rate of 11.25 g L(-1) day(-1). Comparison of these batch test results to typical conventional AD performance parameters showed orders of magnitude improvement. These results show that biogas plasticization during active AD could greatly improve renewable energy yields from biomass waste materials such as MSW RDF, STP sludges, food wastes, animal manure, green wastes, and agricultural crop residuals. PMID:17054122

  1. Startup and stability of thermophilic anaerobic digestion of OFMSW

    KAUST Repository

    El-Fadel, Mutasem E.

    2013-01-01

    Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and more recently as a greenhouse gas (GHG) mitigation measure. In this context, AD systems operating at thermophilic temperatures (55-60°C)-compared to mesophilic temperatures (35-40°C)-have the unique feature of producing hygienic soil conditioners with greater process efficiency, higher energy yield, and more GHG savings. Startup of AD systems is often constrained by the lack of acclimated seeds, leading to process instability and failure. The authors focus on strategies to startup thermophilic digesters treating OFMSW in the absence of acclimated seeds and examines constraints associated with process stability and ways to overcome them. Relevant gaps in the literature and future research needs are delineated. © 2013 Taylor & Francis Group, LLC.

  2. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DDSCOD), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (khyd), but had no, or very slight enhancement on WAS ultimate

  3. Investigation of Poultry Waste for Anaerobic Digestion: A Case Study

    Science.gov (United States)

    Salam, Christopher R.

    Anaerobic Digestion (AD) is a biological conversion technology which is being used to produce bioenergy all over the world. This energy is created from biological feedstocks, and can often use waste products from various food and agricultural processors. Biogas from AD can be used as a fuel for heating or for co-generation of electricity and heat and is a renewable substitute to using fossil fuels. Nutrient recycling and waste reduction are additional benefits, creating a final product that can be used as a fertilizer in addition to energy benefits. This project was conducted to investigate the viability of three turkey production wastes as AD feedstock: two turkey litters and a material separated from the turkey processing wastewater using dissolved air flotation (DAF) process. The DAF waste contained greases, oils and other non-commodity portions of the turkey. Using a variety of different process methods, types of bacteria, loading rates and food-to-microorganism ratios, optimal loading rates for the digestion of these three materials were obtained. In addition, the co-digestion of these materials revealed additional energy benefits. In this study, batch digestion tests were carried out to treat these three feedstocks, using mesophilic and thermophilic bacteria, using loading rates of 3 and 6 gVS/L They were tested separately and also as a mixture for co-digestion. The batch reactor used in this study had total and working volumes of 1130 mL and 500 mL, respectively. The initial organic loading was set to be 3 gVS/L, and the food to microorganism ratio was either 0.6 or 1.0 for different treatments based on the characteristics of each material. Only thermophilic (50 +/- 2ºC) temperatures were tested for the litter and DAF wastes in continuous digestion, but mesophilic and thermophilic batch digestion experiments were conducted. The optimum digestion time for all experiments was 14 days. The biogas yields of top litter, mixed litter, and DAF waste under

  4. Biogas recovery in anaerobic digestion plants for pig wastewater

    International Nuclear Information System (INIS)

    This work deals with a monitoring of thee anaerobic digestion plants in mesophilic conditions treating pig wastewater with the aim to study the treatment efficiency and energetic aspects. A good waste stabilization is reached in all plants, as shown by the high removal efficiency of total and volatile solids and COD, mainly due to the digestion process. On the contrary, Kjeldahl nitrogen and ammonia (low) removal takes place mainly in the final storage tank, thanks to ammonia stripping. The digestion process not only produces a well stabilized wastewater, that can be more surely reused for agricultural spreading, but it offers also an important energy recovery from the biogas combustion, whose specific production varies from 0,78 to 0,99 Nm3 t-1 (live weight) d-1. It is used in cogeneration plants for the combined production of thermal energy (that is reused for waste heating in the digestion tank at mesophilic conditions and for other internal utilizations) and electric energy (that is used for internal requirements while the surplus is sent into the public grid)

  5. Sewage sludge anaerobic digestion : study of synergies and operational strategies of co-digestion

    OpenAIRE

    Silvestre Tormo, Gracia

    2015-01-01

    Wastewater treatment plants (WWTPs) are characterized by their high organic matter and nutrient removal efficiency, but also by their high energy consumption. In the current context where resources are increasingly scarce, all feasible strategies to save energy emerge as an important issue for the sustainable management of WWTPs. In this thesis, sewage sludge (SS) anaerobic co-digestion with available organic wastes, coming from different sources and having different compositions, was prop...

  6. Optimisation and inhibition of anaerobic digestion of livestock manure

    Energy Technology Data Exchange (ETDEWEB)

    Sutaryo, S.

    2012-11-15

    The optimisation process during this PhD study focused on mixed enzyme (ME) addition, thermal pre-treatment and co-digestion of raw manure with solid fractions of acidified manure, while for inhibition processes, ammonia and sulphide inhibition were studied. ME addition increased methane yield of both dairy cow manure (DCM) and solid fractions of DCM (by 4.44% and 4.15% respectively, compared to the control) when ME was added to manure and incubated prior to anaerobic digestion (AD). However, no positive effect was found when ME was added to manure and fed immediately to either mesophilic (35 deg. C) or thermophilic (50 deg. C) digesters. Low-temperature pre-treatment (65 deg. C to 80 deg. C for 20 h) followed by batch assays increased the methane yield of pig manure in the range from 9.5% to 26.4% at 11 d incubation. These treatments also increased the methane yield of solid-fractions pig manure in the range from 6.1% to 25.3% at 11 d of the digestion test. However, at 90 d the increase in methane yield of pig manure was only significant at the 65 deg. C treatment, thus low-temperature thermal pre-treatment increased the rate of gas production, but did not increase the ultimate yield (B{sub o}). High-temperature pre-treatment (100 deg. C to 225 deg. C for 15 min.) increased the methane yield of DCM by 13% and 21% for treatments at 175 deg. C and 200 deg. C, respectively, at 27 d of batch assays. For pig manure, methane yield was increased by 29% following 200 deg. C treatment and 27 d of a batch digestion test. No positive effect was found of high-temperature pre-treatment on the methane yield of chicken manure. At the end of the experiment (90 d), high-temperature thermal pre-treatment was significantly increasing the B{sub 0} of pig manure and DCM. Acidification of animal manure using sulphuric acid is a well-known technology to reduce ammonia emission of animal manure. AD of acidified manure showed sulphide inhibition and consequently methane production was 45

  7. Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion.

    Science.gov (United States)

    Popat, Sudeep C; Yates, Marylynn V; Deshusses, Marc A

    2010-12-01

    Thermophilic anaerobic sludge digestion is a promising process to divert waste to beneficial use, but an important question is the required temperature and holding time to achieve a given degree of pathogen inactivation. In this study, the kinetics of inactivation of Ascaris suum and vaccine strain poliovirus type 1 (PVS-1), selected as indicators for helminth ova and enteric viruses respectively, were determined during anaerobic digestion at temperatures ranging from 51 to 56 °C. Inactivation of both indicator organisms was fast with greater than two log reductions achieved within 2 h for A. suum and three log reductions for PVS-1, suggesting that the current U.S. regulations are largely conservative. The first-order inactivation rate constants k followed Arrhenius relationship with activation energies of 105 and 39 KJ mol(-1) for A. suum and PVS-1, respectively indicating that A. suum was more sensitive to temperature. Although inactivation was fast, the presence of compounds in the sludge that are known to be protective of pathogen inactivation was observed, suggesting that composition-dependent time-temperature relationships are necessary. PMID:20692678

  8. Bench-scale Analysis of Surrogates for Anaerobic Digestion Processes.

    Science.gov (United States)

    Carroll, Zachary S; Long, Sharon C

    2016-05-01

    Frequent monitoring of anaerobic digestion processes for pathogen destruction is both cost and time prohibitive. The use of surrogates to supplement regulatory monitoring may be one solution. To evaluate surrogates, a semi-batch bench-scale anaerobic digester design was tested. Bench-scale reactors were operated under mesophilic (36 °C) and thermophilic (53-55 °C) conditions, with a 15 day solids retention time. Biosolids from different facilities and during different seasons were examined. USEPA regulated pathogens and surrogate organisms were enumerated at different times throughout each experiment. The surrogate organisms included fecal coliforms, E. coli, enterococci, male-specific and somatic coliphages, Clostridium perfringens, and bacterial spores. Male-specific coliphages tested well as a potential surrogate organism for virus inactivation. None of the tested surrogate organisms correlated well with helminth inactivation under the conditions studied. There were statistically significant differences in the inactivation rates between the facilities in this study, but not between seasons. PMID:27131309

  9. Anaerobic biodegradation of estrogens--hard to digest.

    Science.gov (United States)

    de Mes, T Z D; Kujawa-Roeleveld, K; Zeeman, G; Lettinga, G

    2008-01-01

    Although many publications are available on the fate of estrone (E1), 17beta-estradiol (E2) and 17alpha-ethynylestradiol (EE2) during aerobic wastewater treatment, little is published on their fate under strictly anaerobic conditions. Present research investigated the digestibility of E1 and EE2, using digested pig manure, granular UASB sludge, UASB-septic tank sludge and activated sludge as inocula. Besides, actual concentrations were measured in a UASB septic tank treating black water. Under anaerobic conditions E1 is reduced to E2 but the extent of this reduction depends on type of inoculum. No significant loss of the sum of E1 and E2 and of EE2 was observed. Adsorption was responsible for a 32-35% loss of E1 and E2 from the liquid phase in the UASB septic tank and the effluent still contained considerable concentrations of respectively 4.02 microg/l and 18.79 microg/l for E1 and E2 with a large fraction present in conjugated form. No EE2 was detected in the UASB effluent. PMID:18469388

  10. Thermochemical Pretreatment for Anaerobic Digestion of Sorted Waste

    Science.gov (United States)

    Hao, W.; Hongtao, W.

    2008-02-01

    The effect of alkaline hydrothermal pre-treatment for anaerobic digestion of mechanically-sorted municipal solid waste (MSW) and source-sorted waste was studied. Waste was hydrothermally pre-treated in dilute alkali solution. Hydrolysis product was incubated in 500 ml saline bottle to determine methane potential (MP) under mesospheric anaerobic conditions. Optimum reaction condition obtained in the study is 170 °C at the dose of 4 g NaOH/100 g solid for one hour. Soluble COD was 13936 mg/L and methane yield was 164 ml/g VS for 6 days incubation at optimum conditions. More than 50% biogas increase was achieved over the control, and methane conversion ratio on carbon basis was enhanced to 30.6%. The digestion period was less than 6 days when pre-treatment temperature was above 130 °C. The organic part of sorted waste is mainly constituted of kitchen garbage and leaf. Model kitchen garbage was completely liquidized at 130 °C for one hour and the methane yield was 276 ml/g VS. Addition of alkali enhance hydroxylation rate and methane yield slightly. The biogas potential of leaf could be observed by pre-treatment above 150 °C under alkaline condition.

  11. Influence of steam explosion pretreatment on the anaerobic digestion of vinegar residue.

    Science.gov (United States)

    Feng, Jiayu; Zhang, Jiyu; Zhang, Jiafu; He, Yanfeng; Zhang, Ruihong; Liu, Guangqing; Chen, Chang

    2016-07-01

    Vinegar residue is the by-product in the vinegar production process. The large amount of vinegar residue has caused a serious environmental problem owing to its acidity and corrosiveness. Anaerobic digestion is an effective way to convert agricultural waste into bioenergy, and a previous study showed that vinegar residue could be treated by anaerobic digestion but still had room to improve digestion efficiency. In this study, steam explosion at pressure of 0.8, 1.2, and 1.5 MPa and residence time of 5, 10, 15, and 20 min were used to pretreat vinegar residue to improve methane production, respectively. Scanning electron microscopy and X-ray diffraction analyses were applied to validate structural changes of vinegar residue after steam explosion. Results showed that steam explosion pretreatment could destroy the structure of lignocellulose by removing the hemicellulose and lignin, and improve the methane yield effectively. Steam explosion-treated vinegar residue at 0.8 MPa for 5 min produced the highest methane yield of 153.58 mL gVS (-1), which was 27.65% (significant, α < 0.05) more than untreated vinegar residue (120.31 mL gVS (-1)). The analyses of pH, total ammonia-nitrogen, total alkalinity, and volatile fatty acids showed that steam explosion did not influence the stability of anaerobic digestion. This study suggested that steam explosion pretreatment on vinegar residue might be a promising approach and it is worth further study to improve the efficiency of vinegar residue waste utilisation. PMID:27154975

  12. Dynamic real-time substrate feed optimization of anaerobic co-digestion plants

    NARCIS (Netherlands)

    Gaida, Daniel

    2014-01-01

    In anaerobic co-digestion plants a mix of organic materials is converted to biogas using the anaerobic digestion process. These organic materials, called substrates, can be crops, sludge, manure, organic wastes and many more. They are fed on a daily basis and significantly affect the biogas producti

  13. Evaluation of biogas production by dry anaerobic digestion of switchgrass-animal manure mixtures

    Science.gov (United States)

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application without adverse environmental effects. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion (> 15% TS; total solid) has an advantage ov...

  14. Whole farm impact of anaerobic digestion and biogas use on a New York dairy farm

    Science.gov (United States)

    Anaerobic digestion of manure for biogas production is one of many options for reducing the carbon footprint of milk production. This process reduces greenhouse gas emissions but increases the potential nitrogen and phosphorus losses from the farm. An anaerobic digester component was added to the In...

  15. Dry anaerobic digestion of the organic fraction of municipal solid waste.

    NARCIS (Netherlands)

    ten Brummeler, E.

    1993-01-01

    Anaerobic digestion is an attractive technology for solid waste management. This thesis describes the technological potentials of dry anaerobic digestion of the organic fraction of Municipal Solid Waste (MSW) using batch systems. In 1985 a research programme was started to develop the so- called BIO

  16. Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Alatriste-Mondragon, Felipe; Iranpour, R.;

    2003-01-01

    Phthalic acid esters (PAE) are commonly found in the sludge generated in the wastewater treatment plants. Anaerobic digestion followed by land application is a common treatment and disposal practice of sludge. To date, many studies exist on the anaerobic biodegradation rates of PAE, especially...... of the easily biodegradable ones, whereas the higher molecular weight PAE have reported to be non-biodegradable under methanogenic conditions. Furthermore, there is no information on the effect of the PAE on the performance of the anaerobic digesters treating sludge. In this study, the anaerobic biodegradation...... of di-n-butyl phthalate (DBP), di-ethyl phthalate (DEP) and di-ethylhexyl phthalate (DEHP) was investigated and their relative rates of anaerobic degradation were calculated. Also, the biological removal of PAE during the anaerobic digestion of sludge in bench-scale digesters was investigated using DBP...

  17. Anaerobic Digestion Scale Levels and Their Energy Yields. A comparison of energy yields of different manure-and co-digestion scale levels

    NARCIS (Netherlands)

    Konneman, Bram

    2007-01-01

    Anaerobic digestion is a biological process whereby, in the absence of oxygen, organic matter is converted into biogas and digestate. In recent years anaerobic digestion has received re-newed attention in the Dutch agricultural sector. Co-digestion, in wh

  18. Investigation of Poultry Waste for Anaerobic Digestion: A Case Study

    Science.gov (United States)

    Salam, Christopher R.

    Anaerobic Digestion (AD) is a biological conversion technology which is being used to produce bioenergy all over the world. This energy is created from biological feedstocks, and can often use waste products from various food and agricultural processors. Biogas from AD can be used as a fuel for heating or for co-generation of electricity and heat and is a renewable substitute to using fossil fuels. Nutrient recycling and waste reduction are additional benefits, creating a final product that can be used as a fertilizer in addition to energy benefits. This project was conducted to investigate the viability of three turkey production wastes as AD feedstock: two turkey litters and a material separated from the turkey processing wastewater using dissolved air flotation (DAF) process. The DAF waste contained greases, oils and other non-commodity portions of the turkey. Using a variety of different process methods, types of bacteria, loading rates and food-to-microorganism ratios, optimal loading rates for the digestion of these three materials were obtained. In addition, the co-digestion of these materials revealed additional energy benefits. In this study, batch digestion tests were carried out to treat these three feedstocks, using mesophilic and thermophilic bacteria, using loading rates of 3 and 6 gVS/L They were tested separately and also as a mixture for co-digestion. The batch reactor used in this study had total and working volumes of 1130 mL and 500 mL, respectively. The initial organic loading was set to be 3 gVS/L, and the food to microorganism ratio was either 0.6 or 1.0 for different treatments based on the characteristics of each material. Only thermophilic (50 +/- 2ºC) temperatures were tested for the litter and DAF wastes in continuous digestion, but mesophilic and thermophilic batch digestion experiments were conducted. The optimum digestion time for all experiments was 14 days. The biogas yields of top litter, mixed litter, and DAF waste under

  19. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    OpenAIRE

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste...

  20. Start-up and HRT Influence in Thermophilic and Mesophilic Anaerobic Digesters Seeded with Waste Activated Sludge

    OpenAIRE

    Benabdallah, El-Hadj T.; Dosta, J.; Mata-Alvarez, J.

    2007-01-01

    Since thermophilic anaerobic digestion represents an efficient alternative to mesophilic anaerobic digestion, multiple studies have been developed to compare their performance and viability. One of the problems related to thermophilic anaerobic digestion is the availability of an adequate seed to start-up the process. The goal of this study is to evaluate the possibility of using waste activated sludge (WAS) as a seed for both mesophilic (35 °C) and thermophilic (55 °C) anaerobic digesters...

  1. Review of the Literature on the Economics of Central Anaerobic Digesters

    OpenAIRE

    Bachewe, Fantu; Lazarus, William F.; Goodrich, Philip; Drewitz, Matt; Balk, Becky

    2008-01-01

    Minnesota can improve the utilization of manure and organic wastes via the production of biogas that can be used to produce heat and electricity. Denmark serves as a role model for Minnesota in the number of central anaerobic digesters that it supports. During anaerobic digestion methane is produced when naturally occurring anaerobic bacteria decompose organic matter in the absence of oxygen. This process produces what is called biogas, which usually is a mixture of 55 – 65 percent methane pl...

  2. Dry anaerobic digestion of lignocellulosic and protein residues

    Directory of Open Access Journals (Sweden)

    Maryam M Kabir

    2015-12-01

    Full Text Available Utilisation of wheat straw and wool textile waste in dry anaerobic digestion (AD process was investigated. Dry-AD of the individual substrates as well as co-digestion of those were evaluated using different total solid (TS contents ranging between 6 to 30%. Additionally, the effects of the addition of nutrients and cellulose- or protein-degrading enzymes on the performance of the AD process were also investigated. Dry-AD of the wheat straw resulted in methane yields of 0.081 – 0.200 Nm3CH4/kgVS with the lowest and highest values obtained at 30 and 21% TS, respectively. The addition of the cellulolytic enzymes could significantly increase the yield in the reactor containing 13% TS (0.231 Nm3CH4/kg VS. Likewise, degradation of wool textile waste was enhanced significantly at TS of 13% with the addition of the protein-degrading enzyme (0.131 Nm3CH4/kg VS. Furthermore, the co-digestion of these two substrates showed higher methane yields compared with the methane potentials calculated for the individual fractions at all the investigated TS contents due to synergetic effects and better nutritional balance.

  3. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    Science.gov (United States)

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology. PMID:25022835

  4. Anaerobic digestion of cellulosic wastes: pilot plant studies

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas, and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs lasting 36, 90, and 423 d were made using batch and batch-fed conditions. Solids solubilization rates and gas production rates were approximately double the target values of 0.6 g of cellulose per L of reactor volume per d and 0.5 L of off-gas per L of reactor per d. Greater than 80% destruction of solids was obtained. Preliminary effluent characterization and disposal studies were completed. A simple dynamic process model has been constructed to aid in process design and for use in process monitoring and control of a large-scale digester. 5 refs., 20 figs., 3 tabs

  5. Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion

    OpenAIRE

    Song, Zilin; GaiheYang,; Liu, Xiaofeng; Yan, Zhiying; Yuan, Yuexiang; Liao, Yinzhang

    2014-01-01

    Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical pretreatments on the composition and methane yield of corn straw to assess their effectiveness of digestibility. Four acid reagents (H2SO4, HCl, H2O2, and CH3COOH) at concentrations of 1%, 2%, 3%, and ...

  6. Study of the Process of Hydraulic Mixing in Anaerobic Digester of Biogas Plant

    Directory of Open Access Journals (Sweden)

    Karaeva Julia V.

    2015-03-01

    Full Text Available Two systems of hydraulic mixing in a vertical cylindrical anaerobic digester: standard and modernised are discussed in the paper. Numerical investigations that were carried out are focused on a study of hydrodynamic processes in an aerobic digester using two various systems of hydraulic mixing as well as on analysis of the efficiency of methane fermentation process accomplished under different geometric parameters of an anaerobic digester and systems of hydraulic mixing.

  7. Different pathways of resource recovery from anaerobic digestion of organic residues

    OpenAIRE

    Carrère, Hélène; Monlau, Florian; Sambusiti, Cécilia; Barakat, Abdellatif; Ficara, Elena; Trably, Eric

    2016-01-01

    Anaerobic digestion is a key process for urban solid waste management converting organic waste into biogas, mainly composed of methane and carbon dioxide, and a residue called digestate which is generally separated into solid and liquid fractions. Based on an overview of the abundant literature published on municipal solid waste and lignocellulosic biomasses, the potentialities of anaerobic digestion processes will be presented. The first part of the lecture will discuss the interest of using...

  8. Developing a nutrient recovery process for recovering nutrients in anaerobic digestate in low income countries

    OpenAIRE

    Rose, Christopher

    2015-01-01

    It is estimated that 2.7 billion people worldwide are served by on-site sanitation facilities that require faecal sludge management. Anaerobic digestion is a treatment mechanism that can provide faecal sludge management, methane production and an effluent digestate rich in nutrients. However, there is a paucity of information regarding the composition of the input faecal sludge which hinders the advancement of anaerobic digestion treatment and downstream nutrient recovery to...

  9. Impacts of the use of magnesia versus iron on mesophilic anaerobic digestion and odors in wastewater

    OpenAIRE

    Radhakrishnan, Kartik

    2011-01-01

    Addition of iron to sewer lines for chemical phosphorus removal is widely practiced around the world. However, high dosage of iron may prove detrimental to the anaerobic digestion process and also lead to higher organic sulfur odors and deteriorating biosolids quality. The following research focuses on finding an alternative to the use of iron in wastewater systems by comparing the roles of iron and magnesium on mesophilic anaerobic digestion, the digested effluent characteristics and odors i...

  10. Elucidation of the thermophilic phenol biodegradation pathway via benzoate during the anaerobic digestion of municipal solid waste

    OpenAIRE

    Hoyos, C.; Hoffmann, M; Guenne, A.; Mazéas, L.

    2014-01-01

    International audience Anaerobic digestion makes it possible to valorize municipal solid waste (MSW) into biogas and digestate which are, respectively, a renewable energy source and an organic amendment for soil. Phenols are persistent pollutants present in MSW that can inhibit the anaerobic digestion process and have a toxic effect on microbiota if they are applied to soil together with digestate. It is then important to define the operational conditions of anaerobic digestion which allow...

  11. Anaerobic digestion of autoclaved and untreated food waste

    International Nuclear Information System (INIS)

    Highlights: • Autoclaving decreased the formation of NH4-N and H2S during food waste digestion. • Stable digestion was achieved with untreated and autoclaved FW at OLR 6 kg VS/m3day. • Use of acclimated inoculum allowed very rapid increases in OLR. • Highest CH4 yields were observed at OLR 3 kg VS/m3day with untreated FW. • Autoclaved FW produced highest CH4 yields during OLR 4 kgVS/m3day. - Abstract: Anaerobic digestion of autoclaved (160 °C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m3 d. Methane yields at all OLR were 5–10% higher for untreated FW (maximum 0.483 ± 0.013 m3 CH4/kg VS at 3 kg VS/m3 d) than autoclaved FW (maximum 0.439 ± 0.020 m3 CH4/kg VS at 4 kg VS/m3 d). The residual methane potential of both digestates at all OLRs was less than 0.110 m3 CH4/kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components

  12. Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature.

    Science.gov (United States)

    Beltrán, Carolina; Jeison, David; Fermoso, Fernando G; Borja, Rafael

    2016-08-23

    The microalgae Chlorella sorokiniana are used as co-substrate for waste activated sludge (WAS) anaerobic digestion. The specific objective of this research was to evaluate the feasibility of improving methane production from anaerobic digestion of WAS in co-digestion with this microalga, based on an optimized mixture percentage. Thus, the anaerobic co-digestion of both substrates aims to overcome the drawbacks of the anaerobic digestion of single WAS, simultaneously improving its management. Different co-digestion mixtures (0% WAS-100% microalgae; 25% WAS-75% microalgae; 50% WAS-50% microalgae; 75% WAS-25% microalgae; 100% WAS-0% microalgae) were studied. The highest methane yield (442 mL CH4/g VS) was obtained for the mixture with 75% WAS and 25% microalgae. This value was 22% and 39% higher than that obtained in the anaerobic digestion of the sole substrates WAS and microalgae, respectively, as well as 16% and 25% higher than those obtained for the co-digestion mixtures with 25% WAS and 75% microalgae and 50% WAS and 50% microalgae, respectively. The kinetic constant of the process increased 42%, 42% and 12%, respectively, for the mixtures with 25%, 50% and 75% of WAS compared to the substrate without WAS. Anaerobic digestion of WAS, together with C. sorokiniana, has been clearly improved by ensuring its viability, suitability and efficiency. PMID:27230742

  13. Anaerobic co-digestion of animal waste: swine manure and tuna fish waste

    International Nuclear Information System (INIS)

    Anaerobic digestion has become an established and proven technology for the treatment of solid wastes. Co-digestion offers several possible ecological, technology and economical advantages. Anaerobic co-digestion can increase CH4 production of manure diesters in a 50-200% according to the operation conditions and the co-substrates used. Last September 2007, PROBIOGAS project started up with the objective of improving the production and use of biogas from co-digestion of farming, agricultural and industrial waste. Our research group takes part in the study of co-digestion of swine manure firstly with tuna fish waste and secondly with glycerine (bio diesel production waste). (Author)

  14. Anaerobic co-digestion in the Netherlands. A system analysis on greenhouse gas emissions from Dutch co-digesters.

    NARCIS (Netherlands)

    Groenewold, Henk

    2013-01-01

    Summary Anaerobic digestion (AD) is a biological process whereby, in the absence of oxygen, organic matter is transformed into biogas and digestate. In recent years AD has received new attention in the Dutch agricultural sector by introducing the co-dige

  15. Effects of Oxytetracycline on Methane Production and the Microbial Communities During Anaerobic Digestion of Cow Manure

    Institute of Scientific and Technical Information of China (English)

    KE Xin; WANG Chun-yong; LI Run-dong; ZHANG Yun

    2014-01-01

    The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37°C) of cow manure were investigated. Before anaerobic digestion, OTC was added to digesters at concentrations of 20, 50, and 80 mg L-1, respectively. Compared with no-antibiotic control, all methane productions underwent different levels of inhibition at different concentrations of OTC. Changes in the bacterial and archaeal communities were discussed by using PCR-denaturing gradient gel electrophoresis (DGGE). Results showed that OTC affected the richness and diversity of bacterial and archaeal communities. The bacterial genus Flavobacterium and an uncultured bacterium (JN256083.1) were detected throughout the entire process of anaerobic digestion and seemed to be the functional bacteria. Methanobrevibacter boviskoreani and an uncultured archaeon (FJ230982.1) dominated the archaeal communities during anaerobic digestion. These microorganisms may have high resistance to OTC and may play vital roles in methane production.

  16. Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology.

    Science.gov (United States)

    Garcia-Peña, E I; Parameswaran, P; Kang, D W; Canul-Chan, M; Krajmalnik-Brown, R

    2011-10-01

    This study evaluated the feasibility of methane production from fruit and vegetable waste (FVW) obtained from the central food distribution market in Mexico City using an anaerobic digestion (AD) process. Batch systems showed that pH control and nitrogen addition had significant effects on biogas production, methane yield, and volatile solids (VS) removal from the FVW (0.42 m(biogas)(3)/kg VS, 50%, and 80%, respectively). Co-digestion of the FVW with meat residues (MR) enhanced the process performance and was also evaluated in a 30 L AD system. When the system reached stable operation, its methane yield was 0.25 (m(3)/kg TS), and the removal of the organic matter measured as the total chemical demand (tCOD) was 65%. The microbial population (general Bacteria and Archaea) in the 30 L system was also determined and characterized and was closely correlated with its potential function in the AD system. PMID:21865034

  17. Efficiency of the anaerobic digestion of amine wastes.

    Science.gov (United States)

    Wang, Shuai; Hovland, Jon; Bakke, Rune

    2013-12-01

    Laboratory-scale anaerobic degradation of monoethanolamine waste (MEAw) with co-substrate organics was conducted at room temperature and organic loading rates from 0.19 to 5.03 kg COD/m(3) day for 486 days in a hybrid digester. 90 % feed COD conversion to methane was obtained at the lower loads and only 45 % at the highest MEA waste/COD ratio (MEAwr) of 0.62 due to inhibition of methanogenesis. Inhibition at comparable loads decreased with time, implying that the culture adapted to the challenging feed. Methane yield was negatively correlated to MEAwr applied and inhibition avoided at MEAwr <0.5. Acetate accumulation implies inhibition of acetoclastic methanogenesis that can be caused by ammonia, a product of MEAw degradation. Moderate total ammonia nitrogen and free ammonia nitrogen accumulation, maximum 2.2 g N/l and 90 mg N/l, respectively suggests, however, that other components of MEAw, and/or degradation products of such, also inhibit methanogenesis, disturbing the digester performance. PMID:23912885

  18. Composting of solids separated from anaerobically digested animal manure

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-01-01

    We investigated the effects of bulking agents (BA) and mixing ratios on greenhouse gas (GHG) and NH3 emissions from composting digested solids (DS), separated from anaerobically digested manure and other bio-wastes, in small-scale laboratory composters. BA evaluated were plastic tube pieces (PT...... emissions occurred during the thermophilic temperature phase, which had little or no effect on N2O emissions. BS addition to DS resulted in the lowest cumulative NH3-N and N2O-N losses. BC was as effective as BS in reducing cumulative NH3-N losses, but had non-significant effect on CH4-C emissions....... Decreasing the mixing ratio from 6:1 to 3:1 reduced losses of CH4-C and N2O-N (except for BC) without any increase in NH3-N losses. BC and BS proved most effective in reducing emissions of total GHG (as CO2-equivalents). Composting of DS with C-rich BA can thus be an effective means of conserving N in DS...

  19. CFD simulation of mixing for high-solids anaerobic digestion.

    Science.gov (United States)

    Wu, Binxin

    2012-08-01

    A computational fluid dynamics (CFD) model that simulates mechanical mixing for high-solids anaerobic digestion was developed. Numerical simulations of mixing manure slurry which exhibits non-Newtonian pseudo-plastic fluid behavior were performed for six designs: (i) one helical ribbon impeller; (ii) one anchor impeller; (iii) one curtain-type impeller; (iv) three counterflow (CF-2) impellers; (v) two modified high solidity (MHS 3/39°) impellers; and (vi) two pitched blade turbine impellers. The CFD model was validated against measurements for mixing a Herschel-Bulkley fluid by ribbon and anchor impellers. Based on mixing time with respect to mixing energy level, three impeller types (ribbon, CF-2, and MHS 3/39°) stand out when agitating highly viscous fluids, of these mixing with two MHS 3/39° impellers requires the lowest power input to homogenize the manure slurry. A comparison of digestion material demonstrates that the mixing energy varies with manure type and total solids concentration to obtain a given mixing time. Moreover, an in-depth discussion about the CFD strategy, the influences of flow regime and impeller type on mixing characteristics, and the intrinsic relation between mixing and flow field is included. PMID:22422446

  20. Anaerobic Digestion and Combined Heat and Power Study

    Energy Technology Data Exchange (ETDEWEB)

    Frank J. Hartz

    2011-12-30

    One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

  1. Making lignin accessible for anaerobic digestion by wet-explosion pretreatment

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Biswas, Rajib; Ahamed, Aftab;

    2015-01-01

    of lignin during anaerobic digestion processes. The pretreatment of feedlot manure was performed in a 10 L reactor at 170 C for 25 min using 4 bars oxygen and the material was fed to a continuous stirred tank reactor operated at 55 C for anaerobic digestion. Methane yield of untreated and pretreated...... material was 70 ± 27 and 320 ± 36 L/kg-VS/day, respectively, or 4.5 times higher yield as a result of the pretreatment. Aliphatic acids formed during the pretreatment were utilized by microbes. 44.4% lignin in pretreated material was actually converted in the anaerobic digestion process compared to 12...

  2. Determination of Methane and Carbon Dioxide Formation Rate Constants for Semi-Continuously Fed Anaerobic Digesters

    Directory of Open Access Journals (Sweden)

    Jan Moestedt

    2015-01-01

    Full Text Available To optimize commercial-scale biogas production, it is important to evaluate the performance of each microbial step in the anaerobic process. Hydrolysis and methanogenesis are usually the rate-limiting steps during digestion of organic waste and by-products. By measuring biogas production and methane concentrations on-line in a semi-continuously fed reactor, gas kinetics can be evaluated. In this study, the rate constants of the fermentative hydrolysis step (kc and the methanogenesis step (km were determined and evaluated in a continuously stirred tank laboratory-scale reactor treating food and slaughterhouse waste and glycerin. A process additive containing Fe2+, Co2+ and Ni2+ was supplied until day 89, after which Ni2+ was omitted. The omission resulted in a rapid decline in the methanogenesis rate constant (km to 70% of the level observed when Ni2+ was present, while kc remained unaffected. This suggests that Ni2+ mainly affects the methanogenic rather than the hydrolytic microorganisms in the system. However, no effect was initially observed when using conventional process monitoring parameters such as biogas yield and volatile fatty acid concentration. Hence, formation rate constants can reveal additional information on process performance and km can be used as a complement to conventional process monitoring tools for semi-continuously fed anaerobic digesters.

  3. Biochar-mediated reductions in greenhouse gas emissions from soil amended with anaerobic digestates

    International Nuclear Information System (INIS)

    This investigation examines nitrous oxide (N2O) fluxes from soil with simultaneous amendments of anaerobic digestates and biochar. The main source of anthropogenic emissions of N2O is agriculture and in particular, manure and slurry application to fields. Anaerobic digestates are increasingly used as a fertiliser and interest is growing in their potential as sources of N2O via nitrification and denitrification. Biochar is a stable product of pyrolysis and may affect soil properties such as cation exchange capacity and water holding capacity. Whilst work has been conducted on the effects of biochar amendment on N2O emissions in soils fertilised with mineral fertilisers and raw animal manures, little work to date has focused on the effects of biochar on nitrogen transformations within soil amended with anaerobic digestates. The aim of the current investigation was to quantify the effects of biochar application on ammonification, nitrification and N2O fluxes within soil amended with three anaerobic digestates derived from different feedstocks. A factorial experiment was undertaken in which a sandy loam soil (Dunnington Heath series) was either left untreated, or amended with three different anaerobic digestates and one of three biochar treatments; 0%, 1% or 3%. Nitrous oxide emissions were greatest from soil amended with anaerobic digestate originating from a maize feedstock. Biochar amendment reduced N2O emissions from all treatments, with the greatest effect observed in treatments with maximum emissions. The degree of N2O production and efficacy of biochar amelioration of gas emissions is discussed in context of soil microbial biomass and soil available carbon. - Highlights: • Nitrous oxide was emitted from anaerobic digestates applied to soil. • Simultaneous amendment of soil with biochar and anaerobic digestate reduced N2O emissions. • Soil nitrate accumulation occurred but was digestate dependent

  4. Measuring metal and phosphorus speciation in P-rich anaerobic digesters.

    Science.gov (United States)

    Carliell-Marquet, C M; Wheatley, A D

    2002-01-01

    High concentrations of soluble orthophosphate, magnesium and potassium are released during anaerobic digestion of biological phosphorus removal (BPR) sludge. This research was undertaken to investigate the effects of phosphorus enrichment on digester performance, metal and phosphorus speciation. High concentrations of soluble PO4-P (> 250 mg/l) were found to have a retarding effect on anaerobic digestion, reducing the rate of volatile solids digestion and methane production in comparison to control digesters. This was found to be reversible after a period of time, which was related to the amount of PO4-P added to the digesters, higher concentrations of PO4-P requiring more time for digester recovery. Addition of magnesium and potassium to the digesters, together with PO4-P, reduced the inhibitory effect of phosphorus enrichment but these digesters still showed lower rates of volatile solids digestion and methane production in comparison to the control digesters. Phosphorus enrichment resulted in extensive precipitation of calcium, magnesium and manganese, markedly reducing the soluble and easily available fractions of these metals. Other trace metals such as copper, zinc, chromium, nickel and cobalt actually showed increased levels of solubility as a result of phosphorus enrichment. This was thought to be caused by high levels of soluble organic carbon in the phosphorus-rich anaerobic digesters, which acted as organic ligands for metal complexation. PMID:12188563

  5. Evaluation of Novel Inoculation Strategies for Solid State Anaerobic Digestion of Yam Peelings in Low-Tech Digesters

    DEFF Research Database (Denmark)

    Heiske, Stefan; Jurgutis, Linas; Kádár, Zsófia

    2015-01-01

    The operation of household scale anaerobic digesters is typically based on diluted animal dung, requiring stabled livestock and adequate water availability. This excludes many rural households in low-income countries from the benefits of a domestic biogas digester. Solid state anaerobic digestion...... inoculation strategies and evaluating the necessity of dung addition as a supportive biomass. In initial lab scale trials 143 +/- 4 mL CH4/g VS (volatile solids) were obtained from a mixture of yam peelings and dung digested in a multi-layer-inoculated batch reactor. In a consecutive incubation cycle in which...... adapted inoculum was applied, bottom inoculated digesters loaded without dung reached a yield of 140 +/- 16 mL CH4/g VS. This indicates that SSAD of yam peelings is possible with simple inoculation methods and dung addition is unnecessary after microbial adaptation. A comparison with a conventional fixed...

  6. Anaerobic digestion of selected Italian agricultural and industrial residues (grape seeds and leather dust): combined methane production and digestate characterization.

    Science.gov (United States)

    Caramiello, C; Lancellotti, I; Righi, F; Tatàno, F; Taurino, R; Barbieri, L

    2013-01-01

    A combined experimental evaluation of methane production (obtained by anaerobic digestion) and detailed digestate characterization (with physical-chemical, thermo-gravimetric and mineralogical approaches) was conducted on two organic substrates, which are specific to Italy (at regional and national levels). One of the substrates was grape seeds, which have an agricultural origin, whereas the other substrate was vegetable-tanned leather dust, which has an industrial origin. Under the assumed experimental conditions of the performed lab-scale test series, the grape seed substrate exhibited a resulting net methane production of 175.0 NmL g volatile solids (VS)(-1); hence, it can be considered as a potential energy source via anaerobic digestion. Conversely, the net methane production obtained from the anaerobic digestion of the vegetable-tanned leather dust substrate was limited to 16.1 NmL gVS(-1). A detailed characterization of the obtained digestates showed that there were both nitrogen-containing compounds and complex organic compounds present in the digestate that was obtained from the mixture of leather dust and inoculum. As a general perspective of this experimental study, the application of diversified characterization analyzes could facilitate (1) a better understanding of the main properties of the obtained digestates to evaluate their potential valorization, and (2) a combination of the digestate characteristics with the corresponding methane productions to comprehensively evaluate the bioconversion process. PMID:24191456

  7. ANAEROBIC DIGESTION OF ANIMAL MANURE – IMPLICATIONS FOR CROP YIELDS AND SOIL BIOTA IN ORGANIC FARMING

    DEFF Research Database (Denmark)

    Johansen, Anders; Pommeresche, Reidun; Riely, Hugh;

    2015-01-01

    Anaerobic digestion of farmyard manures may help farmers to produce bioenergy instead of using fossil fuels, support cycling of nutrients and reduce greenhouse gas emission. However, compared to pristine slurry, digested slurry has a reduced content of organic carbon which may impact the soil biota...... of digestates affects crop yields, soil characteristics and soil biota (earthworms, springtails, microbiota). The grass-clover system showed comparable yield levels over 3 years when digested slurry was compared to untreated slurry. Digested slurries had no influence on soil nutrient concentrations or on soil...... and microorganisms seemed only little affected by application of digested slurry....

  8. Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion

    DEFF Research Database (Denmark)

    Solon, Kimberly; Flores Alsina, Xavier; Mbamba, Christian Kazadi;

    2015-01-01

    ) and ion pairing on modelling of anaerobic digestion processes in such plant-wide models of wastewater treatment. Using the BSM2 as a case study with a number of model variants and cationic load scenarios, this paper presents the effects of an improved physico-chemical description on model predictions...... and overall plant performance indicators, namely effluent quality index (EQI) and operational cost index (OCI). The acid-base equilibria implemented in the Anaerobic Digestion Model No. 1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects for ionic strength via the Davies....... The paper describes: 1) how the anaerobic digester performance is affected by physico-chemical corrections; 2) the effect on pH and the anaerobic digestion products (CO2, CH4 and H2); and, 3) how these variations are propagated from the sludge treatment to the water line. Results at high ionic strength...

  9. Anaerobic co-digestion of water hyacinth and cow dung for biogas production

    OpenAIRE

    OROKA FRANK OKE; AKHIHIERO THELMA

    2015-01-01

    Co-digestion of water hyacinth and cow dung under anaerobic condition was studied. Results indicate a progressive increase in biogas yield with increased cow dung in the co-ferment mixture of water hyacinth: cow dung

  10. Decentralized biogas technology of anaerobic digestion and farm ecosystem: opportunities and challenges

    Directory of Open Access Journals (Sweden)

    JunyeWang

    2014-03-01

    Full Text Available Long-term economic and environmental concerns have resulted in a great amount of research on renewable sources of biomass and bioenergy to replace fossil fuels in the past decades. Decentralized biogas technology is one of the most potential technologies of biomass and bioenergy by using agricultural waste materials (e.g., animal manure, crop straw and by-products from food industries as feedstocks. By-products from biogas production, called digestate, are nutrient rich which could potentially be reused as green fertilizers in agriculture, thereby providing a sustainable substitute for synthetic fertilizers for ecosystem farm. Thus, the biogas production of anaerobic digestion (AD is win-win option for livestock and crop producers to address issues of waste management and energy supply, and to avoid contamination of surface and ground waters and emissions of odors and greenhouse gases. In this paper, we review biogas production technology and then evaluate environmental effects of digestate used as fertilizer. Finally, we discuss issues of deployment of decentralized biogas technology for ecosystem farms. Economic and technological barriers still exist for large scale deployment of biogas technology. Two national scale deployments in China and Nepal showed that the operational status of biogas digesters is not optimal and up to 50% of plants are non-functional after a short operation period regardless of the social and economic factors. Main barriers are a wide variation of feedstocks and environmental conditions (e.g., temperature over space and time. It becomes clear that the experimental conditions of the pilot plants need to be adjusted and calibrated to the local feedstocks and climate. Also, more research needs to be done in cold fermentation technology.

  11. Characteristics and conditioning of anaerobically digested sludge from a biological phosphorus removal plant

    OpenAIRE

    Nash, Jeffrey William

    1989-01-01

    A study of the anaerobically digested sludge form a full-scale biological phosphorus removal (BPR) plant (York River Wastewater Treatment Plant, York River, Va.) was conducted to determine the effects of BPR on sludge characteristics and conditioning requirements. Data collected from the plant indicated that both the total and soluble phosphorus (P) concentrations in the anaerobically digested sludge increased dramatically with the initiation of BPR. Accompanying this ...

  12. Improvement of anaerobic digestion of municipal wastewater treatment plant sludges and lignocellulosic substrates in biogas production

    OpenAIRE

    Kolbl, Sabina

    2014-01-01

    The aim of this doctoral dissertation was to improve the production of methane by mechanical and enzymatic pretreatments of organic substrates. For anaerobic digestion of different substrates and determination of biomethane potential, Automatic Methane Potential Test System (AMPTS II) device was used. AMPTS II is an analytical laboratory scale device used in measurements of ultra low speed production of biomethane produced during the anaerobic digestion of biodegradable substrates. Although b...

  13. Ammonia-methane two-stage anaerobic digestion of dehydrated waste-activated sludge

    OpenAIRE

    Nakashimada, Yutaka; Ohshima, Yasutaka; Minami, Hisao; Yabu, Hironori; Namba,Yuzaburo; Nishio, Naomichi

    2008-01-01

    In repeated batch-wise thermophilic anaerobic digestion of dehydrated waste-activated sludge with 80% (w/w) water content (DWAS), although methane production reached 30 % of total organic carbon in DWAS in the first run of 15d, it gradually decreased and finally stopped in the subsequent runs together with an increase in ammonia concentration. When the loading of DWAS on anaerobic digestion was investigated, methane production at 30d significantly decreased with the increase in the amount of ...

  14. An integrated approach to energy production and nutrient recovery through anaerobic digestion of Vetiveria zizanoides

    OpenAIRE

    Crocamo, Angelo; Di Berardino, Santino; Di Giovanni, Raffaele; FABBRICINO, Massimiliano; Martins-Dias, Susete

    2015-01-01

    This paper reports on experimental results used to verify the applicability of Vetiveria zizanoides (VZ) as a virtuous energetic crop. VZ produces biogas through its anaerobic digestion, and its nutrient content can be recovered through reuse, after digestion, as an agricultural amendment. Biomethanation tests were conducted with fresh and pretreated VZ, and the results of these tests were compared with those from the anaerobic degradation of common garden grass. Specific methane production w...

  15. Testing the profitability of Anaerobic Digestion in a large-scale UK dairy farm

    OpenAIRE

    Coz Leniz, Luis Fernando

    2011-01-01

    Anaerobic Digestion (AD) consists in the transformation of any organic non-woody material by micro-organisms into biogas. This biogas, composed of approximately 60 per cent methane can be further burnt and converted into electricity and heat. The UK’s livestock agricultural sector has tremendous potential to take advantage of this technology, as it produces over 150 million tonnes of animal manure annually. This is a commonly used input to feed anaerobic digestion plants. Furthermore, AD brin...

  16. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China

    OpenAIRE

    Dhingra, Radhika; CHRISTENSEN, ERICK R.; Yang LIU; Zhong, Bo; Wu, Chang-Fu; Yost, Michael G.; Remais, Justin V

    2011-01-01

    Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions...

  17. An Analysis of the Feasibility of Anaerobic Digestion on Small-Scale Dairies in Utah

    OpenAIRE

    Lund, Steven Chans

    2016-01-01

    With an ever increasing concern for the environment, different methods of managing organic waste on dairy farms have been explored and analyzed. Anaerobic digestion has long been a popular method of managing organic waste. Its popularity stems from the potential to decrease greenhouse gases, improve air quality and provide a source of additional revenue for the farm. Problems with implementing anaerobic digestion arise from high failure rates, high start-up costs and continuous maintenance an...

  18. Toxicity of di-(2-ethylhexyl) phthalate on the anaerobic digestion of wastewater sludge

    DEFF Research Database (Denmark)

    Alatriste-Mondragon, Felipe; Iranpour, R.; Ahring, Birgitte Kiær

    2003-01-01

    considered recalcitrant. Moreover, they inhibit methanogenesis. However, studies have not been made on the effect of feeding a combination of recalcitrant and biodegradable PAEs into anaerobic digesters treating wastewater sludge. The present study was conducted with wastewater sludge from the Los Angeles...... populations in the anaerobic bioreactor. Our results imply that high levels of DEHP or other recalcitrant PAEs in wastewater sludge are likely to compromise methanogenesis and removal of biodegradable PAEs in sludge digesters....

  19. Growing concentrations of phenol increasingly modify microbial communities’ dynamics and performances’ stability of anaerobic digesters

    OpenAIRE

    Chapleur, O.; Civade, R.; Hoyos, C.; MAZEAS, L; Bouchez, T.

    2013-01-01

    Anaerobic degradation requires a complex network of interacting and competing microorganisms. Waste anaerobic digesters are based on the intensive use of this flora. Consequently, functioning and stability of digesters are directly related to microbial populations’ dynamics. The latter may be subject to external disturbances, such as the arrival of micropollutants with waste, causing malfunction of bioprocesses. In this context, we questioned the influence of phenol addition on microbia...

  20. Occurrence and Fate of Trace Contaminants during Aerobic and Anaerobic Sludge Digestion and Dewatering.

    Science.gov (United States)

    Guerra, Paula; Kleywegt, Sonya; Payne, Michael; Svoboda, M Lewina; Lee, Hing-Biu; Reiner, Eric; Kolic, Terry; Metcalfe, Chris; Smyth, Shirley Anne

    2015-07-01

    Digestion of municipal wastewater biosolids is a necessary prerequisite to their beneficial use in land application, in order to protect public health and the receiving environment. In this study, 13 pharmaceuticals and personal care products (PPCPs), 11 musks, and 17 polybrominated diphenyl ethers were analyzed in 84 samples including primary sludge, waste activated sludge, digested biosolids, dewatered biosolids, and dewatering centrate or filtrate collected from five wastewater treatment plants with aerobic or anaerobic digestion. Aerobic digestion processes were sampled during both warm and cold temperatures to analyze seasonal differences. Among the studied compounds, triclosan, triclocarban, galaxolide, and BDE-209 were the substances most frequently detected under different treatment processes at levels up to 30,000 ng/g dry weight. Comparing aerobic and anaerobic digestion, it was observed that the levels of certain PPCPs and musks were significantly higher in anaerobically digested biosolids, relative to the residues from aerobic digestion. Therefore, aerobic digestion has the potential advantage of reducing levels of PPCPs and musks. On the other hand, anaerobic digestion has the advantage of recovering energy from the biosolids in the form of combustible gases while retaining the nutrient and soil conditioning value of this resource. PMID:26437100

  1. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review.

    Science.gov (United States)

    Choong, Yee Yaw; Norli, Ismail; Abdullah, Ahmad Zuhairi; Yhaya, Mohd Firdaus

    2016-06-01

    This paper critically reviews the impacts of supplementing trace elements on the anaerobic digestion performance. The in-depth knowledge of trace elements as micronutrients and metalloenzyme components justifies trace element supplementation into the anaerobic digestion system. Most of the earlier studies reported that trace elements addition at (sub)optimum dosages had positive impacts mainly longer term on digester stability with greater organic matter degradation, low volatile fatty acids (VFA) concentration and higher biogas production. However, these positive impacts and element requirements are not fully understood, they are explained on a case to case basis because of the great variance of the anaerobic digestion operation. Iron (Fe), nickel (Ni) and cobalt (Co) are the most studied and desirable elements. The right combination of multi-elements supplementation can have greater positive impact. This measure is highly recommended, especially for the mono-digestion of micronutrient-deficient substrates. The future research should consider the aspect of trace element bioavailability. PMID:27005788

  2. FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT

    Science.gov (United States)

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....

  3. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær; Deng, H.; Schmidt, Jens Ejbye

    2002-01-01

    Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process...

  4. Anaerobic digestion and opportunities for international technology transfer

    International Nuclear Information System (INIS)

    Unmanaged pollutants from organic farm, industrial, and municipal wastes degrade in the environment, and methane emitted from their decomposition may contribute to global climate change. Under modern environmental regulations, these wastes are becoming difficult to dispose of using traditional means. One waste management system, anaerobic digestion or AD, not only prevents pollution but can also convert a disposal problem into a new profit center. This report summarizes the current status of AD as a key technology that both reduces waste and recovers a fuel and other valuable co-products, and AD possibilities for the future. Beyond the technology arena, this paper also discusses the efforts of the International Energy Agency (IEA) Bioenergy AD Activity to encourage technology deployment. The Activity aims to provide reliable information on the cost-effectiveness of AD, markets for biogas and the other co-products, advanced technologies for biogas utilization, environmental benefits, and institutional barriers. The Activity's principal objectives are to accelerate exchange of information and practical experience, identify barriers to the deployment of AD technology, encourage the use of AD technology, and, where relevant, assist and encourage national Pilot and Demonstration (P and D) programs. The goal of these objectives is to increase the deployment of AD technologies and to transfer the ''lessons learned'' from past experience. (author)

  5. Anaerobic digestion challenge of raw olive mill wastewater.

    Science.gov (United States)

    Sampaio, M A; Gonçalves, M R; Marques, I P

    2011-12-01

    Olive mill wastewater (OMW) was digested in its original composition (100% v/v) in an anaerobic hybrid. High concentrations (54-55 kg COD m(-3)), acid pH (5.0) and lack of alkalinity and nitrogen are some OMW adverse characteristics. Loads of 8 kg COD m(-3) d(-1) provided 3.7-3.8 m3 biogas m(-3) d(-1) (63-64% CH4) and 81-82% COD removal. An effluent with basic pH (8.1) and high alkalinity was obtained. A good performance was also observed with weekly load shocks (2.7-4.1, 8.4-10.4 kg COD m(-3) d(-1)) by introducing piggery effluent and OMW alternately. Biogas of 3.0-3.4 m3 m(-3) d(-1) (63-69% CH4) was reached. Developed biomass (350 days) was neither affected by raw OMW nor by organic shocks. Through the effluents complementarity concept, a stable process able of degrading the original OMW alone was obtained. Unlike what is referred, OMW is an energy resource through anaerobiosis without additional expenses to correct it or decrease its concentration/toxicity. PMID:21983408

  6. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters.

    Science.gov (United States)

    Smith, Bryan Jk; Boothe, Melissa A; Fiddler, Brice A; Lozano, Tania M; Rahi, Russel K; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 × 10(7) copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 × 10(4) copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 × 10(7) copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile. PMID:26508873

  7. Temperature affects microbial abundance, activity and interactions in anaerobic digestion.

    Science.gov (United States)

    Lin, Qiang; De Vrieze, Jo; Li, Jiabao; Li, Xiangzhen

    2016-06-01

    Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community. PMID:26970926

  8. Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution.

    Science.gov (United States)

    Møller, Jacob; Boldrin, Alessio; Christensen, Thomas H

    2009-11-01

    Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW measured in CO(2)-equivalents per tonne of wet waste. The GHG accounting was done by distinguishing between direct contributions at the AD facility and indirect upstream or downstream contributions. GHG accounting for a generic AD facility with either biogas utilization at the facility or upgrading of the gas for vehicle fuel resulted in a GWF from -375 (a saving) to 111 (a load) kg CO(2)-eq. tonne(-1) wet waste. In both cases the digestate was used for fertilizer substitution. This large range was a result of the variation found for a number of key parameters: energy substitution by biogas, N(2)O-emission from digestate in soil, fugitive emission of CH( 4), unburned CH(4), carbon bound in soil and fertilizer substitution. GWF for a specific type of AD facility was in the range -95 to -4 kg CO(2)-eq. tonne(-1) wet waste. The ranges of uncertainty, especially of fugitive losses of CH(4) and carbon sequestration highly influenced the result. In comparison with the few published GWFs for AD, the range of our data was much larger demonstrating the need to use a consistent and robust approach to GHG accounting and simultaneously accept that some key parameters are highly uncertain. PMID:19748957

  9. Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor.

    Science.gov (United States)

    Zamalloa, Carlos; De Vrieze, Jo; Boon, Nico; Verstraete, Willy

    2012-01-01

    The biomass of industrially grown Phaeodactylum tricornutum was subjected in a novel way to bio-methanation at 33°C, i.e., in an anaerobic membrane bioreactor (AnMBR) at a hydraulic retention time of 2.5 days, at solid retention times of 20 to 10 days and at loading rates in the range of 2.6-5.9 g biomass-COD L(-1) day(-1) with membrane fluxes ranging from 1 to 0.8 L m(-2) h(-1). The total COD recovered as biogas was in the order of 52%. The input suspension was converted to a clear effluent rich in total ammonium nitrogen (546 mg TAN L(-1)) and phosphate (141 mg PO(4)-P L(-1)) usable as liquid fertilizer. The microbial community richness, dynamics, and organization in the reactor were interpreted using the microbial resource management approach. The AnMBR communities were found to be moderate in species richness and low in dynamics and community organization relative to UASB and conventional CSTR sludges. Quantitative polymerase chain reaction analysis revealed that Methanosaeta sp. was the dominant acetoclastic methanogen species followed by Methanosarcina sp. This work demonstrated that the use of AnMBR for the digestion of algal biomass is possible. The fact that some 50% of the organic matter is not liquefied means that the algal particulates in the digestate constitute a considerable fraction which should be valorized properly, for instance as slow release organic fertilizer. Overall, 1 kg of algae dry matter (DM) could be valorized in the form of biogas ( euro 2.07), N and P in the effluent (euro 0.02) and N and P in the digestate (euro 0.04), thus totaling about euro 2.13 per kilogram algae DM. PMID:22005739

  10. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil

    International Nuclear Information System (INIS)

    This study focuses on the presence of phenols in digestate from seven Swedish large-scale anaerobic digestion processes and their impact on the activity of ammonia oxidising bacteria (AOB) in soil. In addition, the importance of feedstock composition and phenol degradation capacity for the occurrence of phenols in the digestate was investigated in the same processes. The results revealed that the content of phenols in the digestate was related to the inhibition of the activity of AOB in soil (EC5 = 26 μg phenols g-1 d.w. soil). In addition, five pure phenols (phenol, o-, p-, m-cresol and 4-ethylphenol) inhibited the AOB to a similar extent (EC5 = 43-110 μg g-1 d.w. soil). The phenol content in the digestate was mainly dependent on the composition of the feedstock, but also to some extent by the degradation capacity in the anaerobic digestion process. Swine manure in the feedstock resulted in digestate containing higher amounts of phenols than digestate from reactors with less or no swine manure in the feedstock. The degradation capacity of phenol and p-cresol was studied in diluted small-scale batch cultures and revealed that anaerobic digestion at mesophilic temperatures generally exhibited a higher degradation capacity compared to digestion at thermophilic temperature. Although phenol, p-cresol and 4-ethylphenol were quickly degraded in soil, the phenols added with the digestate constitute an environmental risk according to the guideline values for contaminated soils set by the Swedish Environmental Protection Agency. In conclusion, the management of anaerobic digestion processes is of decisive importance for the production of digestate with low amounts of phenols, and thereby little risks for negative effects of the phenols on the soil ecosystem

  11. The potential of surplus grass production as co-substrate for anaerobic digestion

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup; Schleier, Caroline; Piorr, Hans Peter;

    2016-01-01

    . Furthermore, it could provide incentives for establishing new biogas plants in the region and thereby increase the share of manure being digested anaerobically, which could help extrapolate the environmental and climate related benefits documented for the use of digested animal manure as fertilizer...

  12. Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae

    DEFF Research Database (Denmark)

    Ehimen, Ehiazesebhor Augustine; Holm-Nielsen, Jens Bo; Poulsen, M.;

    2013-01-01

    The anaerobic digestion of outdoor cultivated Rhizoclonium biomass was investigated in this study. The influence of applying mechanical and biological pre-treatment methods prior to the biomass digestion on the overall methane yields was examined. The results show that the application of a combined...

  13. Economic analysis of anaerobic digestion - A case of Green power biogas plant in The Netherlands

    NARCIS (Netherlands)

    Gebrezgabher, S.A.; Meuwissen, M.P.M.; Prins, B.A.M.; Oude Lansink, A.G.J.M.

    2010-01-01

    One of the key concerns of biogas plants is the disposal of comparatively large amounts of digestates in an economically and environmentally sustainable manner. This paper analyses the economic performance of anaerobic digestion of a given biogas plant based on net present value (NPV) and internal r

  14. Pilot plant study of the effects of quebracho and wattle on anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Eye, J.D.; Ficker, C.F.

    1982-01-01

    Quebracho and wattle tannin adversely affected the operational control required for the systems as well as CH4 production. The anaerobic organisms however degraded the tannins and the characteristic red color was effectively removed from the supernatant (liquid phase of digested sludge) during digestion.

  15. Anaerobic Digestion II. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    This lesson is the second of a two-part series on anaerobic digestion. Topics discussed include classification of digester by function, roof design, and temperature range, mixing systems, gas system components, operational control basics, and general safety considerations. The lesson includes an instructor's guide and student workbook. The…

  16. Mesophilic anaerobic co-digestion of municipal solid waste and sewage sludge

    DEFF Research Database (Denmark)

    Aghdam, Ehsan Fathi; Kinnunen, V.; Rintala, Jukka A.

    2015-01-01

    This paper presents mesophilic anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW), biowaste (BW), sewage sludge (SS), and co-digestion of BW and SS. Average methane yields of 386 ± 54, 385 ± 82, 198 ± 14, and 318 ± 59 L CH4/kg volatile solids (VS) were obtained for OFMSW...

  17. State Of The Science On Cogeneration Of Heat And Power From Anaerobic Digestion Of Municipal Biosolids

    Science.gov (United States)

    This presentation will report on work underway to inventory facilities currently utilizing biogas from anaerobic digestion and speak with practitioners to learn: techniques for preparing residuals for digestion, methods to use for cleaning biogas (e.g., of siloxane), and how gas...

  18. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application.

    Science.gov (United States)

    Carrere, Hélène; Antonopoulou, Georgia; Affes, Rim; Passos, Fabiana; Battimelli, Audrey; Lyberatos, Gerasimos; Ferrer, Ivet

    2016-01-01

    When properly designed, pretreatments may enhance the methane potential and/or anaerobic digestion rate, improving digester performance. This paper aims at providing some guidelines on the most appropriate pretreatments for the main feedstocks of biogas plants. Waste activated sludge was firstly investigated and implemented at full-scale, its thermal pretreatment with steam explosion being most recommended as it increases the methane potential and digestion rate, ensures sludge sanitation and the heat needed is produced on-site. Regarding fatty residues, saponification is preferred for enhancing their solubilisation and bioavailability. In the case of animal by-products, this pretreatment can be optimised to ensure sterilisation, solubilisation and to reduce inhibition linked to long chain fatty acids. With regards to lignocellulosic biomass, the first goal should be delignification, followed by hemicellulose and cellulose hydrolysis, alkali or biological (fungi) pretreatments being most promising. As far as microalgae are concerned, thermal pretreatment seems the most promising technique so far. PMID:26384658

  19. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.

    Science.gov (United States)

    Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

    2015-02-01

    The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. PMID:25463927

  20. Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery

    OpenAIRE

    Lim, Jun Wei

    2011-01-01

    The anaerobic digestion of brown water (BW), food waste (FW) and their mixture (MW) in batch digesters was evaluated under mesophilic conditions. BW collected from separating toilets and FW are high strength organic substrates that can be treated in a decentralized reactor via anaerobic digestion. The bio-methane potential of these substrates at different feed/inoculum ratios (F/Is) was studied using 100-mL serum bottles and biogas and methane production, pH and VS reductions were measured pe...

  1. Steam pressure disruption of municipal solid waste enhances anaerobic digestion kinetics and biogas yield.

    Science.gov (United States)

    Liu, H W; Walter, H K; Vogt, G M; Vogt, H S; Holbein, B E

    2002-01-20

    Biomass waste, including municipal solid waste (MSW), contains lignocellulosic-containing fiber components that are not readily available as substrates for anaerobic digestion due to the physical shielding of cellulose imparted by the nondigestible lignin. Consequently, a substantial portion of the potentially available carbon is not converted to methane and the incompletely digested residues from anaerobic digestion generally require additional processing prior to their return to the environment. We investigated and developed steam pressure disruption as a treatment step to render lignocellulosic-rich biomass more digestible and as a means for increasing methane energy recovery. The rapid depressurization after steam heating (240 degrees C, 5 min.) of the nondigested residues following a 30-day primary digestion of MSW caused a visible disruption of fibers and release of soluble organic components. The disrupted material, after reinoculation, provided a rapid burst in methane production at rates double those observed in the initial digestion. This secondary digestion proceeded without a lag phase in gas production, provided approximately 40% additional methane yields, and was accompanied by a approximately 40% increase in volatile solids reduction. The secondary digestate was found to be enriched in lignin and significantly depleted in cellulose and hemi-cellulose components when compared to primary digestate. Thus, steam pressure disruption treatment rendered lignocellulosic substrates readily accessible to anaerobic digestion bacteria and improved both the kinetics of biogas production and the overall methane yield from MSW. Steam pressure disruption is central to a new anaerobic digestion process approach including sequential digestion stages and integrated energy recovery, to improve process yields, provide cogenerated energy for process needs, and to provide effective reuse and recycling of waste biomass materials. PMID:11753918

  2. Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects.

    Science.gov (United States)

    Cecchi, Franco; Cavinato, Cristina

    2015-05-01

    Scientific and industrial experiences, together with economical and policies changes of last 30 years, bring anaerobic digestion among the most environmental friendly and economically advantageous technologies for organic waste treatment and management in Europe. In this short review, the role of anaerobic digestion of organic wastes is discussed, considering the opportunity of a territorial friendly approach, without barriers, where different organic wastes are co-treated. This objective can be achieved through two proposed strategies: one is the anaerobic digestion applied as a service for the agricultural and farming sector; the other as a service for citizen (biowaste, diapers and wastewater treatment integration). The union of these two strategies is an environmental- and territorial-friendly process that aims to produce renewable energy and fertiliser material, with a low greenhouse gas emission and nutrients recovery. The advantage of forthcoming application of anaerobic digestion of organic wastes, even for added value bioproducts production and new energy carriers, are finally discussed. Among several advantages of anaerobic digestion, the role of the environmental controller was evaluated, considering the ability of minimising the impacts exploiting the biochemical equilibrium and sensitivity as a quality assurance for digestate. PMID:25687916

  3. Techno-economic assessment of anaerobic digestion systems for agri-food wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lau, A.; Baldwin, S.; Wang, M. [British Colombia Univ., Vancouver, BC (Canada)

    2010-07-01

    Activities in British Columbia's Fraser Valley generate an estimated 3 million tones of agriculture and food wastes annually, of which 85 per cent are readily available for anaerobic digestion. The potential for energy generation from biogas through anaerobic digestion is approximately 30 MW. On-farm manure-based systems represent the most likely scenario for the development of anaerobic digestion in British Columbia in the near future. Off-farm food processing wastes may be an alternative option to large centralized industrial complexes. Odour control, pathogen reduction, improved water quality, reduced greenhouse gas emissions and reduced landfill usage are among the environmental benefits of anaerobic digestion. The economical benefits include power and heat generation, biogas upgrading, and further processing of the residues to produce compost or animal bedding. This paper described a newly developed anaerobic digestion (AD) calculator that helps users regarding their investment decision in AD facilities. The calculator classifies various technology options into several major types of AD systems. It also constructs kinetic and economic models for these systems and provides a fair estimation on biogas yield, digester volume, capital cost and annual income. The calculator takes into consideration factors such as the degradability of wastes with different compositions and different operating parameters.

  4. Anaerobic digestion technology in livestock manure treatment for biogas production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Ismail M. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor (Malaysia); Mohd Ghazi, Tinia I.; Omar, Rozita

    2012-06-15

    This article reviews the potential of anaerobic digestion (AD) for biogas production from livestock manure wastes and compares the operating and performance data for various anaerobic process configurations. It examines different kinds of manure waste treatment techniques and the influence of several parameters on biogas and methane yield. The comparison indicates that a variety of different operational conditions, various reactor configurations such as batch reactors, continuously stirred tank reactor (CSTR), plug flow reactor (PFR), up-flow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), temperature phased anaerobic digestion (TPAD), and continuous one- and two-stage systems, present a suitable technology for the AD of livestock manure waste. Main performance indicators are biogas and methane yield, degradation of volatile solids (VS), higher loading, and process stability with a short retention time. (copyright 2012 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim)

  5. Feasibility assessment tool for urban anaerobic digestion in developing countries.

    Science.gov (United States)

    Lohri, Christian Riuji; Rodić, Ljiljana; Zurbrügg, Christian

    2013-09-15

    This paper describes a method developed to support feasibility assessments of urban anaerobic digestion (AD). The method not only uses technical assessment criteria but takes a broader sustainability perspective and integrates technical-operational, environmental, financial-economic, socio-cultural, institutional, policy and legal criteria into the assessment tool developed. Use of the tool can support decision-makers with selecting the most suitable set-up for the given context. The tool consists of a comprehensive set of questions, structured along four distinct yet interrelated dimensions of sustainability factors, which all influence the success of any urban AD project. Each dimension answers a specific question: I) WHY? What are the driving forces and motivations behind the initiation of the AD project? II) WHO? Who are the stakeholders and what are their roles, power, interests and means of intervention? III) WHAT? What are the physical components of the proposed AD chain and the respective mass and resource flows? IV) HOW? What are the key features of the enabling or disabling environment (sustainability aspects) affecting the proposed AD system? Disruptive conditions within these four dimensions are detected. Multi Criteria Decision Analysis is used to guide the process of translating the answers from six sustainability categories into scores, combining them with the relative importance (weights) attributed by the stakeholders. Risk assessment further evaluates the probability that certain aspects develop differently than originally planned and assesses the data reliability (uncertainty factors). The use of the tool is demonstrated with its application in a case study for Bahir Dar in Ethiopia. PMID:23722149

  6. Assessment of on-farm anaerobic digester grid interconnections

    International Nuclear Information System (INIS)

    While several anaerobic digestion (AD) pilot plants have recently been built in Canada, early reports suggest that interconnection barriers are delaying their widescale implementation. This paper examined grid interconnection experiences from the perspectives of farmers, local distributing companies (LDCs) and other stakeholders. The aim of the paper was to identify challenges to the implementation of AD systems. Case studies included an Ontario Dairy Herd AD system generating 50 kW; a Saskatchewan hog farm AD system generating 120 kW and an Alberta outdoor beef feedlot AD system generating 1000 kW. Two survey forms were created for project operators, and LDCs. The following 3 category barriers were identified: (1) technical concerns over islanding conditions, power quality requirements, power flow studies and other engineering analyses; (2) business practices barriers such as a lack of response after initial utility contact; and (3) regulatory barriers including the unavailability of fair buy-back rates, the lack of net metering programs, restrictive net metering programs, and pricing issues. It was suggested that collaborative efforts among all stakeholders are needed to resolve barriers quickly. Recommendations included the adoption of uniform technical standards for connecting generators to the grid, as well as adopting standard commercial practices for any required LDC interconnection review. It was also suggested that standard business terms for interconnection agreements should be established. Regulatory principles should be compatible with distributed power choices in regulated and unregulated markets. It was concluded that resolving interconnection barriers is a critical step towards realizing market opportunities available for AD technologies. refs., tabs., figs

  7. The Effect of Iron Salt on Anaerobic Digestion and Phosphate Release to Sludge Liquor

    Directory of Open Access Journals (Sweden)

    Svetlana Ofverstrom

    2011-12-01

    Full Text Available Iron salts are used at wastewater treatment plants (WWTPs for several reasons: for removing chemical phosphorus, preventing from struvite formation and reducing the content of hydrogen sulfide (H2S in biogas. Anaerobic digestion is a common scheme for sludge treatment due to producing biogas that could be used as biofuel. Laboratory analysis has been carried out using anaerobic digestion model W8 (Armfield Ltd, UK to investigate any possible effect of adding FeCl3 on the anaerobic digestion of primary sludge (PS and waste activated sludge (WAS mixture as well as on releasing phosphates to digested sludge liquor. The obtained results showed that FeCl3 negatively impacted the anaerobic digestion process by reducing the volume of produced biogas. Fe-dosed sludge (max produced 30% less biogas. Biogas production from un-dosed and Fe-dosed sludge (min was similar to the average of 1.20 L/gVSfed. Biogas composition was not measured during the conducted experiments. Phosphorus content in sludge liquor increased at an average of 38% when digesting sludge without ferric chloride dosing. On the contrary, phosphate content in sludge liquor from digested Fe-dosed sludge decreased by approx. 80%.

  8. On the effect of aqueous ammonia soaking pretreatment on batch and continuous anaerobic digestion of digested swine manure fibers

    DEFF Research Database (Denmark)

    Mirtsou Xanthopoulou, Chrysoula; Jurado, Esperanza; Skiadas, Ioannis;

    2012-01-01

    The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Due to the animal production intensification, manure is being used as the primary feedstock for most of the biogas plants. Thus...

  9. Evaluation of Novel Inoculation Strategies for Solid State Anaerobic Digestion of Yam Peelings in Low-Tech Digesters

    Directory of Open Access Journals (Sweden)

    Stefan Heiske

    2015-03-01

    Full Text Available The operation of household scale anaerobic digesters is typically based on diluted animal dung, requiring stabled livestock and adequate water availability. This excludes many rural households in low-income countries from the benefits of a domestic biogas digester. Solid state anaerobic digestion (SSAD can be operated with low process water demands, but the technology involves operational challenges, as e.g., risk of process acidification or low degradation rates. This study aimed at developing simple methods to perform SSAD of yam peelings in low-tech applications by testing different inoculation strategies and evaluating the necessity of dung addition as a supportive biomass. In initial lab scale trials 143 ± 4 mL CH4/g VS (volatile solids were obtained from a mixture of yam peelings and dung digested in a multi-layer-inoculated batch reactor. In a consecutive incubation cycle in which adapted inoculum was applied, bottom inoculated digesters loaded without dung reached a yield of 140 ± 16 mL CH4/g VS. This indicates that SSAD of yam peelings is possible with simple inoculation methods and dung addition is unnecessary after microbial adaptation. A comparison with a conventional fixed dome digester indicated that SSAD can reduce process water demand and the digester volume necessary to supply a given biogas demand.

  10. Wastewater polishing by a channelized macrophyte-dominated wetland and anaerobic digestion of the harvested phytomass.

    Science.gov (United States)

    Cohen, Michael F; Hare, Caden; Kozlowski, John; McCormick, Rachel S; Chen, Lily; Schneider, Linden; Parish, Meghan; Knight, Zane; Nelson, Timothy A; Grewell, Brenda J

    2013-01-01

    Constructed wetlands (CW) offer a mechanism to meet increasingly stringent regulatory standards for wastewater treatment while minimizing energy inputs. Additionally, harvested wetland phytomass subjected to anaerobic digestion can serve as a source of biogas methane. To investigate CW wastewater polishing activities and potential energy yield we constructed a pair of secondary wastewater-fed channelized CW modules designed to retain easily harvestable floating aquatic vegetation and maximize exposure of water to roots and sediment. Modules that were regularly harvested averaged a nitrate removal rate of 1.1 g N m(-2) d(-1); harvesting, sedimentation and gasification were responsible for 30.5%, 8.0% and 61.5% of the N losses, respectively. Selective harvesting of a module to maintain dominance of filamentous algae had no effect on nitrate removal rate but lowered productivity by one-half. The average monthly productivity for unselectively harvested modules was 9.3 ± 1.7 g dry wt. m(-2) d(-1) (±SE). Cessation of harvesting in one module resulted in a significant increase in nitrate removal rate and decrease in phosphate removal rate. Compared to the influent, the effluent of the harvested module had significantly lower levels of estrogenic activity, as determined by a quantitative PCR-based juvenile trout bioassay, and significantly lower densities of E. coli. In mixed vertical-flow reactors anaerobic co-digestion of equal dry weight proportions of harvested aquatic vegetation, wine yeast lees and dairy manure was greatly improved when the manure was replaced with the crude glycerol by-product of biodiesel production. Remaining solids were vermicomposted for use as a soil amendment. Our results indicate that incorporation of constructed wetlands into an integrated treatment system can simultaneously enhance the economic and energetic feasibility of wastewater and organic waste treatment processes. PMID:23245307

  11. Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature.

    Science.gov (United States)

    Fezzani, Boubaker; Ben Cheikh, Ridha

    2010-03-01

    This study investigates for the first time, on laboratory scale, the possible exploitation of the advantages of two-phase anaerobic digestion for treating a mixture of olive mill wastewater (OMW) and olive mill solid waste (OMSW) using two sequencing semi-continuous digesters operated at mesophilic temperature (37+/-2 degrees C). The experiments were conducted at hydraulic retention times (HRTs) of 14 and 24 days corresponding to organic loading rates (OLRs) ranging from 5.54 to 14 g COD/L/day in the first stage (acidifier) and at HRTs of 18, 24 and 36 days corresponding to OLRs ranging from 2.28 to 9.17 g COD/L/day in the second stage (methanizer). The results indicated that volatile fatty acids (VFA) concentrations increased with the increase of either HRT or feed concentration and their high values were obtained with the most concentrated influent (196+/-5 g COD/L) digested at the longest HRT (24 days) corresponded to an OLR of 8.17 g COD/L/d. Furthermore, two-phase anaerobic digestion system has given the best performances concerning methane productivity, soluble COD (SCOD) and phenol removal efficiencies and effluent quality compared to those given by conventional one-phase anaerobic digestion (AD) reactors. PMID:19896368

  12. Nutritive composition of soybean by-products and nutrient digestibility of soybean pod husk

    Directory of Open Access Journals (Sweden)

    Sompong Sruamsiri

    2008-11-01

    Full Text Available Soybean by-products (soybean germ, soybean milk residue, soybean hull, soybean pod husk and soybean stem were subjected to proximate analysis, and in vitro digestibility of DM (IVDMD, ADF (IVADFD and NDF (IVNDFD were determined after digesting the by-products in buffered rumen fluid for 24 or 48 h in 2 ANKOMII Daisy Incubators using Completely Randomised Design. Four native cattle (body weight 210 + 13.5 kg were used to determine nutrient digestibility of soybean pod husk. They were randomly assigned by Cross-over Design to receive two roughage sources, i.e. guinea grass and guinea grass + soybean pod husk (60:40 DM basis, in two experimental periods. Guinea grass was harvested on the 35th day after the first cut of the year and used as green forage. Total collection method was used to determine the digestibility coefficients and digestibility by difference was used to calculate nutrient digestibility of soybean pod husk.The nutritive composition showed that soybean germ was highest in CP content (42.27% of DM and EE content (5.07% of DM but lowest in NDF and ADF content (20.09 and 21.53% of DM respectively. The average CP content of soybean straw, soybean stem and soybean pod husk was low (4.91, 4.67 and 5.04% respectively, while ADF content was high (42.76, 38.01 and 42.08% respectively. In vitro digestibility of DM (IVDMD, ADF (IVADFD and NDF (IVNDFD showed that all of them, except soybean stem, can be used as cattle feed, e.g. as supplemented feed or admixture in concentrate feed. Digestibility coefficients of guinea grass were higher in CP, CF and EE when compared to the other groups. The apparent digestibility of CP and CF were highly different (P0.05. The digestibility of nutrients (DM, OM, CP, CF, NFE, NDF and ADF of soybean pod husk were 53.81 + 4.3, 59.69 + 4.6, 42.38 + 3.8, 30.71 + 3.2, 50.74 + 4.3, 75.26 + 4.0, 45.78 + 3.7 and 30.53 + 4.2 % respectively. Soybean pod husk was higher in total digestible nutrients (TDN (51.87 + 3.3 vs

  13. Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Olesen, Jørgen E; Møller, Henrik Bjarne;

    2013-01-01

    Animal manure and plant biomass are increasingly used for methane production. While minerals may be conserved during gas generation, the composition of the biogenic material is changed and less carbon (C) is returned to the soil in the digested residue. We evaluated the fate of C in ruminant feed...... model (pool half-lives: 4, 20 and 100 days). During anaerobic digestion, gaseous C losses were 80 and 46% of the C in feed and faeces, respectively. The model predicted that 14, 58, 48, and 76% of the C applied in feed, digested feed, faeces and digested faeces are retained in soil after 1 to 2 years....... When C lost during the pre-treatments was included, the long-term C retention in soil accounted for 12–14% of the C initially present in the feed. We conclude that soil microbial activity is reduced when residues are anaerobically digested for biogas before being applied to soil. However, the retention...

  14. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion.

    Science.gov (United States)

    Smith, Adam L; Stadler, Lauren B; Cao, Ling; Love, Nancy G; Raskin, Lutgarde; Skerlos, Steven J

    2014-05-20

    The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), conventional activated sludge with anaerobic digestion (CAS+AD), and an aerobic membrane bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater treatment under baseline assumptions at 15 °C, AnMBR recovered 49% more energy as biogas than HRAS+AD, the most energy positive conventional technology considered, but had significantly higher energy demands and environmental emissions. Global warming impacts associated with AnMBR were largely due to emissions of effluent dissolved methane. For high strength domestic wastewater treatment, AnMBR recovered 15% more net energy than HRAS+AD, and the environmental emissions gap between the two systems was reduced. Future developments of AnMBR technology in low energy fouling control, increased flux, and management of effluent methane emissions would make AnMBR competitive with HRAS+AD. Rapid advancements in AnMBR technology must continue to achieve its full economic and environmental potential as an energy recovery strategy for domestic wastewater. PMID:24742289

  15. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    Science.gov (United States)

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp. PMID:27128196

  16. Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods.

    Science.gov (United States)

    Ariunbaatar, Javkhlan; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N L; Pirozzi, Francesco

    2014-12-15

    Treatment of food waste by anaerobic digestion can lead to an energy production coupled to a reduction of the volume and greenhouse gas emissions from this waste type. According to EU Regulation EC1774/2002, food waste should be pasteurized/sterilized before or after anaerobic digestion. With respect to this regulation and also considering the slow kinetics of the anaerobic digestion process, thermal and chemical pretreatments of food waste prior to mesophilic anaerobic digestion were studied. A series of batch experiments to determine the biomethane potential of untreated as well as pretreated food waste was carried out. All tested conditions of both thermal and ozonation pretreatments resulted in an enhanced biomethane production. The kinetics of the anaerobic digestion process were, however, accelerated by thermal pretreatment at lower temperatures (biomethane production of untreated food waste, was obtained with thermal pretreatment at 80 °C for 1.5 h. On the basis of net energy calculations, the enhanced biomethane production could cover the energy requirement of the thermal pretreatment. In contrast, the enhanced biomethane production with ozonation pretreatment is insufficient to supply the required energy for the ozonator. PMID:25169646

  17. Performance assessment of two-stage anaerobic digestion of kitchen wastes.

    Science.gov (United States)

    Bo, Zhang; Pin-Jing, He

    2014-01-01

    This study is aimed at investigating the performance of the two-phase anaerobic digestion of kitchen wastes in a lab-scale setup. The semi-continuous experiment showed that the two-phase anaerobic digestion of kitchen wastes had a bioconversion rate of 83%, biogas yield of 338 mL x (g chemical oxygen demand (COD))(-1) and total solid conversion of 63% when the entire two-phase anaerobic digestion process was subjected to an organic loading rate (OLR) of 10.7 g x (L d)(-1). In the hydrolysis-acidogenesis process, the efficiency of solubilization decreased from 72.6% to 41.1%, and the acidogenesis efficiency decreased from 31.8% to 17.8% with an increase in the COD loading rate. On the other hand, the performance of the subsequent methanogenic process was not susceptible to the increase in the feeding COD loading rate in the hydrolysis-acidogenesis stage. Lactic acid was one of the main fermentation products, accounting for over 40% of the total soluble COD in the fermentation liquid. The batch experiments indicated that the lactic acid was the earliest predominant fermentation product, and distributions of fermentation products were pH dependent. Results showed that increasing the feeding OLR of kitchen wastes made the two-stage anaerobic digestion process more effective. Moreover, there was a potential improvement in the performance of anaerobic digestion of kitchen wastes with a corresponding improvement in the hydrolysis process. PMID:24701925

  18. Long-term anaerobic digestion of food waste stabilized by trace elements

    International Nuclear Information System (INIS)

    Highlights: ► Korean food waste was found to contain low level of trace elements. ► Stable anaerobic digestion of food waste was achieved by adding trace elements. ► Iron played an important role in anaerobic digestion of food waste. ► Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19–6.64 g VS (volatile solid)/L day and 20–30 days of HRT (hydraulic retention time), a high methane yield (352–450 mL CH4/g VSadded) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

  19. The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests.

    Science.gov (United States)

    Hinken, L; Urban, I; Haun, E; Urban, I; Weichgrebe, D; Rosenwinkel, K-H

    2008-01-01

    Anaerobic digestion is a technology which is used to produce methane from organic solids and energy crops. Especially in recent years, the fermentation of energy crops has become more and more important because of increasing costs for energy and special benefits for renewable energy sources in Germany. Anaerobic bacteria require macro and micro nutrients to grow. Absence of these elements can inhibit the anaerobic process significantly. In particular mono-substrates like maize or certain industrial wastewater often cannot provide all required nutrients. For this reason this research investigates the influence of substrate and trace elements on anaerobic digestion in detail. Different agricultural anaerobic biomasses are analysed with special regard to their trace element content. Based on these results, the influence of three trace elements (iron, cobalt, and nickel) on anaerobic digestion was studied in anaerobic batch tests at different sludge loading rates and for different substrates (maize and acetate). Biogas production was found to be 35% for maize silage and up to 70% higher for acetate with trace element dosage than in the reference reactor. PMID:18957759

  20. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H.; Hao, Xiying, E-mail: xiying.hao@agr.gc.ca

    2015-09-15

    Highlights: • Anaerobic digestion and nutrient mineralization of paunch in a CSTR. • Low CH{sub 4} yield and high CH{sub 4} productivity was obtained at an OLR of 2.8 g VS L{sup −1} day{sup −1.} • Post-digestion of the digestate resulted in a CH{sub 4} yield of 0.067 L g{sup −1} VS. • Post-digestion is recommended for further digestate stabilization. - Abstract: A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8 g VS L{sup −1} day{sup −1} with a 30-day hydraulic retention time (HRT), a CH{sub 4} yield of 0.213 L g{sup −1} VS and CH{sub 4} production rate of 0.600 L L{sup −1} day{sup −1} were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30 days at 40 °C recovered 0.067 L g{sup −1} VS as CH{sub 4}, which was 21% of the batch CH{sub 4} potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K{sup +}, Ca{sup 2+} and Mg{sup 2+} were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system.

  1. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization

    International Nuclear Information System (INIS)

    Highlights: • Anaerobic digestion and nutrient mineralization of paunch in a CSTR. • Low CH4 yield and high CH4 productivity was obtained at an OLR of 2.8 g VS L−1 day−1. • Post-digestion of the digestate resulted in a CH4 yield of 0.067 L g−1 VS. • Post-digestion is recommended for further digestate stabilization. - Abstract: A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8 g VS L−1 day−1 with a 30-day hydraulic retention time (HRT), a CH4 yield of 0.213 L g−1 VS and CH4 production rate of 0.600 L L−1 day−1 were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30 days at 40 °C recovered 0.067 L g−1 VS as CH4, which was 21% of the batch CH4 potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K+, Ca2+ and Mg2+ were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system

  2. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH4–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  3. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  4. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; CAI Wei-min; HE Pin-jing

    2007-01-01

    To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared.The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.

  5. Thermal pre-treatment of primary and secondary sludge at 70ºC prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, H.N.; Lu, Jingquan;

    2005-01-01

    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated....... The present study investigates the effect of the pre-treatment at 70 degrees C on thermophilic (55 degrees C) anaerobic digestion of primary and secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondary sludge at 70 degrees C enhanced the removal of organic...... matter and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same...

  6. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags.

    Science.gov (United States)

    Negri, Marco; Bacenetti, Jacopo; Fiala, Marco; Bocchi, Stefano

    2016-06-01

    In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively. PMID:26946439

  7. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    International Nuclear Information System (INIS)

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g CODrem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  8. Should we build "obese" or "lean" anaerobic digesters?

    Directory of Open Access Journals (Sweden)

    Aurelio Briones

    Full Text Available Conventional anaerobic digesters (ADs treating dairy manure are fed with raw or fermented manure rich in volatile fatty acids (VFAs. In contrast, pre-fermented AD (PF-AD is fed with the more recalcitrant, fiber-rich fraction of manure that has been pre-fermented and depleted of VFAs. Thus, the substrate of PF-AD may be likened to a lean diet rich in fibers while the pre-fermentation stage fermenter is fed a relatively rich diet containing labile organic substances. Previous results have shown that conventional and pre-fermented ADs fed with raw or pre-fermented manure, respectively, produced comparable methane yields. The primary objective of this study was to characterize, using next-generation DNA sequencing, the bacterial communities in various bioreactors (pre-fermentation stage fermenter; various operational arrangements PF-AD; conventional single-stage AD; and a full scale AD and compare the Firmicutes to Bacteroidetes (F/B ratios in these different systems. Firmicutes and Bacteroidetes constituted the two most abundant phyla in all AD samples analyzed, as well as most of the samples analyzed in the fermenters and manure samples. Higher relative abundance of Bacteroidetes, ranging from 26% to 51% of bacteria, tended to be associated with PF-AD samples, while the highest relative abundance of Firmicutes occurred in the fermenter (maximum of 76% of bacteria and manure (maximum of 66% of bacteria samples. On average, primary stage fermenters exhibited microbiological traits linked to obesity: higher F/B ratios and a 'diet' that is less fibrous and more labile compared to that fed to PF-AD. On the other hand, microbial characteristics associated with leanness (lower F/B ratios combined with fibrous substrate were associated with PF-AD. We propose that bacterial communities in AD shift depending on the quality of substrate, which ultimately results in maintaining VFA yields in PF-AD, similar to the role of bacterial communities and a high fiber

  9. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    Science.gov (United States)

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. PMID:26253912

  10. Start-up strategies for thermophilic anaerobic digestion of pig manure

    International Nuclear Information System (INIS)

    Sludge physicochemical composition, methane (CH4) yield, and methanogenic community structure and dynamics using quantitative real-time polymerase chain reaction were determined after start-up of anaerobic digestion of pig manure. Eight thermophilic continuous stirred anaerobic digesters were used during 126 days. Four management strategies were investigated: a feedless and a non-feedless period followed by a gradual or an abrupt addition of pig manure (two digesters per strategy). During the first 43 days, VFA (volatile fatty acids) accumulations and low CH4 yield were observed in all digesters. After this period, digesters recovered their initial status being propionic acid the last parameter to be re-established. Non-feedless digesters with an abrupt addition of pig manure showed the best performances (lower VFA accumulation and higher CH4 yield). Differences in microbial orders and dynamics, however, were less evident among treatments. Hydrogenotrophic methanogenesis, Methanomicrobiales first and Methanobacteriales second, was the dominant metabolic pathway in all digesters. Further research is needed to clarify the role and activity of hydrogenotrophic methanogens during the recovery start-up period and to identify the best molecular tools and methodologies to monitor microbial populations and dynamics reliably and accurately in anaerobic digesters. - Highlights: • Four start-up strategies for thermophilic anaerobic digestion of pig manure were tested. • Physicochemical composition, methane yield and methanogenic community were determined. • During the first 43 days, a decline in reactor's performance occurred. • The best start-up strategy was non-feedless with an abrupt addition of pig slurry. • Hydrogenotrophic methanogenesis was the dominant metabolic pathway

  11. Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment.

    Science.gov (United States)

    Jin, Ying; Hu, Zhenhu; Wen, Zhiyou

    2009-08-01

    Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H(2)SO(4), or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 degrees C and 25.3 min for methane production, and 135 degrees C and 26 min for orthophosphate release, respectively. PMID:19555991

  12. Energy balance of a two-phase anaerobic digestion process for energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Zielonka, Simon; Lemmer, Andreas; Oechsner, Hans; Jungbluth, Thomas [University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Stuttgart (Germany)

    2010-12-15

    This article deals with the digestion of energy crops in a two-phase biogas process based on an anaerobic leach-bed reactor combined with an anaerobic filter. The biogas process is a microbiological conversion of biomass into methane and carbon dioxide. This process is carried out by different microorganisms and can be divided into four steps which normally take place in only one digester. To be able to digest difficult energy crops by mono-digestion and to meet the different needs of the several bacteria, which take part in the four-step process of the methane production, the process was divided into two phases: (i) an anaerobic batch leach-bed phase, where the leachate was produced and (ii) an anaerobic filter, where the organic fraction of the leachate was converted into biogas. Considering the results of the experiments, the two-phase digestion of energy crops exhibited stable digestion behavior. No biological imbalance of the process, e.g. due to a sudden change of substrate, was detected either in the leach bed or in the anaerobic filter. Variation in suitability for two-phase fermentation with an anaerobic batch leach-bed reactor was observed for various substrates. The different substrates varied in their influence on acid formation and concentration as well as an influence on the course of the pH value. Therefore, an effect on the distribution of energy to the phases could be observed. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Biological phosphorus removal during high-rate, low-temperature, anaerobic digestion of wastewater

    OpenAIRE

    Ciara eKeating; Chin, Jason P.; Dermot eHughes; Panagiotis eManesiotis; Denise eCysneiros; Therese eMahony; Smith, Cindy J; John W McGrath; Vincent eO'Flaherty

    2016-01-01

    We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis reve...

  14. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater

    OpenAIRE

    Keating, Ciara; Chin, Jason P.; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J; John W McGrath; O’Flaherty, Vincent

    2016-01-01

    We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis reve...

  15. Modeling and Application of a Rapid Fluorescence-Based Assay for Biotoxicity in Anaerobic Digestion.

    Science.gov (United States)

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2015-11-17

    The sensitivity of anaerobic digestion metabolism to a wide range of solutes makes it important to be able to monitor toxicants in the feed to anaerobic digesters to optimize their operation. In this study, a rapid fluorescence measurement technique based on resazurin reduction using a microplate reader was developed and applied for the detection of toxicants and/or inhibitors to digesters. A kinetic model was developed to describe the process of resazurin reduced to resorufin, and eventually to dihydroresorufin under anaerobic conditions. By modeling the assay results of resazurin (0.05, 0.1, 0.2, and 0.4 mM) reduction by a pure facultative anaerobic strain, Enterococcus faecalis, and fresh mixed anaerobic sludge, with or without 10 mg L(-1) spiked pentachlorophenol (PCP), we found it was clear that the pseudo-first-order rate constant for the reduction of resazurin to resorufin, k1, was a good measure of "toxicity". With lower biomass density and the optimal resazurin addition (0.1 mM), the toxicity of 10 mg L(-1) PCP for E. faecalis and fresh anaerobic sludge was detected in 10 min. By using this model, the toxicity differences among seven chlorophenols to E. faecalis and fresh mixed anaerobic sludge were elucidated within 30 min. The toxicity differences determined by this assay were comparable to toxicity sequences of various chlorophenols reported in the literature. These results suggest that the assay developed in this study not only can quickly detect toxicants for anaerobic digestion but also can efficiently detect the toxicity differences among a variety of similar toxicants. PMID:26457928

  16. The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System

    OpenAIRE

    Karthik Rajendran; Azam Jeihanipour; Taherzadeh, Mohammad J.; Solmaz Aslanzadeh

    2013-01-01

    The effect of recirculation in increasing organic loading rate (OLR) and decreasing hydraulic retention time (HRT) in a semi-continuous two-stage anaerobic digestion system using stirred tank reactor (CSTR) and an upflow anaerobic sludge bed (UASB) was evaluated. Two-parallel processes were in operation for 100 days, one with recirculation (closed system) and the other without recirculation (open system). For this purpose, two structurally different carbohydrate-based substrates were used; st...

  17. Integration of a Water Scrubbing Technique and Two-Stage Pressurized Anaerobic Digestion in One Process

    OpenAIRE

    Andreas Lemmer; Yuling Chen; Anna-Maria Wonneberger; Frank Graf; Rainer Reimert

    2015-01-01

    Two-stage pressurized anaerobic digestion is a promising technology. This technology integrates in one process biogas production with upgrading and pressure boosting for grid injection. To investigate whether the efficiency of this novel system could be further increased, a water scrubbing system was integrated into the methanogensis step. Therefore, six leach-bed reactors were used for hydrolysis/acidification and a 30-L pressurized anaerobic filter operated at 9 bar was adopted for acetogen...

  18. Anaerobic Co-Digestion of Algal Biomass and a Supplemental Carbon Source Material to Produce Methane

    OpenAIRE

    Soboh, Yousef

    2015-01-01

    Algae that are grown in wastewater treatment lagoons could be an important substrate for biofuel production; however, the low C/N ratio of algae is not conducive to anaerobic digestion of algae with economically attractive methane production rates. Increasing the C/N ratio in anaerobic, laboratory scale, batch reactors by blending algal biomass with sodium acetate resulted i increased methane production rates as the C/N ratio increased. The highest amount of methane was produced when the C/N ...

  19. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    OpenAIRE

    Bernadette E. TELEKY; Mugur C. BĂLAN; Nikolausz, Marcell

    2015-01-01

    Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as com...

  20. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating.

    Science.gov (United States)

    Ariunbaatar, Javkhlan; Panico, Antonio; Yeh, Daniel H; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2015-12-01

    Food waste (FW) represents a source of high potential renewable energy if properly treated with anaerobic digestion (AD). Pretreating the substrates could yield a higher biomethane production in a shorter time. In this study, the effects of thermal (heating the FW in a separate chamber) and thermophilic (heating the full reactor content containing both FW and inoculum) pretreatments at 50, 60, 70 and 80°C prior to mesophilic AD were studied through a series of batch experiments. Pretreatments at a lower temperature (50°C) and a shorter time (biomethane production with an increase by 44-46% was achieved with a thermophilic pretreatment at 50°C for 6-12h or a thermal pretreatment at 80°C for 1.5h. Thermophilic pretreatments at higher temperatures (>55°C) and longer operating times (>12h) yielded higher soluble chemical oxygen demand (CODs), but had a negative effect on the methanogenic activity. The thermal pretreatments at the same conditions resulted in a lower solubilization of COD. Based on net energy calculations, the enhanced biomethane production is sufficient to heat up the FW for the thermal, but not for the thermophilic pretreatment. PMID:26272711

  1. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    Science.gov (United States)

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-06-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production. PMID:26698921

  2. Biotransformation of tetrabromobisphenol A (TBBPA) in anaerobic digester sludge, soils, and freshwater sediments.

    Science.gov (United States)

    McAvoy, Drew C; Pittinger, Charles A; Willis, Alison M

    2016-09-01

    The biotransformation of tetrabromobisphenol A (TBBPA) was evaluated in anaerobic digester sludge, soils, and freshwater sediments. In anaerobic digester sludge, TBBPA biotransformed rapidly with a 50% disappearance time (DT50) of 19 days, though little mineralization (1.1%) was observed. In aerobic soils, mineralization of TBBPA ranged from 17.5% to 21.6% with 55.3-83.6% of the TBBPA incorporated into the soils as a non-extractable bound residue. The DT50 for TBBPA in aerobic soils ranged from 5.3 to 7.7 days. In anaerobic soils, 48.3-100% of the TBBPA was incorporated into the soils as non-extractable bound residue with sediments the DT50 for TBBPA ranged from 28 to 42 days, whereas in aerobic sediments the DT50 for TBBPA ranged from 48 to 84 days and depended on the initial dose concentration. Most of the TBBPA in the sediment studies was incorporated as a non-extractable bound residue with little mineralization observed. Sediment extracts revealed three unknown biotransformation products and bisphenol A (BPA). These results were consistent with previously published studies where TBBPA biotransformed in anaerobic environments (digester sludge and sediments) by debromination and slowly mineralized in the test environments (anaerobic digester sludge, soils, and freshwater sediments). PMID:26212340

  3. Use of gamma-irradiation pretreatment for enhancement of anaerobic digestibility of sewage sludge

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of y-irradiation pretreatment on anaerobic digestibility of sewage sludge was investigated in this paper.Parameters like solid components,soluble components,and biogas production of anaerobic digestion experiment for sewage sludge were measured.The values of these parameters were compared before and after y-irradiation pretreatment.Total solid (TS),volatile solid (VS),suspended solid (SS),volatile suspended solid (VSS),and average floc size of samples decreased after γ-irradiation treatment.Besides,floc size distribution of sewage sludge shifted from 80-100 μm to 0-40 μm after y-irradiation treatment at the doses from 0 to 30 kGy,which indicated the disintegration of sewage sludge.Moreover,microbe cells of sewage sludge were ruptured by γ-irradiation treatment,which resulted in the release of cytoplasm and increase of soluble chemical oxygen demand (SCOD).Both sludge disintegration and microbe cells rupture enhanced the subsequent anaerobic digestion process,which was demonstrated by the increase of accumulated biogas production.Compared with digesters fed with none irradiated sludge,the accumulated biogas production increased 44,98,and 178 mL for digesters fed sludge irradiated at 2.48,6.51,and 11.24 kGy,respectively.The results indicated that "/-irradiation pretreatment could effectively enhance anaerobic digestibility of sewage sludge,and correspondingly,could accelerate hydrolysis process,shorten sludge retention time of sludge anaerobic digestion process.

  4. Stability and Uniform Boundedness for a Class of Anaerobic Digestion Ecological Models

    Institute of Scientific and Technical Information of China (English)

    LI Ming-qi

    2004-01-01

    Stability, boundedness and persistence are three important aspects for an ecological model. In this paper, a further analysis ora class of anaerobic digestion ecological models is performed.Based on the Liupunov Method, the local stability of all equilibria in the system is got. According to the vector fields described by the system, the proof of the boundedness of the solution on the anaerobic digestion processes is completed in three steps. The method proposed in the discussion on the boundedness can be generalized to the similar problems. Results in this paper give information on how to run the ecological system well by adjusting the system parameters.

  5. Effect of Buffalo Dung to the Water Ratio on Production of Methane through Anaerobic Digestion

    OpenAIRE

    Abdul Razaque Sahito; Rasool Bux Mahar; Farooq Ahmed

    2014-01-01

    Generation of methane from animal dung through AD (Anaerobic Digestion) is the most feasible way to get energy from it. Pakistan has about 70 million heads of cattle and buffalos, and about 90 million heads of sheep and goats. The dung from these animals can overcome the energy crisis and can fulfill the future energy demands of Pakistan. In present study, buffalo dung is used as the substrate for anaerobic digestion process, whereas the production of methane was analyzed as the function of b...

  6. Process Evolution of Dry Anaerobic Co-digestion of Cattle Manure with Kitchen Waste

    OpenAIRE

    Li, H. L.; X. L. GUO; Cao, F. F.; Wang, Y.

    2014-01-01

    Knowledge of the effect of kitchen waste on dry anaerobic mesophilic digestion of cattle manure is important for understanding and controlling the anaerobic co-digestion process. In this study, laboratory scale (Volume = 5 L) performance was evaluated using six different ratios of cattle manure to kitchen waste: 1:0, 11:1, 9:1, 7:1, 5:1 and 3:1. The selected conditions were: 10 % inoculum, 20 % total solids, and 35 °C temperature, optimum in the mesophilic range. The six ratios showed an init...

  7. Two-Stage Dry Anaerobic Digestion of Beach Cast Seaweed and Its Codigestion with Cow Manure

    OpenAIRE

    Valentine Nkongndem Nkemka; Jorge Arenales-Rivera; Marika Murto

    2014-01-01

    Two-stage, dry anaerobic codigestion of seaweed and solid cow manure was studied on a laboratory scale. A methane yield of 0.14 L/g VSadded was obtained when digesting solid cow manure in a leach bed process and a methane yield of 0.16 L/g VSadded and 0.11 L/g VSadded was obtained from seaweed and seaweed/solid manure in a two-stage anaerobic process, respectively. The results showed that it was beneficial to operate the second stage methane reactor for the digestion of seaweed, which produce...

  8. Performance of sequential anaerobic/aerobic digestion applied to municipal sewage sludge.

    Science.gov (United States)

    Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe

    2011-07-01

    A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed. PMID:21477916

  9. Optimizing the performance of a reactor by reducing the retention time and addition of glycerin for anaerobically digesting manure

    NARCIS (Netherlands)

    Timmerman, M.; Schuman, E.; Eekert, M.; Riel, van J.W.

    2015-01-01

    Anaerobic digestion of manure is a widely accepted technology for energy production. However, only a minimal portion of the manure production in the EU is anaerobically digested and occurs predominantly in codigestion plants. There is substantial potential for biogas plants that primarily operate on

  10. AN INNOVATIVE DESIGN FOR ANAEROBIC CO-DIGESTION OF ANIMAL WASTES FOR SUSTAINABLE DEVELOPMENT IN RURAL COMMUNITIES

    Science.gov (United States)

    With the aim of the Phase I project to develop an innovative anaerobic co-digestion design for the treatment of dairy manure and poultry waste, our Phase I team has evaluated the technical and economic feasibility of the anaerobic co-digestion design concept with a thorough in...

  11. Potential for energy generation from anaerobic digestion of food waste in Australia.

    Science.gov (United States)

    Lou, Xian Fang; Nair, Jaya; Ho, Goen

    2013-03-01

    Published national and state reports have revealed that Australia deposits an average of 16 million Mg of solid waste into landfills yearly, of which approximately 12.6% is comprised of food. Being highly biodegradable and possessing high energy content, anaerobic digestion offers an attractive treatment option alternative to landfilling. The present study attempted to identify the theoretical maximum benefit of food waste digestion in Australia with regard to energy recovery and waste diversion from landfills. The study also assessed the scope for anaerobic process to utilize waste for energy projects through various case study scenarios. Results indicated anaerobic digestion of total food waste generated across multiple sites in Australia could generate 558 453 dam(3) of methane which translated to 20.3 PJ of heating potential or 1915 GWe in electricity generation annually. This would contribute to 3.5% of total current energy supply from renewable sources. Energy contribution from anaerobic digestion of food waste to the total energy requirement in Australia remains low, partially due to the high energy consumption of the country. However its appropriateness in low density regions, which are prevalent in Australia, may allow digesters to have a niche application in the country. PMID:23381970

  12. Effect of ultrasonic pretreatment on anaerobic digestion and its sludge dewaterability

    Institute of Scientific and Technical Information of China (English)

    Huacheng Xu; Pinjing He; Guanghui Yu; Liming Shao

    2011-01-01

    To investigate the effect of ultrasonic pretreatment on anaerobic digestion and sludge dewaterability and further to probe into the influencing factors on sludge dewaterability,sludge flocs were stratified into four fractions:(1) slime; (2) loosely bound extracellular polymeric substances (LB-EPS); (3) tightly bound EPS (TB-EPS); and (4) EPS-free pellets.The results showed that ultrasonic pretreatment increased the anaerobic digestion efficiency by 7%-8%.Anaerobic digestion without ultrasonic pretreatment deteriorated the sludge dewaterability,with the capillary suction time (CST) increased from 1.42 to 47.3 (sec.L)/g-TSS.The application of ultrasonic pretreatment firstly deteriorated the sludge dewaterability (normalized CST increased to 44.4 (sec.L)/g-TSS),while subsequent anaerobic digestion offset this effect and ultimately decreased the normalized CST to 23.2 (sec.L)/g-TSS.The dewaterability of unsonicated sludge correlated with protein (p = 0.003) and polysaccharide (p = 0.004) concentrations in the slime fraction,while that of sonicated sludge correlated with protein concentrations in the slime and LB-EPS fractions (p < 0.05).Fluorescent excitationemission matrix analysis showed that the fluorescence matters in the LB-EPS fraction significantly correlated with sludge dewaterability during anarobic digestion.

  13. Anaerobic digestion of wastewater screenings for resource recovery and waste reduction

    Science.gov (United States)

    Wid, N.; Horan, N. J.

    2016-06-01

    Wastewater screenings are produced during the first stage of the wastewater treatment process and at present are disposed of to landfill. This material may not only cause operational failure to the treatment system, but also lead to environmental problems. In view of the high organic content of screenings, anaerobic digestion method may not only offer the potential for energy recovery, but also nutrient. In this study the, anaerobic batch digestion was performed at different dry solids concentrations of screenings to study the potential of biogas and phosphorus recovery. The tests demonstrated wastewater screenings were amenable to anaerobic digestion with methane yield was 355 m3/kg VS, which are comparable to the previous results. The digestate was high in P content and can be recovered up to 41%. This study also shows that anaerobic digestion was not only to turn this waste into useful resources, but also has a potential in reducing the organic content up to 31% for safe disposal. In this way the amount of wastewater screenings going to landfill is not only can be reduced, but also valuable products such as methane and phosphorus can also be recovered.

  14. CFD simulation of non-Newtonian fluid flow in anaerobic digesters.

    Science.gov (United States)

    Wu, Binxin; Chen, Shulin

    2008-02-15

    A general mathematical model that predicts the flow fields in a mixed-flow anaerobic digester was developed. In this model, the liquid manure was assumed to be a non-Newtonian fluid, and the flow governed by the continuity, momentum, and k-epsilon standard turbulence equations, and non-Newtonian power law model. The commercial computational fluid dynamics (CFD) software, Fluent, was applied to simulate the flow fields of lab-scale, scale-up, and pilot-scale anaerobic digesters. The simulation results were validated against the experimental data from literature. The flow patterns were qualitatively compared for Newtonian and non-Newtonian fluids flow in a lab-scale digester. Numerical simulations were performed to predict the flow fields in scale-up and pilot-scale anaerobic digesters with different water pump power inputs and different total solid concentration (TS) in the liquid manure. The optimal power inputs were determined for the pilot-scale anaerobic digester. Some measures for reducing dead and low velocity zones were proposed based upon the CFD simulation results. PMID:17705227

  15. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose.

    Science.gov (United States)

    Li, Xiaofen; Swan, Janis E; Nair, Giridhar R; Langdon, Alan G

    2015-01-01

    Many potentially useful intermediates such as hydrogen and volatile fatty acids (VFAs) are formed during the complex anaerobic digestion processes that produce methane from biomass. This study recovers VFAs from an anaerobic digester by a combination of gas stripping and absorption with calcium carbonate slurry. Glucose was used as the model substrate because it is readily available, inexpensive, and easily digested. Sludge from a meatworks anaerobic digester produced methane and carbon dioxide (and sometimes a small amount of hydrogen) when batch-fed with glucose. Conditioning the neutral anaerobic sludge to an acidic pH (below 4.8) was achieved using repeated 1 g L(-1) doses of glucose. After conditioning, mainly VFAs and hydrogen were produced. The intermediate VFAs could be stripped using headspace gas. In subsequent fed-batch digestion/stripping cycles, the pH decreased when glucose was added and then increased when the VFA was gas stripped. The predominant acids formed at low pH values were lactic, butyric, and acetic acids. Lactic acid was converted to VFAs during stripping. The VFA calcium salts recovered were 80% butyrate and 20% acetate with minor quantities of propionate and valerate. PMID:25274086

  16. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste

    DEFF Research Database (Denmark)

    Lissens, G.; Thomsen, Anne Belinda; De Baere, L.;

    2004-01-01

    Anaerobic digestion of solid biowaste generally results in relatively low methane yields of 50-60% of the theoretical maximum. Increased methane recovery from organic waste would lead to reduced handling of digested solilds, lower methane emissions to the environment, and higher green energy....... Measured methane yields for raw yard waste, wet oxidized yard waste, raw food waste, and wet oxidized food waste were 345, 685, 536, and 571 mL of CH4/g of volatile suspended solids, respectively. Higher oxygen pressure during wet oxidation of digested biowaste considerably increased the total methane...... profits. The objective of this research was to enhance the anaerobic biodegradability and methane yields from different biowastes (food waste, yard waste, and digested biowaste already treated in a full-scale biogas plant (DRANCO, Belgium)) by assessing thermal wet oxidation. The biodegradability of the...

  17. Anaerobic digestion of microalgae residues resulting from the biodiesel production process

    International Nuclear Information System (INIS)

    The recovery of methane from post transesterified microalgae residues has the potential to improve the renewability of the 'microalgae biomass to biodiesel' conversion process as well as reduce its cost and environmental impact. This paper deals with the anaerobic digestion of microalgae biomass residues (post transesterification) using semi-continuously fed reactors. The influence of substrate loading concentrations and hydraulic retention times on the specific methane yield of the anaerobically digested microalgae residues was investigated. The co-digestion of the microalgae residues with glycerol as well as the influence of temperature was also examined. It was found that the hydraulic retention period was the most significant variable affecting methane production from the residues, with periods (>5 days) corresponding to higher energy recovery. The methane yield was also improved by a reduction in the substrate loading rates, with an optimum substrate carbon to nitrogen ratio of 12.44 seen to be required for the digestion process.

  18. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    International Nuclear Information System (INIS)

    Highlights: ► Compared methane production of solid AD inoculated with different effluents. ► Food waste effluent (FWE) had the largest population of acetoclastic methanogens. ► Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. ► Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. ► Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVSfeed, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVSfeed. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO3/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  19. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  20. Nutritive value and nutrient digestibility of ensiled mango by-products

    Directory of Open Access Journals (Sweden)

    Sompong Sruamsiri

    2009-10-01

    Full Text Available Mango canning by-products (seed and peel together with ensiled mango peel were subjected to analysis of dry matter (DM, ash, crude protein (CP, crude fibre (CF, ether extract (EE, nitrogen-free extract (NFE, gross energy (GE, neutral detergent fibre (NDF and acid detergent fibre (ADF. In vitro digestibility of DM (IVDMD, ADF (IVADFD and NDF (IVNDFD was determined after digesting the by-products in buffered rumen fluid for 24 or 48 h in an incubator. CP content in peel, seed and peel silage is 4.68, 4.19 and 5.27% respectively. As expected, mango seed has a higher fibre content than mango peel and peel silage as indicated by NDF (53.01 vs 25.87 and 27.56% respectively and ADF (31.02 vs 19.14 and 17.68% respectively. However, mango seed also has greater GE than mango peel and peel silage (4,070 vs 3,827 and 3,984 kcal/g DM respectively, probably due partly to its high fat content.Four head of male native cattle were used to determine nutrient digestibility of ensiled mango by-products by randomly allowing them to receive ensiled mango peel with rice straw (EMPR and different levels of Leucaena leaves. Treatments consisted of: 1 ensiled mango peel + rice straw (90:10; 2 ensiled mango peel + rice straw + Leucaena leaves (85:10:5; 3 ensiled mango peel + rice straw + Leucaena leaves (80:10:10; and 4 ensiled mango peel + rice straw + Leucaena leaves (75:10:15. Addition of Leucaena leaves to silage increased apparent digestibility of DM (53.84, 55.43, 59.04 and 58.69% for the four formulations above respectively, probably because of increasing amounts of CP from Leucaena leaves, resulting in greater digestibility of NDF (39.11, 44.47, 47.12 and 43.32% for the four formulations above respectively. Total digestible nutrients (TDN and digestible energy (DE showed the same trends as apparent digestibility of DM.

  1. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    Science.gov (United States)

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p co-digestion of sewage sludge under mesophilic and thermophilic conditions. PMID:26300352

  2. The effect of enzyme additives on the anaerobic digestion of energy crops

    OpenAIRE

    Brulé, Mathieu

    2014-01-01

    The mechanisms governing the efficiency of commercial fiber-degrading enzyme additives at improving the anaerobic digestion of energy crops were investigated. Standard batch digestion trials (BMP-assays) were performed using the Hohenheim Biogas Test (HBT) on maize straw, maize corn, and rye silage with different inocula. These BMP-assays showed no significant effect of enzyme additives (including commercial cellulase, xylanase, pectinase, laccase) on the methane production rate. However, bat...

  3. Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation

    OpenAIRE

    Tiwary, A; Williams, I. D.; Pant, D. C.; Kishore, V.V.N.

    2015-01-01

    This paper provides an extensive review of anaerobic digestion (AD) systems, with a specific focus on community scale digesters for urban applications, processing either municipal organic waste exclusively or as mix feed. Emphasis is placed on reducing the systems scale environmental impact of AD technologies, including pre- and post-treatment stages, alongside biogas production. Developments to-date in AD system research in Europe and in the Asia region have been compared, providing a compre...

  4. Survival rates of parasite eggs in sludge during aerobic and anaerobic digestion.

    OpenAIRE

    Black, M I; Scarpino, P V; O'Donnell, C.J.; Meyer, K B; Jones, J V; Kaneshiro, E S

    1982-01-01

    The effects of mesothermic anaerobic or aerobic sludge digestion on survival of eggs from the roundworms Ascaris suum, toxocara canis, Trichuris vulpis, and Trichuris suis and from the rat tapeworm Hymenolepis diminuta were studied. Destruction of eggs throughout a 15-day treatment period, as well as their viabilities after reisolation, was analyzed. The laboratory model digesters used in this study were maintained at a 15-day retention schedule, partially simulating a continuously operating ...

  5. ENHANCEMENT OF BIOGAS PRODUCTION POTENTIAL FOR ANAEROBIC CO-DIGESTION OF WASTEWATER USING DECANTER CAKE

    OpenAIRE

    Thaniya Kaosol; Narumol Sohgrathok

    2012-01-01

    The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature) will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential ...

  6. ENHANCEMENT OF BIOGAS PRODUCTION POTENTIAL FOR ANAEROBIC CO-DIGESTION OF WASTEWATER USING DECANTER CAKE

    OpenAIRE

    Thaniya Kaosol; Narumol Sohgrathok

    2013-01-01

    The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature) will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential ...

  7. The impact of mesophilic and thermophilic anaerobic digestion on biogas production

    OpenAIRE

    P. Vindis; B. Mursec; M. Janzekovic; F. Cus

    2009-01-01

    Purpose: of this paper is to compare mesophilic and thermophilic anaerobic digestion of three maize varieties. Parameters such as biogas production and biogas composition from maize silage were measured and calculated. The amount of biogas production (methane) was observed by the mini digester.Design/methodology/approach: Biogas production and composition in mesophilic (35 degrees C) and thermophilic (55 degrees C) conditions were measured and compared. The measurements were performed with mi...

  8. Potential of biogas and methane production from anaerobic digestion of poultry slaughterhouse effluent

    OpenAIRE

    Natália da Silva Sunada; Ana Carolina Amorim Orrico; Marco Antônio Previdelli Orrico Júnior; Fernando Miranda de Vargas Junior; Rodrigo Garófallo Garcia; Alexandre Rodrigo Mendes Fernandes

    2012-01-01

    The objective of this study was to evaluate the efficiency of anaerobic digestion on the treatment of effluent from poultry slaughterhouse. The experiment was conducted at the Laboratory of Waste Recycling from Animal Production/FCA/UFGD. During four weeks, eight experimental digesters, semi-continuous models, were loaded and set according to the hydraulic retention time (HRT) of 7, 14, 21 and 28 days, and according to the solid fraction treatment, separated with 1 mm sieve or without separat...

  9. Anaerobic Slurry Co-Digestion of Poultry Manure and Straw: Effect of Organic Loading and Temperature

    OpenAIRE

    Azadeh Babaee; Jalal Shayegan; Anis Roshani

    2013-01-01

    In order to obtain basic design criteria for anaerobic digestion of a mixture of poultry manure and wheat straw, the effects of different temperatures and organic loading rates on the biogas yield and methane contents were evaluated. Since poultry manure is a poor substrate, in term of the availability of the nutrients, external supplementation of carbon has to be regularly performed, in order to achieve a stable and efficient process. The complete-mix, pilot-scale digester with working volum...

  10. Evidence for PAH Removal Coupled to the First Steps of Anaerobic Digestion in Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Glenda Cea-Barcia

    2013-01-01

    Full Text Available Anaerobic degradation of polycyclic aromatic hydrocarbons has been brought to the fore, but information on removal kinetics and anaerobic degrading bacteria is still lacking. In order to explore the organic micropollutants removal kinetics under anaerobic conditions in regard to the methane production kinetics, the removal rate of 12 polycyclic aromatic hydrocarbons was measured in two anaerobic batch reactors series fed with a highly loaded secondary sludge as growth substrate. The results underscore that organic micropollutants removal is coupled to the initial stages of anaerobic digestion (acidogenesis and acetogenesis. In addition, the organic micropollutants kinetics suggest that the main removal mechanisms of these hydrophobic compounds are biodegradation and/or sequestration depending on the compounds.

  11. Research on Anaerobic Digestion: Optimization and Scalability of Mixed High-strength Food Processing Wastes for Renewable Biogas Energy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhongtang [The Ohio State Univ., Columbus, OH (United States); Hitzhusen, Fredrick [The Ohio State Univ., Columbus, OH (United States)

    2012-12-27

    This research project developed and improved anaerobic digestion technologies, created a comprehensive Inventory of Ohio Biomass and a database of microorganisms of anaerobic digesters, and advanced knowledge and understanding of the underpinning microbiology of the anaerobic digestion process. The results and finding of this research project may be useful for future development and implementation of anaerobic digesters, especially at livestock farms. Policy makers and investors may also find the information on the biomass availability in Ohio and valuation of energy projects useful in policy making and making of investment decisions. The public may benefit from the information on biogas as an energy source and the potential impact of anaerobic digester projects on their neighborhoods.

  12. High-solid Anaerobic Co-digestion of Food Waste and Rice Straw for Biogas Production

    Institute of Scientific and Technical Information of China (English)

    Pei Zhan-jiang; Liu Jie; Shi Feng-mei; Wang Su; GaoYa-bing; Zhang Da-lei

    2014-01-01

    Anaerobic co-digestion of food waste (FW) and rice straw (RS) in continuously stirred tank reactor (CSTR) at high organic loading rate (OLR) was investigated. Co-digestion studies of FW and RS with six different mixing ratios were conducted at an initial volatile solid (VS) concentration of more than 3 gVS•L-1. The biogas production, methane contents, degradation efficiency of VS, chemical oxygen demand (COD) and volatile fatty acids (VFAs) were determined to evaluate the stability and performance of the system. The results showed that the co-digestion process had higher system stability and higher volumetric biogas production than mono-digestions. Increase in FW content in the feedstock could increase the methane yield and shorten retention time. The efficiency of co-digestion systems mainly relied on the mixing ratios of FW and RS to some extent. The highest methane yield was 60.55 mL•gV•S-1•d-1 at a mass ratio (FW/RS) of 3: 1, which was 178% and 70% higher than that of mono-digestions of FW and RS, respectively. Consequently, the anaerobic co-digestion of FW and RS could have superior stability and better performance than mono-digestions in higher organic loading system.

  13. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Lijó, Lucía, E-mail: lucia.lijo@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); González-García, Sara [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Bacenetti, Jacopo; Negri, Marco; Fiala, Marco [Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milan (Italy); Feijoo, Gumersindo; Moreira, María Teresa [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2015-07-15

    Highlights: • Anaerobic monodigestion and codigestion were compared. • The environmental advantages of suitable waste management were proved. • The use of cereal crops as feedstock improves biogas yield. • Cultivation step implies the most important environmental hotspot. • Digestate management options were evaluated. - Abstract: The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidenced the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions.

  14. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production

    International Nuclear Information System (INIS)

    Highlights: • Anaerobic monodigestion and codigestion were compared. • The environmental advantages of suitable waste management were proved. • The use of cereal crops as feedstock improves biogas yield. • Cultivation step implies the most important environmental hotspot. • Digestate management options were evaluated. - Abstract: The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidenced the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions

  15. Effect of organic loading rate during anaerobic digestion of municipal solid waste.

    Science.gov (United States)

    Dhar, Hiya; Kumar, Pradeep; Kumar, Sunil; Mukherjee, Somnath; Vaidya, Atul N

    2016-10-01

    The effect of chemical oxygen demand (COD) and volatile solids (VS) on subsequent methane (CH4) production during anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW) was studied in a laboratory-scale digester. The experiment was performed in 2L anaerobic digester under different experimental conditions using different input mass co-digested with inoculum and organic loading rate (OLR) for 27days at 38±2°C. Three digesters (digesters 1, 2 and 3) were operated at initial loading of 5.1, 10.4 and 15.2g/L CODS per batch which were reduced to 77.9% and 84.2%, respectively. Cumulative biogas productions were 9.3, 10.7 and 17.7L in which CH4 yields were 84.3, 101.0 and 168.4mL/gVS removal in digesters 1, 2, and 3, respectively. The observed COD removal was found to be influenced on variation in CH4 production. Co-efficient of determination (R(2)) was 0.67 and 0.74 in digesters 1 and 2, respectively. PMID:26733440

  16. Enhanced biogas production by increasing organic load rate in mesophilic anaerobic digestion with sludge recirculation.

    OpenAIRE

    Huang, Zhanzhao

    2012-01-01

    For enhancing anaerobic sludge digestion and biogas recovery, an increase in organic load rate (OLR) from 1.0 to 3.0kgVS/(m3·day) was imposed upon a new anaerobic digestion process combined with a sludge recirculation. The new setup requires a traditional mesophilic anaerobic digester coupled with a centrifuge for maintaining relatively high solid content within the digester. The hypothesis of this study was that increasing continuously OLR from 1.0 to 3.0kgVS/(m3·day) in a pilot-scale anaero...

  17. The Impact of Chemical Phosphorus Removal on the Process of Anaerobic Sludge Digestion

    Directory of Open Access Journals (Sweden)

    Svetlana Ofverstrom

    2011-02-01

    Full Text Available The paper investigates the efficiency of the mixture of primary sludge and excess activated sludge in Vilnius WWTP with reference to the anaerobic digestion process. Sludge digestion was carried out under laboratory conditions using anaerobic sludge digestion model W8 (Armfield Ltd., UK. Laboratory analyses consist of two periods – the anaerobic digestion of the un-dosed and Fe-dosed sludge mixture. The results of digestion were processed using the methods of statistical analysis. The findings showed reduction in volatile solids approx. by 6% when dosing min FeCl3·6H2O and 15% when dosing max FeCl3·6H2O into feed sludge. Gas volume produced during the digestion of the un-dosed sludge was 90–160 ml/d and 60–125 ml/d in min Fe-dosed sludge and 45-95 ml/d. Also, correlation between VS loadings and biogas production was found. A rise in VS loading from 0,64 g/l/d to 1,01 g/l/d increased biogas production from 90 ml/d to 140–160 ml/d.Article in Lithuanian

  18. Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass

    OpenAIRE

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L. M.; Jarvis, Eric E.; Nagle, Nick J.; Chen, Shulin; Frear, Craig S.

    2015-01-01

    Background Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a ran...

  19. A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process

    OpenAIRE

    Monlau, Florian; Sambusiti, Cécilia; Antoniou, N; Barakat, Abdellatif; Zabaniotou, A.

    2015-01-01

    In a full-scale anaerobic digestion plant, agricultural residues are generally converted into biogas and digestate, the latter usually produced in large amount. Generally, biogas is converted into heat, often lost, and electricity, which is completely valorized or it is sold to the public grid. In this context, the aim of this study was to investigate the feasibility to combine anaerobic digestion and pyrolysis processes in order to increase the energy recovery from agricultural residues and ...

  20. Toxicity of heavy metals to thermophilic anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B.K.; Westermann, P.

    1983-01-01

    The effects of heavy metals on the thermophilic digestion of sewage sludge was studied in three semicontinuous digesters step-fed with cadmium, copper and nickel, respectively. The daily gas production, gas composition, the quantitative accumulation of volatile fatty acids, and the distribution of the heavy metals were measured. The fermentations were carried out at 58 degrees C with a retention time of 10 days and an addition of 1.7 g volatile solids/l of reactor volume per day. Nickel was found to be 2-3 times more water soluble than cadmium and copper when the digesters were fed raw sludge containing heavy metals. The three digesters all showed tendencies to acclimate to the heavy metals up to a certain level. 200 mg nickel/l was completely inhibitory while the same response was observed for cadmium and copper at 300 mg/l. (Refs. 20).

  1. Pilot-scale anaerobic digestion of screenings from wastewater treatment plants

    OpenAIRE

    Le Hyaric, R.; Canler, J.P.; Barillon, B.; Naquin, P.; Gourdon, R.

    2010-01-01

    he anaerobic digestion of screenings from a municipal wastewater treatment plant was studied in a 90 L pilot-scale digester operated at 35 degrees C under semi-continuous conditions. In the first 4 weeks, a dry solids residence time of 28 days was applied, but the installation of inhibitory conditions was observed. Feeding was therefore suspended for 4 weeks to allow the digester to recover from inhibition, and then progressively increased up to a constant load of 6 kg of raw waste per week, ...

  2. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters

    Directory of Open Access Journals (Sweden)

    Alejandra eAlvarado

    2014-11-01

    Full Text Available Anaerobic digestion (AD is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of anaerobic digestion technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for anaerobic digestion, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.

  3. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Ma, W.C.; Han, H.J.; Li, H.Q.; Yuan, M. [Harbin Institute of Technology, Harbin (China)

    2011-02-15

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 {+-} 2{sup o}C) reactor as a control, thermophilic anaerobic digestion (55 {+-} 2{sup o}C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m{sup 3} d) and HRT of 24h: the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pre-treatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  4. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor.

    Science.gov (United States)

    Wang, Wei; Ma, Wencheng; Han, Hongjun; Li, Huiqiang; Yuan, Min

    2011-02-01

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35±2°C) reactor as a control, thermophilic anaerobic digestion (55±2°C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m(3) d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW. PMID:21112778

  5. ANAEROBIC DIGESTION OF FOOD WASTE AND DAIRY MANURE FOR BIOENERGY PRODUCTION

    Science.gov (United States)

    The performance of continuously mixed anaerobic digesters was evaluated in the laboratory for treating manure, food waste and their mixtures at 35 ± 2oC and a hydraulic retention time of 20 days. The first mixture was composed of 32% and 68%, and the second was composed of 48% and 52% food waste and...

  6. Modelling phosphorus (P), sulphur (S) and iron (Fe) interactions during the simulation of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Solon, Kimberly; Kazadi-Mbamba, Christian;

    2015-01-01

    This paper examines the effects of different model formulations when describing sludge stabilization processes in wastewater treatment plants by the Anaerobic Digestion Model No. 1 (ADM1). The proposed model extensions describe the interactions amongst phosphorus (P), sulfur (S), iron (Fe...

  7. Anaerobic digestion foaming in full-scale biogas plants: A survey on causes and solutions

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; O-Thong, Sompong;

    2014-01-01

    Anaerobic digestion foaming is a common operation problem in biogas plants with negative impacts on the biogas plants economy and environment. A survey of 16 Danish full-scale biogas plants on foaming problems revealed that most of them had experienced foaming in their processes up to three times...

  8. Psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D.I. [Agriculture Canada, Ottawa, ON (Canada). Food Research Branch; Droste, R.L. [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1993-12-31

    This work presents preliminary results of an ongoing laboratory study to evaluate the feasibility of psychrophilic anaerobic digestion in sequencing batch reactors (SBR) for stabilizing, deodorizing and adding value to swine manure. Preliminary results show that the process is feasible. (author). 14 refs., 7 tabs.

  9. How to use molecular biology tools for the study of the anaerobic digestion process?

    NARCIS (Netherlands)

    Cabezas, Angela; Araujo, de Juliana Calabria; Callejas, Cecilia; Galès, Amandine; Hamelin, Jérôme; Marone, Antonella; Machado de Sousa, Diana; Trably, Eric; Etchebehere, Claudia

    2015-01-01

    Anaerobic digestion is used with success for the treatment of solid waste, urban and industrial effluents with a concomitant energy production. The process is robust and stable, but the complexity of the microbial community involved in the process is not yet fully comprehensive. Nowadays, the stu

  10. The RTD measurement of two stage anaerobic digester using radiotracer in WWTP

    International Nuclear Information System (INIS)

    The aims of this study are to assess the existence and location of the stagnant zone by estimating the MRT (mean residence time) on the two stage anaerobic digester, with the results to be used as informative clue for its better operation

  11. Anaerobic digestion of stillage to produce bioenergy in the sugarcane-to-ethanol industry.

    Science.gov (United States)

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2014-01-01

    Stillage is the main wastewater from ethanol production, containing a high chemical oxygen demand in addition to acidic and corrosive characteristics. Though stillage may be used as a soil fertilizer, its land application may be considered problematic due its high polluting potential. Anaerobic digestion represents an effective alternative treatment to reduce the pollution load of stillage. In addition, the methane gas produced within the process may be converted to energy, which can be directly applied to the treatment plant. The objective of this paper was to investigate the energetic potential of anaerobic digestion applied to stillage in the sugarcane ethanol industry. An overall analysis of the results indicates energy recovery capacity (ERC) values for methane ranging from 3.5% to 10%, respectively, for sugarcane juice and molasses. The processes employed to obtain the fermentable broth, as well as the distillation step, represent the main limiting factors to the energetic potential feasibility. Considering financial aspects the annual savings could reach up to US$ 30 million due to anaerobic digestion of stillage in relatively large-scale distilleries (365,000 m3 of ethanol per year). The best scenarios were verified for the association between anaerobic digestion of stillage and combustion of bagasse. In this case, the fossil fuels consumption in distilleries could be fully ceased, such the ERC of methane could reach values ranging from 140% to 890%. PMID:24600872

  12. ADM1-based modeling of anaerobic digestion of swine manure fibers pretreated with aqueous ammonia soaking

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    Anaerobic digestion of manure fibers present challenges due to their low biodegradability. Aqueous ammonia soaking (AAS) and subsequent ammonia removal has been tested as a simple and cheap method to disrupt the lignocellulose and increase the methane potential and the biogas productivity of manure...

  13. Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media

    Science.gov (United States)

    Various formulations are used in horticultural potting media, with sphagnum peat moss, vermiculite and perlite currently among the most common components. We are examining a dried anaerobic digestate remaining after the fermentation of potato processing wastes to replace organic components such as p...

  14. Modelling anaerobic digestion of concentrated black water and faecal matter in accumulation system

    NARCIS (Netherlands)

    Elmitwalli, T.; Zeeman, G.; Otterpohl, R.

    2011-01-01

    A dynamic mathematical model based on anaerobic digestion model no. 1 (ADM1) was developed for accumulation (AC) system treating concentrated black water and faecal matter at different temperatures. The AC system was investigated for the treatment of waste(water) produced from the following systems:

  15. Fungal pretreatment of albizia chips for enhanced biogas production by solid-state anaerobic digestion

    Science.gov (United States)

    Albizia biomass is a forestry waste, and holds a great potential in biogas production by solid-state anaerobic digestion (SS-AD). However, low methane yields from albizia chips were observed due to their recalcitrant structure. In this study, albizia chips were pretreated by Ceriporiopsis subvermisp...

  16. Anaerobic Digestion of Saline Creeping Wild Ryegrass for Biogas Production and Pretreatment of Particleboard Material

    Science.gov (United States)

    The objective of this research was to develop an integrated process to produce biogas and high-quality particleboard using saline creeping wild ryegrass (CWR), Leymus triticoides through anaerobic digestion (AD). Besides producing biogas, AD also serves as a pretreatment method to remove the wax la...

  17. Manual of procedures for the operation of bench-scale anaerobic digesters

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.R.

    1978-12-01

    The successful operation of any laboratory-scale biological system is often a difficult and frustrating experience. This is especially true when dealing with the anaerobic digestion process. Because of the stringent environmental requirements associated with anaerobic digesters, efficient operation of bench-scale units requires rigid monitoring and control. The purpose of this manual is to present the methods and procedures which are followed in bench-scale anaerobic digestion studies at Pacific Northwest Laboratory (PNL). Among the topics discussed are operating parameters, a description of the experimental system, typical digestion substrates, operational procedures, analytical techniques, and safety considerations. The document serves as a technical guide to PNL personnel assigned to a U.S. Department of Energy sponsored program evaluating the effect of powdered activated carbon on the anaerobic digestio of sewage sludge. It should be noted that the methods described in this manual do not necessarily represent the best or only means of conducting the research. They are merely procedures that have been found to be successful at PNL. It is hoped that this information may be useful to other researchers who are contemplating or pursuing bench-scale studies of their own.

  18. Phenolic compouds with antiradical activity from the cork boiling wastewater anaerobic digestion

    OpenAIRE

    Marques, Isabel Paula Ramos; Gil, Luís; La Cara, F

    2013-01-01

    This work aims to develop a procedure that explores the different types of valorization that can be obtained by integrating a biological process, such as the anaerobic digestion, to promote the bioconversion of the industrial cork effluents (cork boiling wastewater, CBW).

  19. Anaerobic digestion potential for ecological and decentralised sanitation in urban areas.

    Science.gov (United States)

    Elmitwalli, Tarek; Feng, Yucheng; Behrendt, Joachim; Otterpohl, Ralf

    2006-01-01

    The potential of anaerobic digestion in ecological and decentralised sanitation has been investigated in this research. Different anaerobic digestion systems were proposed for the treatment of sewage, grey water, black water and faeces. Moreover, mathematical models based on anaerobic digestion model no.1 (ADM1) were developed for determination of a suitable design for each system. For stable performance of an upflow anaerobic sludge blanket (UASB) reactor treating sewage, the model results indicated that optimisation of wastewater conversion to biogas (not COD removal) should be selected for determination of the hydraulic retention time (HRT) of the reactor. For the treatment of sewage or black water in a UASB septic-tank, the model results showed that the sludge removal period was the main parameter for determination of the HRT. At such HRT, both COD removal and wastewater conversion are also optimised. The model results demonstrated that for treatment of faeces in an accumulation (AC) system at temperature > or = 25 degrees C, the filling period of the system should be higher than 60 days. For maximisation of the net biogas production (i.e. reduction of biogas losses as dissolved in the effluent), the separation between grey water, urine and faeces and reduction of water consumption for faeces flushing are required. Furthermore, the faeces and kitchen organic wastes and grey water are digested in, respectively, an AC system and UASB reactor, while the urine is stored. PMID:16841726

  20. Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification.

    Science.gov (United States)

    Lei, Xiaohui; Sugiura, Norio; Feng, Chuanping; Maekawa, Takaaki

    2007-07-16

    In this study, ammonia stripping was optimized for pretreating anaerobic digestion effluent from an anaerobic digestion plant, and the possibility of using CO(2) stripping and biogas injection for adjusting the pH of the effluent before and after the ammonia stripping process was also investigated. For ammonia stripping, the results showed that an overdose of calcium hydroxide, i.e., 27.5g/L wastewater, achieved higher ammonia, phosphorus, chemical oxygen demand, suspended solids, and turbidity removal efficiency. An air flow rate of 5L/min for 1L of wastewater was thought as suitable for engineering application. The pH of the anaerobic digestion effluent can be increased from about 7 to about 9 by CO(2) stripping, however which is insufficient for ammonia stripping. For 1L of wastewater treated after ammonia stripping, the pH can be neutralized to about 7 from greater than 11 through biogas injection at 1L/min for less than 30min, and continuous injection does not decrease the pH. It was roughly estimated that 43m(3) of biogas (CH(4):CO(2) approximately 60%:40%) produced daily could be purified to CH(4):CO(2) approximately 74%:26% by neutralizing the pH of the 5m(3) anaerobic digestion effluent pretreated by ammonia stripping. PMID:17178436

  1. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology

    Science.gov (United States)

    Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonia recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1375 to 2089 milligram am...

  2. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure

    NARCIS (Netherlands)

    Mashad, El H.; Zeeman, G.; Loon, van W.K.P.; Bot, G.P.A.; Lettinga, G.

    2004-01-01

    The influence of temperature, 50 and 60 °C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fl

  3. Anaerobic Digestion. Selected Instructional Activities and References. Instructional Resources Monograph Series.

    Science.gov (United States)

    Townsend, Robert D., Comp.

    Focusing specifically on the wastewater treatment process of anaerobic digestion, this document identifies instructional and reference materials for use by professionals in the field in the development and implementation of new programs or in the updating of existing programs. It is designed to help trainers, plant operators, educators, engineers,…

  4. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well...

  5. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    Science.gov (United States)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the

  6. Anaerobic co-digestion of sewage sludge and primary clarifier skimmings for increased biogas production.

    Science.gov (United States)

    Alanya, S; Yilmazel, Y D; Park, C; Willis, J L; Keaney, J; Kohl, P M; Hunt, J A; Duran, M

    2013-01-01

    The objective of the study was to identify the impact of co-digesting clarifier skimmings on the overall methane generation from the treatment plant and additional energy value of the increased methane production. Biogas production from co-digesting clarifier skimmings and sewage sludge in pilot-scale fed-batch mesophilic anaerobic digesters has been evaluated. The digester was fed with increasing quantities of clarifier skimmings loads: 1.5, 2.6, 3.5 and 7.0 g COD equivalent/(L·d) (COD: chemical oxygen demand). Average volatile solids reduction of 65% was achieved in the scum-fed digester, compared with 51% in the control digester. Average 69% COD removal was achieved at highest scum loading (7 g COD eq/(L·d)) with approximate methane yield of 250 L CH(4)/kg COD fed (4 ft(3)/lb COD fed). The results show that scum as co-substrate in anaerobic digestion systems improves biogas yields while a 29% increase in specific CH(4) yield could be achieved when scum load is 7 g COD eq/(L·d). Based on the pilot-scale study results and full-scale data from South East Water Pollution Control Plant and Northeast Water Pollution Control Plant the expected annual energy recovery would be approximately 1.7 billion BTUs or nearly 0.5 million kWh. PMID:23128636

  7. Two-Stage Dry Anaerobic Digestion of Beach Cast Seaweed and Its Codigestion with Cow Manure

    Directory of Open Access Journals (Sweden)

    Valentine Nkongndem Nkemka

    2014-01-01

    Full Text Available Two-stage, dry anaerobic codigestion of seaweed and solid cow manure was studied on a laboratory scale. A methane yield of 0.14 L/g VSadded was obtained when digesting solid cow manure in a leach bed process and a methane yield of 0.16 L/g VSadded and 0.11 L/g VSadded was obtained from seaweed and seaweed/solid manure in a two-stage anaerobic process, respectively. The results showed that it was beneficial to operate the second stage methane reactor for the digestion of seaweed, which produced 83% of the methane, while the remainder was produced in the first leach bed reactor. Also, the two-stage system was more stable for the codigestion for seaweed and manure when compared to their separate digestion. In addition, the initial ammonia inhibition observed for manure digestion and the acidification of the leach bed reactor in seaweed digestion were both avoided when the materials were codigested. The seaweed had a higher Cd content of 0.2 mg Cd/kg TS than the manure, 0.04 mg Cd/kg TS, and presents a risk of surpassing limit values set for fertiliser quality of seaweed digestate. Evaluation of the heavy metal content of seaweed or a mixture of seaweed and manure digestate is recommended before farmland application.

  8. Anaerobic digestion of swine manure: Inhibition by ammonia

    DEFF Research Database (Denmark)

    Hansen, Kaare Hvid; Angelidaki, Irini; Ahring, Birgitte Kiær

    1998-01-01

    A stable anaerobic degradation of swine manure with ammonia concentration of 6 g-N/litre was obtained in continuously stirred tank reactors with a hydraulic retention time of 15 days, at Four different temperatures. Methane yields of 188, 141, 67 and 22 ml-CH4/g-VS were obtained at 37, 45, 55...

  9. Status on Science and Application of Thermophilic Anaerobic Digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1994-01-01

    Thermophilic anaerobic processes are often regarded as less stable than mesophilic processes. In the paper this postulate is examined and disproved based on real operational data from of full-scale mesophilic and thermophilic biogas plants. The start-up produce for the thermophilic plants was...

  10. Application of protein misfolding cyclic amplification to detection of prions in anaerobic digestate.

    Science.gov (United States)

    Gilroyed, Brandon H; Braithwaite, Shannon L; Price, Luke M; Reuter, Tim; Czub, Stefanie; Graham, Catherine; Balachandran, Arumuga; McAllister, Tim A; Belosevic, Miodrag; Neumann, Norman F

    2015-11-01

    The exceptional physio-chemical resistance of prions to established decontamination procedures poses a challenge to assessing the suitability of applied inactivation methods. Prion detection is limited by the sensitivity level of Western blotting or by the cost and time factors of bioassays. In addition, prion detection assays can be limited by either the unique or complex nature of matrices associated with environmental samples. To investigate anaerobic digestion (AD) as a practical and economical approach for potential conversion of specified risk materials (SRM) into value added products (i.e., renewable energy), challenges associated with detection of prions in a complex matrix need to be overcome to determine potential inactivation. Protein misfolding cyclic amplification (PMCA) assay, with subsequent Western blot visualization, was used to detect prions within the AD matrix. Anaerobic digestate initially inhibited the PMCA reaction and/or Western blot detection. However, at concentrations of ≤1% of anaerobic digestate, 263K scrapie prions could be amplified and semi-quantitatively detected. Infectious 263K prions were also proven to be bioavailable in the presence of high concentrations of digestate (10-90%). Development of the PMCA application to digestate provides extremely valuable insight into the potential degradation and/or fate of prions in complex biological matrices without requiring expensive and time-consuming bioassays. PMID:26272376

  11. Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment.

    Science.gov (United States)

    Wei, Yufang; Li, Xiujin; Yu, Liang; Zou, Dexun; Yuan, Hairong

    2015-12-01

    Biological and chemical pretreatment methods using liquid fraction of digestate (LFD), ammonia solution (AS), and NaOH were compared in the process of mesophilic anaerobic co-digestion of cattle manure and corn stover. The results showed that LFD pretreatment could achieve the same effect as the chemical pretreatment (AS, NaOH) at the performance of anaerobic digestion (AD). Compared with the untreated corn stover, the cumulative biomethane production (CBP) and the volatile solid (VS) removal rate of three pretreatment methods were increased by 25.40-30.12% and 14.48-16.84%, respectively, in the co-digestion of cattle manure and corn stover. T80 was 20-37.14% shorter than that of the control test (35 ± 1 days). LFD pretreatment not only achieved the same effect as chemical pretreatment, but also reduced T80 and improved buffer capacity of anaerobic digestion system. Therefore, this study provides meaningful insight for exploring efficient pretreatment strategy to stabilize and enhance AD performance for practical application. PMID:26409855

  12. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors.

    Science.gov (United States)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-11-01

    In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35±1°C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369-466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000-3000 mgNH4-N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation-emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production. PMID:25062938

  13. Microbial Community Response to Seasonal Temperature Variation in a Small-Scale Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    Frederick Michel

    2013-10-01

    Full Text Available The Bacterial and Archaeal communities in a 1.14 m3 ambient temperature anaerobic digester treating dairy cow manure were investigated using terminal restriction fragment length polymorphisms (T-RFLP and direct sequencing of the cloned polymerase chain reaction (PCR products. Results indicate shifts in the structure of the both the Archaeal and Bacterial communities coincided with digester re-inoculation as well as temperature and loading rate changes. Following re-inoculation of the sour digester, the predominant Archaea shifted from Methanobrevibacter to Methanosarcina, which was the most abundant Archaea in the inoculum. Methonosarcina was replaced by Methanosaeta after the resumption of digester loading in the summer of 2010. Methanosaeta began to decline in abundance as the digester temperature cooled in the fall of 2010 while Methanobrevibacter increased in abundance. The microbial community rate of change was variable during the study period, with the most rapid changes occurring after re-inoculation.

  14. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    International Nuclear Information System (INIS)

    Highlights: ► This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. ► Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. ► Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. ► Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. ► It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable

  15. Toxicity of di-(2-ethylhexyl) phthalate on the anaerobic digestion of wastewater sludge

    DEFF Research Database (Denmark)

    Alatriste-Mondragon, Felipe; Iranpour, R.; Ahring, Birgitte Kiær

    2003-01-01

    are considered recalcitrant. Moreover, they inhibit methanogenesis. However, studies have not been made on the effect of feeding a combination of recalcitrant and biodegradable PAEs into anaerobic digesters treating wastewater sludge. The present study was conducted with wastewater sludge from the Los Angeles...... populations in the anaerobic bioreactor. Our results imply that high levels of DEHP or other recalcitrant PAEs in wastewater sludge are likely to compromise methanogenesis and removal of biodegradable PAEs in sludge digesters....... Bureau of Sanitation's Hyperion Treatment Plant. Di (2-ethylhexyl) phthalate (DEHP), the most common persistent PAE found in wastewater, and di-n-butyl phthalate (DBP), a common PAE with short ester chains, were sorbed into the sludge fed to a bench-scale digester for a period of 12 weeks. DEHP...

  16. Citrus essential oils and their influence on the anaerobic digestion process: an overview.

    Science.gov (United States)

    Ruiz, B; Flotats, X

    2014-11-01

    Citrus waste accounts for more than half of the whole fruit when processed for juice extraction. Among valorisation possibilities, anaerobic digestion for methane generation appears to be the most technically feasible and environmentally friendly alternative. However, citrus essential oils can inhibit this biological process. In this paper, the characteristics of citrus essential oils, as well as the mechanisms of their antimicrobial effects and potential adaptation mechanisms are reviewed. Previous studies of anaerobic digestion of citrus waste under different conditions are presented; however, some controversy exists regarding the limiting dosage of limonene for a stable process (24-192 mg of citrus essential oil per liter of digester and day). Successful strategies to avoid process inhibition by citrus essential oils are based either on recovery or removal of the limonene, by extraction or fungal pre-treatment respectively. PMID:25081855

  17. A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Kotay, Shireen Meher; Trably, Eric;

    2009-01-01

    The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household...... wastes at 70 degrees C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80 degrees C and an optimal pH 8.1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon...... from digested household wastes. This study provided a culture with a potential to be applied in reactor systems for extreme thermophilic H-2 production from complex organic wastes....

  18. Coupling System for Food Wastes Anaerobic Digestion and Polyhydroxyalkanoates Production with Ralstonia eutropha

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new technology was developed to couple the anaerobic digestion of food wastes with production of polyhydroxyalkanoates (PHAs). Acetic, propionic, butyric and lactic acids were produced during food wastes anaerobic digestion and their concentrations reached 5.5, 1.8, 27.4 and 32.7 g/L, respectively under appropriate digestion conditions. The fermentative acids were transferred through a dialysis membrane to an air-lift reactor for PHA synthesis by Ralstonia eutropha. Dry cell concentration and PHA content reached 22.7 g/L and 72.6%, respectively. The obtained PHA was a copolymer of (-hydroxybutyrate (HB) and (-hydroxyvalerate (HV) with 2.8% (mole ratio) of HV units in polymer.

  19. Simulation of the Impact of SRT on Anaerobic Digestability of Ultrasonicated Hog Manure

    Directory of Open Access Journals (Sweden)

    Elsayed Elbeshbishy

    2010-05-01

    Full Text Available Ultrasonication at a specific energy of 500 kJ/kgTS was applied to hog manure in a continuous mode completely mixed anaerobic digestion. A process model in BioWin was developed, calibrated and tested at different solids retention times (SRTs to evaluate the process economics. The results showed that there was a 36% increase in volatile suspended solids (VSS removal efficiency, a 20% increase in methane production rate, a 13.5% increase in destruction of bound proteins, and a reduction from 988 to 566 ppm in H2S concentration in the digester headspace. Furthermore, a calibrated model of the process using BioWin to assess the impact of SRTs on the economics of anaerobic digestion for unsonicated and sonicated hog manure revealed that ultrasonication resulted in a net benefit of $42–46/ton dry solids at SRTs of 15–30 days.

  20. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    Science.gov (United States)

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. PMID:26897469

  1. Effect of Volatile Fatty Acid Concentration on Anaerobic Degradation Rate from Field Anaerobic Digestion Facilities Treating Food Waste Leachate in South Korea

    Directory of Open Access Journals (Sweden)

    Dong-Jin Lee

    2015-01-01

    Full Text Available The purpose of this study was to investigate the effect of volatile fatty acid concentration on anaerobic degradation rate of food waste leachate in the anaerobic digestion facilities. The anaerobic digestion facilities treating food waste leachate (FWL, codigestion with food leachate and animal manure (A-MIX, and codigestion with food waste leachate and sewage sludge (S-MIX were selected for this study. In accordance with the regulation under Wastes Control Act in South Korea, the guideline of volatile solid removal rate for anaerobic digestion facility is set as 65% for anaerobic degradation efficiency. Highest volatile solids removal rates were achieved from FWL (63.5% than A-MIX (56.4% and S-MIX (41.2%. Four out of eight FWLs met the guidelines. The concentration of volatile fatty acids, therefore, was analyzed to determine the relationship with volatile solid removal rate. The results showed that, in order to meet the Korean guideline of 65% volatile solid removal rate, volatile fatty acid concentrations should remain below 4,000 mg/L on the field anaerobic digestion facilities treating FWL. Volatile fatty acid concentrations should be used along with others as an operational parameter to control and manage the anaerobic digestion process.

  2. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  3. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    Science.gov (United States)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  4. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær; Deng, H.;

    2002-01-01

    . Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed...... that the high content of ammonia in swine manure, together with content of other nutrients, make it possible to degrade OME without addition of external alkalinity and without addition of external nitrogen source. Anaerobic treatment of OME in UASB reactors resulted in reduction of simple phenolic compounds......Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process...

  5. Research of Toxic Mechanism on Anaerobic Digestion by Lead

    Institute of Scientific and Technical Information of China (English)

    Han Jianhong; Wang Zhe; Zhang Lianke; Han Jintao

    2008-01-01

    The paper analyzes the influence of lead toxicity by anaerobic granule sludge inhibition and recovering experiments.The result shows that there are different inhibition types at differ ent lead contents.Higher lead content leads to more inhibition granular sludge,and at the same time,the time of gas recovery is different.Lower lead content per microorganism results in sooner sludge recovery.Microorganisms have a good ability to resist lead toxicity.

  6. Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters.

    Science.gov (United States)

    Belle, Ashley J; Lansing, Stephanie; Mulbry, Walter; Weil, Ray R

    2015-02-01

    Pilot-scale digesters (850 L) were used to quantify CH4 and H2S production when using forage radish cover crops as a co-digestion feedstock in dairy manure-based digesters. During two trials, triplicate mixed digesters were operated in batch mode with manure-only or radish+manure (27% and 13% radish by wet weight in Trial 1 and 2, respectively). Co-digestion increased CH4 production by 11% and 39% in Trial 1 and 2, respectively. As H2S production rapidly declined in the radish+manure digesters, CH4 production increased reaching high levels of CH4 (⩾67%) in the biogas. Over time, radish co-digestion lowered the H2S concentration in the biogas (0.20%) beyond that of manure-only digestion (0.34-0.40%), although cumulative H2S production in the radish+manure digesters was higher than manure-only. Extrapolated to a farm-scale (200 cows) continuous mixed digester, co-digesting with radish could generate 3150 m(3) CH4/month, providing a farmer additional revenue up to $3125/month in electricity sales. PMID:25278111

  7. Anaerobic digestion of manure - consequences for plant production

    DEFF Research Database (Denmark)

    Løes, Anne-Kristin; Pommeresche, Reidun; Johansen, Anders;

    2013-01-01

    methane (CH4) emissions during manure storage. Co-digestion of substrates rich in energy increases the economic viability of the biogas plant, and off-farm substrates such as fish silage or household waste may add nutrients to the farming system. AD may also ease manure handling, while reducing the amount...

  8. ANIMAL MANURE – REDUCED QUALITY BY ANAEROBIC DIGESTION?

    DEFF Research Database (Denmark)

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun;

    2014-01-01

    caused the death of both surface-dwelling and soil-living earthworms shortly after application, but the long-term effect of manure application seemed more positive, especially at low application levels. So far, we have observed only small differences in the effects of digested and undigested manure...

  9. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge.

    Science.gov (United States)

    Takashima, M; Tanaka, Y

    2010-01-01

    The effectiveness of acidic thermal treatment (ATT) was examined in a 106-day continuous experiment, when applied to one- or two-stage anaerobic digestion of sewage sludge (4.3% TS). The ATT was performed at 170 °C and pH 5 for 1 hour (sulfuric acid for lowering pH). The one-stage process was mesophilic at 20 days hydraulic retention time (HRT), and incorporated the ATT as pre-treatment. The two-stage process consisted of a thermophilic digester at 5 days HRT and a mesophilic digester at 15 days HRT, and incorporated the ATT as interstage-treatment. On average, VSS reduction was 48.7% for the one-stage control, 65.8% for the one-stage ATT, 52.7% for the two-stage control and 67.6% for the two-stage ATT. Therefore, VSS reduction was increased by 15-17%, when the ATT was combined in both one- and two-stage processes. In addition, the dewaterability of digested sludge was remarkably improved, and phosphate release was enhanced. On the other hand, total methane production did not differ significantly, and color generation was noted in the digested sludge solutions with the ATT. In conclusion, the anaerobic digestion with ATT can be an attractive alternative for sludge reduction, handling, and phosphorus recovery. PMID:21099053

  10. Microbial diversity in an anaerobic digester with biogeographical proximity to geothermally active region.

    Science.gov (United States)

    Mahajan, Rishi; Nikitina, Anna; Nozhevnikova, Alla; Goel, Gunjan

    2016-11-01

    Anaerobic digestion of agricultural biomass or wastes can offer renewable energy, to help meet the rise in energy demands. The performance of an anaerobic digester considerably depends upon the complex interactions between bacterial and archaeal microbiome, which is greatly influenced by environmental factors. In the present study, we evaluate a microbial community of digester located at two different geographical locations, to understand whether the biogeographical proximity of a digester to a geothermally active region has any influence on microbial composition. The comparative microbial community profiling, highlights coexistence of specific bacterial and archaeal representatives (especially, Prosthecochloris sp., Conexibacter sp., Crenarchaeota isolate (Caldivirga sp.), Metallosphaera sp., Pyrobaculum sp. and Acidianus sp.) in a digester with close proximity to geothermally active region (Site I) and their absence in a digester located far-off from geothermally active region (Site II). A Sörensen's index of similarity of 83.33% and 66.66% for bacterial and archaeal community was observed in both the reactors, respectively. PMID:26934210

  11. Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Hristova, Krassimira R; Kappell, Anthony D; McNamara, Patrick J

    2016-01-01

    Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg). PMID:26588246

  12. Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion

    International Nuclear Information System (INIS)

    Highlights: • Successful implementation of a new waste and energy concept to large size abattoir. • 85% of slaughterhouse waste accumulated converted to energy by anaerobic digestion. • Coverage of abattoirs’ electrical and thermal energy demand between 50% and 60%. • Reduction of main energy and disposal cost by 63%. • Reduction of greenhouse gas emissions by 79%. - Abstract: Abattoirs have a large number of energy intensive processes. Beside energy supply, disposal costs of animal by-products (ABP) are the main relevant cost drivers. In this study, successful implementation of a new waste and energy management system based on anaerobic digestion is described. Several limitations and technical challenges regarding the anaerobic digestion of the protein rich waste material had to be overcome. The most significant problems were process imbalances such as foaming and floatation as well as high accumulation of volatile fatty acids and low biogas yields caused by lack of essential microelements, high ammonia concentrations and fluctuation in operation temperature. Ultimately, 85% of the waste accumulated during the slaughter process is converted into 2700 MW h thermal and 3200 MW h electrical energy in a biogas combined heat and power (CHP) plant. The thermal energy is optimally integrated into the production process by means of a stratified heat buffer. The energy generated by the biogas CHP-plant can cover a significant share of the energy requirement of the abattoir corresponding to 50% of heat and 60% of electric demand, respectively. In terms of annual cost for energy supply and waste disposal a reduction of 63% from 1.4 Mio € to about 0.5 Mio € could be achieved with the new system. The payback period of the whole investment is approximately 9 years. Beside the economic benefits also the positive environmental impact should be highlighted: a 79% reduction of greenhouse gas emissions from 4.5 Mio kg CO2 to 0.9 Mio kg CO2 annually was achieved. The

  13. Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.

    Science.gov (United States)

    Alfaro, N; Cano, R; Fdz-Polanco, F

    2014-10-01

    Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170°C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences. PMID:25168914

  14. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    Directory of Open Access Journals (Sweden)

    M. Orikawa

    2013-10-01

    Full Text Available Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS dewatered sludge. The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic carbon (POC and dissolved organic carbon (DOC. The hydrothermal treatment was investigated under 10-60 min of treatment time, 180-200 °C of temperature, 10-22 %-TS of sewage sludge concentration. The results showed that the DOC in each conditions increased through hydrothermal treatment. The highest DOC obtained was 67 % of total carbon concentration, when the temperature was 180 °C, treatment time was 60 min and sewage sludge concentration was 10 %-TS. Furthermore, the viscosity of treated sewage sludge was decreased by hydrothermal treatment. In batch anaerobic digestion test, methane gas production was confirmed. In addition, this study evaluated the energy balance of this system. Thus, the results of this study indicated that the possibility of application of hydrothermal treatment to high concentrated sewage sludge for anaerobic digestion process. Keywords: anaerobic reaction, hydrothermal treatment, sewage sludge, solubilization

  15. Occurrence of trace organic contaminants in wastewater sludge and their removals by anaerobic digestion.

    Science.gov (United States)

    Yang, Shufan; Hai, Faisal I; Price, William E; McDonald, James; Khan, Stuart J; Nghiem, Long D

    2016-06-01

    This study aims to evaluate the occurrence of trace organic contaminants (TrOCs) in wastewater sludge and their removal during anaerobic digestion. The significant occurrence of 18 TrOCs in primary sludge was observed. These TrOCs occurred predominantly in the solid phase. Some of these TrOCs (e.g. paracetamol, caffeine, ibuprofen and triclosan) were also found at high concentrations (>10,000ng/L) in the aqueous phase. The overall removal of TrOCs (from both the aqueous and solid phase) by anaerobic digestion was governed by their molecular structure (e.g. the presence/absence of electron withdrawing/donating functional groups). While an increase in sludge retention time (SRT) of the digester resulted in a small but clearly discernible increase in basic biological performance (e.g. volatile solids removal and biogas production), the impact of SRT on TrOC removal was negligible. The lack of SRT influence on TrOC removal suggests that TrOCs were not the main substrate for anaerobic digestion. PMID:26795886

  16. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox Biofilms from Digestate in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2015-01-01

    Full Text Available Microbial Fuel cells (MFCs have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  17. Hyperspectral imaging techniques applied to the monitoring of wine waste anaerobic digestion process

    Science.gov (United States)

    Serranti, Silvia; Fabbri, Andrea; Bonifazi, Giuseppe

    2012-11-01

    An anaerobic digestion process, finalized to biogas production, is characterized by different steps involving the variation of some chemical and physical parameters related to the presence of specific biomasses as: pH, chemical oxygen demand (COD), volatile solids, nitrate (NO3-) and phosphate (PO3-). A correct process characterization requires a periodical sampling of the organic mixture in the reactor and a further analysis of the samples by traditional chemical-physical methods. Such an approach is discontinuous, time-consuming and expensive. A new analytical approach based on hyperspectral imaging in the NIR field (1000 to 1700 nm) is investigated and critically evaluated, with reference to the monitoring of wine waste anaerobic digestion process. The application of the proposed technique was addressed to identify and demonstrate the correlation existing, in terms of quality and reliability of the results, between "classical" chemical-physical parameters and spectral features of the digestate samples. Good results were obtained, ranging from a R2=0.68 and a RMSECV=12.83 mg/l for nitrate to a R2=0.90 and a RMSECV=5495.16 mg O2/l for COD. The proposed approach seems very useful in setting up innovative control strategies allowing for full, continuous control of the anaerobic digestion process.

  18. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    Directory of Open Access Journals (Sweden)

    Getachew D. Gebreeyessus

    2016-06-01

    Full Text Available During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH. In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so

  19. Terminal Reactions in the Anaerobic Digestion of Animal Waste †

    OpenAIRE

    Boone, David R.

    1982-01-01

    An anaerobic mesophilic digestor was operated using beef cattle waste (diluted to 5.75% volatile solids) as substrate; retention time was 10 days with daily batch feed. Volatile solids destruction was 36%. Daily gas production rate was 1.8 liters of gas (standard temperature and pressure) per liter of digestor contents (0.99 liters of CH4 per liter of digestor contents). Acetate turnover was measured, and it was calculated that 68% of the CH4 was derived from the methyl group of acetate. When...

  20. Biodegradability and toxicity of styrene in the anaerobic digestion process

    OpenAIRE

    Araya-Kroff, P.; Chamy, Rolando; M. Mota; Alves, M.M.

    2000-01-01

    Start-up and operation of an Upflow Anaerobic Sludge Blanket (UASB) reactor fed with an industrial effluent from a polymer synthesis plant containing 6 mg styrene 1ˉ¹ was unstable. In batch assays with 200 mg styrene 1ˉ¹, 74% of styrene was degraded at a rate of 7 ml methane gˉ¹ volatile suspended solids.day, without a lag phase. The toxicity limit (IC50) of styrene was 1.4 mM for the acetoclastic activity, 0.45 and 1.6 mM for the methanogenic activity in the presence of 30 mM of ...

  1. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2013-01-01

    in an anaerobic reactor was presented. Batch experiments showed that CO was inhibitory to methanogens, but not to bacteria, at CO partial pressure between 0.25 and 1 atm under thermophilic conditions. During anaerobic digestion of sewage sludge supplemented with CO added through a hollow fiber...... membrane (HFM) module in continuous thermophilic reactors, CO did not inhibit the process even at a pressure as high as 1.58 atm inside the HFM, due to the low dissolved CO concentration in the liquid. Complete consumption of CO was achieved with CO gas retention time of 0.2 d. Results from high...

  2. Anaerobic digestion of corn stovers for methane production in a novel bionic reactor.

    Science.gov (United States)

    Zhang, Meixia; Zhang, Guangming; Zhang, Panyue; Fan, Shiyang; Jin, Shuguang; Wu, Dan; Fang, Wei

    2014-08-01

    To improve the biogas production from corn stovers, a new bionic reactor was designed and constructed. The bionic reactor simulated the rumen digestion of ruminants. The liquid was separated from corn stovers and refluxed into corn stovers again, which simulated the undigested particles separated from completely digested materials and fed back again for further degradation in ruminant stomach. Results showed that the bionic reactor was effective for anaerobic digestion of corn stovers. The liquid amount and its reflux showed an obvious positive correlation with biogas production. The highest biogas production rate was 21.6 ml/gVS-addedd, and the total cumulative biogas production was 256.5 ml/gVS-added. The methane content in biogas ranged from 52.2% to 63.3%. The degradation of corn stovers were greatly enhanced through simulating the animal digestion mechanisms in this bionic reactor. PMID:24923659

  3. Radiotracer study on the efficiency of a cylindrical 2-stage anaerobic sludge digester

    International Nuclear Information System (INIS)

    Radiotracer experiments were carried out on a cylindrical 2-stage anaerobic sludge digester in order to investigate the improvement of their efficiency by means of RTD (residence time distribution) measurements before and after cleaning up the inside of the digester. The tracer was scandium in an EDTA solution which forms such a stable complex compound to keep the isotope form being adsorbed onto the surface of the pipelines or the wall. It was injected into the digester by pressurized nitrogen gas and its movement was monitored by NaI(Tl) scintillation detectors installed around the digester and recorded for a month by a 24-channel data acquisition system specially developed for radiotracer experiments by the Korea Tracer Group of KAERI. The experimental data was analysed for the MRT (mean residence time) and other parameters characterizing the flow behaviour. (author)

  4. Foam formation in biogas plants caused by anaerobic digestion of sugar beet.

    Science.gov (United States)

    Moeller, Lucie; Lehnig, Marcus; Schenk, Joachim; Zehnsdorf, Andreas

    2015-02-01

    The use of sugar beet in anaerobic digestion (AD) during biogas production can lead to process upsets such as excessive foaming in fermenters. In the present study, foam formation in sugar beet-fed digestates was studied in foaming tests. The increasing disintegration grade of sugar beet was observed to have a promoting effect on foaming in the digestate but did not affect the biogas yield. Chemical analysis of foam and digestate from sugar beet silage AD showed high concentrations of pectin, other carbohydrates and N-containing substances in the foam. Both pectin and sucrose showed little foaming in AD. Nevertheless, sucrose and calcium chloride had a promoting effect on foaming for pectin AD. Salts of divalent ions also enhanced the foam intensity in the case of sugar beet silage AD, whereas ammonium chloride and urea had a lessening effect on sugar beet-based foaming. PMID:25446785

  5. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester

    Science.gov (United States)

    Sivasankari, R.; Kumaran, P.; Normanbhay, Saifuddin; Halim Shamsuddin, Abd

    2013-06-01

    An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

  6. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester

    International Nuclear Information System (INIS)

    An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

  7. Biogas by two-stage microbial anaerobic and semi-continuous digestion of Chinese cabbage waste

    Institute of Scientific and Technical Information of China (English)

    Xiaoying Dong; Lijie Shao; Yan Wang; Wei Kou; Yanxin Cao; Dalei Zhang

    2015-01-01

    Anaerobic digestion of Chinese cabbage waste was investigated through a pilot-scale two-stage digester at a mesophilic temperature of 37 °C. In the acidification digester, the main product was acetic acid, with the maxi-mum concentration of 4289 mg·L-1 on the fourth day, accounting for 50.32%of total volatile fatty acids. The oxidation reduction potential (ORP) and NH4+-N level decreased gradual y with hydraulic retention time (HRT) of acidification. In the second digestion phase, the maximum methanogenic bacterial concentration reached 9.6 × 1010 ml-1 at the organic loading rate (OLR) of 3.5–4 kg VS·m-3, with corresponding HRT of 12–16 days. Accordingly, the optimal biogas production was 0.62 m3·(kg VS)-1, with methane content of 65%–68%. ORP and NH4+-N levels in the methanizer remained between-500 and-560 mV and 2000–4500 mg·L-1, respec-tively. Methanococcus and Methanosarcina served as the main methanogens in the anaerobic digester.

  8. Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes

    Institute of Scientific and Technical Information of China (English)

    LU Shu-guang; IMAI Tsuyoshi; UKITA Masao; SEKINE Masahiko

    2007-01-01

    Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic activities,i.e., β-glucosidase, β-glucosidase, N-α -benzoyl-L-argininamide (BAA)-hydrolysing protease, urease and phosphatase activities were analysed. The lower BAA-hydrolysing protease activity during the first 2-3 weeks was due to the inhibition of the low pH, but was enhanced simultaneously later with the pH increase. β-glucosidase activity showed the lowest values in weeks 1-2, and recovered simultaneously with the increase of BAA-hydrolysing protease activity. Acetic acid dominated most of the total VFAs in thermophilic digestion, while propionate and butyrate dominated in mesophilic digestion. Thermophilic digestion is confirmed more feasible for achieving better performance against misbalance, especially during the start-up period in a dry anaerobic digestion process.

  9. Anaerobic digestion of sewage sludge: French inventory and state of the art

    International Nuclear Information System (INIS)

    Following the Kyoto Protocol and the 'Grenelle de l'environnement', France committed itself to develop renewable energies. Methanization is a process which falls within this objective. Anaerobic digestion of organic material generates biogas made of methane (CH4), carbon dioxide (CO2) and water (H2O). In 2009, electricity generation from biogas represented only 0, 93% of the renewable electricity production in France. An inventory of facilities and a state of the art of the methanization of sewage sludge on wastewater treatment plants with the inhabitant equivalent of more than 30.000 were realized. They were done with bibliography and surveys. In France, 68 installations of sewage sludge methanization were counted. The primary technology used is a mix reactor in which sewage sludge, heated at deg. C 37, are introduced. Biogas is mainly valued to warm those sludges. Electrical valorization is poor, especially on old installations. Anaerobic digestion of sewage sludge is generally accepted by managers, mainly because of its capacity to reduce sewage sludge quantity and odors. Methanization as listed in France is quite basic. It is performed with digestion series modification, with pretreatments or with co-digestion. Given the quantity of sewage sludge which could be digested, France could increase renewable energies via biogas. However this technology is perfectible in many units because biogas is burned in flares. (authors)

  10. Study of the operational conditions for anaerobic digestion of urban solid wastes

    International Nuclear Information System (INIS)

    This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg-1 of wet waste day-1. Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT

  11. Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling.

    Science.gov (United States)

    Hidaka, Taira; Wang, Feng; Tsumori, Jun

    2015-09-01

    Anaerobic co-digestion of sewage sludge and other organic wastes, such as kitchen garbage, food waste, and agricultural waste, at a wastewater treatment plant (WWTP) is a promising method for both energy and material recovery. Substrate characteristics and the anaerobic digestion performance of sewage sludge and various organic wastes were compared using experiments and modeling. Co-digestion improved the value of digested sewage sludge as a fertilizer. The relationship between total and soluble elemental concentrations was correlated with the periodic table: most Na and K (alkali metals) were soluble, and around 20-40% of Mg and around 10-20% of Ca (alkaline earth metals) were soluble. The ratio of biodegradable chemical oxygen demand of organic wastes was 65-90%. The methane conversion ratio and methane production rate under mesophilic conditions were evaluated using a simplified mathematical model. There was reasonably close agreement between the model simulations and the experimental results in terms of methane production and nitrogen concentration. These results provide valuable information and indicate that the model can be used as a pre-evaluation tool to facilitate the introduction of co-digestion at WWTPs. PMID:26031329

  12. Anaerobic digestion of sulfate-acidified cattle slurry: One-stage vs. two-stage.

    Science.gov (United States)

    Moset, Veronica; Ottosen, Lars Ditlev Mørck; Xavier, Cristiane de Almeida Neves; Møller, Henrik Bjarne

    2016-05-15

    Two strategies to include acidified cattle manure (AcCM) in co-digestion with normal cattle manure (CM) are presented in this work. The strategies are a single thermophilic (50 °C) continuous stirred tank reactor (CSTR) anaerobic digestion and a two-step (65 °C + 50 °C) CSTR process. In both strategies, two different inclusion levels of H2SO4-acidified CM (10% and 20%) in co-digestion with normal CM were tested and compared with a control CSTR fed only CM. Important enhancement of methane (CH4) yield and solid reductions were observed in the thermophilic one-step CSTR working with 10% AcCM. However, a higher inclusion level of AcCM (20%) caused volatile fatty acid accumulation in the reactor and a more than 30% reduction in CH4 production. In terms of CH4 production, when 10% of AcCM was co-digested with 90% of CM, the two-step anaerobic co-digestion yielded less than the single step. During the first step of the two-step CSTR process, acidogenesis and a partial sulfate reduction were achieved. However, sulfide stripping between the first and the second step must be promoted in order to advance this technology. PMID:26985731

  13. A hybrid anaerobic membrane bioreactor coupled with online ultrasonic equipment for digestion of waste activated sludge.

    Science.gov (United States)

    Xu, Meilan; Wen, Xianghua; Yu, Zhiyong; Li, Yushan; Huang, Xia

    2011-05-01

    Anaerobic membrane bioreactor and online ultrasonic equipment used to enhance membrane filtration were coupled to form a hybrid system (US-AnMBR) designed for long-term digestion of waste activated sludge. The US-AnMBR was operated under volatile solids loading rates of 1.1-3.7 gVS/L·d. After comprehensive studies on digestion performance and membrane fouling control in the US-AnMBR, the final loading rate was determined to be 2.7 gVS/L·d with 51.3% volatile solids destruction. In the US-AnMBR, the improved digestion was due to enhanced sludge disintegration, as indicated by soluble matter comparison in the supernatant and particle size distribution in the digested sludge. Maximum specific methanogenic activity revealed that ultrasound application had no negative effect on anaerobic microorganisms. Furthermore, implementing ultrasound effectively controlled membrane fouling and successfully facilitated membrane bioreactor operation. This lab-scale study demonstrates the potential feasibility and effectiveness of setting up a US-AnMBR system for sludge digestion. PMID:21421308

  14. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    OpenAIRE

    Sheng Zhou; Jining Zhang; Guoyan Zou; Shohei Riya; Masaaki Hosomi

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure trea...

  15. Effects of initiating anaerobic digestion of layer-hen poultry dung at sub-atmospheric pressure

    OpenAIRE

    Chima C. Ngumah; Jude N. Ogbulie; Justina C. Orji; Ekperechi S. Amadi

    2013-01-01

    This study investigated the effects of initiating anaerobic digestion (AD) of dry layer-hen poultry dung at the sub-atmospheric pressure of -30 cmHg on biodegradation, biogasification, and biomethanation. The setup was performed as a batch process at an average ambient temperature of 29±2 0C and a retention time of 15 days. Comparisons were made with two other experiments which were both begun at ambient atmospheric pressure; one was inoculated with digestate from a previous layer-hen dung AD...

  16. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    OpenAIRE

    Assadawut Khanto; Peerakan Banjerdkij

    2016-01-01

    The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS) with Food Waste (FW). The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning ...

  17. CFD simulation of mechanical draft tube mixing in anaerobic digester tanks.

    Science.gov (United States)

    Meroney, Robert N; Colorado, P E

    2009-03-01

    Computational Fluid Dynamics (CFD) was used to simulate the mixing characteristics of four different circular anaerobic digester tanks (diameters of 13.7, 21.3, 30.5, and 33.5m) equipped with single and multiple draft impeller tube mixers. Rates of mixing of step and slug injection of tracers were calculated from which digester volume turnover time (DVTT), mixture diffusion time (MDT), and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. CFD satisfactorily predicted performance of both model and full-scale circular tank configurations. PMID:19135698

  18. Effects of disinfectants and antibiotics on the anaerobic digestion of piggery waste

    Energy Technology Data Exchange (ETDEWEB)

    Poels, J.; Van Assche, P.; Verstraete, W.

    1984-01-01

    The effects of disinfectants and antibiotics on the anaerobic digestion of piggery waste were investigated. The disinfectants Tego 51, Dettol, NaOCl and Creolin, and the antibiotics, chlortetracyclin, tylosin, erythromycin, chloramphenicol, bacitracin and virginiamycin were tested at different concentrations. At concentrations normally used in practice, no inhibitory effect on methanisation process was detected. However, higher concentrations of the antimicrobial agents, Dettol, Creolin, bacitracin and virginiamycin, markedly inhibited biogas production. In order to minimize possible digester failures, farmers are advised to respect the normal recommended dose and to use low-toxicity antimicrobial agents. (Refs. 8).

  19. Two-phase anaerobic digestion of spent tea leaves for biogas and manure generation.

    Science.gov (United States)

    Goel, B; Pant, D C; Kishore, V V

    2001-11-01

    Anaerobic digestion of spent tea leaves from an instant tea manufacturing factory was studied in a two-phase digester. The hydrolysis and acidification phase resulted in the formation of high organic strength liquid called leachate, with a chemical oxygen demand (COD) of 12,880 mg/l, within the retention time of 10 days. The leachate was tested in a batch methanaogensis reactor for biogas production. An average biogas yield of 0.48 m3/kg of COD destroyed was obtained with an average COD reduction of 93%. The biogas was analyzed for 73% methane content. PMID:11563707

  20. Simulation of DEHP biodegradation and sorption during the anaerobic digestion of secondary sludge

    DEFF Research Database (Denmark)

    Fountoulakis, M.S.; Stamatelatou, K.; Batstone, Damien J.;

    2006-01-01

    Di-ethylhexyl phthalate (DEHP) has commonly been found in the sludge of municipal wastewater treatment plants especially during anaerobic processing. It is slowly biodegradable under anaerobic conditions. Due to its high hydrophobicity, sorption-desorption processes can be rate-limiting for the c......Di-ethylhexyl phthalate (DEHP) has commonly been found in the sludge of municipal wastewater treatment plants especially during anaerobic processing. It is slowly biodegradable under anaerobic conditions. Due to its high hydrophobicity, sorption-desorption processes can be rate......-limiting for the compound biodegradation. In this study, the anaerobic biodegradation of DEHP was investigated through batch kinetic experiments and dynamic transitions of a continuous stirred tank reactor (CSTR) fed with secondary sludge contaminated with DEHP. A widely accepted model (ADM1) was used to fit the anaerobic...... digestion of secondary sludge and was properly extended to. account for DEHP removal, in which mass transfer processes are also involved. It was shown that DEHP removal was limited by the transfer of DEHP within the solid fraction. The criterion selected for the distinction of the two sites was whether...

  1. Recovery of anaerobic digestion after exposure to toxicants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Parkin, G.F.; Speece, R.E.

    1979-12-01

    The concept that methane fermentation cannot tolerate chronic or slug doses of toxicants has almost totally precluded methane fermentation as a viable contender for the treatment of industrial wastewaters. This study assayed a wide variety of toxicants, heavy metals, inorganic salts, organic chemicals, solvents, and antibiotics which are used in industrial processes and, therefore, appear in the industrial wastewaters therefrom. Toxicity was related to the reduction in methane production of a control containing no toxicant. The response of methane fermentation after exposure to a toxicant was assayed with unacclimated cultures as well as cultures which had been acclimated to increasing concentrations of the toxicant over long periods of time. The reversible nature of the toxicants was assayed by adding slug doses to plug flow anaerobic filters and recording gas production prior to, during, and after toxicant addition.

  2. Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor

    Directory of Open Access Journals (Sweden)

    F. Haugen, R. Bakke, and B. Lie

    2013-04-01

    Full Text Available A dynamic model has been adapted to a pilot anaerobic reactor fed diarymanure. Both steady-state data from online sensors and laboratory analysis anddynamic operational data from online sensors are used in the model adaptation.The model is based on material balances, and comprises four state variables,namely biodegradable volatile solids, volatile fatty acids, acid generatingmicrobes (acidogens, and methane generating microbes (methanogens. The modelcan predict the methane gas flow produced in the reactor. The model may beused for optimal reactor design and operation, state-estimation and control.Also, a dynamic model for the reactor temperature based on energy balance ofthe liquid in the reactor is adapted. This model may be used for optimizationand control when energy and economy are taken into account.

  3. Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 ℃ to 20 ℃ suddenly; 2 h time is needed for temperature decrease and recovery. Under the conditions ofS.0 g/(L·d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 ℃) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation;(3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay; hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation; (4) the thermophilic microorganisms were highly resilient to temperature fluctuation.

  4. Mechanism and kinetics model of hydrolysis in anaerobic digestion of kitchen wastes

    Institute of Scientific and Technical Information of China (English)

    吴云; 张代钧; 杨钢

    2009-01-01

    The profile of hydrolysates during the anaerobic digestion of kitchen wastes was investigated. The experimental results show that the hysteresis of hydrolytic rate is mainly controlled by the diffusion effect. The hydrolytic mechanism of kitchen wastes is elaborated by taking the diffusion effect into consideration. A segment model of the hydrolysis for kitchen waste is formulated including the coefficient of diffusion resistance in the model. The coefficients of diffusion resistance for different particle sizes are 1.42,2.12 and 2.78 respectively based on the experimental data,in which the coefficients of diffusion resistance conform an exponential function. So,the partitioning kinetic model could be integrated as a unified experience model. The model is verified with experimental data,which shows that the model could predict the concentration of organic substances during the anaerobic digestion of kitchen wastes.

  5. Temperature regulates methane production through the function centralization of microbial community in anaerobic digestion.

    Science.gov (United States)

    Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao

    2016-09-01

    Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning. PMID:27236402

  6. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate.

    Science.gov (United States)

    Sheets, Johnathon P; Ge, Xumeng; Li, Yueh-Fen; Yu, Zhongtang; Li, Yebo

    2016-02-01

    The aim of this work was to isolate methanotrophs (methane oxidizing bacteria) that can directly convert biogas produced at a commercial anaerobic digestion (AD) facility to methanol. A methanotrophic bacterium was isolated from solid-state anaerobic digestate. The isolate had characteristics comparable to obligate methanotrophs from the genus Methylocaldum. This newly isolated methanotroph grew on biogas or purified CH4 and successfully converted biogas from AD to methanol. Methanol production was achieved using several methanol dehydrogenase (MDH) inhibitors and formate as an electron donor. The isolate also produced methanol using phosphate with no electron donor or using formate with no MDH inhibitor. The maximum methanol concentration (0.43±0.00gL(-1)) and 48-h CH4 to methanol conversion (25.5±1.1%) were achieved using biogas as substrate and a growth medium containing 50mM phosphate and 80mM formate. PMID:26630583

  7. Effect of anaerobic digestion on the high rate of nitritation, treating piggery wastewater

    Institute of Scientific and Technical Information of China (English)

    Jiyeol Im; Kyungik Gil

    2011-01-01

    The amount of piggery wastewater as domestic livestock is increasing.The volume of piggery wastewater produced is less than the volume of other wastewaters,but piggery wastewater has a heavy impact on wastewater streams due to an extremely high concentration of nitrogen and COD.In this study,laboratory reactors were operated using piggery wastewater and the effluent of anaerobic digester from piggery wastewater plants.The purpose of this study was to induce the nitritation process,which is an economically advantageous nitrogen removal method that converts ammonium nitrogen into nitrite.The results showed that the effluent of anaerobic digester from piggery wastewater was more efficient than raw piggery wastewater in terms of inducing nitritation.It can be deduced that nitritation is largely affected by an organic fraction of piggery wastewater.It can also be concluded that a small amount of biodegradable organic matter in piggery wastewater is efficient in inducing nitritation.

  8. Pilot-scale experiments on two-stage mesophilic anaerobic digestion of food waste

    Energy Technology Data Exchange (ETDEWEB)

    Altinbas, M.; Balaban, U.; Ericyel, K.; Gulay, A.; Dereli, R.K.; Ersahin, M.E.; Arikan, O.; Aydin, A.F.; Ozturk, I. [Istanbul Technical University, Department, Environmental Engineering, 34469, Maslak-Istanbul, (Turkmenistan)

    2008-07-01

    The aim of this paper was to analyze the two-stage mesophilic anaerobic digestion of food waste from a university campus restaurant in a chemostat pilot-scale reactors. Two different total solid concentrations (2.3% and 4.8%) were studied. Experimental results showed that the reactor with both total solids content had significantly higher performance. Overall COD removal was 78% for 4.8% total solid content. Since the isovaleric, iso-butyric and acetate were the dominant species for the 2.3% solid content in the fermenter, only acetate was dominant for 4.8% solid content. The methane yield and ratio in biogas were 0.24 m3 CH4/kg VS removed and {approx}62%, respectively. Process evaluation demonstrated that two-stage mesophilic anaerobic digestion process is an attractive treatment technology for food wastes.

  9. [Studies on the anaerobic phased solid digester system for municipal solid waste (MSW) treatment].

    Science.gov (United States)

    Wang, Jun-qin; Shen, Dong-sheng

    2004-05-01

    Through analyzing and detecting the leaching pollutant (COD) in two bioreactors, anaerobic phased solid digester system and leachate direct-recirculating landfill, the changing rule of municipal solid waste and the characteristics of methanogenesis were studied. The results showed that anaerobic phased solid digester system accelerated the process of degrading municipal solid waste and stabilizing landfill site. The relationship between the leaching pollutant (COD) and refuse age was logarithmic linear correlation. More than 80% of biogas in volume occured in the methanogenisis bioreactor, the methane content in which was 55%-69%. The preferable volumetric COD loading rate of the methanogenisis bioreactor was 6.5-7.5 g/(L x d). PMID:15327275

  10. Using feature objects aided strategy to evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion.

    Science.gov (United States)

    Zhou, Qi; Yuan, Hairong; Liu, Yanping; Zou, Dexun; Zhu, Baoning; Chufo, Wachemo A; Jaffar, Muhammad; Li, Xiujin

    2015-03-01

    Feature objects aided strategy was used to predict and evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion. The kinetics of co-digestion and mono-digestion of food waste and/or corn stalk was also analyzed. The results indicated that the compositions of food waste and corn stalk were significantly different. The anaerobic digestion of three feature objects at different mixing ratios showed the different biomethane yields and kinetic constants. Food waste and corn stalk co-digestion enhanced the digestion rate and achieved 22.48% and 41.55% higher biomethane production than those of food waste and corn stalk mono-digestion, respectively. PMID:25575585

  11. The Influence of Loading Rate and Variable Temperatures on Microbial Communities in Anaerobic Digesters

    Directory of Open Access Journals (Sweden)

    Richard J. Ciotola

    2014-02-01

    Full Text Available The relationship between seasonal temperatures, organic loading rate (OLR and the structure of archaeal communities in anaerobic digesters was investigated. Previous studies have often assessed archaeal community structure at fixed temperatures and constant OLRs, or at variable temperatures not characteristic of temperate climates. The goal of this study was to determine the maximum OLR that would maintain a balanced microbial ecosystem during operation in a variable temperature range expected in a temperate climate (27–10 °C. Four-liter laboratory digesters were operated in a semi-continuous mode using dairy cow manure as the feedstock. At OLRs of 1.8 and 0.8 kg VS/m3·day the digesters soured (pH < 6.5 as a result of a decrease in temperature. The structure of the archaeal community in the sour digesters became increasingly similar to the manure feedstock with gains in the relative abundance of hydrogenotrophic methanogens. At an OLR of 0.3 kg VS/m3·day the digesters did not sour, but the archaeal community was primarily hydrogenotrophic methanogens. Recommendations for operating an ambient temperature digester year round in a temperate climate are to reduce the OLR to at least 0.3 kg VS/m3·day in colder temperatures to prevent a shift to the microbial community associated with the sour digesters.

  12. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production.

    Science.gov (United States)

    Lijó, Lucía; González-García, Sara; Bacenetti, Jacopo; Negri, Marco; Fiala, Marco; Feijoo, Gumersindo; Moreira, María Teresa

    2015-07-01

    The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidenced the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions. PMID:25892438

  13. Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion

    OpenAIRE

    Wilkins, David; Rao, Subramanya; Lu, Xiaoying; Lee, Patrick K. H.

    2015-01-01

    Anaerobic digestion (AD) is a widespread microbial technology used to treat organic waste and recover energy in the form of methane (“biogas”). While most AD systems have been designed to treat a single input, mixtures of digester sludge and solid organic waste are emerging as a means to improve efficiency and methane yield. We examined laboratory anaerobic cultures of AD sludge from two sources amended with food waste, xylose, and xylan at mesophilic temperatures, and with cellulose at meso-...

  14. Biopolymer and Cation Release in Aerobic and Anaerobic Digestion and the Consequent Impact on Sludge Dewatering and Conditioning Properties

    OpenAIRE

    Rust, Mary Elizabeth

    1998-01-01

    Sludge dewatering and chemical conditioning requirements were examined from the perspective of biopolymer and cation release from activated sludge flocs. Both aerobic and anaerobic digestion processes were considered from two different activated sludge sources at a temperature of 20° C. Polymer demand and specific resistance to filtration increased with an increase in total soluble biopolymer concentration for all temperature ranges. In anaerobic digestion,...

  15. Study of methods for the improvement of the anaerobic digestion of lipids and long chain fatty acids

    OpenAIRE

    Affes Salah, Rim

    2013-01-01

    Anaerobic digestion is a biochemical process that transforms diverse categories of biomass feedstock to renewable energy, in the form of methane, and contributes to resources conservation and greenhouse gases emission mitigation. Lipid-rich waste and wastewaters have a high energy potential, however efficient methane recovery with conventional anaerobic digestion technology is not easy to achieve because of a wide assortment of operational problems mainly related to the accumulation of long...

  16. Isolation of a tannic acid-degrading Streptococcus sp. from an anaerobic shea cake digester.

    Science.gov (United States)

    Nitiema, L W; Dianou, D; Simpore, J; Karou, S D; Savadogo, P W; Traore, A S

    2010-01-01

    An anaerobic digester fed with shea cake rich in tannins and phenolic compounds rich-shea cake and previously inoculated with anaerobic sludge from the pit of a slaughterhouse, enabled six months acclimatization of the bacteria to aromatic compounds. Afterwards, digester waste water samples were subject to successive culture on media with 1 g L(-1) tannic acid allowing the isolation of a bacterial strain coded AB. Strain AB was facultatively anaerobic, mesophilic, non-motile, non-sporulating, catalase and oxidase negative bacterium, namely strain AB, was isolated from an anaerobic digester fed with shea cake rich in tannins and phenolic compounds, after inoculation with anaerobic sludge from the pit of a slaughterhouse and enrichment on tannic acid. The coccoid cells occurred in pair, short or long chains and stained Gram-positive. Strain AB fermented a wide range of carbohydrates including glucose, fructose, galactose, raffinose, arabinose, sucrose, maltose, lactose, starch and cellulose. Optimum growth occurred with glucose and tannic acid at 37 degrees C and pH 8. The pH, temperature and salt concentration for growth ranged from 5 to 9, 20 to 45 degrees C and 0 to 15 g L(-1), respectively. Strain AB converted tannic acid to gallic acid. These features were similar to those of the Streptococcus genus. The determination of tannic acid hydrolysis end products, ability to utilize various organic acids, alcohols and peptides, GC% of the DNA, the sequencing of 16S rRNA gene and DNA-DNA hybridization will permit to confirm this affiliation and to determine the species. PMID:20415153

  17. Canada's SUBBOR, enhanced anaerobic digestion technology: utilization of waste biomass avoids GHG emissions and provides alternate energy

    International Nuclear Information System (INIS)

    Waste biomass disposition is a growing problem facing municipalities. Municipal Solid Waste (MSW), to name one example, comprises 300,000,000 tonnes of organic-rich refuse per year in North America. MSW contributes approximately 4% of all greenhouse gas (GHG) emissions through the release of methane from decomposing landfilled waste. SUBBOR is a patented anaerobic digestion biotechnology that replaces landfills by processing wastes in a controlled industrial facility. The technology employs unique treatment steps that increase digestibility of wastes and therefore the biogas energy yield when processing biomass. Most biomass materials have suffered from limited digestibility and thus, poor utility, due to the physical/chemical nature of the lignin-rich fiber, prevalent in these materials. SUBBOR's technological advances have overcome this problem. The integrated process provides enhanced biogas/energy yields, produces a stable peat-like by-product, destroys all pathogenic microorganisms and permits treatment of a wide range of biomass types. Current life-cycle assessment models indicate that, relative to the baseline practice of landfill disposal, SUBBOR can provide a combined GHG off-set credit of up to 3 tonnes CO2 per ton of MSW processed. This large GHG reduction potential is separate from other GHG mitigation approaches and therefore can greatly assist municipalities in achieving sustainable development while cushioning the economic impact of GHG reductions in the traditional energy-consuming sectors. (author)

  18. Anaerobic digestion of molasses by means of a vibrating and non-vibrating submerged anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    Bio-refineries produce large volumes of waste streams with high organic content, which are potentially interesting for further processing. Anaerobic digestion (AD) can be a key technology for treatment of these sidestreams, such as molasses. However, the high concentration of salts in molasses can cause inhibition of methanogenesis. In this research, concentrated and diluted molasses were subjected to biomethanation in two types of submerged anaerobic membrane bioreactors (AnMBRs): one with biogas recirculation and one with a vibrating membrane. Both reactors were compared in terms of methane production and membrane fouling. Biogas recirculation seemed to be a good way to avoid membrane fouling, while the trans membrane pressures in the vibrating MBR increased over time, due to cake layer formation and the absence of a mixing system. Stable methane production, up to 2.05 L L−1 d−1 and a concomitant COD removal of 94.4%, was obtained only when diluted molasses were used, since concentrated molasses caused a decrease in methane production and an increase in volatile fatty acids (VFA), indicating an inhibiting effect of concentrated molasses on AD. Real-time PCR results revealed a clear dominance of Methanosaetaceae over Methanosarcinaceae as the main acetoclastic methanogens in both AnMBRs. - Highlights: • An anaerobic membrane bioreactor (AnMBR) can be used to digest diluted molasses. • Biogas recirculation is a good way to avoid fouling in an AnMBR. • Trans membrane pressures in AnMBR with vibrating membrane increased over time. • Methanosaeta sp. were the dominant acetoclastic methanogens

  19. Effects of Organic Loading Rate on the Performance of a Pressurized Anaerobic Filter in Two-Phase Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Yuling Chen

    2014-02-01

    Full Text Available The effect of organic loading rate (OLR on a pressurized anaerobic filter was studied in a laboratory two-phase anaerobic digestion system. The anaerobic filter was operated successively at two working pressures (9 bar and 1.5 bar. The OLR(COD for each pressure was increased from 5 to 17.5 kg·m−3·day−1. The best performance of the reactor at 9 bar was observed at OLR(COD of 12.5 kg·m−3·day−1 and hydraulic retention time (HRT of 1.8 day, with specific biogas productivity (SBP of 5.3 L·L−1·day−1 and COD degradation grade of 90.6%. At higher OLRs and shorter HRTs, the process became unstable. In contrast, there was no indication of digester failure during the experiments at 1.5 bar. The SBP peaked at OLR(COD of 17.5 kg·m−3·day−1 with 8.2 L·L−1·day−1, where COD degradation grade was 90.4%. The biogas collected from the reactor at 9 bar and 1.5 bar contained approximately 74.5% CH4 and 66.2% CH4, respectively, regardless of OLR variation. At OLR(COD of 5–12.5 kg·m−3·day−1, the reactor at 9 bar had the same specific methane yield as at 1.5 bar, which was in the range of 0.31–0.32 LN·g−1COD. Raising the working pressure in the reactor resulted in an increase of methane content of the produced biogas. However, the low pH value (approximately 6.5 inside the reactor, induced by high CO2 partial pressure seemed to limit the reactor performance at high OLRs and short HRT.

  20. Effect of limonene on anaerobic digestion of citrus waste and pretreatments for its improvement

    OpenAIRE

    RUIZ FUERTES, BEGOÑA

    2015-01-01

    [EN] Anaerobic digestion is a sustainable and technically sound way to valorise citrus waste if the inhibitory effect of the citrus essential oil (CEO) is controlled. Several strategies have been proposed to overcome these difficulties: keeping the organic loading rate (OLR) in low values to avoid excess dosage of inhibitor, supplementing the citrus waste with nutrient and buffering solutions or pre-treating the citrus waste in order to reduce the CEO concentration, either by recovery or by d...

  1. Correlation between Organic Matter Degradation and the Rheological Performance of Waste Sludge During Anaerobic Digestion

    Science.gov (United States)

    Morel, Evangelina S.; Hernández-Hernándes, José A.; Méndez-Contreras, Juan M.; Cantú-Lozano, Denis

    2008-07-01

    Anaerobic digestion has demonstrated to be a good possibility to reduce the organic matter contents in waste activated sludge resulting in the effluents treatment. An anaerobic digestion was carried out in a 3.5 L reactor at 35 °C for a period of 20 days. An electronic thermostat controlled the temperature. The reactor was agitated at a rate of 200 rpm. The study of the rheological behavior of the waste activated sludge was done with an Anton Paar™ rheometer model MCR301 with a peltier plate for temperature control. Four-blade vane geometry was used with samples of 37 mL for determining rheological properties. Sampling (two samples) was taken every four days of anaerobic digestion through a peristaltic pump. The samples behavior was characterized by the Herschel-Bulkley model, with R2>0.99 for most cases. In all samples were found an apparent viscosity (ηap) and yield stress (τo) decrement when organic matter content diminishes. This demonstrates a relationship between rheological properties and organic matter concentration (% volatile solids). Also the flow activation energy (Ea) was calculated using the Ahrrenius correlation and samples of waste activated sludge before anaerobic digestion. In this case, samples were run in the rheometer at 200 rpm and a temperature range of 25 to 75 °C with an increment rate of 2 °C per minute. The yield stress observed was in a range of 0.93-0.18 Pa, the apparent viscosity was in a range of 0.0358-0.0010 Pa.s, the reduction of organic matter was in a range of 62.57-58.43% volatile solids and the average flow activation energy was 1.71 Calṡg-mol-1.

  2. The impact of temperature on the rheological behaviour of anaerobic digested sludge

    OpenAIRE

    Baudez, J.C.; Slatter, P.; Eshtiaghi, N.

    2013-01-01

    The rheological properties of municipal anaerobic digested sludge rheology are temperature dependent. In this paper, we show that both solid and liquid characteristics decrease with temperature. We also show that the yield stress and the high shear (Bingham) viscosity are the two key parameters determining the rheological behaviour. By normalising the shear stress with the yield stress and the shear rate with the yield stress divided by the Bingham viscosity, a master curve was obtained, inde...

  3. A German survey on structure and developments of anaerobic digestion in organic farming systems

    OpenAIRE

    Benjamin Blumenstein; Torsten Siegmeier; Carsten Bruckhaus; Victor Anspach; Detlev Möller

    2015-01-01

    Rising global energy needs and limited fossil fuel reserves have led to increased use of renewable energies. In Germany, this has entailed massive exploitation of agricultural biomass for biogas generation, associated with unsustainable farming practices. Organic agriculture not only reduces negative environmental impacts, organic farmers were also prime movers in anaerobic digestion (AD) in Germany. This study’s aim was to identify the structure, development, and characteristics of biogas pr...

  4. Implementation of Package IBR Anaerobic Digester at the Ohio State University

    OpenAIRE

    Dustin, J. Shaun; Yu, Zhongtang; Hansen, Conly L.; Dustin, Jacob D.

    2012-01-01

    The Induced Bed Reactor (IBR) is a high rate anaerobic digester designed to treat high-solids, high strength wastes, such as those found in dairy manures and mixed solid wastes. The IBR has been successfully operated at bench, pilot and full scale. The objective of this paper is to present design and implementation of a 3,800 L pilot scale facility at The Ohio State University's OARDC facility in Wooster, OH for testing and optimization of IBR systems at small dairies.

  5. ANAEROBIC DIGESTION IN SANITIZATION OF PIG SLURRY AND BIOMASS IN AGRICULTURAL BIOGAS PLANT

    OpenAIRE

    Michał Grudziński; Arkadiusz Pietruszka; Wojciech Sawicki

    2015-01-01

    Pig slurry is one of the production manure, which should be managed properly because of environmental threats it can cause. Pig slurry contains a wide range of microorganisms, most of which are opportunistic or obligatory pathogens for people and animals. Spreading it on fields without control can cause microbial contaminations of water and soil. Use of pig slurry as substrate in anaerobic digestion can be an effective way of sanitization. In this work role of methanogenic fermentation in pig...

  6. Evaluation the anaerobic digestion performance of solid residual kitchen waste by NaHCO3 buffering

    International Nuclear Information System (INIS)

    Highlights: • The maximum methane production of SRKW was 479 mL/gTSadded. • Anaerobic digestion capacity increased by 33.3% through NaHCO3 buffering. • Protease activity was mainly affected by high organic load. - Abstract: Anaerobic digestion has been considered as a promising energy-producing process for kitchen waste treatment. In this paper, the anaerobic digestion (AD) performances of solid residual kitchen waste (SRKW) with or without NaHCO3 buffering were investigated. The results indicated that the methane production reached the maximum of 479 mL/gTSadded at the inoculum to substrate ratio (ISR, based on VS) of 1:1.4 without buffering, accompanied by VS removal rate of 78.91%. Moreover, the anaerobic digestion capacity increased by 33.3% through NaHCO3 buffering, and the methane yield at ISR 1:2.8 was improved by 48.5% with NaHCO3 addition. However, the methanogenesis with or without NaHCO3 buffer was suppressed at ISR 1:3.5, indicated from the lowest methane yield of 55.50 mL/gTSadded and high volatile fatty acids concentration of more than 14,000 mg/L. Furthermore, proteins in SRKW were not degraded completely at excessive organic loading, since the concentrations of ammonia nitrogen in ISR 1:3.5 groups with (2738 mg/L) and without NaHCO3 buffering (2654 mg/L) were lower than the theoretical value of 3500 mg/L and the protease activities in ISR 1:3.5 groups were also inhibited

  7. Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea

    OpenAIRE

    Sutherland, Alastair D; Varela, J.

    2014-01-01

    Background: The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. Results: All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human s...

  8. The development of a mesh bioreactor for the anaerobic digestion of biodegradable municipal waste

    OpenAIRE

    Walker, Mark

    2008-01-01

    A laboratory scale prototype mesh bioreactor (MeBR) for the two-stage anaerobic digestion (AD) of biodegradable municipal waste (BMW) was successfully designed and tested. The development involved a number of preliminary stages; creation and characterization of a synthetic BMW (SBMW), exploration of its single-stage AD characteristics under both methanogenic and hydrolytic conditions, and AD trials of a two-stage reactor system where SBMW was fed to a 1st stage hydraulic flush (HF)reactor and...

  9. Investigation of anaerobic digestion in a two-stage bioprocess producing hydrogen and methane

    OpenAIRE

    Hiligsmann, Serge; Hamilton, Christopher; Beckers, Laurent; Masset, Julien; Thonart, Philippe

    2010-01-01

    Hydrogen has received wide attention in the last decades as a clean energy vector. The major advantage of energy generation from hydrogen is the near-zero carbon emissions, since the utilization of hydrogen, either via combustion or via fuel cells, results in pure water. Recently, there has been increasing interest on the biological production of hydrogen gas from renewable biomass such as carbohydrates from agriculture or agro-food industries. This specific anaerobic digestion...

  10. Citrus essential oils and their influence on the anaerobic digestion process: An overview

    OpenAIRE

    RUIZ FUERTES, BEGOÑA; Flotats Ripoll, Xavier

    2014-01-01

    Citrus waste accounts for more than half of the whole fruit when processed for juice extraction. Among valorisation possibilities, anaerobic digestion for methane generation appears to be the most technically feasible and environmentally friendly alternative. However, citrus essential oils can inhibit this biological process. In this paper, the characteristics of citrus essential oils, as well as the mechanisms of their antimicrobial effects and potential adaptation mechanisms are reviewed. P...

  11. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable.

    OpenAIRE

    Sialve, Bruno; Bernet, Nicolas; Bernard, Olivier

    2009-01-01

    International audience The potential of microalgae as a source of biofuels and as a technological solution for CO2 fixation is subject to intense academic and industrial research. In the perspective of setting up massive cultures, the management of large quantities of residual biomass and the high amounts of fertilizers must be considered. Anaerobic digestion is a key process that can solve this waste issue as well as the economical and energetic balance of such a promising technology. Ind...

  12. Carbon dioxide utilisation in anaerobic digesters as an on-site carbon revalorisation strategy

    OpenAIRE

    Bajón Fernández, Yadira

    2014-01-01

    The increasing carbon footprint of the water and organic waste sectors has led to water utilities to voluntarily include carbon mitigation approaches within their strategic plans and to an increase in research aimed at mitigating carbon dioxide (CO2) emissions. Injection of CO2 in anaerobic digesters (ADs) for its bioconversion into methane (CH4) has been identified as a potential solution. However, previous literature provided limited knowledge of the carbon benefits obtainable and presented...

  13. Vinasse treatment by coupling of electro-dissolution, heterocoagulation and anaerobic digestion

    OpenAIRE

    Paz-Pino, Olga Lucía; Barba-Ho, Luz Edith; MARRIAGA CABRALES, NILSON

    2014-01-01

    The distillery vinasse is the most important liquid effluent of the ethanol production process and it is characterized by a high chemical oxygen demand (COD) and high biochemical oxygen demand (BOD); besides its acid pH and dark brown color. Phenol content in vinasse causes inhibitory effects on anaerobic digestion processes and has an adverse environmental impact. An alternative for treating vinasse from distilleries by using the electro-dissolution of iron and a heterocoagulation stage with...

  14. Ensiling agroindustrial waste prior to anaerobic digestion: a solution for long term storage

    OpenAIRE

    Hillion, Marie-Lou; Torrijos, Michel; Trably, Eric; Louchard, Benjamin; Leblanc, Y. (Hrsg.); Steyer, Jean-Philippe; Escudié, Renaud

    2016-01-01

    In the current context of waste recovering, production of renewable energy and reduction of greenhouse gases emission, anaerobic digestion (AD) is a technology receiving increasing interest. AD is a biological process, which allows the degradation of organic waste, related to human activity, producing a biogas storable and recoverable in the form of energy. Substrates are often selected according to their biodegradability and availability. Therefore, crop residues, such as wheat straws, are i...

  15. Potential of Biogas Power Plant Produced by Anaerobic Digestion of Biodegradable Materials

    OpenAIRE

    Nur Shuhada Ghazali; Md Azree Othuman Mydin; Nik Fuaad Nik Abllah

    2013-01-01

    Biogas typically refers to a gas produced by the breakdown of organic matter in the absence of oxygen. It is a renewable energy source, like solar and wind energy. Furthermore, biogas can be produced from regionally available raw materials and recycled waste and is environmentally friendly and CO2 neutral. Biogas is produced by the anaerobic digestion or fermentation of biodegradable materials such as manure, sewage, municipal waste, green waste, plant material, and crops. B...

  16. Evaluation of anaerobic digestion process for derived-MBT organic solid wastes

    OpenAIRE

    Arsand, Marcel

    2008-01-01

    Semi-continuous and batch system bench-scale reactors, at mesophilic temperature, were set-up to investigate the performance of anaerobic digestion treating mixed waste from municipal solid collection, derived from two large-scale mechanical biological treatment (MBT) plant, in the UK. The biogas yield using the semi-continuous reactor was determined to be between 300 and 410 mL/gVS with average methane content of 51% and average volatile solid destruction of 70%. During the...

  17. The modelling of an anaerobic digestion plant and a sewage plant in the ORWARE simulation model

    OpenAIRE

    Dalemo, Magnus

    1996-01-01

    A simulation model, called ORWARE (ORganic WAste REsearch model), has been developed for evaluation of handling alternatives for organic waste. The model deals with both source separated solid organic waste and liquid organic waste i.e. wastewater. Included are transport for collection, incineration, landfilling, anaerobic digestion, composting, transportation of residuals and spreading on arable land. The model is intended for simulation of handling scenarios for organic waste and calculates...

  18. ASSESSMENT OF WASTE TREATMENT AND ENERGY RECOVERY FROM DAIRY INDUSTRIAL WASTE BY ANAEROBIC DIGESTION

    OpenAIRE

    Richa Kothari, Virendra Kumar, and Vineet Veer Tyagi

    2011-01-01

    Waste treatment with simultaneous energy generation was studied in anaerobic digester using dairy industry waste (sludge, influent) as substrate. No pretreatment or solid liquid separation was applied. Batch fermentation experiments were performed with three different substrates at organic pollution load (OPL) under mesophilic range of temperature (30_+C). Experimental data evidence the effectiveness of waste on both the removal efficiency in terms of substrate degradation and biogas yield, p...

  19. Psychrophilic dry anaerobic digestion of cow feces and wheat straw: Feasibility studies

    International Nuclear Information System (INIS)

    This paper reports a novel psychrophilic dry anaerobic digestion (PDAD) of cow feces (feces) and wheat straw (WS). Three feeding strategies (WS, feces, and feces plus WS) were assessed in pseudo sequential batch reactors (PSBR) during three successive cycles of around 21 days hydraulic retention time (HRT). Average specific methane yields on VS fed (L kg−1) of 129 ± 17 (WS only), 164 ± 23 (feces only (10–11% TS)) and 152 ± 6 (a mixture of feces plus WS (16% TS)) were obtained during the last three successive cycles. The average methane production rates on VS fed were 3.5 ± 1.5 and 3.6 ± 1.3 and 4.1 ± 0.4 L kg−1 d−1 for the three feeding strategies, respectively. The successive cycles revealed that the psychrophilic anaerobic digestion of high-solid content of cow feces and wheat straw is a reproducible process, practically feasible, and as efficient as mesophilic dry anaerobic digestion given that a well-adapted inoculum is developed and maintained. - Highlights: • Cow feces and wheat straw (CFWS) psychrophilic dry anaerobic digestion (PDAD). • PDAD of CFWS (TS 16% mass fraction) is feasible and as efficient as mesophilic DAD. • VS OLR 1.5 g kg−1 d−1 produced VS-based SMY of 152 ± 6 L kg−1 • Inoculum adaptation is a prerequisite to a stable PDAD

  20. Anaerobic digestion modelling: innovative characterization tool and extension to micropollutant fate

    OpenAIRE

    Jimenez, Julie; Aemig, Quentin; Steyer, Jean-Philippe; Patureau, Dominique

    2014-01-01

    Advanced dynamic anaerobic digestion models, such as ADM1, requires both detailed organic matter characterisation and intimate knowledge of the involved metabolic pathways. In the current study, a methodology for municipal sludge characterization previously developed is used to describe two key parameters: biodegradability and bioaccessibility of organic matter. The methodology is based on coupling sequential chemical extractions with 3D fluorescence spectroscopy. Experimental data, obtained ...

  1. Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters

    OpenAIRE

    Town, Jennifer R.; Dumonceaux, Tim J.

    2015-01-01

    An imbalance between acidogenic and methanogenic organisms during anaerobic digestion can result in increased accumulation of volatile fatty acids, decreased reactor pH, and inhibition of methane-producing Archaea. Most commonly the result of organic input overload or poor inoculum selection, these microbiological and biochemical changes severely hamper reactor performance, and there are a few tools available to facilitate reactor recovery. A small, stable consortium capable of catabolizing a...

  2. The Technology and Economy of Farm-Scale, High-Solids Anaerobic Digestion of Plant Biomass

    OpenAIRE

    Svensson, Mattias

    2005-01-01

    Anaerobic digestion is a microbially mediated process occurring in nature in the absence of oxygen and other non-carbonaceous electron acceptors. The majority of the carbon of the organic matter degraded in the process is transformed into carbon dioxide and methane. Most of the energy potential of the degraded material is conserved in the methane, thus providing a renewable energy carrier, which can be converted into heat and/or electricity, or upgraded for use as a vehicle fuel. The remainin...

  3. Mesophilic anaerobic co-digestion of aloe peel waste with dairy manure in the batch digester: Focusing on mixing ratios and digestate stability.

    Science.gov (United States)

    Huang, Xinlei; Yun, Sining; Zhu, Jiang; Du, Tingting; Zhang, Chen; Li, Xue

    2016-10-01

    Anaerobic co-digestion of aloe peel waste (APW) with dairy manure (DM) was evaluated in terms of biogas and methane yield, volatile solids (VS) removal rate, and the stability of digestate. Batch experiments were performed under mesophilic condition (36±1°C) at five different APW/DM wet weight ratios (1:0, 3:1, 1:1, 1:3, and 0:1). Experimental methane yield from the mixtures was higher than the yield from APW or DM alone, indicating the synergistic effect and benefits of co-digestion of APW with DM. The optimal mixing ratio of APW/DM was found to be 3:1. The cumulative methane yield was 195.1mL/g VS and the VS removal rate was 59.91%. The characteristics of the digestate were investigated by the thermal analysis which indicated the high stability in the samples of the co-digestion. The co-digestion can be an efficient way to improve the degradation efficiency of the bio-wastes and increase the energy output. PMID:27347799

  4. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance.

    Science.gov (United States)

    Astals, S; Musenze, R S; Bai, X; Tannock, S; Tait, S; Pratt, S; Jensen, P D

    2015-04-01

    This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) with and without extraction of intracellular algal co-products, with views towards the development of a biorefinery concept for lipid, protein and/or biogas production. Protein and/or lipids were extracted from Scenedesmus sp. using free nitrous acid pre-treatments and solvent-based Soxhlet extraction, respectively. Processing increased algae methane yield between 29% and 37% compared to raw algae (VS basis), but reduced the amount of algae available for digestion. Co-digestion experiments showed a synergy between pig manure and raw algae that increased raw algae methane yield from 0.163 to 0.245 m(3) CH4 kg(-1)VS. No such synergy was observed when algal residues were co-digested with pig manure. Finally, experimental results were used to develop a high-level concept for an integrated biorefinery processing pig manure and onsite cultivated algae, evaluating methane production and co-product recovery per mass of pig manure entering the refinery. PMID:25643955

  5. Organic loading rate: A promising microbial management tool in anaerobic digestion.

    Science.gov (United States)

    Ferguson, Robert M W; Coulon, Frédéric; Villa, Raffaella

    2016-09-01

    This study investigated the effect of changes in organic loading rate (OLR) and feedstock on the volatile fatty acids (VFAs) production and their potential use as a bioengineering management tool to improve stability of anaerobic digesters. Digesters were exposed to one or two changes in OLR using the same or different co-substrates (Fat Oil and Grease waste (FOG) and/or glycerol). Although all the OLR fluctuations produced a decrease in biogas and methane production, the digesters exposed twice to glycerol showed faster recovery towards stable conditions after the second OLR change. This was correlated with the composition of the VFAs produced and their mode of production, from parallel to sequential, resulting in a more efficient recovery from inhibition of methanogenesis. The change in acids processing after the first OLR increase induced a shift in the microbial community responsible of the process optimisation when the digesters were exposed to a subsequent OLR increase with the same feedstock. When the digesters were exposed to an OLR change with a different feedstock (FOG), the recovery took 7d longer than with the same one (glycerol). However, the microbial community showed functional resilience and was able to perform similarly to pre-exposure conditions. Thus, changes in operational conditions can be used to influence microbial community structure for anaerobic digestion (AD) optimisation. Finally, shorter recovery times and increased resilience of digesters were linked to higher numbers of Clostridia incertae sedis XV, suggesting that this group may be a good candidate for AD bioaugmentation to speed up recovery after process instability or OLR increase. PMID:27214347

  6. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    Directory of Open Access Journals (Sweden)

    Jing Yi

    Full Text Available The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  7. Anaerobic digestion of macroalgal biomass and sediments sourced from the Orbetello lagoon, Italy

    International Nuclear Information System (INIS)

    The anaerobic digestion of marine macroalgae biomass could meet two currently important needs, the mitigation of the eutrophication effects and the production of renewable energy. Because of the abundance of seaweed biomass its conversion can be highly desirable and convenient, mostly for countries with long coastlines or eutrophic environments. The aim of the present work is to carry out an exploratory study of biogas production from macroalgal biomass collected from the Orbetello lagoon (Tuscany, Italy) by solely exploiting the intrinsic degradation potential of the ecosystem. A fresh algae mix and sediments has been used, as both feed and inoculum of an anaerobic digestion process under psychro-mesophilic, mesophilic and thermophilic conditions, in batch reactors, without any washing and drying treatment. The presence of sediment proved to be crucial in order to achieve a good methane yield (methane yield of 380 dm3 kg−1 VSadded) comparable with literature data obtained through different approaches. The results gave evidence that such an approach will have to be considered when planning a selective anaerobic digestion of macroalgae that could be useful in local applications for coasts and eutrophic lagoons affected by seasonal or frequent algal blooms. -- Highlights: ► Biogas production from macroalgal biomass with minimal energy input is proposed. ► Psychro-mesophilic, mesophilic and thermophilic conditions were compared. Highly adapted bacterial pool was crucial to achieve a good methane yield. ► The applied process exploits the intrinsic degradation potential of the ecosystem.

  8. Feasibility study on combining anaerobic digestion and biomass gasification to increase the production of biomethane

    International Nuclear Information System (INIS)

    Highlights: • Anaerobic digestion and biomass gasification are integrated. • The novel concept can produce much more biomethane. • The novel concept can improve the exergy efficiency. • The novel concept demonstrates a big potential of income increase. - Abstract: There is a rapid growing interest in using biomethane as fuel for transport applications. A new concept is proposed to combine anaerobic digestion and biomass gasification to produce biomethane. H2 is separated from the syngas generated by biomass gasification in a membrane system, and then is used to upgrade raw biogas from anaerobic digestion. Simulations have been conducted based on the real operation data of one full scale biogas plant and one full scale biomass gasification plant in order to investigate the feasibility of the new concept. Results show that although less power and heat are generated compared to the gasification plant, which results in a lower overall efficiency, much more biomethane can be produced than the biogas plant; and the new concept can achieve a higher exergy efficiency. Due to the increasing price of biomethane, the novel concept demonstrates a big potential of income increase. For example, at a biomethane price of 12.74SEK/kg, the annual income can be increased by 5.3% compared to the total income of the biogas and gasification plant

  9. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.

    Science.gov (United States)

    Evangelisti, Sara; Lettieri, Paola; Borello, Domenico; Clift, Roland

    2014-01-01

    Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded. PMID:24112851

  10. Startup of a biological scrubber for hydrogen sulfide removal from anaerobic digester biogas

    Energy Technology Data Exchange (ETDEWEB)

    Pierkiel, A.; Lanting, J. [Biothane Corp., Camden, NJ (United States)

    2004-07-01

    Methane can be produced from the anaerobic digestion of waste. The methane can then be used to generate electricity or heat. However, anaerobic digester biogas contains hydrogen sulfide which can damage furnaces and other equipment. Several chemical and biological treatments have been developed to remove hydrogen sulfide from biogas. The physico-chemical processes include caustic scrubbing and adsorption, but both require large quantities of costly chemicals. This paper described the biological scrubber process which removes hydrogen sulfide from biogas produced by anaerobic digestion systems. Bacteria is used instead of chemicals to remove hydrogen sulfide. The biochemical reaction that occurs by sulfur-oxidizing microorganisms was described along with the methodology used in a full-scale biological scrubber installation at a paper mill's wastewater treatment facility. The main operating parameters for startup were biogas flow rate, hydrogen sulfide load, and pH. The biological scrubbers performed above the warranty standard of 97 per cent hydrogen sulfide removal. 1 tab.

  11. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano

    International Nuclear Information System (INIS)

    Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 deg. C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m-3 d-1. Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process

  12. Modeling of biodiesel production in algae cultivation with anaerobic digestion (ACAD)

    International Nuclear Information System (INIS)

    This study presents a model of an ecotechnology that combines algae cultivation with anaerobic digestion in order to recycle nutrients and to reduce the need for external energy. The concept is to convert organic waste into several products, such as electricity, biodiesel and organic fertilizer. It is labeled as the ACAD biorefinery. The simulation model of the ACAD biorefinery proved itself to be a powerful tool for understanding the symbioses and dynamics of the system, and therefore also a good tool for reaching political decisions. The model shows that the ACAD biorefinery could be totally independent of external energy supplies. Energy calculations indicate that more energy can be produced by combining the algae cultivation and anaerobic digestion processes. For every unit of energy entering the system in feedstock, 0.6 units of energy are exported as either biodiesel or electricity. The exported electricity accounts for approximately 30% of the total exported energy, while the remaining 70% is exported as biodiesel. By producing its own energy, the biorefinery improves its renewability and level of carbon neutrality. - Highlights: • The model combines algae cultivation with anaerobic digestion. • In the model nutrients and carbon dioxide are recycled. • Organic waste is converted into electrical power, biodiesel and organic fertilizer. • Results showed that more energy can be produced by combining the processes

  13. Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions

    Energy Technology Data Exchange (ETDEWEB)

    Song Yonghui, E-mail: songyh@craes.org.cn [Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing 100012 (China); College of Water Science, Beijing Normal University, Xinjiekou Wai Street 19, Beijing 100875 (China); Qiu Guanglei; Yuan Peng [Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing 100012 (China); College of Water Science, Beijing Normal University, Xinjiekou Wai Street 19, Beijing 100875 (China); Cui Xiaoyu; Peng Jianfeng; Zeng Ping; Duan Liang; Xiang Liancheng; Qian Feng [Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing 100012 (China)

    2011-06-15

    Anaerobically digested swine wastewater contains high concentrations of phosphorus (P) and nitrogen (N). A pilot-scale experiment was carried out for nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization. In the pilot plant, a sequencing batch reactor (SBR) and a continuous-flow reactor with struvite accumulation devices were designed and employed. The wastewater pH value was increased by CO{sub 2} stripping, and the struvite crystallization process was performed without alkali and Mg{sup 2+} additions. Results of the long-term operation of the system showed that, both reactors provided up to 85% P removal and recovery over wide ranges of aeration times (1.0-4.0 h), hydraulic retention times (HRT) (6.0-15.0 h) and temperatures (0-29.5{sup Degree-Sign }C ) for an extended period of 247 d, in which approximate 30% of P was recovered by the struvite accumulation devices. However, 40-90% of NH{sub 4}{sup +}-N removed was through air stripping instead of being immobilized in the recovered solids. The recovered products were detected and analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and chemical methods, which were proved to be struvite with purity of more than 90%. This work demonstrated the feasibility and effects of nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions.

  14. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano.

    Science.gov (United States)

    Alvarez, René; Lidén, Gunnar

    2008-01-01

    Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 degrees C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m(-3) d(-1). Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process. PMID:18155895

  15. Recent development of anaerobic digestion processes for energy recovery from wastes.

    Science.gov (United States)

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters. PMID:17368391

  16. [Acute toxicity of antibiotics and anaerobic digestion intermediates in pharmaceutical wastewaters].

    Science.gov (United States)

    Ji, Jun-Yuan; Xing, Ya-Juan; Zheng, Ping

    2012-12-01

    In order to determine the toxicity of antibiotics and anaerobic digestion intermediates on anaerobic treatment of pharmaceutical wastewaters containing antibiotics, the single and joint toxicities of some antibiotics and intermediates to Photobacterium phosphoreum were tested by using the 15-min half inhibitory concentration (15 min-IC50) at pH = 7.00 +/- 0.05. The results showed that the 15 min-IC50 of ethanol, acetate, propionate and butyrate were 19.40, 20.71, 10.47 and 12.17 g x L(-1), respectively, which indicated that the toxicity descended in the order of propionate, butyrate, ethanol and acetate. The 15 min-IC50 of Amoxicillin, Kanamycin, Lincomycin and Ciprofloxacin were 3.99, 5.11, 4.32 and 5.63 g x L(-1), respectively, so the toxicity descended in the order of Amoxicillin, Lincomycin, Kanamycin and Ciprofloxacin. Using equal effect mixing method, the joint toxicity of four anaerobic digestion intermediates, the four intermediates together with Amoxicillin, Ciprofloxacin, Kanamycin, Lincomycin individually and all together were investigated, which demonstrated that the first three interactions were additive and the last three were synergistic. The observations have laid a foundation for control and optimization of anaerobic biotechnology for pharmaceutical wastewater containing antibiotics. PMID:23379166

  17. A Novel Process Configuration for Anaerobic Digestion of Source-Sorted Household Waste Using Hyper-Thermophilic Post-Treatment

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2005-01-01

    A novel reactor configuration was investigated for anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). An anaerobic hyper-thermophilic (68°C) reactor R68 was implemented as a post–treatment step for the effluent of a thermophilic reactor R1 (55°C) in order to enhanc...

  18. Mixing characteristics of sludge simulant in a model anaerobic digester.

    Science.gov (United States)

    Low, Siew Cheng; Eshtiaghi, Nicky; Slatter, Paul; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam

    2016-03-01

    This study aims to investigate the mixing characteristics of a transparent sludge simulant in a mechanically agitated model digester using flow visualisation technique. Video images of the flow patterns were obtained by recording the progress of an acid-base reaction and analysed to determine the active and inactive volumes as a function of time. The doughnut-shaped inactive region formed above and below the impeller in low concentration simulant decreases in size with time and disappears finally. The 'cavern' shaped active mixing region formed around the impeller in simulant solutions with higher concentrations increases with increasing agitation time and reaches a steady state equilibrium size, which is a function of specific power input. These results indicate that the active volume is jointly determined by simulant rheology and specific power input. A mathematical correlation is proposed to estimate the active volume as a function of simulant concentration in terms of yield Reynolds number. PMID:26739143

  19. Viability and fate of Cryptosporidium parvum and Giardia lamblia in tubular anaerobic digesters.

    Science.gov (United States)

    Kinyua, Maureen N; Trimmer, John; Izurieta, Ricardo; Cunningham, Jeffrey; Ergas, Sarina J

    2016-06-01

    In many developing countries where pathogenic diseases of animal waste origin, such as giardiasis and cryptosporidiosis, are often prevalent, facilities are limited to treat livestock waste. However, household-scale anaerobic digesters are currently being promoted for bioenergy production from livestock manure. Since the effluent is often used as a fertilizer for food crops, it is critical to understand the effect of environmental conditions within household-scale digesters on the viability of Cryptosporidium parvum oocysts and Giardia lamblia cysts. In this study, key environmental parameters affecting (oo)cyst inactivation were measured in four tubular anaerobic digesters, which are a type of household-scale digester promoted for treatment of swine waste in rural Costa Rica. Interviews and participant observations were used to understand digester operation and maintenance procedures. Ambient temperatures (21-24°C), near-neutral pH, total ammonia nitrogen (TAN) concentrations<250mg/L and hydraulic retention times (HRTs) between 23 and 180days were observed. Laboratory (oo)cysts inactivation studies were performed in bench-scale digesters, which were maintained under conditions similar to those observed in the field. Apparent first-order inactivation rate coefficients for Giardia lamblia and Cryptosporidium parvum were 0.155±0.041 and 0.054±0.006day(-1), respectively. Temperature and volatile fatty acids were the main factors contributing to Cryptosporidium parvum and Giardia lamblia inactivation. A mathematical model was developed that predicts the concentration of (oo)cysts in the liquid effluent of tubular digesters like those observed in Costa Rica. A mathematical model was developed that predicts the concentration of (oo)cysts in the liquid effluent of tubular digesters like those observed in Costa Rica. Two dimensionless groups can be used to predict the performance of the digesters for inactivating pathogens; both dimensionless groups depend upon the

  20. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach.

    Science.gov (United States)

    Zhang, Tong; Yang, Ying; Pruden, Amy

    2015-09-01

    As antibiotic resistance continues to spread globally, there is growing interest in the potential to limit the spread of antibiotic resistance genes (ARGs) from wastewater sources. In particular, operational conditions during sludge digestion may serve to discourage selection of resistant bacteria, reduce horizontal transfer of ARGs, and aid in hydrolysis of DNA. This study applied metagenomic analysis to examine the removal efficiency of ARGs through thermophilic and mesophilic anaerobic digestion using bench-scale reactors. Although the relative abundance of various ARGs shifted from influent to effluent sludge, there was no measureable change in the abundance of total ARGs or their diversity in either the thermophilic or mesophilic treatment. Among the 35 major ARG subtypes detected in feed sludge, substantial reductions (removal efficiency >90%) of 8 and 13 ARGs were achieved by thermophilic and mesophilic digestion, respectively. However, resistance genes of aadA, macB, and sul1 were enriched during the thermophilic anaerobic digestion, while resistance genes of erythromycin esterase type I, sul1, and tetM were enriched during the mesophilic anaerobic digestion. Efflux pump remained to be the major antibiotic resistance mechanism in sludge samples, but the portion of ARGs encoding resistance via target modification increased in the anaerobically digested sludge relative to the feed. Metagenomic analysis provided insight into the potential for anaerobic digestion to mitigate a broad array of ARGs. PMID:25994259

  1. Elucidation of the thermophilic phenol biodegradation pathway via benzoate during the anaerobic digestion of municipal solid waste.

    Science.gov (United States)

    Hoyos-Hernandez, Carolina; Hoffmann, Marieke; Guenne, Angeline; Mazeas, Laurent

    2014-02-01

    Anaerobic digestion makes it possible to valorize municipal solid waste (MSW) into biogas and digestate which are, respectively, a renewable energy source and an organic amendment for soil. Phenols are persistent pollutants present in MSW that can inhibit the anaerobic digestion process and have a toxic effect on microbiota if they are applied to soil together with digestate. It is then important to define the operational conditions of anaerobic digestion which allow the complete degradation of phenol. In this context, the fate of phenol during the anaerobic digestion of MSW at 55°C was followed using an isotopic tracing approach ((13)C6-phenol) in experimental microcosms with inoculum from an industrial thermophilic anaerobic digester. With this approach, it was possible to demonstrate the complete phenol biodegradation into methane and carbon dioxide via benzoate. Benzoate is known to be a phenol metabolite under mesophilic conditions, but in this study it was found for the first time to be a phenol degradation product at thermophilic temperature. PMID:24238916

  2. COMPARISON OF TWO CHEMICAL PRETREATMENTS OF RICE STRAW FOR BIOGAS PRODUCTION BY ANAEROBIC DIGESTION

    Directory of Open Access Journals (Sweden)

    Zilin Song,

    2012-06-01

    Full Text Available Lignocellulosic biomass is considered the most abundant renewable resource that has the potential to contribute remarkably in the supply of biofuel. Previous studies have shown that chemical pretreatment prior to anaerobic digestion (AD can increase the digestibility of lignocellulosic biomass and methane yield. In the present study, the effect of rice straw pretreatment using ammonium hydroxide (NH3•H2O and hydrogen peroxide (H2O2 on the biogasification performance through AD was investigated. A self-designed, laboratory-scale, and continuous anaerobic biogas digester was used for the evaluation. Results showed that the contents of the rice straw, i.e. the lignin, cellulose, and hemicellulose were degraded significantly after the NH3•H2O and H2O2 treatments, and that biogas production from all pretreated rice straw increased. In addition, the optimal treatments for biogas production were the 4% and 3% H2O2 treatments (w/w, which yielded 327.5 and 319.7 mL/gVS, biogas, respectively, higher than the untreated sample. Biogas production from H2O2 pretreated rice straw was more favorable than rice straw pretreated with same concentration of ammonia, ranking in the order of 4% ≈ 3% > 2% > 1%. The optimal amount of H2O2 treatment for rice straw biogas digestion is 3% when economics and biogas yields are considered.

  3. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    Directory of Open Access Journals (Sweden)

    Assadawut Khanto

    2016-01-01

    Full Text Available The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS with Food Waste (FW. The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning of 7-day during digestion and it was slightly increased into the range of optimum anaerobic condition. After digestion of the biogas production was 2,184 l and 56.5 % of methane fraction has obtained within 31 days of experimentation. The investigation of Biochemical Methane Potential (BMP and Specific Methanogenic Activities (SMA were highly observed. And the results were obtained by 34.55 mL CH4/gCODremoval and 0.38 g CH4-COD/gVSS-d. While the average COD removal from the 4 outlets got 92%, 94%, 94 % and 92 % respectively. However, the effluent in COD concentration was still high and it needs further treatment before discharge.

  4. Biohydrogen production from dual digestion pretreatment of poultry slaughterhouse sludge by anaerobic self-fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sittijunda, Sureewan [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Reungsang, Alissara [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Fermentation Research Center for Value Added Agricultural Products, Khon Kaen University, Khon Kaen 40002 (Thailand); O-thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand)

    2010-12-15

    Poultry slaughterhouse sludge from chicken processing wastewater treatment plant was tested for their suitability as a substrate and inoculum source for fermentation hydrogen production. Dual digestion of poultry slaughterhouse sludge was employed to produce hydrogen by batch anaerobic self-fermentation without any extra-seeds. The sludge (5% TS) was dual digested by aerobic thermophilic digestion at 55 C with the varying retention time before using as substrate in anaerobic self-fermentation. The best digestion time for enriching hydrogen-producing seeds was 48 h as it completely repressed methanogenic activity and gave the maximum hydrogen yield of 136.9 mL H{sub 2}/g TS with a hydrogen production rate of 2.56 mL H{sub 2}/L/h. The hydrogen production of treated sludge at 48 h (136.9 mL H{sub 2}/g TS) was 15 times higher than that of the raw sludge (8.83 mL H{sub 2}/g TS). With this fermentation process, tCOD value in the activated sludge could be reduced up to 30%. (author)

  5. Anaerobic Co-Digestion of Microalgae Scenedesmus sp. and TWAS for Biomethane Production.

    Science.gov (United States)

    Garoma, Temesgen; Nguyen, Don

    2016-01-01

    The paper investigated the feasibility of biomethane (bio-CH4) production from the anaerobic co-digestion of the microalgae Scenedesmus quadricauda (S. quadricauda) and thickened waste activated sludge (TWAS). The concept was tested in bench-scale anaerobic digesters by varying the proportions of volatile solids (VS) loading from S. quadricauda and TWAS and two critical operational parameters, temperature and alkalinity. The CH(4) production for the various S. quadricauda and TWAS proportions ranged from 234 to 318 mL/g of chemical oxygen demand (COD) digested and 329 to 530 mL/g of VS digested at 35 °C. The reductions in total solids (TS), COD, and VS ranged from 25 to 44%, 46 to 53%, and 40 to 53%, respectively. Temperature had a significant effect on CH(4) production, lower temperatures greatly reduced CH(4) production. No significant difference in CH(4) production was observed for experiments conducted at alkalinity levels of 70, 1630, and 3200 mg/L as CaCO(3). PMID:26803022

  6. Anaerobic digestion and related best management practices : utilizing life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Venczel, M.Z. [Clarkson Univ., Potsdam, NY (United States); Powers, S.E. [Clarkson Univ., Potsdam, NY (United States)

    2010-07-01

    This paper reported on a life cycle assessment (LCA) study that compared the environmental impacts of business-as-usual manure management with those of a manure management operation incorporating anaerobic digestion with combined heat and power generation. The case study was based on a medium sized dairy farm in northern New York State. The study identified the benefits resulting from the displacement of fossil fuels, and reduction of related emissions. Although anaerobic digestion of dairy manure with energy recovery through biogas combustion is viewed as a positive environmental approach to increase the use of renewable energy, there are potential negative impacts that can counteract the environmental benefits. The negative impacts are associated with emissions of methane and nitrogen species during digestion and after spreading of digester effluent. The environmental impacts and their causes should be evaluated in order to promote best management practices. Knowledge gained from an LCA was used in this study to assess the benefits associated with various management practices. The study showed that the design and construction of biogas systems must minimize the potential for fugitive emissions of biogas that can readily outweigh the benefits associated fossil fuel displacement. The environmental trade-offs associated with various manure management and energy recovery systems were also described.

  7. Effect of Calcium Ions on Dewaterability of Enzymatic-Enhanced Anaerobic Digestion Sludge.

    Science.gov (United States)

    Luo, Kun; Yang, Qi; Li, Xiao-Ming; Zhang, Shi-Ying; Pang, Ya; Li, Xue; Liao, Xing-Sheng

    2015-08-01

    Waste-activated sludge (WAS) solubilized remarkably after enzymatic-enhanced anaerobic digestion, but its dewaterability was deteriorated. In this study, a novel method was performed to improve the dewaterability of enzymatic-enhanced anaerobic digestion sludge by adding CaCl2 (0.01~1.00 g/g total sludge). The capillary suction time (CST), moisture content, and filtrate turbidity were employed to characterize the dewaterability of WAS, and the possible mechanisms involved were clarified. The results showed the dewaterability did not worsen when CaCl2 was added before sludge digestion, and the CST, moisture content, and filtrate turbidity were notably reduced with the increase of CaCl2 dosage. It also shown that calcium ions played an important role in the bioflocculation of digested sludge by neutralizing negative charges on the surface of sludge. In addition, soluble protein initially lowered a little and then observably improved with the addition of CaCl2, while soluble carbohydrate was reduced sharply first and then bounced back afterwards. The interactions between calcium ions and the biopolymer further enhanced the dewatering of sludge through bridging of colloidal particles together. PMID:26129703

  8. Evaluation of the development conditions for an 'on-farm' breeding effluent anaerobic digestion sector

    International Nuclear Information System (INIS)

    In a first part, this report presents some characteristics and key aspects of the anaerobic digestion process. It highlights its environmental benefits, notices that energy production from breeding effluents is not optimal, that this energy is easily exportable, but that this process does not process nitrogen and phosphorus surpluses. It gives an overview of the status of practices in France, in Germany where incentive policies have promoted the development of on-farm anaerobic digestion for many years, in Denmark, in Sweden and in Switzerland where the gas feeds directly the network. It presents the legal and regulatory framework for installations classified with respect to the protection of the environment, for the digestate approval and standardization, for the connection to the electric network, for bio-gas transportation and injection in networks, and for taxes. It proposes an economic analysis: investments and scale effects, cogeneration and electricity sale, perspectives for biogas direct sale, waste and digestate value, and so on. It proposes a review of research and development works in this domain, and finally addresses some issues of economic and regional development

  9. Continuously-stirred anaerobic digester to convert organic wastes into biogas: system setup and basic operation.

    Science.gov (United States)

    Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2012-01-01

    Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general

  10. Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Kougias, Panagiotis; Zaganas, Ioannis D.;

    2014-01-01

    Poultry manure is an ammonia-rich substrate due to its high content of proteins and amino acids. Ammonia is the major inhibitor of anaerobic digestion (AD) process, affecting biogas production and causing great economic losses to the biogas plants. In this study, the effect of different natural...... was not efficient in digesting poultry manure even in the presence of 10 g zeolite L−1, due to low methane production (only 39%) compared to the maximum theoretical yield. Finally, ammonia acclimatised inoculum and zeolite have demonstrated a possible “synergistic effect” which led to a more efficient AD of poultry...... manure. The results of this study could potentially been used by the biogas plant operators to efficiently digest poultry manure....

  11. Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C. J.

    1995-02-01

    Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.

  12. Anaerobic digestion of pre-fermented potato peel wastes for methane production.

    Science.gov (United States)

    Liang, Shaobo; McDonald, Armando G

    2015-12-01

    This study investigated the feasibility of anaerobic digestion (AD) of potato peel waste (PPW) and its lactic acid fermentation residue (PPW-FR) for methane (CH4) production. The experimental results showed that about 60-70% CH4 content was obtained. The digester using PPW-FR as feedstock exhibited better performance and produced a highest cumulative CH4 production of 273 L/kg VS fed, followed by 239 L/kg VS fed using PPW under the same conditions. However, with increasing solid loadings of PPW-FR feedstock from 6.4% to 9.1%, the CH4 production was inhibited. The generation, accumulation, and degradation of volatile fatty acids (VFAs) in digesters were also investigated in this research. PMID:26421481

  13. EFFECT OF SULPHATE ON LOW-TEMPERATURE ANAEROBIC DIGESTION

    Directory of Open Access Journals (Sweden)

    Padhraig eMadden

    2014-07-01

    Full Text Available The effect of sulphate addition on the stability of, and microbial community behaviour in, low-temperature anaerobic expanded granular sludge bed-based bioreactors was investigated at 15°C. Efficient bioreactor performance was observed, with chemical oxygen demand removal efficiencies of >90%, and a mean SO42- removal rate of 98.3%. In situ methanogensis appeared unaffected at a COD:SO42- influent ratio of 8:1, and subsequently of 3:1, and was impacted marginally only when the COD: SO42- ratio was 1:2. . Specific methanogenic activity assays indicated a complex set of interactions between sulphate-reducing bacteria (SRB, methanogens and homoacetogenic bacteria. SO42- addition resulted in predominantly acetoclastic, rather than hydrogenotrophic, methanogenesis until >600 days of SO42--influenced bioreactor operation. Temporal microbial community development was monitored by denaturation gradient gel electrophoresis (DGGE of 16S rRNA genes. Fluorescence in situ hybridisations (FISH, qPCR and microsensor analysis were combined to investigate the distribution of microbial groups, and particularly SRB and methanogens, along the structure of granular biofilms. qPCR data indicated that sulphidogenic genes were present in methanogenic and sulfidogenic biofilms, indicating the potential for sulphate reduction even in bioreactors not exposed to SO42-. Although the architecture of methanogenic and sulphidogenic granules was similar, indicating the presence of SRB even in methanogenic systems, FISH with rRNA targets found that the SRB were more abundant in the sulphidogenic biofilms. Methanosaeta species were the predominant, keystone members of the archaeal community, with the complete absence of the Methanosarcina species in the experimental bioreactor by trial conclusion. Microsensor data suggested the ordered distribution of sulphate reduction and sulphide accumulation, even in methanogenic granules.

  14. Biokinetic and molecular studies of methanogens in phased anaerobic digestion systems.

    Science.gov (United States)

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-12-01

    The influence of differing operational conditions of two-stage digesters on biokinetic characteristics and communities of methanogenic archaea was evaluated. Operating temperature of each phase influenced the archaeal communities significantly. Also, a strong correlation was observed between community composition and temperature and pH. The maximum specific substrate utilization rates (k max) of acetoclastic methanogens in the mesophilic and thermophilic 1st phases were 11.4 and 22.0 mgCOD mgCOD(-1)d(-1), respectively, whereas significantly lower k max values were estimated for the mesophilic and thermophilic 2nd-phase digesters which were 7.6 and 16.6 mgCOD mgCOD(-1)d(-1), respectively. It appeared that the biokinetic characteristics of the acetoclastic methanogen communities were reliant on digester loading rates. Also, higher temperature dependency coefficients (θ) were observed for the long retention time digesters when compared to the values computed for the 1st-phase digesters. Accordingly, the implementation of two sets of biokinetic parameters for acetoclastic methanogen will improve modeling of phased anaerobic digesters. PMID:24125797

  15. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2014-01-01

    Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters...

  16. Kinetic study of mesophilic anaerobic digestion of pulp and paper sludge

    International Nuclear Information System (INIS)

    Anaerobic digestion of pulp and paper sludge (PPS) and monosodium glutamate waste liquor (MGWL) was studied in completely stirred tank reactors (CSTR) at 37 ± 2 °C. This work focused on the effect of increased organic loading rate (OLR) on the methane production in long-term experiments. For OLR in the range of (1.5–5.0) kg m−3 d−1 based on VS fed, VFA and SCOD concentrations decreased for the first 10 days and then kept stable at about 2.3 kg m−3 and 4.0 kg m−3 respectively until to the critical OLR of 5.0 kg m−3 d−1; and the methane generation rate enhanced to 0.838 m3 m−3 d−1 during this period until to the reactor failure. Additionally, reaction rate constant k and sludge retention time (SRT) are described on the basis of a mass balance in a CSTR followed a first order kinetic equation. In the present study, values for ym and k were obtained as 0.733 m3 kg−1 of removed VS and 0.07 d−1, respectively. The simple model can apply for dimensioning a CSTR digesting of organic wastes from pulp and paper industries, food processing industries, sewage treatment plants or biogas crops. -- Highlights: ► Evaluating methane yields for semi-continuous anaerobic co-digestion of PPS and MGWL. ► Determining the critical OLR for semi-continuous co-digestion. ► Developing the kinetic model for co-digestion of PPFS and MGWL in CSTR. ► Dimensioning CSTR by the model equations for organic wastes digestion.

  17. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  18. Impact of different ratios of feedstock to liquid anaerobic digestion effluent on the performance and microbiome of solid-state anaerobic digesters digesting corn stover.

    Science.gov (United States)

    Li, Yueh-Fen; Shi, Jian; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2016-01-01

    The objective of this study was to understand how the non-microbial factors of L-AD effluent affected the microbiome composition and successions in the SS-AD digesters using both Illumina sequencing and qPCR quantification of major genera of methanogens. The SS-AD digesters started with a feedstock/total effluent (F/Et) ratio 2.2 (half of the effluent was autoclaved) performed stably, while the SS-AD digesters started with a 4.4 F/Et ratio (no autoclaved effluent) suffered from digester acidification, accumulation of volatile fatty acids, and ceased biogas production two weeks after startup. Some bacteria and methanogens were affected by non-microbial factors of the L-AD fluent. Alkalinity, the main difference between the two F/Et ratios, may be the crucial factor when SS-AD digesters were started using L-AD effluent. PMID:26575616

  19. Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation

    Energy Technology Data Exchange (ETDEWEB)

    Massé, Daniel I., E-mail: Daniel.masse@agr.gc.ca; Cata Saady, Noori M.

    2015-02-15

    Highlights: • Psychrophilic dry anaerobic digestion (PDAD) of cow feces (CF) is feasible. • PDAD of CF is as efficient as mesophilic and thermophilic AD at TCL 21 days. • CF (13–16% TS at OLR 5.0 g TCOD{sub fed} kg{sup −1} inoculum d{sup −1}) yielded 222 ± 27 {sub N}L CH{sub 4} kg{sup −1} VS fed. - Abstract: This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13–16% total solids) has been anaerobically digested in 12 successive cycles (252 days) at 21 days treatment cycle length (TCL) and temperature of 20 °C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9 ± 24.0, 189.9 ± 27.3, and 222 ± 27.7 {sub N}L CH{sub 4} kg{sup −1} of VS fed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0 g TCOD kg{sup −1} inoculum d{sup −1} and TCL of 21 days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39 ± 0.06, 0.48 ± .02, 0.53 ± 0.05, respectively. Average methane production rate of 10 ± 1.4 {sub N}L CH{sub 4} kg{sup −1} VS fed d{sup −1} has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step.

  20. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition

    International Nuclear Information System (INIS)

    Highlights: ► Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. ► The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. ► The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5–9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m3 chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 ± 1 °C was employed for the investigation. With a corresponding organic loading rate of 1.5–3.5 kg-COD/m3 d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m3/m3 d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5–9.