WorldWideScience

Sample records for by-product processing plant

  1. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2005-09-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. A mobile demonstration unit has been designed and constructed for field demonstration. The demonstration unit was hauled to the test site on trailers that were place on a test pad located adjacent to the ash pond and re-assembled. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities. Representative feed ash for the operation of the filed testing unit was excavated from a location within the lower ash pond determined from coring activities. Approximately 150 tons of ash was excavated and pre-screened to remove +3/8 inch material that could cause plugging problems during operation of the demonstration unit.

  2. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    John Groppo; Thomas Robl

    2005-06-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. Filter media candidates were evaluated for dewatering the ultrafine ash (UFA) product. Media candidates were selected based on manufacturer recommendations and evaluated using standard batch filtration techniques. A final media was selected; 901F, a multifilament polypropylene. While this media would provide adequate solids capture and cake moisture, the use of flocculants would be necessary to enable adequate filter throughput. Several flocculant chemistries were also evaluated and it was determined that polyethylene oxide (PEO) at a dosage of 5 ppm (slurry basis) would be the most suitable in terms of both settling rate and clarity. PEO was evaluated on a continuous vacuum filter using 901F media. The optimum cycle time was found to be 1.25 minutes which provided a 305% moisture cake, 85% solids capture with a throughput of 115 lbs dry solids per hour and a dry cake rate of 25 lb/ft2/hr. Increasing cycle time not did not reduce cake moisture or increase throughput. A mobile demonstration unit has been designed and constructed for field demonstration. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities.

  3. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  4. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    John Groppo; Thomas Robl

    2006-06-30

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utility's 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The secondary classification testing was concluded using a continuous demonstration-scale lamella classifier that was operated at a feed rate of 0.3 to 1.5 tons/hr. Feed to the secondary classifier was generated by operating the primary classifier at the conditions shown to be effective previously. Samples were taken while the secondary classifier was operated under a variety of conditions in order to determine the range of conditions where the unit could be efficiently operated. A Topical Report was prepared and included all of the pertinent processing data generated during Budget Period 1 of the project as well as results of beneficiated ash product evaluations in mortar and concrete, schematic plant designs with mass and water balances for the four flowsheets tested with equipment lists, capital and installation costs, expected product outputs and equipment justifications. A proposal for continuation of the project to Budget Period 2 was also prepared and submitted, with the exception of a Letter of Commitment from Cemex. The proposal is currently under internal review with Cemex and a decision is expected by the end of September, 2006.

  5. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Jackura; John Groppo; Thomas Robl

    2006-12-31

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The market study for the products of the processing plant (Subtask 1.6), conducted by Cemex, is reported herein. The study incorporated simplifying assumptions and focused only on pozzolan and ultra fine fly ash (UFFA). It found that the market for pozzolan in the Ghent area was oversupplied, with resultant poor pricing structure. Reachable export markets for the Ghent pozzolan market were mostly locally served with the exception of Florida. It was concluded that a beneficiated material for that market may be at a long term disadvantage. The market for the UFFA was more complex as this material would compete with other beneficiated ash and potential metakaolin and silica fume as well. The study concluded that this market represented about 100,000 tons of sales per year and, although lucrative, represented a widely dispersed niche market.

  6. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2009-06-30

    The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i

  7. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    John Groppo; Thomas Robl; Robert Rathbone

    2006-06-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The secondary classification testing was concluded using a continuous demonstration-scale lamella classifier that was operated at a feed rate of 0.3 to 1.5 tons/hr. Feed to the secondary classifier was generated by operating the primary classifier at the conditions shown to be effective previously. Samples were taken while the secondary classifier was operated under a variety of conditions in order to determine the range of conditions where the unit could be efficiently operated. Secondary classification was effective for producing an ultra-fine ash (UFA) product. Inclined lamella plates provided an effective settling surface for coarser ash particles and plate spacing was shown to be an important variable. Results showed that the closer the plate spacing, the finer the size distribution of the UFA product. Flotation of the secondary classifier feed provided a lower LOI UFA product (2.5% LOI vs. 4.5% LOI) and a dispersant dosage of 2 to 2.5 g/kg was adequate to provide UFA grade (3.8 to 4.4 {micro}m) and recovery (53 to 68% 5{micro}m recovery). The UFA yield without flotation was {approx}33% and lower ({approx}20%) with flotation. Demonstration plant product evaluations showed that water requirements in mortar were reduced and 100% of control strength was achieved in 28 days for the coarser products followed by further strength gain of up to 130% in 56 days. The highest strengths of 110% of control in 7 days and 140% in 56 days were achieved with the finer products. Mortar air requirements for processed products were essentially the same as those for standard mortar, suggesting that the unburned carbon remaining does not have

  8. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    John Groppo; Thomas Robl

    2006-09-30

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station.

  9. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2007-03-31

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. Phase 1 was completed successfully, but the project did not continue on to Phase 2 due to withdrawal of CEMEX from the project. Attempts at replacing CEMEX were not successful. Problematic to the continuation of the project was its location in the Ohio Valley which is oversupplied and has low prices for fly ash and the change in CEMEX priorities due to merger and acquisitions. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007.

  10. Characterization and value-added utilization of proteins extracted from the by-products from catfish fillet processing plant

    Science.gov (United States)

    Channel catfish farming is the most important warm water aquaculture in the Southeastern United States. The by-products, including heads, skin, bone frame and viscera, account for 55-65% of the whole fish mass after fillet processing. The by-products contain 35% of protein on a dry basis, and may be...

  11. Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions

    DEFF Research Database (Denmark)

    Roselló-Soto, Elena; Galanakis, Charis M.; Brnčić, Mladen;

    2015-01-01

    Ultrasound treatment is an alternative affordable, effective and reproducible method for the improved recovery of bioactive compounds from various processing streams. The objective of this review is to discuss the impact of ultrasound-assisted extraction on the recovery of polyphenols, carotenoids...

  12. New solutions for by-products plants developed by Koksoprojekt

    Energy Technology Data Exchange (ETDEWEB)

    S. Tomal; R. Zajdel; H. Zembala

    2002-07-01

    The paper focuses on recent and current activities of KOKSOPROJEKT Company oriented towards up-to-dating and optimization of its own developed processes and technical solutions. As a result of these activities the investment and operation cost have been decreased and European standards in environmental protection have not only been met, but even exceeded. From among many developments in this field this paper only presents three reliable and efficient processes for coke oven gas desulfurizing: ammonia process, potash-vacuum process and catalytic-soda (KAT-SOD) process. All of mentioned technologies have been implemented in Polish coking plants, and the desulfurization plants operate with good results. 1 tab.

  13. Status of the utilization and development of by-products from plant- derived food processing%植物性食品加工副产物的综合利用和开发的现状

    Institute of Scientific and Technical Information of China (English)

    杜江; 耿欣

    2012-01-01

    Utilization and development of by-products from plant-derived food processing such as maize bran, rice bran, wheat bran, carrot residue, grape skin residue, apple pomace, etc. were comprehensively reviewed. Applications were explored in food industry, medical industry and the other fields.Prospects of development and utilization were also elaborated.%对玉米麸皮、米糠、麦麸、胡萝卜渣、葡萄皮渣、苹果渣等一些植物性食品加工过程中产生的副产物的综合开发利用问题予以综述,探讨了在食品工业、医疗、化工等方面的应用,并对其开发利用前景进行了展望。

  14. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    Energy Technology Data Exchange (ETDEWEB)

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

  15. Biofuel Production by Fermentation of Water Plants and Agricultural Lignocellulosic by-Products

    Directory of Open Access Journals (Sweden)

    Anker Yaakov

    2016-01-01

    Full Text Available While at present most energy crops are depriving human feedstock, fermentation of agricultural residues and fast growing water plants possesses a good prospect to become a significant source for bio-fuel; as both substrates are widely available and do not require agricultural areas. Water hyacinth for instance can be cultivated in fresh, brackish or wastewater and owing to its rapid growth and availability. Since owing to its natural abundance it is considered to be an invasive plant in most continents, its utilization and use as a renewable energy source may also contribute for its dilution and control. Agricultural lignocellulosic surplus by-products are also a promising fermentable substrate for bioethanol production, as it decreases both disposal expenses and greenhouse gases emissions. This paper describes a scheme and methodology for transformation of any lignocellulosic biomass into biofuel by simple cost effective operation scheme, integrating an innovative process of mechanochemical activation pre-treatment followed by fermentation of the herbal digest and ethanol production through differential distillation. Under this approach several complex and costly staged of conventional ethanol production scheme may be replaced and by genetic engineering of custom fermenting microorganisms the fermentation process becomes a fully continuous industrial process.

  16. Utilization of by-product sulfur in Kraft pulping process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Liu, S. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Chung, K.H. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2004-07-01

    This presentation describes how sulfur derived from heavy oil processing can be used by the pulp and paper industry to increase yield, accelerate delignification and shorten the cooking time in the kraft pulping process. The liquor used in the kraft pulping process is a solution of sodium sulfide and sodium hydroxide. The reaction kinetics of delignification in the cooking process was examined and a new method was proposed. The 3 key kinetic steps in the new method include: (1) adsorption of hydroxide and hydrosulfide ions on the fiber wall, (2) chemical reaction on the solid surface to produce degraded lignin products, and (3) desorption of degradation products from the solid surface. The surface reaction is the most important step in the delignification process. A newly developed kinetic model based on the proposed mechanism can be used to accurately predict the pulping behaviour under a variety of conditions.

  17. [Organisation, installations and operation of a carcass rendering plant exemplified by the Regau by-products plant (author's transl)].

    Science.gov (United States)

    Pelz, I

    1980-03-01

    In Upper Austria, carcasses, offals and all kinds of animal material are collected in hygienically safe manner and taken to the Regau by-products plant. This plant was built in the light of the latest advances to keep environmental pollution at a minimum and is divided in a clean and unclean area. The raw material, including uncut carcasses, is dumped into troughs and then transported by a screw conveyor to the crusher. By steam pressure the material is pushed into a receptacle called "the gun" and from there it is conveyed to the extractor, which functions as sterilizer (30 min 134 degrees C), extractor and drier. The wet extraction procedure using perchloroethylene produces hygienically unobjectionable animal meal and fat. The method of deodorization, which was described in full detail, has made it possible to create not only optimum working conditions in the plant itself but also acceptable living conditions in the residential areas at a distance of some 400 m. Extensive automation of all processes results in optimum hygienic working conditions and also permits a reduction of the staff, in contrast to the conditions prevailing in the former knackeries.

  18. Determination of aflatoxins in by-products of industrial processing of cocoa beans.

    Science.gov (United States)

    Copetti, Marina V; Iamanaka, Beatriz T; Pereira, José Luiz; Lemes, Daniel P; Nakano, Felipe; Taniwaki, Marta H

    2012-01-01

    This study has examined the occurrence of aflatoxins in 168 samples of different fractions obtained during the processing of cocoa in manufacturing plants (shell, nibs, mass, butter, cake and powder) using an optimised methodology for cocoa by-products. The method validation was based on selectivity, linearity, limit of detection and recovery. The method was shown to be adequate for use in quantifying the contamination of cocoa by aflatoxins B(1), B(2), G(1) and G(2). Furthermore, the method was easier to use than other methods available in the literature. For aflatoxin extraction from cocoa samples, a methanol-water solution was used, and then immunoaffinity columns were employed for clean-up before the determination by high-performance liquid chromatography. A survey demonstrated a widespread occurrence of aflatoxins in cocoa by-products, although in general the levels of aflatoxins present in the fractions from industrial processing of cocoa were low. A maximum aflatoxin contamination of 13.3 ng g(-1) was found in a nib sample. The lowest contamination levels were found in cocoa butter. Continued monitoring of aflatoxins in cocoa by-products is nevertheless necessary because these toxins have a high toxicity to humans and cocoa is widely consumed by children through cocoa-containing products, like candies.

  19. Environment protection in the area of by-products facilities in coking plant

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Tomal; Henryk Zembala; Krzysztof Kalinowski; Milan Fedorov; Ludovt Kosnac; Jan Hromiak [Biuro Projektow Koksoprojekt Sp. z o.o., Zabrze (Poland)

    2004-07-01

    20 slides/overheads outline the presentation on the subject of the environmental protection program implemented at the U.S. Steel Kosice Coking Plant. Actions taken include the control of emissions by a system of cooling coke oven gas. A hermetically sealed system uses nitrogen flow for tar management and hermetic loading of the liquid coal by-product Benzol.

  20. Nonferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes nonferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  1. Ferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes ferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  2. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview.

    Science.gov (United States)

    Gomes, Marcelo P; Smedbol, Elise; Chalifour, Annie; Hénault-Ethier, Louise; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2014-09-01

    It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects.

  3. Plant hydrocarbon recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  4. THE UPTAKE OF WATER DISINFECTION BY-PRODUCTS INTO FOODS DURING HOME PROCESSING

    Science.gov (United States)

    A variety of organic compounds in tap water are produced as a result of disinfection process. Use of chlorine-containing chemicals for disinfection produces many disinfection by-products (DBPs) including trihalomethanes, haloacetonitriles and haloacetic acid. Ozonation with secon...

  5. Potato Processing Industry By-products and Their Evaluation in Animal Nutrition

    Directory of Open Access Journals (Sweden)

    Pınar Özdemir

    2017-02-01

    Full Text Available All around the world, particularly in developed countries, fresh potato consumption decreased while the consumption as fast food, snack and convenience food was increased. Potato processing industry has by-products such as cull potato, peel, pulp, and waste water. These by-products can be utilized for production of ethyl alcohol, single cell protein, microbial enzymes, lactic acid, organic fertilizer and bioethanol. The pulp obtained from the processing of potato for starch production can be considered as an energy source with starch content in animal nutrition. Recently, potato peel with the contents of bioactive compounds (chlorogenic, caffeic, gallic, protocatechuic acids and their antioxidant and antimicrobial effects have been intensely focused on. Conversion of by-products of potato processing industry into value-added products is economically important. It was reviewed here by-products of potato processing industry and their evaluation in animal nutrition.

  6. Coal slurry solids/coal fluidized bed combustion by-product mixtures as plant growth media

    Science.gov (United States)

    Darmody, R.G.; Green, W.P.; Dreher, G.B.

    1998-01-01

    Fine-textured, pyritic waste produced by coal cleaning is stored in slurry settling ponds that eventually require reclamation. Conventionally, reclamation involves covering the dewatered coal slurry solids (CSS) with 1.3 m of soil to allow plant growth and prevent acid generation by pyrite oxidation. This study was conducted to determine the feasiblity of a less costly reclamation approach that would eliminate the soil cover and allow direct seeding of plants into amended CSS materials. Potential acidity of the CSS would be neutralized by additions of fluidized-bed combustion by-product (FBCB), an alkaline by-product of coal combustion. The experiment involved two sources of CSS and FBCB materials from Illinois. Birdsfoot trefoil (Lotus corniculatus L.), tall fescue (Festuca arundinacea Schreb.), and sweet clover (Melilotus officinalis (L.) Lam.) were seeded in the greenhouse into pots containing mixtures of the materials. CSS-1 had a high CaCO3:FeS2 ratio and needed no FBCB added to compensate for its potential acidity. CSS-2 was mixed with the FBCB materials to neutralize potential acidity (labeled Mix A and B). Initial pH was 5.6, 8.8, and 9.2 for the CSS-1, Mix A, and Mix B materials, respectively. At the end of the 70-day experiment, pH was 5.9 for all mixtures. Tall fescue and sweet clover grew well in all the treatments, but birdsfoot trefoil had poor emergence and survival. Elevated tissue levels of B, Cd, and Se were found in some plants. Salinity, low moisture holding capacity, and potentially phytotoxic B may limit the efficacy of this reclamation method.

  7. Potential use of peanut by-products in food processing: a review.

    Science.gov (United States)

    Zhao, Xiaoyan; Chen, Jun; Du, Fangling

    2012-10-01

    Peanut is one of the most important oil and protein producing crops in the world. Yet the amounts of peanut processing by-products containing proteins, fiber and polyphenolics are staggering. With the environmental awareness and scarcity of space for landfilling, wastes/by-product utilization has become an attractive alternative to disposal. Several peanut by-products are produced from crush peanut processes and harvested peanut, including peanut meal, peanut skin, peanut hull and peanut vine. Some of peanut by-products/waste materials could possibility be used in food processing industry, The by-products of peanut contain many functional compounds, such as protein, fiber and polyphenolics, which can be incorporated into processed foods to serve as functional ingredients. This paper briefly describes various peanut by-products produced, as well as current best recovering and recycling use options for these peanut byproducts. Materials, productions, properties, potential applications in food manufacture of emerging materials, as well as environmental impact are also briefly discussed.

  8. In vitro inhibitory effects of plant-derived by-products against Cryptosporidium parvum

    Directory of Open Access Journals (Sweden)

    Teichmann Klaus

    2016-01-01

    Full Text Available Disposal of organic plant wastes and by-products from the food or pharmaceutical industries usually involves high costs. In the present study, 42 samples derived from such by-products were screened in vitro against Cryptosporidium parvum, a protozoan parasite that may contaminate drinking water and cause diarrhoea. The novel bioassay was previously established in the microtitre plate format. Human ileocaecal adenocarcinoma (HCT-8 cell cultures were seeded with C. parvum oocysts and parasite development was monitored by an indirect fluorescent antibody technique (IFAT and microscopic assessment for clusters of secondary infection (CSI. Minimum inhibitory concentrations (MICs and potential detrimental effects on the host cells were determined. An ethanolic extract from olive (Olea europaea pomace, after oil pressing and phenol recovery, reproducibly inhibited C. parvum development (MIC = 250–500 μg mL−1, IC50 = 361 (279–438 μg mL−1, IC90 = 467 (398–615 μg mL−1. Accordingly, tyrosol, hydroxytyrosol, trans-coniferyl alcohol and oleuropein were selected as reference test compounds, but their contributions to the observed activity of the olive pomace extract were insignificant. The established test system proved to be a fast and efficient assay for identifying anti-cryptosporidial activities in biological waste material and comparison with selected reference compounds.

  9. In vitro inhibitory effects of plant-derived by-products against Cryptosporidium parvum

    Science.gov (United States)

    Teichmann, Klaus; Kuliberda, Maxime; Schatzmayr, Gerd; Pacher, Thomas; Zitterl-Eglseer, Karin; Joachim, Anja; Hadacek, Franz

    2016-01-01

    Disposal of organic plant wastes and by-products from the food or pharmaceutical industries usually involves high costs. In the present study, 42 samples derived from such by-products were screened in vitro against Cryptosporidium parvum, a protozoan parasite that may contaminate drinking water and cause diarrhoea. The novel bioassay was previously established in the microtitre plate format. Human ileocaecal adenocarcinoma (HCT-8) cell cultures were seeded with C. parvum oocysts and parasite development was monitored by an indirect fluorescent antibody technique (IFAT) and microscopic assessment for clusters of secondary infection (CSI). Minimum inhibitory concentrations (MICs) and potential detrimental effects on the host cells were determined. An ethanolic extract from olive (Olea europaea) pomace, after oil pressing and phenol recovery, reproducibly inhibited C. parvum development (MIC = 250–500 μg mL−1, IC50 = 361 (279–438) μg mL−1, IC90 = 467 (398–615) μg mL−1). Accordingly, tyrosol, hydroxytyrosol, trans-coniferyl alcohol and oleuropein were selected as reference test compounds, but their contributions to the observed activity of the olive pomace extract were insignificant. The established test system proved to be a fast and efficient assay for identifying anti-cryptosporidial activities in biological waste material and comparison with selected reference compounds. PMID:27627637

  10. Utilization of Food Processing By-products as Dietary, Functional, and Novel Fiber: A Review.

    Science.gov (United States)

    Sharma, Satish Kumar; Bansal, Sangita; Mangal, Manisha; Dixit, Anil Kumar; Gupta, Ram K; Mangal, A K

    2016-07-26

    Fast growing food processing industry in most countries across the world, generates huge quantity of by-products, including pomace, hull, husk, pods, peel, shells, seeds, stems, stalks, bran, washings, pulp refuse, press cakes, etc., which have less use and create considerable environmental pollution. With growing interest in health promoting functional foods, the demand of natural bioactives has increased and exploration for new sources is on the way. Many of the food processing industrial by-products are rich sources of dietary, functional, and novel fibers. These by-products can be directly (or after certain modifications for isolation or purification of fiber) used for the manufacture of various foods, i.e. bread, buns, cake, pasta, noodles, biscuit, ice creams, yogurts, cheese, beverages, milk shakes, instant breakfasts, ice tea, juices, sports drinks, wine, powdered drink, fermented milk products, meat products and meat analogues, synthetic meat, etc. A comprehensive literature survey has been carried on this topic to give an overview in the field dietary fiber from food by-products. In this article, the developments in the definition of fiber, fiber classification, potential sources of dietary fibers in food processing by-products, their uses, functional properties, caloric content, energy values and the labelling regulations have been discussed.

  11. By-products of fruits processing as a source of phytochemicals

    Directory of Open Access Journals (Sweden)

    Sonja Djilas

    Full Text Available The processing of fruits results in high amounts of waste materials such as peels, seeds, stones, and oilseed meals. A disposal of these materials usually represents a problem that is further aggravated by legal restrictions. Thus new aspects concerning the use of these wastes as by-products for further exploitation on the production of food additives or supplements with high nutritional value have gained increasing interest because these are high-value products and their recovery may be economically attractive. It is well known that by-products represent an important source of sugars, minerals, organic acid, dietary fibre and phenolics which have a wide range of action which includes antitumoral, antiviral, antibacterial, cardioprotective and antimutagenic activities. This review discusses the potential of the most important by-products of apple, grape and citrus fruits processing as a source of valuable compounds. The relevance of this topic is illustrated by a number of references.

  12. Prediction in processing is a by-product of language learning.

    Science.gov (United States)

    Chang, Franklin; Kidd, Evan; Rowland, Caroline F

    2013-08-01

    Both children and adults predict the content of upcoming language, suggesting that prediction is useful for learning as well as processing. We present an alternative model which can explain prediction behaviour as a by-product of language learning. We suggest that a consideration of language acquisition places important constraints on Pickering & Garrod's (P&G's) theory.

  13. Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia

    OpenAIRE

    Kehili, Mouna; Schmidt, Lisa Marie; Reynolds, Wienke; Zammel, Ayachi; Zetzl, Carsten; Smirnova, Irina; Allouche, Noureddine; Sayadi, Sami

    2016-01-01

    Background In today’s consumer perception of industrial processes and food production, aspects like food quality, human health, environmental safety, and energy security have become the keywords. Therefore, much effort has been extended toward adding value to biowastes of agri-food industries through biorefinery processing approaches. This study focused, for the first time, on the valorization of tomato by-products of a Tunisian industry for the recovery of value-added compounds using biorefi...

  14. Productive performance lambs on grazing supplemented with concentrates containing fruit processing by-products

    Directory of Open Access Journals (Sweden)

    Daniel Bonfim Manera

    2014-02-01

    Full Text Available The objective of this study was to evaluate the productive performance of sheep kept in irrigated Tifton 85 pastures receiving concentrate supplementation containing different fruits processing by-products. The pasture area corresponded to 0.58 ha, divided in 24 paddocks, under rotational grazing with 20 days of interval of grazing and four days of grazing. 24 male sheep, castrated with 26.9±2.4 of initial body weight and ten months like testers animals, were used. Three fruit processing by-products (guava, barbados cherry and grape wine industry including in 30% of dry matter basis in supplements, besides the treatment “control” containing traditional ingredients (dry ground corn, soybean meal and wheat bran, were compared. The experimental design was a completely randomized with six replicates by treatments. The concentrates evaluated containing fruit processing by-products did not affect the daily weight gain, the total weight gain and the final body weight of sheep kept in irrigated pastures. The stoking rate of pastures, an average was 90.96 lambs/ha and estimative of meat production by area of 2,756.50 kg/ha/year. Thus, guava, barbados cherry and grape wine industry by-products may substitute 30% of dry matter the traditional ingredients in concentrate without harming the productive performance of animals and area.

  15. Enrichment of By-Product Materials from Steel Pickling Acid Regeneration Plants (TRP 9942)

    Energy Technology Data Exchange (ETDEWEB)

    Lu Swan, Delta Ferrites LLC

    2009-09-30

    A new process for manufacturing an enriched, iron-based product (strontium hexaferrite) in existing steel pickling acid regeneration facilities was evaluated. Process enhancements and equipment additions were made to an existing acid regeneration plant to develop and demonstrate (via pilot scale testing and partial-capacity production trials) the viability of a patented method to produce strontium-based compounds that, when mixed with steel pickling acid and roasted, would result in a strontium hexaferrite powder precursor which could then be subjected to further heat treatment in an atmosphere that promotes rapid, relatively low-temperature formation of discrete strontium hexaferrite magnetic domains yielding an enriched iron-based product, strontium hexaferrite, that can be used in manufacturing hard ferrite magnets.

  16. 54 FR 38044: National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By- Product Recovery Plants

    Science.gov (United States)

    Final Rule on National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By-Product Recovery Plants.

  17. Identification and Mitigation of Generated Solid By-Products during Advanced Electrode Materials Processing.

    Science.gov (United States)

    Tsai, Candace S J; Dysart, Arthur D; Beltz, Jay H; Pol, Vilas G

    2016-03-01

    A scalable, solid-state elevated-temperature process was developed to produce high-capacity carbonaceous electrode materials for energy storage devices via decomposition of a starch-based precursor in an inert atmosphere. In a separate study, it is shown that the fabricated carbonaceous architectures are useful as an excellent electrode material for lithium-ion, sodium-ion, and lithium-sulfur batteries. This article focuses on the study and analysis of the formed nanometer-sized by-products during the lab-scale synthesis of the carbon material. The material production process was studied in operando (that is, during the entire duration of heat treatment). The unknown downstream particles in the process exhaust were collected and characterized via aerosol and liquid suspensions, and they were quantified using direct-reading instruments for number and mass concentrations. The airborne emissions were collected using the Tsai diffusion sampler (TDS) for characterization and further analysis. Released by-product aerosols collected in a deionized (DI) water trap were analyzed, and the aerosols emitted from the post-water-suspension were collected and characterized. After long-term sampling, individual particles in the nanometer size range were observed in the exhaust aerosol with layer-structured aggregates formed on the sampling substrate. Upon the characterization of the released aerosol by-products, methods were identified to mitigate possible human and environmental exposures upon industrial implementation.

  18. Novel process to recover by-products from the pickling baths of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Frias, C.; Negro, C.; Formoso, A.; Van Erkel, J.; Maas, W.; Kemppainen, J.; Mancia, F. [Tecnicas Reunidas, S.A., Madrid (Spain)

    2001-07-01

    Development of an integrated process (the PIBARE process) which is able to recover and recycle free and complex acids back to the pickling tank is described. The recovery of these by-products proceeds while the metals are recovered in the form of electrodeposited metal alloy and are internally recycled to the stainless steel manufacturing process. Virtually no solid residue or liquid is produced in the process. Results after three years of investigation are very promising, having achieved all stated objectives at least on the laboratory scale. The new technology promises significant economic and environmental benefits over other existing technologies for the treatment of spent baths. However, since the benefits have not been confirmed at the pilot scale, commercial application would require additional research, including finding more efficient and more selective anionic membranes. 3 tabs., 6 figs.

  19. Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia.

    Science.gov (United States)

    Kehili, Mouna; Schmidt, Lisa Marie; Reynolds, Wienke; Zammel, Ayachi; Zetzl, Carsten; Smirnova, Irina; Allouche, Noureddine; Sayadi, Sami

    2016-01-01

    In today's consumer perception of industrial processes and food production, aspects like food quality, human health, environmental safety, and energy security have become the keywords. Therefore, much effort has been extended toward adding value to biowastes of agri-food industries through biorefinery processing approaches. This study focused, for the first time, on the valorization of tomato by-products of a Tunisian industry for the recovery of value-added compounds using biorefinery cascade processing. The process integrated supercritical CO2 extraction of carotenoids within the oil fractions from tomato seeds (TS) and tomato peels (TP), followed by a batch isolation of protein from the residues. The remaining lignocellulosic matter from both fractions was then submitted to a liquid hot water (LHW) hydrolysis. Supercritical CO2 experiments extracted 5.79% oleoresin, 410.53 mg lycopene/kg, and 31.38 mg β-carotene/kg from TP and 26.29% oil, 27.84 mg lycopene/kg, and 5.25 mg β-carotene/kg from TS, on dry weights. Protein extraction yields, nearing 30% of the initial protein contents equal to 13.28% in TP and 39.26% in TS, revealed that TP and TS are a rich source of essential amino acids. LHW treatment run at 120-200 °C, 50 bar for 30 min showed that a temperature of 160 °C was the most convenient for cellulose and hemicellulose hydrolysis from TP and TS, while keeping the degradation products low. Results indicated that tomato by-products are not only a green source of lycopene-rich oleoresin and tomato seed oil (TSO) and of protein with good nutritional quality but also a source of lignocellulosic matter with potential for bioethanol production. This study would provide an important reference for the concept and the feasibility of the cascade fractionation of valuable compounds from tomato industrial by-products.Graphical abstractSchema of biorefinery cascade processing of tomato industrial by-products toward isolation of valuable fractions.

  20. Multispectral Image Processing for Plants

    Science.gov (United States)

    Miles, Gaines E.

    1991-01-01

    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.

  1. Process control in biogas plants

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Oleskowicz-Popiel, Piotr

    2013-01-01

    Efficient monitoring and control of anaerobic digestion (AD) processes are necessary in order to enhance biogas plant performance. The aim of monitoring and controlling the biological processes is to stabilise and optimise the production of biogas. The principles of process analytical technology...

  2. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Veronika Bátori

    2015-01-01

    Full Text Available Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of ethanol and feed proteins. Ethanol production and the proteins from the stillage were investigated using the edible fungi Neurospora intermedia and Aspergillus oryzae, respectively. N. intermedia produced 4.7 g/L ethanol from the stillage and increased to 8.7 g/L by adding 1 FPU of cellulase/g suspended solids. Saccharomyces cerevisiae produced 0.4 and 5.1 g/L ethanol, respectively. Under a two-stage cultivation with both fungi, up to 7.6 g/L of ethanol and 5.8 g/L of biomass containing 42% (w/w crude protein were obtained. Both fungi degraded complex substrates including arabinan, glucan, mannan, and xylan where reductions of 91, 73, 38, and 89% (w/v were achieved, respectively. The inclusion of the current process can lead to the production of 44,000 m3 of ethanol (22% improvement, around 12,000 tons of protein-rich biomass for animal feed, and energy savings considering a typical facility producing 200,000 m3 ethanol/year.

  3. New Trends in Cosmetics: By-Products of Plant Origin and Their Potential Use as Cosmetic Active Ingredients

    Directory of Open Access Journals (Sweden)

    Ani Barbulova

    2015-04-01

    Full Text Available In recent years, the amount of waste deriving from industrial processes has increased substantially. Many industries produce different types of disposable by-products, rich in valuable compounds. Their characterization and valorization could not only convert them into high value products with application in diverse biotechnological fields, such as Pharmaceutics, Food or Cosmetics, but would also reduce the waste environmental impact and the related treatment costs. There are many examples of cosmetic active ingredients deriving from fish, meat and dairy products, but in the present review we would like to focus on the potentialities and the current use of compounds and extracts deriving from agronomical disposable wastes in the cosmetic field. These types of products are effective, inexpensive and bio-sustainable, and thus represent a valid alternative to the regular plant derived extracts, more commonly adopted in cosmetic formulations. Moreover, if the waste products come from organic farming, they are certainly an even more valuable source of safe extracts for Cosmetics, since they lack any residual pesticide or potentially toxic chemical.

  4. Process and plant safety

    CERN Document Server

    Hauptmanns, Ulrich

    2015-01-01

    Accidents in technical installations are random events. Hence they cannot be totally avoided. Only the probability of their occurrence may be reduced and their consequences be mitigated. The book proceeds from hazards caused by materials and process conditions to indicating technical and organizational measures for achieving the objectives of reduction and mitigation. Qualitative methods for identifying weaknesses of design and increasing safety as well as models for assessing accident consequences are presented. The quantitative assessment of the effectiveness of safety measures is explained. The treatment of uncertainties plays a role there. They stem from the random character of the accident and from lacks of knowledge on some of the phenomena to be addressed. The reader is acquainted with the simulation of accidents, safety and risk analyses and learns how to judge the potential and limitations of mathematical modelling. Risk analysis is applied amongst others to “functional safety” and the determinat...

  5. Mass Customization of process plants

    DEFF Research Database (Denmark)

    Hvam, Lars

    2006-01-01

    This case study describes how F.L.Smidth A/S, a manufacturer of large processing plants for cement production, has applied the principles of mass customisation in the area of highly complex, custom engineered products. The company has based its sales process on a configuration system to achieve...

  6. Biofuel Production by Fermentation of Water Plants and Agricultural Lignocellulosic by-Products

    National Research Council Canada - National Science Library

    Anker, Yaakov; Nakonechny, Faina; Niazov, Betty; Lugovskoy, Svetlana; Nisnevitch, Marina

    2016-01-01

    While at present most energy crops are depriving human feedstock, fermentation of agricultural residues and fast growing water plants possesses a good prospect to become a significant source for bio-fuel...

  7. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    Science.gov (United States)

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-08-22

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO4) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl2). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m(3)) and waste alkali (1.54 $/m(3)) are lower than that of calcium chloride (2.38 $/m(3)). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Removal of disinfection by-products formation potential by biologically intensified process

    Institute of Scientific and Technical Information of China (English)

    AN Dong; LI Wei-guang; CUI Fu-yi; HE Xin; ZHANG Jin-song

    2005-01-01

    The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation ( R2 = 0.9562 and R2 = 0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R2 = 0.9782. In addition certain linear correlations between THMFP, HAAFP and UV254 ( R2 = 0.855 and R2 = 0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.

  9. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant.

    Science.gov (United States)

    Serrano, Maria; Montesinos, Isabel; Cardador, M J; Silva, Manuel; Gallego, Mercedes

    2015-06-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15-50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%).

  10. Integral process of obtaining glycerol as a by-product of biodiesel production from castor oil

    Directory of Open Access Journals (Sweden)

    Leonel Romero

    2012-12-01

    Full Text Available The biodiesel is obtained from about 10 years ago in Europe, and now that it has taken hold as fuel for diesel engines, it is expected a clear increase in the production of this class of fuels in a the near future. The biodiesel is derived from the transesterification reaction of castor oil with methanol, which is the main by-product the glycerol with an approximate content of 10%. Besides catalyst residuals, soaps, methanol traces, mono and diglycerides in small percentages are presented. This study proposes the separation, purification and characterization of the glycerol obtained from the transesterificación reaction of the castor oil, in order to be able to market it in the national or international market, so that it fulfills the standards of quality, which means getting a pure glycerol and the appropriate physico-chemical characteristics and techniques. The glycerin-methyl esters separation is carried out by decantation being obtained a percentage of around 70% glycerol. This percentage is subsequently increased through the purification process, using hydrochloric acid. Glycerol characterization was carried out by physicochemical and organoleptic tests. The purification process allowed us to obtain a glycerol with a percentage of purity close to 98%. It was also tested by comparison with theoretical data that remnants influenced in the physiochemical properties

  11. Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process.

    Science.gov (United States)

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-06-15

    Disinfection by-product (DBP) formation may be a concern when applying ultraviolet light and free chlorine (UV/chlorine) as an advanced oxidation process (AOP) for drinking water treatment, due to typically large chlorine doses (e.g. 5-10 mg L(-1) as free chlorine). A potential mitigating factor is the low chlorine contact times for this AOP treatment (e.g. seconds). Full-scale and pilot-scale test results showed minimal trihalomethane (THM) and haloacetic acid (HAA) formation during UV/chlorine treatment, while dichloroacetonitrile (DCAN) and bromochloroacetonitrile (BCAN) were produced rapidly. Adsorbable organic halide (AOX) formation was significant when applying the UV/chlorine process in water that had not been previously chlorinated, while little additional formation was observed in prechlorinated water. Chlorine photolysis led to chlorate and bromate formation, equivalent to approximately 2-17% and 0.01-0.05% of the photolyzed chlorine, respectively. No perchlorate or chlorite formation was observed. During simulated secondary disinfection of AOP-treated water, DBP formation potential for THMs, HAAs, HANs, and AOX was observed to increase approximately to the same extent as was observed for pretreatment using the more common AOP of UV combined with hydrogen peroxide (UV/H2O2).

  12. Reduction in waste load from a meat processing plant: Beef

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-10-31

    ;Contents: Introduction (Randolph Packing Company, Meat Plant Wastewaters, Slaughterhouses, Packing Houses, Sources of Wastewater, Secondary Manufacturing Processes, An Example of Water Conservation and Waste Control, Water Conservation Program); Plant Review and Survey (Survey for Product Losses and Wastes, Water Use and Waste Load, Wastewater Discharge Limitations and Costs); Waste Centers, Changes, Costs and Results (In-Plant Control Measures, Water Conservation, Recovery Products, By-Products and Reducing Waste Load, Blood Conservation, Paunch Handling and Processing, Summary of Process Changes, Pretreatment, Advantages and Disadvantages of Pretreatment, Pretreatment Systems).

  13. Control of disinfection by-product formation using ozone-based advanced oxidation processes.

    Science.gov (United States)

    Chen, Kuan-Chung; Wang, Yu-Hsiang

    2012-01-01

    The effects of ozone dosage, water temperature and catalyst addition in an ozonation-fluidized bed reactor (O3/FBR) on treated water quality and on the control of chlorinated and ozonated disinfection by-products (DBPs) were investigated. A biofiltration column was used to evaluate its removal efficiency on biodegradable organic matter and to reduce DBP formation. The Dong-Gang River, polluted by agricultural and domestic wastewater in Pingtung, Taiwan, was used as the water source. The treated water quality in terms of dissolved organic carbon (DOC), biodegradable DOC, ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) improved with increasing ozone and catalyst dosages. Catalytic ozonation was more effective than ozonation alone at reducing the formation of DBPs at a given dosage. Experimental results show that water temperature had little effect on the treated water quality with the O3/FBR system used in this study (p > 0.05). The combination of O3/FBR and the biofiltration process effectively decreased the amount ofDBP precursors. The concentration of total trihalomethanes (TTHMs) was less than the maximum contaminant level (MCL) requirement, which is 80 microg/L, for all treated waters and the concentration of five haloacetic acids (HAA5) fell below 60 microg/L with an ozone dosage higher than 2.5 mg/L.

  14. Removal of disinfection by-product precursors with ozone-UV advanced oxidation process.

    Science.gov (United States)

    Chin, A; Bérubé, P R

    2005-05-01

    The efficacy of using ozone (O3), ultraviolet irradiation (UV) and the combined O3-UV advanced oxidation process (AOP) to remove 2 classes of disinfection by-product (DBP) precursors from raw surface water samples have been evaluated and compared. In particular, trihalomethane and haloacetic acids formation potentials were measured. Laboratory batch scale experiments were carried out as a function of ozone and UV dosage in order to study the removal kinetics. It is concluded that the combined O3-UV AOP is more effective than either the ozone or UV treatment alone. Ozone-UV AOP is capable of mineralizing up to 50% of the total organic carbon from the raw source water at an ozone dose of 0.62+/-0.019 mg O3/mL and a UV dose of 1.61 W s/cm2. In addition, O3-UV AOP can reduce trihalomethane formation potential by roughly 80% and haloacetic acids formation potential by roughly 70% at the same ozone and UV dosage.

  15. The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product, in drinking water treatment process and its toxicity on zebrafish.

    Science.gov (United States)

    Lin, Tao; Zhou, Dongju; Yu, Shilin; Chen, Wei

    2016-09-01

    The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in conventional drinking water treatment plant (C-DWTP) and advanced DWTP (ADWTP) was studied with newly maximum formation potential (MFP) process. It was demonstrated that the advanced treatment displayed greater removal efficiency towards DCAcAm formation potential (MFP) than the conventional treatment. The hydrophilic natural organic matter and natural organic matter with molecular weight 10 kDa leaded to more DCAcAm formation, and the aromatic protein was inferred as one part of DCAcAm precursor. DCAcAm was found to cause delayed development and malformation to zebrafish embryos at embryonic growth stage. Compared with heart toxicity, it caused a significant neuron toxicity. It also could cause the acute DNA damage to adult zebrafish, which should be extremely cautioned.

  16. Idaho Chemical Processing Plant Process Efficiency improvements

    Energy Technology Data Exchange (ETDEWEB)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  17. HPLC evaluation of the minor lipid components of by-products resulting from edible oil processing

    Directory of Open Access Journals (Sweden)

    EL-Shami, Safinaz Mohamed M.

    2006-12-01

    Full Text Available An analytical evaluation of some by-products resulting from edible oil refining processing steps has been carried out. By-product samples were taken from four different local refineries that apply chemical refining technology. Pretreatment of the representative samples of the by-products were done prior to analysis followed by chromatographic isolation and derivatization of the minor components, namely, free and acylated sterol (FS and AS as well as free and acylated sterylglycosides (FSG and ASG. However, tocopherols were directly determined in the pretreated samples. HPLC, using different detectors, was carried out for the determination of these minor components. Several authors have focused on the analysis of sterols and sterol esters, as well as tocopherols in the refining byproducts; however sterylglycosides, as biologically important components, have not been dealt with. This study throws light on the by – products enriched with certain minor components to be possibly utilized as sources for such components. Also, the role of the conditions of the refining steps followed in removing these valuable minor components from oils was discussed. It was found that soapstock samples contained various amounts of total tocopherols ranging from 80 to 230ppm; total FS and AS ranged from 240 to 4000 mg/100g while total FSG and ASG ranged from 1120 to 6375 mg/100g. In the case of deodorization distillate samples total tocopherols ranged from 960 to 7360ppm; total FS and AS ranged from 1020 to 4160 mg/100g and total FSG, ASG ranged from 395 to 880 mg/100g.El trabajo realiza una evaluación analítica de algunos subproductos resultantes del la refinación de aceites comestibles. Las muestras procedieron de 4 plantas que aplicaban refinación química. Después de un pretratamiento de las muestras estas se sometieron a un análisis cromatográfico para el aislamiento y derivatización de los siguientes componentes minoritarios: esteroles libres y

  18. Utilization of citrus crops processing by-products in the preparation of tarhana

    Directory of Open Access Journals (Sweden)

    Michal Magala

    2015-05-01

    Full Text Available After processing of citrus fruits (e.g. lemon, orange, grapefruit, mandarin for juice and essential oils production, approximately 50% of the original fruit mass is left as waste material. Citrus crops processing by-products are valuable components as they contain nutrients such as pectins, saccharides, carotenoids, some vitamins, minerals, polyphenols and substances with antioxidant activity. Utilisation of these kind of side products in the recipe of various cereal product led to enhancement of final product nutritional value and better sensory attributes as well as improvement of product functional properties. In this work was studied the effect of orange and mandarin dietary fibre application at level 5 and 10% (w/w in tarhana preparation and the influence on tarhana fermentation process. Chemical analysis showed, that dietary fibre preparations reached higher concentration of ash, fat and total dietary fibre compared to wheat flour. Wheat flour exhibited higher moisture content and protein concentration than citrus dietary fibre preparations. Orange and mandarin dietary fibre preparations showed higher values of water and oil absorption capacity, swelling capacity and least gellation concentration compared to wheat flour. Application of fruit dietary fibre preparations to tarhana recipe caused a rapid decrease in pH from 4.70 - 5.02 to values 4.31 - 4.51 during fermentation process. Reducing saccharides served as an available source of energy for fermenting microbiota and their concentration decreased from 24.5 - 32.8 to 2.2 - 0.2 g/kg after 144 h incubation. Fermentation also led to lactic acid (1.67 - 2.09 g/kg and acetic acid (1.91 - 2.53 g/kg production as a consequence of present microorganisms metabolic activity. Sensory evaluation of samples showed, that higher proportion of citrus dietary fibre preparations (10% negatively affected taste, odour, consistency and sourness. Among all prepared tarhana samples with proportion of citrus

  19. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Maria; Montesinos, Isabel; Cardador, M.J.; Silva, Manuel; Gallego, Mercedes, E-mail: mercedes.gallego@uco.es

    2015-06-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15–50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%). - Highlights: • Occurrence of 46 regulated and non-regulated DBPs through a DWTP was

  20. THE EVALUATING EFFECTIVENESS OF BY-PRODUCTS AND PLANT COMPONENTS IN THE TECHNOLOGY OF DOUGH HALF-STUFF

    Directory of Open Access Journals (Sweden)

    Ryabova A. V.

    2015-06-01

    Full Text Available The article contains the estimation of effectiveness in the use of by-products, cameline-seed oil and amaranth flour in the meat by-products in the dough. By-products were used for the purpose of the expansion of the assortment of the meat semi-finished products in the dough. Amaranth flour was introduced for the purpose of an improvement in the organoleptic and functional- technological characteristics of the stuffing and an increase in the quantity of protein. Cameline-seed oil was added for the purpose of the enrichment of product by omega- acids. As the experimental models we have made pelmeni (ravioli, the relationship of dough and stuffing in which comprised 1:1. In the prototypes the flour from the amaranth was introduced in quantity 5, 10 and 15%. Cameline-seed oil was introduced in quantity 2%. Models with the amaranth flour in quantity 5% had the smaller output of product and the insufficient moisture-binding ability. Models with the content of flour from the amaranth in quantity 15% had the strong smell of plant component. Experimental model with a quantity of amaranth flour 10% on the organoleptic characteristic proved to be best, and there composition was acknowledged most optimum. The studies of the experimental models of meat semi-finished products in the dough showed that the use of amaranth flour contributes to an increase in the moisture-binding ability of stuffing, to an increase in the output of product, to an increase in the content of protein and irreplaceable amino acids. According to the results of all conducted studies is made the conclusion that flour amaranth can be used as the moisture-binding component for making of meat semi-finished products in the dough

  1. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    Science.gov (United States)

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression.

  2. Thin layer drying kinetics of by-products from olive oil processing.

    Science.gov (United States)

    Montero, Irene; Miranda, Teresa; Arranz, Jose Ignacio; Rojas, Carmen Victoria

    2011-01-01

    The thin-layer behavior of by-products from olive oil production was determined in a solar dryer in passive and active operation modes for a temperature range of 20-50 °C. The increase in the air temperature reduced the drying time of olive pomace, sludge and olive mill wastewater. Moisture ratio was analyzed to obtain effective diffusivity values, varying in the oil mill by-products from 9.136 × 10(-11) to 1.406 × 10(-9) m(2)/s in forced convection (m(a) = 0.22 kg/s), and from 9.296 × 10(-11) to 6.277 × 10(-10) m(2)/s in natural convection (m(a) = 0.042 kg/s). Diffusivity values at each temperature were obtained using the Fick's diffusion model and, regardless of the convection, they increased with the air temperature. The temperature dependence on the effective diffusivity was determined by an Arrhenius type relationship. The activation energies were found to be 38.64 kJ/mol, 30.44 kJ/mol and 47.64 kJ/mol for the olive pomace, the sludge and the olive mill wastewater in active mode, respectively, and 91.35 kJ/mol, 14.04 kJ/mol and 77.15 kJ/mol in natural mode, in that order.

  3. New advances in the integrated management of food processing by-products in Europe: sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU).

    Science.gov (United States)

    Fava, Fabio; Zanaroli, Giulio; Vannini, Lucia; Guerzoni, Elisabetta; Bordoni, Alessandra; Viaggi, Davide; Robertson, Jim; Waldron, Keith; Bald, Carlos; Esturo, Aintzane; Talens, Clara; Tueros, Itziar; Cebrián, Marta; Sebők, András; Kuti, Tunde; Broeze, Jan; Macias, Marta; Brendle, Hans-Georg

    2013-09-25

    By-products generated every year by the European fruit and cereal processing industry currently exceed several million tons. They are disposed of mainly through landfills and thus are largely unexploited sources of several valuable biobased compounds potentially profitable in the formulation of novel food products. The opportunity to design novel strategies to turn them into added value products and food ingredients via novel and sustainable processes is the main target of recently EC-funded FP7 project NAMASTE-EU. NAMASTE-EU aims at developing new laboratory-scale protocols and processes for the exploitation of citrus processing by-products and wheat bran surpluses via the production of ingredients useful for the formulation of new beverage and food products. Among the main results achieved in the first two years of the project, there are the development and assessment of procedures for the selection, stabilization and the physical/biological treatment of citrus and wheat processing by-products, the obtainment and recovery of some bioactive molecules and ingredients and the development of procedures for assessing the quality of the obtained ingredients and for their exploitation in the preparation of new food products. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Effect of processing plant on pork quality

    NARCIS (Netherlands)

    Hambrecht, E.; Eissen, J.J.; Verstegen, M.W.A.

    2003-01-01

    The impact of processing plant on pork quality was studied by assessing pork quality in three commercial plants (A, B, Q. Plants differed in the layout of the races, stunning systems (A and B: electrical, C: CO2 stunning) and chilling systems (A: rapid chilling, B and C: conventional). Factors not r

  5. Effect of processing plant on pork quality

    NARCIS (Netherlands)

    Hambrecht, E.; Eissen, J.J.; Verstegen, M.W.A.

    2003-01-01

    The impact of processing plant on pork quality was studied by assessing pork quality in three commercial plants (A, B, Q. Plants differed in the layout of the races, stunning systems (A and B: electrical, C: CO2 stunning) and chilling systems (A: rapid chilling, B and C: conventional). Factors not

  6. Proteomic analysis of processing by-products from canned and fresh tuna: identification of potentially functional food proteins.

    Science.gov (United States)

    Sanmartín, Esther; Arboleya, Juan Carlos; Iloro, Ibon; Escuredo, Kepa; Elortza, Felix; Moreno, F Javier

    2012-09-15

    Proteomic approaches have been used to identify the main proteins present in processing by-products generated by the canning tuna-industry, as well as in by-products derived from filleting of skeletal red muscle of fresh tuna. Following fractionation by using an ammonium sulphate precipitation method, three proteins (tropomyosin, haemoglobin and the stress-shock protein ubiquitin) were identified in the highly heterogeneous and heat-treated material discarded by the canning-industry. Additionally, this fractionation method was successful to obtain tropomyosin of high purity from the heterogeneous starting material. By-products from skeletal red muscle of fresh tuna were efficiently fractionated to sarcoplasmic and myofibrillar fractions, prior to the identification based mainly on the combined searching of the peptide mass fingerprint (MALDI-TOF) and peptide fragment fingerprinting (MALDI LIFT-TOF/TOF) spectra of fifteen bands separated by 1D SDS-PAGE. Thus, the sarcoplasmic fraction contained myoglobin and several enzymes that are essential for efficient energy production, whereas the myofibrillar fraction had important contractile proteins, such as actin, tropomyosin, myosin or an isoform of the enzyme creatine kinase. Application of proteomic technologies has revealed new knowledge on the composition of important by-products from tuna species, enabling a better evaluation of their potential applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Exposure Characteristics of Nanoparticles as Process By-products for the Semiconductor Manufacturing Industry.

    Science.gov (United States)

    Choi, Kwang-Min; Kim, Jin-Ho; Park, Ju-Hyun; Kim, Kwan-Sick; Bae, Gwi-Nam

    2015-01-01

    This study aims to elucidate the exposure properties of nanoparticles (NPs; energy dispersive spectroscopy. The resulting concentrations of NPs ranged from 0.00-11.47 particles/cm(3). The concentration of NPs measured during maintenance showed a tendency to increase, albeit incrementally, compared to that measured during normal conditions (under typical process conditions without maintenance). However, the increment was small. When comparing the mean number concentration and standard deviation (n ± σ) of NPs, the chemical mechanical polishing (CMP) process was the highest (3.45 ± 3.65 particles/cm(3)), and the dry etch (ETCH) process was the lowest (0.11 ± 0.22 particles/cm(3)). The major NPs observed were silica (SiO2) and titania (TiO2) particles, which were mainly spherical agglomerates ranging in size from 25-280 nm. Sampling of semiconductor processes in CMP, chemical vapor deposition, and ETCH reveled NPs were cleanroom environments.

  8. Plant-based remediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dharmendra Kumar (ed.) [Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium). Radiological Impact and Performance Assessment Division

    2013-11-01

    A valuable source of information for scientists in the field of environmental pollution and remediation. Describes the latest biotechnological methods for the treatment of contaminated soils. Includes case studies and protocols. Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.

  9. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland; Margaret L. Laumb

    2001-06-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.

  10. Interests of membrane processes in liquid digestate post-treatment and by-product valorisation

    OpenAIRE

    Carretier, Séverine

    2014-01-01

    Intense spreading of livestock wastes are recognized to be detrimental to the environment due to their content of organic matter and mineral fraction. Then, it would appear to be necessary to promote greens treatments processes. In fact, anaerobic digestion allows the production of biogas (extremely useful source of renewable energy), whilst digestate should be a highly valuable biofertilizer This work enters in this approach by proposing to complete anaerobic digestion steps by the use of pe...

  11. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes.

    Science.gov (United States)

    Pagliano, Giorgia; Ventorino, Valeria; Panico, Antonio; Pepe, Olimpia

    2017-01-01

    Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus, Alcaligenes latus, Azotobacter vinelandii, Azotobacter chroococcum, Azotobacter beijerincki, methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli, have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas production is

  12. Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: application in a Western Australian water treatment plant.

    Science.gov (United States)

    Kristiana, Ina; Joll, Cynthia; Heitz, Anna

    2011-04-01

    The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.

  13. [Aspartic Acid Generated in the Process of Chlorination Disinfection By-product Dichloroacetonitrile].

    Science.gov (United States)

    Ding, Chun-sheng; Li, Nai-jun; Zhang, Tao; Zhang, Meng-qing

    2016-05-15

    In this study, a method was developed for the determination of dichloroacetonitrile (DCAN) in drinking water by liquid- liquid micro-extraction and gas chromatography/mass spectrometry ( LLE-GC/MS), which used 1,2-dibromopropane as the internal standard and methyl tertiary butyl ether (MTBE) as the extractant for high accuracy. The aspartic acid was used as the precursor of the DCAN formation during chlorination and the influencing factors were evaluated. The formation mechanism of DCAN was also discussed. The results showed that the DCAN amount increased with the increase of pH value under the neutral and acidic conditions, however, the amount of DCAN decreased with the increase of pH value under the alkali condition. And the final amount of DCAN under the alkali condition was much less than that under the neutral and acidic conditions. It was also found that the DCAN amount increased with the increase of chlorine addition, while the temperature in the range of 10-30°C had little influence on the DCAN formation. The formation process of the DCAN from aspartic acid by chlorination included seven steps, such as substitution, decarboxylation, oxidation, etc and ultimately formed DCAN.

  14. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination.

    Science.gov (United States)

    Oh, Byung Soo; Oh, Sang Guen; Hwang, Youn Young; Yu, Hye-Weon; Kang, Joon-Wun; Kim, In S

    2010-11-01

    From our previous study, an electrochemical process was determined to be a promising tool for disinfection in a seawater desalination system, but an investigation on the production of several hazardous by-products is still required. In this study, a more intensive exploration of the formation patterns of perchlorate and bromate during the electrolysis of seawater was conducted. In addition, the rejection efficiencies of the targeted by-products by membrane processes (microfiltration and seawater reverse osmosis) were investigated to uncover the concentrations remaining in the final product from a membrane-based seawater desalination system for the production of drinking water. On the electrolysis of seawater, perchlorate did not provoke any problem due to the low concentrations formed, but bromate was produced at a much higher level, resulting in critical limitation in the application of the electrochemical process to the desalination of seawater. Even though the formed bromate was rejected via microfiltration and reverse osmosis during the 1st and 2nd passes, the residual concentration was a few orders of magnitude higher than the USEPA regulation. Consequently, it was concluded that the application of the electrochemical process to seawater desalination cannot be recommended without the control of bromate.

  15. Chemical and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing.

    Science.gov (United States)

    Ruiz-Cano, Domingo; Pérez-Llamas, Francisca; Frutos, María José; Arnao, Marino B; Espinosa, Cristóbal; López-Jiménez, José Ángel; Castillo, Julián; Zamora, Salvador

    2014-10-01

    In this study, the basic chemical composition and functional properties of six by-product fractions collected from different steps of artichoke industrial processing were evaluated. Fractions differed in thermal treatment, the bract position in the artichoke head and the cutting size. Contents of moisture, ash, protein, fat, dietary fibre, inulin, total phenolics, total flavonoids, caffeoyl derivatives and flavones were analysed. Antioxidant activity values were also determined. All assessed artichoke by-product fractions contained high-dietary fibre (53.6-67.0%) and low fat (2.5-3.7%). Artichoke by-product fractions contained high levels of inulin, especially in the boiled inner bracts (30%). Total phenolic and flavonoid contents and antioxidant activity (153-729 μmol gallic acid equivalents, 6.9-19.2 μmol quercetin equivalents and 85-234 μmol ascorbic acid equivalents per gram of dry matter, respectively) varied widely with the bract positions in the artichoke head and the thermal treatments. The more interesting fractions for use as functional ingredients were those situated closer to the artichoke heart and thermally treated.

  16. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products

    OpenAIRE

    Korkerd, Sopida; Wanlapa, Sorada; Puttanlek, Chureerat; Uttapap, Dudsadee; Rungsardthong, Vilai

    2015-01-01

    Rich sources of protein and dietary fiber from food processing by-products, defatted soybean meal, germinated brown rice meal, and mango peel fiber, were added to corn grit at 20 % (w/w) to produce fortified extruded snacks. Increase of total dietary fiber from 4.82 % (wb) to 5.92–17.80 % (wb) and protein from 5.03 % (wb) to 5.46–13.34 % were observed. The product indicated high expansion and good acceptance tested by sensory panels. There were 22.33–33.53 and 5.30–11.53 fold increase in the ...

  17. UV-based advanced oxidation processes for the treatment of odour compounds: efficiency and by-product formation.

    Science.gov (United States)

    Zoschke, Kristin; Dietrich, Norman; Börnick, Hilmar; Worch, Eckhard

    2012-10-15

    The occurrence of the taste and odour compounds geosmin and 2-methyl isoborneol (2-MIB) affects the organoleptic quality of raw waters from drinking water reservoirs worldwide. UV-based oxidation processes for the removal of these substances are an alternative to adsorption and biological processes, since they additionally provide disinfection of the raw water. We could show that the concentration of geosmin and 2-MIB could be reduced by VUV irradiation and the combination of UV irradiation with ozone and hydrogen peroxide in pure water and water from a drinking water reservoir. The figure of merit EE/O is an appropriate tool to compare the AOPs and showed that VUV and UV/O(3) yielded the lowest treatment costs for the odour compounds in pure and raw water, respectively. Additionally, VUV irradiation with addition of ozone, generated by the VUV lamp, was evaluated. The generation of ozone and the irradiation were performed in a single reactor system using the same low-pressure mercury lamp, thereby reducing the energy consumption of the treatment process. The formation of the undesired by-products nitrite and bromate was investigated. The combination of VUV irradiation with ozone produced by a VUV lamp avoided the formation of relevant concentrations of the by-products. The internal generation of ozone is capable to produce ozone concentrations sufficient to reduce EE/O below 1 kWh m(-3) and without the risk of the formation of nitrite or bromate above the maximum contaminant level.

  18. Model feedstock supply processing plants

    Directory of Open Access Journals (Sweden)

    V. M. Bautin

    2013-01-01

    Full Text Available The model of raw providing the processing enterprises entering into vertically integrated structure on production and processing of dairy raw materials, differing by an orientation on achievement of cumulative effect by the integrated structure acting as criterion function which maximizing is reached by optimization of capacities, volumes of deliveries of raw materials and its qualitative characteristics, costs of industrial processing of raw materials and demand for dairy production is developed.

  19. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    Science.gov (United States)

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water.

  20. Functional properties and dietary fiber characterization of mango processing by-products (Mangifera indica L., cv Ataulfo and Tommy Atkins).

    Science.gov (United States)

    García-Magaña, María de Lourdes; García, Hugo S; Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; de Oca, Miguel Mata-Montes

    2013-09-01

    Several reports have focused on utilization of post-harvest residues of crops, while neglecting those residues produced by mango processing. These residues represent a waste of nutrients and a source of environmental contaminants. Such by-products could be valuable sources of dietary fiber (DF), antioxidant compounds, and single carbohydrates. The aim of this study was to evaluate some functional properties (FP), and the content of DF and polyphenols (PP) of the peel and coarse material obtained from residues during the industrial processing of Ataulfo and Tommy Atkins mangoes. The total dietary fiber (TDF) content was about 225 mg/g and 387 mg/g (dry weight) for the coarse material and the peel, respectively, from which soluble dietary fiber represented 23 and 42%, respectively. The main neutral sugar identified was rhamnose, especially in peels; the klason lignin (KL) content was 92 mg/g, which highlights the Ataulfo peel (Ataulfo-P) and the Tommy Atkins peel (Tommy Atkins-P). The extractable PP content in Ataulfo-P was higher than in Tommy-Atkins-P, and interesting data for non-extractable PP were obtained in the residues. FP as swelling, water holding, oil holding, and glucose absorption in the residues was studied, obtaining better functional properties when compared to cellulose fiber. The results show that mango industrial by-products, mainly from the Ataulfo-P variety, could be used as ingredients in food products because of their functional properties as well as their DF and PP content.

  1. Mass Customization of process plants

    DEFF Research Database (Denmark)

    Hvam, Lars

    2006-01-01

    a more efficient sales and engineering process. The implementation of the configuration system was accompanied by a radical redefinition of the modular structure of the company's product architectures. The project was carried out in cooperation with the Centre for Product Modelling (CPM) at the Technical...... University of Denmark and illustrates the methods developed at the CPM for the construction of configuration systems. The case analyses the implementation process of the configuration system and documents the results attained after implementation....

  2. Nonferrous Metal Processing Plants - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer includes nonferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  3. Ferrous Metal Processing Plants - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer includes ferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  4. Effect of processing plant on pork quality.

    Science.gov (United States)

    Hambrecht, E; Eissen, J J; Verstegen, M W A

    2003-06-01

    The impact of processing plant on pork quality was studied by assessing pork quality in three commercial plants (A, B, C). Plants differed in the layout of the races, stunning systems (A and B: electrical, C: CO(2) stunning) and chilling systems (A: rapid chilling, B and C: conventional). Factors not related to the processing plants (e.g. genetic background of animals, transport, lairage) were standardized. In total, nine batches of about 150 pigs each were processed. Each batch was purchased at a commercial farm and randomly divided into three groups for delivery to the three processing plants. Meat quality was evaluated by measuring early post-mortem muscle pH and temperature as well as ultimate pH, meat colour (Minolta Chroma Meter and Japanese colour scale), filter paper score (FPS), electrical conductivity (EC) and drip loss. Plant C produced an inferior quality compared to plants A and B: meat was paler (C: 2.8 vs. A: 2.9 and B: 3.0 on the Japanese colour scale) and had higher drip losses (C: 5.2 vs. A: 4.8 and B: 4.9%). Meat colour hardly differed between plants A and B but waterholding properties were best at plant A as indicated by FPS (A: 2.4 vs. B: 2.8 vs. C: 3.3) and EC (A: 5.4 vs. B: 6.4 vs. C: 7.4 mS). It is concluded that processing plant may influence meat quality. Correlations between early post-mortem measurements and meat quality traits were low. Nevertheless, high carcass temperatures and low pH values early post-mortem were shown to lead to inferior meat quality.

  5. Process plant equipment operation, control, and reliability

    CERN Document Server

    Holloway, Michael D; Onyewuenyi, Oliver A

    2012-01-01

    "Process Plant Equipment Book is another great publication from Wiley as a reference book for final year students as well as those who will work or are working in chemical production plants and refinery…" -Associate Prof. Dr. Ramli Mat, Deputy Dean (Academic), Faculty of Chemical Engineering, Universiti Teknologi Malaysia "…give[s] readers access to both fundamental information on process plant equipment and to practical ideas, best practices and experiences of highly successful engineers from around the world… The book is illustrated throughout with numerous black & white p

  6. Enzymes in bast fibrous plant processing.

    Science.gov (United States)

    Kozlowski, Ryszard; Batog, Jolanta; Konczewicz, Wanda; Mackiewicz-Talarczyk, Maria; Muzyczek, Malgorzata; Sedelnik, Natalia; Tanska, Bogumila

    2006-05-01

    The program COST Action 847 Textile Quality and Biotechnology (2000-2005) has given an excellent chance to review the possibilities of the research, aiming at development of the industrial application of enzymes for bast fibrous plant degumming and primary processing. The recent advancements in enzymatic processing of bast fibrous plants (flax, hemp, jute, ramie and alike plants) and related textiles are given. The performance of enzymes in degumming, modification of bast fibres, roving, yarn, related fabrics as well as enzymatic bonding of lignocellulosic composites is provided.

  7. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products.

    Science.gov (United States)

    Korkerd, Sopida; Wanlapa, Sorada; Puttanlek, Chureerat; Uttapap, Dudsadee; Rungsardthong, Vilai

    2016-01-01

    Rich sources of protein and dietary fiber from food processing by-products, defatted soybean meal, germinated brown rice meal, and mango peel fiber, were added to corn grit at 20 % (w/w) to produce fortified extruded snacks. Increase of total dietary fiber from 4.82 % (wb) to 5.92-17.80 % (wb) and protein from 5.03 % (wb) to 5.46-13.34 % were observed. The product indicated high expansion and good acceptance tested by sensory panels. There were 22.33-33.53 and 5.30-11.53 fold increase in the phenolics and antioxidant activity in the enriched snack products. The effects of feed moisture content, screw speed, and barrel temperature on expansion and nutritional properties of the extruded products were investigated by using response surface methodology. Regression equations describing the effect of each variable on the product responses were obtained. The snacks extruded with feed moisture 13-15 % (wb) and extrusion temperature at 160-180 °C indicated the products with high preference in terms of expansion ratio between insoluble dietary fiber and soluble dietary fiber balance. The results showed that the by-products could be successfully used for nutritional supplemented expanded snacks.

  8. Anaerobic co-digestion of meat-processing by-products and sewage sludge - effect of hygienization and organic loading rate.

    Science.gov (United States)

    Luste, Sami; Luostarinen, Sari

    2010-04-01

    Anaerobic co-digestion of a mixture of animal by-products (ABP) from meat-processing industry and of sewage sludge was studied at 35 degrees Celsius for co-digesting such by-products in digesters at wastewater treatment plants. The three reactors were fed with ABP mixture and sewage sludge (1) in a ratio of 1:7 (v/v), (2) in the same ratio but with hygienization (70 degrees Celsius, 60 min) and (3) in a ratio of 1:3 (v/v). Hydraulic retention time (HRT) was decreased from 25 to 20 days and finally to 14 days, while organic loading rates (OLR) ranged from 1.8 to 4.0 kg VS/m(3) day. The highest specific methane yields were achieved with 20-days-HRT (1) 400 + or - 30, (2) 430 + or - 40, (3) 410 + or - 30 m(3) CH(4)/t VS. Hygienization improved methane production to a level above the highest OLR applied (feed ratio 1:3 (3)), while the quality of the digestate remained similar to the other reactors.

  9. [Formation and Variation of Brominated Disinfection By-products in A Combined Ultrafiltration and Reverse Osmosis Process for Seawater Desalination].

    Science.gov (United States)

    Yang, Zhe; Sun, Ying-xue; Shi, Na; Hu, Hong-ying

    2015-10-01

    The characteristics of dissolved organic matter (DOM) and brominated disinfection by-products ( Br-DBPs ) during a seawater desalination ultrafiltration (UF) combined reverse osmosis (RO) process were studied. The seawater contained high level of bromide ion (45.6-50.9 mg x L(-1)) and aromatic compounds with specific ultraviolet absorbance ( SUVA) of 3.6-6.0 L x (mg x m)(-1). The tryptophan-like aromatic protein, fulvic acid-like and soluble microbial by-product-like were the main fluorescent DOM in the seawater. After pre-chlorination of the seawater, the concentrations of DBPs was significantly increased in the influent of UF, which was dominantly the Br-DBPs. Bromoform (CHBr3) accounted for 70.48% - 91.50% of total trihalomethanes (THMs), dibromoacetic acid (Br2CHCO2H) occupied 81.14% - 100% of total haloacetic acids (HAAs) and dibromoacetonitrile (C2HBr2N) occupied 83.77% - 87.45% of total haloacetonitriles ( HANs). The removal efficiency of THMs, HAAs and HANs by the UF membrane was 36.63% - 40.39%, 73.83% - 95.38% and 100%, respectively. The RO membrane could completely remove the HAAs, while a little of the THMs was penetrated. The antiestrogenic activity in the seawater was 0.35 - 0.44 mg x L(-1), which was increased 32% - 69% after the pre-chlorination. The DBPs and other bio-toxic organics which formed during the UF-RO process were finally concentrated in the UF concentrate and RO concentrate.

  10. Amino acid, fatty acid, and mineral profiles of materials recovered from rainbow trout (Oncorhynchus mykiss) processing by-products using isoelectric solubilization/precipitation.

    Science.gov (United States)

    Chen, Y-C; Tou, J C; Jaczynski, J

    2007-11-01

    Protein, lipid, and insolubles (bones, skin, scales, fins, insoluble protein, and more) were recovered from rainbow trout processing by-products by means of isoelectric solubilization/precipitation at basic pH and acidic pH. Isoelectric solubilization/precipitation of the trout processing by-products resulted in the recovery of protein that was higher (P processing by-products. Basic pH treatments yielded a higher (P processing by-products, indicating that the pH treatments had no effect on these FAs. Ca and P contents of the processing by-products exceeded the recommended dietary allowances (RDA), but Fe and Mg did not. Basic pH treatments yielded protein with the lowest (P minerals and the highest (P processing by-products effectively removed minerals from the recovered protein without removal of the bones, skin, scales, fins, and so on, prior to processing. The results indicated that isoelectric solubilization/precipitation, particularly at basic pH, permitted recovery of high-quality protein and lipids from fish processing by-products for human food uses; also, the recovered insolubles may be used in animal feeds as a source of minerals.

  11. Optimizing Conditions for the Purification of Omega-3 Fatty Acids from the By-product of Tuna Canning Processing

    Directory of Open Access Journals (Sweden)

    Teti Estiasih

    2013-05-01

    Full Text Available This research studied the optimization conditions for separation and purification of omega-3 (&omega-3 fatty acids from the by-product of tuna canning processing by urea crystallization. Crystallization reaction conditions of urea inclusion (urea to fatty acid ratio (X1 and crystallization time(X2 were optimized using the Response Surface Methodology (RSM and a model was developed. Optimization results showed a quadratic polynomial regression equation of Y = 24.44X1+5.65X2-8.71XX1 2-0.19X22+1.171X1X2- 12.95. The maximum response was obtained at an urea to fatty acid ratio of 2.99:1 and a crystallization time of 23.64 h and predicted response of 90.44%. Analysis of variance showed that the urea to fatty acid ratio and crystallization time affected the response. Verification under optimal conditions showed that the purity of &omega-3 fatty acids was 89.64% and the enrichment was 2.85 fold. Verification result revealed that the predicted value from this model was reasonably close to the experimentally observed value. The urea crystallization process changed oil quality parameters including oxidation level (peroxide, anisidin, and totox values, Fe, Cu and P concentrations and moisture content and this were mostly due to the saponification process before urea crystallization.

  12. Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology - Review.

    Science.gov (United States)

    Chandrasekaran, M; Bahkali, Ali H

    2013-04-01

    The date palm Phoenix dactylifera has played an important role in the day-to-day life of the people for the last 7000 years. Today worldwide production, utilization and industrialization of dates are continuously increasing since date fruits have earned great importance in human nutrition owing to their rich content of essential nutrients. Tons of date palm fruit wastes are discarded daily by the date processing industries leading to environmental problems. Wastes such as date pits represent an average of 10% of the date fruits. Thus, there is an urgent need to find suitable applications for this waste. In spite of several studies on date palm cultivation, their utilization and scope for utilizing date fruit in therapeutic applications, very few reviews are available and they are limited to the chemistry and pharmacology of the date fruits and phytochemical composition, nutritional significance and potential health benefits of date fruit consumption. In this context, in the present review the prospects of valorization of these date fruit processing by-products and wastes' employing fermentation and enzyme processing technologies towards total utilization of this valuable commodity for the production of biofuels, biopolymers, biosurfactants, organic acids, antibiotics, industrial enzymes and other possible industrial chemicals are discussed.

  13. Concentrations of disinfection by-products in swimming pool following modifications of the water treatment process: An exploratory study.

    Science.gov (United States)

    Tardif, Robert; Rodriguez, Manuel; Catto, Cyril; Charest-Tardif, Ginette; Simard, Sabrina

    2017-08-01

    The formation and concentration of disinfection by-products (DBPs) in pool water and the ambient air vary according to the type of water treatment process used. This exploratory study was aimed at investigating the short-term impact of modifications of the water treatment process on traditional DBP levels (e.g., trihalomethanes (THMs), chloramines) and emerging DBPs (e.g., Halonitromethanes, Haloketones, NDMA) in swimming pool water and/or air. A sampling program was carried to understand the impact of the following changes made successively to the standard water treatment process: activation of ultraviolet (UV) photoreactor, halt of air stripping with continuation of air extraction from the buffer tank, halt of air stripping and suppression of air extraction from the buffer tank, suppression of the polyaluminium silicate sulfate (PASS) coagulant. UV caused a high increase of Halonitromethanes (8.4 fold), Haloketones (2.1 fold), and THMs in the water (1.7 fold) and, of THMs in the air (1.6 fold) and contributed to reducing the level of chloramines in the air (1.6 fold) and NDMA in the water (2.1 fold). The results highlight the positive impact of air stripping in reducing volatile contaminants. The PASS did not change the presence of DBPs, except for the THMs, which decrease slightly with the use of this coagulant. This study shows that modifications affecting the water treatment process can rapidly produce important and variable impacts on DBP levels in water and air and suggests that implementation of any water treatment process to reduce DBP levels should take into account the specific context of each swimming pool. Copyright © 2017. Published by Elsevier B.V.

  14. Oxidative stability during storage of fish oil from filleting by-products of rainbow trout (Oncorhynchus mykiss) is largely independent of the processing and production temperature

    DEFF Research Database (Denmark)

    Honold, Philipp; Nouard, Marie-Louise; Jacobsen, Charlotte

    2016-01-01

    Rainbow trout (Oncorhynchus mykiss) is the main fish species produced in Danish fresh water farming. Large amounts of fileting by-products like heads, bones, tails (HBT), and intestines are produced when rainbow trout is processed to smoked rainbow trout filets. The filleting by-products can...

  15. Urea Synthesis Plant - Process Water Treatment

    Directory of Open Access Journals (Sweden)

    Matijašević, Lj.

    2007-09-01

    Full Text Available After the years of operation of Petrokemija d. d. from Kutina it has been recognized that the technology of urea production can be improved at several points, including wastewater treatment.The wastewater treatment area is a part of the urea plant, Urea 2 of Petrokemija d. d., Kutina. The plant has been in operation since 1983 based on the licensed Stamicarbon CO2 stripping process. So far there have been no major process improvements in terms of utility savings. This part of the plant releases into the environment almost 800 t per day of superfluous wastewater polluted with small, however significant, amounts of urea and ammonium. As such, this wastewater cannot be used in any other segment of urea production. The aim of this paper is to improve the current process from the economical and ecological point of view with ultimate goal of implementing the results obtained.

  16. Processes assessment in binary mixture plant

    Directory of Open Access Journals (Sweden)

    N. Shankar Ganesh, T. Srinivas

    2013-01-01

    Full Text Available Binary fluid system has an efficient system of heat recovery compared to a single fluid system due to a better temperature match between hot and cold fluids. There are many applications with binary fluid system i.e. Kalina power generation, vapor absorption refrigeration, combined power and cooling etc. Due to involvement of three properties (pressure, temperature and concentration in the processes evaluation, the solution is complicated compared to a pure substance. The current work simplifies this complex nature of solution and analyzes the basic processes to understand the processes behavior in power generation as well as cooling plants. Kalina power plant consists of regenerator, heat recovery vapor generator, condenser, mixture, separator, turbine, pump and throttling device. In addition to some of these components, the cooling plant consists of absorber which is similar in operation of condenser. The amount of vapor at the separator decreases with an increase in its pressure and temperature.

  17. Marine pastures: a by-product of large (100 megawatt or larger) floating ocean-thermal power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, S.; Roels, O.A.

    1976-08-31

    The potential biological productivity of an open-sea mariculture system utilizing the deep-sea water discharged from an ocean-thermal energy conversion (OTEC) plant was investigated. In a series of land-based studies, surface water was used to inoculate deep water and the primary production of the resultant blooms was investigated. Each cubic meter of deep water can produce approximately 2.34 g of phytoplankton protein, and that an OTEC plant discharging deep water at a rate of 4.5 x 10/sup 4/ m/sup 3/ min/sup -1/ could produce 5.3 x 10/sup 7/ kg of phytoplankton protein per 350-day year. A series of land-based shellfish studies indicated that, when fed at a constant rate of 1.83 x 10/sup -3/ g of protein per second per 70-140 g of whole wet weight, the clam, Tapes japonica, could convert the phytoplankton protein-nitrogen into shellfish meat protein-nitrogen with an efficiency of about 33 per cent. Total potential wet meat weight production from an OTEC plant pumping 4.5 x 10/sup 4/ m/sup 3/ min/sup -1/ is approximately 4.14 x 10/sup 8/ kg for a 350-day year. Various factors affecting the feasibility of open-sea mariculture are discussed. It is recommended that future work concentrate on a technical and economic analysis. (WDM)

  18. Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction.

    Science.gov (United States)

    Virot, Matthieu; Tomao, Valérie; Le Bourvellec, Carine; Renard, Catherine M C G; Chemat, Farid

    2010-08-01

    Apple pomace, a by-product of the cider production, has been studied as a potential source of polyphenols, compounds of great interest for the industry. Ultrasound has been used to improve extraction efficiency in terms of time needed and total polyphenol content. A preliminary study has been first investigated to optimize ethanol proportion of aqueous extractant (50%, v/v) and solid/liquid ratio (<15%, w/v). A response surface methodology has then been used to maximize total polyphenol content of extracts and investigate influence of parameters involved in extraction procedures for both total polyphenols content and composition of extracts. Optimal settings reached from a central composite design were applied for ultrasound-assisted extraction and were compared to conventional procedure: yields were increased by more than 20%. Ultrasound-assisted polyphenols extraction from apple pomace appears to be a relevant, rapid, sustainable alternative to conventional procedure, and that scale up of the process is possible. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Springfield Processing Plant (SPP) Facility Information

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    The Springfield Processing Plant is a hypothetical facility. It has been constructed for use in training workshops. Information is provided about the facility and its surroundings, particularly security-related aspects such as target identification, threat data, entry control, and response force data.

  20. Stability of Chokeberry Bioactive Polyphenols during Juice Processing and Stabilization of a Polyphenol-Rich Material from the By-Product

    Directory of Open Access Journals (Sweden)

    Diana Behsnilian

    2012-09-01

    Full Text Available Chokeberries (Aronia melanocarpa are nowadays believed to exhibit potential cardioprotective and antidiabetic effects principally due to their high content in bioactive phenolic compounds. The stability of the phenolic compounds was studied during different stages of a juice production line and a method for the valorization of pomace was evaluated. Samples were taken from a commercial juice production plant, extracted and analyzed for phenolic constituents and antioxidant potential. Prototypes of functional food ingredients were produced from the pomace by wet milling and micro-milling. Alongside juice processing, the contents of phenolic berry constituents did not vary to a great extent and the overall antioxidant activity increased by about 34%. A high quality juice and a by-product still rich in polyphenols resulted from the process. The phenolic compounds content and the overall antioxidant activity remained stable when milling and micro-milling the pomace. During coarse milling, extractability of total phenolic compounds increased significantly (40% to 50%. Nanosized materials with averaged particle sizes (x50,0 of about 90 nm were obtained by micro-milling. These materials showed significantly enhanced extractability of total phenolic compounds (25% and total phenolic acid (30%, as well as antioxidant activity (35%, with unchanged contents of total procyanidins and anthocyanins contents.

  1. Reuse of By-Products from Ready-Mixed Concrete Plants for the Production of Cement Mortars

    Directory of Open Access Journals (Sweden)

    Monika Zervaki

    2013-06-01

    Full Text Available This study was motivated by the necessity to recycle sludge water resulting from washing out concrete mixing trucks - a problem of both environmental and economic importance for the ready-mixed concrete industry. Sludge water from ready-mixed concrete plants as well as dry sludge, which is derived from the settling of the water, are hazardous for disposal due to their high pH value (pH>11.5. In this work, cement mortars were composed using either sludge water after various treatment, or dry sludge in several ratios. The cement mortars were tested for their workability and strength development. The purpose of this experimental design was to prove that sludge water, as well as sludge in a wet or dry form, can be used in the production of mortars without degrading any of their properties.

  2. Synthesis gas demonstration plant program, Phase I. Trade-off study VI, by-product sales analysis. Part 1. Sulfur recovery system. Part 2. Carbon dioxide, fly ash, bottom ash and slag

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The objectives of this study were to develop and analyze information to facilitate decision making in regard to by-products from the Commercial Plant. Part 1 of the study investigated the alternative marketing and commercial advantages of producing elemental sulfur or sulfuric acid, the findings to be used with results of a technical and economic analysis to determine the relative desirability of choosing either as a by-product. The principal commercial and marketing input for this portion of the study were provided by review of authoritative published material and by personnel interviews with government, trade association and commercial information sources, including a limited number of major consumers and producers. Compilation and analysis of statistical data and knowledgeable opinions on the following were included: production and consumption trends and future outlook; levels of current and expected future prices; end-use trends and outlook for new uses; geographic consumption patterns; export market and outlook for foreign sales; and other factors related to the present and future supply and demand and effective marketing of the by-products. Technical data were obtained from the commercial suppliers of the processes involved, supplemented by information from producers of the by-products under consideration. The predicted composition and quantity of all gaseous waste streams were used for investigation of by-product potential. Capital investment and operating costs to produce the saleable by-products investigated were developed for each production alternative considered. Operating profits were determined and comparative figures were calculated for net cash flow and return on investment.

  3. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiat......Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed...... at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  4. Pinellas Plant facts. [Products, processes, laboratory facilities

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  5. Experimental study on the shrinkage properties and cracking potential of high strength concrete containing industrial by-products for nuclear power plant concrete

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Baek Joong; Yi, Chong Ku [School of Civil, Environmental and Architectural Engineering, Korea University, Seoul (Korea, Republic of)

    2017-02-15

    In Korea, attempts have been made to develop high strength concrete for the safety and design life improvement of nuclear power plants. In this study, the cracking potentials of nuclear power plant-high strength concretes (NPP-HSCs) containing industrial by-products with W/B 0.34 and W/B 0.28, which are being reviewed for their application in the construction of containment structures, were evaluated through autogenous shrinkage, unrestrained drying shrinkage, and restrained drying shrinkage experiments. The cracking potentials of the NPP-HSCs with W/B 0.34 and W/B 0.28 were in the order of 0.34FA25 > 0.34FA25BFS25 > 0.34BFS50 > 0.34BFS65SF5 and 0.28FA25SF5 >> 0.28BFS65SF5 > 0.28BFS45SF5 > 0.28 FA20BFS25SF5, respectively. The cracking potentials of the seven mix proportions excluding 0.28FA25SF5 were lower than that of the existing nuclear power plant concrete; thus, the durability of a nuclear power plant against shrinkage cracking could be improved by applying the seven mix proportions with low cracking potentials.

  6. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants.

    Science.gov (United States)

    Maragkaki, A E; Fountoulakis, M; Gypakis, A; Kyriakou, A; Lasaridi, K; Manios, T

    2017-01-01

    Due to low degradability of dry solids, most of the digesters at wastewater treatment plants (WWTP) operate at low loading rates resulting in poor biogas yields. In this study, co-digestion of sewage sludge (SS) with olive mill wastewater (OMW), cheese whey (CW) and crude glycerol (CG) was studied in an attempt to improve biogas production of existing digesters at WWTPs. The effect of agro-industrial by-products in biogas production was investigated using a 220L pilot-scale (180L working volume) digester under mesophilic conditions (35°C) with a total feeding volume of 7.5L daily and a 24-day hydraulic retention time. The initial feed was sewage sludge and the bioreactor was operated using this feed for 40days. Each agro-industrial by-product was then added to the feed so that the reactor was fed continuously with 95% sewage sludge and 5% (v/v) of each examined agro-industrial by-product. The experiments showed that a 5% (v/v) addition of OMW, CG or CW to sewage sludge significantly increased biogas production by nearly 220%, 350% and 86% as values of 34.8±3.2L/d, 185.7±15.3L/d and 45.9±3.6L/d respectively, compared to that with sewage sludge alone (375ml daily, 5% v/v in the feed). The average removal of dissolved chemical oxygen demand (d-COD) ranged between 72 and 99% for organic loading rates between 0.9 and 1.5kgVSm(-3)d(-1). Reduction in the volatile solids ranged between 25 and 40%. This work suggests that methane can be produced very efficiently by adding a small concentration (5%) of agro-industrial by-products and especially CG in the inlet of digesters treating sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. UNDERGROUNG PLACEMENT OF COAL PROCESSING WASTE AND COAL COMBUSTION BY-PRODUCTS BASED PASTE BACKFILL FOR ENHANCED MINING ECONOMICS

    Energy Technology Data Exchange (ETDEWEB)

    Y.P. Chugh; D. Biswas; D. Deb

    2002-06-01

    This project has successfully demonstrated that the extraction ratio in a room-and-pillar panel at an Illinois mine can be increased from the current value of approximately 56% to about 64%, with backfilling done from the surface upon completion of all mining activities. This was achieved without significant ground control problems due to the increased extraction ratio. The mined-out areas were backfilled from the surface with gob, coal combustion by-products (CCBs), and fine coal processing waste (FCPW)-based paste backfill containing 65%-70% solids to minimize short-term and long-term surface deformations risk. This concept has the potential to increase mine productivity, reduce mining costs, manage large volumes of CCBs beneficially, and improve the miner's health, safety, and environment. Two injection holes were drilled over the demonstration panel to inject the paste backfill. Backfilling was started on August 11, 1999 through the first borehole. About 9,293 tons of paste backfill were injected through this borehole with a maximum flow distance of 300-ft underground. On September 27, 2000, backfilling operation was resumed through the second borehole with a mixture of F ash and FBC ash. A high-speed auger mixer (new technology) was used to mix solids with water. About 6,000 tons of paste backfill were injected underground through this hole. Underground backfilling using the ''Groutnet'' flow model was simulated. Studies indicate that grout flow over 300-foot distance is possible. Approximately 13,000 tons of grout may be pumped through a single hole. The effect of backfilling on the stability of the mine workings was analyzed using SIUPANEL.3D computer program and further verified using finite element analysis techniques. Stiffness of the backfill mix is most critical for enhancing the stability of mine workings. Mine openings do not have to be completely backfilled to enhance their stability. Backfill height of about 50% of the seam

  8. Waste/By-Product Hydrogen

    Science.gov (United States)

    2011-01-13

    By‐ product Hydrogen Fuel Flexibility Biogas : generated from organic waste �Wastewater treatment plants can provide multiple MW of renewable... Waste /By product Hydrogen Waste H2 sources include: � Waste bio‐mass: biogas to high temp fuel cells to produce H2 – there are over two dozen sites...13 Waste /By product Hydrogen ‐ Biogas

  9. Energy optimization of integrated process plants

    Energy Technology Data Exchange (ETDEWEB)

    Sandvig Nielsen, J.

    1996-10-01

    A general approach for viewing the process synthesis as an evolutionary process is proposed. Each step is taken according to the present level of information and knowledge. This is formulated in a Process Synthesis Cycle. Initially the synthesis is conducted at a high abstraction level maximizing use of heuristics (prior experience, rules of thumbs etc). When further knowledge and information are available, heuristics will gradually be replaced by exact problem formulations. The principles in the Process Synthesis Cycle, is used to develop a general procedure for energy synthesis, based on available tools. The procedure is based on efficient use of process simulators with integrated Pinch capabilities (energy targeting). The proposed general procedure is tailored to three specific problems (Humid Air Turbine power plant synthesis, Nitric Acid process synthesis and Sulphuric Acid synthesis). Using the procedure reduces the problem dimension considerable and thus allows for faster evaluation of more alternatives. At more detailed level a new framework for the Heat Exchanger Network synthesis problem is proposed. The new framework is object oriented based on a general functional description of all elements potentially present in the heat exchanger network (streams, exchangers, pumps, furnaces etc.). (LN) 116 refs.

  10. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams.

    Science.gov (United States)

    Hladik, Michelle L; Focazio, Michael J; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L(-1) with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L(-1)). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L(-1)) and other organic DBP precursors (phenol at 15 μg L(-1)). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L(-1)) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L(-1) total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  11. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    Science.gov (United States)

    Hladik, Michelle L.; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  12. [Formation of Disinfection By-Products During Chlor(am)ination of Danjiangkou Reservoir Water and Comparison of Disinfection Processes].

    Science.gov (United States)

    Zhang, Min-sheng; Xu, Bin; Zhang, Tian-yang; Cheng, Tuo; Xia, Sheng-ji; Chu, Wen-hai

    2015-09-01

    This study discussed the formation of volatile carbonaceous disinfection by-products (DBPs) and nitrogenous DBPs during chlor(am) ination of Danjingkou Reservoir water which was the source of the Middle Route Project of South-to-North Water Diversion Project. The effects of disinfection methods, disinfectant dosage, reaction time, pH values and bromide ion concentration were investigated. And the disinfection parameters were optimized. Four DBPs, including chloroform (CF), bromodichloromethane (BDCM), dichloroacetonitrile(DCAN) and trichloronitromethane(TCNM), were observed during the chlorination. But only CF and TCNM were detected during the chloramination of water. The disinfection by-product (DBP) concentration from chlorination is 7. 5 times higher than that from chloramination, and the yield of DBPs from short time chlorination then chloramination is in between the first two methods. All kinds of DBPs detected increased with the dosage of increasing chlorine, but the increases slowed down when the dosage was higher than 2 mg . L -1. The formation of CF varied a little as the dosage of chloramine increasing. TCNM was detected when the chloramine dosage was greater than 2 mg . L -1. As reaction time going on, chlorine decayed much faster than chloramine, while DBP formation under chlorination was faster than that of chloramination. THM produced by chlorine increased with the increasing pH, while chloramination showed no obvious changes. As the bromide ion increasing, the species of DBPs transformed from chlorinated DBPs to brominated ones, and the total yield of DBPs increased during both chlorination and chloramination, but the former one was obviously more than that of the latter one. In order to reduce the risk of DBP formation, the chloramination is suggested in the treatment of water from Danjiangkou Reservoir. And if chlorination is applied, the disinfectant dosage should be controlled seriously.

  13. Process economics of renewable biorefineries: butanol and ethanol production in integrated bioprocesses from lignocellulosics and other industrial by-products

    Science.gov (United States)

    This chapter provides process economic details on production of butanol from lignocellulosic biomass and glycerol in integrated bioreactors where numerous unit operations are combined. In order to compare various processes, economic evaluations were performed using SuperPro Designer Software (versio...

  14. Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories.

    Science.gov (United States)

    Park, Seung-Hyun; Shin, Jung-Ah; Park, Hyun-Hee; Yi, Gwang Yong; Chung, Kwang-Jae; Park, Hae-Dong; Kim, Kab-Bae; Lee, In-Seop

    2011-09-01

    The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs.

  15. Sustainable wine supply chain and entrepreneurship. The exploitation of by-products in a waste management process

    Directory of Open Access Journals (Sweden)

    George Malindretos

    2017-05-01

    Full Text Available The sustainability issue has been acknowledged as a universal contemporary challenge within an entirely new, unprecedented and irreversible global economic, social, cultural and physical contemporary environment. Critical role plays the interdisciplinary Supply Chain Management (SCM and its advance to sustainable SCM and more recently to green SCM. The field of sustainability in the wine industry appears as a breeding ground for the development of multidisciplinary collaborations, as well as for the application of innovative practices in the framework of entrepreneurship, in both forward and reverse agrifood chains. In such a context, this paper studies the exploitation of the opportunities derived from the wine production and waste management, within the totally new business, economic, social and physical environment. More specifically, it presents a start-up business plan conducted by Agricultural University in collaboration with the Harokopio University of Athens, Greece; it regards a wine waste management company in the island of Crete, Greece, highlighting the transformation of challenges to opportunities for innovation to more efficient use of by-products and wastes. It is noticed that this industry has shown historically exceptional innovative capability and flexibility, for climate privileged quality products in East Mediterranean region. The conclusions and recommendations drawn in this study, provide useful insights and directions for future research that are expected to enrich the available knowhow in the wine industry which is particularly suitable for research on sustainability and in any way, must proceed to commitment for protecting the environment. The empirical case study in the island of Crete is expected to facilitate the attempts to transform the crisis to continuing sustainability performance of wine industry under contemporary world market conditions, along with potential broader managerial implications towards

  16. Physicochemical characteristics and fatty acid profiles of muscle tissues from Hanwoo steers fed a total mixed ration supplied with medicinal plant by-products.

    Science.gov (United States)

    Lee, Shin Ja; Kim, Do Hyung; Yang, Han Sul; Nam, Ki Chang; Ahn, Seung Kyu; Park, Sung Kwon; Choi, Chang Weon; Lee, Sung Sill

    2017-10-01

    Using medicinal plant by-products (MPBP) as feed additives may be an eco-friendly option as substitutes for feedstuffs and may assist in reducing the improper disposal of MPBP. Therefore, this study was conducted to evaluate the influences of MPBP on the meat quality of Hanwoo steers fed a total mixed ration (TMR). Twenty seven steers (body weight = 573±57 kg) were randomly divided into three treatments with a control group and two tested groups as follows: control, 1,000 g/kg TMR; treatment 1 (MPBP30), 970 g/kg TMR and 30 g/kg MPBP; treatment 2 (MPBP50), 950 g/kg TMR and 50 g/kg MPBP. Average daily gain, feed conversion ratio and the Commission Internationale de l'Eclairage L* of muscle were improved (p<0.05, respectively) by MPBP30. Stearic acid (C18:0) was decreased (linear effect, p = 0.012), while oleic acid (C18:1) was increased (linear effect, p = 0.055) by MPBP level. Saturated fatty acid (SFA) and polyunsaturated fatty acid (PUFA) were decreased for MPBP50 while unsaturated fatty acid (USFA) and monounsaturated fatty acid (MUFA) were increased for MPBP 50. USFA and SFA ratio was increased for MPBP50 as well. These results indicated that MPBP supplementation in Hanwoo steers fed a TMR increased feed efficiency and meat color (lightness) with altering fatty acid proportions. Therefore, MPBP may be successfully used in ruminant feeding.

  17. A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products.

    Science.gov (United States)

    Trzcinski, Antoine P; Hernandez, Ernesto; Webb, Colin

    2012-07-01

    This paper focuses on a novel process for adding value to algae residue. In current processes oleaginous microalgae are grown and harvested for lipid production leaving a lipid-free algae residue. The process described here includes conversion of the carbohydrate fraction into glucose prior to lipid extraction. This can be fermented to produce up to 15% additional lipids using another oleaginous microorganism. It was found that in situ enzymes can hydrolyze storage carbohydrates in the algae into glucose and that a temperature of 55 °C for about 20 h gave the best glucose yield. Up to 75% of available carbohydrates were converted to a generic fermentation feedstock containing 73 g/L glucose. The bioconversion step was found to increase the free water content by 60% and it was found that when the bioconversion was carried out prior to the extraction step, it improved the solvent extractability of lipids from the algae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Plant parameters for plant functional groups of western rangelands to enable process-based simulation modeling

    Science.gov (United States)

    Regional environmental assessments with process-based models require realistic estimates of plant parameters for the primary plant functional groups in the region. “Functional group” in this context is an operational term, based on similarities in plant type and in plant parameter values. Likewise...

  19. Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology – Review

    OpenAIRE

    2013-01-01

    The date palm Phoenix dactylifera has played an important role in the day-to-day life of the people for the last 7000 years. Today worldwide production, utilization and industrialization of dates are continuously increasing since date fruits have earned great importance in human nutrition owing to their rich content of essential nutrients. Tons of date palm fruit wastes are discarded daily by the date processing industries leading to environmental problems. Wastes such as date pits represent ...

  20. Control tools to detect processed animal proteins in feed and in animal by-products: specificity and challenges

    Directory of Open Access Journals (Sweden)

    Woodgate SL.

    2009-01-01

    Full Text Available AbstractThis paper reviews the current situation with regard to a total feed ban on the use of processed animal proteins in feed for meat producing animals within the EU. The scientific aspects surrounding the development of control tools are discussed. In particular, focus is given to methods for marking those materials prohibited in animal feeds and for the determination of species specificity in those proteins that are potentially allowed in animal feeds. The overall objective is that the advancements in science are utilized to achieve a partial relaxation of the total feed ban in the near future.

  1. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors

    DEFF Research Database (Denmark)

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470mL-CH4/g......L-CH4/gVS-added. The treatment of reactor effluent was also investigated. By acidification with sulfuric acid to pH lower than 5, almost 100% of the ammonia content in the effluent could be retained during the successive up-concentration process step. The reactor effluent could be up...

  2. Antioxidant activity of lignin phenolic compounds as by-product of pretreatment process of bioethanol production from empty fruits palm bunch

    Science.gov (United States)

    Meliana, Y.; Setiawan, A. H.

    2016-02-01

    As by-product of pretreatment bioethanol production, ligno-cellulosic biomass creates an abundance of bioresidue. This work is devoted to studies the antioxidant activity of lignin that obtained from recovery process of bioethanol by-product. This by-product comes from pretreatment process of empty fruit palm bunch in acid (pH 2) and alkaline (pH 12) conditions. The samples of purified lignin were characterized by Fourier Transform Infrared (FTIR) and Particle Size Analyzer (PSA). Radical scavenging efficiency of lignin was examined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method using quercetin as a standard. The value of IC50 showed that the lignin that was purified in acid condition (pH 2) gave the activity value in antioxidant active range (IC50 sample Lignin pH 2 = 69.41), on the other hand the lignin that was purified in alkaline condition (Lignin pH 12) did not have the activity value as an antioxidant (IC50 sample Lignin pH 12 = NA).

  3. Commercializing plant tissue culture processes: economics, problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, O.; Knuth, M.

    1985-03-01

    Novel tissue culture techniques and a range of process schemes may be considered for commercial production of plant derived drugs, chemicals, flavors and cosmetics. Plant cell immobilization, in conjunction with strain selection and product leakage, represents a major technological advancement, with significant economic implications. Conventional batch processes produce high value products at low production capacities, whereas continuous biocatalytic processes can potentially enable production of plant derived chemicals in the $20-$25/kg price range.

  4. Human Eb Peptide: Not just a By-product of Pre-pro-IGF1b Processing?

    Science.gov (United States)

    Durzyńska, J.; Wardziński, A.; Koczorowska, M.; Goździcka-Józefiak, A.; Barton, E. R.

    2015-01-01

    Several physiological activities have been assigned to E-peptides derived from pre-pro-insulin-like growth factor (IGF1) processing; however, the whole range of the E-peptides’ functions is still unknown. The objective of this study was to investigate human Eb peptide (hEb) in terms of its bioactivity, cellular localization, and intracellular trafficking using human cancer cells. Human Eb fused with red fluorescence protein (RFP) or green fluorescence protein (GFP) localizes strongly to nucleoli and to a lesser extent to nuclei of HeLa and U2-OS cells. Mutagenesis of hEb nucleolus localization sequence (NoLS) leads to its partial delocalization from nuclei and nucleoli to cytoplasm of transfected cells. Thus, NoLS is not sufficient for the hEb to be localized in nucleoli of the cells and a different mechanism may be involved in hEb targeting. A BrdU ELISA showed that the proliferation index of cells expressing hEb hybrid proteins increased up to 28 %. For comparison, the same assay was performed using HeLa cells treated extracellularly with synthetic hEb. A significant increase in the proliferation index was observed (41–58 % for concentrations ranging from 10–100 nM, respectively). Additionally, a cell migration assay was performed using stable U2-OS cell lines expressing hEb fused with RFP or RFP alone as a negative control. The migration index of hEb expressing cells was 38.3 % greater. The increase in cell proliferation index and in motile properties of hEb expressing cells demonstrate that hEb is more than a pre-pro-IGF1b processing product, and has intrinsic activity of biological significance. PMID:23335048

  5. Effect of Medicinal Plant By-products Supplementation to Total Mixed Ration on Growth Performance, Carcass Characteristics and Economic Efficacy in the Late Fattening Period of Hanwoo Steers

    Directory of Open Access Journals (Sweden)

    S. J. Lee

    2015-12-01

    Full Text Available This study was conducted to evaluate the effect of medicinal plant by-products (MPB supplementation to a total mixed ration (TMR on growth, carcass characteristics and economic efficacy in the late fattening period of Hanwoo steers. Twenty seven steers (body weight [BW], 573±57 kg were assigned to 3 treatment groups so that each treatment based on BW contained 9 animals. All groups received ad libitum TMR throughout the feeding trial until slaughter (from 24 to 30 months of age and treatments were as follows: control, 1,000 g/kg TMR; treatment 1 (T1, 970 g/kg TMR and 30 g/kg MPB; treatment 2 (T2, 950 g/kg TMR and 50 g/kg MPB. Initial and final BW were not different among treatments. Resultant data were analyzed using general linear models of SAS. Average daily gain and feed efficiency were higher (p<0.05 for T1 than control, but there was no difference between control and T2. Plasma albumin showed low-, intermediate- and high-level (p<0.05 for control, T1 and T2, whereas non-esterified fatty acid was high-, intermediate- and high-level (p<0.05 for control, T1 and T2, respectively. Carcass weight, carcass rate, backfat thickness and rib eye muscle area were not affected by MPB supplementation, whereas quality and yield grades were highest (p<0.05 for T1 and T2, respectively. Daily feed costs were decreased by 0.5% and 0.8% and carcass prices were increased by 18.1% and 7.6% for T1 and T2 compared to control, resulting from substituting TMR with 30 and 50 g/kg MPB, respectively. In conclusion, the substituting TMR by 30 g/kg MPB may be a potential feed supplement approach to improve economic efficacy in the late fattening period of Hanwoo steers.

  6. Effect of Medicinal Plant By-products Supplementation to Total Mixed Ration on Growth Performance, Carcass Characteristics and Economic Efficacy in the Late Fattening Period of Hanwoo Steers

    Science.gov (United States)

    Lee, S. J.; Kim, D. H.; Guan, Le Luo; Ahn, S. K.; Cho, K. W.; Lee, Sung S.

    2015-01-01

    This study was conducted to evaluate the effect of medicinal plant by-products (MPB) supplementation to a total mixed ration (TMR) on growth, carcass characteristics and economic efficacy in the late fattening period of Hanwoo steers. Twenty seven steers (body weight [BW], 573±57 kg) were assigned to 3 treatment groups so that each treatment based on BW contained 9 animals. All groups received ad libitum TMR throughout the feeding trial until slaughter (from 24 to 30 months of age) and treatments were as follows: control, 1,000 g/kg TMR; treatment 1 (T1), 970 g/kg TMR and 30 g/kg MPB; treatment 2 (T2), 950 g/kg TMR and 50 g/kg MPB. Initial and final BW were not different among treatments. Resultant data were analyzed using general linear models of SAS. Average daily gain and feed efficiency were higher (p<0.05) for T1 than control, but there was no difference between control and T2. Plasma albumin showed low-, intermediate- and high-level (p<0.05) for control, T1 and T2, whereas non-esterified fatty acid was high-, intermediate- and high-level (p<0.05) for control, T1 and T2, respectively. Carcass weight, carcass rate, backfat thickness and rib eye muscle area were not affected by MPB supplementation, whereas quality and yield grades were highest (p<0.05) for T1 and T2, respectively. Daily feed costs were decreased by 0.5% and 0.8% and carcass prices were increased by 18.1% and 7.6% for T1 and T2 compared to control, resulting from substituting TMR with 30 and 50 g/kg MPB, respectively. In conclusion, the substituting TMR by 30 g/kg MPB may be a potential feed supplement approach to improve economic efficacy in the late fattening period of Hanwoo steers. PMID:26580440

  7. Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds.

    Science.gov (United States)

    Bonilla-Hermosa, Verónica Alejandra; Duarte, Whasley Ferreira; Schwan, Rosane Freitas

    2014-08-01

    The semi-dry processing of coffee generates significant amounts of coffee pulp and wastewater. This study evaluated the production of bioethanol and volatile compounds of eight yeast strains cultivated in a mixture of these residues. Hanseniaspora uvarum UFLA CAF76 showed the best fermentation performance; hence it was selected to evaluate different culture medium compositions and inoculum size. The best results were obtained with 12% w/v of coffee pulp, 1 g/L of yeast extract and 0.3 g/L of inoculum. Using these conditions, fermentation in 1 L of medium was carried out, achieving higher ethanol yield, productivity and efficiency with values of 0.48 g/g, 0.55 g/L h and 94.11% respectively. Twenty-one volatile compounds corresponding to higher alcohols, acetates, terpenes, aldehydes and volatile acids were identified by GC-FID. Such results indicate that coffee residues show an excellent potential as substrates for production of value-added compounds. H. uvarum demonstrated high fermentative capacity using these residues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Investigation of pharmaceuticals in processed animal by-products by liquid chromatography coupled to high-resolution mass spectrometry.

    Science.gov (United States)

    Nácher-Mestre, Jaime; Ibáñez, María; Serrano, Roque; Boix, Clara; Bijlsma, Lubertus; Lunestad, Bjørn Tore; Hannisdal, Rita; Alm, Martin; Hernández, Félix; Berntssen, Marc H G

    2016-07-01

    There is an on-going trend for developing more sustainable salmon feed in which traditionally applied marine feed ingredients are replaced with alternatives. Processed animal products (PAPs) have been re-authorized as novel high quality protein ingredients in 2013. These PAPs may harbor undesirable substances such as pharmaceuticals and metabolites which are not previously associated with salmon farming, but might cause a potential risk for feed and food safety. To control these contaminants, an analytical strategy based on a generic extraction followed by ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS) using quadrupole time-of-flight mass analyzer (QTOF MS) was applied for wide scope screening. Quality control samples, consisting of PAP commodities spiked at 0.02, 0.1 and 0.2 mg/kg with 150 analytes, were injected in every sample batch to verify the overall method performance. The methodology was applied to 19 commercially available PAP samples from six different types of matrices from the EU animal rendering industry. This strategy allows assessing possible emergent risk exposition of the salmon farming industry to 1005 undesirables, including pharmaceuticals, several dyes and relevant metabolites.

  9. Application of digital image processing for pot plant grading.

    NARCIS (Netherlands)

    Dijkstra, J.

    1994-01-01

    The application of digital image processing for grading of pot plants has been studied. Different techniques e.q. plant part identification based on knowledge based segmentation, have been developed to measure features of plants in different growth stage. Growth experiments were performed to identif

  10. A three-prong strategy to develop functional food using protein isolates recovered from chicken processing by-products with isoelectric solubilization/precipitation.

    Science.gov (United States)

    Tahergorabi, Reza; Sivanandan, Litha; Beamer, Sarah K; Matak, Kristen E; Jaczynski, Jacek

    2012-09-01

    Skin-on bone-in chicken drumsticks were processed with isoelectric solubilization/precipitation to recover muscle proteins. The drumsticks were used as a model for dark chicken meat processing by-products. The main objective of this study was conversion of dark chicken meat processing by-products to restructured functional food product. An attempt was made to develop functional food product that would resemble respective product made from boneless skinless chicken breast meat. A three-prong strategy to address diet-driven cardiovascular disease (CVD)with a functional food was used in this study. The strategy included addition of three ingredients with well-documented cardiovascular benefits: (i) ω-3 polyunsaturated fatty acid-rich oil (flaxseed-algae, 9:1); (ii) soluble fiber; and (iii) salt substitute. Titanium dioxide, potato starch, polyphosphate, and transglutaminase were also added. The batters were formulated and cooked resulting in heat-set gels. Color (L*a*b*), texture (torsion test, Kramer shear test, and texture profile analysis), thermal denaturation (differential scanning calorimetry), and gelation (dynamic rheology) of chicken drumstick gels and chicken breast gels were determined and compared. Chicken drumstick gels generally had comparable color and texture properties to the gels made from chicken breast meat. The endothermic transition (thermal denaturation) of myosin was more pronounced and gelation properties were better for the drumstick gels. This study demonstrated a feasibility to develop functional food made of muscle proteins recovered with isoelectric solubilization/precipitation from low-value dark chicken meat processing by-products. The functional food developed in this study was enriched with CVD-beneficial nutrients and had comparable instrumental quality attributes to respective products made of chicken breast meat. Although the results of this study point towards the potential for a novel, marketable functional food product, sensory

  11. Processing biogas plant digestates into value-added products - BIOVIRTA

    Energy Technology Data Exchange (ETDEWEB)

    Paavola, T. (MTT Agrifood Research Finland, Jokioinen (Finland)), e-mail: teija.paavola@mtt.fi; Torniainen, M. (Finnish Food Safety Authority, EVIRA, Helsinki (Finland)), e-mail: merja.torniainen@evira.fi; Kaparaju, P. (Jyvaeskylae Univ. (Finland)), e-mail: prasad.kaparaju@jyu.fi (and others)

    2011-11-15

    The objective of BIOVIRTA project is to develop technologies and practices with which digestates, originating from anaerobic digestion of different organic wastes and by-products can be refined to value-added and safe products for various end-uses. It is expected that the operational preconditions for biogas plants will be significantly enhanced when the end-products are proven safe and applicable. Selection of the raw materials for anaerobic co-digestion is the main operational strategy that could influence the nutrient content in the digestate. This has been clearly established in the laboratory and full-scale studies with various digestates originating from different raw materials. The nutrient content in the digestate also affects the opportunities to produce refined digestate products. In this project, the possibilities for several processing technologies, e.g. mechanical separation, stripping, and struvite production have been intensively evaluated for the production of different digestate products. Their mass balances have also been estimated. The feasibility for the use of the digestate products has been assessed based on their chemical and hygienic quality and for various end-uses, including as organic fertiliser and/or soil improver in crop production. The results of these field-experiments showed that the yield of barley fertilised with digestate products was comparable to inorganic fertilisers. (orig.)

  12. Rapid Purification of Glycerol by-product from Biodiesel Production through Combined Process of Microwave Assisted Acidification and Adsorption via Chitosan Immobilized with Yeast

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2014-01-01

    Full Text Available Biodiesel is a proven alternative to the petroleum diesel fuel. During biodiesel production, glycerol is produced as a by-product. This by-product consist of impureties such as soap, salts, sodium catalyst and so on. Traditionally, two of the most conventional techniques that is applied to glycerol purification are distillation and ion-exchange. These techniques are, however, still expensive to generate pure glycerol. Recently, several alternative “combination” treatment procedures have been used. These treatment has several advantages over others methods such as producing large amounts of glycerol-rich layer that requires simple treatments and not causing any high operational cost. In this study, the combination treatment process have been used in order to reach high glycerol content. Basically, these stages starts with using microwave assisted acidification process and the next process utilizing a bioadsorbent synthesized from dead yeast cells immobilized on chitosan. The final yield of glycerol was about 93.1-94.2% (w/w.

  13. Determination of the minor disinfection by-products formed in the water plant of Sant Joan Despi (Barcelona, Spain); Determinacion de los subproductos de desinfeccion minoritarios formados en la planta de Sant Joan Despi (Barcelona)

    Energy Technology Data Exchange (ETDEWEB)

    Cancho, B.; Galceran, M.T. [Universitat de Barcelona (Spain); Ventura, F. [AGBAR. Societat General d` Aigues de Barcelona, S.A. (Spain)

    1997-09-01

    Chlorine is widely used in drinking water disinfection due to be a powerful and not expense disinfection. Although the benefits of disinfection, the formation of stable disinfection by-products of the health concern, is the result of the interaction of aqueous chlorine with natural organic matter presents in water. Disinfection by-products generated in major concentration are trihalomethane and haloacetic acids. Disinfection by-products generated in minor concentration are haloacetonitriles, haloketones,chloral hydrate and chloropicrin and some new groups such as cyanogen halides and trihaloacetaldydes. In this work two analytical methods.: headspace/gas chromatography/electron capture detector and liquid-liquid microextraction/gas chromatography/electron capture detector are studied and compared to determine the minor by-products and to establish finally, a systematic control of them in the different stages of the Water Treatment Plant of San Joan Despi (Barcelona, Spain). (Author) 12 refs.

  14. Peptide Fractions Obtained from Rice By-Products by Means of an Environment-Friendly Process Show In Vitro Health-Related Bioactivities

    Science.gov (United States)

    Ferri, Maura; Graen-Heedfeld, Jürgen; Bretz, Karlheinz; Guillon, Fabien; Michelini, Elisa; Calabretta, Maria Maddalena; Lamborghini, Matteo; Gruarin, Nicolò; Roda, Aldo; Kraft, Axel

    2017-01-01

    Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen. PMID:28125712

  15. Coal gasification power plant and process

    Science.gov (United States)

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  16. Wastewater treatment of a fruit processing plant pulp

    OpenAIRE

    2014-01-01

    There is a growing concern in environmental pollution levels of the neighboring ecosystems fruit processing plant by the discharge of untreated industrial effl uents and proper control of the authorities, because many of them have not considered the management their effl uents into the design of the plant. The objective of this research is to characterize and manage the processing effl uent. We conclude that the processing effl uents have a high potential for contamination by the abundant org...

  17. Effects of various feed supplements containing fish protein hydrolysate or fish processing by-products on the innate immune functions of juvenile coho salmon (oncorhynchus kisutch)

    Science.gov (United States)

    Murray, A.L.; Pascho, R.J.; Alcorn, S.W.; Fairgrieve, W.T.; Shearer, K.D.; Roley, D.

    2003-01-01

    Immunomodulators administered to fish in the diet have been shown in some cases to enhance innate immune defense mechanisms. Recent studies have suggested that polypeptide fractions found in fish protein hydrolysates may stimulate factors in fish important for disease resistance. For the current study, groups of coho salmon were reared on practical feeds that contained either fish meal (Control diet), fish meal supplemented with cooked fish by-products, or fish meal supplemented with hydrolyzed fish protein alone, or with hydrolyzed fish protein and processed fish bones. For each diet group, three replicate tanks of fish were fed the experimental diets for 6 weeks. Morphometric measurements, and serologic and cellular assays were used to evaluate the general health and immunocompetence of fish in the various feed groups. Whereas the experimental diets had no effect on the morphometric and cellular measurements, fish fed cooked by-products had increased leucocrit levels and lower hematocrit levels than fish from the other feed groups. Innate cellular responses were increased in all feed groups after feeding the four experimental diets compared with pre-feed results. Subgroups of fish from each diet group were also challenged with Vibrio anguillarum (ca. 7.71 ?? 105 bacteria ml-1) at 15??C by immersion. No differences were found in survival among the various feed groups.

  18. Carbonaceous and nitrogenous disinfection by-product formation in the surface and ground water treatment plants using Yellow River as water source

    Institute of Scientific and Technical Information of China (English)

    Yukun Hou; Wenhai Chu; Meng Ma

    2012-01-01

    This work investigated the formation of carbonaceous and nitrogenous disinfection by-preducts (C-DBPs,N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes,i.e.,coagulation,sedimentation,and filtration were employed.Twenty DBPs,including four trihalomethanes,nine haloacetic acids,seven N-DBPs (dichloroacetamide,trichloroacetamide,dichloroacetonitrile,trich loroacetonitrile,bromochloroacetonitrile,dibromoacetonitrile and trichloronitromethane),and eight volatile chlorinated compounds (dichlomethane (DCM),1,2-dichloroethane,tetrachloroethylene,chlorobenzene,1,2-dichlorobenzene,1,4-dichlorobenzene,1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene) were detected in the two WTPs.The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 μg/L detected vs.20 μg/L MCL).The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP,probably because more precursors (e.g.,dissolved organic carbon,dissolved organic nitrogen) were present in the water source of the SWTP.

  19. Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L. [Battelle, Columbus, OH (United States)

    1989-08-28

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  20. Multiple Biological Effects of Olive Oil By-products such as Leaves, Stems, Flowers, Olive Milled Waste, Fruit Pulp, and Seeds of the Olive Plant on Skin.

    Science.gov (United States)

    Kishikawa, Asuka; Ashour, Ahmed; Zhu, Qinchang; Yasuda, Midori; Ishikawa, Hiroya; Shimizu, Kuniyoshi

    2015-06-01

    As olive oil production increases, so does the amount of olive oil by-products, which can cause environmental problems. Thus, new ways to utilize the by-products are needed. In the present study, five bioactive characteristics of olive oil by-products were assessed, namely their antioxidant, anti-bacterial, anti-melanogenesis, anti-allergic, and collagen-production-promoting activities. First, the extracts of leaves (May and October), stems (May and October), flowers, olive milled waste, fruit pulp and seeds were prepared using two safe solvents, ethanol and water. According to HPLC and LC/MS analysis and Folin-Ciocalteu assay, the ethanol extracts of the leaves (May and October), stems (May and October) and flowers contained oleuropein, and the ethanol extract of the stems showed the highest total phenol content. Oleuropein may contribute to the antioxidant and anti-melanogenesis activities of the leaves, stems, and flowers. However, other active compounds or synergistic effects present in the ethanol extracts are also likely to contribute to the anti-bacterial activity of the leaves and flowers, the anti-melanogenesis activity of some parts, the anti-allergic activity of olive milled waste, and the collagen-production-promoting activity of the leaves, stems, olive milled waste and fruit pulp. This study provides evidence that the by-products of olive oil have the potential to be further developed and used in the skin care industry. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment

    NARCIS (Netherlands)

    Pol, van der E.C.; Bakker, R.; Zeeland, van A.N.T.; Sanchez Garcia, D.; Punt, A.M.; Eggink, G.

    2015-01-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretre

  2. Extraction and purification of high added value compounds from by-products of the winemaking chain using alternative/nonconventional processes/technologies.

    Science.gov (United States)

    Yammine, Sami; Brianceau, Sylène; Manteau, Sébastien; Turk, Mohammad; Ghidossi, Rémy; Vorobiev, Eugène; Mietton-Peuchot, Martine

    2016-12-21

    Grape byproducts are today considered as a cheap source of valuable compounds since existent technologies allow the recovery of target compounds and their recycling. The goal of the current article is to explore the different recovery stages used by both conventional and alternative techniques and processes. Alternative pre-treatments techniques reviewed are: ultrasounds, pulsed electric fields and high voltage discharges. In addition, nonconventional solvent extraction under high pressure, specifically, supercritical fluid extraction and subcritical water extraction are discussed. Finally alternative purification technologies, for example membrane processing were also examined. The intent is to describe the mechanisms involved by these alternative technologies and to summarize the work done on the improvement of the extraction process of phenolic compounds from winery by-products. With a focus on the developmental stage of each technology, highlighting the research need and challenges to be overcome for an industrial implementation of these unitary operations in the overall extraction process. A critical comparison of conventional and alternative techniques will be reviewed for ethe pre-treatment of raw material, the diffusion of polyphenols and the purification of these high added value compounds. This review intends to give the reader some key answers (costs, advantages, drawbacks) to help in the choice of alternative technologies for extraction purposes.

  3. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products.

    Science.gov (United States)

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-08-01

    The objective of this study was to investigate the effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products (AFPBPs) using the biogas potential test. The AFPBPs were classified based on their chemical compositions (i.e., carbohydrate, protein and fat contents). The biogas and methane potentials of AFPBPs were calculated to range from 450 to 777 mL/g volatile solids (VS) and 260-543 mL/g VS, respectively. AFPBPs with high fat and protein contents produced significantly higher amounts of biogas than AFPBPs with high carbohydrate and low fat contents. The degradation rate was faster for AFPBPs with high carbohydrate contents compared to AFPBPs with high protein and fat contents. The lag phase and biogas production duration were lower when using ensiled AFPBPs than when using nonsilage AFPBPs. Among the four different silages tested, two silages significantly improved biogas production compared to the nonsilage AFPBPs.

  4. Survey on Contamination of Fusarium Mycotoxins in 2011-harvested Rice and Its By-products from Rice Processing Complexes in Korea

    Directory of Open Access Journals (Sweden)

    Soohyung Lee

    2013-12-01

    Full Text Available To investigate Fusarium mycotoxin contamination in rice samples from rice processing complexes (RPCs, paddy rice and rice-milling products such as husks, brown rice, blue-tinged rice, broken rice, rice bran, discolored rice, and polished rice were collected from nationwide in 2012. Three hundred seventy one samples of rice and its by-products were analyzed for three trichothethenes including nivalenol (NIV, deoxynivalenol (DON, and zearalenone (ZEA by LC/MS. Discolored rice samples were found to have the highest contamination of DON, NIV or ZEA, followed by broken rice. Polished rice samples were largely free from mycotoxins, except three samples which were contaminated with NIV or DON at safety level. The rice byproduct samples were contaminated at higher level and frequencies than polished rice samples.

  5. Meat yield and quality of Tanzania Shorthorn Zebu cattle finished on molasses/maize grain with agro-processing by-products in 90 days feedlot period

    DEFF Research Database (Denmark)

    Asimwe, L.; Kimambo, A E; Laswai, G;

    2016-01-01

    This study was conducted to evaluate the effects of feeding molasses or maize grain with agro-processing by-products on yield and quality of meat from Tanzania shorthorn zebu (TSZ) cattle. Forty five steers aged 2.5 to 3.0 years with 200 +/- 5.4 kg body weight were allocated into five dietary......) and Warner Bratzler shear force (WBSF) values were determined on M. longissimus thoracis et lumborum aged for 3, 6, 9 and 12 days. Steers fed on HFMO diet had higher (P nutrient intake (86.39 MJ/d energy; 867 g/d CP), weight gain (919 g/d) and half carcass weight (75.8 kg) than those fed other diets...

  6. Biorefinery plant design, engineering and process optimisation

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Ehimen, Ehiazesebhor Augustine

    2014-01-01

    applicable for the planning and upgrading of intended biorefinery systems, and includes discussions on the operation of an existing lignocellulosic-based biorefinery platform. Furthermore, technical considerations and tools (i.e., process analytical tools) which could be applied to optimise the operations......Before new biorefinery systems can be implemented, or the modification of existing single product biomass processing units into biorefineries can be carried out, proper planning of the intended biorefinery scheme must be performed initially. This chapter outlines design and synthesis approaches...

  7. Nuclear pre-mRNA processing in plants

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.S.N. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Biology and Program in Molecular Plant Biology; Golovkin, M. (eds.) [Thomas Jefferson Univ., Philadelphia, PA (United States). Dept. of Microbiology

    2008-07-01

    This volume of CTMI, entitled Nuclear premRNA Processing in Plants, with 16 chapters from leading scientists in this area, summarizes recent advances in nuclear pre-mRNA processing and its role in plant growth and development. It provides researchers in the field, as well as those in related areas, with an up-to-date and comprehensive, yet concise, overview of the current status and future potential of this research in understanding plant biology. The first four chapters focus on spliceosome composition, genome-wide alternative splicing, and splice site requirements for U1 and U12 introns using computational and empirical approaches. Analysis of sequenced plant genomes has revealed that 80% of all protein-coding nuclear genes contain one or more introns. The lack of an in vitro plant splicing system has made it difficult to identify general and plant-specific components of splicing machinery in plants. The next three chapters focus on serine/arginine-rich (SR) proteins, a family of highly conserved proteins, which are known to play key roles in constitutive and regulated splicing of pre-mRNA and other aspects of RNA metabolism in metazoans. These proteins engage both in RNA binding and protein.protein interactions and function as splicing regulators at multiple stages of spliceosome assembly. This family of proteins has expanded considerably in plants with several plant-specific SR proteins. Several serendipitous discoveries made using forward genetics are indicating that RNA metabolism (alternative splicing, alternative polyadenylation, mRNA transport) plays an important role in many aspects of plant growth and development and in plant responses to biotic and abiotic stresses. The next seven chapters focus on these aspects of RNA metabolism. The plant hormone abscisic acid (ABA) regulates a number of physiological processes during plant growth and development. The next chapter or A.B. Rose discusses the ways introns affect gene expression both positively and

  8. Formation of Disinfection By-products (DBPs) and Strategies to Reduce Their Concentration in the Water Treatment Plant in Përlepnica – Gjilan, Kosovo

    OpenAIRE

    , A. Azizi; , K. Berisha; , S. Jusufi

    2011-01-01

    Chlorine is the most widely used disinfection agent in drinking water industry in the world. Chlorine is a strong oxidant, and has the ability to kill or inactivate most pathogenic micro organisms commonly found in water. As such, chlorine used for disinfection of drinking water reacts with natural organic matter (NOM) contained in raw water, and forms the so called disinfection by-products (DBPs), of which trihalomethanes (THMs) and halo acetic acids (HAAs) are the two main groups of DBPs. I...

  9. Formation of Disinfection By-products (DBPs) and Strategies to Reduce Their Concentration in the Water Treatment Plant in Përlepnica – Gjilan, Kosovo

    OpenAIRE

    , A. Azizi; , K. Berisha; , S. Jusufi

    2011-01-01

    Chlorine is the most widely used disinfection agent in drinking water industry in the world. Chlorine is a strong oxidant, and has the ability to kill or inactivate most pathogenic micro organisms commonly found in water. As such, chlorine used for disinfection of drinking water reacts with natural organic matter (NOM) contained in raw water, and forms the so called disinfection by-products (DBPs), of which trihalomethanes (THMs) and halo acetic acids (HAAs) are the two main groups of DBPs. I...

  10. Biorefinery plant design, engineering and process optimisation

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Ehimen, Ehiazesebhor Augustine

    2014-01-01

    Before new biorefinery systems can be implemented, or the modification of existing single product biomass processing units into biorefineries can be carried out, proper planning of the intended biorefinery scheme must be performed initially. This chapter outlines design and synthesis approaches a...

  11. In-plant evaluation of dense medium process performances

    Energy Technology Data Exchange (ETDEWEB)

    R.Q. Honaker; A. Patwardhan [University of Kentucky, Lexington, KY (United States). Department of Mining Engineering

    2006-07-15

    The separation density and process efficiency values achieved by dense medium processes are a function of the particle size fractions being treated, hydrodynamics of the separator, and medium rheology. An in-plant evaluation of the dense medium processes being used in an operating preparation plant was conducted in an effort to develop relationships between the actual separation density and the medium density and to quantify the separation efficiency values. The results were found to correlate well with current fundamental and operating principles governing the processes, which are reviewed and discussed.

  12. B Plant process piping replacement feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.

    1996-02-07

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace.

  13. Iohexol degradation in wastewater and urine by UV-based Advanced Oxidation Processes (AOPs): Process modeling and by-products identification.

    Science.gov (United States)

    Giannakis, Stefanos; Jovic, Milica; Gasilova, Natalia; Pastor Gelabert, Miquel; Schindelholz, Simon; Furbringer, Jean-Marie; Girault, Hubert; Pulgarin, César

    2016-07-11

    In this work, an Iodinated Contrast Medium (ICM), Iohexol, was subjected to treatment by 3 Advanced Oxidation Processes (AOPs) (UV, UV/H2O2, UV/H2O2/Fe(2+)). Water, wastewater and urine were spiked with Iohexol, in order to investigate the treatment efficiency of AOPs. A tri-level approach has been deployed to assess the UV-based AOPs efficacy. The treatment was heavily influenced by the UV transmittance and the organics content of the matrix, as dilution and acidification improved the degradation but iron/H2O2 increase only moderately. Furthermore, optimization of the treatment conditions, as well as modeling of the degradation was performed, by step-wise constructed quadratic or product models, and determination of the optimal operational regions was achieved through desirability functions. Finally, global chemical parameters (COD, TOC and UV-Vis absorbance) were followed in parallel with specific analyses to elucidate the degradation process of Iohexol by UV-based AOPs. Through HPLC/MS analysis the degradation pathway and the effects the operational parameters were monitored, thus attributing the pathways the respective modifications. The addition of iron in the UV/H2O2 process inflicted additional pathways beneficial for both Iohexol and organics removal from the matrix.

  14. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  15. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  16. By-products of the serpentinization process on the Oman ophiolite : chemical and isotopic composition of carbonate deposits in alkaline springs, and associated secondary phases

    Science.gov (United States)

    Sissmann, O.; Martinez, I.; Deville, E.; Beaumont, V.; Pillot, D.; Prinzhofer, A.; Vacquand, C.; Chaduteau, C.; Agrinier, P.; Guyot, F. J.

    2014-12-01

    The isotopic compositions (d13C, d18O) of natural carbonates produced by the alteration of basic and ultrabasic rocks on the Oman ophiolite have been measured in order to better understand their formation mechanisms. Fossil carbonates developed on altered peridotitic samples, mostly found in fractures, and contemporary carbonates were studied. The samples bear a large range of d13C. Those collected in veins are magnesian (magnesite, dolomite) and have a carbon signature reflecting mixing of processes and important fractionation (-11‰ to 8‰). Their association with talc and lizardite suggests they are by-products of a serpentinization process, that must have occurred as a carbon-rich fluid was circulating at depth. On the other hand, the carbonates are mostly calcic when formed in alkaline springs, most of which are located in the vicinity of lithological discontinuities such as the peridotite-gabbro contact (Moho). Aragonite forms a few meters below the surface of the ponds in Mg-poor water, and is systematically associated with brucite (Mg(OH)2). This suggests most of the Mg dissolved at depth has reprecipitated during the fluid's ascension through fractures or faults as carbonates and serpentine. Further up, on the surface waters of the ponds (depleted in Mg and D.I.C.), thin calcite films precipitate and reach extremely negative d13C values (-28‰), which could reflect either a biological carbon source, or kinetic fractionation from pumping atmospheric CO2. Their formation represent an efficient and natural process for carbon dioxide mineral sequestration. The d18O signature from all samples confirm the minerals crystallized from a low-temperature fluid. The hyperalkaline conditions (pH between 11 and 12) allowing for these fast precipitation kinetics are generated by the serpentinization process occurring at depth, as indicated by the measured associated H2-rich gas flows (over 50%) seeping out to the surface.

  17. An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation.

    Science.gov (United States)

    Fayle, Tom M; Edwards, David P; Foster, William A; Yusah, Kalsum M; Turner, Edgar C

    2015-06-01

    Anthropogenic disturbance and the spread of non-native species disrupt natural communities, but also create novel interactions between species. By-product mutualisms, in which benefits accrue as side effects of partner behaviour or morphology, are often non-specific and hence may persist in novel ecosystems. We tested this hypothesis for a two-way by-product mutualism between epiphytic ferns and their ant inhabitants in the Bornean rain forest, in which ants gain housing in root-masses while ferns gain protection from herbivores. Specifically, we assessed how the specificity (overlap between fern and ground-dwelling ants) and the benefits of this interaction are altered by selective logging and conversion to an oil palm plantation habitat. We found that despite the high turnover of ant species, ant protection against herbivores persisted in modified habitats. However, in ferns growing in the oil palm plantation, ant occupancy, abundance and species richness declined, potentially due to the harsher microclimate. The specificity of the fern-ant interactions was also lower in the oil palm plantation habitat than in the forest habitats. We found no correlations between colony size and fern size in modified habitats, and hence no evidence for partner fidelity feedbacks, in which ants are incentivised to protect fern hosts. Per species, non-native ant species in the oil palm plantation habitat (18 % of occurrences) were as important as native ones in terms of fern protection and contributed to an increase in ant abundance and species richness with fern size. We conclude that this by-product mutualism persists in logged forest and oil palm plantation habitats, with no detectable shift in partner benefits. Such persistence of generalist interactions in novel ecosystems may be important for driving ecosystem functioning.

  18. Determination of Properties of Selected Fresh and Processed Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Shirley G. Cabrera

    2015-11-01

    Full Text Available The study aimed to determine the chemical properties, bioactive compounds, antioxidant activity and toxicity level of fresh and processed medicinal plants such as corn (Zea mays silk, pancitpancitan (Peperomiapellucida leaves, pandan (Pandanus amaryllifolius leaves, and commercially available tea. The toxicity level of the samples was measured using the Brine Shrimp Lethality Assay (BSLA. Statistical analysis was done using Statistical Package for Social Sciences (SPSS. Results showed that in terms of chemical properties there is significant difference between fresh and processed corn silk except in crude fiber content was noted. Based on proximate analyses of fresh and processed medicinal plants specifically in terms of % moisture, %crude protein and % total carbohydrates were also observed. In addition, there is also significant difference on bioactive compound contents such as total flavonoids and total phenolics between fresh and processed corn silk except in total vitamin E (TVE content. Pandan and pancit-pancitan showed significant difference in all bioactive compounds except in total antioxidant content (TAC. Fresh pancit-pancitan has the highest total phenolics content (TPC and TAC, while the fresh and processed corn silk has the lowest TAC and TVE content, respectively. Furthermore, results of BSLA for the three medicinal plants and commercially available tea extract showed after 24 hours exposure significant difference in toxicity level was observed. The percentage mortality increased with an increase in exposure time of the three medicinal plants and tea extract. The results of the study can served as baseline data for further processing and commercialization of these medicinal plants.

  19. Process monitoring in international safeguards for reprocessing plants: A demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Ehinger, M.H.

    1989-01-01

    In the period 1985--1987, the Oak Ridge National Laboratory investigated the possible role of process monitoring for international safeguards applications in fuel reprocessing plants. This activity was conducted under Task C.59, ''Review of Process Monitoring Safeguards Technology for Reprocessing Facilities'' of the US program of Technical Assistance to the International Atomic Energy Agency (IAEA) Safeguards program. The final phase was a demonstration of process monitoring applied in a prototypical reprocessing plant test facility at ORNL. This report documents the demonstration and test results. 35 figs.

  20. Modeling Recycling Asphalt Pavement Processing Technologies in Asphalt Mixing Plants

    OpenAIRE

    Simonas Tamaliūnas; Henrikas Sivilevičius

    2011-01-01

    The article presents reclaimed asphalt pavement (RAP) processing technologies and equipment models used in the asphalt mixing plant (AMP). The schematic model indicating all possible ways to process RAP in AMP is shown. The model calculating the needed temperature of mineral materials used for heating RAP is given and an example of such calculation is provided.Article in Lithuanian

  1. Modeling Recycling Asphalt Pavement Processing Technologies in Asphalt Mixing Plants

    Directory of Open Access Journals (Sweden)

    Simonas Tamaliūnas

    2011-04-01

    Full Text Available The article presents reclaimed asphalt pavement (RAP processing technologies and equipment models used in the asphalt mixing plant (AMP. The schematic model indicating all possible ways to process RAP in AMP is shown. The model calculating the needed temperature of mineral materials used for heating RAP is given and an example of such calculation is provided.Article in Lithuanian

  2. Extraction and downstream processing of plant-derived recombinant proteins.

    Science.gov (United States)

    Buyel, J F; Twyman, R M; Fischer, R

    2015-11-01

    Plants offer the tantalizing prospect of low-cost automated manufacturing processes for biopharmaceutical proteins, but several challenges must be addressed before such goals are realized and the most significant hurdles are found during downstream processing (DSP). In contrast to the standardized microbial and mammalian cell platforms embraced by the biopharmaceutical industry, there are many different plant-based expression systems vying for attention, and those with the greatest potential to provide inexpensive biopharmaceuticals are also the ones with the most significant drawbacks in terms of DSP. This is because the most scalable plant systems are based on the expression of intracellular proteins in whole plants. The plant tissue must therefore be disrupted to extract the product, challenging the initial DSP steps with an unusually high load of both particulate and soluble contaminants. DSP platform technologies can accelerate and simplify process development, including centrifugation, filtration, flocculation, and integrated methods that combine solid-liquid separation, purification and concentration, such as aqueous two-phase separation systems. Protein tags can also facilitate these DSP steps, but they are difficult to transfer to a commercial environment and more generic, flexible and scalable strategies to separate target and host cell proteins are preferable, such as membrane technologies and heat/pH precipitation. In this context, clarified plant extracts behave similarly to the feed stream from microbes or mammalian cells and the corresponding purification methods can be applied, as long as they are adapted for plant-specific soluble contaminants such as the superabundant protein RuBisCO. Plant-derived pharmaceutical proteins cannot yet compete directly with established platforms but they are beginning to penetrate niche markets that allow the beneficial properties of plants to be exploited, such as the ability to produce 'biobetters' with tailored

  3. Inhalable dust and protein exposure in soybean processing plants.

    Science.gov (United States)

    Spies, Adri; Rees, David; Fourie, Anna M; Wilson, Kerry S; Harris-Roberts, Joanne; Robinson, Edward

    2008-01-01

    Little is known about inhalable dust concentrations in soybean processing plants in southern Africa. This project measured inhalable dust in soybean plants in the region and correlated dust measurements with total protein and soy trypsin inhibitor. Sixty-four personal inhalable dust measurements were taken in three processing plants. Levels of total protein and soy trypsin inhibitor were determined in only two of the three plants. Correlations between inhalable dust, total protein and trypsin inhibitor were determined for 44 of 64 samples. In plants' production areas, inhalable dust levels were 0.24-35.02 mg/m3 (median 2.58 mg/m3). Total protein and soy trypsin inhibitor levels were 29.41-448.82 microg/m3 (median 90.09 microg/m3) and 0.05-2.58 microg/m3 (median 0.07 microg/m3), respectively. No statistically significant correlations between presence of inhalable dust and soy trypsin inhibitor were found. Total protein and soy trypsin inhibitor were better correlated. This study indicates that total protein might be a good proxy for soybean specific protein concentrations in soybean processing plants.

  4. Co-digestion of dairy cattle slurry and industrial meat-processing by-products--effect of ultrasound and hygienization pre-treatments.

    Science.gov (United States)

    Luste, Sami; Heinonen-Tanski, Helvi; Luostarinen, Sari

    2012-01-01

    Anaerobic co-digestion of a mixture of industrial animal by-products (ABP) from meat-processing in conjunction with dairy cattle slurry (mixed in a ratio of 1:3; w.w.) was evaluated at 35 °C focusing on methane production and stabilization. Three pre-treatments were applied (1) digestion with no pre-treatment (control), (2) ultrasound, and (3) thermal hygienization (70 °C, 60 min). Methane production potentials (MPP) of the untreated, ultrasound pre-treated and hygienized feed mixtures were 300, 340, and 360 m(3) CH(4)/t volatile solids (VS) added, as determined in the batch experiments. However, the specific methane productions (SMP) achieved in reactor experiments (hydraulic retention time HRT 21 d, organic loading rate OLR 3.0±0.1 kg VS/m(3) d) were 11±2% (untreated and ultrasound pre-treated) and 22±3% (hygienized) lower than the potentials. Ultrasound with the energy input of 1000 kJ/kg total solids (TS) and hygienization of the ready-made feed were the most suitable pre-treatment modes studied.

  5. Meat yield and quality of Tanzania Shorthorn Zebu cattle finished on molasses/maize grain with agro-processing by-products in 90 days feedlot period

    DEFF Research Database (Denmark)

    Asimwe, L.; Kimambo, A E; Laswai, G

    2016-01-01

    This study was conducted to evaluate the effects of feeding molasses or maize grain with agro-processing by-products on yield and quality of meat from Tanzania shorthorn zebu (TSZ) cattle. Forty five steers aged 2.5 to 3.0 years with 200 +/- 5.4 kg body weight were allocated into five dietary...... treatments namely hominy feed with molasses (HFMO), rice polishing with molasses (RPMO), hominy feed with maize meal (HFMM), rice polishing with maize meal (RPMM) and maize meal with molasses (MMMO). Ad libitum amount of each dietary treatment and hay were offered to nine steers for 90 days. Cooking loss (CL......) and Warner Bratzler shear force (WBSF) values were determined on M. longissimus thoracis et lumborum aged for 3, 6, 9 and 12 days. Steers fed on HFMO diet had higher (P nutrient intake (86.39 MJ/d energy; 867 g/d CP), weight gain (919 g/d) and half carcass weight (75.8 kg) than those fed other diets...

  6. Meat yield and quality of Tanzania Shorthorn Zebu cattle finished on molasses/maize grain with agro-processing by-products in 90 days feedlot period

    DEFF Research Database (Denmark)

    Asimwe, Lovince; Kimambo, Abiliza; Laswai, Germana

    2016-01-01

    This study was conducted to evaluate the effects of feeding molasses or maize grain with agro-processing by-products on yield and quality of meat from Tanzania shorthorn zebu (TSZ) cattle. Forty five steers aged 2.5 to 3.0 years with 200 ± 5.4 kg body weight were allocated into five dietary...... treatments namely hominy feed with molasses (HFMO), rice polishing with molasses (RPMO), hominy feed with maize meal (HFMM), rice polishing with maize meal (RPMM) and maize meal with molasses (MMMO). Ad libitum amount of each dietary treatment and hay were offered to nine steers for 90 days. Cooking loss (CL......) and Warner Bratzler shear force (WBSF) values were determined on M. longissimus thoracis et lumborum aged for 3, 6, 9 and 12 days. Steers fed on HFMO diet had higher (P nutrient intake (86.39 MJ/d energy; 867 g/d CP), weight gain (919 g/d) and half carcass weight (75.8 kg) than those fed other diets...

  7. Radiation processing of minimally processed vegetables and aromatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, M.J. [Instituto Nacional dos Recursos Biologicos, L-INIA, Quinta do Marques, 2784-505 Oeiras (Portugal)], E-mail: mjptrigo@gmail.com; Sousa, M.B.; Sapata, M.M.; Ferreira, A.; Curado, T.; Andrada, L. [Instituto Nacional dos Recursos Biologicos, L-INIA, Quinta do Marques, 2784-505 Oeiras (Portugal); Botelho, M.L. [Instituto Tecnologico e Nuclear, E.N. 10, 2696 Sacavem (Portugal); Veloso, M.G. [Faculdade de Medicina Veterinaria de Lisboa, Av. da Universidade Tecnica, Alto da Ajuda, 1300-477 Lisboa (Portugal)

    2009-07-15

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander (Coriandrum sativum L.), mint (Mentha spicata L.), parsley (Petroselinum crispum Mill, (A.W. Hill)), lettuce (Lactuca sativa L.) and watercress (Nasturium officinale L.). The inactivation level of natural microbiota and the D{sub 10} values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed ({>=}2 log). Based on the determined D{sub 10}, the amount of radiation necessary to kill 10{sup 5}E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  8. Radiation processing of minimally processed vegetables and aromatic plants

    Science.gov (United States)

    Trigo, M. J.; Sousa, M. B.; Sapata, M. M.; Ferreira, A.; Curado, T.; Andrada, L.; Botelho, M. L.; Veloso, M. G.

    2009-07-01

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander ( Coriandrum sativum L .), mint ( Mentha spicata L.), parsley ( Petroselinum crispum Mill, (A.W. Hill)), lettuce ( Lactuca sativa L.) and watercress ( Nasturium officinale L.). The inactivation level of natural microbiota and the D 10 values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed (⩾2 log). Based on the determined D10, the amount of radiation necessary to kill 10 5E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  9. Consequences of the ban of by-products from terrestrial animals in livestock feeding in Germany and the European Union: alternatives, nutrient and energy cycles, plant production, and economic aspects.

    Science.gov (United States)

    Rodehutscord, M; Abel, H J; Friedt, W; Wenk, C; Flachowsky, G; Ahlgrimm, H J; Johnke, B; Kühl, R; Breves, G

    2002-04-01

    or rotation furnace if heat is the main energy required. In contrast, the energetic efficiency of fermentation is low. (4.) Incineration or co-incineration of MBM and other by-products causes pollution gas emissions amounting to about 1.4 kg CO2 and 0.2 kg NOx per kg. The CO2 production as such is hardly disadvantageous, because heat and electrical energy can be generated by the combustion process. The prevention of dangerous gaseous emissions from MBM burning is current standard in the incineration plants in Germany and does not affect the environment inadmissibly. (5.) The effects of the MBM ban on the price for compound feed is not very significant. Obviously, substitution possibilities between different feed ingredients helped to exchange MBM without large price distortions. However, with each kg MBM not used in pig and poultry feeding economic losses of about 0.14 [symbol: see text] have to considered. In conclusion, the by far highest proportion of raw materials for MBM comes as by-products from the slaughter process. Coming this way, and assuring that further treatment is safe from the hygienic point of view, MBM and animal fat can be regarded as valuable sources of amino acids, minerals and energy in feeding pigs and poultry. Using them as feedstuffs could considerably contribute to the goal of keeping limited nutrients, phosphorus in particular, within the nutrient cycle and dealing responsible with limited resources.

  10. Processing the Visonta lignite for utilization in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gimpl, E.

    1985-01-01

    To utilize the Visonta lignite in power plants, laboratory, semi-industrial and industrial experiments were carried out. In the enrichment process, the parameters of the mensual quality fluctuations, the expected grain size distribution of the lignite, and the average ash content are to be known. Different enrichment processes as well as their results are discussed. In harmony with the obtained results the optimal lignite processing technology is described.

  11. Anaerobic digestion of organic by-products from meat-processing industry. The effect of pre-treatments and co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Luste, S.

    2011-07-01

    Anaerobic digestion is a multi-beneficial biological treatment during which micro-organisms degrade organic material producing biogas (i.e. methane) and stabilised end-product (i.e. digestate). Methane is a versatile renewable energy source and digestate can be used as an organic fertiliser and/or soil improver. Because of the increasing consumption and tightening environment and health legislation, production of organic wastes suitable for anaerobic digestion increases. Animal by-products (ABP) from the meat-processing industry are often rendered (contaminated material), used as feedstock (in fur breeding), or composted. However, ABPs studied could not be utilised in fodder or in animal food production and have currently been rendered or directed to composting, despite being mostly considered unsuitable for composting. Many ABPs are energy-rich, wet and pasty materials and suitable for the anaerobic digestion process. Moreover, suitable pre-treatment to hydrolyse solid materials and/or co-digestion of two or several materials may improve the anaerobic digestion with ultimate goal to increase the methane production, stabilisation and reusability of digestate. The case chosen for more detailed research was that of a middle-sized Finnish meat-processing industry. The aim of the thesis was to evaluate the feasibility of different ABPs presently available for treatment as raw material for anaerobic digestion. Another objective was to enhance the anaerobic digestion process via specific pre-treatments and co-digestion cases with the ultimate aim to increase the methane production and the quality of the digestate. The general goal was to observe the overall process from the perspective of real-circumstances in Finland to rise to needs in practice and to produce exploitable information for adopting sustainable development locally and case-specifically into practice via versatile anaerobic digestion technology. The ABPs studied were highly bio-degradable and especially

  12. Diversity and distribution of Listeria monocytogenes in meat processing plants.

    Science.gov (United States)

    Martín, Belén; Perich, Adriana; Gómez, Diego; Yangüela, Javier; Rodríguez, Alicia; Garriga, Margarita; Aymerich, Teresa

    2014-12-01

    Listeria monocytogenes is a major concern for the meat processing industry because many listeriosis outbreaks have been linked to meat product consumption. The aim of this study was to elucidate L. monocytogenes diversity and distribution across different Spanish meat processing plants. L. monocytogenes isolates (N = 106) collected from food contact surfaces of meat processing plants and meat products were serotyped and then characterised by multilocus sequence typing (MLST). The isolates were serotyped as 1/2a (36.8%), 1/2c (34%), 1/2b (17.9%) and 4b (11.3%). MLST identified ST9 as the most predominant allelic profile (33% of isolates) followed by ST121 (16%), both of which were detected from several processing plants and meat products sampled in different years, suggesting that those STs are highly adapted to the meat processing environment. Food contact surfaces during processing were established as an important source of L. monocytogenes in meat products because the same STs were obtained in isolates recovered from surfaces and products. L. monocytogenes was recovered after cleaning and disinfection procedures in two processing plants, highlighting the importance of thorough cleaning and disinfection procedures. Epidemic clone (EC) marker ECI was identified in 8.5%, ECIII was identified in 2.8%, and ECV was identified in 7.5% of the 106 isolates. Furthermore, a selection of presumably unrelated ST9 isolates was analysed by multi-virulence-locus sequence typing (MVLST). Most ST9 isolates had the same virulence type (VT11), confirming the clonal origin of ST9 isolates; however, one ST9 isolate was assigned to a new VT (VT95). Consequently, MLST is a reliable tool for identification of contamination routes and niches in processing plants, and MVLST clearly differentiates EC strains, which both contribute to the improvement of L. monocytogenes control programs in the meat industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Contamination of cooked peeled shrimp (Pandalus borealis) by Listeria monocytogenes during processing at two processing plants.

    Science.gov (United States)

    Gudmundsdóttir, Sigrún; Gudbjörnsdóttir, Birna; Einarsson, Hjörleifur; Kristinsson, Karl G; Kristjansson, Már

    2006-06-01

    Listeria spp. and Listeria monocytogenes contamination was evaluated in cooked peeled shrimp (final or semifinal product, 82 samples) and the shrimp-processing environment (two plants, 613 samples) in eight surveys conducted from 1998 through 2001. Listeria was detected in 12.5% (78) of the 695 samples (11.2% of the samples were positive for L. monocytogenes), but none of the samples of final product contained Listeria. One hundred seventy-two L. monocytogenes isolates were characterized by pulsed-field gel electrophoresis. Cleavage with macrorestriction enzymes AscI and ApaI yielded 14 different pulsotypes in the plants; two types were dominant, one in each plant. Sixty-three of the 106 isolates in plant A and 43 of the 66 isolates in plant B were of the dominant types. Certain strains, mainly of serotypes 1/2c and 4b and pulsotypes 1A and 2H, were persistent for long periods in both plants. Adaptation of good hygienic practices in the processing plants, including strict rules concerning traffic of staff and equipment, and existing hygienic requirements appeared to be effective in preventing contamination between areas within plants and in the final product. The persistence of Listeria strains in these two processing plants indicates the importance of detecting the places in the processing environment (e.g., transporters, equipment, floors, and drains) where L. monocytogenes can survive so that cleaning and disinfection efforts can be directed to such niches.

  14. Process and apparatus for detecting presence of plant substances

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, J.A.

    1990-12-31

    Disclosed is a process for detecting the presence of plant substances in a particular environment which comprises the steps of: (1) Measuring the background K40 gamma ray radiation level in a particular environment with a 1.46 MeV gamma ray counter system; (2) measuring the amount of K40 gamma ray radiation emanating from a package containing said plant substance being passed through said environment with said counter; and (3) generating an alarm signal when the total K40 gamma ray radiation reaches a predetermined level over and above the background level. Also disclosed is the apparatus and system used to conduct the process.

  15. Process and apparatus for detecting presence of plant substances

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, J.A.

    1990-01-01

    Disclosed is a process for detecting the presence of plant substances in a particular environment which comprises the steps of: (1) Measuring the background K40 gamma ray radiation level in a particular environment with a 1.46 MeV gamma ray counter system; (2) measuring the amount of K40 gamma ray radiation emanating from a package containing said plant substance being passed through said environment with said counter; and (3) generating an alarm signal when the total K40 gamma ray radiation reaches a predetermined level over and above the background level. Also disclosed is the apparatus and system used to conduct the process.

  16. Characterization of process air emissions in automotive production plants.

    Science.gov (United States)

    D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W

    2016-01-01

    During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles.

  17. Combined Energy Supply System for Meat Processing Plants

    Directory of Open Access Journals (Sweden)

    Sit M.

    2015-04-01

    Full Text Available The purpose of this study is the development of technological schemes of energy production for this industry in terms of energy efficiency. Technical solution that can reduce cost of the final production of meat production plant has been presented. The main idea of the tehnical solution is the use of turboexpander, which must be installed on gas reduction station near meat processing plant in the packet with the „air-water” gas – driven heat pump, which gas cooler serves as gas heating unit for the first stage of turboexpander. The thermal exit of gas engine serves as gas heating unit for the second stage of turboexpander and as heat energy generator for the plant and source of the heat for one of the evaporators of heat pump, as well. The second evaporator of heat pump is connected with the cold consuming equipment of the plant. The electric energy, which is produced by gas engine is consumed by heat pump compressor and electric equipment of the plant. Electric energy, which is produced by turbo expander is transmitted to the electric grid. The proposed technical solution can be used to reduce natural gas consumption on meat processing plants and the cost of production of electricity, heat and cold.

  18. Optimisation of the steel plant dust recycling process

    Science.gov (United States)

    Popescu, Darius-Alexandru; Hepuť, Teodor; Puťan, Vasile

    2016-06-01

    The widespread use of oxygen in the EAF steel-making process led to the increase of furnace productivity and reduction of specific energy consumption. Following the increase of the metal bath temperature, the brown smoke exhaust process is intensified, which requires mandatory gas treatment. The steel plant dust resulting from the treatment of waste gases is a manufacturing waste which must be recycled in the steel plant. Due to the fineness of the waste, when conducting the researches we processed it through pelletization. The processing of this waste aims not only its granulometric composition, but also the chemical composition (mainly the zinc content). After processing the data, we choose the optimal waste recycling technology based on the resistance of pellets and final content of zinc.

  19. Genes and processed paralogs co-exist in plant mitochondria.

    Science.gov (United States)

    Cuenca, Argelia; Petersen, Gitte; Seberg, Ole; Jahren, Anne Hoppe

    2012-04-01

    RNA-mediated gene duplication has been proposed to create processed paralogs in the plant mitochondrial genome. A processed paralog may retain signatures left by the maturation process of its RNA precursor, such as intron removal and no need of RNA editing. Whereas it is well documented that an RNA intermediary is involved in the transfer of mitochondrial genes to the nucleus, no direct evidence exists for insertion of processed paralogs in the mitochondria (i.e., processed and un-processed genes have never been found simultaneously in the mitochondrial genome). In this study, we sequenced a region of the mitochondrial gene nad1, and identified a number of taxa were two different copies of the region co-occur in the mitochondria. The two nad1 paralogs differed in their (a) presence or absence of a group II intron, and (b) number of edited sites. Thus, this work provides the first evidence of co-existence of processed paralogs and their precursors within the plant mitochondrial genome. In addition, mapping the presence/absence of the paralogs provides indirect evidence of RNA-mediated gene duplication as an essential process shaping the mitochondrial genome in plants.

  20. Process simulation for revamping of a dehydration gas plant

    Directory of Open Access Journals (Sweden)

    H.A. El Mawgoud

    2015-12-01

    This paper focuses on modeling and simulation for revamping a dehydration gas plant named “Akik” existing in Egypt and owned by Khalda Petroleum Company. The plant was almost depreciated, and the company administration decided to revamp it and at the same time perform the necessary modifications in order to cut down the equipment cost and reduce energy consumption. To achieve this target the existing plant configuration was simulated using Aspen HYSIS program. The model has been built according to the actual process flow diagram. The results of this model could be considered as a basis on which a new heat and material balance will be developed for the plant. Three different alternatives were investigated and evaluated to choose the optimum one with respect to the minimum equipment cost, provided keeping the same specifications and quantity of the produced gas.

  1. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, M.W. [Westinghouse Idaho Nuclear Co., Idaho Falls, ID (United States); Thompson, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-01-01

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities.

  2. Determination of the elemental concentration of uranium and thorium in the products and by-products of amang tin tailings process

    Science.gov (United States)

    Alnour, I. A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Elias, M. S.

    2017-01-01

    Amang or tin tailing is processed into concentrated ores and other economical valuable minerals such as monazite, zircon, xenotime, ilmenite etc. Besides that, the tailings from these ores may have a significant potential source of radiation exposure to amang plants' workers. This study was conducted to determine the elemental concentration of uranium and thorium in mineral samples collected from five amang tailing factories. The concentration of uranium and thorium was carried out by using instrumental neutron activation analysis (INAA) relative technique. The concentration of uranium and thorium in ppm obtained in this study are as follows: raw (189-1064) and (622-4965); monazite (1076-1988) and (3467-33578); xenotime 4053 and 5540; zircon (309-3090) and (387-6339); ilmenite (104-583) and (88-1205); rutile (212-889) and (44-1119); pyrite (7-43) and (9-132); and waste (5-338) and (9-1218) respectively. The analysis results shows that the monazite, xenotime and zircon have high content of uranium and thorium, whereas ilmenite, rutile, pyrite and waste have lower concentration compare with raw materials after tailing process. The highest values of uranium and thorium concentrations (4053 ± 428 ppm and 33578 ± 873 ppm, respectively) were observed in xenotime and monazite; whereas the lowest value was 5.48 ± 0.86 ppm of uranium recorded in waste (sand) and 9 ± 0.32 ppm of thorium for waste (sand) and pyrite.

  3. Solid biofuels production from agricultural residues and processing by-products by means of torrefaction treatment: the case of sunflower chain

    Directory of Open Access Journals (Sweden)

    Daniele Duca

    2014-11-01

    Full Text Available The high heterogeneity of some residual biomasses makes rather difficult their energy use. Their standardisation is going to be a key aspect to get good quality biofuels from those residues. Torrefaction is an interesting process to improve the physical and chemical properties of lignocellulosic biomasses and to achieve standardisation. In the present study torrefaction has been employed on residues and by-products deriving from sunflower production chain, in particular sunflower stalks, husks and oil press cake. The thermal behaviour of these materials has been studied at first by thermogravimetric analysis in order to identify torrefaction temperatures range. Afterwards, different residence time and torrefaction temperatures have been tested in a bench top torrefaction reactor. Analyses of raw and torrefied materials have been carried out to assess the influence of the treatment. As a consequence of torrefaction, the carbon and ash contents increase while the volatilisation range reduces making the material more stable and standardised. Mass yield, energy yield and energy densification reach values of about 60%, 80% and 1.33 for sunflower stalks and 64%, 85% and 1.33 for sunflower oil press cake respectively. As highlighted by the results, torrefaction is more interesting for sunflower stalks than oil cake and husks due to their different original characteristics. Untreated oil press cake and husks, in fact, already show a good high heating value and, for this reason, their torrefaction should be mild to avoid an excessive ash concentration. On the contrary, for sunflower stalks the treatment is more useful and could be more severe.

  4. Extraction by Dry Rendering Methode and Characterization Fish Oil of Catfish (Pangasius hypopthalmus Viscera Fat by Product of Smooked Fish Processing

    Directory of Open Access Journals (Sweden)

    Kamini Kamini

    2016-12-01

    Full Text Available The catfish viscera fat, is cathfish processing by-products, has potential to be used as a source ofraw material for production of fish oil. This study aimed to analyze the value of proximate, heavy metalcontent and fatty acid profile of catfish viscera fat (Pangasius hypopthalmus and characterized fish oilextracted by dry rendering in various temperature and time than compared it to fish oil extracted by stoveheating to obtain the best treatment. Proximate, heavy metal residue, and the fatty acid profile analysiswere conducted for characterizing catfish viscera fat. Fish oil extraction was conducted by dry renderingin various temperatures of 50, 60, 70, 80 °C for 1, 2, and 3 hours. Fish oil quality was determined by thechemical characteristics i.e. PV, FFA, anisidin and TOTOX. The results of the study showed that fat contentof catfish fat viscera was 88.19 %, the heavy metals content was below SNI standart to be consumed, and fattyacid profile composition was SFA>MUFA>PUFA. The highest fatty acid content was oleic acid. The best fishoil quality was resulted on temperature extraction of 50°C for 2 hours with yield value, PV, FFA, anisidin,and TOTOX were 45.17 %, 2.77 meq/kg, 0.83 %, 2.86 meq/kg, 8.39 meq/kg respectively. This result was notsignificantly different with fish oil extracted by the stove heating expect for yield and PV were 80.11% and6.52 meq/kg, respectively.

  5. Maintenance of process instrumentation in nuclear power plants

    CERN Document Server

    Hashemian, H M

    2006-01-01

    Compiles 30 years of practical knowledge gained by the author and his staff in testing the I and C systems of nuclear power plants around the world. This book focuses on process temperature and pressure sensors and the verification of these sensors' calibration and response time.

  6. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2017-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  7. Linear programming model of a meat processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.A.; Okos, M.R.; Reklaitis, G.V.

    1981-01-01

    A multi-period and multi-product production-planning model of an operational meat processing plant is presented. The model input is the time-varying customer demand and the output is the optimum product mix. The model results are interpreted and compared with actual data. Various production strategies are evaluated.

  8. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Beddow, H. [Geoscience Building, School of Human and Environmental Sciences, Whiteknights, PO Box 227, University of Reading, Reading, Berkshire RG6 6AB (United Kingdom)]. E-mail: h.l.beddow@reading.ac.uk; Black, S. [Geoscience Building, School of Human and Environmental Sciences, Whiteknights, PO Box 227, University of Reading, Reading, Berkshire RG6 6AB (United Kingdom); Read, D. [Enterpris Ltd., Whiteknights, University of Reading, Reading, Berkshire RG6 6AB (United Kingdom); Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE (United Kingdom)

    2006-07-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by {sup 238}U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations ({<=}8.8 Bq/g) of {sup 238}U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels ({<=}11 Bq/g) of {sup 226}Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  9. 植物副产物浸出分离氧化型锰银矿的研究%Study on leaching separation of oxidized manganese-silver ore with plant by-product

    Institute of Scientific and Technical Information of China (English)

    余丽秀; 孙亚光; 张然; 宋广毅

    2012-01-01

    介绍了利用植物副产物(秸秆、粮食加工副产壳类等)作为还原剂还原浸出氧化型锰银精矿中的锰、浸锰渣氰化浸银的锰银分离工艺.玉米秸秆还原浸锰条件:秸秆粉在95℃预降解糖化0.5 h、降解糖化液与精矿的体积质量比为3 mL/g、硫酸与锰的物质的量比为1.4、秸秆与精矿的质量比为0.275、95℃浸出5h,在此条件下锰的浸出率约92%.浸锰渣氰化浸银条件:每吨浸锰渣氰化钠用量为3 kg、常温浸银3h,在此条件下银的浸出率达到92.20%.研究的锰银分离工艺具有较好的综合效果.%The manganese-silver separation process,which uses plant by-product (straw and husk by-produced from grain processing etc.) as reducing agent for reduction leaching manganese in manganese-silver concentrate and for silver leaching from residue of manganese-leaching with cyanide was introduced.The conditions of corn straw reduction leaching manganese were as follows: straw powder pre-degradation and saccharification at 95℃ for 0.5 h, volume-mass ratio of degradation saccharifi-cation liquid to manganese-silver concentrate was 3 mL/g,amount of substance ratio-of-sulfuric acid to manganese was 1.4, mass ratio of straw to ore powder was 0.275, and leaching temperature and time were 95℃. and 5 h, respectively .The manganese leaching rate was about 92% under those conditions.Ag leaching rate of 92.20% could be achieved under the conditions when the dosage of NaCN was 3 kg per ton of the residue of manganese-leaching and the leaching temperature and time were room temperature and 3 h, respectively .The separation technology of manganese and silver had a very good comprehensive effect.

  10. Marine pastures: a by-product of large (100 megawatt or larger) floating ocean thermal power plants. Progress report, February 1, 1976--April 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Roels, O.A.

    1976-01-01

    Computer programs have been developed to define the temperature increase which would be needed to bring deep-ocean water into density equilibrium with surface water for locations where data are available. A series of continuous-flow studies on phytoplankton blooms resulting from mixtures of 80 percent deep and 20 percent surface water in 2000-liter concrete culturing vessels (''reactors'') has been completed. A quantitative determination of nutrient utilization and flow through a combined primary and secondary trophic level system has been completed. This study utilized the clam Tapes semidecussata, fed from phytoplankton grown in 80 percent deep and 20 percent surface water. An analysis of the fate of the deep water discharged from a floating OTEC plant indicates that horizontal containment of the resulting deep water: surface water mixture is necessary if conditions optimal for open-sea mariculture are to obtain. The design of a small open-ocean ''pool'' is in the final stages of completion. A combined mussel/oyster/clam system is in the final stages of design and will be placed in the ocean during April 1976. (WDM)

  11. Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value-added co-products.

    Science.gov (United States)

    Leiva-Candia, D E; Tsakona, S; Kopsahelis, N; García, I L; Papanikolaou, S; Dorado, M P; Koutinas, A A

    2015-08-01

    This study focuses on the valorisation of crude glycerol and sunflower meal (SFM) from conventional biodiesel production plants for the separation of value-added co-products (antioxidant-rich extracts and protein isolate) and for enhancing biodiesel production through microbial oil synthesis. Microbial oil production was evaluated using three oleaginous yeast strains (Rhodosporidium toruloides, Lipomyces starkeyi and Cryptococcus curvatus) cultivated on crude glycerol and nutrient-rich hydrolysates derived from either whole SFM or SFM fractions that remained after separation of value-added co-products. Fed-batch bioreactor cultures with R. toruloides led to the production of 37.4gL(-1) of total dry weight with a microbial oil content of 51.3% (ww(-1)) when a biorefinery concept based on SFM fractionation was employed. The estimated biodiesel properties conformed with the limits set by the EN 14214 and ASTM D 6751 standards. The estimated cold filter plugging point (7.3-8.6°C) of the lipids produced by R. toruloides is closer to that of biodiesel derived from palm oil.

  12. Formation of lead dioxide electrodes by the Plante process

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, S.E.; Edwards, W.H.; Hampson, N.A.

    1976-03-01

    The effects of forming agents (aggressive ions) on the electro-oxidation of massive lead (the Plante electrode process) in sulfuric acid solution are reported. Linear sweep voltametric measurements corresponding to the most effective forming agents, ClO/sub 4//sup -/, NO/sub 3//sup -/, BF/sub 4//sup -/, and CH/sub 3/ COO/sup -/, are presented. Other methods of Plante electrode production involving ''ac/dc'' and ''immediate post-deposition oxidation'' are described.

  13. Process and apparatus for detecting presence of plant substances

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, J.A.

    1991-04-16

    This patent describes an apparatus and process for detecting the presence of plant substances in a particular environment. It comprises: measuring the background K40 gamma ray radiation level in a particular environment with a 1.46 MeV gamma ray counter system; measuring the amount of K40 gamma ray radiation emanating from a package containing a plant substance being passed through an environment with a counter; and generating an alarm signal when the total K40 gamma ray radiation reaches a predetermined level over and above the background level.

  14. Thirty thousand-year-old evidence of plant food processing

    Science.gov (United States)

    Revedin, Anna; Aranguren, Biancamaria; Becattini, Roberto; Longo, Laura; Marconi, Emanuele; Lippi, Marta Mariotti; Skakun, Natalia; Sinitsyn, Andrey; Spiridonova, Elena; Svoboda, Jiří

    2010-01-01

    European Paleolithic subsistence is assumed to have been largely based on animal protein and fat, whereas evidence for plant consumption is rare. We present evidence of starch grains from various wild plants on the surfaces of grinding tools at the sites of Bilancino II (Italy), Kostenki 16–Uglyanka (Russia), and Pavlov VI (Czech Republic). The samples originate from a variety of geographical and environmental contexts, ranging from northeastern Europe to the central Mediterranean, and dated to the Mid-Upper Paleolithic (Gravettian and Gorodtsovian). The three sites suggest that vegetal food processing, and possibly the production of flour, was a common practice, widespread across Europe from at least ~30,000 y ago. It is likely that high energy content plant foods were available and were used as components of the food economy of these mobile hunter–gatherers. PMID:20956317

  15. A Review for Model Plant Mismatch Measures in Process Monitoring

    Institute of Scientific and Technical Information of China (English)

    王洪; 谢磊; 宋执环

    2012-01-01

    Model is usually necessary for the design of a control loop. Due to simplification and unknown dynamics, model plant mismatch is inevitable in the control loop. In process monitoring, detection of mismatch and evaluation of its influences are demanded. In this paper several mismatch measures are presented based on different model descriptions. They are categorized into different groups from different perspectives and their potential in detection and diagnosis is evaluated. Two case studies on mixing process and distillation process demonstrate the efficacy of the framework of mismatch monitoring.

  16. Empirical evaluation of the Process Overview Measure for assessing situation awareness in process plants.

    Science.gov (United States)

    Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd

    2016-03-01

    The Process Overview Measure is a query-based measure developed to assess operator situation awareness (SA) from monitoring process plants. A companion paper describes how the measure has been developed according to process plant properties and operator cognitive work. The Process Overview Measure demonstrated practicality, sensitivity, validity and reliability in two full-scope simulator experiments investigating dramatically different operational concepts. Practicality was assessed based on qualitative feedback of participants and researchers. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA in full-scope simulator settings based on data collected on process experts. Thus, full-scope simulator studies can employ the Process Overview Measure to reveal the impact of new control room technology and operational concepts on monitoring process plants. Practitioner Summary: The Process Overview Measure is a query-based measure that demonstrated practicality, sensitivity, validity and reliability for assessing operator situation awareness (SA) from monitoring process plants in representative settings.

  17. Protein import into plant mitochondria: signals, machinery, processing, and regulation.

    Science.gov (United States)

    Murcha, Monika W; Kmiec, Beata; Kubiszewski-Jakubiak, Szymon; Teixeira, Pedro F; Glaser, Elzbieta; Whelan, James

    2014-12-01

    The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.

  18. Habitat Fragmentation Drives Plant Community Assembly Processes across Life Stages.

    Science.gov (United States)

    Hu, Guang; Feeley, Kenneth J; Yu, Mingjian

    2016-01-01

    Habitat fragmentation is one of the principal causes of biodiversity loss and hence understanding its impacts on community assembly and disassembly is an important topic in ecology. We studied the relationships between fragmentation and community assembly processes in the land-bridge island system of Thousand Island Lake in East China. We focused on the changes in species diversity and phylogenetic diversity that occurred between life stages of woody plants growing on these islands. The observed diversities were compared with the expected diversities from random null models to characterize assembly processes. Regression tree analysis was used to illustrate the relationships between island attributes and community assembly processes. We found that different assembly processes predominate in the seedlings-to-saplings life-stage transition (SS) vs. the saplings-to-trees transition (ST). Island area was the main attribute driving the assembly process in SS. In ST, island isolation was more important. Within a fragmented landscape, the factors driving community assembly processes were found to differ between life stage transitions. Environmental filtering had a strong effect on the seedlings-to-saplings life-stage transition. Habitat isolation and dispersal limitation influenced all plant life stages, but had a weaker effect on communities than area. These findings add to our understanding of the processes driving community assembly and species coexistence in the context of pervasive and widespread habitat loss and fragmentation.

  19. The pilot plant for electron beam food processing

    Science.gov (United States)

    Migdal, W.; Walis, L.; Chmielewski, A. G.

    1993-07-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plant is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established.

  20. Process simulation and economical evaluation of enzymatic biodiesel production plant.

    Science.gov (United States)

    Sotoft, Lene Fjerbaek; Rong, Ben-Guang; Christensen, Knud V; Norddahl, Birgir

    2010-07-01

    Process simulation and economical evaluation of an enzymatic biodiesel production plant has been carried out. Enzymatic biodiesel production from high quality rapeseed oil and methanol has been investigated for solvent free and cosolvent production processes. Several scenarios have been investigated with different production scales (8 and 200 mio. kg biodiesel/year) and enzyme price. The cosolvent production process is found to be most expensive and is not a viable choice, while the solvent free process is viable for the larger scale production of 200 mio. kg biodiesel/year with the current enzyme price. With the suggested enzyme price of the future, both the small and large scale solvent free production proved viable. The product price was estimated to be 0.73-1.49 euro/kg biodiesel with the current enzyme price and 0.05-0.75 euro/kg with the enzyme price of the future for solvent free process.

  1. Integration of drinking water treatment plant process models and emulated process automation software

    NARCIS (Netherlands)

    Worm, G.I.M.

    2012-01-01

    The objective of this research is to limit the risks of fully automated operation of drinking water treatment plants and to improve their operation by using an integrated system of process models and emulated process automation software. This thesis contains the design of such an integrated system.

  2. Integration of drinking water treatment plant process models and emulated process automation software

    NARCIS (Netherlands)

    Worm, G.I.M.

    2012-01-01

    The objective of this research is to limit the risks of fully automated operation of drinking water treatment plants and to improve their operation by using an integrated system of process models and emulated process automation software. This thesis contains the design of such an integrated system.

  3. Automated separation process for radioanalytical purposes at nuclear power plants.

    Science.gov (United States)

    Nagy, L G; Vajda, N; Vodicska, M; Zagyvai, P; Solymosi, J

    1987-10-01

    Chemical separation processes have been developed to remove the matrix components and thus to determine fission products, especially radioiodine nuclides, in the primary coolant of WWER-type nuclear reactors. Special procedures have been elaborated to enrich long-lived nuclides in waste waters to be released and to separate and enrich caesium isotopes in the environment. All processes are based mainly on ion-exchange separations using amorphous zirconium phosphate. Automated equipment was constructed to meet the demands of the plant personnel for serial analysis.

  4. The Nutrient Potency of Palm Oil Plantation and Mill’s By-product Processed with Amofer Technology as Ruminant Feed

    Directory of Open Access Journals (Sweden)

    Hamdi Mayulu

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE By-product derived from palm oil plantation and mill is very potential for energy and protein source for ruminant feed. However, it is still underutilized due to low content of crude protein (CP with high crude fiber (CF. Ammoniation or fermentation technology could optimize the quality of by-product by increasing digestibility, reducing CF and increasing CP content. The objective of this research was to determine the nutrient and potency value of palm oil plantation and mill’s by-product applied with amofer technology for ruminant feed. Sample was prepared in two methods: 1 sample without amofer application, 2 sample with amofer application under anaerobic method and incubated for 18 days. Ammoniation was carried out by adding urea of 3% from the total material and then incubated for nine days. At the ninth day, some microorganisms starter i.e. cellulolytic, amillolytic and proteolytic were added by 1% of the total material. Proximate analysis was carried out in laboratory to examine the nutrient value. The crude protein content at each part of feed material before and after amofer treatment was follow: palm midrib: 3.16%:17%; palm leaves 6.53%:26.51%; empty fruit bunch 7.01%:1673%; palm pressed fiber 5.56%:16.00%. While the crude fiber at each part of feed material was: palm midrib 37.85%:30.86%; palm leaves 30.39%:24.41%; EFB 40.22%:34.98%; PPF 50.39%: 41.70%. The application of amofer could increase the amount of feed material (ton/ha/y: dry matter (DM 14.82:15.89; CP 0.79:2.87; total digestible nutrient (TDN 7.63:8.5. Moreover, amofer application could also increase the nutrient content of palm oil plantation and mill’s by-product by increasing CP and reducing CF. This increasing was also followed by the increasing of DM, CP, and TDN which indicated that those feed sources were recommended as ruminant feed material /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal

  5. The economic valuation of improved process plant decision support technology.

    Science.gov (United States)

    White, Douglas C

    2007-06-01

    How can investments that would potentially improve a manufacturing plant's decision process be economically justified? What is the value of "better information," "more flexibility," or "improved integration" and the technologies that provide these effects? Technology investments such as improved process modelling, new real time historians and other databases, "smart" instrumentation, better data analysis and visualization software, and/or improved user interfaces often include these benefits as part of their valuation. How are these "soft" benefits to be converted to a quantitative economic return? Quantification is important if rational management decisions are to be made about the correct amount of money to invest in the technologies, and which technologies to choose among the many available ones. Modelling the plant operational decision cycle-detect, analyse, forecast, choose and implement--provides a basis for this economic quantification. In this paper a new economic model is proposed for estimation of the value of decision support investments based on their effect upon the uncertainty in forecasting plant financial performance. This model leads to quantitative benefit estimates that have a realistic financial basis. An example is presented demonstrating the application of the method.

  6. NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Dauda Olarotimi Araromi

    2015-11-01

    Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.

  7. Plant and soil reactions to nickel ore processed tailings

    Energy Technology Data Exchange (ETDEWEB)

    Sheets, P.J.; Volk, V.V.; Gardner, E.H.

    1982-07-01

    Greenhouse and laboratory experiments were conducted to determine the effect that tailings, produced during the processing of nickeliferous laterite ores by a proposed U.S. Bureau of Mines Process, would have on plant growth and soil properties. The tailings contained soluble salts (7.6 mmhos/cm), NH/sub 4/-N (877 ..mu..g/g), Ni (0.28%), Mn (82 ..mu..g/g DTPA-extractable), Cr (0.44%), P (2 and 6 ..mu..g/g acid F- and NaHCO/sub 3/-extractable, respectively), and Ca and Mg (1.0 and 20.7 meq/100 g NH/sub 4/Ac-extractable, respectively). Water leaching decreased the NH/sub 4/-N concentration to 53 ..mu..g/g and the EC to 0.4 mmhos/cm by removal of (NH/sub 4/)/sub 2/SO/sub 4/ and MgSO/sub 4/ salts. Tall fescue (Festuca arundinacea Schreb.) was grown on Eightlar clay soil (skeletal, serpentinitic, mesic Typic Xerochrept) amended with 0, 223, 446, and 669 g tailings/kg soil and pure, unleached tailings for 32 weeks in the greenhouse. Seedling establishment of plants grown on soil amended at the highest tailings rate and the pure tailings was initially slow, but plants grown on soil amended at lower rates established readily and grew well. Plant P was <0.24%, while plant Ca concentrations were <0.45% throughout the growth period even though Ca(H/sub 2/PO/sub 2/)/sub 2/ and gypsum had been added. Ammonium acetate-extractable Ca at the end of the growth period was <5.0 meq/100 g on all amended soils.The Mn, Ni, and Cr concentrations of plants grown on treated soils were within normal ranges, although soil-analysis values were higher than commonly found. It is recommended that the tailings be washed to reduce NH/sub 4/-N and soluble salts prior to revegetation, and that native soil be added to the surface to reduce crusting.

  8. CO₂ Capture Membrane Process for Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [Research Triangle Inst. International, Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Inst. International, Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. International, Research Triangle Park, NC (United States)

    2012-04-01

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO₂, the development of retrofit, post-combustion CO₂ capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO₂ from plant flue gas with 95% captured CO₂ purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO₂-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO₂, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO₂ over N₂ and CO

  9. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  10. SignalPlant: an open signal processing software platform.

    Science.gov (United States)

    Plesinger, F; Jurco, J; Halamek, J; Jurak, P

    2016-07-01

    The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant-a stand-alone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75  ×  10(6) samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by third parties ensuring its adaptability to future research tasks and new data formats.

  11. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  12. Plant senescence and proteolysis: two processes with one destiny

    Directory of Open Access Journals (Sweden)

    Mercedes Diaz-Mendoza

    Full Text Available Abstract Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling.

  13. Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, B.J.

    1993-01-01

    This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

  14. Vacuolar processing enzyme in plant programmed cell death

    Directory of Open Access Journals (Sweden)

    Noriyuki eHatsugai

    2015-04-01

    Full Text Available Vacuolar processing enzyme (VPE is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an orthologue of animal asparaginyl endopeptidase (AEP/VPE/legumain. VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1.

  15. Downstream processing of biopharmaceutical proteins produced in plants

    Science.gov (United States)

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-01

    All biological platforms for the manufacture of biopharmaceutical proteins produce an initially turbid extract that must be clarified to avoid fouling sensitive media such as chromatography resins. Clarification is more challenging if the feed stream contains large amounts of dispersed particles, because these rapidly clog the filter media typically used to remove suspended solids. Charged polymers (flocculants) can increase the apparent size of the dispersed particles by aggregation, facilitating the separation of solids and liquids, and thus reducing process costs. However, many different factors can affect the behavior of flocculants, including the pH and conductivity of the medium, the size and charge distribution of the particulates, and the charge density and molecular mass of the polymer. Importantly, these properties can also affect the recovery of the target protein and the overall safety profile of the process. We therefore used a design of experiments approach to establish reliable predictive models that characterize the impact of flocculants during the downstream processing of biopharmaceutical proteins. We highlight strategies for the selection of flocculants during process optimization. These strategies will contribute to the quality by design aspects of process development and facilitate the development of safe and efficient downstream processes for plant-derived pharmaceutical proteins. PMID:24637706

  16. Intensifying drying process with creation of functional plant compositions

    Directory of Open Access Journals (Sweden)

    Zh. Petrova

    2015-05-01

    Full Text Available Introduction. The process of drying agricultural raw products is associated with loss of bioactive substances by the products exposed to heat, light, oxygen, or рН medium. It is reasonable to enhance the table beet processing technology in order to achieve maximum betanin conservation at lower energy consumption. Materials and methods. Table beets, rhubarbs, lemons, and tomatoes were dried at temperature of 50 to 100 ºС, air speed of 1.5 to 3.5 m/s, heat carrier water content of 7 to 15 g/kg, and layer thickness of 2 to 20 mm. The betanіn content was determined via absorption spectra, using the optical density value at 540 nm wavelength. A differential microcalorimeter was used for measuring evaporation heat consumption. Results and discussion.The effect of raw product pre-drying preparation was studied. With no preliminary preparation, the loss of betanin after drying reaches 66 %. The preliminary preparation technology we have developed includes boiling whole root crops with optimal selection of acid medium and allows us to reduce the betanin loss down to 6 %. Regretfully, the process requires large energy consumption. Low energy consumption pre-drying preparation method was developed for antioxidant raw products with thermal processing replaced by blending. The betanin loss, in this case, does not exceed 5 %. Optimal drying temperature of betanin-containing raw stock, after its preliminary processing, is 60 °С. It allows to keep up to 95 % of betanіn. Specific heat consumption for water evaporation out of the developed table beet based antioxidant plant compositions, with addition of rhubarb and lemon, is less by 4 to 5 % as compared to the initial components. Conclusions. Dependence of betanin loss in plant raw stock on the material temperature and composition components, in the course of their pre-drying preparation, was found. It was also found that water evaporation heat, for some antioxidant plant compositions developed, is less

  17. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  18. Boronic acids as tools to study (plant) developmental processes?

    Science.gov (United States)

    Matthes, Michaela; Torres-Ruiz, Ramón A

    2017-05-04

    Boron (B) is an essential micronutrient for organisms. In plants, B is known to stabilize the cell wall by crosslinking Rhamnogalacturonan II through ester bonds formed with cis-diols of sugar moieties. However, B is believed to be required for additional functions such as stability and function of (plasma membrane) proteins involved in signal transduction pathways. We have recently shown that boronic acids, competitors of B, efficiently induce perfect phenocopies of monopteros mutants. This effect is enigmatic because like B, boronic acids should find numerous cellular targets and thus disturb many biologic processes ending in a spectrum of unspecific embryo phenotypes. Based on chemical characteristics of boronic acids and their derivatives we discuss reasons that could explain this unusual specificity. The peculiarities of this class of compounds could provide new tools for studying developmental processes.

  19. AIR POLLUTANTS IN FOOD PROCESSING PLANTS IN IRAN

    Directory of Open Access Journals (Sweden)

    F. Akbarkhanzadeh

    1979-07-01

    Full Text Available Investigations have been carried out on the indoor air pollution in .different workshops of food processing plants in Iran. In order to evaluate the exposure of workers to the three most commonly used indices of air pollution ten food processing plants representing ten groups of food industry with 2.816 workers were selected. Air borne contamination of different origins such cotton seed. Barley, wheat flour salt and different spices sugar an1 beans dust were measured in 237, work places. Here contamination was 8-9 times higher than the proposed T.L. V. for in.3rt dust in 12% of sampling sites Carbon monoxide, measured in 94 sampling site in 69 different work places, which was higher than 50 P .P.M1. in 13% of samples and sulfur-bearing air pollutants determined in 87 different workshop where 103 samples were collected showed the existence of oxides of' sulfur in 34 samples in six industries. The results are presented and the reasons of the existence of these air pollutants are discussed.

  20. Correlation between degradation pathway and toxicity of acetaminophen and its by-products by using the electro-Fenton process in aqueous media.

    Science.gov (United States)

    Le, Thi Xuan Huong; Nguyen, Thi Van; Amadou Yacouba, Zoulkifli; Zoungrana, Laetitia; Avril, Florent; Nguyen, Duy Linh; Petit, Eddy; Mendret, Julie; Bonniol, Valerie; Bechelany, Mikhael; Lacour, Stella; Lesage, Geoffroy; Cretin, Marc

    2017-04-01

    The evolution of the degradation by-products of an acetaminophen (ACE) solution was monitored by HPLC-UV/MS and IC in parallel with its ecotoxicity (Vibrio fischeri 81.9%, Microtox(®) screening tests) during electro-Fenton (EF) oxidation performed on carbon felt. The aromatic compounds 2-hydroxy-4-(N-acetyl) aminophenol, 1,4-benzoquinone, benzaldehyde and benzoic acid were identified as toxic sub-products during the first stage of the electrochemical treatment, whereas aliphatic short-chain carboxylic acids (oxalic, maleic, oxamic, formic, acetic and fumaric acids) and inorganic ions (ammonium and nitrate) were well identified as non-toxic terminal sub-products. Electrogenerated hydroxyl radicals then converted the eco-toxic and bio-refractory property of initial ACE molecule (500 mL, 1 mM) and subsequent aromatic sub-products into non-toxic compounds after 2 h of EF treatment. The toxicity of every intermediate produced during the mineralization of ACE was quantified, and a relationship was established between the degradation pathway of ACE and the global toxicity evolution of the solution. After 8 h of treatment, a total organic carbon removal of 86.9% could be reached for 0.1 mM ACE at applied current of 500 mA with 0.2 mM of Fe(2+) used as catalyst. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. AUTOMATED CONTROL SYSTEM AND MONITORING BY TECHNOLOGICAL PROCESSES BY PRODUCTION OF POLYMERIC AND BITUMINOUS TAPES ON THE BASIS OF APPLICATION OF SCADA OF SYSTEM

    Directory of Open Access Journals (Sweden)

    A. S. Kirienko

    2016-01-01

    Full Text Available Expediency of use of a control system and monitoring of technological processes of production is proved in article that will allow to lower work expenses, and also to increase productivity due to the best production process.The main objective of system, remote monitoring is that gives the chance far off and to quickly give an assessment to the current situation on production, to accept reasonable and timely administrative decisions.

  2. Innovative Fresh Water Production Process for Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air

  3. Novel fermentation processes for manufacturing plant natural products.

    Science.gov (United States)

    Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-02-01

    Microbial production of plant natural products (PNPs), such as terpenoids, flavonoids from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. Rapid development of metabolic engineering and synthetic biology of microorganisms shows many advantages to replace the current extraction of these useful high price chemicals from plants. Although few of them were actually applied on a large scale for PNPs production, continuous research on these high-price chemicals and the rapid growing global market of them, show the promising future for the production of these PNPs by microorganisms with a more economic and environmental friendly way. Introduction of novel pathways and optimization of the native cellular processes by metabolic engineering of microorganisms for PNPs production are rapidly expanding its range of cell-factory applications. Here we review recent progress in metabolic engineering of microorganisms for the production of PNPs. Besides, factors restricting the yield improvement and application of lab-scale achievements to industrial applications have also been discussed.

  4. Waste receiving and processing plant control system; system design description

    Energy Technology Data Exchange (ETDEWEB)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  5. Geochemical modeling of cyanide in tailing dam gold processing plant

    Science.gov (United States)

    Khodadadi, Ahmad; Monjezi, M.; Mehrpouya, H.; Dehghani, H.

    2009-09-01

    This research is aimed at investigating possible neutralization of cyanide in tailing dam of Muteh gold processing plant in Isfahan, Iran at various conditions such as pH and temperature using USEPA Visual MINTEQ geochemical model simulation. The model is based on geochemical equilibrium which uses the simultaneous solution of the non-linear mass action expressions and linear mass balance relationships to formulate and solve the multiple-component chemical equilibrium problems. In this study the concentration of aqueous species in tailing dam as an aqueous, solid and gaseous were used as input in the model. Temperature and pH variation were simulated. The results of the model indicated that cyanide may be complexes in 10 < pH < 5. In other pH values complexation is not important. The results also indicated that cyanide reduction mechanism in acidic pH and temperature above 30°C is due to cyanide acid formation which is vaporized.

  6. Use of Brassica Plants in the Phytoremediation and Biofumigation Processes

    Science.gov (United States)

    Szczygłowska, Marzena; Piekarska, Anna; Konieczka, Piotr; Namieśnik, Jacek

    2011-01-01

    In recent decades, serious contamination of soils by heavy metals has been reported. It is therefore a matter of urgency to develop a new and efficient technology for removing contaminants from soil. Another aspect to this problem is that environmental pollution decreases the biological quality of soil, which is why pesticides and fertilizers are being used in ever-larger quantities. The environmentally friendly solutions to these problems are phytoremediation, which is a technology that cleanses the soil of heavy metals, and biofumigation, a process that helps to protect crops using natural plant compounds. So far, these methods have only been used separately; however, research on a technology that combines them both using white cabbage has been carried out. PMID:22174630

  7. Evaluation of methane generation and process stability from anaerobic co-digestion of sugar beet by-product and cow manure.

    Science.gov (United States)

    Aboudi, Kaoutar; Álvarez-Gallego, Carlos José; Romero-García, Luis Isidoro

    2016-05-01

    The effect of mesophilic anaerobic co-digestion of dried pellets of exhausted sugar beet cossettes (ESBC-DP) and cow manure (CM) on the enhancement of methane generation and process stability were studied with the aim to select the best substrate mixture ratio. A series of batch experiments was conducted using the following five mixture ratios of ESBC-DP:CM: 0:100; 25:75; 50:50; 75:25 and 100:0. Best results were obtained from mixture ratios with ESBC-DP proportions in the range of 25-50%. Mixture ratio of 50:50 showed a specific methane production (SMP) increase of 81.4% and 25.5%, respectively, in comparison with mono-digestion of ESBC-DP and CM. Evolution of the indirect parameter named acidogenic substrate as carbon (ASC) could be used to provide more insight about the process stability of anaerobic digestion. ASC accumulation was observed in reactors with higher ESBC-DP proportions leading to a delay in VFAs consumption and conversion into methane.

  8. Multilevel Flow Modelling of Process Plant for Diagnosis and Control

    DEFF Research Database (Denmark)

    Lind, Morten

    1982-01-01

    of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant...... operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as a basis for design of control strategies and for the allocation of control tasks to the computer and the plant operator....

  9. Processing of Solid Leather By-products from Shoe-making Industry%源于制鞋工业的固体废料处理

    Institute of Scientific and Technical Information of China (English)

    P.Mokrejs; D.Janacova; K.Kolomaznik; M.Mladek; F.Langmaier; V.Vasek

    2007-01-01

    Chrome-tanned and finished leather clicking waste represents several hundreds thousand tons per year annually world-wide.The paper deals with the study on processing of leather wastes arising from leather (mainly shoe,garments,upholstery) industry.Solid leather waste was treated through enzymatic hydrolysis into two products:water-soluble collagen hydrolysate of low molecular mass (approx.10,000 Da) and remained insoluble cake containing chromium and residual protein.A 3-stage enzymatic hydrolysis was applied and the efficiency of the process was monitored by the degree of leather waste hydrolysis expressed by nitrogen content in collagen hydrolysate.Under proposed optimal conditions the efficiency of hydrolysis can reach up to 73%.Collagen hydrolysate thus prepared contains,in addition,very low chromium content (not more than 100 mg/kg).%铬鞣革和涂饰革在世界范围内每年带来成千上万吨的废弃物.文章研究了不同成革种类在生产过程中带来的废弃物.通过酶法水解可将固体废弃物分解成两类产品:低相对分子质量(约10,000 Da)的可溶性胶原;含铬和剩余蛋白的不溶性铬饼.利用3步酶法水解固体废弃物,同时根据水解物中的含氮量来表征水解的效率.在理论条件下,水解的有效率可达73%.胶原水解物含铬量相当低(不超过100 mg/kg).

  10. Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes.

    Science.gov (United States)

    Vázquez, José Antonio; Blanco, María; Fraguas, Javier; Pastrana, Lorenzo; Pérez-Martín, Ricardo

    2016-05-01

    The goal of the present work was to optimise the different environmental friendly processes involved in the extraction and purification of chondroitin sulphate (CS) from Prionace glauca head wastes. The experimental development was based on second order rotatable designs and evaluated by response surface methodology combined with a previous kinetic approach. The sequential stages optimised were: (1) the enzymatic hydrolysis of head cartilage catalysed by alcalase (55.7 °C/pH 8.2); (2) the chemical treatment of enzyme hydrolysates by means of alkaline-hydroalcoholic saline solutions (NaOH: 0.54 M, EtOH: 1.17 v, NaCl: 2.5%) to end the protein hydrolysis and to precipitate and selectively redissolve CS versus the peptidic material and (3) the selective purification and concentration of CS and the concomitant protein permeation of extracts which were obtained from previous treatment using ultrafiltration and diafiltration (UF-DF) technologies at two different cut-offs.

  11. An Extract from Shrimp Processing By-Products Protects SH-SY5Y Cells from Neurotoxicity Induced by Aβ25–35

    Science.gov (United States)

    Zhang, Yongping; Jiao, Guangling; Song, Cai; Gu, Shelly; Brown, Richard E.; Zhang, Junzeng; Zhang, Pingcheng; Gagnon, Jacques; Locke, Steven; Stefanova, Roumiana; Pelletier, Claude; Zhang, Yi; Lu, Hongyu

    2017-01-01

    Increased evidence suggests that marine unsaturated fatty acids (FAs) can protect neurons from amyloid-β (Aβ)-induced neurodegeneration. Nuclear magnetic resonance (NMR), high performance liquid chromatography (HPLC) and gas chromatography (GC) assays showed that the acetone extract 4-2A obtained from shrimp Pandalus borealis industry processing wastes contained 67.19% monounsaturated FAs and 16.84% polyunsaturated FAs. The present study evaluated the anti-oxidative and anti-inflammatory effects of 4-2A in Aβ25–35-insulted differentiated SH-SY5Y cells. Cell viability and cytotoxicity were measured by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Quantitative PCR and Western blotting were used to study the expression of neurotrophins, pro-inflammatory cytokines and apoptosis-related genes. Administration of 20 μM Aβ25–35 significantly reduced SH-SY5Y cell viability, the expression of nerve growth factor (NGF) and its tyrosine kinase TrkA receptor, as well as the level of glutathione, while increased reactive oxygen species (ROS), nitric oxide, tumor necrosis factor (TNF)-α, brain derived neurotrophic factor (BDNF) and its TrkB receptor. Aβ25–35 also increased the Bax/Bcl-2 ratio and Caspase-3 expression. Treatment with 4-2A significantly attenuated the Aβ25–35-induced changes in cell viability, ROS, GSH, NGF, TrkA, TNF-α, the Bax/Bcl-2 ratio and Caspase-3, except for nitric oxide, BDNF and TrKB. In conclusion, 4-2A effectively protected SH-SY5Y cells against Aβ-induced neuronal apoptosis/death by suppressing inflammation and oxidative stress and up-regulating NGF and TrKA expression. PMID:28327516

  12. An Extract from Shrimp Processing By-Products Protects SH-SY5Y Cells from Neurotoxicity Induced by Aβ25–35

    Directory of Open Access Journals (Sweden)

    Yongping Zhang

    2017-03-01

    Full Text Available Increased evidence suggests that marine unsaturated fatty acids (FAs can protect neurons from amyloid-β (Aβ-induced neurodegeneration. Nuclear magnetic resonance (NMR, high performance liquid chromatography (HPLC and gas chromatography (GC assays showed that the acetone extract 4-2A obtained from shrimp Pandalus borealis industry processing wastes contained 67.19% monounsaturated FAs and 16.84% polyunsaturated FAs. The present study evaluated the anti-oxidative and anti-inflammatory effects of 4-2A in Aβ25–35-insulted differentiated SH-SY5Y cells. Cell viability and cytotoxicity were measured by using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and lactate dehydrogenase (LDH assays. Quantitative PCR and Western blotting were used to study the expression of neurotrophins, pro-inflammatory cytokines and apoptosis-related genes. Administration of 20 μM Aβ25–35 significantly reduced SH-SY5Y cell viability, the expression of nerve growth factor (NGF and its tyrosine kinase TrkA receptor, as well as the level of glutathione, while increased reactive oxygen species (ROS, nitric oxide, tumor necrosis factor (TNF-α, brain derived neurotrophic factor (BDNF and its TrkB receptor. Aβ25–35 also increased the Bax/Bcl-2 ratio and Caspase-3 expression. Treatment with 4-2A significantly attenuated the Aβ25–35-induced changes in cell viability, ROS, GSH, NGF, TrkA, TNF-α, the Bax/Bcl-2 ratio and Caspase-3, except for nitric oxide, BDNF and TrKB. In conclusion, 4-2A effectively protected SH-SY5Y cells against Aβ-induced neuronal apoptosis/death by suppressing inflammation and oxidative stress and up-regulating NGF and TrKA expression.

  13. Competitive advantages of the Brazilian Beef Processing Plants in their Internationalization Process

    Directory of Open Access Journals (Sweden)

    Francisco Américo Cassano

    2012-06-01

    Full Text Available The following study has the primary objective of identifying the major competitive advantages owned by Brazilian beef processing plants in their internationalization process. In order to reach it, it was carried out an exploratory research, based on the survey of official data and publications concerning world’s beef cattle production, followed by a literature review and finally, by a single case study. This case study was conducted through an interview with former employee of Redenção Frigorífico do Pará Ltda. The obtained results allowed the identification of the major competitive advantages of the studied company in its internationalization process, such as the raw material quality and availability, production scale, Brazilian cattle’s extensive production system, and control and prevention of main cattle diseases. It was concluded that Brazilian beef production plants really have competitive advantages within the internationalization process context, some of them practically observed in the studied company, and others that can be effectively corroborated by future studies.

  14. Utilization of low NO{sub x} coal combustion by-products. Quarterly report, April--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This project is studying a beneficiation process to make power plant fly ash a more useful by-product. The tasks include: (1) Laboratory characterization: Sample collection; Material characterization; and Lab testing of ash processing operations; (2) Pilot plant testing of the separation of carbon from fly ash; (3) Product testing: Concrete testing and Plastic fillers; and (4) Market and economic analysis. Appendices present information on material characterization, laboratory testing of a flotation process, pilot runs, and concrete testing results.

  15. Modelling production processes in a vehicle recycling plant.

    Science.gov (United States)

    Simic, Vladimir; Dimitrijevic, Branka

    2012-09-01

    The European Directive on end-of-life vehicles (ELVs) fundamentally changed the business philosophy of the European vehicle recycling system, which was exclusively profit-oriented. As the dominant participants of this system, vehicle recycling plants (VRPs) are especially affected by its implementation. For VRPs to successfully respond to the prescribed eco-efficiency quotas, investment will be needed to procure modern sorting equipment as well as to achieve full transformation of their production process. However, before VRPs decide to make this very important investment decision, it is necessary to determine the adequacy of such a decision in detail. Consequently, the following questions become unavoidable: Can modernly equipped VRPs conduct profitable business? Are eco-efficiency quotas actually attainable? How will the new changes in vehicle design influence VRPs? To provide answers to these essential questions, a production planning model of a modernly equipped VRP was first developed and then tested extensively using real data. Based on the answers provided by the proposed model testing analysis it was concluded that VRP transformation is not only necessary but completely justified and that the final success of the ELV Directive is realistic.

  16. Electromagnetic techniques for industrial plant process measurements and quality control

    Energy Technology Data Exchange (ETDEWEB)

    Bramanti, M. (Consiglio Nazionale delle Ricerche, Pisa (Italy). Ist. di Elaborazione della Informazione)

    1992-04-01

    In recent years, new real time non-destructive measuring techniques have been developed based on the use of miniaturized components capable of generating, amplifying and elaborating microwave signals (within the range of tenths of a volt and hundreds of milliamps). All these techniques for the measurement of typical process parameters or the non-destructive testing of materials are based on the interaction of radiation with the material or system under examination and make use of the most modern types of data acquisition technology. This article surveys the sensors and measuring instruments which make use of electromagnetic radiation to acquire information concerning the properties of an examined material or system based on their interactions with electromagnetic fields. A few applications are illustrated, e.g., the measurement of unburnt coal in power plant fly ash, the measurement of the quantity of solid particles present in fluidized beds and the verification of the properties of dielectric materials. In each case, the optimum degree of resolution of these devices is made evident.

  17. 饲用乳制品及其副产品的加工技术与营养价值%Processing technology and nutritional value of feeding dairy products and by-products

    Institute of Scientific and Technical Information of China (English)

    何武顺; 李爱科; 苏从毅; 张晓琳; 温琦; 王四维; 貟婷婷

    2012-01-01

    介绍了饲用乳制品及其加工副产品的加工技术,以及乳粉、酪蛋白、乳清粉、乳清蛋白、代乳粉等产品的营养成分和营养价值。%The processing technology of feeding dairy and its by-products were introduced,including the nutritional constitution and value of milk powder,cheese albumen,whey powder,whey protein concentrate,milk replacer and other products.

  18. Crosstalk between endophytes and a plant host within information-processing networks

    Directory of Open Access Journals (Sweden)

    Kozyrovska N. O.

    2013-05-01

    Full Text Available Plants are heavily populated by pro- and eukaryotic microorganisms and represent therefore the tremendous complexity as a biological system. This system exists as an information-processing entity with rather complex processes of communication, occurring throughout the individual plant. The plant cellular information-proces- sing network constitutes the foundation for processes like growth, defense, and adaptation to the environment. Up to date, the molecular mechanisms, underlying perception, transfer, analysis, and storage of the endogenous and environmental information within the plant, remain to be fully understood. The associated microorganisms and their investment in the information conditioning are often ignored. Endophytes as plant partners are indispen- sable integrative part of the plant system. Diverse endophytic microorganisms comprise «normal» microbiota that plays a role in plant immunity and helps the plant system to survive in the environment (providing assistance in defense, nutrition, detoxification etc.. The role of endophytic microbiota in the processing of information may be presumed, taking into account a plant-microbial co-evolution and empirical data. Since the literature are be- ginning to emerge on this topic, in this article, I review key works in the field of plant-endophytes interactions in the context of information processing and represent the opinion on their putative role in plant information web under defense and the adaptation to changed conditions.

  19. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    Energy Technology Data Exchange (ETDEWEB)

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  20. Microbiological Evaluation of Pork and Chicken By-Products in South Korea.

    Science.gov (United States)

    Chon, Jung-Whan; Jung, Hae-In; Kuk, Min; Lim, Jong-Soo; Seo, Kun-Ho; Kim, Soo-Ki

    2016-05-01

    In this study, we aimed to evaluate the microbiological risk of pork and chicken by-products by enumerating indicator bacteria (total aerobic bacteria, coliforms, and Escherichia coli) and identifying pathogens such as Campylobacter and Salmonella. The antibiotic resistance of pathogenic isolates was determined, and molecular subtyping was performed using automated repetitive sequence-based PCR (rep-PCR). Pork and chicken by-products were collected from 10 processing plants. The mean numbers of total aerobic bacteria, coliforms, and E. coli from 95 pork by-product samples and 64 chicken by-product samples were 5.1, 3.6, and 2.4 log CFU/g and 4.5, 3.0, and 1.8 log CFU/g, respectively. The numbers of indicator bacteria in the gastrointestinal tract (small intestine, large intestine, and gizzard) were significantly higher than those in other organs. Salmonella and Campylobacter species were detected in 3 and 5 of 95 pork by-product samples and in 6 and 3 of 64 chicken by-product samples, respectively. Four of 9 Salmonella isolates examined were resistant to eight antibiotics, and each of these resistant strains produced an extended-spectrum β-lactamase. Most Campylobacter isolates were resistant to tetracycline (7 of 8 strains) and quinolones (7 of 8 strains). The similarity in rep-PCR patterns among Salmonella isolates was more closely associated with serotype than with the processing plant and type of meat. Conversely, the rep-PCR patterns of Campylobacter isolates were specific to the processing plant. Our findings could help agencies develop regulations for protection from foodborne bacterial infections arising from animal by-products.

  1. Laser-based analytical monitoring in nuclear-fuel processing plants

    Energy Technology Data Exchange (ETDEWEB)

    Hohimer, J.P.

    1978-09-01

    The use of laser-based analytical methods in nuclear-fuel processing plants is considered. The species and locations for accountability, process control, and effluent control measurements in the Coprocessing, Thorex, and reference Purex fuel processing operations are identified and the conventional analytical methods used for these measurements are summarized. The laser analytical methods based upon Raman, absorption, fluorescence, and nonlinear spectroscopy are reviewed and evaluated for their use in fuel processing plants. After a comparison of the capabilities of the laser-based and conventional analytical methods, the promising areas of application of the laser-based methods in fuel processing plants are identified.

  2. Microtubule Associated Proteins in Plants and the Processes They Manage

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Microtubule associated proteins (MAPs) are proteins that physically bind to microtubules in eukaryotes. MAPs play important roles in regulating the polymerization and organization of microtubules and in using the ensuing microtubule arrays to carry out a variety of cellular functions. In plants, MAPs manage the construction, repositioning, and dismantling of four distinct microtubule arrays throughout the cell cycle. Three of these arrays, the cortical array, the preprophase band,and the phragmoplast, are prominent to plants and are responsible for facilitating cell wall deposition and modification,transducing signals, demarcating the plane of cell division, and forming the new cell plate during cytokinesis, This review highlights important aspects of how MAPs in plants establish and maintain microtubule arrays as well as regulate cell growth, cell division, and cellular responses to the environment.

  3. Production of primary materials for duro-plastic glue, ethanol, and enzymes, from lignocellulose-containing by-products and organic waste in the Fritz-Werner pilot plant (steam pressure extraction)

    Energy Technology Data Exchange (ETDEWEB)

    Sinner, M.; Langer, J.

    1983-01-01

    By the steam pressure extraction process ligno-cellulose-containing annual plants and deciduous wood can be pulped without the need for chemicals. The pre-ground material is treated continuously with saturated steam at elevated pressures in a boiler for approx. 10-20 min. and is shredded upon discharge from the boiler by reduction of pressure to atmospheric conditions. This decomposition process leads to a softening of the cell wall bonds thereby exposing the bio-structure. Extraction of the fibrous material with water or strongly diluted aqueous alkali gives rise to the hemicellular form of the starting material, in particular to soluble xylane degradation products. The extracted fibrous material consists chiefly of cellulose and lignin. These fibres are so loosely inter-connected that they are readily accessible for chemical and in particular biochemical reaction. The fibres can be converted to glucose by enzymatic or acid hydrolysis, they can be used as a substrate for microorganisms, or as energy source and raw fodder for ruminants, or they can be compressed to form fibre-board without the need for binding agents.

  4. Skin telangiectasia in workers of an aluminium processing plant.

    Science.gov (United States)

    Balić, J; Kansky, A

    1988-01-01

    Telangiectases were detected in 57 (46.7%) of 122 workers employed at the electrolysis department of the aluminium plant Lozovac/Sibenik, Yugoslavia. Of 116 workers employed in the smeltery of the same plant, telangiectases were observed in 19 persons (16.4%) and in a group of 121 public transportation workers from Sibenik 15 men (12.4%) displayed enlarged blood vessels. Statistical evaluation revealed the difference in number between workers showing telangiectases engaged in electrolysis and the other two samples to be significant. It may be assumed that telangiectases were caused by hydrogen fluoride and other fluorides. Further clinical parameters, as well as working conditions, are reviewed.

  5. The Impact of Implementation of Total quality Management on Plants' Productivity: Evidence from Poultry Processing Plants- Saudi Arabia- Central Region

    Directory of Open Access Journals (Sweden)

    ELHAJ ABDELMOULA.ELSIDDIG MUSA,

    2011-05-01

    Full Text Available Productivity index as an important business determinant factor for profitability and business performance has been studied in this research versus TQM varibles. The study highlighted out the impacts ofimplementation of TQM on productivity in poultry processing plants in Saudi Arabia – Central Region. The significance of this research represented in exploring the impact of TQM practices on Poultry Processing Plants' productivity. Seven determinants of TQM practices and their impacts were measured against productivity. The determinants included top management commitment, customer focus, rewards & training, continual improvement, cooperation & teamwork, prevention focus and measurement system. Data was collected by using Questionnaire tool. The Questionnaire is of closed ended questions. It consists of three parts, the first part is demographic information about the study sample, the second part about implementation of the total quality management and the third part is to measure productivity. A sample of three poultry processing plants that effectively implemented total quality management were purposively chosen out of eight plants in Saudi Arabia Central Region. The study respondents are purposively chosen which consists quality team, production supervisors, Total quality management and production managers. 73 respondents out 75 participated in the survey. The finding indicated that the TQM practices have positive impact on poultry processing plants' productivity.

  6. Trailers transporting oranges to processing plants move Asian citrus psyllids

    Science.gov (United States)

    Huanglongbing (citrus greening) is one of the most serious of citrus diseases. Movement of the disease occurs as a result of natural vector-borne infection and by movement of plant material. We demonstrate here that Diaphorina citri Kuwayama (vector of citrus greening pathogens) can be transported i...

  7. Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level

    Directory of Open Access Journals (Sweden)

    Valérie Page

    2015-09-01

    Full Text Available Copper, zinc, manganese, iron, nickel and molybdenum are essential micronutrients for plants. However, when present in excess they may damage the plant or decrease the quality of harvested plant products. Some other heavy metals such as cadmium, lead or mercury are not needed by plants and represent pollutants. The uptake into the roots, the loading into the xylem, the acropetal transport to the shoot with the transpiration stream and the further redistribution in the phloem are crucial for the distribution in aerial plant parts. This review is focused on long-distance transport of heavy metals via xylem and phloem and on interactions between the two transport systems. Phloem transport is the basis for the redistribution within the shoot and for the accumulation in fruits and seeds. Solutes may be transferred from the xylem to the phloem (e.g., in the small bundles in stems of cereals, in minor leaf veins. Nickel is highly phloem-mobile and directed to expanding plant parts. Zinc and to a lesser degree also cadmium are also mobile in the phloem and accumulate in meristems (root tips, shoot apex, axillary buds. Iron and manganese are characterized by poor phloem mobility and are retained in older leaves.

  8. Studies on Disinfection By-Products and Drinking Water

    Science.gov (United States)

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  9. Disinfection by-product formation during seawater desalination: A review.

    Science.gov (United States)

    Kim, Daekyun; Amy, Gary L; Karanfil, Tanju

    2015-09-15

    Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water.

  10. Pollination and seed dispersal are the most threatened processes of plant regeneration

    Science.gov (United States)

    Neuschulz, Eike Lena; Mueller, Thomas; Schleuning, Matthias; Böhning-Gaese, Katrin

    2016-07-01

    Plant regeneration is essential for maintaining forest biodiversity and ecosystem functioning, which are globally threatened by human disturbance. Here we present the first integrative meta-analysis on how forest disturbance affects multiple ecological processes of plant regeneration including pollination, seed dispersal, seed predation, recruitment and herbivory. We analysed 408 pairwise comparisons of these processes between near-natural and disturbed forests. Human impacts overall reduced plant regeneration. Importantly, only processes early in the regeneration cycle that often depend on plant-animal interactions, i.e. pollination and seed dispersal, were negatively affected. Later processes, i.e. seed predation, recruitment and herbivory, showed overall no significant response to human disturbance. Conserving pollination and seed dispersal, including the animals that provide these services to plants, should become a priority in forest conservation efforts globally.

  11. Campylobacter jejuni survival in a poultry processing plant environment.

    Science.gov (United States)

    García-Sánchez, Lourdes; Melero, Beatriz; Jaime, Isabel; Hänninen, Marja-Liisa; Rossi, Mirko; Rovira, Jordi

    2017-08-01

    Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Consumption of poultry, especially chicken's meat is considered the most common route for human infection. The aim of this study was to determine if Campylobacter spp. might persist in the poultry plant environment before and after cleaning and disinfection procedures and the distribution and their genetic relatedness. During one month from a poultry plant were analyzed a total of 494 samples -defeathering machine, evisceration machine, floor, sink, conveyor belt, shackles and broiler meat- in order to isolate C. jejuni and C. coli. Results showed that C. jejuni and C. coli prevalence was 94.5% and 5.5% respectively. Different typing techniques as PFGE, MLST established seven C. jejuni genotypes. Whole genome MLST strongly suggest that highly clonal populations of C. jejuni can survive in adverse environmental conditions, even after cleaning and disinfection, and persist for longer periods than previous thought (at least 21 days) in the poultry plant environment. Even so, it might act as a source of contamination independently of the contamination level of the flock entering the slaughter line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Anaerobic digestion of slaughterhouse by-products

    Energy Technology Data Exchange (ETDEWEB)

    Hejnfelt, Anette; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark)

    2009-08-15

    Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 C and for some experiments also at 37 C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497, 487, 561, 582, 575, 359, 619 dm{sup 3} kg{sup -1} respectively, corresponding to 50-100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm{sup -3} and 7 g N dm{sup -3} respectively. Pretreatment (pasteurization: 70 C, sterilization: 133 C), and alkali hydrolysis (NaOH) had no effect on achieved methane yields. Mesophilic digestion was more stable than thermophilic digestion, and higher methane yield was noticed at high waste concentrations. The lower yield at thermophilic temperature and high waste concentration was due to ammonia inhibition. Co-digestion of 5% pork by-products mixed with pig manure at 37 C showed 40% higher methane production compared to digestion of manure alone. (author)

  13. Linking land-use intensification, plant communities, and ecosystem processes in lowland Bolivia

    OpenAIRE

    Carreno Rocabado, I.G.

    2013-01-01

    Land-use intensification (LUI) is one of the main global drivers of biodiversity loss with negative impact on ecosystem processes and the services that societies derive from the ecosystems. The effect of LUI on ecosystem processes can be direct through changes in environmental conditions and indirect through changes in plant community. In this dissertation I explored the mechanisms through which land-use intensification affects plant community assembly and ecosystem processes in the Bolivian ...

  14. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington 99354 USA; CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; Hódar, José A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada Spain; Sardans, Jordi [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain; Kyle, Jennifer E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Kim, Young-Mo [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Oravec, Michal [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Urban, Otmar [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Guenther, Alex [Department of Earth System Science, University of California, Irvine California 92697 USA; Peñuelas, Josep [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain

    2016-06-02

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P. nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

  15. New insights into pri-miRNA processing and accumulation in plants.

    Science.gov (United States)

    Zhang, Shuxin; Liu, Yuhui; Yu, Bin

    2015-01-01

    MicroRNAs (miRNAs) regulate many biological processes such as development, metabolism, and others. They are processed from their primary transcripts called primary miRNA transcripts (pri-miRNAs) by the processor complex containing the RNAse III enzyme, DICER-LIKE1 (DCL1), in plants. Consequently, miRNA biogenesis is controlled through altering pri-miRNA accumulation and processing, which is crucial for plant development and adaptation to environmental changes. Plant pri-miRNAs are transcribed by DNA-dependent RNA polymerase II (Pol II) and their levels are determined through transcription and degradation, whereas pri-miRNA processing is affected by its structure, splicing, alternative splicing, loading to the processor and the processor activity, which involve in many accessory proteins. Here, we summarize recent progresses related to pri-miRNA transcription, stability, and processing in plants.

  16. The use of process simulation models in virtual commissioning of process automation software in drinking water treatment plants

    NARCIS (Netherlands)

    Worm, G.I.M.; Kelderman, J.P.; Lapikas, T.; Van der Helm, A.W.C.; Van Schagen, K.M.; Rietveld, L.C.

    2012-01-01

    This research deals with the contribution of process simulation models to the factory acceptance test (FAT) of process automation (PA) software of drinking water treatment plants. Two test teams tested the same piece of modified PA-software. One team used an advanced virtual commissioning (AVC) syst

  17. Prevalence and antimicrobial resistance of Salmonella isolated from two pork processing plants in Alberta, Canada.

    Science.gov (United States)

    Sanchez-Maldonado, Alma Fernanda; Aslam, Mueen; Service, Cara; Narváez-Bravo, Claudia; Avery, Brent P; Johnson, Roger; Jones, Tineke H

    2017-01-16

    This study investigated the frequency of Salmonella serovars on pig carcasses at various processing steps in two commercial pork processing plants in Alberta, Canada and characterized phenotypic and genotypic antimicrobial resistance (AMR) and PFGE patterns of the Salmonella isolates. Over a one year period, 1000 swab samples were collected from randomly selected pigs at two slaughter plants. Sampling points were: carcass swabs after bleeding (CSAB), carcass swabs after de-hairing (CSAD, plant A) or skinning (CSASk, plant B), carcass swabs after evisceration (CSAE), carcass swabs after pasteurization (CSAP, plant A) or washing (CSAW, plants B) and retail pork (RP). For plant A, 87% of CSAB and 8% of CSAE were positive for Salmonella while at plant B, Salmonella was recovered from 94% of CSAB and 10% of CSAE. Salmonella was not recovered from the RP samples at either plant, indicating that the plants used effective control measures. Salmonella enterica serovar Derby was the most common serotype (23%, 29/127) recovered in plant A and plant B (61%, 76/124). For plant A, 35% (45/127) of isolates were resistant to at least one antimicrobial. Five isolates (3.9%), 4 serovar Ohio strains and one serovar I:Rough-O:I,v:-, strain were simultaneously resistant to antimicrobials of very high (Category I), high (Category II), and medium (Category III) importance to human medicine. The 4 S. Ohio isolates were recovered from 3 different steps of pork processing on the same sampling day and displayed resistance to 5-7 antimicrobials, with all of them displaying resistance to ceftiofur and ceftriaxone (Category I). An I:Rough-O:l,v:- isolate, recovered on a different sampling day, was resistant to 7 antimicrobials that included resistance to ampicillin/clavulanic acid, ceftiofur and ceftriaxone (Category I). Salmonella strains isolated from plant A harbored 12 different AMR genes. The most prevalent genes were sul1, sul2, tet(A), tet(B), aadA, strA/strB, aac(3)IV and aphA1. For

  18. Performance and Model Calibration of R-D-N Processes in Pilot Plant

    DEFF Research Database (Denmark)

    de la Sota, A.; Larrea, L.; Novak, L.

    1994-01-01

    This paper deals with the first part of an experimental programme in a pilot plant configured for advanced biological nutrient removal processes treating domestic wastewater of Bilbao. The IAWPRC Model No.1 was calibrated in order to optimize the design of the full-scale plant. In this first phas...

  19. Hierarchical spatial point process analysis for a plant community with high biodiversity

    DEFF Research Database (Denmark)

    Illian, Janine B.; Møller, Jesper; Waagepetersen, Rasmus

    2009-01-01

    A complex multivariate spatial point pattern of a plant community with high biodiversity is modelled using a hierarchical multivariate point process model. In the model, interactions between plants with different post-fire regeneration strategies are of key interest. We consider initially a maximum...

  20. Spatial point process analysis for a plant community with high biodiversity

    DEFF Research Database (Denmark)

    Illian, Janine; Møller, Jesper; Waagepetersen, Rasmus Plenge

    A complex multivariate spatial point pattern for a plant community with high biodiversity is modelled using a hierarchical multivariate point process model. In the model, interactions between plants with different post-fire regeneration strategies are of key interest. We consider initially...

  1. Conceptual process synthesis for recovery of natural products from plants

    DEFF Research Database (Denmark)

    Malwade, Chandrakant R.; Qu, Haiyan; Rong, Ben-Guang;

    2013-01-01

    A systematic method of conceptual process synthesis for recovery of natural products from their biological sources is presented. This methodology divides the task into two major subtasks namely, isolation of target compound from a chemically complex solid matrix of biological source (crude extract......) and purification of target compound(s) from the crude extract. Process analytical technology (PAT) is used in each step to understand the nature of material systems and separation characteristics of each separation method. In the present work, this methodology is applied to generate process flow sheet for recovery...

  2. Experimental Process Identification for Industrial Water De-carbonization in Power Plants

    Directory of Open Access Journals (Sweden)

    MSc. Lutfi Bina

    2013-12-01

    Full Text Available Water Treatment Plant (or WTP is the most important part of the Power Plant, because it produces vital-water it needs for steam production. Power Plants are the biggest air, ground and groundwater pollutants. Bad water quality directly impacts machine duration. Polluted water from Water Treatment Plant has a negative effect on people, flora and fauna, thus better waste management programs should be put in place to eliminate this problem.  In this paper we are going to present the de-carbonization process of raw water as a part of water treatment plant, within coal fired power plants. De-carbonizing water is a time consuming process. We are going to present an advanced method for process identification with big time delay. The results are compared and one of the most appropriate methods is selected as identification method for this process. Further research and possibilities in this area are going to be presented by the end of the paper. Progress in identifying the process by which we work in this paper may serve as a new way to identify highly nonlinear processes. The used algorithm for identification of the process that is outlined in this paper can be applied, and it will be the basis for the creation of the software for the application of microcomputer techniques. Here we are applying the relevant software which can be applied in the form of programming packages for identification. This has to do with passive identification methods.

  3. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Calloway, T.B.

    2002-07-23

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming.

  4. Conceptual design of a process plant for the production of plantain flour

    National Research Council Canada - National Science Library

    Ayodeji, Sesan Peter

    2016-01-01

    .... The process plant consists of washing, slicing, drying, milling and sieving machines. The design analysis of constituent machines and its performance evaluation were carried out using SolidWorks and other appropriate design equations...

  5. CO2 capture processes in power plants - Le captage du CO2 dans les centrales thermiques

    CERN Document Server

    Bouallou, Chakib

    2010-01-01

    This review is devoted to assess and compare various processes aiming at recover CO2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post combustion CO2 capture using chemical solvents, natural gas reforming for pre-combustion capture and oxy-fuel combustion with cryogenic recovery of CO2. These processes were evaluated to give some clues for choosing the best option for each type of power plant. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents.

  6. Socio-economic impact in a region in the southern part of Jutland by the establishment of a plant for processing of bio ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Henning; Hjort-Gregersen, K.

    2005-09-15

    The Farmers Association of Southern Jutland took an interest in the establishment of a plant for processing of Ethanol primarily due to the wish to contribute to the business development in the western part of Southern Jutland. A large plant for production of bio ethanol will bring along a significant number of local jobs with positive derived economic effects in the local community. Further the plant will also form the basis for a new possibility of marketing of cereal crops. From asocial point of view the request to produce ethanol and other biomass based propellants are motivated by the international obligation to reduce emission of greenhouse gasses, which primarily originate from energy production from conventional fossil fuels. A certain amount of fossil fuels is required in the production of crops, but it has been estimated that the net emission of CO{sub 2} by production of ethanol only constitutes 10% of the emission by fossil energy. (au)

  7. Characterisation of Staphylococcus aureus isolated from meat processing plants – a preliminary study

    OpenAIRE

    Kizerwetter-Świda Magdalena; Chrobak-Chmiel Dorota; Rzewuska Magdalena; Pławińska-Czarnak Joanna; Binek Marian

    2016-01-01

    Introduction: Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) belonging to the clonal complex 398 (CC398) emerged recently in livestock as a new type of MRSA, which may cause zoonotic infections. This study presents data on the characterisation of S. aureus isolated from the meat processing plants. Material and Methods: S. aureus was isolated from 90 samples collected in the raw meat warehouse, from devices and surfaces of meat processing plants, and from finished m...

  8. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    OpenAIRE

    CORNELIA DIANA HERTIA; ANCA ELENA GURZAU; MARIA ILONA SZASZ

    2011-01-01

    This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very...

  9. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

  10. Process synthesis for natural products from plants based on PAT methodology

    DEFF Research Database (Denmark)

    2017-01-01

    generates different process flowsheet alternatives consisting of multiple separation techniques. Decision making is supported by heuristics as well as basic process information already available from previous studies. In addition, process analytical technology (PAT) framework, a part of Quality by Design...... (QbD) approach, has been included at various steps to obtain molecular level information of process streams and thereby, support the rational decision making. The formulated methodology has been used to isolate and purify artemisinin, an antimalarial drug, from dried leaves of the plant Artemisia...... and other consumer products. Therefore, process technology towards industrial scale production of such high value chemicals from plants has significant importance. In this chapter, a process synthesis methodology for recovery of natural products from plants at conceptual level is discussed. The methodology...

  11. Investigation of soil potentially contaminated by monazite processing by-products: case study and suggestion for protocol; Investigacao de solo potencialmente contaminado por subprodutos do processamento da monazita: estudo de caso e sugestao de protocolo

    Energy Technology Data Exchange (ETDEWEB)

    Briquet, Claudia

    2006-07-01

    This work describes a characterization of soil potentially contaminated by monazite chemical processing residues. For case study it was selected a country area of Sao Paulo State, containing a monazite processing by-product depository. The main objective was to evaluate the soil contamination in an area of approximately 18,000 m{sup 2} and esteem the total effective dose equivalent. During the development of this work, it was verified necessity of an investigation protocol, in order to standardize actions of regulatory authorities. A survey of the applicable legislation was carried out, as a tool to support decision making process. The methodology was based on the 'Manual de Gerenciamento de Areas Contaminadas' of CETESB (2001 a), a national document to guide studies of contaminated areas. It was also considered the 'Multi Agency Radiation Survey and Site Manual Investigation - MARSSIM' (2000), a U.S. government document that provides a nationally consensus approach to conduct investigations at potentially contaminated sites. The developed activities had been divided in three general stages: data-collecting and information on the place, identification of soil contamination and its distribution until the depth of 3 meters and evaluation of the associated dose. The evaluation of the radiological impact was carried out considering the worst-case use scenario (most restrictive future use), standing out that the final decision fits to the Brazilian National Nuclear Energy Commission - CNEN. CNEN's scope of responsibility includes determining the site release criteria and the cleanup necessity. (author)

  12. Extraction and purification methods in downstream processing of plant-based recombinant proteins.

    Science.gov (United States)

    Łojewska, Ewelina; Kowalczyk, Tomasz; Olejniczak, Szymon; Sakowicz, Tomasz

    2016-04-01

    During the last two decades, the production of recombinant proteins in plant systems has been receiving increased attention. Currently, proteins are considered as the most important biopharmaceuticals. However, high costs and problems with scaling up the purification and isolation processes make the production of plant-based recombinant proteins a challenging task. This paper presents a summary of the information regarding the downstream processing in plant systems and provides a comprehensible overview of its key steps, such as extraction and purification. To highlight the recent progress, mainly new developments in the downstream technology have been chosen. Furthermore, besides most popular techniques, alternative methods have been described.

  13. ANTIOXIDANT PLANT EXTRACTS IN THE MEAT PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    A. I.

    2016-04-01

    Full Text Available The review highlights the role of antioxidants in minimizing oxidative changes that may adversely affect the quality of meat and meat products, cause changes in their testing and nutritional properties. This applies particularly to the use of natural antioxidants based on plant extracts, which can be a good alternative to traditional antioxidants, thanks to its high content of phenolic compounds. From the literature it can be concluded that extracts of broccoli, rosemary, mint, grape seed and green tea have a significant antioxidant effect in the meat products. Broccoli and grape seeds extracts have a pronounced antioxidant activity compared to synthetic antioxidants. Laminarin/fucoidan extracts have prooxidative effect on lipid perperoxidation. Essential oils of L. angustifolia and M. piperita effectively inhibit E. coli O157:H7 and S. aureus in the chopped beef meat. The alcoholic extract of the dried leaves of oregano has the highest content of total phenols, however, does not exhibit antioxidant properties. The extracts of rosemary, orange, lemon, mint and curry have positive effect on the color of the meat products. When choosing natural antioxidants it is necessary to pay attention to their impact on testing and qualitative characteristics of these food products.

  14. Software for the Simulation of Power Plant Processes

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Houbak, Niels

    2002-01-01

    Modelling of energy systems has been increasingly more important. In particular the dynamic behaviour is critical when operating the systems closer to the limits (either of the process, the materials, the emissions or the economics, etc.). This enforces strong requirements on both the models and ...

  15. Design considerations for fume hoods for process plants.

    Science.gov (United States)

    Goodfellow, H D; Bender, M

    1980-07-01

    Proper design of fume hoods is a necessary requisite for a clean working environment for many industrial processes. Until recently, the design of these hoods has been rather a trial and error approach and not based on sound engineering design principles. Hatch Associates have developed and applied new techniques to establish hood parameters for different industrail processes. The paper reviews the developed techniques and illustrates practical application of these techniques to the solving of difficult and comples fume hood design and operating performance problems. The scope of the paper covers the following subject areas: definitions and general considerations: evaluation of volume and heat flow rates for emission sources; local capture of process emissions; remote capture of process emissions and case studies of fume hood applications. The purpose of the paper is to detail a coherent approach in the analysis of emission problems which will result in the development of an efficient design of a fume capture hood. An efficient fume hood can provide a safe working place as well as a clean external environment. Although the techniques can be applied to smaller sources, the case studies which will be examined will be for fume hoods in the flow design range of 50 000 CFM to +1 000 000 CFM.

  16. Tennessee Eastman Plant-wide Industrial Process Challenge Problem

    DEFF Research Database (Denmark)

    2011-01-01

    of freedom (DoF) and the appropriate selection of variables to satisfy the DoF. Of major concern is the control of the process. The chapter considers the open-loop dynamics of the flowsheet as well as the closed loop responses. Plots show the reactor dynamic behaviour as well as stripper exit flowrates. All...

  17. Decontamination of airborne bacteria in meat processing plants

    Science.gov (United States)

    Air has been established as a source of bacterial contamination in meat processing facilities. Airborne bacteria may affect product shelf life, and have food safety implications. The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in...

  18. Computer and control applications in a vegetable processing plant

    Science.gov (United States)

    There are many advantages to the use of computers and control in food industry. Software in the food industry takes 2 forms - general purpose commercial computer software and software for specialized applications, such as drying and thermal processing of foods. Many applied simulation models for d...

  19. Integration of chemical product development, process design and operation based on a kilo-plant

    Institute of Scientific and Technical Information of China (English)

    QIAN Yu; WU Zhihui; JIANG Yanbin

    2006-01-01

    Presented in this paper is an integrated approach of computer-aided product development, process design and operation analysis based on a kilo-plant. The implemented kilo-plant, as a research platform to manufacture product in kilogram-scale, was designed especially for fine and specialty chemicals. The characteristics of product synthesis, process operation and product quality control are investigated coupled with computer-aided monitoring, online modeling, simulation and operation process optimization. In this way, chemical product discovery, process design and operation are integrated in a systematic approach, in the aim to respond to rapid changing marketplace demands to new products.

  20. Innovative Fresh Water Production Process for Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2006-09-29

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report summarizes the progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. Detailed heat and mass transfer analyses required to size and analyze the diffusion tower using a heated water input are described. The analyses agree quite well with the current data and the information available in the literature. The direct contact condenser has also been thoroughly analyzed and the system performance at optimal operating conditions has been considered using a heated water/ambient air input to the diffusion tower. The diffusion tower has also been analyzed using a heated air input. The DDD laboratory facility has successfully been modified to include an air heating section. Experiments have been conducted over a range of parameters for two different cases: heated air/heated water and heated air/ambient water. A theoretical heat and mass transfer model has been examined for both of these cases and agreement between the experimental and theoretical data is good. A parametric study reveals that for every liquid mass flux there is an air mass flux value where the diffusion tower energy consumption is minimal and an air mass flux where the fresh water production flux is maximized. A study was also performed to compare the DDD process with different inlet operating conditions as well as different packing. It is shown that the heated air/heated water case is more capable of greater fresh water production with the same energy consumption than the ambient air/heated water process at high liquid mass flux. It is also shown that there can be

  1. Exposure to chloramines in a green salad processing plant.

    Science.gov (United States)

    Hery, M; Gerber, J M; Hecht, G; Subra, I; Possoz, C; Aubert, S; Dieudonne, M; Andre, J C

    1998-10-01

    Acute eye and upper respiratory irritation was reported at an industrial facility that processes green salads in water containing hypochlorite. The irritant agents were chloramines resulting from the reaction of hypochlorite and nitrogen compounds coming from the sap proteins released when the vegetables were cut. Specific sampling and analytical methods were developed in order to assess the workers' exposure. Monochloramine, dichloramine and nitrogen trichloride were found in the atmosphere, which can explain the irritation phenomena of which the workers complained. In the washing room (where salads are processed), the total chloramine concentration ranged from 0.4 to 16 mg.m-3, depending on the day and the location of the area sampling points. The exposure of workers determined by personal sampling ranged from 0.2 to 5 mg.m-3. In a previous study, with swimming pool instructors exposed to the same pollutants, irritation phenomena generally appeared at chloramine values of around 0.5 mg.m-3.

  2. Software for the Simulation of Power Plant Processes

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Houbak, Niels

    2002-01-01

    description of many static and/or dynamic energy system or process simulators. It discusses the principal implementation of the model handling in DNA and finally, there is a small example illustrating that too simple component models may under certain circumstances result in an erroneous, singular model.......Modelling of energy systems has been increasingly more important. In particular the dynamic behaviour is critical when operating the systems closer to the limits (either of the process, the materials, the emissions or the economics, etc.). This enforces strong requirements on both the models...... and their numerical solution with respect to both accuracy and efficiency. In part A of this paper we give a survey on simulation of energy systems, from models and modelling, over numerical methods to implementational techniques. It covers important aspects of the different phases of modelling of a (energy) system...

  3. Feasibility study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    An investigation was performed to determine the technical and economic viability of constructing and operating a geothermally heated, biomass, motor fuel alcohol plant at Brady's Hot Springs. The results of the study are positive, showing that a plant of innovative, yet proven design can be built to adapt current commerical fermentation-distillation technology to the application of geothermal heat energy. The specific method of heat production from the Brady's Hot Spring wells has been successful for some time at an onion drying plant. Further development of the geothermal resource to add the capacity needed for an ethanol plant is found to be feasible for a plant sized to produce 10 million gallons of motor fuel grade ethanol per year. A very adequate supply of feedgrains is found to be available for use in the plant without impact on the local or regional feedgrain market. The effect of diverting supplies from the animal feedlots in Northern Nevada and California will be mitigated by the by-product output of high-protein feed supplements that the plant will produce. The plant will have a favorable impact on the local farming economies of Fallon, Lovelock, Winnemucca and Elko, Nevada. It will make a positive and significant socioeconomic contribution to Churchill County, providing direct employment for an additional 61 persons. Environmental impact will be negligible, involving mostly a moderate increase in local truck traffic and railroad siding activity. The report is presented in two volumes. Volume 1 deals with the technical design aspects of the plant. The second volume addresses the issue of expanded geothermal heat production at Brady's Hot Springs, goes into the details of feedstock supply economics, and looks at the markets for the plant's primary ethanol product, and the markets for its feed supplement by-products. The report concludes with an analysis of the economic viability of the proposed project.

  4. Do the Czech Production Plants Measure the Performance of Energy Processes?

    Directory of Open Access Journals (Sweden)

    Zuzana Tučková

    2016-04-01

    Full Text Available The research was focused to the actual situation in Performance Measurement of the energy processes in Czech production plants. The results are back – upped by the previous researches which were aimed to performance measurement methods usage in the whole organizational structure of the plants. Although the most of big industrial companies declared using of modern Performance Measurements methods, the previous researches shown that it is not purely true. The bigger differences were found in the energy area – energy processes. The authors compared the Energy concepts of European Union (EU and Czech Republic (CZ which are very different and do not create any possibilities for manager’s clear decision in the process management strategy of energy processes in their companies. Next step included the Energy department’s analysis. The significant part of energy processes in the production plants is still not mapped, described and summarized to one methodical manual for managing and performance measurement.

  5. Application of laser processing for disassembly of nuclear power plants

    Science.gov (United States)

    Baranov, Gennady A.; Zinchenko, A. V.; Arutyunyan, R. B.

    1998-12-01

    Provision of safety and drop of ecological risk at salvaging of nuclear submarines (NSM) of Russia Navy Forces represents one of the most actual problems of nowadays. It is necessary to remove from services of Russian Navy Forces 170 - 180 nuclear submarines by 2000. At salvaging of Russian Navy Forces NSM it should be necessary to cut out reactor compartments with more than 150 thousand tons of gross weight and to fragment terminal carcasses of submarines with gross weight of 2 million tons. Taking into account overall dimensions of salvaging objects and Euro-standard requirement on the sizes of carcass fragments, for salvaging of one NSM it is necessary to execute more than 10 km of cuts. Using of conventional methods of gas and plasma cutting of ship constructions and equipment polluted with radioactive oxides and bedding of insulation and paint and varnish materials causes contamination of working zones and environment by a mix of radioactive substances and highly toxic combustion products, nomenclature of which includes up to 50 names. Calculations carried out in the Institute of industrial and Marine Medicine have shown that salvage of just one NSM with using of gas and plasma cutting are accompanied by discharge into an environment of up to 11.5 kg of chromium oxides, up to 22.5 kg of manganese oxides, up to 97 kg of carbon oxides and up to 650 kg of nitrogen oxides. Fragmentation of such equipment by a method of directional explosion or hydraulic jet is problematic because of complexity of treated constructions and necessity to create special protective facilities, which will accumulate a bulk of radioactive and toxic discharges, as a consequence of the explosion and spreaded by shock waves and water deluges. In a number of new technological processes the cutting with using of high-power industrial lasers radiation stands out. As compared with other technological processes, laser cutting has many advantages determined by such unique properties of laser

  6. Remote engineering for a cheese whey biorefinery: an Internet-based application for process design, economic analysis, monitoring, and control of multiple plant sites.

    Science.gov (United States)

    Pinto, Gilson A; Giordano, Raquel L C; Giordano, Roberto C

    2009-01-01

    The proteolysis of cheese whey with the aid of immobilized enzymes is an attractive alternative for this by-product of the dairy industry. Among some possible applications for whey protein hydrolysates, one may cite their use as protein source for individuals with reduced capacity of digestion, or with genetic metabolic disorders (phenylketonuria patients, for instance). The multipurpose plant that processes whey is named here as a cheese whey biorefinery. This work presents the remote control and monitoring of the whey biorefineries using the Internet. In an integrated environment, the web application also enables simulation and economic analyses of the process. This technology might allow small companies to access a remote "engineering centre", with know-how on plant design and advanced control techniques. The idea can also be extended to large dairy companies, providing the remote control of geographically spread sites of production.

  7. Valorization of rapeseed grain by-products

    Directory of Open Access Journals (Sweden)

    Kormanjos Sandor M.

    2016-01-01

    Full Text Available After technological processing of rapeseed significant amounts of useful and useless waste products stand out. The aim of the present study was to investigate the chemical composition, content of glucosinolates, microbiological safety, and presence of mycotoxins and heavy element contents of useful rapeseed by-products which are intended for animal nutrition. Feed components as well as complete mixtures for animal feed must be safe and in accordance with the requirements of the current national regulation. The investigated useful by-products contained significant amounts of proteins (21.80% and fat (33.78%. As a part of the research, extrusion of the mixture containing rapeseed by-products and maize in the ratio of 50:50% was performed. The process of extrusion was carried out at 130 °C. Based on the obtained results it was noticed that the investigated extruded mixture is a convenient protein-energy supplement suitable for animal feed production with significantly reduced glucosinolate content (from 10.30 to 7.82 µmol/g. It was also observed that the extrusion of feed mixture led to the reduction of the number of microorganisms which ensures safe feedstuff for animal feed production.

  8. Purificação do subproduto do processo de extração de esteviosídeo Purification of the by-product of the stevioside extraction process

    Directory of Open Access Journals (Sweden)

    Denise Maria Malachini Miotto

    2004-03-01

    Full Text Available O caramelo consiste no subproduto do processo de extração dos edulcorantes das folhas de Stevia rebaudiana Bertoni. Esse subproduto apresenta teores significativos dos edulcorantes esteviosídeo e rebaudiosídeo A não extraídos no processo e grande quantidade de compostos das folhas que lhe conferem, respectivamente, sabor doce e coloração escura. Desta forma, a retirada dos compostos das folhas presentes no caramelo torna possível seu reaproveitamento como edulcorante. Portanto, o caramelo foi purificado por meio de adsorção em zeólitas modificadas, CaX e MgX. Foram realizados dois experimentos: um teste de saturação dos adsorventes para avaliar sua capacidade adsortiva e um teste de máxima clarificação para determinar a máxima purificação alcançada por adsorção em zeólitas. Os resultados mostraram que CaX é o adsorvente mais eficaz. As zeólitas podem ser reutilizadas por até duas vezes, necessitando regeneração em seguida. O teste de máxima clarificação apresentou soluções quase límpidas, com altos níveis de clarificação (80-90% dos compostos com maior afinidade, mas elevadas retenções dos edulcorantes (~70%, pois as zeólitas conseguem reter grande parte dos pigmentos da solução de caramelo, arrastando também esteviosídeo e rebaudiosídeo A, com baixo rendimento de recuperação dos edulcorantes, mas considerado satisfatório tendo em vista que o caramelo, apesar de rico em edulcorantes, não tem aplicação atualmente.Caramel is the by-product of the sweeteners extraction process of Stevia rebaudiana Bertoni leaves. This by-product shows significant contents of the sweeteners stevioside and rebaudioside A not extracted in the process and large quantity of leaf components, that give it, respectively, sweet flavor and dark color. Like this, the retreat of the leaf components of the caramel makes possible its reuse as a sweetener. Therefore, the caramel was purified by adsorption in modified zeolites

  9. Exergetic analysis of cogeneration plants through integration of internal combustion engine and process simulators

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Leonardo de Oliveira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mail: leonardo.carvalho@petrobras.com.br; Leiroz, Albino Kalab; Cruz, Manuel Ernani [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Mecanica], Emails: leiroz@mecanica.ufrj.br, manuel@mecanica.ufrj.br

    2010-07-01

    Internal combustion engines (ICEs) have been used in industry and power generation much before they were massively employed for transportation. Their high reliability, excellent power-to-weight ratio, and thermal efficiency have made them a competitive choice as main energy converters in small to medium sized power plants. Process simulators can model ICE powered energy plants with limited depth, due to the highly simplified ICE models used. Usually a better understanding of the global effects of different engine parameters is desirable, since the combustion process within the ICE is typically the main cause of exergy destruction in systems which utilize them. Dedicated commercial ICE simulators have reached such a degree of maturity, that they can adequately model a wide spectrum of phenomena that occur in ICEs. However, ICE simulators are unable to incorporate the remaining of power plant equipment and processes in their models. This paper presents and exploits the integration of an internal combustion engine simulator with a process simulator, so as to evaluate the construction of a fully coupled simulation platform to analyze the performance of ICE-based power plants. A simulation model of an actual cogeneration plant is used as a vehicle for application of the proposed computational methodology. The results show that by manipulating the engine mapping parameters, the overall efficiency of the plant can be improved. (author)

  10. Advanced Gasification By-Product Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

    2006-08-31

    With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The

  11. Advanced Gasification By-Product Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

    2006-08-31

    With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The

  12. [Evaluation of exposure of workers to asbestos dust in asbestos-processing plants].

    Science.gov (United States)

    Stroszejn-Mrowca, G; Wiecek, E

    1985-01-01

    Working environments have been tested in plants producing asbestos products, asbestos-cement products, textile asbestos products, asbestos-caoutchouc plates, asbestos boards and asbestos frictional materials for automotive industry, Measurements of total dust concentrations and concentrations of asbestos fibres 5 micron long supported workers' exposure investigations. Basing on literature data on the working environment at the Mining Metallurgical Plant in Szklary, the health risk for workers producing nickel from ores containing asbestos mixtures has been analysed. The asbestos-exposure in asbestos-processing plants has been found to be still considerable despite modernization of the plants. Particularly dangerous to health have been regarded the conditions at asbestos spinning-mills and the Mining-Metallurgical Plant at Szklary, where even average asbestos concentrations considerably exceed the threshold limit values.

  13. Codigestion of manure and industrial organic waste at centralized biogas plants: process imbalances and limitations

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Angelidaki, Irini

    2008-01-01

    The present study focuses on process imbalances in Danish centralized biogas plants treating manure in combination with industrial waste. Collection of process data from various full-scale plants along with a number of interviews showed that imbalances occur frequently. High concentrations...... conditions) and high fractions of industrial waste in the feedstock was also observed. The process imbalances and suboptimal conditions are mainly allowed to occur due to 1) inadequate knowledge about the waste composition, 2) inadequate knowledge about the waste degradation characteristics, 3) inadequate...

  14. Decomposition of Organic Compounds in Coke Plant Wastewater by Ultrasonic Irradiation and Its Combined Process

    Institute of Scientific and Technical Information of China (English)

    XU Jin-qiu; JIA Jin-ping; WANG Jing-wei

    2004-01-01

    The paper deals with the degradation of the organic compounds in the coke plant wastewater by the combined process of ultrasonic irradiation and activated sludge. The influence factors of the ultrasonic degradation effect such as air atmosphere, initial concentration, ultrasonic power density and the category and consumption of catalyst were investigated. A water quality model was used to explain the degradation of different kinds of organic compounds in the coke plant wastewater by ultrasonic irradiation. After the wastewater was treated by the combined process of ultrasonic irradiation and activated sludge, the COD degradation efficiency was 95. 74 %, which is 63. 49% higher than that by the process of activated sludge alone.

  15. Conceptual design of a process plant for the production of plantain flour

    Directory of Open Access Journals (Sweden)

    Sesan Peter Ayodeji

    2016-05-01

    Full Text Available Plantain has become an essential source of food in the Nigerian market today and to this effect, it is fast becoming a sought after fruit, especially for persons diagnosed with diabetics. Being a perishable fruit, plantain is usually processed into flour to extend its shelf life. Hence, there is a need to improve on the quantity and quality of the flour produced from it. This paper presents the conceptual design of a process plant for plantain flour production from green plantain pulp. The process plant consists of washing, slicing, drying, milling and sieving machines. The design analysis of constituent machines and its performance evaluation were carried out using SolidWorks and other appropriate design equations. The designed process plant was simulated to ensure its functionality. The results of its performance were analyzed and estimated cost of production presented.

  16. Relationships at the aboveground-belowground interface: plants, soil biota and soil processes

    NARCIS (Netherlands)

    Porazinska, D.L.; Bardgett, R.D.; Postma-Blaauw, M.B.; Hunt, H.W.; Parsons, A.N.; Seastedt, T.R.; Wall, D.M.

    2003-01-01

    Interactions at the aboveground-below ground interface provide important feedbacks that regulate ecosystem processes. Organisms within soil food webs are involved in processes of decomposition and nutrient mineralization, and their abundance and activity have been linked to plant ecophysiological tr

  17. Characterization of contaminants from a sanitized milk processing plant.

    Directory of Open Access Journals (Sweden)

    Sara Cleto

    Full Text Available Milk processing lines offer a wide variety of microenvironments where a diversity of microorganisms can proliferate. We sampled crevices and junctions where, due to deficient reach by typical sanitizing procedures, bacteria can survive and establish biofilms. The sampling sites were the holding cell, cold storage tank, pasteurizer and storage tank--transfer pump junction. The culturable bacteria that were isolated after the sanitation procedure were predominantly Pseudomonas spp., Serratia spp, Staphylococcus sciuri and Stenotrophomonas maltophilia. We assayed several phenotypic characteristics such as the ability to secrete enzymes and siderophores, as well as the capacity of the strains to form biofilms that might contribute to their survival in a mixed species environment. The Pseudomonas spp. isolates were found to either produce proteases or lecithinases at high levels. Interestingly, protease production showed an inverse correlation with siderophore production. Furthermore, all of the Serratia spp. isolates were strong biofilm formers and spoilage enzymes producers. The organisms identified were not mere contaminants, but also producers of proteins with the potential to lower the quality and shelf-life of milk. In addition, we found that a considerable number of the Serratia and Pseudomonas spp. isolated from the pasteurizer were capable of secreting compounds with antimicrobial properties.

  18. Cleanup of an urban site contaminated by monazite processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Lauria, Dejanira C.; Zenaro, Rozangela; Sachett, Ivanor A. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil). Dept. de Radioprotecao Ambiental

    2001-07-01

    For half a century the Santo Amaro Mill processed monazite sand in order to isolate rare earth elements. At the beginning of its operation, the mill was located far from the centre of Sao Paulo city. However, over the years the city spread and engulfed the mill, which, together with economical and radiological problems, led to its being shutdown and later decommissioned. Based on a future residential occupation scenario complying with a dose limit of 1 mSv/y, a concentration guideline level of 0.65 Bq/g of {sup 228} Ra activity concentration in the soil was derived. The cleanup actions led for removing of about 2300 m{sup 3} of soil from the area, of which 60 m{sup 3} was sent to a repository and 2240 m{sup 3} to a municipal landfill. This paper address to present the criteria for the establishment of the derived concentration guideline level of radionuclides in soil and the studies carried out for establishment of measurement procedures for on-site radiation measurements aiming speed-up of the analyses during the cleanup actions. (author)

  19. Constructing wetlands: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    Science.gov (United States)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-04-01

    Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct 10.000 ha of wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling as well as yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Plant analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  20. Tube failures due to cooling process problem and foreign materials in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J. [Kapar Energy Ventures Sdn Bhd, Jalan Tok Muda, Kapar 42200 (Malaysia); Purbolaksono, J., E-mail: judha@uniten.edu.m [Department of Mechanical Engineering, Universiti Tenaga Nasional, Km 7 Jalan Kajang-Puchong, Kajang 43009, Selangor (Malaysia); Beng, L.C. [Kapar Energy Ventures Sdn Bhd, Jalan Tok Muda, Kapar 42200 (Malaysia)

    2010-07-15

    Cooling process which uses water for heat transfer is an essential factor in coal-fired and nuclear plants. Loss of cooling upset can force the plants to shut down. In particular, this paper reports visual inspections and metallurgical examinations on the failed SA210-A1 right-hand side (RHS) water wall tube of a coal-fired plant. The water wall tube showed the abnormal outer surface colour and has failed with wide-open ductile rupture and thin edges indicating typical signs of short-term overheating. Metallurgical examinations confirmed the failed tube experiencing higher temperature operation. Water flow starvation due to restriction inside the upstream tube is identified as the main root cause of failure. The findings are important to take failure mitigation actions in the future operation. Discussion on the typical problems related to the cooling process in nuclear power plants is also presented.

  1. External and internal sources which inhibit the nitrification process in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sinkjær, O.; Bøgebjerg, P.; Grüttner, Henrik

    1996-01-01

    In connection with the upgrading of the two largest wastewater treatment plants in the Copenhagen area to nutrient removal special attention has been paid to the nitrification process regarding inhibition effects. Inhibitory substances in the wastewater could be identified by simple batch tests......, and the long-term effects on the nitrification process were tested in pilot plants or at full-scale. A distinction could be made between effects produced by wastewater from external sources in the catchment area and internally circulated flows in the wastewater treatment plant. Results from programmes...... the nitrification capacity monitored at the pilot plants has been in agreement with the design basis. The recycling of the scrubber water from the cleaning of sludge incineration flue gas was found to be an important internal source of inhibition at the Lynetten WWTP. Investigations show that it is possible...

  2. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process

    DEFF Research Database (Denmark)

    Volcke, Eveline; Gernaey, Krist; Vrecko, Darko;

    2006-01-01

    In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water...... streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where...... treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios...

  3. Identification and Control of Nutrient Removing Processes in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Nielsen, Marinus K.; Madsen, Henrik; Carstensen, Niels Jacob

    1994-01-01

    Today the use of on-line control for wastewater treatment plants is very low. A main reason is the lack of quality of the data, and the fact that more sophisticated control strategies must be based on a model of the dynamics of the biological processes. This paper discusses the historical reasons...... for the limited use of modern control strategies for wastewater treatment plants. Today, however, on-line nutrient sensors are more reliable. In the present context the use of on-line monitored values of ammonia, nitrate and phosphate from a full scale plant are used as the background for discussing...

  4. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    Science.gov (United States)

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets.

  5. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules.

    Science.gov (United States)

    Wilson, Sarah A; Roberts, Susan C

    2012-04-01

    Plant cell culture systems were initially explored for use in commercial synthesis of several high-value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field-grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field-grown crops is significant and therefore processes must be optimized with regard to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes.

  6. Process bases and specifications thorium---U-233 separations at the Purex Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, S.M.

    1965-07-26

    The Purex Plant was originally designed for the chemical processing of irradiated natural uranium. It has been used nearly exclusively for this purpose during its approximately ten-year operating lifetime. However, during the winter of 1964--1965, a special processing campaign was planned and accomplished in which approximately 6 tons of irradiated thoria targets were introduced to the plant, and the thorium-232 and uranium-233 were successfully separated and purified on a demonstration basis. For the demonstration thorium processing operation (6-ton test) of the winter of 1964--1965, process specifications were issued. These specifications were necessarily specific to the particular campaign inasmuch as a rather unusual processing scheme was required, by virtue of the small tonnage involved and the equipment limitations of the plant. Thus, for the relatively large operation subsequently planned, other process specifications are required. The purpose of this present document is to provide these specifications. Depending on the manner and extent of thorium -- uranium-233 production developments, these present specifications may have future application, at least in part. In addition to the process specifications, this document includes a section describing the flowsheet, and a section in which the technological bases for good process control are presented. In conjunction with the specifications, these sections are intended to provide the bases for the processing operations required to accomplish the processing objectives in a safe manner, and with minimum effect on equipment service life. All sections are organized in a manner to provide for relatively simple additions or revisions.

  7. Spatial processes structuring riparian plant communities in agroecosystems: implications for restoration.

    Science.gov (United States)

    Bourgeois, Bérenger; González, Eduardo; Vanasse, Anne; Aubin, Isabelle; Poulin, Monique

    2016-10-01

    The disruption of hydrological connectivity by human activities such as flood regulation or land-use changes strongly impacts riparian plant communities. However, landscape-scale processes have generally been neglected in riparian restoration projects as opposed to local conditions, even though such processes might largely influence community recovery. We surveyed plant composition of field edges and riverbanks in 51 riparian zones restored by tree planting (565 1-m(2) plots) within two agricultural watersheds in southeastern Québec, Canada. Once the effects of environmental variables (hydrology, soil, agriculture, landscape, restoration) were partialled out, three models of spatial autocorrelation based on Moran's eigenvector maps and asymmetric eigenvector maps were compared to quantify the pathways and direction of the spatial processes structuring riparian communities. The ecological mechanisms underlying predominant spatial processes were then assessed by regression trees linking species response to spatial gradients to seed and morphological traits. The structure of riparian communities was predominantly related to unidirectional spatial gradients from upstream to downstream along watercourses, which contributed more to species composition than bidirectional gradients along watercourses or overland. Plant traits selected by regression trees explained 22% of species response to unidirectional upstream-downstream gradients in field edges and 24% in riverbanks, and predominantly corresponded to seed traits rather than morphological traits of the adult plants. Our study showed that even in agriculturally open landscapes, water flow remains a major force structuring spatially riparian plant communities by filtering species according to their seed traits, thereby suggesting long-distance dispersal as a predominant process. Preserving hydrological connectivity at the watershed-scale and restoring riparian plant communities from upstream to downstream should be

  8. Polychlorinated naphthalene (PCN) emissions from scrap processing steel plants with electric-arc furnaces.

    Science.gov (United States)

    Odabasi, Mustafa; Dumanoglu, Yetkin; Kara, Melik; Altiok, Hasan; Elbir, Tolga; Bayram, Abdurrahman

    2017-01-01

    Polychlorinated naphthalene (PCN) emissions of scrap iron processing steel plants were explored by measuring concentrations in stack gases of five plants, in the atmosphere (n=11) at a site close to those plants, and in soil at several sites in the region (n=40) in Aliaga, Izmir, Turkey. Observed stack-gas Σ32PCN levels from the plants without scrap preheating (189±157ngNm(-3), average±SD, n=4) showed that they are substantial PCN emitting sources. Stack-gas Σ32PCN level for the plant with scrap preheating was considerably higher (1262ngNm(-3)). Similarly, Σ32PCN emission factor for this plant was substantially higher (11.9mgton(-1)) compared to those without scrap preheating (1.30±0.98mgton(-1)). Results have also suggested that the investigated steel plants emit large quantities of fugitive particle-phase PCNs. Measured soil Σ32PCN concentrations that are considered to be representative of the atmospheric levels were greatly variable in the region, ranging between 0.003 and 10.02μgkg(-1) (dry wt). Their spatial distribution showed that main PCN sources in the region were the iron-steel plants. Ambient air levels (1620±800pgm(-3)) were substantially higher than ones observed around the world and in the study area verifying that the steel plants with electric arc furnaces (EAFs) are important PCN sources. Investigation of possible mechanisms suggested that the combustion processes also contribute to emissions from EAFs in addition to evaporation of PCNs present in the scrap iron.

  9. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  10. THE EFFECT OF WASTEWATER OF DOMESTIC AND MEAT PROCESSING PLANT ON THE RIVER OF KARASU

    Directory of Open Access Journals (Sweden)

    Ümmühan DANIŞ

    1996-01-01

    Full Text Available The wastewaters of the slaughterhouse and meat processing plant in Erzurum city, which don't have any wastewater treatment plant is discharged to the Karasu river. The wastewater, especially occured during slaughtering and processing of meat, contained high level of COD, BOD5, total suspended solid, fat and grease and total solid. Therefore these wastewaters cause some environmental problems in the city. This paper presents the effect of wastewaters from resident area slaughterhouse, and meat processing plants on the river of Karasu. For this purpose some samples taken from eight different points around the river were analysed in order to obtain values of dissolved oxygen, BOD5, COD, total phosphorus, total kjeldahl nitrojen, total suspended solid, total solid, total volatile suspended solid, fat and grease, chlorides and coliform. From the results obtained, it is found out that the wastewaters from the slaughterhouse has the biggest pollutant effect in the river.

  11. Prioritizing of effective factors on development of medicinal plants cultivation using analytic network process

    Directory of Open Access Journals (Sweden)

    Ghorbanali Rassam

    2014-07-01

    Full Text Available For the overall development of medicinal plants cultivation in Iran, there is a need to identify various effective factors on medicinal plant cultivation. A proper method for identifying the most effective factor on the development of the medicinal plants cultivation is essential. This research conducted in order to prioritizing of the effective criteria for the development of medicinal plant cultivation in North Khorasan province in Iran using Analytical Network Process (ANP method. The multi-criteria decision making (MCDM is suggested to be a viable method for factor selection and the analytic network process (ANP has been used as a tool for MCDM. For this purpose a list of effective factors offered to expert group. Then pair wise comparison questionnaires were distributed between relevant researchers and local producer experts of province to get their opinions about the priority of criteria and sub- criteria. The questionnaires were analyzed using Super Decision software. We illustrated the use of the ANP by ranking main effective factors such as economic, educational-extension services, cultural-social and supportive policies on development of medicinal plants. The main objective of the present study was to develop ANP as a decision making tool for prioritizing factors affecting the development of medicinal plants cultivation. Results showed that the ANP methodology was perfectly suited to tackling the complex interrelations involved in selection factor in this case. Also the results of the process revealed that among the factors, supporting the cultivation of medicinal plants, build the infrastructure for marketing support, having educated farmer and easy access to production input have most impact on the development of medicinal plant cultivation.

  12. Effects of processing techniques on propargite residues in orange juice and its by-products%橙汁加工过程对农药炔螨特残留的影响

    Institute of Scientific and Technical Information of China (English)

    李云成; 张耀海; 陈卫军; 赵其阳; 单炜力; 刘光学; 王成秋; 焦必宁

    2012-01-01

    The objective of this study was to evaluate the effects of commercial processing techniques on propargite residues in orange juice and its by-products. In order to assess the persistence during juice processing, the field trials were carried out by spraying with the solution of 5-fold the concentration of the maximum recommended dosages. Propargite residues were determined by Gas Chromatography-tandem Mass Spectrometry based on QuEChERS extraction. The results indicated that the propargite was mainly distributed in orange peels, and the residual level in orange pulps was less than 5% compared to the raw materials. Propargite residues could be partially removed by washing, and the reduction was 32.5%. The residual levels in squeezed juice, filtrated juice, NFC juice and concentrated juice were 1.98%, 1.95%, 1.73%, and 1.37% of the raw material, respectively, and the processing factors of NFC juice and concentrated juice were 0.0173 and 0.0137, respectively. But the residues were enriched in pomace and orange essential oil, and the concentrated factors were 1.2822 and 18.4947, respectively. The research can provide a basis for optimization of processing technology as well as the dietary exposure assessment of propargite residues.%为弄清橙汁加工过程中农药炔螨特残留的动态,通过田间喷施浓度为5倍于最高推荐剂量的农药溶液以强化炔螨特在甜橙上的残留,然后按照橙汁商业化加工过程进行加工,采用QuEChERS前处理技术结合气相色谱-串联质谱法检测炔螨特的含量,来考察橙汁商业化加工过程对炔螨特残留的影响.结果表明:炔螨特残留主要分布于甜橙果皮中,果肉中炔螨特的残留量不足全果的5%.清洗能除去全果中32.5%的炔螨特残留.初榨果汁、精滤果汁、非浓缩橙汁(NFC橙汁)和浓缩橙汁中的残留量分别为原料果的1.98%、1.95%、1.73%、1.37%,其中NFC橙汁和浓缩橙汁的加工因子分别为0.0173和0.0137,

  13. Instrumentation and process control for fossil demonstration plants. Quarterly technical progress report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    LeSage, L.G.; O' Fallon, N.M.

    1977-09-01

    Progress during the quarter of January through March 1977 on ANL 189a 49622R2, Instrumentation and Process Control for Fossil Demonstration Plants (FDP) is reported. Work has been performed on updating the study of the state-of-the-art of instrumentation for Fossil Demonstration Plants (FDP), on development of mass-flow and other on-line instruments for FDP, process control analysis for FDP, and organization of a symposium on instrumentation and control for FDP. Progress in these areas is described.

  14. Dimethoate degradation in plants and during processing of yerba maté leaves

    Directory of Open Access Journals (Sweden)

    Schmalko Miguel E.

    2002-01-01

    Full Text Available The objective of this research was to study degradation kinetics of dimethoate in plants of Ilex paraguariensis Saint Hilaire (or yerba maté and during its processing. To determine dimethoate concentration, a capillary gas chromatography technique with a mass selective detector was used. Half-life times in plants ranked between 9.8 and 11.8 days. During processing, with a blanching and two drying steps, dimethoate concentration decayed to a 22.7% of its initial value (in dry basis; while during seasoning step (at 45degreesC, half-life time was 17.3 days. With these values, preharvest safety interval was determined.

  15. Plants as Natural Dyes for Jonegoroan Batik Processing in Jono Cultural Tourism Village, Bojonegoro, East Java

    Directory of Open Access Journals (Sweden)

    Nurizza Fauziyah

    2015-05-01

    Full Text Available Batik Jonegoroan is one of the potential tourism product in Jono Village, Bojonegoro. Batik was processed by traditional procedure using natural dyes from plants. In order to preserve the traditional batik which was colored by natural dyes from plant, the preservation of such plant were important. As far, there are no scientific data related to the species usage in Batik production. The aims of the research were identifying plant which were used as natural dyes in Batik processing. Data were collected ​​through observation, and  semi-structured interviews to batik craftsmen. Results of interviews were analyzed descriptively. The importance of plant was analyzed using Relative Frequency of Citation (RFC index. Based on the results, there are 12 plant species used as batik dye. It is consisted of Teak, Mahogany, Ketapang, Tamarind, Mangosteen, Mango, Suji, Pandan, Indigofera, Guava, Banana and Onion. Teak (Tectonagrandis L. and Mahogany (Swietenia mahogany L. have the highest value of RFC, 1.00. Both species were the most frequently cited species as sources of natural dyes. Extraction of Teak leaves produce red hearts and extraction of mahogany tree bark produces red-brown dye. Both of the color is the most important color in batik motifs. Keywords: batik Jonegoroan, Jono Cultural Tourism Village, perception, quality, RFC

  16. Foodborne Pathogens Prevention and Sensory Attributes Enhancement in Processed Cheese via Flavoring with Plant Extracts.

    Science.gov (United States)

    Tayel, Ahmed A; Hussein, Heba; Sorour, Noha M; El-Tras, Wael F

    2015-12-01

    Cheese contaminations with foodborne bacterial pathogens, and their health outbreaks, are serious worldwide problems that could happen from diverse sources during cheese production or storage. Plants, and their derivatives, were always regarded as the potential natural and safe antimicrobial alternatives for food preservation and improvement. The extracts from many plants, which are commonly used as spices and flavoring agents, were evaluated as antibacterial agents against serious foodborne pathogens, for example Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus, and Escherichia coli O157:H7, using qualitative and quantitative assaying methods. Dairy-based media were also used for evaluating the practical application of plant extracts as antimicrobial agents. Most of the examined plant extracts exhibited remarkable antibacterial activity; the extracts of cinnamon, cloves, garden cress, and lemon grass were the most powerful, either in synthetic or in dairy-based media. Flavoring processed cheese with plant extracts resulted in the enhancement of cheese sensory attributes, for example odor, taste, color, and overall quality, especially in flavored samples with cinnamon, lemon grass, and oregano. It can be concluded that plant extracts are strongly recommended, as powerful and safe antibacterial and flavoring agents, for the preservation and sensory enhancement of processed cheese.

  17. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    Science.gov (United States)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  18. Actin based processes that could determine the cytoplasmic architecture of plant cells.

    Science.gov (United States)

    van der Honing, Hannie S; Emons, Anne Mie C; Ketelaar, Tijs

    2007-05-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on actin-based force generation with the function of their homologues in plants. We predict the possible role of these proteins, and thus the role of actin-based force generation, in the production of cytoplasmic organisation in plant cells.

  19. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants.

    Science.gov (United States)

    Edlinger, Bernd; Schlögelhofer, Peter

    2011-03-01

    Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.

  20. Protein recovered from channel catfish processing by-products via isoelectric solubilization/precipitation and its gelation properties%鮰鱼下脚料蛋白质的回收及其凝胶特性研究

    Institute of Scientific and Technical Information of China (English)

    贡汉坤; 焦云鹏

    2012-01-01

    通过回收并制备鮰鱼下脚料的蛋白质凝胶,考察溶解pH、离心力、离子强度对鱼下脚料中蛋白质的溶解性及凝胶理化性质的影响.结果表明,溶解pH、离心力、离子强度对鱼下脚料中的蛋白质的溶解性能均有显著影响(P<0.05).pH=2.5或pH=11.5,离心力为5 500 r/min,离子强度为0.6M时,蛋白质溶解性能较好,pH=5.5时蛋白质溶解性最差.溶解pH=11.5时,制备的鱼肉凝胶蛋白质、灰分含量较高,脂类含量较低,并且凝胶的破断强度值、凹陷度以及凝胶强度值较高,但凝胶色泽较差.%In the present study, muscle proteins were recovered from channel catfish processing by-products (fish meat leftover on bones, head, skin, and etc. ) by isoelectric solubilization/preciphation. And the effects of solubilization pH, centrifugal force and ionic strengths on protein solubility were investigated by using single-factor experiments. We found that solubilization pH, centrifugal force and ionic strengths had significant effects on protein solubility (P<0. 05). Protein had high solubility when solubilization pH was 2. 5 or 11. 5, and low solubility when solubilization pH was 5. 5. centrifugal force was 5 500 r/min, and ionic strengths were 0. 6 M. And Gels made from protein solubilized at alkali pH (11. 5) had lower content of lip-ids, relative higher contents of protein and ash, higher Breaking force, breaking strain and gel strength, but lower quality than gels from other pH treatments.

  1. A study of poultry processing plant noise characteristics and potential noise control techniques

    Science.gov (United States)

    Wyvill, J. C.; Jape, A. D.; Moriarity, L. J.; Atkins, R. D.

    1980-01-01

    The noise environment in a typical poultry processing plant was characterized by developing noise contours for two representative plants: Central Soya of Athens, Inc., Athens, Georgia, and Tip Top Poultry, Inc., Marietta, Georgia. Contour information was restricted to the evisceration are of both plants because nearly 60 percent of all process employees are stationed in this area during a normal work shift. Both plant evisceration areas were composed of tile walls, sheet metal ceilings, and concrete floors. Processing was performed in an assembly-line fashion in which the birds travel through the area on overhead shackles while personnel remain at fixed stations. Processing machinery was present throughout the area. In general, the poultry processing noise problem is the result of loud sources and reflective surfaces. Within the evisceration area, it can be concluded that only a few major sources (lung guns, a chiller component, and hock cutters) are responsible for essentially all direct and reverberant sound pressure levels currently observed during normal operations. Consequently, any effort to reduce the noise problem must first address the sound power output of these sources and/or the absorptive qualitities of the room.

  2. Predicting invasive species impacts on hydrological processes: the consequences of plant physiology for landscape processes

    CSIR Research Space (South Africa)

    Le Maitre, David C

    2004-01-01

    Full Text Available stream_source_info Le maitre _2004.pdf.txt stream_content_type text/plain stream_size 13237 Content-Encoding ISO-8859-1 stream_name Le maitre _2004.pdf.txt Content-Type text/plain; charset=ISO-8859-1 1408 Weed Technology... that reduce evaporation in practice to ??actual Et?? (Jarvis and McNaughton 1986). Most of these ap- WEED TECHNOLOGY Volume 18, Invasive Weed Symposium 2004 1409 Figure 1. Root depth distributions for plants with different growth forms based on data compiled...

  3. The assessment of sewage sludge gasification by-products toxicity by ecotoxicologial test.

    Science.gov (United States)

    Werle, Sebastian; Dudziak, Mariusz

    2015-08-01

    The process of gasification of sewage sludge generates by-products, which may be contaminated with toxic and hazardous substances, both organic and inorganic. It is therefore important to assess the environmental risk associated with this type of waste. The feasibility of using an ecotoxicological tests for this purpose was determined in the presented study. The applied tests contained indicator organisms belonging to various biological groups (bacteria, crustaceans, plants). The subject of the study were solid (ash, char) and liquid (tar) by-products generated during gasification (in a fixed bed reactor) of dried sewage sludge from various wastewater treatment systems. The tested samples were classified based on their toxic effect. The sensitivity of the indicator organisms to the tested material was determined. In-house procedures for the preparation for toxicity analysis of both sewage sludge and by-products generated during the gasification were presented. The scope of work also included the determination of the effect of selected process parameters (temperature, amount of gasifying agent) on the toxicity of gasification by-products depending on the sewage sludge source. It was shown that both the type of sewage sludge and the parameters of the gasification process affects the toxicity of the by-products of gasification. However, the results of toxicity studies also depend on the type of ecotoxicological test used, which is associated with a different sensitivity of the indicator organisms. Nevertheless, it may be concluded that the by-products formed during the gasification of the low toxicity sewage sludge can be regarded as non-toxic or low toxic. However, the results analysis of the gasification of the toxic sludge were not conclusive, which leads to further research needs in this area. © The Author(s) 2015.

  4. People detection in nuclear plants by video processing for safety purpose

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Carlos Alexandre F.; Mol, Antonio Carlos A., E-mail: calexandre@ien.gov.b, E-mail: mol@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN), Rio de Janeiro, RJ (Brazil); Seixas, Jose M.; Silva, Eduardo Antonio B., E-mail: seixas@lps.ufrj.b, E-mail: eduardo@lps.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Eletrica; Cota, Raphael E.; Ramos, Bruno L., E-mail: brunolange@poli.ufrj.b [Universidade Federal do Rio de Janeiro (EP/UFRJ), RJ (Brazil). Dept. de Engenharia Eletronica e de Computacao

    2011-07-01

    This work describes the development of a surveillance system for safety purposes in nuclear plants. The final objective is to track people online in videos, in order to estimate the dose received by personnel, during the execution of working tasks in nuclear plants. The estimation will be based on their tracked positions and on dose rate mapping in a real nuclear plant at Instituto de Engenharia Nuclear, Argonauta nuclear research reactor. Cameras have been installed within Argonauta's room, supplying the data needed. Both video processing and statistical signal processing techniques may be used for detection, segmentation and tracking people in video. This first paper reports people segmentation in video using background subtraction, by two different approaches, namely frame differences, and blind signal separation based on the independent component analysis method. Results are commented, along with perspectives for further work. (author)

  5. Direct Chlorination Process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5% hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90% excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process Compared to the Stretford Process, the Direct Chlorination process requires about one-third the initial capital investment and about one-fourth the net daily expenditure. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  6. Methods of Dust Air Flows Reduction at Ore Transfer Facilities of Mining and Processing Plants

    Directory of Open Access Journals (Sweden)

    Gulmira K. Saparova

    2013-01-01

    Full Text Available The article describes the most typical schemes of ore stationary transfers. Aspirate units, depending on dust intensity are divided into three groups. Typical schemes of stationary transfers were presented. On the ground of the research, the classification of ore transfer facilities types at mining and processing plants was offered

  7. Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan

    Science.gov (United States)

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.

    2016-01-01

    The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…

  8. Utilization of respiratory energy in higher plants : requirements for 'maintenance' and transport processes

    NARCIS (Netherlands)

    Bouma, T.J.

    1995-01-01

    Quantitative knowledge of both photosynthesis and respiration is required to understand plant growth and resulting crop yield. However, especially the nature of the energy demanding processes that are dependent on dark respiration in full-grown tissues is largely unknown. The main objective

  9. Utilization of respiratory energy in higher plants. Requirements for 'maintenance' and transport processes.

    NARCIS (Netherlands)

    Bouma, T.J.

    1995-01-01

    Quantitative knowledge of both photosynthesis and respiration is required to understand plant growth and resulting crop yield. However, especially the nature of the energy demanding processes that are dependent on dark respiration in full-grown tissues is largely unknown. The main objective of the p

  10. Wastes and by-products - alternatives for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  11. [Design of a HACCP Plan for the Gouda-type cheesemaking process in a milk processing plant].

    Science.gov (United States)

    Dávila, Jacqueline; Reyes, Genara; Corzo, Otoniel

    2006-03-01

    The Hazard Analysis and Critical Control Point (HACCP) is a preventive and systematic method used to identify, assess and control of the hazards related with raw material, ingredients, processing, marketing and intended consumer in order to assure the safety of the food. The aim of this study was to design a HACCP plan for implementing in a Gouda-type cheese-making process in a dairy processing plant. The used methodology was based in the application of the seven principles of the HACCP, the information from the plant about the compliment of the pre-requisite programs (70-80%), the experience of the HACCP team and the sequence of stages settles down by the COVENIN standard 3802 for implementing the HACCP system. A HACCP plan was proposed with the scope, the selection of HACCP team, the description of the product and the intended use, the flow diagram of the process, the hazard analysis and the control table of the plan with the critical control points (CCP). The following CCP were identified in the process: pasteurization, coagulation and ripening.

  12. Numerical investigation of the dynamics of nanoparticle systems in biological processes of plant nutrition

    Science.gov (United States)

    Vakhrouchev, Alexandre V.; Golubchikov, Valery B.

    2007-03-01

    A complex mathematical model of processes of plant nutrition from a special regulated gas medium containing nanoparticles of basic macro- and microelements is formulated. The variation of the number of nanoparticles and the variation of the total nanoparticle volume with time, which form during the cooling process of the initial gas mixture, were investigated. The calculations of the structures, compositions and shapes of nanoparticles and the movement of nanoparticles were carried out.

  13. The Carnol process for CO{sub 2} mitigation from power plants and the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.

    1995-08-01

    A CO{sub 2} mitigation process is developed which converts waste CO{sub 2}, primarily recovered from coal-fired power plant stack gases with natural gas, to produce methanol as a liquid fuel and coproduct carbon as a materials commodity. The Carnol process chemistry consists of methane decomposition to produce hydrogen which is catalytically reacted with the recovered waste CO{sub 2} to produce methanol. The carbon is either stored or sold as a materials commodity. A process design is modelled and mass and energy balances are presented as a function of reactor pressure and temperature conditions. The Carnol process is a viable alternative to sequestering CO{sub 2} in the ocean for purposes of reducing CO{sub 2} emissions from coal burning power plants. Over 90% of the CO{sub 2} from the coal burning plant is used in the process which results in a net CO{sub 2} emission reduction of over 90% compared to that obtained for conventional methanol production by steam reforming of methane. Methanol as an alternative liquid fuel for automotive engines and for fuel cells achieves additional CO{sub 2} emission reduction benefits. The economics of the process is greatly enhanced when carbon can be sold as a materials commodity. Improvement in process design and economics should be achieved by developing a molten metal (tin) methane decomposition reactor and a liquid phase, slurry catalyst, methanol synthesis reactor directly using the solvent saturated with CO{sub 2} scrubbed from the power plant stack gases. The benefits of the process warrant its further development.

  14. The Carnol process for CO{sub 2} mitigation from power plants and the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1995-05-01

    A CO{sub 2} mitigation process is developed which converts waste CO{sub 2} primarily recovered from coal-fired power plant stack gases with natural gas, to produce methanol as a liquid fuel and coproduct carbon as a materials commodity. The Carnol process chemistry consists of methane decomposition to produce hydrogen which is catalytically reacted with the recovered waste CO{sub 2} to produce methanol. The carbon is either stored or sold as a materials commodity. A process design is modeled and mass and energy balances are presented as a function of reactor pressure and temperature conditions. The Carnol process is a viable alternative to sequestering CO{sub 2} in the ocean for purposes of reducing CO{sub 2} emissions from coal burning power plants. Over 90% of the CO{sub 2} from the coal burning plant is used in the process which results in a net CO{sub 2} emission reduction of over 90% compared to that obtained for conventional methanol production by steam reforming of methane. Methanol as an alternative liquid fuel for automotive engines and for fuel cells achieves additional CO{sub 2} emission reduction benefits. The economics of the process is greatly enhanced when carbon can be sold as a materials commodity. Improvement in process design and economics should be achieved by developing a molten metal (tin) methane decomposition reactor and a liquid phase, slurry catalyst, methanol synthesis reactor directly using the solvent saturated with CO{sub 2} scrubbed from the power plant stack gases. The benefits of the process warrants its further development.

  15. Process and Economic Optimisation of a Milk Processing Plant with Solar Thermal Energy

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    This work investigates the integration of solar thermal systems for process energy use. A shift from fossil fuels to renewable energy could be beneficial both from environmental and economic perspectives, after the process itself has been optimised and efficiency measures have been implemented...... of the collector field and tank. The results show that solar thermal heat can considerably reduce the operating costs of the dairy factory, even in the North European climate. For the analysed factory the optimal process streams to be partially fuelled by solar energy was found to be hot air to the spray, where...

  16. Staffing decision processes and issues: Case studies of seven US Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Melber, B.; Roussel, A.; Baker, K.; Durbin, N.; Hunt, P.; Hauth, J.; Forslund, C.; Terrill, E. [Battelle Human Affairs Research Centers, Seattle, WA (United States); Gore, B. [Pacific Northwest Lab., Richland, WA (United States)

    1994-03-01

    The objective of this report is to identify how decisions are made regarding staffing levels and positions for a sample of U.S. nuclear power plants. In this report, a framework is provided for understanding the major forces driving staffing and the implications of staffing decisions for plant safety. The focus of this report is on driving forces that have led to changes in staffing levels and to the establishment of new positions between the mid-1980s and the early 1990s. Processes used at utilities and nuclear power plants to make and implement these staffing decisions are also discussed in the report. While general trends affecting the plant as a whole are presented, the major emphasis of this report is on staffing changes and practices in the operations department, including the operations shift crew. The findings in this report are based on interviews conducted at seven nuclear power plants and their parent utilities. A discussion of the key findings is followed by a summary of the implications of staffing issues for plant safety.

  17. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient.

    Science.gov (United States)

    Kataki, Sampriti; Hazarika, Samarendra; Baruah, D C

    2017-01-01

    Alternative fertilizer resources have drawn attention in recent times in order to cope up with ever increasing demand for fertilizer. By-products of bioenergy system are considered favourable as organic fertilizer due to their ability to recycle plant nutrients. Present study evaluates fertilizer suitability of by-products of two bioenergy systems viz. 3 types of anaerobic digestion by-products (digestate) from local surplus biomass such as cowdung, Ipomoea carnea:cowdung (60:40) and ricestraw:green gram stover:cowdung (30:30:40) and one gasification by-product (biochar) from rice husk. Digestates were assessed considering 4 different application options of each viz. whole, solid, liquid and ash from solid digestates. Digestate characteristics (organic matter, macronutrients, micronutrients and heavy metal content) were found to be a function of feedstock and processing (solid liquid separation and ashing). Ipomoea carnea based digestates in all application options showed comparatively higher N, P, K, NH4(+)-N, Ca, Mg, S and micro nutrient content than other digestates. Separation concentrated plant nutrients and organic matter in solid digestates, making these suitable both as organic amendments and fertilizer. Separated liquid digestate shared larger fraction of ammonium nitrogen (61-91% of total content), indicating their suitability as readily available N source. However, fertilizer application of liquid digestate may not match crop requirements due to lower total nutrient concentration. Higher electrical conductivity of the liquid digestates (3.4-9.3mScm(-1)) than solid digestates (1.5-2mScm(-1)) may impart phyto-toxic effect upon fertilization due to salinity. In case of by-products with unstable organic fraction i.e. whole and solid digestates of rice straw:green gram stover:cowdung digestates (Humification index 0.7), further processing (stabilization, composting) may be required to maximize their fertilizer benefit. Heavy metal contents of the by-products

  18. Effect of Thermal and Nonthermal Processing on Textural Quality of Plant Tissues.

    Science.gov (United States)

    Ranganathan, Kumar; Subramanian, Vijayalakshmi; Shanmugam, Nadanasabapathi

    2016-12-09

    In the current fast revolving world, the consumption of processed food is increasing drastically. The population who depend on these processed foods are also cautious about the quality and safety of what they consume. This being the case, in order to satisfy the consumer it is the responsibility of the researcher and the manufacturer to check what happens to food on processing. Plant-derived foods such as fruits and vegetables are sensitive producers which are to be handled cautiously through each steps involved in processing, starting from harvest to storage, processing to package, transportation to distribution, till it reaches the consumer. During processing, the plant materials, which are made up of complex structural components such as lignin, cellulose, pectin, etc. undergo changes which has its effect on the quality attributes of the final product. Texture is an important quality parameter of all the sensory properties. The relation between the structure of the plant tissue and the texture of the final product is reviewed in this paper comprehensively.

  19. Study on the Effect of Amelioration of Saline-sodic Soil with the By-product of Flue Gas Desulphurization (BFGD) to Plant Elaeagnus angustifolia L%燃煤烟气脱硫废弃物改良土壤种植沙枣效果研究

    Institute of Scientific and Technical Information of China (English)

    王静; 孙兆军; 张浩; 李茜; 李明

    2011-01-01

    为了有效利用燃煤烟气脱硫废弃物(简称脱硫废弃物),探究沙枣作为改良盐碱地先锋树种的可行性.采用大田试验的方法,从土壤pH、全盐含量、碱化度(ESP)和常见离子相对含量的变化等方面,研究了脱硫废弃物改良后龟裂碱土种植沙枣的效果.结果表明:随着林木生长时间的延长,脱硫废弃物改良后的土壤pH、可溶性盐和碱化度(ESP)均有不同程度降低,pH、可溶性盐和碱化度(ESP)分别由初始的9.50、46 g/kg和5.3%下降到8.31、11.4 g/kg和3.1%;脱硫废弃物改良土壤种植沙枣,且达到3年,土壤的改良效果最为明显.以上结果表明,脱硫废弃物可有效降低土壤中交换性钠、交换性镁的相对含量,降低其对植物的毒害作用,改善土壤化学性质,从而有利于林木的生长和发育.%In order to effectively use the by-product of flue gas desulphurization (BFGD) and probe into the feasibility of plant Elaeagnus angustifolia L. As amelioration of saline-sodic soil pioneer species, the author used field experiment to study the effect of amelioration of saline-sodic soil with the by-product of flue gas desulphurization (BFGD) to plant Elaeagnus angustifolia L. The soil pH value, total salt content, degree of alkalization and the change of ion relative content were measured to study the effect of amelioration of saline-sodic soil with the by-product of flue gas desulphurization (BFGD) to plant Elaeagnus angustifolia L. The results showed that: with the growth time of grove and grass extending, the soil pH value, total salt content, degree of alkalization and the change of ion relative content of the amelioration of saline-sodic soil with the by-product of flue gas desulphurization (BFGD) had declined in some extent. The soil pH value, total salt content and degree of alkalization (ESP) respectively decreased from 9.50, 46 g/kg and 5.3% to 8.31, 11.4 g/kg and 3.1%; In the third year, the by-product of flue gas

  20. Modeling of plant in vitro cultures: overview and estimation of biotechnological processes.

    Science.gov (United States)

    Maschke, Rüdiger W; Geipel, Katja; Bley, Thomas

    2015-01-01

    Plant cell and tissue cultivations are of growing interest for the production of structurally complex and expensive plant-derived products, especially in pharmaceutical production. Problems with up-scaling, low yields, and high-priced process conditions result in an increased demand for models to provide comprehension, simulation, and optimization of production processes. In the last 25 years, many models have evolved in plant biotechnology; the majority of them are specialized models for a few selected products or nutritional conditions. In this article we review, delineate, and discuss the concepts and characteristics of the most commonly used models. Therefore, the authors focus on models for plant suspension and submerged hairy root cultures. The article includes a short overview of modeling and mathematics and integrated parameters, as well as the application scope for each model. The review is meant to help researchers better understand and utilize the numerous models published for plant cultures, and to select the most suitable model for their purposes. © 2014 Wiley Periodicals, Inc.

  1. Molecular epidemiology and disinfectant susceptibility of Listeria monocytogenes from meat processing plants and human infections.

    Science.gov (United States)

    Heir, Even; Lindstedt, Bjørn-Arne; Røtterud, Ole-Johan; Vardund, Traute; Kapperud, Georg; Nesbakken, Truls

    2004-10-01

    We have investigated the molecular epidemiology of Listeria monocytogenes from the meat processing industry producing cold cuts and from cases of human listeriosis by discriminative pulsed-field gel electrophoresis (PFGE). A subset of the isolates was also investigated for susceptibility to a disinfectant based on quaternary ammonium compounds (QAC) frequently used in the meat processing industry. The purpose of this investigation was to obtain knowledge of sources, routes of contamination and genetic types of L. monocytogenes present along the production line in the meat processing industry, and to compare meat industry isolates and human isolates. Of the 222 isolates from four meat-processing plants, 200 were from two plants responsible for nearly 50% of the production of cold cuts in the Norwegian market. The strain collection included historical routinely sampled isolates (1989-2002) and isolates systematically sampled through a one year period (November 2001 to November 2002) from fresh meat and production environments in three plants. No isolates were obtained in samples from employees (throat, faeces). Human strains included all available reported isolates from Norwegian patients in selected time periods. The L. monocytogenes PFGE data showed a large genetic heterogeneity, with isolates separated into two genetic lineages and further subdivided into 56 different PFGE profiles. Certain profiles were observed on both sides of production (before and after heat treatment) indicating contamination of end products by fresh meat or fresh meat environments. While fresh meat isolates almost exclusively grouped within lineage I, isolates from end products showed a more balanced distribution between lineages I and II. Ten profiles were common among isolates from human and meat industry. Typing of human isolates identified a previously unrecognised outbreak. Generally, a higher QAC resistance incidence was observed among isolates from the meat processing industry than

  2. Initiating events study of the first extraction cycle process in a model reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renze; Zhang, Jian Gang; Zhuang, Dajie; Feng, Zong Yang [China Institute for Radiation Protection, Taiyuan (China)

    2016-06-15

    Definition and grouping of initiating events (IEs) are important basics for probabilistic safety assessment (PSA). An IE in a spent fuel reprocessing plant (SFRP) is an event that probably leads to the release of dangerous material to jeopardize workers, public and environment. The main difference between SFRPs and nuclear power plants (NPPs) is that hazard materials spread diffusely in a SFRP and radioactive material is just one kind of hazard material. Since the research on IEs for NPPs is in-depth around the world, there are several general methods to identify IEs: reference of lists in existence, review of experience feedback, qualitative analysis method, and deductive analysis method. While failure mode and effect analysis (FMEA) is an important qualitative analysis method, master logic diagram (MLD) method is the deductive analysis method. IE identification in SFRPs should be consulted with the experience of NPPs, however the differences between SFRPs and NPPs should be considered seriously. The plutonium uranium reduction extraction (Purex) process is adopted by the technics in a model reprocessing plant. The first extraction cycle (FEC) is the pivotal process in the Purex process. Whether the FEC can function safely and steadily would directly influence the production process of the whole plant-production quality. Important facilities of the FEC are installed in the equipment cells (ECs). In this work, IEs in the FEC process were identified and categorized by FMEA and MLD two methods, based on the fact that ECs are containments in the plant. The results show that only two ECs in the FEC do not need to be concerned particularly with safety problems, and criticality, fire and red oil explosion are IEs which should be emphatically analyzed. The results are accordant with the references.

  3. Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation

    National Research Council Canada - National Science Library

    Jafarinejad, Shahryar

    ...s. Economical modeling and cost estimation of activated sludge processes are crucial for designing, construction, and forecasting future economical requirements of wastewater treatment plants (WWTPs...

  4. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of Pseudo-Response Regulators

    Directory of Open Access Journals (Sweden)

    Saito Shigeru

    2010-05-01

    Full Text Available Abstract Background Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. Results In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Conclusions Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events.

  5. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of Pseudo-Response Regulators

    Science.gov (United States)

    2010-01-01

    Background Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. Results In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Conclusions Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events. PMID:20433765

  6. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators.

    Science.gov (United States)

    Takata, Naoki; Saito, Shigeru; Saito, Claire Tanaka; Uemura, Matsuo

    2010-05-01

    Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events.

  7. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    Science.gov (United States)

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  9. Process improvement technology for petrochemical plant; Sekiyu kagaku puranto ni okesu purosesu kaizen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shin

    1999-05-05

    Before, GTC technology Co. was a manufacturer of the tray as a Greenwich technology. It is the subsidiary, which undertakes technology and licence of the engineering firm in U.S.A. at present. It carries out besides the technology licence support in the startup for the prolonged driving of technical service, operating condition of the plant of improvement and optimization and, etc. Has made separation and purification technology, which made extractive distillation to be a beginning good and has the process improvement technology to the PTA (high-pure terephthalic acid) from BTX (benzene toluene xylene) of petrochemical plant. (NEDO)

  10. High-value products from plants: the challenges of process optimization.

    Science.gov (United States)

    Fischer, Rainer; Vasilev, Nikolay; Twyman, Richard M; Schillberg, Stefan

    2015-04-01

    Plants can be used to produce a diverse repertoire of complex small-molecule compounds and recombinant proteins that are valuable as industrial and pharmaceutical products. But as we move from proof-of-principle experiments and begin to consider the realistic prospects of commercial production, the focus must shift from the achievement of target molecule production and move towards quality, purity and yield aspects that determine commercial feasibility. This review describes some of the recent advances that have been implemented to improve the development of integrated production processes for high-value molecules expressed in plants, including the introduction of novel procedures to increase the likelihood of regulatory acceptance.

  11. Optimization of urban wastewater treatment plants process with low C/N ratio

    Science.gov (United States)

    Zheng, L.; Xu, G. M.; Chen, J.; Chen, B.; Lv, Z.; Yang, Y. A.

    2016-08-01

    In southern China, the inflow of water to wastewater treatment plants has a lower concentration of organic matter. This causes treatment plants to face issues in the denitrification and phosphorus removal processes such as deficient carbon sources, high energy consumption, and unstable nitrogen removal. To resolve these issues, we propose the reconstruction of the internal reflux port, improvement of the internal reflux ratio to 200%, the addition of carbon source to anoxic zone, and the addition of phosphorus removal agents in secondary settling tank. The results of study show significantly improved efficiency of nitrogen and phosphorus removal, which ensures the stability of subsequent supply of reused water.

  12. Control of Boreal Forest Soil Microbial Communities and Processes by Plant Secondary Compounds

    Science.gov (United States)

    Leewis, M. C.; Leigh, M. B.

    2016-12-01

    Plants release an array of secondary plant metabolites (SPMEs), which vary widely between plant species/progenies and may drive shifts in soil microbial community structure and function. We hypothesize that SPMEs released through litterfall and root turnover in the boreal forest control ecosystem carbon cycling by inhibiting microbial decomposition processes, which are overcome partially by increased aromatic biodegradation of microbial communities that also fortuitously prime soils for accelerated biodegradation of contaminants. Soils and litter (stems, roots, senescing leaves) were collected from 3 different birch progenies from Iceland, Finland, and Siberia that have been reported to contain different SPME content (low, medium, high, respectively) due to differences in herbivory pressure over their natural history, as well as black spruce, all growing in a long-term common tree garden at the Kevo Subarctic Field Research Institute, Finland. We characterized the SPME content of these plant progenies and used a variety of traditional microbiological techniques (e.g., enzyme assays, litter decomposition and contaminant biodegradation rates) and molecular techniques (e.g., high-throughput amplicon sequencing for bacteria and fungi) to assess how different levels of SPMEs may correlate to shifts in microbial community structure and function. Microbial communities (bacterial and fungal) significantly varied in composition as well as leaf litter and diesel biodegradation rates, in accordance with the phytochemistry of the trees present. This study offers novel, fundamental information about phytochemical controls on ecosystem processes, resilience to contaminants, and microbial decomposition processes.

  13. Optimization of Sinter Plant Operating Conditions Using Advanced Multivariate Statistics: Intelligent Data Processing

    Science.gov (United States)

    Fernández-González, Daniel; Martín-Duarte, Ramón; Ruiz-Bustinza, Íñigo; Mochón, Javier; González-Gasca, Carmen; Verdeja, Luis Felipe

    2016-08-01

    Blast furnace operators expect to get sinter with homogenous and regular properties (chemical and mechanical), necessary to ensure regular blast furnace operation. Blends for sintering also include several iron by-products and other wastes that are obtained in different processes inside the steelworks. Due to their source, the availability of such materials is not always consistent, but their total production should be consumed in the sintering process, to both save money and recycle wastes. The main scope of this paper is to obtain the least expensive iron ore blend for the sintering process, which will provide suitable chemical and mechanical features for the homogeneous and regular operation of the blast furnace. The systematic use of statistical tools was employed to analyze historical data, including linear and partial correlations applied to the data and fuzzy clustering based on the Sugeno Fuzzy Inference System to establish relationships among the available variables.

  14. Potential of chicken by-products as sources of useful biological resources

    Energy Technology Data Exchange (ETDEWEB)

    Lasekan, Adeseye [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abu Bakar, Fatimah, E-mail: fatim@putra.upm.edu.my [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hashim, Dzulkifly [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2013-03-15

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.

  15. Green process to recover magnesium chloride from residue solution of potassium chloride production plant

    Institute of Scientific and Technical Information of China (English)

    Lin WANG; Yunliang HE; Yanfei WANG; Ying BAO; Jingkang WANG

    2008-01-01

    The green process to recover magnesium chlor-ide from the residue solution of a potassium chloride pro-duction plant, which comes from the leach solution of a potash mine in Laos, is designed and optimized. The res-idue solution contains magnesium chloride above 25 wt-%, potassium chloride and sodium chloride together below 5 wt-% and a few other ions such as Br-, SO2-4and Ca2+. The recovery process contains two steps: the previous impurity removal operation and the two-stage evapora-tion-cooling crystallization procedure to produce magnes-ium chloride. The crystallized impurity carnallite obtained from the first step is recycled to the potassium chloride plant to recover the potassium salt. The developed process is a zero discharge one and thus fulfills the requirements for green chemical industrial production. The produced magnesium chloride is up to industrial criteria.

  16. Effects of ion strength and ion pairing on (plant-wide) modelling of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Solon, Kimberly;

    2014-01-01

    The objective of this study is to show the influence of ionic strength (as activity corrections) andion pairing on (plant-wide) modelling of anaerobic digestion processes in wastewater treatment plants(WWTPs). Using the Benchmark Simulation Model No. 2 (BSM2) as a case study, this paper presents...... the effects that an improved physico-chemical description will have on the predicted effluent quality (EQI) and operational cost (OCI) indices. The acid-base equilibria implemented in the Anaerobic Digestion Model No.1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects...... processes. Results at high ionic strength demonstrate that corrections to account for non-ideal conditions lead to significant differences in predicted process performance. In addition, the paper describes: 1) how the anaerobic digester performance is affected; 2) the effect on pH and the anaerobic...

  17. Process and Economic Optimisation of a Milk Processing Plant with Solar Thermal Energy

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian;

    2016-01-01

    of the collector field and tank. The results show that solar thermal heat can considerably reduce the operating costs of the dairy factory, even in the North European climate. For the analysed factory the optimal process streams to be partially fuelled by solar energy was found to be hot air to the spray, where...

  18. Advanced Gasification By-Product Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Harold Schobert

    2006-02-01

    With the recent passing of new legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2004 to August 31, 2005. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  19. Inhibiting Cadmium Transport Process in Root Cells of Plants: A Review

    Directory of Open Access Journals (Sweden)

    ZHAO Yan-ling

    2016-05-01

    Full Text Available Cadmium(Cd is the most common element found in the heavy-metal contaminated soils in China. Roots of rice and vegetables can concentrate Cd from acid soils, and then transport Cd to above-ground parts. Cd in edible part of plants directly influences the food safety. Cellwall, plasma membrane and organells of root cells in plant can discriminate Cd from other elements. A lot of Cd can be fixed in root cells by precipitation, complexation, compartmentation, and so on, to inhibit its transport from roots to shoot and guarantee the physiological activities in above-ground parts carrying out normally. This paper summarized recent advance on inhibiting Cd transport process in subcellular fractions of root cells of plants, which is in advantage of exploring excellent germplasms and gene resources in the future.

  20. CO2 capture processes in power plants - Le captage du CO2 dans les centrales thermiques

    OpenAIRE

    Bouallou, Chakib

    2010-01-01

    PDF file available for free at http://pubs.ub.ro/?pg=revues&rev=cscc6&num=201011&vol=1&aid=2975; International audience; This review is devoted to assess and compare various processes aiming at recover CO2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post combustion CO2 capture using chemical solvents, natural gas reforming for pre-combustion capture and oxy-fuel combustion with cryogenic recovery of CO2. These processes were evaluated to give so...

  1. Dynamic flowgraph modeling of process and control systems of a nuclear-based hydrogen production plant

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    Modeling and analysis of system reliability facilitate the identification of areas of potential improvement. The Dynamic Flowgraph Methodology (DFM) is an emerging discrete modeling framework that allows for capturing time dependent behaviour, switching logic and multi-state representation of system components. The objective of this research is to demonstrate the process of dynamic flowgraph modeling of a nuclear-based hydrogen production plant with the copper-chlorine (Cu-Cl) cycle. Modeling of the thermochemical process of the Cu-Cl cycle in conjunction with a networked control system proposed for monitoring and control of the process is provided. This forms the basis for future component selection. (author)

  2. Process Simulation of Oxy-combustion CO2 Capture in Cement Plant

    OpenAIRE

    2014-01-01

    The objectives of this master thesis have been to model and simulate oxy-combustion CO2 capture in a cement plant. The model developed is a process simulation of the calcination process with varying degree of air in-leakage, where heat is supplied by combustion in an oxygen rich environment, followed by capture of the CO2. The further gas separation after H2O condensation to achieve the required CO2 quality was evaluated. In addition to the process simulations, a review of literature related ...

  3. Application of a power quality analyser to the monitoring of sand preparation processes in foundry plants

    Directory of Open Access Journals (Sweden)

    K. Smyksy

    2011-10-01

    Full Text Available Process control plays a major role in supervision and identification of states, for example in monitoring of electric circuits power- supplying the foundry machines and devices, such as sand preparation processes, moulding technologies, melting, cleaning and finishing of castings. The monitoring and control equipment includes the power quality analysers. Testing is done using a Japanese analyser KEW 6319 (Kyoritsu applied to monitoring of the sand preparation process in a foundry plant with low level of mechanization, equipped with the sand preparation unit based on a roller mixer.

  4. The Conversion of a Zimbabwean Processing Plant from Manual to Smart Operation

    Institute of Scientific and Technical Information of China (English)

    Michael; Collier; Ernest; Bhero

    2010-01-01

    <正>The automation of several key processes in a factory in Zimbabwe is described.The plant is a producer of bolts and nails for the southern Africa region.Being built in the 1950s,the equipment was intended for manual operation.To improve efficiency and reduce overhead costs, this project was commissioned to add electronic intelligence to some of the processing equipment.In particular the conversion of forging furnaces to computer control and the intelligent implementation of heat-treatment processes are described.Results of the project in economic and quality terms are presented.

  5. Plant-wide process monitoring based on mutual information-multiblock principal component analysis.

    Science.gov (United States)

    Jiang, Qingchao; Yan, Xuefeng

    2014-09-01

    Multiblock principal component analysis (MBPCA) methods are gaining increasing attentions in monitoring plant-wide processes. Generally, MBPCA assumes that some process knowledge is incorporated for block division; however, process knowledge is not always available. A new totally data-driven MBPCA method, which employs mutual information (MI) to divide the blocks automatically, has been proposed. By constructing sub-blocks using MI, the division not only considers linear correlations between variables, but also takes into account non-linear relations thereby involving more statistical information. The PCA models in sub-blocks reflect more local behaviors of process, and the results in all blocks are combined together by support vector data description. The proposed method is implemented on a numerical process and the Tennessee Eastman process. Monitoring results demonstrate the feasibility and efficiency.

  6. Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979, while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)

  7. Dioxin and PAH emissions from a shale oil processing plant in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, O.; Jensen, A.A. [FORCE Technology, Soborg (Denmark); Roots, O. [Estonian Environmental Research Centre (EERC), Tallinn (Estonia); Herrmann, T. [ERGO Forschungsgesellschaft GmbH, Hamburg (Germany); Tordik, A. [AS Narva Elektrijaamad, Narva (Estonia)

    2004-09-15

    In March 2003, dioxin emissions were measured from a shale oil producing plant located near the city of Narva in Estonia. The measurement was a part of a project on measuring the dioxin emission from four oil shale fired boilers at two power plants located near the city of Narva in Estonia. These power plants produce more than 90% of the electricity consumption in Estonia by combusting more than 10 million tons of oil shale per year, which is around 85 % of the total consumption of oil shale in the country. The oil plant is the second largest consumer of oil shale, with an annual consumption of around 800,000 ton. Two other smaller plants producing oil from oil shale is known to exist in Estonia, and one in Australia. These measurements of dioxin air emission from oil shale pyrolysis are the first performed in Estonia. The aim of the measurements was to get background data for the estimation of the annual dioxin emission from the use of oil shale in pyrolysis processes in Estonia, in order to improve or qualify the estimation based on emissions factors for large coal fired power stations given in the recent DANCEE Project: Survey of anthropogenic sources of dioxins in the Baltic Region. The Danish environmental assistance to Eastern Europe (DANCEE) has sponsored the project, and dk-TEKNIK ENERGY and ENVIRONMENT (now FORCE Technology) was responsible for the measurements, which where conducted in cooperation with EERC in Tallinn.

  8. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    Energy Technology Data Exchange (ETDEWEB)

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  9. Seawater desalination plant using nuclear heating reactor coupled with MED process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. This seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. The intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10~200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m3/d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented.

  10. Consideration of Command and Control Performance during Accident Management Process at the Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nisrene M. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Sok Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The accident at the Fukushima Daiichi nuclear power plants shifted the nuclear safety paradigm from risk management to on-site management capability during a severe accident. The kernel of on-site management capability during an accident at a nuclear power plant is situation awareness and agility of command and control. However, little consideration has been given to accident management. After the events of September 11, 2001 and the catastrophic Fukushima nuclear disaster, agility of command and control has emerged as a significant element for effective and efficient accident management, with many studies emphasizing accident management strategies, particularly man-machine interface, which is considered a key role in ensuring nuclear power plant safety during severe accident conditions. This paper proposes a conceptual model for evaluating command and control performance during the accident management process at a nuclear power plant. Communication and information processing while responding to an accident is one of the key issues needed to mitigate the accident. This model will give guidelines for accurate and fast communication response during accident conditions.

  11. Process design and economic analysis of a hypothetical bioethanol production plant using carob pod as feedstock.

    Science.gov (United States)

    Sánchez-Segado, S; Lozano, L J; de Los Ríos, A P; Hernández-Fernández, F J; Godínez, C; Juan, D

    2012-01-01

    A process for the production of ethanol from carob (Ceratonia siliqua) pods was designed and an economic analysis was carried out for a hypothetical plant. The plant was assumed to perform an aqueous extraction of sugars from the pods followed by fermentation and distillation to produce ethanol. The total fixed capital investment for a base case process with a capacity to transform 68,000 t/year carob pod was calculated as 39.61 millon euros (€) with a minimum bioethanol production cost of 0.51 €/L and an internal rate of return of 7%. The plant was found to be profitable at carob pod prices lower than 0.188 €/kg. An increase in the transformation capacity of the plant from 33,880 to 135,450 t/year was calculated to result in an increase in the internal rate of return from 5.50% to 13.61%. The obtained results show that carob pod is a promising alternative source for bioethanol production.

  12. On the enhancement of the efficiency of the energy complexes of crude hydrocarbon processing plants

    Science.gov (United States)

    Dolotovskij, I. V.; Larin, E. A.; Dolotovskaja, N. V.

    2015-07-01

    A method for circuit-parametric analysis of the efficiency of the heat-and-power system of the energy complexes at gas and natural-gas condensate processing plants is proposed. An energy complex of an alternative structure with an independent source of thermal and electric energy integrated into the production line has been developed. The energy carriers are produced accompanied by recovery of the secondary energy resources, waste, and effluents. Using the developed information-analytical software, multicriterion assessment of the efficiency of the alternative energy complexes and its systems based on independent energy sources of the combined-cycle cogeneration plant type has been performed for the gas processing plant in Astrakhan and the most effective equipment composition variant has been determined. The effect of the basic technical and economic factors on the economic efficiency has been established. The investments in construction of the power- and water-supply system within the plant's energy complex pay off in 8-9 years.

  13. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  14. Demonstration Plant Equipment Design and Scale-Up from Pilot Plant of a Leaching and Solvent Extraction Process

    Directory of Open Access Journals (Sweden)

    Fátima Arroyo

    2015-05-01

    Full Text Available Germanium recovery from coal fly ash by hydrometallurgical procedures was studied at the pilot scale (5 kg of fly ash/h. Results were used to design the equipment of a demonstration-sized plant (200 kg of fly ash/h. The process is based on hydrometallurgical operations: firstly a germanium extraction from fly ash by leaching and a consequent Ge separation from the other elements present in the solution by solvent extraction procedures. Based on the experimental results, mass balances and McCabe-Thiele diagrams were applied to determine the number of steps of the solvent extraction stage. Different arrangements have been studied and a countercurrent process with three steps in extraction and six steps in elution was defined. A residence time of 5 min was fixed in both the extraction and elution stages. Volumetric ratios in extraction and stripping were: aqueous phase/organic phase = 5 and organic phase/stripping phase = 5, so a concentration factor of 25 is achieved. Mixers and decanters were completely defined. The maximum extracted and eluted germanium was estimated and a global efficiency of 94% was achieved. The cost-effectiveness of the equipment was estimated using the Lang factors.

  15. DEVELOPMENT OF METHODS IMPROVING INDUSTRIAL SAFETY OF TECHNOLOGICAL PROCESSES IN ASPHALT-CONCRETE PLANT MIXERS

    Directory of Open Access Journals (Sweden)

    I. A. Ivanova

    2010-05-01

    Full Text Available Problem statement. The problem of improvement of industrial safety of technol-ogical processes in mixers of asphalt-concrete plants is considered on the basis of analysis of organic impurities content in incomplete combustion products, and es-timation of efficiency of purification of asphalt-concrete plant emissions in the presence of “wet” flue gas purification system is given.Results and conclusions. It has been found that the efficiency of hydrocarbon fuel burning affects the amount of hydrophobic dust thrown into the atmosphere, and burning of heavy fuel oil is attended by significant incompleteness of fuel combustion, and this is connected with the processes of fuel dispersion and evapo-ration. The optimal measures for efficient combustion and cleaning of hydrophob-ic dust are described.

  16. Some Physiological Processes Related to Water Use Efficiency of Higher Plants

    Institute of Scientific and Technical Information of China (English)

    GUO Shi-wei; ZHOU Yi; SONG Na; SHEN Qi-rong

    2006-01-01

    Water use efficiency (WUE) of higher plants is of vital importance in the dry-land agricultural ecosystem in terms of the development of water-saving agriculture. Of all the approaches used to improve WUE, the intrinsic water use efficiency (WUET, the ratio of CO2 assimilation rate to transpiration rate) can be a right index, as the variation of WUET is correlated with the physiological and biochemical processes of higher plants. The measurements of leaf gas exchange and carbon isotope discrimination (D13C) are the two ways to detect the variation in WUET. This article reviewed some physiological processes related to WUET, including the relationship between CO2 assimilation and stomatal conductance and WUEr and water absorption. The relationship between WUE and aquaporin and the yield are discussed as well.

  17. Proceedings of the 1977 symposium on instrumentation and process control for fossil demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The 1977 Symposium on Instrumentation and Process Control for Fossil Demonstration Plants was held at Hyatt Regency O'Hare, Chicago, Illinois, July 13 to 15, 1977. It was sponsored by the Argonne National Laboratory, the U.S. Energy Research and Development Administration and the Instrument Society of America (Chicago Section). Seventeen papers from thee proceedings were entered individually into EDB and ERA (three papers weree entered previously). (LTN)

  18. Human Systems Interface and Plant Modernization Process: Technical Basis and Human Factors Review Guidance

    Science.gov (United States)

    2000-03-01

    NUREG /CR-6637 BNL- NUREG -52567 Human Systems Interface and Plant Modernization Process: Technical Basis and Human Factors Review Guidance Brookhaven...NOTICE Availability of Reference Materials Cited in NRC Publications NRC publications in the NUREG series, NRC regu- <http://www.nrc.gov>lations, and...sources: access NUREG -series publications and other NRCrecords in NRC’s Agencywide Document Access 1. The Superintendent of Documents and Management

  19. 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering

    CERN Document Server

    2017-01-01

    This volume presents selected papers from the 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering (ICMMPE 2016) which was held from 23rd to 24th November, 2016 in Kuala Lumpur, Malaysia. The proceedings discuss genuine problems of joining technologies that are heart of manufacturing sectors. It discusses the findings of experimental and numerical works from soldering, arc welding to solid state joining technology that faced by current industry. .

  20. Detection of Leuconostoc strains at a meat processing plant using polymerase chain reaction.

    Science.gov (United States)

    Goto, Seitaro; Takahashi, Hajime; Kawasaki, Susumu; Kimura, Bon; Fujii, Tateo; Nakatsuji, Miki; Watanabe, Itaru

    2004-02-01

    To simplify the labor-intensive conventional routine testing of samples to detect Leuconostoc at a meat processing plant, we developed polymerase chain reaction (PCR) primers specific for Leuconostoc from 16S rRNA gene sequences. These primers did not detect other common lactic acid bacteria such as Lactobacillus plantarum, Lact. sake, Lact. fermentum, Lact. acidophilus and Weissella viridescens. PCR with this primer detected all Leuconostoc species tested (Leu. mesenteroides subsp. mesenteroides, Leu. pseudomesenteroides, Leu. carnosum, Leu. lactic, Leu. citreum, Leu. amelibiosum, Leu. gelidum), except for Leu. fallax, and no other lactic acid bacteria on agarose gel electrophoresis. The method could identify areas contaminated with Leuconostoc in a large-scale industrial meat processing plant. Of 69 samples analyzed, 34 were positive for Leuconostoc according to the conventional culture method (isolation of LAB producing dextran) and PCR, whereas 29 were negative according to both. Six samples were culture-negative but positive by PCR. No false negative results were generated by PCR. The method is rapid and simple, is useful for routinely monitoring areas contaminated with Leuconostoc in meat processing plants, and could help to prevent the spoilage of meat products.

  1. Great gas plants : these five natural gas processing facilities demonstrate decades of top-flight technology

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-07-15

    The natural gas purification and pipeline sector is a major economic driver in Canada. Gas processing facilities are growing in number, and several large gas projects are being planned for future construction in the western provinces. This article outlined 5 gas plants in order to illustrate the sector's history and breadth in Canada. The Shell Jumping Pound gas complex was constructed in 1951 after a sulfur-rich gas discovery near Calgary in 1944. The Empress Straddle plant was built in 1971 in southeastern Alberta and is one of the largest single industrial consumers of electrical power in the province. The Fort Nelson gas processing plant is North America's largest sour gas processing facility. The Shell Caroline complex was built 1993. The Sable offshore energy project is located on the coast of Nova Scotia to handle gas produced from the Thebaud wells. A consortium is now considering the development of new gas fields in the Sable area. 5 figs.

  2. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    Science.gov (United States)

    Xin, Q.; Gong, P.; Li, W.

    2015-02-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  3. Near-infrared spectroscopy for process and substrate supervision of a full-scale biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Jacobi, Hans Fabian

    2012-07-01

    Aim of this study was to investigate the possible use of near-infrared spectroscopy in the supervision of the biogas production process or parts thereof. It was examined, whether the surveillance of (a) the process and (b) substrate was feasible. The following tasks were accomplished to this end: 1. Development, construction and assembly of suitable NIRS-metrology, development of proper control-software as well as of strategies for data acquisition and data handling, 2. calculation and validation of regression models on the basis of acquired spectra and reference data for (a) suitable parameters of the biogas process, (b) composition and biogas potential of the substrate, 3. calculation of continuous time series of all parameters in order to prove the possibility of continuous surveillance, 4. integrated processing of continuously calculated biogas potentials together with plant data for the prediction of the biogas production behavior of the biogas plant. A near-infrared spectrometer was installed and equipped with NIR-measuring heads of own design and construction on a full-scale agricultural biogas plant. For 500 days spectra were continuously logged at (a) a pipe flowed through by fermenter slurry and (b) the feeding station, where silage passed. Based on regularly withdrawn reference samples and the corresponding spectra regression models were calibrated for the several constituents. Continuously logged spectra were used to calculate time series with the aid of the regression models for each constituent. Models and time series were established for the following parameters: (a) process parameters: volatile fatty acids, acetic acid, propionic acid, dry matter, volatile solids; (b) substrate parameters: dry matter, volatile solids, crude fiber, crude fat, crude protein, nitrogen-free extracts, experimentally assessed biogas potential, theoretically assessed biogas potential. Despite the partially low quality of the models it was possible to follow the course of

  4. [Work process and working conditions in poultry processing plants: report of a survey on occupational health surveillance].

    Science.gov (United States)

    Oliveira, Paulo Antonio Barros; Mendes, Jussara Maria Rosa

    2014-12-01

    This article presents the report of a survey on health surveillance activities performed in poultry processing plants in the south of Brazil. It aims to contribute to an understanding of the work process developed, the growth of the sector, the organization of labor and the confrontation with the economic model of this sector, which has been exposing employees to working conditions that undermine their health. The working conditions identified are considered largely incompatible with health and human dignity. The study supports interinstitutional intervention, especially with the Public Ministry of Labor, criticizes the weak implementation of specific government interventions in health conditions in the industry and introduces the new Regulatory Standard 36 as a positive perspective for the near future.

  5. Risk-based design of process plants with regard to domino effects and land use planning

    Energy Technology Data Exchange (ETDEWEB)

    Khakzad, Nima, E-mail: nkhakzad@gmail.com [Safety and Security Science Group (S3G), Faculty of Technology, Policy and Management, TU Delft, Delft (Netherlands); Reniers, Genserik [Safety and Security Science Group (S3G), Faculty of Technology, Policy and Management, TU Delft, Delft (Netherlands); Antwerp Research Group on Safety and Security (ARGoSS), Faculty of Applied Economics, Universiteit Antwerpen, Antwerp (Belgium); Research Group CEDON, Campus Brussels, KULeuven, Brussels (Belgium)

    2015-12-15

    Highlights: • A Bayesian network methodology has been developed to estimate the total probability of major accidents in chemical plants. • Total probability of accidents includes the probability of individual accidents and potential domino effects. • The methodology has been extended to calculate on-site and off-site risks. • The results of the risk analysis have been used in a multi-criteria decision analysis technique to risk-based design of chemical plants. - Abstract: Land use planning (LUP) as an effective and crucial safety measure has widely been employed by safety experts and decision makers to mitigate off-site risks posed by major accidents. Accordingly, the concept of LUP in chemical plants has traditionally been considered from two perspectives: (i) land developments around existing chemical plants considering potential off-site risks posed by major accidents and (ii) development of existing chemical plants considering nearby land developments and the level of additional off-site risks the land developments would be exposed to. However, the attempts made to design chemical plants with regard to LUP requirements have been few, most of which have neglected the role of domino effects in risk analysis of major accidents. To overcome the limitations of previous work, first, we developed a Bayesian network methodology to calculate both on-site and off-site risks of major accidents while taking domino effects into account. Second, we combined the results of risk analysis with Analytic Hierarchical Process to design an optimal layout for which the levels of on-site and off-site risks would be minimum.

  6. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  7. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  8. Significant savings with an advanced forecasting system[Process plant operation

    Energy Technology Data Exchange (ETDEWEB)

    Rorie, George [Shell Expro (United Kingdom)

    1999-07-01

    The article expounds the value of Gensym's G2 real-time expert software which schedules and optimises operations in process plants. G2 can detect problems early and give advice on solutions: it converts masses of production, process and commercial data into intelligent information by capturing and applying knowledge and experience. G2 is now used by more than 100 gas and oil companies and is said to be the industry standard for creating intelligent systems. Shell Expro's experience with G2 is discussed in detail.

  9. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T.P.; Tchizhik, A.A.; Chavchanidze, N.N. [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1998-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  10. Power up your plant - An introduction to integrated process and power automation

    Energy Technology Data Exchange (ETDEWEB)

    Vasel, Jeffrey

    2010-09-15

    This paper discusses how a single integrated system can increase energy efficiency, improve plant uptime, and lower life cycle costs. Integrated Process and Power Automation is a new system integration architecture and power strategy that addresses the needs of the process and power generation industries. The architecture is based on Industrial Ethernet standards such as IEC 61850 and Profinet as well as Fieldbus technologies. The energy efficiency gains from integration are discussed in a power generation use case. A power management system success story from a major oil and gas company, Petrobras, is also discussed.

  11. Synergy of sewage water treatment plants and processing of manure; Synergie RWZI en mestverwerking

    Energy Technology Data Exchange (ETDEWEB)

    Bisschops, I.; Weijma, J.; Van Eekert, M.; Spanjers, H. [Lettinga Associates Foundation LeAF, Wageningen (Netherlands); Timmerman, M.; Fe Buisonje, F. [Wageningen UR Livestock Research WLR, Wageningen (Netherlands)

    2011-05-15

    The goal of this study is to explore profitable ways of processing manure in sewage water treatment plants. Technological options are explored for processing manure, the availability of manure in the surroundings, the space taken up by manure digestion and annual costs and benefits [Dutch] Het doel van deze studie is te verkennen hoe mest op rendabele wijze in rwzi's (rioolwaterzuiveringsinstallaties) verwerkt kunnen worden. Er is gekeken naar de technologische mogelijkheden om mest te kunnen verwerken, de beschikbaarheid van mest in de omgeving, ruimtebeslag van mestvergisting, en jaarlijkse kosten en opbrengsten.

  12. A Combined Heuristic and Indicator-based Methodology for Design of Sustainable Chemical Process Plants

    DEFF Research Database (Denmark)

    Halim, Iskandar; Carvalho, Ana; Srinivasan, Rajagopalan;

    2011-01-01

    The current emphasis on sustainable production has prompted chemical plants to minimize raw material and energy usage without compromising on economics. While computer tools are available to assistin sustainability assessment, their applications are constrained to a specific domain of the design...... synthesis problem. This paper outlines a design synthesis strategy that integrates two computer methodologies – ENVOPExpert and SustainPro – for simultaneous generation, analysis, evaluation, and optimization of sustainable process alternatives. ENVOPExpert diagnoses waste sources, identifies alternatives......, comprehensive generation of design alternatives, and effective reduction of the optimization search space. The frame-work is illustrated using anacetone process and a methanol and dimethyl ether production case study....

  13. Algorithmic Procedure to Design Water Utilization Systems Featuring Multiple Contaminants in Process Plants

    Institute of Scientific and Technical Information of China (English)

    王东明; 杨凤林; 张兴文

    2005-01-01

    This paper introduces a non-iterative algorithmic procedure to design water utilization networks with multiple contaminants in process plants. According to the water pinch analysis rules, the processes in water utilization systems were first divided into three groups, then water-supply priority algorithm was proposed. The results of case studies showed that the water networks designed by this method gave water consumption lower than that estimated by other approaches. In addition, the procedure was subiect to no limitation on the problem scale.

  14. Technology for processing ash from thermal/electric plants without waste products

    Energy Technology Data Exchange (ETDEWEB)

    Tyurnikova, V.I.; Krasnikova, N.A.; Panin, A.S.; Konovalenko, P.F.

    1979-07-01

    Possibility of using flotation for enriching volatile ash from heating/electric power stations are investigated. On ash samples containing 9 percent carbon from the Nikolaev thermal/ electric plant, it was demonstrated that by using flotation with an apolar collector and T-66 reagent, the ash content was increased to 98.6% permitting it to be used for producing high ash construction materials. A foam carbon-containing product from the process has a heat of combustion of 4,000 kilocalories/ kilogram and can be reused as a fuel. Flowsheet for the flotation process is presented.

  15. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  16. Comparative analysis of cogeneration power plants optimization based on stochastic method using superstructure and process simulator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leonardo Rodrigues de [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil)], E-mail: leoaraujo@ifes.edu.br; Donatelli, Joao Luiz Marcon [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)], E-mail: joaoluiz@npd.ufes.br; Silva, Edmar Alino da Cruz [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Azevedo, Joao Luiz F. [Instituto de Aeronautica e Espaco (CTA/IAE/ALA), Sao Jose dos Campos, SP (Brazil)

    2010-07-01

    Thermal systems are essential in facilities such as thermoelectric plants, cogeneration plants, refrigeration systems and air conditioning, among others, in which much of the energy consumed by humanity is processed. In a world with finite natural sources of fuels and growing energy demand, issues related with thermal system design, such as cost estimative, design complexity, environmental protection and optimization are becoming increasingly important. Therefore the need to understand the mechanisms that degrade energy, improve energy sources use, reduce environmental impacts and also reduce project, operation and maintenance costs. In recent years, a consistent development of procedures and techniques for computational design of thermal systems has occurred. In this context, the fundamental objective of this study is a performance comparative analysis of structural and parametric optimization of a cogeneration system using stochastic methods: genetic algorithm and simulated annealing. This research work uses a superstructure, modelled in a process simulator, IPSEpro of SimTech, in which the appropriate design case studied options are included. Accordingly, the cogeneration system optimal configuration is determined as a consequence of the optimization process, restricted within the configuration options included in the superstructure. The optimization routines are written in MsExcel Visual Basic, in order to work perfectly coupled to the simulator process. At the end of the optimization process, the system optimal configuration, given the characteristics of each specific problem, should be defined. (author)

  17. On-line calibration of process instrumentation channels in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    An on-line instrumentation monitoring system was developed and validated for use in nuclear power plants. This system continuously monitors the calibration status of instrument channels and determines whether or not they require manual calibrations. This is accomplished by comparing the output of each instrument channel to an estimate of the process it is monitoring. If the deviation of the instrument channel from the process estimate is greater than an allowable limit, then the instrument is said to be {open_quotes}out of calibration{close_quotes} and manual adjustments are made to correct the calibration. The success of the on-line monitoring system depends on the accuracy of the process estimation. The system described in this paper incorporates both simple intercomparison techniques as well as analytical approaches in the form of data-driven empirical modeling to estimate the process. On-line testing of the calibration of process instrumentation channels will reduce the number of manual calibrations currently performed, thereby reducing both costs to utilities and radiation exposure to plant personnel.

  18. Designing plant scale process integration for water management in an Indian paper mill.

    Science.gov (United States)

    Shukla, Sudheer Kumar; Kumar, Vivek; Chakradhar, B; Kim, Taesung; Bansal, M C

    2013-10-15

    In the present study, plant-scale process integration was applied to an Indian paper mill using the water cascade analysis (WCA) technique. Three limiting constraints, chemical oxygen demand (COD), total dissolved solids (TDS), and adsorbable organic halides (AOX), were considered for the study. A nearest neighbor algorithm was used to distribute the freshwater and recycled water among the plant operations. It was found that the limiting critical constraint depends upon the types of processes and streams involved in the integration. The limiting critical constraint can differ for different sections of the same industry, and can differ in different schemes of integration. After process integration, a 55.6% reduction in effluent flow, a 36% reduction in COD, and a 73% reduction in AOX were observed. After process integration, a 35.21% reduction in pollution costs can be achieved and, assuming the average production of the mill to be 225 tons per day, a savings of Indian rupees (INR) 1.73 per kg of paper produced can be achieved by employing process integration. The water cess was calculated as INR 3024.77 per day without integration for the sections that were considered for integration, while after integration, a 41.53% savings in the form of water cess was calculated.

  19. An economic analysis of the Jim Bridger Power Plant carbon dioxide mineralization process

    Science.gov (United States)

    Christensen, Mikol Hans

    Concerns for rising levels of CO2 in the atmosphere have lead to a myriad of schemes to reduce emissions. Many of these are complicated, expensive, and untried. Coal-fired electrical generation accounts for about 49 percent of U.S. electricity generation. Shifting generation capacity away from coal is the goal of many, yet as this statistic shows, the U.S. has a heavy dependency on coal-fired base-load generation. What is needed is a way to retrofit existing coal fired power plants to mitigate at least some of the giga-tonnes of CO2 released annually. Carbon Capture and Storage in association with greenhouse gases are a major concern in the world today. This thesis is an outgrowth of a research partnership between the University of Wyoming and the Jim Bridger Power Plant (Rocky Mountain Power) to develop a process for capture and mineralization of flue gas carbon dioxide (CO 2) using an accelerated mineral carbonization process with fly ash particles as the absorbent. This process may have several advantages over other approaches because it is an environmentally acceptable, single step process occurring at near ambient pressures and temperatures that can compliment conventional CCS processes. In addition the use of fly ash particles as an absorbent avoids the costs of processing or engineering an absorbent. The purpose of this thesis is to evaluate the capture costs and economic feasibility of the mineralization process. Two models were used to estimate the capture costs and economic feasibility of the Jim Bridger Power Plant CO2 Mineralization Project (JBP). The first was a cost of capture model which was used to estimate CO2 capture costs and how changes in the CO2 to ash capture ratio and quantities of CO2 captured affect capture costs. The second was a financial feasibility model which considered the time value of money. This second model considered the net present value (NPV) and internal rate of return (IRR) for the process using different pricing scenarios

  20. Manufacturing plant location selection in logistics network using Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Ping-Yu Chang

    2015-11-01

    Full Text Available Purpose: In recent years, numerous companies have moved their manufacturing plants to China to capitalize on lower cost and tax. Plant location has such an impact on cost, stocks, and logistics network but location selection in the company is usually based on subjective preference of high ranking managers. Such a decision-making process might result in selecting a location with a lower fixed cost but a higher operational cost. Therefore, this research adapts real data from an electronics company to develop a framework that incorporates both quantitative and qualitative factors for selecting new plant locations. Design/methodology/approach: In-depth interviews were conducted with 12 high rank managers (7 of them are department manager, 2 of them are vice-president, 1 of them is senior engineer, and 2 of them are plant manager in the departments of construction, finance, planning, production, and warehouse to determine the important factors. A questionnaire survey is then conducted for comparing factors which are analyzed using the Analytic Hierarchy Process (AHP. Findings: Results show that the best location chosen by the developed framework coincides well with the company’s primal production base. The results have been presented to the company’s high ranking managers for realizing the accuracy of the framework. Positive responses of the managers indicate usefulness of implementing the proposed model into reality, which adds to the value of this research. Practical implications: The proposed framework can save numerous time-consuming meetings called to compromise opinions and conflictions from different departments in location selection. Originality/value: This paper adapts the Analytic Hierarchy Process (AHP to incorporate quantitative and qualitative factors which are obtained through in-depth interviews with high rank managers in a company into the location decision.

  1. Processos evolutivos e a origem das plantas cultivadas Evolutionary processes and the origin of crop plants

    Directory of Open Access Journals (Sweden)

    Elizabeth Ann Veasey

    2011-07-01

    Full Text Available A evolução das plantas cultivadas, que teve início há cerca de 13.000 anos, está sujeita aos mesmos processos evolutivos naturais, aliada à ação do homem de forma consciente ou inconsciente, levando à domesticação. Nesta revisão, são apresentados os principais fatores evolutivos, tais como mutação, hibridação, migração, seleção e deriva genética, que, de alguma maneira, estão envolvidos com a origem, evolução e domesticação de plantas cultivadas. São apresentados também exemplos de como esses processos influenciaram na diversidade intra e interespecífica de plantas cultivadas, com o aparecimento de novas variedades ou mesmo de novas espécies. De modo geral, tais processos atuaram na ampliação, na manutenção, bem como na redução da variabilidade genética das plantas cultivadas.The evolution of crop plants, which began at about 13,000 years ago, is subject to the same natural evolutionary processes, coupled with the action of man, consciously or unconsciously, leading to domestication. This review presents the main evolutionary factors such as mutation, hybridization, migration, selection and genetic drift, which somehow are involved in the origin, evolution and domestication of crop plants. Examples of how these processes influenced in the intra and interespecific diversity of crop plants, with the uprise of new varieties or even of new species, are also presented. In general, these processes have worked well in the increase, maintenance, as well as in the reduction of genetic diversity of crop plants.

  2. Multiobjective optimization scheme for industrial synthesis gas sweetening plant in GTL process

    Institute of Scientific and Technical Information of China (English)

    Alireza Behroozsarand; Akbar Zamaniyan

    2011-01-01

    In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units.For the sake of reducing the costs, time consuming, and preventing unsuitable accidents, the optimization could be performed by a computer program.In this paper, simulation and parameter analysis of amine plant is performed at first.The optimization of this unit is studied using Non-Dominated Sorting Genetic Algorithm-II in order to produce sweet gas with C02 mole percentage less than 2.0%and H2S concentration less than 10 ppm for application in Fischer-Tropsch synthesis.The simulation of the plant in HYSYS v.3.1 software has been linked with MATLAB code for real-parameter NSGA-II to simulate and optimize the amine process.Three scenarios are selected to cover the effect of (DEA/MDEA) mass composition percent ratio at amine solution on objective functions.Results show that sour gas temperature and pressure of 33.98 ℃ and 14.96 bar, DEA/C02 molar flow ratio of 12.58, regeneration gas temperature and pressure of 94.92 ℃ and 3.0 bar,regenerator pressure of 1.53 bar, and ratio of DEA/MDEA= 20%/10% are the best values for minimizing plant energy consumption, amine circulation rate, and carbon dioxide recovery.

  3. Risk-based design of process plants with regard to domino effects and land use planning.

    Science.gov (United States)

    Khakzad, Nima; Reniers, Genserik

    2015-12-15

    Land use planning (LUP) as an effective and crucial safety measure has widely been employed by safety experts and decision makers to mitigate off-site risks posed by major accidents. Accordingly, the concept of LUP in chemical plants has traditionally been considered from two perspectives: (i) land developments around existing chemical plants considering potential off-site risks posed by major accidents and (ii) development of existing chemical plants considering nearby land developments and the level of additional off-site risks the land developments would be exposed to. However, the attempts made to design chemical plants with regard to LUP requirements have been few, most of which have neglected the role of domino effects in risk analysis of major accidents. To overcome the limitations of previous work, first, we developed a Bayesian network methodology to calculate both on-site and off-site risks of major accidents while taking domino effects into account. Second, we combined the results of risk analysis with Analytic Hierarchical Process to design an optimal layout for which the levels of on-site and off-site risks would be minimum. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nutritive values of some food plants, fresh and processed fish species

    Directory of Open Access Journals (Sweden)

    Ali Aberoumand

    2015-12-01

    Full Text Available The chemical composition of four edible plant foods species, three fish species and one prawn were analyzed in Food Chemistry Laboratory of Behbahan Khatam Alanbia University of Technology, Behbahan, Iran in 2014. The analysis of fatty acid and sugars composition were performed by gas liquid chromatography and high performance liquid chromatography, respectively. Protein and lipid content were founded higher in baked and fried in fish S. commersonnianus (74.29%, (20.20%, fish Sphyraena helleri (88.12% and (17.77%, respectively. Ash content in fish S. commersonnianus varies from 9.80% to 15.34%, and in fish S. helleri from 5.83% to 7.68%. Based on the proximate analysis, it can be calculated that an edible portion of 100 g of studied edible plant foods provides, on average, around 303.9±1.04 kcal. The plant Portulaca neglecta is suitable for high temperature food processes. The macronutrient profile in general revealed that the wild plant foods were with rich sources of protein and carbohydrates, and had low amounts of fat. The highest protein, the lowest fat and energy contents were found in boiled in both fish species; therefore, boiling can be recommended as the best cooking method for healthy diet.

  5. Evaluating best practices for Campylobacter and Salmonella reduction in poultry processing plants.

    Science.gov (United States)

    Wideman, N; Bailey, M; Bilgili, S F; Thippareddi, H; Wang, L; Bratcher, C; Sanchez-Plata, M; Singh, M

    2016-02-01

    Poultry processing plants in the United States were surveyed on their current Campylobacter and Salmonella control practices. Following surveys, data were collected to develop a baseline for prevalence rates of Salmonella and Campylobacter; then changes in practices were implemented and evaluated for improvements in pathogen control. Surveys were sent to the plant Quality Assurance managers to determine production levels, antimicrobial interventions, and current pathogen testing practices. Initial sampling was performed at 6 plants with similar production volumes, at sites that included carcass samples before any pre-evisceration intervention, after exiting the inside-outside bird washer (IOBW), after exiting the pre-chiller, after exiting the primary chiller, and after exiting any post-chill intervention, as well as a water sample from each scalder, pre-chiller, primary chiller, and post-chill dip tank or finishing chiller. Enumerations and enrichments were performed for Campylobacter and Salmonella. Following the baseline sampling, changes in practices were suggested for each plant and a second sampling was conducted to determine their effectiveness. Results demonstrated that peracetic acid (PAA) was the most effective (P 0.05). Microbial buildup in the immersion tanks demonstrates the need for effective cleaning, sanitation practices, and chiller maintenance to reduce contamination of poultry with Campylobacter and Salmonella.

  6. Calibration of routine dosimeters in radiation processing: Validation procedure for in-plant calibration

    Directory of Open Access Journals (Sweden)

    Šećerov Bojana Lj.

    2011-01-01

    Full Text Available The essential prerequisite of radiation dosimetry is to provide quality assurance and documentation that the irradiation procedure has been carried out according to the specification requirement of correct calibration of the chosen dosimetry system. At the Radiation Plant of the Vinča Institute of Nuclear Sciences we compared two recommended protocols of irradiation procedures in the calibration of dosimetry systems in radiation processing: (1 by irradiation of routine dosimeters (ethanol-chlorobenzene - ECB at the calibration laboratory and (2, by in-plant calibration with alanine transfer - dosimeters. The critical point for in-plant calibration is irradiation geometry, so we carefully positioned the phantom carrying both dosimeters in order to minimize dose gradients across the sample. The analysis of results obtained showed that the difference among determined absorbed doses for the construction of calibration curves between these two methods, (alanine vs. ECB, is less than 1%. The difference in combined standard uncertainty for each calibration procedure is 0.1%. These results demonstrate that our in-plant calibration is as good as calibration by irradiation at the calibration laboratory and validates our placement of the irradiation phantom during irradiation.

  7. The role of plant processing for the cancer preventive potential of Ethiopian kale (Brassica carinata).

    Science.gov (United States)

    Odongo, Grace Akinyi; Schlotz, Nina; Herz, Corinna; Hanschen, Franziska S; Baldermann, Susanne; Neugart, Susanne; Trierweiler, Bernhard; Frommherz, Lara; Franz, Charles M A P; Ngwene, Benard; Luvonga, Abraham Wahid; Schreiner, Monika; Rohn, Sascha; Lamy, Evelyn

    2017-01-01

    Background: Ethiopian kale (Brassica carinata) is a horticulturally important crop used as leafy vegetable in large parts of East and Southern Africa. The leaves are reported to contain high concentrations of health-promoting secondary plant metabolites. However, scientific knowledge on their health benefits is scarce. Objective: This study aimed to determine the cancer preventive potential of B. carinata using a human liver in vitro model focusing on processing effects on the pattern of secondary plant metabolites and bioactivity. Design: B. carinata was cultivated under controlled conditions and differentially processed (raw, fermented, or cooked) after harvesting. Human liver cancer cells (HepG2) were treated with ethanolic extracts of raw or processed B. carinata leaves and analyzed for their anti-genotoxic, anti-oxidant, and cytostatic potential. Chemical analyses were carried out on glucosinolates including breakdown products, phenolic compounds, carotenoids, and chlorophyll content. Results: Pre-treatment with B. carinata extracts concentration dependently reduced aflatoxin-induced DNA damage in the Comet assay, reduced the production of reactive oxygen species as determined by electron paramagnetic resonance spectroscopy, and induced Nrf2-mediated gene expression. Increasing extract concentrations also promoted cytostasis. Processing had a significant effect on the content of secondary plant metabolites. However, different processing methodologies did not dramatically decrease bioactivity, but enhanced the protective effect in some of the endpoints studied. Conclusion: Our findings highlight the cancer preventive potential of B. carinata as indicated by the protection of human liver cells against aflatoxin in vitro. In general, consumption of B. carinata should be encouraged as part of chemopreventive measures to combat prevalence of aflatoxin-induced diseases.

  8. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Chlorine dioxide and by-products in water distribution systems

    OpenAIRE

    Ferreira, Francisco Cardoso

    1991-01-01

    Chlorine dioxide is used as both a pre-oxidant and/or a post-disinfectant in several water treatment plants in the United States. Chlorine dioxide is associated with its byproducts chlorite and chlorate. Chlorine dioxide, chlorine, chlori te and chlorate were sampled in four distribution systems where chlorine dioxide is used for disinfection purposes: Charleston, WV, Columbus, GA, New Castle, PA, and Skagit, WA. The fate of chlorine dioxide and its by-products in dist...

  10. Detection and Genotyping of Leuconostoc spp. in a Sausage Processing Plant.

    Science.gov (United States)

    Padilla-Frausto, J J; Cepeda-Marquez, L G; Salgado, L M; Iturriaga, M H; Arvizu-Medrano, S M

    2015-12-01

    Some Leuconostoc spp. have the ability to produce slime and undesirable compounds in cooked sausage. The objectives of this research were to identify Leuconostoc sources in a Vienna-type sausage processing plant and to evaluate the genetic diversity of the isolated strains. Three hundred and two samples of sausage batter, sausages during processing, spoiled sausage, equipment surfaces, chilling brine, workers' gloves and aprons, and used casings were collected (March to November 2008 and February to April 2010) from a sausage processing plant. Lactic acid bacteria (LAB) were quantified, and Leuconostoc were detected using PCR. Strains were isolated and identified in Leuconostoc-positive samples. Leuconostoc strains were genotyped using randomly amplified polymorphic DNA and pulsed-field gel electrophoresis. LAB content of nonspoiled and spoiled sausage ranged from sausages showed the same genotype. One L. lactis genotype included strains isolated from spoiled sausages analyzed in April 2008 and March to April 2010. Equipment and conveyor belts constitute Leuconostoc contamination sources. Leuconostoc persistence in the sausage processing environment and in the final product suggests the existence of microbial reservoirs, possibly on equipment surfaces.

  11. Abscisic Acid-mediated Epigenetic Processes in Plant Development and Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Viswanathan Chinnusamy; Zhizhong Gong; Jian-Kang Zhu

    2008-01-01

    Abscisic acid (ABA) regulates diverse plant processes, growth and development under non-stress conditions and plays a pivotal role in abiotic stress tolerance. Although ABA-regulated genetic processes are well known, recent discoveries reveal that epigenetic processes are an integral part of ABA-regulated processes. Epigenetic mechanisms, namely, histone modifications and cytosine DNA methylation-induced modification of genome give rise to epigenomes, which add diversity and complexity to the genome of organisms. Histone monoubiquitination appears to regulate ABA levels in developing seeds through histone H2B monoubiquitination. ABA and H2B ubiquitination dependent chromatin remodeling regulate seed dormancy. Transcription factor networks necessary for seed maturation are repressed by histone deacetylases (HDACs)-dependent and PICKLE chromatin remodeling complexes (CRCs), whereas ABA induces the expression of these genes directly or through repression of HDACs. Abiotic stress-induced ABA regulates stomatal response and stress-responsive gene expression through HDACs and HOS15-dependent histone deacetylation, as well as through the ATP-dependent SWITCH/SUCROSE NONFERMENTING CRC. ABA also probably regulates the abiotic stress response through DNA methylation and short interfering RNA pathways. Further studies on ABA-regulated spigenome will be of immense use to understand the plant development, stress adaptation and stress memory.

  12. Modeling of behavior of flotoreagent in technical water of mining and processing plant when implementing flotation of iron ores

    OpenAIRE

    Дмитрієва, Олена Олексіївна; Василенко, Ганна Валеріївна

    2013-01-01

    The article has theoretical orientation. It highlights the issues of the modeling of behavior of a flotation reagent in the tailing pit of a mining and processing plant while implementing the flotation tweak of the magnetite concentrate. We have improved the mathematical model of dynamics of the flotation reagent concentration in water flow system of the mining and processing plant, which takes into account the peculiarities of processes of flotation and pelletizing, as well as changes of par...

  13. Agro-Process Intensification through Synthetic Rhizosphere Media for Nitrogen Fixation and Yield Enhancement in Plants

    Directory of Open Access Journals (Sweden)

    G. Akay

    2012-01-01

    Full Text Available Problem statement: In order to combat global warming and the emerging Food, Energy and Water shortages (FEWs, several approaches have been adopted, including genetic engineering and farming practices. Biomass based energy technology will further stress food and water resources and hence novel holistic approaches to FEWs should be designed. Approach: A novel technique (Agro-Process Intensification, A-PI which simultaneously addresses FEWs in general and food production in particular was described. The technique was based on the enhancement of multiple interactions between plant roots, water, nutrients and bacteria using soil additives in the form of micro-bioreactors which allow plant root growth through them thus generating a micro-environment acting as a Synthetic Rhizo Sphere (SRS. The SRS-media was a nano-structured micro-porous crosslinked, elastic, ionic and highly hydrophilic polymer, facilitating the efficient use of water and nutrients as well as nitrogen fixation in legumes. Results: SRS media, with or without bacteria, was prepared, characterized and used in greenhouse experiments. Grass, for which the enhancement was well above 200% under water stress, was used to evaluate the mechanism of A-PI. The pea plant was used to demonstrate the intensification achievable by biologically active micro-bioreactors in which nitrogen fixing bacteria, Rhizobia, were supported within the SRS-media. Biologically active SRS-media enhanced the plant root infection by nitrogen fixing bacteria and increased both crop yield (ca. 70% and mineral content. Conclusion/Recommendations: A-PI is achieved principally through the elimination of the random nature of the root/water/nutrient/microorganism interactions. The association of SRS-media with plant roots provides a unique and efficient delivery technique for water and nutrients while protecting beneficial bacteria within the SRS for infection enhancement. Focus on the understanding of the molecular

  14. Adherence characteristics of Listeria strains isolated from three ready-to-eat meat processing plants.

    Science.gov (United States)

    Kushwaha, Kalpana; Muriana, Peter M

    2009-10-01

    Over 1,560 non-food contact surface swabs and raw meat ingredient samples were collected from three ready-to-eat meat processing plants (520 from each plant) from 1998 to 1999, resulting in the recovery of 259 isolates of Listeria obtained from postprocess areas including drains, floors, garbage bins, cart wheels, walls, equipment surfaces, tables, brooms, pallet jacks, hoses, ladders, and waste chutes. We further examined 246 of the 259 isolates for adherence phenotype and used PCR to identify those that were Listeria monocytogenes. Adherence was classified as weak, moderate, or strong depending on results obtained with all Listeria isolates by using a fluorescent microplate adherence assay. Among the 246 isolates, there were 61 weakly, 148 moderately, and 37 strongly adherent Listeria, of which 130 (53%) were found to be L. monocytogenes. Plants A and B provided similar recoveries of 39 (7.5%) and 43 (8.3%) Listeria-positive isolates, including 9 (23.1% of Listeria) and 41 (95.3% of Listeria) identified as L. monocytogenes, respectively, that were weakly or moderately adherent. In plant C, we recovered 164 Listeria-positive samples (31.5% isolation rate), which included 80 L. monocytogenes-positive samples (49.8% of Listeria spp.), 52 of which were moderately adherent, as well as all 9 strongly adherent isolates of L. monocytogenes obtained in this study. Adherence properties of Listeria may allow persistence and recurrence in plant environments, potentially increasing the chance of eventual product contamination, and this emphasizes the need for sanitary approaches to prevent colonization by Listeria as well as product antimicrobial interventions should the sanitation barrier be breached.

  15. Evaluation of a sulfur oxide chemical heat storage process for a steam solar electric plant

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, J.; Lynn, S.; Foss, A.

    1979-07-01

    The purpose of this study was to develop and evaluate technically feasible process configurations for the use of the sulfur oxide system, 2 SO/sub 3/ reversible 2 SO/sub 2/ + O/sub 2/, in energy storage. The storage system is coupled with a conventional steam-cycle power plant. Heat for both the power plant and the storage system is supplied during sunlit hours by a field of heliostats focussed on a central solar receiver. When sunlight is not available, the storage system supplies the heat to operate the power plant. A technically feasible, relatively efficient configuration is proposed for incorporating this type of energy storage system into a solar power plant. Complete material and energy balances are presented for a base case that represents a middle range of expected operating conditions. Equipment sizes and costs were estimated for the base case to obtain an approximate value for the cost of the electricity that would be produced from such an installation. In addition, the sensitivity of the efficiency of the system to variations in design and operating conditions was determined for the most important parameters and design details. In the base case the solar tower receives heat at a net rate of 230 MW(t) for a period of eight hours. Daytime electricity is about 30 MW(e). Nighttime generation is at a rate of about 15 MW(e) for a period of sixteen hours. The overall efficiency of converting heat into electricity is about 26%. The total capital cost for the base case is estimated at about $68 million, of which about 67% is for the tower and heliostats, 11% is for the daytime power plant, and 22% is for the storage system. The average cost of the electricity produced for the base case is estimated to be about 11 cents/kW(e)-hr.

  16. Some trends in man-machine interface design for industrial process plants

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1980-01-01

    The demands for an efficient and reliable man-machine inter-face in industrial process plant are increasing due to the steadily growing size and complexity of installations. At the same time, computerized technology offers the possibility of powerful and effective solutions to designers....... In the paper, problems related to interface design, operator training and human reliability are discussed in the light of this technological development, and an integrated approach to system design based on a consistent model or framework describing the man-machine interaction is advocated.The work presented...... is part of a Scandinavian research project sponsored by the Board of Nordic Ministers, for the study of control room design and human reliability in nuclear power plants....

  17. Purex Plant gaseous iodine-129 control capability and process development requirements

    Energy Technology Data Exchange (ETDEWEB)

    Evoniuk, C.J.

    1981-01-01

    This report describes the ability of the Purex Plant to effectively control iodine-129 emissions. Based on historical evidence, the current Purex Plant iodine control system appears capable of meeting the goal of limiting gaseous iodine-129 emissions at the point of discharge to levels stipulated by the Department of Energy (DOE) for an uncontrolled area. Expected decontamination factors (DF`s) with the current system will average about 100 and will be above the calculated DF`s of 2.2 and 87 required to meet DOE yearly average concentration limits for controlled and uncontrolled areas respectively, but below the calculated DF of 352 required for meeting the proposed Environmental Protection Agency (EPA) mass emission limit. Chemical costs for maintaining compliance with the DOE limits will be approximately $166 per metric ton of fuel processed (based on a silver nitrate price of $12.38/oz). Costs will increase in proportion to increases in silver prices.

  18. Bacterial strains from floodplain soils perform different plant-growth promoting processes and enhance cowpea growth

    Directory of Open Access Journals (Sweden)

    Elaine Martins da Costa

    2016-08-01

    Full Text Available ABSTRACT Certain nodulating nitrogen-fixing bacteria in legumes and other nodule endophytes perform different plant-growth promoting processes. The objective of this study was to evaluate 26 bacterial strains isolated from cowpea nodules grown in floodplain soils in the Brazilian savannas, regarding performance of plant-growth promoting processes and ability to enhance cowpea growth. We also identified these strains by 16S rRNA sequencing. The following processes were evaluated: free-living biological nitrogen fixation (BNF, solubilization of calcium, aluminum and iron phosphates and production of indole-3-acetic acid (IAA. The abilities to nodulate and promote cowpea growth were evaluated in Leonard jars. Partial sequencing of the 16S rRNA gene identified 60 % of the strains as belonging to genus Paenibacillus. The following four genera were also identified: Bacillus, Bradyrhizobium, Enterobacter and Pseudomonas. None of the strains fixed N2 free-living. Among the strains, 80 % solubilized Ca phosphate and one solubilized Al phosphate and none solubilized Fe phosphate. The highest IAA concentrations (52.37, 51.52 and 51.00 μg mL−1 were obtained in the 79 medium with tryptophan by Enterobacter strains UFPI B5-7A, UFPI B5-4 and UFPI B5-6, respectively. Only eight strains nodulated cowpea, however, all increased production of total dry matter. The fact that the strains evaluated perform different biological processes to promote plant growth indicates that these strains have potential use in agricultural crops to increase production and environmental sustainability.

  19. Assessment of H-Coal process developments: impact on the performance and economics of a proposed commercial plant

    Energy Technology Data Exchange (ETDEWEB)

    Talib, A.; Gray, D.; Neuworth, M.

    1984-01-01

    This report assesses the performance of the H-Coal process, a catalytic direct liquefaction process, at a process development and large pilot-plant scale of operation. The assessment focused on the evaluation of operating results from selected long-term successful process development unit (PDU) and pilot plant runs made on Illinois No. 6 coal. The pilot plant has largely duplicated the product yield structure obtained during the PDU runs. Also, the quality of products, particularly liquid products, produced during the pilot plant run is quite comparable to that produced during the PDU runs. This confirms the scalability of the H-Coal ebullated-bed reactor system from a PDU-scale, 3 tons of coal per day, to a large pilot scale, 220 tons of coal per day, plant. The minor product yield differences, such as higher yields of C/sub 3/, C/sub 4/, and naphtha fractions, and lower yields of distillate oils obtained during pilot plant runs as compared to the PDU runs, will not impact the projected technical and economic performance of a first-of-a-kind commercial H-Coal plant. Thus, the process yield and operating data collected during the PDU operations provided an adequate basis for projecting the technical and economic performance of the proposed H-Coal commercial plant. 18 references, 9 figures, 56 tables.

  20. Frequency of hepatitis E virus, rotavirus and porcine enteric calicivirus at various stages of pork carcass processing in two pork processing plants.

    Science.gov (United States)

    Jones, Tineke H; Muehlhauser, Victoria

    2017-10-16

    Hepatitis E virus (HEV), rotavirus (RV), and porcine enteric calicivirus (PEC) infections are common in swine and raises concerns about the potential for zoonotic transmission through undercooked meat products. Enteric viruses can potentially contaminate carcasses during meat processing operations. There is a lack of information on the prevalence and control of enteric viruses in the pork processing chain. This study compared the incidence and levels of contamination of hog carcasses with HEV, RV and PEC at different stages of the dressing process. A total of 1000 swabs were collected from 2 pork processing plants on 10 separate occasions over the span of a year. The samples were obtained from random sites on hog carcasses at 4 dressing stages (plant A: bleeding, dehairing, pasteurization, and evisceration; plant B: bleeding, skinning, evisceration, and washing) and from meat cuts. Numbers of genome copies (gc) of HEV, RV and PEC were determined by RT-qPCR. RV and PEC were detected in 100%, and 18% of samples, respectively, after bleeding for plant A and in 98%, and 36% of samples, respectively, after bleeding for plant B. After evisceration, RV and PEC were detected in 21% and 3% of samples, respectively, for plant A and in 1%, and 0% of samples, respectively for plant B. RV and PEC were detected on 1%, and 5% of pork cuts, respectively, for plant A and on 0%, and 0% of pork cuts, respectively, for plant B. HEV was not detected in any pork carcass or retail pork samples from plants A or B. The frequency of PEC and RV on pork is progressively reduced along the pork processing chain but the viruses were not completely eliminated. The findings suggest that consumers could be at risk when consuming undercooked meat contaminated with pathogenic enteric viruses. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  1. STONES SAWING SLUDGE AS BY-PRODUCT: characterization for a future recovery

    Science.gov (United States)

    Zichella, Lorena; Bellopede, Rossana; Marini, Paola

    2017-04-01

    The European Commission, as part of its Thematic Strategy on the prevention and recycling of waste, committed itself to tackle one of the issues around the waste definition, namely the distinction between waste and by-products. This definition has been outlined through the Communication on waste and by-product of the European Court of Justice (Brussels, 21.2.2007 COM(2007) 59 final COMMUNICATION FROM THE COMMISSION TO THE COUNCIL AND THE EUROPEAN PARLIAMENT). By-product is a substance or object, resulting from a production process, the primary aim of which is not the production of that item. By-products can come from a wide range of business sectors, and can have very different environmental impacts. If there is a possibility that the material is in fact not useable, because it does not meet the technical specifications that would be required for its use, then it should continue to be considered as a waste. The status of waste protects the environment from the potential consequences of this uncertainty. If it subsequently happens that a use is found for the waste in question then it will lose its status of waste and it will be considered a by-product. An incorrect classification could be the cause of environmental damage or unnecessary costs for business. For this purpose a characterization of sludge coming from different plants of stone processing was carried out for a better classification of the materials in view of a future recovery. The different stones cutting processes considered for this study are: gangsaw, diamond blade and diamond wire. The cut materials are granites, gneisses, and other stones mainly of silicatic nature. The tests performed on the sawing sludge are the following: particle size analysis, chemical analysis, wet magnetic separation, diffraction and SEM analysis. The study performed is useful for evaluating the possible reuses of the products coming from the magnetic separation: the metal fraction, and the mineral one. In order to avoid a

  2. Panorama Image Processing for Condition Monitoring with Thermography in Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byoung Joon; Kim, Tae Hwan; Kim, Soon Geol; Mo, Yoon Syub [UNETWARE, Seoul (Korea, Republic of); Kim, Won Tae [Kongju National University, Gongju (Korea, Republic of)

    2010-04-15

    In this paper, imaging processing study obtained from CCD image and thermography image was performed in order to treat easily thermographic data without any risks of personnel who conduct the condition monitoring for the abnormal or failure status occurrable in industrial power plants. This imaging processing is also applicable to the predictive maintenance. For confirming the broad monitoring, a methodology producting single image from the panorama technique was developed no matter how many cameras are employed, including fusion method for discrete configuration for the target. As results, image fusion from quick realtime processing was obtained and it was possible to save time to track the location monitoring in matching the images between CCTV and thermography

  3. Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review.

    Science.gov (United States)

    Ehlke, Sabine; Kirchner, Gerald

    2002-01-01

    Soil-to-plant transfer factors are commonly used to estimate the food chain transfer of radionuclides. Their definition assumes that the concentration of a radionuclide in a plant relates linearly solely to its average concentration in the rooting zone of the soil. However, the large range of transfer factors reported in the literature shows that the concentration of a radionuclide in a soil is not the only factor influencing its uptake by a plant. With emphasis on radiocesium and -strontium, this paper reviews the effects of competition with major ions present in the soil-plant system, the effects of rhizosphere processes and soil micro-organisms on bioavailability, the factors influencing transport to and uptake by roots and the processes affecting long-term uptake rates. Attention is given to summarizing the results of recent novel electrophysiological and genetic techniques which provide a physiologically based understanding of the processes involved in the uptake and translocation of radiocesium and -strontium by plants.

  4. Quantifying Ecological Memory of Plant and Ecosystem Processes in Variable Environments

    Science.gov (United States)

    Ogle, K.; Barron-Gafford, G. A.; Bentley, L.; Cable, J.; Lucas, R.; Huxman, T. E.; Loik, M. E.; Smith, S. D.; Tissue, D.

    2010-12-01

    Precipitation, soil water, and other factors affect plant and ecosystem processes at multiple time scales. A common assumption is that water availability at a given time directly affects processes at that time. Recent work, especially in pulse-driven, semiarid systems, shows that antecedent water availability, averaged over several days to a couple weeks, can be just as or more important than current water status. Precipitation patterns of previous seasons or past years can also impact plant and ecosystem functioning in many systems. However, we lack an analytical framework for quantifying the importance of and time-scale over which past conditions affect current processes. This study explores the ecological memory of a variety of plant and ecosystem processes. We use memory as a metaphor to describe the time-scale over which antecedent conditions affect the current process. Existing approaches for incorporating antecedent effects arbitrarily select the antecedent integration period (e.g., the past 2 weeks) and the relative importance of past conditions (e.g., assign equal or linearly decreasing weights to past events). In contrast, we utilize a hierarchical Bayesian approach to integrate field data with process-based models, yielding posterior distributions for model parameters, including the duration of the ecological memory (integration period) and the relative importance of past events (weights) to this memory. We apply our approach to data spanning diverse temporal scales and four semiarid sites in the western US: leaf-level stomatal conductance (gs, sub-hourly scale), soil respiration (Rs, hourly to daily scale), and net primary productivity (NPP) and tree-ring widths (annual scale). For gs, antecedent factors (daily rainfall and temperature, hourly vapor pressure deficit) and current soil water explained up to 72% of the variation in gs in the Chihuahuan Desert, with a memory of 10 hours for a grass and 4 days for a shrub. Antecedent factors (past soil water

  5. Methods for estimation of covariance matrices and covariance components for the Hanford Waste Vitrification Plant Process

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.; Simpson, D.B.

    1996-03-01

    The high-level waste (HLW) vitrification plant at the Hanford Site was being designed to transuranic and high-level radioactive waste in borosilicate class. Each batch of plant feed material must meet certain requirements related to plant performance, and the resulting class must meet requirements imposed by the Waste Acceptance Product Specifications. Properties of a process batch and the resultlng glass are largely determined by the composition of the feed material. Empirical models are being developed to estimate some property values from data on feed composition. Methods for checking and documenting compliance with feed and glass requirements must account for various types of uncertainties. This document focuses on the estimation. manipulation, and consequences of composition uncertainty, i.e., the uncertainty inherent in estimates of feed or glass composition. Three components of composition uncertainty will play a role in estimating and checking feed and glass properties: batch-to-batch variability, within-batch uncertainty, and analytical uncertainty. In this document, composition uncertainty and its components are treated in terms of variances and variance components or univariate situations, covariance matrices and covariance components for multivariate situations. The importance of variance and covariance components stems from their crucial role in properly estimating uncertainty In values calculated from a set of observations on a process batch. Two general types of methods for estimating uncertainty are discussed: (1) methods based on data, and (2) methods based on knowledge, assumptions, and opinions about the vitrification process. Data-based methods for estimating variances and covariance matrices are well known. Several types of data-based methods exist for estimation of variance components; those based on the statistical method analysis of variance are discussed, as are the strengths and weaknesses of this approach.

  6. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    Directory of Open Access Journals (Sweden)

    Q. Xin

    2015-02-01

    Full Text Available Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  7. Towards a plant-wide Benchmark Simulation Model with simultaneous nitrogen and phosphorus removal wastewater treatment processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Ikumi, David; Batstone, Damien

    . This extension aims at facilitating simultaneous carbon, nitrogen and phosphorus (P) removal process development and performance evaluation at a plant-wide level. The main motivation of the work is that numerous wastewater treatment plants (WWTPs) pursue biological phosphorus removal as an alternative...

  8. Activity of fuel batches processed through Hanford separations plants, 1944 through 1989

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, R.A.; Wootan, D.W.

    1997-07-29

    This document provides a printout of the ``Fuel Activity Database`` (version U6) generated by the Hanford DKPRO code and transmitted to the Los Alamos National Laboratory for input to their ``Hanford Defined Waste`` model of waste tank inventories. This fuel activity file consists of 1,276 records--each record representing the activity associated with a batch of spent reactor fuel processed by month (or shorter period) through individual Hanford separations plants between 1944 and 1989. Each record gives the curies for 46 key radionuclides, decayed to a common reference date of January 1, 1994.

  9. Instrumentation and process control for fossil demonstration plants. Quarterly technical progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    LeSage, L.G.

    1977-07-01

    Work has been performed on updating the study of the state-of-the-art of instrumentation for Fossil Demonstration Plants (FDP), development of mass-flow and other on-line instruments for FDP, process control analysis for FDP, and organization of a symposium on instrumentation and control for FDP. A Solids/Gas Flow Test Facility (S/GFTF) under construction for instrument development, testing, evaluation, and calibration is described. The development work for several mass-flow and other on-line instruments is described: acoustic flowmeter, capacitive density flowmeter, neutron activation flowmeter and composition analysis system, gamma ray correlation flowmeter, optical flowmeter, and capacitive liquid interface level meter.

  10. A Study on the Economics of Milk Processing in a Dairy Plant in Haryana

    OpenAIRE

    2006-01-01

    The economics of manufacturing of different dairy products, viz. ghee, full-cream milk, standardized milk, toned milk, double-toned milk, skimmed milk and ice-cream (processing only) have been reported. The study has been conducted in an ISO-9002 dairy plant situated in the north-eastern part of Haryana. It has been observed that all the products, except the double-toned milk are being produced above the recommended breakeven level. A comparison of unit manufacturing cost with unit price rece...

  11. CLE Peptides in Plants: Proteolytic Processing,Structure-Activity Relationship, and Ligand-Receptor Interaction

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Gao; Yongfeng Guo

    2012-01-01

    Ligand-receptor signaling initiated by the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) family peptides is critical in regulating cell division and differentiation in meristematic tissues in plants.Biologically active CLE peptides are released from precursor proteins via proteolytic processing.The mature form of CLE ligands consists of 12-13 amino acids with several post-translational modifications.This review summarizes recent progress toward understanding the proteolytic activities that cleave precursor proteins to release CLE peptides,the molecular structure and function of mature CLE ligands,and interactions between CLE ligands and corresponding leucine-rich repeat (LRR) receptor-like kinases (RLKs).

  12. Selected bibliography for the extraction of uranium from seawater: chemical process and plant design feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Binney, S.E.; Polkinghorne, S.T.; Jante, R.R.; Rodman, M.R.; Chen, A.C.T.; Gordon, L.I.

    1979-02-01

    A selected annotated bibliography of 521 references was prepared as a part of a feasibility study of the extraction of uranium from seawater. For the most part, these references are related to the chemical processes whereby the uranium is removed from the seawater. A companion docment contains a similar bibliography of 471 references related to oceanographic and uranium extraction plant siting considerations, although some of the references are in common. The bibliography was prepared by computer retrieval from Chemical Abstracts, Nuclear Science Abstracts, Energy Data Base, NTIS, and Oceanic Abstracts. References are listed by author, country of author, and selected keywords.

  13. Plant immunity induced by COS-OGA elicitor is a cumulative process that involves salicylic acid.

    Science.gov (United States)

    van Aubel, Géraldine; Cambier, Pierre; Dieu, Marc; Van Cutsem, Pierre

    2016-06-01

    Plant innate immunity offers considerable opportunities for plant protection but beside flagellin and chitin, not many molecules and their receptors have been extensively characterized and very few have successfully reached the field. COS-OGA, an elicitor that combines cationic chitosan oligomers (COS) with anionic pectin oligomers (OGA), efficiently protected tomato (Solanum lycopersicum) grown in greenhouse against powdery mildew (Leveillula taurica). Leaf proteomic analysis of plants sprayed with COS-OGA showed accumulation of Pathogenesis-Related proteins (PR), especially subtilisin-like proteases. qRT-PCR confirmed upregulation of PR-proteins and salicylic acid (SA)-related genes while expression of jasmonic acid/ethylene-associated genes was not modified. SA concentration and class III peroxidase activity were increased in leaves and appeared to be a cumulative process dependent on the number of sprayings with the elicitor. These results suggest a systemic acquired resistance (SAR) mechanism of action of the COS-OGA elicitor and highlight the importance of repeated applications to ensure efficient protection against disease.

  14. A review for identification of initiating events in event tree development process on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Riyadi, Eko H., E-mail: e.riyadi@bapeten.go.id [Center for Regulatory Assessment of Nuclear Installation and Materials, Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada 8 Jakarta 10120 (Indonesia)

    2014-09-30

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.

  15. Evaluation of fungal burden of medicinal plants submitted to gamma radiation process after 30 days

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Simone; Araujo, Michel M.; Villavicencio, A.L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes]. E-mail: siaq06@hotmail.com; Goncalez, Edlayne; Reis, Tatiana A. dos; Correa, Benedito [Universidade de Sao Paulo, SP (Brazil). Inst. de Ciencias Biomedicas. Dept. de Microbiologia]. E-mail: correabe@usp.br

    2007-07-01

    Forty samples of medicinal plants (Peumus boldus, Camellia sinensis, Maytenus ilicifolia and Cassia angustifolia), purchased from pharmacies and street market in the five cities of Sao Paulo State, were irradiated using a {sup 60}Co gamma ray source (Gammacell) with a dose of 10.0 kGy, delivered at dose rate of 3.0 kGy/h. Nonirradiated samples were used as controls of fungal isolates. For fungal counts and identification in medicinal plants a serial dilutions from 10{sup -1} to 10{sup -6} of the samples were seeded in duplicates and plated using the method in Dichloran 18% Glycerol Agar (DG 18) and were counted after five days at 25 deg C. Mycological analysis of control samples revealed the presence of genera Aspergillus and Penicillium, which are known as toxigenic fungi. The process of gamma radiation was effective in reducing the number of colony forming units (cfu/g) in all irradiated samples of medicinal plants after 30 days, using the dose of 10.0 kGy and kept of veiled conditions. (author)

  16. NATURE OF WAVE PROCESSES AND THEIR INTERACTION WITH Tidal power PLANTS

    Directory of Open Access Journals (Sweden)

    Alekseeva Ol'ga Aleksandrovna

    2012-07-01

    Full Text Available The author examines the nature of wave processes and their impact on the operation of tidal power plants. The article also has an overview of both operating and prospective tidal power plants in Russia and worldwide. Patterns of tidal fluctuations and the intensity of their driving forces are also considered in the article. The author discloses the origin of tides in terms of elementary physics and hydraulics. The author covers various aspects of formation of different types of inequality of tides caused by alterations in the mutual positions of the Sun and the Moon in relation to the Earth, variable declination of tide-generating luminaries (the Sun and the Moon in relation to the plane of the Earth equator, and variable distance between the luminaries and the Earth. The author analyzes wave-related phenomena, including refraction, diffraction and interference, their origin and influence onto the properties of waves. The author also covers the origin of advancing and standing waves, or waves of mixed origin, and the impact of the wind onto the characteristics of wave fluctuations. The author provides suggestions regarding potential methods of their control that can affect the essential concept of construction of tidal power plants.

  17. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process.

    Science.gov (United States)

    Jia, Yuying; Yao, Xingdong; Zhao, Mingzhe; Zhao, Qiang; Du, Yanli; Yu, Cuimei; Xie, Futi

    2015-01-01

    The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.

  18. Possible use of a 3-D clinostat to analyze plant growth processes under microgravity conditions.

    Science.gov (United States)

    Hoson, T; Kamisaka, S; Buchen, B; Sievers, A; Yamashita, M; Masuda, Y

    1996-01-01

    A three-dimensional (3-D) clinostat equipped with two rotation axes placed at right angles was constructed, and various growth processes of higher plants grown on this clinostat were compared with ground controls, with plants grown on the conventional horizontal clinostat, and with those under real microgravity in space. On the 3-D clinostat, cress roots developed a normal root cap and the statocytes showed the typical polar organization except a random distribution of statoliths. The structural features of clinostatted statocytes were fundamentally similar to those observed under real microgravity. The graviresponse of cress roots grown on the 3-D clinostat was the same as the control roots. On the 3-D clinostat, shoots and roots exhibited a spontaneous curvature as well as an altered growth direction. Such an automorphogenesis was sometimes exaggerated when plants were subjected to the horizontal rotation, whereas the curvature was suppressed on the vertical rotation. These discrepancies in curvature between the 3-D clinostat and the conventional ones appear to be brought about by the centrifugal force produced. Thus, the 3-D clinostat was proven as a useful device to simulate microgravity.

  19. Coal treatment and thermal process used at Tasajero thermoelectrical plant, Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Urhan, M. (Universidad del Valle, Cali (Colombia). Dept. de Fisica)

    1993-06-01

    Five coal thermoelectric plants generate 8% of the total electricity in Colombia. The negotiations with Banco Interamericano de Desarrollo (BID) to get financial aid for national electrical system resulted in an agreement on the carrying on a program for the treatment and disposition of the ashes produced by combustion of the pulverized coal. This study was asked by ICEL from Universidad del Valle and, at present, its first part has been concluded. This program is very important for Columbia. Indeed, the objective is to supervise, for all electric running plants, the quality and storage of the ashes not to produce environmental pollution. This article presents the diagnosis of the way how Tasajero Thermoelectrical Plant works regarding to the fuel and its thermal processing. In accordance with the diagnosis, recommendations are presented in order to improve the combustion and the quality of the ashes. The definite measures regarding to the disposition and storage of ashes, and their adaptability to industrial uses, will be the subject of this study in its final phase. 7 refs., 5 figs., 1 tab.

  20. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schwartz

    2004-12-01

    This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion

  1. Using Process Load Cell Information for IAEA Safeguards at Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL; Whitaker, J Michael [ORNL; Howell, John [University of Glasgow

    2010-01-01

    Uranium enrichment service providers are expanding existing enrichment plants and constructing new facilities to meet demands resulting from the shutdown of gaseous diffusion plants, the completion of the U.S.-Russia highly enriched uranium downblending program, and the projected global renaissance in nuclear power. The International Atomic Energy Agency (IAEA) conducts verification inspections at safeguarded facilities to provide assurance that signatory States comply with their treaty obligations to use nuclear materials only for peaceful purposes. Continuous, unattended monitoring of load cells in UF{sub 6} feed/withdrawal stations can provide safeguards-relevant process information to make existing safeguards approaches more efficient and effective and enable novel safeguards concepts such as information-driven inspections. The IAEA has indicated that process load cell monitoring will play a central role in future safeguards approaches for large-scale gas centrifuge enrichment plants. This presentation will discuss previous work and future plans related to continuous load cell monitoring, including: (1) algorithms for automated analysis of load cell data, including filtering methods to determine significant weights and eliminate irrelevant impulses; (2) development of metrics for declaration verification and off-normal operation detection ('cylinder counting,' near-real-time mass balancing, F/P/T ratios, etc.); (3) requirements to specify what potentially sensitive data is safeguards relevant, at what point the IAEA gains on-site custody of the data, and what portion of that data can be transmitted off-site; (4) authentication, secure on-site storage, and secure transmission of load cell data; (5) data processing and remote monitoring schemes to control access to sensitive and proprietary information; (6) integration of process load cell data in a layered safeguards approach with cross-check verification; (7) process mock-ups constructed to provide

  2. Bench-scale development of coal/oil co-processing technology conceptual commercial plant design and economics

    Energy Technology Data Exchange (ETDEWEB)

    Duddy, J.E.; Pramanik, M.S.; Popper, G.A.

    1990-09-01

    The goal of this project is to expand the data base for Hydrocarbon Research, Inc. Coal/Oil Co-Processing Technology and to allow for process optimization. The specific objectives are to: define process performance at commerically viable catalyst cost and activity levels; determine the dependence of process performance on changes in feedstock characteristics; improve effectiveness of catalyst system; expand data base to include other coals and petroleum feedstocks; update economic assessments. This topical report describes work performed by HRI on a conceptual commercial plant designed for a co-processing unit and economic screening studies based on this conceptual plant design. 21 figs., 39 tabs.

  3. Integrated coal preparation and CWF processing plant: Conceptual design and costing

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Paul, A.D.; Bartis, J.T. (Science Applications International Corp., McLean, VA (United States)); Korkmaz, M. (Roberts and Schaefer Co., Salt Lake City, UT (United States))

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m[mu] for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  4. Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Paul, A.D.; Bartis, J.T. [Science Applications International Corp., McLean, VA (United States); Korkmaz, M. [Roberts and Schaefer Co., Salt Lake City, UT (United States)

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  5. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    Science.gov (United States)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    The objective of drying medicinal plants is to extend the shelf life and conserving the fresh characteristics. This is achieved by reducing the water activity (aw) of the product to a value which will inhibit the growth and development of pathogenic and spoilage microorganisms, significantly reducing enzyme activity and the rate at which undesirable chemical reactions occur. The technical drying process requires an enormous amount of thermal and electrical energy. An improvement in the quality of the product to be dried and at the same time a decrease in the drying cost and time are achieved through the utilization of a controlled conventional drying method, which is based on a good utilization of the renewable energy or looking for other alternatives which achieve lower processing times without sacrificing the final product quality. In this work the method of stepwise drying of medicinal plants is presented as an alternative to the conventional drying that uses a constant temperature during the whole process. The objective of stepwise drying is the decrease of drying time and reduction in energy consumption. In this process, apart from observing the effects on decreases the effective drying process time and energy, the influence of the different combinations of drying phases on several characteristics of the product are considered. The tests were carried out with Melissa officinalis L. variety citronella, sowed in greenhouse. For the stepwise drying process different combinations of initial and final temperature, 40/50°C, are evaluated, with different transition points associated to different moisture contents (20, 30, 40% and 50%) of the product during the process. Final quality of dried foods is another important issue in food drying. Drying process has effect in quality attributes drying products. This study was determining the color changes and essential oil loses by reference the measurement of the color and essential oil content of the fresh product was

  6. Anaerobic digestion of slaughterhouse by-products

    DEFF Research Database (Denmark)

    Hejnfelt, Anette; Angelidaki, Irini

    2009-01-01

    flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497,487, 561, 582, 575, 359, 619 dm(3) kg(-1) respectively, corresponding to 50-100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions......Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 degrees C and for some experiments also at 37 degrees C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone...

  7. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    2005-09-01

    This DOE Industrial Program case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho.

  8. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant (Steam)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    This DOE Industrial Program case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho.

  9. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    2005-09-01

    This DOE Industrial Program case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho.

  10. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant (Steam)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    This DOE Industrial Program case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho.

  11. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru [National Research University “Moscow State University of Civil Engineering,” (Russian Federation)

    2017-03-15

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  12. Adjustment of automatic control systems of production facilities at coal processing plants using multivariant physico- mathematical models

    Science.gov (United States)

    Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.

    2016-10-01

    The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.

  13. Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Shirey; David J. Akers

    2005-12-31

    With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

  14. ENERGY SLUDGE PROCESSING IN A SEPARATE WASTEWATER TREATMENT PLANT DIGESTER POMORZANY IN SZCZECIN

    Directory of Open Access Journals (Sweden)

    Anna Iżewska

    2016-06-01

    Full Text Available Pomorzany Sewage Treatment Plant in Szczecin ensures the required parameters of treated sewage. However, due to higher efficiency of sewage treatment, more sludge is produced after the treatment process. In the examined sludge treatment plant, primary sludge is gravitationally thickened to the content of about 5% of dry matter, and the excessive is thickened in mechanical compactors up to 6% of dry matter. Settlements preliminary and excessive after compaction is discharged to the sludge tank where a pump is forced into two closed digesters. Each digester has the capacity of 5069 m3. At a temperature of about 37 °C a mesophilic digestion is performed. Biogas, that is produced in the chamber, is stored in two-coat tanks with the capacity of 1500 m3 each and after desulphurization with the biosulfex method (which results with obtaining elemental sulphur it is used as fuel in cogeneration units. The aim of this study was to determine amount of energy given by sewage sludge in the form of heat during the process of methane digestion (primary and excessive. These amounts were determined on the basis of chemical energy balance of sewage carried into and out of Separate Sludge Digesters and produced biogas within 24h. The study determined that the percentage value of average chemical energy amount turned into heat and discharged with produced methane in relation to chemical energy of sewage carried into the first digester in Pomorzany Treatment Plant in Szczecin was in the range of 47.86 ± 9.73% for a confidence level of 0.95. On average 80.86 ± 33.65% was emitted with methane and 19.14 ± 33.65% of energy was changed into heat.

  15. Investigation of antiradical activity of plant material by thin-layer chromatography with image processing.

    Science.gov (United States)

    Olech, Marta; Komsta, Łukasz; Nowak, Renata; Cieśla, Łukasz; Waksmundzka-Hajnos, Monika

    2012-05-01

    A novel, easy, and cheap technique for preliminary quantitative evaluation of antiradical activity, based on HPTLC, has been proposed. This method combines chromatographic separation of polar compounds, present in plant extracts, with data analysis by means of image processing software. Bleaching of the purple DPPH colour, caused by substances with antiradical activity, was observed and recorded using a photo camera. ImageJ, a free and open source image processing program was used for quantitative measurements. For evaluation of assay efficiency, the antiradical activity of rose flower extracts (from Rosa rugosa Thunb.) was expressed as Standard Activity Coefficients (SACs), which are relative measures of the activity to the four well known antioxidants; i.e., quercetin, gallic acid, protocatechuic acid, and Trolox. The method uses small amounts of free radical and is easily applicable - only a digital camera with freely available open source software is required.

  16. Some Working Parameters and Energy Use in a Pistachio Nut Processing Plant: A Case Study

    Science.gov (United States)

    Polat, Refik; Erol Ak, Bekir; Acar, Izzet

    This study was performed with the objective to investigate the work process, work capacity, work effectiveness, energy consumption and labor force requirements of basic units such as washing, dehulling, sorting, separating, roasting and packing in a pistachio processing plant which has been mechanized in the last years. As a result of this study, the work capacity in washing, sorting, breaking, drying, separating units was found to be 1.5, 1.5, 2, 1, 1.6 t h-1, respectively. The work effectiveness in sorting and breaking units was found to be 95% and that of separating unit was 99%. The total energy consumption of the units was found to be 20.42 kW h-1 and the total labor force requirement was found to be five workers.

  17. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    Directory of Open Access Journals (Sweden)

    Jordanowska Joanna

    2014-12-01

    Full Text Available The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity. The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater.

  18. Microbial assessment of an upward and downward dehiding technique in a commercial beef processing plant.

    Science.gov (United States)

    Kennedy, Thomas G; Giotis, Efstathios S; McKevitt, Aideen I

    2014-08-01

    Preventing microbial contamination during dehiding is challenging, and skinning methods are of critical importance for the hygienic status of beef carcasses. Two skinning methods are usually employed: upward hide pulling (UHP) and downward hide pulling (DHP). This study has compared the microbiological contamination of carcasses using both systems in a beef processing plant in the process of changing its dehiding method from UHP to DHP. 100 cm(2) areas from eight carcass sites (ham, chuck, rump, bung, flank, brisket, shin and neck) were sampled on 36 skinned carcasses dehided by each technique. Total viable counts (TVCs) and Enterobacteriaceae counts for each site were determined. No significant differences were observed in total (pooled-samples) carcass contamination regardless of the method used. However, significant differences (pHACCP pre-requisite programmes, and are not necessarily associated with the skinning method per se.

  19. Instrumentation and process control for fossil demonstration plants. Annual technical progress report, October 1976--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    LeSage, L. G.; O' Fallon, N. M.

    1977-10-01

    Progress on Instrumentation and Process Control for Fossil Demonstration Plants (FDP) is reported. Work has been performed on updating the study of the state-of-the-art of instrumentation for FDP, development of mass-flow and other on-line instruments for FDP, process control analysis for FDP, and organization of a symposium on instrumentation and control for FDP. A Solids/Gas Flow Test Facility (S/GFTF) under construction for instrument development, testing, evaluation, and calibration is described. The development work for several mass-flow and other on-line instruments is described: acoustic flowmeter, capacitive density flowmeter, neutron activation flowmeter, gamma ray correlation flowmeter, optical flowmeter, composition analysis system, and capacitive liquid interface level meter.

  20. Demonstrating compliance with WAPS 1.3 in the Hanford waste vitrification plant process

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.; Simpson, D.B.

    1996-03-01

    The high-level waste (HLW) vitrification plant at the Hanford Site was being designed to immobilize transuranic and high-level radioactive waste in borosilicate glass. This document describes the statistical procedure to be used in verifying compliance with requirements imposed by Section 1.3 of the Waste Acceptance Product Specifications (WAPS, USDOE 1993). WAPS 1.3 is a specification for ``product consistency,`` as measured by the Product Consistency Test (PCT, Jantzen 1992b), for each of three elements: lithium, sodium, and boron. Properties of a process batch and the resulting glass are largely determined by the composition of the feed material. Empirical models are being developed to estimate some property values, including PCT results, from data on feed composition. These models will be used in conjunction with measurements of feed composition to control the HLW vitrification process and product.

  1. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  2. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    Science.gov (United States)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  3. The role of lipid post-translational modification in plant developmental processes

    Directory of Open Access Journals (Sweden)

    Mark Paul Running

    2014-02-01

    Full Text Available Most eukaryotic proteins are post-translationally modified, and modification has profound effects on protein function. One key modification is the attachment of a lipid group to certain amino acids; this typically facilitates subcellular targeting (association with a membrane and protein-protein interactions (by virtue of the large hydrophobic moiety. Most widely recognized are lipid modifications of proteins involved in developmental signaling, but proteins with structural roles are also lipid-modified. The three known types of intracellular protein lipid modifications are S-acylation, N-myristoylation, and prenylation. In plants, genetic analysis of the enzymes involved, along with molecular analysis of select target proteins, has recently shed light on the roles of lipid modification in key developmental processes, such as meristem function, flower development, polar cell elongation, cell differentiation, and hormone responses. In addition, while lipid post-translational mechanisms are generally conserved among eukaryotes, plants differ in the nature and function of target proteins, the effects of lipid modification on target proteins, and the roles of lipid modification in developmental processes.

  4. Increasing the capacity of the NEAG natural gas processing plants; Kapazitaetssteigerung der Erdgasaufbereitungsanlagen der NEAG

    Energy Technology Data Exchange (ETDEWEB)

    Rest, W.; Weiss, A. [Mobil Erdgas-Erdoel GmbH, Celle (Germany)

    1998-12-31

    The fact that new deposits of sour natural gas were found in the concessions at Scholen/Wesergebirgsvorland and that a sour gas pipeline was built from the BEB-operated field in South-Oldenburg increased the sour gas volume handled by the North German Natural Gas Processing Company (NEAG) so much, that capacities had to be stepped up. This paper describes the measures taken to increase capacities. Various interesting process engineering methods employed to remove bottlenecks in the parts of the plant are described in detail. These refer to the modification of the baffle plates in the high-pressure absorber of the Purisolwashers NEAG I, as well as in the expansion tank and the purified gas waher of the NEAG III washing plant as well as comprehensive modifications of the MODOP-flue gas scrubber NEAG III (orig.) [Deutsch] Neue Sauergasfunde in den Konzessionen Scholen/Wiehengebirgsvorland sowie der Bau der Sauergasverbindungsleitung aus dem von BEB operierten Feldesbereich Sued-Oldenburg haben die der Norddeutschen Erdgas-Aufbereitungsgesellschaft (NEAG) in Voigtei angebotenen Sauergasmengen soweit erhoeht, dass eine Kapazitaetserhoehung notwendig wurde. Im Rahmen des Vortrages werden die Massnahmen zur Kapazitaetssteigerung vorgestellt. Einige verfahrenstechnisch besonders interessante Loesungen zur Beseitigung von Engpaessen in Anlagenteilen werden detailliert beschrieben. Es handelt sich hierbei um die Modifikation der Einbauten im Hochdruckabsorber der Purisolwaesche NEAG I, im Entspannungsbehaelter und Reingaswaescher der Waesche NEAG III sowie umfangreiche Aenderungen im Bereich der MODOP-Abgasreinigungsanlage NEAG III. (orig.)

  5. Relationship between Listeria monocytogenes and Listeria spp. in seafood processing plants.

    Science.gov (United States)

    Alali, Walid Q; Schaffner, Donald W

    2013-07-01

    The objective of this study was to evaluate the relationship between prevalence of Listeria monocytogenes as an outcome and Listeria spp. as an explanatory variable by food products, food contact surfaces, and nonfood contact surfaces in seafood processing plants by using peer-reviewed published data. Nine sets of prevalence data of L. monocytogenes and Listeria spp. were collected from published studies and used for the analyses. Based on our analysis, the relationship between L. monocytogenes prevalence and Listeria spp. prevalence in food products (incoming raw materials and finish products) was significant (P = 0.04) with (low) R² = 0.36. Furthermore, Listeria spp. were not a good indicator for L. monocytogenes when testing food contact surfaces (R² = 0.10). Listeria spp. were a good indicator for L. monocytogenes only on nonfood contact surfaces (R² = 0.90). On the other hand, the presence of Listeria spp. on food contact surfaces (R² = 0.002) and nonfood contact surfaces (R² = 0.03) was not a good indicator for L. monocytogenes presence in food products. In general, prevalence of Listeria spp. does not seem to be a good indicator for L. monocytogenes prevalence in seafood processing plants.

  6. Understanding knowledge transfer in an ergonomics intervention at a poultry processing plant.

    Science.gov (United States)

    Antle, David M; MacKinnon, Scott N; Molgaard, John; Vézina, Nicole; Parent, Robert; Bornstein, Stephen; Leclerc, Louise

    2011-01-01

    This case study reviews the knowledge transfer (KT) process of implementing a knife sharpening and steeling program into a poultry processing plant via a participatory ergonomics intervention. This ergonomics intervention required stakeholder participation at the company level to move a 'train-the-trainer' program, developed in Québec, Canada, into action on the plant's deboning line. Communications and exchanges with key stakeholders, as well as changes in steeling and production behaviours were recorded. The intervention was assumed to be at least partially successful because positive changes in work operations occurred. Ergonomic-related changes such as those documented have been cited in the academic literature as beneficial to worker health. However, several components cited in literature that are associated with a successful participatory ergonomics intervention were not attained during the project. A Dynamic Knowledge Transfer Model was used to identify KT issues that impacted on the success of train-the-trainer program. A debriefing analysis reveals that a failure to consider key participatory ergonomics factors necessary for success were related to capacity deficits in the knowledge dissemination strategy.

  7. Microbiological evaluation of food contact surfaces at red meat processing plants in Istanbul, Turkey

    Directory of Open Access Journals (Sweden)

    Serkan Kemal Büyükünal

    2010-01-01

    Full Text Available A microbial survey was performed for different red meat processing plants produces retail cuts and ground beef in Istanbul, Turkey. Swab samples from 10 cm2 of surface were obtained from food contact surfaces and environmental surfaces. Total mesophilic aerobic count (TMC, coliform count (CC, Escherichia coli count (ECC and Escherichia coli O157:H7 were determined for each sample. Average surface counts for TMC from floor, wall, food contact surfaces were between 2.71 to 3.15 log10 CFU / cm2, 0.69 to 1.56 log10 CFU/cm2 , 2.23 to 3.0 log10CFU/cm2 respectively. Coliforms and Escherichia coli were determined from floor and food contact surfaces. Samples taken from four different wall were negative for Escherichia coli. Any E. coli O157:H7counts were observed at the samples. Microbial testing for red meat processing plants is one of the most important subject for identifying and monitoring potential hazards as part of HACCP and GMP programs.

  8. Characterisation of Staphylococcus aureus isolated from meat processing plants – a preliminary study

    Directory of Open Access Journals (Sweden)

    Kizerwetter-Świda Magdalena

    2016-12-01

    Full Text Available Introduction: Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA belonging to the clonal complex 398 (CC398 emerged recently in livestock as a new type of MRSA, which may cause zoonotic infections. This study presents data on the characterisation of S. aureus isolated from the meat processing plants. Material and Methods: S. aureus was isolated from 90 samples collected in the raw meat warehouse, from devices and surfaces of meat processing plants, and from finished meat products. The isolates were subjected to molecular analysis in order to investigate the presence of enterotoxin genes, the mecA gene, and to verify whether they belong to the clonal complex 398. The genetic relatedness of the isolates was determined using pulsed-field electrophoresis. Likewise, antimicrobial susceptibility was tested. Results: From 21 S. aureus strains isolated, five belonged to the CC398, two of which were recognised as MRSA and three as methicillin-sensitive Staphylococcus aureus (MSSA. The most prevalent enterotoxin genes were seg and sei. Two MRSA CC398 isolates, three MSSA CC398, and one MSSA were classified as multidrug-resistant. Conclusion: The first isolation of MSSA CC398 from beef in Poland indicates contamination of beef by strains belonging to this clonal complex. The occurrence of multidrug-resistant enterotoxigenic S. aureus isolates in the finished meat products constitutes a potential risk for the consumers.

  9. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process.

    Science.gov (United States)

    Zeng, Xi; Shao, Ruyi; Wang, Fang; Dong, Pengwei; Yu, Jian; Xu, Guangwen

    2016-04-01

    A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 °C and 850 °C, the heating value of fuel gas can reach 1200 kcal/Nm(3), and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process.

  10. Ecotoxicological and chemical characterization of selected treatment process effluents of municipal sewage treatment plant.

    Science.gov (United States)

    Wang, Chunxia; Wang, Yi; Kiefer, F; Yediler, A; Wang, Zijian; Kettrup, A

    2003-10-01

    The triolein-containing semipermeable membrane devices (SPMDs) were deployed for 4 weeks in a sewage treatment plant in Beijing, China, to sample and concentrate priority hydrophobic organic pollutants in a sewage treatment process. The chemical analyses and ecotoxicities of the residuals of SPMDs dialysate were examined. The data from the chemical analyses by gas chromatography-mass spectrometry selected ion monitoring mode indicated the lower removal for polychlorinated biphenyls (PCB) congeners and polycyclic aromatic hydrocarbons (PAHs) coincided with the persistence of them in the environment. The acute toxicity examined by bioluminescence test with Vibrio fischeri revealed approximately only 20% decrease in the overall toxicity of the influent after the activate sludge treatment process. The ethoxy resorufin-O-deethylase (EROD) induction with a micro-EROD assay in vitro using H4-IIE rat hepatoma cell cultures demonstrated the presence of persistent organics in influent and sequency effluents. Results obtained suggested that integration of the SPMD technique and chemical analyses and bioassay might be a valuable approach for the risk assessment of hydrophobic organic pollutants in water ecosystem. It revealed the necessity for organic pollutants monitoring and ecotoxicities examining of sewage treatment plants.

  11. Evaluation of radioactive emissions of lignite-fired power plants in Turkey using the Analytic Hierarchy Process

    Energy Technology Data Exchange (ETDEWEB)

    Bueke, Tayfun [Mugla Sitki Kocman Univ., Mugla (Turkey). Dept. of Energy Systems Engineering

    2013-11-15

    Radioactive emissions of 13 lignite-fired power plants in Turkey are of great concern to the public and to scientists alike. The purpose of this study is to evaluate these power plants, according to their radioactive emissions by using the Analytic Hierarchy Process. Control criteria are in particular {sup 226}Ra, {sup 232}Th, {sup 40}K and {sup 238}U emissions from the power plants. These control criteria are weighted according to the objective assessment. The calculations are repeated for three different objective assessments of control criteria namely the mortality risk coefficients for inhalation, ingestion, external exposure of {sup 226}Ra, {sup 232}Th, {sup 40}K and {sup 238}U. It has been calculated that the Can lignite-fired power plant is ranking first while the Soma-B plant is ranking last according to the radioactive emissions of the power plants when the average of three different objective control criteria are used in the calculations. (orig.)

  12. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods.

    Science.gov (United States)

    Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro

    2017-06-13

    Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.

  13. The chemistry of tributyl phosphate at elevated temperatures in the Plutonium Finishing Plant Process Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.; Cooper, T.D.

    1994-06-01

    Potentially violent chemical reactions of the tributyl phosphate solvent used by the Plutonium Finishing Plant at the Hanford Site were investigated. There is a small probability that a significant quantity of this solvent could be accidental transferred to heated process vessels and react there with nitric acid or plutonium nitrate also present in the solvent extraction process. The results of laboratory studies of the reactions show that exothermic oxidation of tributyl phosphate by either nitric acid or actinide nitrates is slow at temperatures expected in the heated vessels. Less than four percent of the tributyl phosphate will be oxidized in these vented vessels at temperatures between 125{degrees}C and 250{degrees}C because the oxidant will be lost from the vessels by vaporization or decomposition before the tributyl phosphate can be extensively oxidized. The net amounts of heat generated by oxidation with concentrated nitric acid and with thorium nitrate (a stand-in for plutonium nitrate) were determined to be about -150 and -220 joules per gram of tributyl phosphate initially present, respectively. This is not enough heat to cause violent reactions in the vessels. Pyrolysis of the tributyl phosphate occurred in these mixtures at temperatures of 110{degrees}C to 270{degrees}C and produced mainly 1-butene gas, water, and pyrophosphoric acid. Butene gas generation is slow at expected process vessel temperatures, but the rate is faster at higher temperatures. At 252{degrees}C the rate of butene gas generated was 0.33 g butene/min/g of tributyl phosphate present. The measured heat absorbed by the pyrolysis reaction was 228 J/g of tributyl phosphate initially present (or 14.5 kcal/mole of tributyl phosphate). Release of flammable butene gas into process areas where it could ignite appears to be the most serious safety consideration for the Plutonium Finishing Plant.

  14. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-12-31

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  15. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1993-11-01

    There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

  16. Innovative oxy-coal combustion process suitable for future and more efficient zero emission power plants

    Energy Technology Data Exchange (ETDEWEB)

    Benelli, G.; Malavasi, M.; Girardi, G. [ENEL Ricerca (Italy)

    2007-07-01

    The problem with CO{sub 2} capture from a flue gas stream is related to its low concentration, which makes the process of separation very energy-intensive, complex and, as a result, expensive. The CO{sub 2} separation process can be optimized by increasing the concentration of CO{sub 2} and reducing nitrogen concentration in the stream as it happens, in the oxy-fuel combustion process. In such a case, the oxidant flow is typically a mixture of oxygen, steam and carbon dioxide, with a very low concentration of nitrogen. Since the oxy-combustion process leads to very high temperatures, flue gases must be circulating through the chemical reactor to keep the combustion adiabatic temperature below acceptable values, due to the limits imposed by material resistance. This paper focuses on an innovative oxy-coal combustion process named ISOTHERM{reg_sign}, based on a flameless combustion technique which is mentioned in recent literature also as 'Mild' combustion. The combustion process takes place within a pressurized and refractory-lined furnace, approaching temperatures close to 2000 K. The process has been experienced at pressurized conditions up to 4 bar on a 5 MW pilot plant for thousands of hours. In this paper, starting from a detailed description of the process, results obtained by the preliminary experimental tests are presented and discussed. Then, a development and demonstration program to assess the suitability of this technology for zero emission power generation at large scale in one of the units of Brindisi power station is presented. 10 refs., 5 figs., 2 tabs.

  17. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...

  18. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...

  19. Relative importance of deterministic and stochastic processes in driving arbuscular mycorrhizal fungal assemblage during the spreading of a toxic plant.

    Science.gov (United States)

    Shi, Guoxi; Liu, Yongjun; Mao, Lin; Jiang, Shengjing; Zhang, Qi; Cheng, Gang; An, Lizhe; Du, Guozhen; Feng, Huyuan

    2014-01-01

    Both deterministic and stochastic processes are expected to drive the assemblages of arbuscular mycorrhizal (AM) fungi, but little is known about the relative importance of these processes during the spreading of toxic plants. Here, the species composition and phylogenetic structure of AM fungal communities colonizing the roots of a toxic plant, Ligularia virgaurea, and its neighborhood plants, were analyzed in patches with different individual densities of L. virgaurea (represents the spreading degree). Community compositions of AM fungi in both root systems were changed significantly by the L. virgaurea spreading, and also these communities fitted the neutral model very well. AM fungal communities in patches with absence and presence of L. virgaurea were phylogenetically random and clustered, respectively, suggesting that the principal ecological process determining AM fungal assemblage shifted from stochastic process to environmental filtering when this toxic plant was present. Our results indicate that deterministic and stochastic processes together determine the assemblage of AM fungi, but the dominant process would be changed by the spreading of toxic plants, and suggest that the spreading of toxic plants in alpine meadow ecosystems might be involving the mycorrhizal symbionts.

  20. Relative importance of deterministic and stochastic processes in driving arbuscular mycorrhizal fungal assemblage during the spreading of a toxic plant.

    Directory of Open Access Journals (Sweden)

    Guoxi Shi

    Full Text Available Both deterministic and stochastic processes are expected to drive the assemblages of arbuscular mycorrhizal (AM fungi, but little is known about the relative importance of these processes during the spreading of toxic plants. Here, the species composition and phylogenetic structure of AM fungal communities colonizing the roots of a toxic plant, Ligularia virgaurea, and its neighborhood plants, were analyzed in patches with different individual densities of L. virgaurea (represents the spreading degree. Community compositions of AM fungi in both root systems were changed significantly by the L. virgaurea spreading, and also these communities fitted the neutral model very well. AM fungal communities in patches with absence and presence of L. virgaurea were phylogenetically random and clustered, respectively, suggesting that the principal ecological process determining AM fungal assemblage shifted from stochastic process to environmental filtering when this toxic plant was present. Our results indicate that deterministic and stochastic processes together determine the assemblage of AM fungi, but the dominant process would be changed by the spreading of toxic plants, and suggest that the spreading of toxic plants in alpine meadow ecosystems might be involving the mycorrhizal symbionts.

  1. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  2. Preserving high-protein fish by-products through silages and fermentates

    Science.gov (United States)

    n Alaska, over three million metric tons of fish by-products are generated each year. However, due to the remote locations and seasonal nature of salmon fisheries, by-products are generally not fully utilized unless a fish meal plant is located nearby. Acidification is a common method for inhibiting...

  3. Listeria monocytogenes persistence in ready-to-eat sausages and in processing plants

    Directory of Open Access Journals (Sweden)

    Anna Mureddu

    2014-02-01

    Full Text Available Listeria monocytogenes is of major concern in the fermented meat products and is able to persist in their processing environments. The aim of the present work was to evaluate the virulence profile and the persistence capacity of L. monocytogenes strains isolated in Sardinian fermented sausages processing plants. Food (ground meat, sausages at the end of acidification and ripening stage and environmental samples (a total of n. 385, collected from 4 meat processing plants located in Sardinia (Italy, were examined to detect L. monocytogenes presence. All the L. monocytogenes isolates were identified by polymerase chain reaction (PCR method. A subset of strains was also characterised by multiplex PCR-based serogrouping, using the lmo0737, lmo1118, ORF2819 and ORF2110 genes. Three different multiplex PCRs were used to obtain the virulence profiles by the rrn, hlyA, actA, prfA, inlA, inlB, iap, plcA, plcB and mpl marker genes. Furthermore, in vitro biofilm forming ability and resistance to disinfectants were carried out on microtiter plate. The overall prevalence was 31.5% in food, and 68.5% in environmental samples. The prevalent serotype resulted 1/2c (43%, followed by 1/2a (40%, 4b (8.6%, and 1/2b (8.6%. The amplification products of the virulence genes were found in all the isolates with the following prevalence: 77.1% hlyA; 100% rrn; 100% prfA; 97.1% iap; 65.7% inlB; 88.6% inlA; 100% plcA; 100% plcB and 74.3% mpl. As for biofilm forming ability, 37.1% of the strains were positive and resulted weak producer, but all the isolates were sensible to disinfectants showing a reduction of L. monocytogenes growth after each incubation time. More appropriate technologies and application of measures of hygienic control should be implemented to prevent the L. monocytogenes growth and crosscontamination in salsiccia sarda processing plants.

  4. Listeria Monocytogenes Persistence in Ready-to-Eat Sausages and in Processing Plants

    Science.gov (United States)

    Mureddu, Anna; Mazza, Roberta; Fois, Federica; Meloni, Domenico; Bacciu, Roberto; Piras, Francesca

    2014-01-01

    Listeria monocytogenes is of major concern in the fermented meat products and is able to persist in their processing environments. The aim of the present work was to evaluate the virulence profile and the persistence capacity of L. monocytogenes strains isolated in Sardinian fermented sausages processing plants. Food (ground meat, sausages at the end of acidification and ripening stage) and environmental samples (a total of n. 385), collected from 4 meat processing plants located in Sardinia (Italy), were examined to detect L. monocytogenes presence. All the L. monocytogenes isolates were identified by polymerase chain reaction (PCR) method. A subset of strains was also characterised by multiplex PCR-based serogrouping, using the lmo0737, lmo1118, ORF2819 and ORF2110 genes. Three different multiplex PCRs were used to obtain the virulence profiles by the rrn, hlyA, actA, prfA, inlA, inlB, iap, plcA, plcB and mpl marker genes. Furthermore, in vitro biofilm forming ability and resistance to disinfectants were carried out on microtiter plate. The overall prevalence was 31.5% in food, and 68.5% in environmental samples. The prevalent serotype resulted 1/2c (43%), followed by 1/2a (40%), 4b (8.6%), and 1/2b (8.6%). The amplification products of the virulence genes were found in all the isolates with the following prevalence: 77.1% hlyA; 100% rrn; 100% prfA; 97.1% iap; 65.7% inlB; 88.6% inlA; 100% plcA; 100% plcB and 74.3% mpl. As for biofilm forming ability, 37.1% of the strains were positive and resulted weak producer, but all the isolates were sensible to disinfectants showing a reduction of L. monocytogenes growth after each incubation time. More appropriate technologies and application of measures of hygienic control should be implemented to prevent the L. monocytogenes growth and cross-contamination in salsiccia sarda processing plants. PMID:27800316

  5. Microbial reduction of SO[sub 2] and NO[sub x] as a means of by- product recovery/disposal from regenerable processes for the desulfurization of flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-01-01

    Based on the work described simultaneous SO[sub 2]/No[sub x] removal from flue gas based on direct contact of the gas with SRB and T. denitrificans co-cultures or cultures-in-series has been eliminated as a viable process concept at this time. The technical reasons are as follows: (1) NO inhibition of SO[sub 2] reduction by D. desulfuricans - Although the NO concentrations used in the experiments described above are somewhat higher than that found in a typical flue gas, it is quite possible that at lower NO concentrations (or partial pressures) the inhibiting effects will simply take longer to become apparent. (2) Nitrate suppression of NO removal - As noted previously, the cultivation of T. denitrificans in a microbial flue gas treatment system (either one or two stages) would require sulfide-limiting conditions. Therefore, the electron acceptor must be in excess, requiring nitrate in the T. denitrificans process culture. As shown in experiments described above, nitrate significantly suppresses the removal of NO from a feed gas making simultaneous SO[sub 2]/NO[sub x] removal impractical by microbial means. (3) O[sub 2] inhibition of SO[sub 2] and NO reduction - It has been demonstrated that D. desulfuricans working cultures are tolerant of up to 1.7% O[sub 2] in the feed gas. However, further increases in the O[sub 2] partial pressure in the feed gas resulted in O[sub 2] inhibition of SO[sub 2] reduction. These inhibiting levels of O[sub 2] are comparable to those concentrations found in flue gases (3). Therefore, in any process in which raw flue gas contacts a D. desulfuricans culture marginal stability at best can be expected.

  6. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by- product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, June 11, 1992--September 11, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-12-31

    Based on the work described simultaneous SO{sub 2}/No{sub x} removal from flue gas based on direct contact of the gas with SRB and T. denitrificans co-cultures or cultures-in-series has been eliminated as a viable process concept at this time. The technical reasons are as follows: (1) NO inhibition of SO{sub 2} reduction by D. desulfuricans - Although the NO concentrations used in the experiments described above are somewhat higher than that found in a typical flue gas, it is quite possible that at lower NO concentrations (or partial pressures) the inhibiting effects will simply take longer to become apparent. (2) Nitrate suppression of NO removal - As noted previously, the cultivation of T. denitrificans in a microbial flue gas treatment system (either one or two stages) would require sulfide-limiting conditions. Therefore, the electron acceptor must be in excess, requiring nitrate in the T. denitrificans process culture. As shown in experiments described above, nitrate significantly suppresses the removal of NO from a feed gas making simultaneous SO{sub 2}/NO{sub x} removal impractical by microbial means. (3) O{sub 2} inhibition of SO{sub 2} and NO reduction - It has been demonstrated that D. desulfuricans working cultures are tolerant of up to 1.7% O{sub 2} in the feed gas. However, further increases in the O{sub 2} partial pressure in the feed gas resulted in O{sub 2} inhibition of SO{sub 2} reduction. These inhibiting levels of O{sub 2} are comparable to those concentrations found in flue gases (3). Therefore, in any process in which raw flue gas contacts a D. desulfuricans culture marginal stability at best can be expected.

  7. Pilot plant development of a new catalytic process for improved electrostatic separation of fly-ash in coal fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Salvador Martinez, L.; Muniz Baum, B.; Cortes Galeano, V. [University of Seville, Seville (Spain). Chemical and Environmental Engineering Dept.

    1996-12-31

    A new catalytic process for flue gas conditioning in pulverized coal fired power plants is outlined. Vanadium and platinum catalysts specifically prepared on ceramic honeycomb monoliths to oxidize SO{sub 2} into SO{sub 3} have been tested and evaluated at pilot scale. 10 refs., 3 figs., 2 tabs.

  8. Characterization of suspended bacteria from processing units in an advanced drinking water treatment plant of China.

    Science.gov (United States)

    Wang, Feng; Li, Weiying; Zhang, Junpeng; Qi, Wanqi; Zhou, Yanyan; Xiang, Yuan; Shi, Nuo

    2017-05-01

    For the drinking water treatment plant (DWTP), the organic pollutant removal was the primary focus, while the suspended bacterial was always neglected. In this study, the suspended bacteria from each processing unit in a DWTP employing an ozone-biological activated carbon process was mainly characterized by using heterotrophic plate counts (HPCs), a flow cytometer, and 454-pyrosequencing methods. The results showed that an adverse changing tendency of HPC and total cell counts was observed in the sand filtration tank (SFT), where the cultivability of suspended bacteria increased to 34%. However, the cultivability level of other units stayed below 3% except for ozone contact tank (OCT, 13.5%) and activated carbon filtration tank (ACFT, 34.39%). It meant that filtration processes promoted the increase in cultivability of suspended bacteria remarkably, which indicated biodegrading capability. In the unit of OCT, microbial diversity indexes declined drastically, and the dominant bacteria were affiliated to Proteobacteria phylum (99.9%) and Betaproteobacteria class (86.3%), which were also the dominant bacteria in the effluent of other units. Besides, the primary genus was Limnohabitans in the effluents of SFT (17.4%) as well as ACFT (25.6%), which was inferred to be the crucial contributors for the biodegradable function in the filtration units. Overall, this paper provided an overview of community composition of each processing units in a DWTP as well as reference for better developing microbial function for drinking water treatment in the future.

  9. Materials selection for process equipment in the Hanford waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, M R; Jensen, G A

    1991-07-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  10. Computer simulation of the off gas treatment process for the KEPCO pilot vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hey Suk; Maeng, Sung Jun; Lee, Myung Chan [Nuclear Environment Technology Institute, KEPCO, Taejon (Korea, Republic of)

    1999-07-01

    Vitrification technology for treatment of low and intermediate radioactive wastes can remarkably reduce waste volume to about one twentieth of the initial volume as they are collected and converted into a very stable form. Therefore, it can minimize environmental impact when the vitrified waste is disposed of. But an off gas treatment system is necessary to apply this technology because air pollutants and radioisotopes are generated like those of other conventional incinerators during thermal oxidation process at high temperature. KEPCO designed and installed a pilot scale vitrification plant to demonstrate the feasibility of the vitrification process and then to make a conceptual design for a commercial vitrification facility. The purpose of this study was to simulate the off gas treatment system(OGTS) in order optimize the operating conditions. Mass balance and temperature profile in the off gas treatment system were simulated for different combinations of combustible wastes by computer simulation code named OGTS code and removal efficiency of each process was also calculated with change of design parameters. The OGTS code saved efforts,time and capital because scale and configuration of the system could be easily changed. The simulation result of the pilot scale off gas process as well as pilot tests will be of great use in the future for a design of the commercial vitrification facility. (author)

  11. Pilot plant study on ozonation and biological activated carbon process for drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A study on advanced drinking water treatment was conducted in a pilot scale plant taking water from conventional treatment process. Ozonation-biological activated carbon process (O3-BAC) and granular activated carbon process (GAC) were evaluated based on the following parameters: CODMn, UV254, total organic carbon (TOC), assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC). In this test, the average removal rates of CODMn , UV254 and TOC in O3-BAC were18.2%, 9.0% and 10.2% higher on (AOC) than in GAC, respectively. Ozonation increased 19.3-57.6 μg Acetate-C/L in AOC-P17,45.6-130.6 μg Acetate-C/L in AOC-NOX and 0.1-0.5 mg/L in BDOC with ozone doses of 2-8 mg/L. The optimum ozone dose for maximum AOC formation was 3 mgO3/L. BAC filtration was effective process to improve biostability.

  12. Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization

    Science.gov (United States)

    Assmann, Céline; Scott, Amanda; Biller, Dondra

    2017-08-01

    Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters - see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.

  13. Theoretical Design of Thermosyphon for Process Heat Transfer from NGNP to Hydrogen Plant

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Mike Patterson; Fred Gunnerson

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ~ 1300K) and industrial scale power transport (=50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization / condensing process. The condensate is further returned to the hot source by gravity, i.e. without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) or vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  14. Scale-up analysis and critical issues of an experimental pilot plant for edible film production using agricultural waste processing

    Directory of Open Access Journals (Sweden)

    Fabrizio Sarghini

    2013-03-01

    Full Text Available This study was developed to test a multifunctional experimental pilot plant with a reduced environmental impact that is able to process agricultural (fennel and food production (liquid whey waste. The pilot plant, using different thermal and filtration process parameters, is able to recover pectin and whey proteins in a single processing unit in order to produce edible films. An innovative feature of the proposed configuration is related to the possibility of coupling different types of waste treatment, obtaining a final product with a higher economical value, combining the two processing lines. Although an edible film production procedure based on pectin extracted from fennel matrix and whey proteins has already been published in literature, the scale-up process highlighted several critical issues, in particular related to the fennel matrix. Nonetheless, the pilot plant configuration allowed an edible film to be produced that is suitable for use as a direct coating to improve the shelf-life of food products.

  15. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1994-03-01

    The main objective of this research was to investigate microorganisms capable of fossil fuel flue gas desulfurization and denitrification. The study used municipal sewage sludge as a carbon and energy source for SO{sub 2}-reducing cultures. The individual tasks developed a consortium of sulfate-reducing bacteria, investigated the design parameters for a continuous process, preformed a cost analysis, and screened sulfate-reducing bacteria. In the investigation of microbial reduction of NO{sub x} to nitrogen, tasks included screening denitrifying bacteria for NO and NO{sub 2} activity, developing optimum NO-reducing cultures, and investigating design parameters for a continuous system. This final report reviews the work previous to the current project, describes project objectives and the specific work plan, and reports results from the work completed during the previous reporting periods.

  16. Histology, histochemistry and SEM are useful tools to study regeneration processes in plant tissue culture

    Directory of Open Access Journals (Sweden)

    Piotr Żabicki

    2013-04-01

    Full Text Available Tissue cultures in vitroare used for the multiplication of plants via direct and indirect (via callus regeneration. This approach is commonly applied in the protection of endangered species by the introduction of regenerated in vitro plantlets to botanical gardens and to the nature (so called ex situ plant conservation. In vitroconditions, especially the supplementation of tissue culture media with plant growth regulators, cause a somaclonal variation, resulting in genetic differences among regenerated plants. To analyze callus structure, including cell shapes and sizes, cell differentiation (e.g. the presence of xylem vessels and regeneration processes (organogenesis, somatic embryogenesis, the histological, histochemical and SEM techniques are applied. In this study, to obtain regeneration of plants in culture conditions, we have used three Viola species (V. epipsilaLedeb., V. stagnina Kit. and V. uliginosaBesser, indicated to be critically endangered according to Polish Red Book of Plants (Kazmierczakowa & Zarzycki 2001 and two genotypes of a model plant Arabidopsis thaliana(L. Heynh. (Columbia-0 and an insertional cdkg ;2mutant line. An Arabidopsis homozygous cdkg ;2 knock-out originated from a T 3 generation of T-DNA insertional line SALK_090262 (Alonso et al. 2003 and has been selected from a subsequent T 4 generation based on PCR analysis using primers complementary to flanking positions of full-length cDNA of CDKG;2gene product (a clone isolated by Seki et al. 2002. The aims of the study were: 1 to select the most convenient method to obtain regenerated Violaplants with maternal genotype i.e., via direct organogenesis or somatic embryogenesis; 2 to determine the effect of mutation in CDKG;2 gene on the explant response to in vitroconditions, including callus proliferation and regeneration. In three Viola species organogenesis was induced on MS (Murashige and Skoog basal medium supplied with thidiazuron (TDZ in concentrations 0.5 mg

  17. Treatment of Oily Wastewater Produced From Old Processing Plant of North Oil Company

    Directory of Open Access Journals (Sweden)

    Dr. Faris Hammoodi Al-Ani

    2012-03-01

    Full Text Available The main objectives of this research were to study and analyses oily wastewater characteristics originating from old-processing plant of North Oil Company and to find a suitable and simple method to treat the waste so it can be disposed off safely. The work consists of two stages; the first was the study of oily wastewater characteristics and its negative impacts. The results indicated that oil and grease were the most dominant pollutant with concentration range between 1069 – 3269.3 mg/l that must be removed; other pollutants were found to be within Iraqi and EPA standards. The next stage was the use of these characteristics to choose the proper technology to treat that wastewater. This stage was divided into two stages: the first stage was a jar tests to find the optimum doses of alum, lime and powdered activated carbon (PAC. The second stage was the treatment by a batch pilot plant constructed for this purpose employing the optimum doses as determined from the first stage to treat the waste using a flotation unit followed by a filtration-adsorption unit. The removal efficiencies of flotation unit for oil and grease, COD, and T.S.S found to be 0.9789, 0.974, and 0.9933, respectively, while the removal efficiency for T.D.S was very low 0.0293. From filtration – adsorption column the removal efficiencies of oil and grease, T.D.S, COD, and T.S.S were found to be 0.9486, 0.8908, 0.6870, and 0.7815, respectively. The overall removal efficiencies of pilot plant were 0.9986, 0.8939, 0.9921, and 0.9950, respectively. The results indicated that this type of treatment was the simplest and most effective method that can be used to treat produced oily wastewater before disposal

  18. Effect of the radiation processing on the antioxidant activity of zingiberaceae family plants

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Mariana C. de; Santillo, Amanda G.; Fanaro, Gustavo B.; Villavicencio, Anna Lucia C.H., E-mail: gbfanaro@ipen.b, E-mail: villavic@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes; Sampaio, Geni R.; Bastos, Deborah H.M., E-mail: genirs@usp.b, E-mail: dmbastos@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Fac. de Saude Publica. Dept. de Nutricao

    2011-07-01

    The aim of this study was to evaluate the effectiveness of gamma radiation from {sup 60}Co at doses 0, 5, 10, 15 and 20 kGy on the antioxidant activity of Zingiberaceae plants. For this study were selected: turmeric (Curcuma longa L.), ginger (Zingiber officinale Roscoe) and zedoaria (Curcuma zedoaria (Christm.) Roscoe). The following methodologies applied were: quantification of phenolic compounds by Folin-Ciocalteu method and assessing the potential of antioxidant activity by the free radical [2,2 difenil-1-pricril-hidrazil (DPPH{center_dot})] scavenging and by Rancimat method in acetone:methanol extracts of selected vegetables. Regardless of the radiation dose applied there were no decrease of total phenolic compounds compared to the control, in any plant studied. The results did not show a decrease in the ability to scavenge free radicals in turmeric case and in the case of zedoaria it were decreased only in doses of 20 kGy. Non-irradiated ginger extract showed higher ability on scavenge. The analysis of the antioxidant potential by Rancimat method showed no significant difference in the antioxidant activity index (AAI) between doses applied in turmeric and ginger extracts. Already, zedoaria non-irradiated extract showed significantly higher AAI than those presented by irradiated ones. Major losses in the potential of antioxidant activity were found in doses of 20 kGy. It could be concluded that gamma radiation processing of Zingiberaceae plants in doses until 15 kGy may be a feasible alternative to industry, do not change the quantitative profile of phenolic compounds or decrease its expressive antioxidant potential. (author)

  19. Effects of plant roots on the hydraulic performance during the clogging process in mesocosm vertical flow constructed wetlands.

    Science.gov (United States)

    Hua, G F; Zhao, Z W; Kong, J; Guo, R; Zeng, Y T; Zhao, L F; Zhu, Q D

    2014-11-01

    The aim of this study was to evaluate the effects of plant roots (Typha angustifolia roots) on the hydraulic performance during the clogging process from the perspective of time and space distributions in mesocosm vertical flow-constructed wetlands with coarse sand matrix. For this purpose, a pair of lab-scale experiments was conducted to compare planted and unplanted systems by measuring the effective porosity and hydraulic conductivity of the substrate within different operation periods. Furthermore, the flow pattern of the clogging process in the planted and unplanted wetland systems were evaluated by their hydraulic performance (e.g., mean residence time, short circuiting, volumetric efficiency, number of continuously stirred tank reactors, and hydraulic efficiency factor) in salt tracer experiments. The results showed that the flow conditions would change in different clogging stages, which indicated that plants played different roles related to time and space. In the early clogging stages, plant roots restricted the flow of water, while in the middle and later clogging stages, especially the later stage, growing roots opened new pore spaces in the substrate. The roots played an important role in affecting the hydraulic performance in the upper layer (0-30 cm) where the sand matrix had a larger root volume fraction. Finally, the causes of the controversy over plant roots' effects on clogging were discussed. The results helped further understand the effects of plant roots on hydraulic performance during the clogging process.

  20. Making microscopy count: quantitative light microscopy of dynamic processes in living plants.

    Science.gov (United States)

    Fricker, Mark D; Moger, Julian; Littlejohn, George R; Deeks, Michael J

    2016-08-01

    Cell theory has officially reached 350 years of age as the first use of the word 'cell' in a biological context can be traced to a description of plant material by Robert Hooke in his historic publication 'Micrographia: or some physiological definitions of minute bodies'. The 2015 Royal Microscopical Society Botanical Microscopy meeting was a celebration of the streams of investigation initiated by Hooke to understand at the subcellular scale how plant cell function and form arises. Much of the work presented, and Honorary Fellowships awarded, reflected the advanced application of bioimaging informatics to extract quantitative data from micrographs that reveal dynamic molecular processes driving cell growth and physiology. The field has progressed from collecting many pixels in multiple modes to associating these measurements with objects or features that are meaningful biologically. The additional complexity involves object identification that draws on a different type of expertise from computer science and statistics that is often impenetrable to biologists. There are many useful tools and approaches being developed, but we now need more interdisciplinary exchange to use them effectively. In this review we show how this quiet revolution has provided tools available to any personal computer user. We also discuss the oft-neglected issue of quantifying algorithm robustness and the exciting possibilities offered through the integration of physiological information generated by biosensors with object detection and tracking. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.