WorldWideScience

Sample records for bwrtt bwr turbine

  1. System control model of a turbine for a BWR; Modelo del sistema de control de una turbina para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R.; Delfin L, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: rodolfo.amador@inin.gob.mx

    2009-10-15

    In this work is presented a design of a control system of a turbine for a nuclear power plant with a BWR like energy source. The model seeks to implement later on at thermal hydraulics code of better estimate RELAP/SCDAPSIM. The model is developed for control and protection of turbine, and the consequent protection to the BWR, considering that the turbine control could be employed for one or several turbines in series. The quality of present designs of control pattern of turbine it is that it considers the parameters more important in the operation of a turbine besides that is has incorporated at control the secondary parameters that will be activated originally as true when the turbine model is substituted by a model more detailed. The development of control model of a turbine will be good in short and medium term to realize analysis about the operation of turbine with different operation conditions, of vapor extraction specific steps of turbine to feed other equipment s, besides analyzing the separate effect and integrated effect. (Author)

  2. Logical model for the control of a BWR turbine;Modelo logico para el control de una turbina de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R., E-mail: yonaeton@hotmail.co [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    In this work a design of a logical model is presented for the turbine control of a nuclear power plant with a BWR like energy source. The model is sought to implement later on inside the thermal hydraulics code of better estimate RELAP/SCDAPSIM. The logical model is developed for the control and protection of the turbine, and the consequent protection to the BWR, considering that the turbine control will be been able to use for one or several turbines in series. The quality of the present design of the logical model of the turbine control is that it considers the most important parameters in the operation of a turbine, besides that they have incorporated to the logical model the secondary parameters that will be activated originally as true when the turbine model is substituted by a detailed model. The development of the logical model of a turbine will be of utility in the short and medium term to carry out analysis on the turbine operation with different operation conditions, of vapor extraction, specific steps of the turbine to feed other equipment s, in addition to analyze the separate and the integrated effect. (Author)

  3. Study of transient turbine shot without bypass in a BWR; Estudio del transitorio disparo de turbina sin bypass en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L., E-mail: amhed_jvq@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-09-15

    The study and analysis of operational transients are important for predicting the behavior of a system to short-terms events and the impact that would cause this transition. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could result in an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis of results of a turbine shot transient, which is not taken into operation the bypass is presented. The study is realized for a BWR of 2027 MWt, to an intermediate cycle life and using the computer code Simulate-3K a depressurization stage of the vessel is created which shows the response of other security systems and gives a coherent prediction to the event presented type. (Author)

  4. Statistical Safety Evaluation of BWR Turbine Trip Scenario Using Coupled Neutron Kinetics and Thermal Hydraulics Analysis Code SKETCH-INS/TRACE5.0

    Science.gov (United States)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal- hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method.

  5. Analysis of the peach bottom 2 BWR turbine trip experiment by RELAP 5/3.2 code

    Directory of Open Access Journals (Sweden)

    Bousbia-Salah Anis

    2002-01-01

    Full Text Available This paper presents the results of the application of the system of the thermalhydraulic code RELAP5/Mod3.2 in predicting the Peach Bottom Boiling Water Reactor Turbine Trip test. This experiment constitutes a challenge to the capabilities of current computational tools in realistically predicting transient scenarios in nuclear power plants. In fact, it involves strong feedback during the transient between thermalhydraulics and neutronics. In this respect, a reference case was run in order to simulate the interactions between the generated steam line pressure wave propagation and the instantaneous core void distribution. An overall comparison shows good agreement between the code calculations and the experimental data. A series of sensitivity analyses were also performed in order to assess the code prediction features, as well as to identify uncertainties related to the adopted thermalhydraulic parameters used for the plant modelisation.

  6. Digital implementation, simulation and tests in MATLAB of the models of Steam line, the turbines, the pressure regulator of a BWR type nucleo electric power plant; Implementacion digital, simulacion y pruebas en MATLAB de los modelos de la linea de vapor, las turbinas y el regulador de presion de una central Nucleoelectrica tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, A. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: andyskamx@yahoo.com.mx

    2004-07-01

    In this phase of the project they were carried out exhaustive tests to the models of the steam lines, turbines and pressure regulator of a BWR type nucleo electric central for to verify that their tendencies and behaviors are it more real possible. For it, it was necessary to also analyze the transfer functions of the different components along the steam line until the power generator. Such models define alone the dominant poles of the system, what is not limitation to reproduce a wide range of anticipated transitoriness of a power station operation. In the same manner, it was integrated and proved the integrated model form with the models of feeding water of the SUN-RAH, simulating the nuclear reactor starting from predetermined entrances of the prospective values of the vessel. Also it was coupled with the graphic interface developed with the libraries DirectX implementing a specific monitoring panel for this system. (Author)

  7. Validation and Application of the Thermal Hydraulic System Code TRACE for Analysis of BWR Transients

    Directory of Open Access Journals (Sweden)

    V. H. Sánchez

    2012-01-01

    Full Text Available The Karlsruhe Institute of Technology (KIT is participating on (Code Applications and Maintenance Program CAMP of the US Nuclear Regulatory Commission (NRC to validate TRACE code for LWR transient analysis. The application of TRACE for the safety assessment of BWR requires a throughout verification and validation using experimental data from separate effect and integral tests but also using plant data. The validation process is normally focused on safety-relevant phenomena for example, pressure drop, void fraction, heat transfer, and critical power models. The purpose of this paper is to validate selected BWR-relevant TRACE-models using both data of bundle tests such as the (Boiling Water Reactor Full-Size Fine-Mesh Bundle Test BFBT and plant data recorded during a turbine trip event (TUSA occurred in a Type-72 German BWR plant. For the validation, TRACE models of the BFBT bundle and of the BWR plant were developed. The performed investigations have shown that the TRACE code is appropriate to describe main BWR-safety-relevant phenomena (pressure drop, void fraction, and critical power with acceptable accuracy. The comparison of the predicted global BWR plant parameters for the TUSA event with the measured plant data indicates that the code predictions are following the main trends of the measured parameters such as dome pressure and reactor power.

  8. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  9. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  10. 44 BWR Waste Package Loading Curve Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Scaglione

    2001-11-05

    The objective of this calculation is to evaluate the required minimum burnup as a function of average initial boiling water reactor (BWR) assembly enrichment that would permit loading of fuel into a potential 44 BWR waste package (WP). The potential WP design is illustrated in Attachment I. The scope of this calculation covers a range of initial enrichments from 1.5 through 5.0 weight percent U-235, and a burnup range of 0 through 50 GWd/mtU.

  11. Process inherent ultimate safety/boiling-water reactor PIUS/BWR

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.

    1985-01-01

    This document is a series of viewgraphs on: design basis of PIUS/BWR, definition of PIUS/BWR, mechanisms of safe shutdown and afterheat cooling, advantages of PIUS/BWR, and research and development requirements. (DLC)

  12. BWR mechanics and materials technology update

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, E.

    1983-05-01

    This paper discusses technical results obtained from a variety of important programs underway at General Electric's Nuclear Engineering Division. The principal objective of these programs is to qualify and improve BWR product related technologies that fall broadly under the disciplines of Applied Mechanics and Materials Engineering. The paper identifies and deals with current technical issues that are of general importance to the LWR industry albeit the specific focus is directed to the development and qualification of analytical predictive methods and criteria, and improved materials for use in the design of the BWR. In this paper, specific results and accomplishments are summarized to provide a braod perspective of technology advances. Results are presented in sections which discuss: dynamic analysis and modeling; fatigue and fracture evaluation; materials engineering advances; and flow induced vibration.

  13. BWR Refill-Reflood Program, Task 4. 7 - model development: TRAC-BWR component models

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Y K; Parameswaran, V; Shaug, J C

    1983-09-01

    TRAC (Transient Reactor Analysis Code) is a computer code for best-estimate analysis for the thermal hydraulic conditions in a reactor system. The development and assessment of the BWR component models developed under the Refill/Reflood Program that are necessary to structure a BWR-version of TRAC are described in this report. These component models are the jet pump, steam separator, steam dryer, two-phase level tracking model, and upper-plenum mixing model. These models have been implemented into TRAC-B02. Also a single-channel option has been developed for individual fuel-channel analysis following a system-response calculation.

  14. TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cheng L. Y.; Baek J.; Cuadra,A.; Aronson, A.; Diamond, D.; Yarsky, P.

    2013-11-10

    A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic to initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.

  15. A BWR licensing experience in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J.; Ogura, C. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Arai, K. [Toshiba Corporation, Yokohama, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  16. LBB application in Swedish BWR design

    Energy Technology Data Exchange (ETDEWEB)

    Kornfeldt, H.; Bjoerk, K.O.; Ekstroem, P. [ABB Atom, Vaesteras (Sweden)

    1997-04-01

    The protection against dynamic effects in connection with potential pipe breaks has been implemented in different ways in the development of BWR reactor designs. First-generation plant designs reflect code requirements in effect at that time which means that no piping restraint systems were designed and built into those plants. Modern designs have, in contrast, implemented full protection against damage in connection with postulated pipe breaks, as required in current codes and regulations. Moderns standards and current regulatory demands can be met for the older plants by backfitting pipe whip restraint hardware. This could lead to several practical difficulties as these installations were not anticipated in the original plant design and layout. Meeting the new demands by analysis would in this situation have great advantages. Application of leak-before-break criteria gives an alternative opportunity of meeting modem standards in reactor safety design. Analysis takes into account data specific to BWR primary system operation, actual pipe material properties, piping loads and leak detection capability. Special attention must be given to ensure that the data used reflects actual plant conditions.

  17. Safety/relief valve quencher loads: evaluation for BWR Mark II and III containments

    Energy Technology Data Exchange (ETDEWEB)

    Su, T.M.

    1982-10-01

    Boiling water reactor (BWR) plants are equipped with safety/relief valves (SRVs) to protect the reactor from overpressurization. Plant operational transients, such as turbine trips, will actuate the SRV. Once the SRV opens, the air column within the partially submerged discharge line is compressed by the high-pressure steam released from the reactor. The compressed air discharged into the suppression pool produces high-pressure bubbles. Oscillatory expansion and contraction of these bubbles create hydrodynamic loads on the containment structures, piping, and equipment inside containment. This report presents the results of the staff's evaluation of SRV loads. The evaluation, however, is limited to the quencher devices used in Mark II and III containments. With respect to Mark I containments, the SRV acceptance criteria are presented in NUREG-0661 issued July 1980. The staff acceptance criteria for SRV loads for Mark II and III containments are presented in this report.

  18. Development of the radiation models of a BWR type reactor and it facility in the SUN-RAH; Desarrollo de modelos de radiacion de un reactor tipo BWR y su instalacion en el SUN-RAH

    Energy Technology Data Exchange (ETDEWEB)

    Barron A, I. [Facultad de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: isbarron@yahoo.com.mx

    2005-07-01

    This work about generation models, transport in processes and radioactive contamination of areas of a BWR central, is an amplification to the project developed in the UNAM to have a support tool in subjects or electric generation courses. It is planned about the implementation of models of radiation generation in a BWR type reactor for complement the functions developed in the University Simulator of Nucleo electric- Boiling water reactor (SUN-RAH) which it has been implemented in Simulink of MatLab and it has a model for the dynamics of one nucleo electric central that presents the main characteristics of the reactor vessel, the recirculation system, steam lines, turbines, generator, condensers and feeding water, defined by the main processes that intervene in the generation of energy of these plants. By this way the radiation monitoring systems for area and process, operate simultaneously with the processes of energy generation, with that is possible to observe the changes that present with respect to the operation conditions of the plant, and likewise to appreciate the radiation transport process through the components of the reactor, steam lines and turbines, for different operation conditions and possible faults that they could be presented during the reactor operation. (Author)

  19. Behaviour of the reactivity for BWR fuel cells; Comportamiento de la reactividad para celdas de combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Alonso, G.; Delfin, A.; Vargas, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: galonso@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2011-11-15

    In this work the behaviour of the reactivity of a fuel assembly type BWR was studied, the objective is to obtain some expressions that consider the average enrichment of U-235 and the gadolinium concentration like a function of the fuel cells burnt. Also, the applicability of the lineal reactivity model was analyzed for fuel cells type BWR. The analysis was carried out with the CASMO-4 code. (Author)

  20. Gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ok Ryong

    2004-01-15

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  1. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercial spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.

  2. Status update of the BWR cask simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations

  3. An overview of the BWR ECCS strainer blockage issues

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, A.W.; Marshall, M.L. Jr.; Elliott, R. [Nuclear Regulatory Commission, Washington, DC (United States)

    1996-03-01

    This Paper provides a brief overview of actions taken in the mid 1980s to resolve Unresolved Safety Issue (USI) A-43, {open_quotes}Containment Emergency Sump Performance,{close_quotes} and their relationship to the BWR strainer blockage issue; the importance of insights gained from the Barseback-2 (a Swedish BWR) incident in 1992 and from ECCS strainer testing and inspections at the Perry nuclear power plant in 1992 and 1993; an analysis of an US BWR/4 with a Mark I containment; an international community sharing of knowledge relevant to ECCS strainer blockage, additional experimental programs; and identification of actions needed to resolve the strainer blockage issue and the status of such efforts.

  4. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Unit Nuclear Energy, Netherlands Energy Research Foundation ECN, Petten (Netherlands)); Hoogenboorm, J.E.; De Leege, P.F.A. (International Reactor Institute IRI, University of Leiden, Leiden (Netherlands)); Van de Voet, J.; Verhagen, F.C.M. (KEMA NV, Arnhem (Netherlands))

    1992-01-01

    In order to carry out reliable reactor core calculations for a boiled water reactor (BWR) or a pressurized water reactor (PWR) first reactivity calculations have to be carried out for which several calculation programs are available. The purpose of the title project is to exchange experiences to improve the knowledge of this reactivity calculations. In a large number of institutes reactivity calculations of PWR and BWR pin cells were executed by means of available computer codes. Results are compared. It is concluded that the variations in the calculated results are problem dependent. Part of the results is satisfactory. However, further research is necessary.

  5. Turbinate surgery

    Science.gov (United States)

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery ... There are several types of turbinate surgery: Turbinectomy: All or part of the lower turbinate is taken out. This can be done in several different ways, but sometimes a ...

  6. Full system decontamination experience in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Sugai, K.; Katayouse, N.; Fujimori, A.; Iida, K.; Hayashi, K. [Tokyo Electric Power Company, Tokyo (Japan); Kanasaki, T.; Inami, I. [Toshiba Corporation, Yokohama (Japan); Strohmer, F. [Framatome ANP Gmbh, Eelangen (Germany)

    2002-07-01

    At the Fukushima Daiichi Nuclear Power Station unit 3, unit 2, unit 5 and unit 1 of Tokyo Electric Power Company (TEPCO), the replacement of the core shroud and internals has been conducted since 1997 in this order. The welded core internals in operating BWR plants were replaced to improve stress corrosion cracking (SCC) resistance. At present these units are operating smoothly. The developed technology concept is to restore those internals in open air inside the reactor pressure vessel (RPV). To reduce the radiation dose rate inside the RPV, not only a shielding method was applied to cut the radiation from the irradiated structures but also a chemical decontamination method was applied to dissolve the radioactive crud deposited on the surface by using chemical agents. The calculated decontamination factor (DF) at the RPV bottom reached 35-117. As result, the dose rate decreased to approximately 0.1 mSv/h under water. Before and after the installation of the in-vessel shielding, a mechanical cleaning was extensively applied inside the RPV to remove the residual crud as well as the swarf, chips from cutting. As a result, the dose rate at the RPV bottom decreased to ranging from 0.2 to 0.4 mSv/h in air. A working environment for human access, which was better than expected, was established inside the RPV, resulting in 70, 140, 50 and 70 man-Sv (estimated) saving respectively at unit 3 (1F-3), unit 2(1F-2), unit 5(1F-5) and unit 1(1F-1). All four full system decontamination (FSDs) contributed to the successful realization of the core shroud replacement project under the dry condition in RPV.

  7. BWR stability using a reducing dynamical model; Estabilidad de un BWR con un modelo dinamico reducido

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin Bolea, J. M.; Blazquez Martinez, J. B.

    1990-07-01

    BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical structure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations is non-linear. Simple parametric calculation of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author)

  8. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs., 9 figs., 30 tabs.

  9. The Advanced BWR Nuclear Plant: Safe, economic nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Redding, J.R. [GE Nuclear Energy, San Jose, CA (United States)

    1994-12-31

    The safety and economics of Advanced BWR Nuclear Power Plants are outlined. The topics discussed include: ABWR Programs: status in US and Japan; ABWR competitiveness: safety and economics; SBWR status; combining ABWR and SBWR: the passive ABWR; and Korean/GE partnership.

  10. BWR refill-reflood program: core spray distribution experimental task plan

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, T.

    1981-02-01

    An experimental task plan for the BWR/4 core spray task of the Refill-Reflood Test Program is presented. The test program will provide core spray distribution data for a 30 degree sector of the BWR/4 and 5-218 design. This design uses different nozzle types and different sparger elevations than the BWR/6-218 design which was tested previously. Test parameter ranges are specified; individual tests are defined; and measurement and data utilization plans are defined.

  11. Vertical Drop of 44-BWR Waste Package With Lifting Collars

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2005-08-23

    The objective of this calculation is to determine the structural response of a waste package (WP) dropped flat on its bottom from a specified height. The WP used for that purpose is the 44-Boiling Water Reactor (BWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The Uncanistered Waste Disposal Container System is classified as Quality Level 1 (Ref. 4, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 16). AP-3. 12Q, Design Calculations and Analyses (Ref. 11) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 44-BWR WP considered in this calculation and provides the potential dimensions and materials for that design.

  12. Development of advanced BWR fuel bundle with spectral shift rod - BWR core characteristics with SSR

    Energy Technology Data Exchange (ETDEWEB)

    Hino, T.; Kondo, T.; Chaki, M.; Ohga, Y. [Hitachi-GE Nuclear Energy, Ltd., 1-1, Saiwai-cho, 3-chome, Hitachi-shi, Ibaraki-ken, 317-0073 (Japan); Makigami, T. [Tokyo Electric Power Company Inc., 1-1-3, Uchisaiwai-cho, Chiyoda-ku, Tokyo, 100-0011 (Japan)

    2012-07-01

    The neutron energy spectrum can be varied during an operation cycle to generate and utilize more plutonium from the non-fissile {sup 238}U by changing the void fraction in the core through control of the core coolant flow rate. This operation method, which is called a spectral shift operation, is practiced in BWRs to save natural uranium. A new component called a spectral shift rod (SSR), which is utilized instead of a conventional water rod, has been introduced to amplify the void fraction change and increase the spectral shift effect. In this study, fuel bundle design with the SSR and core design were carried out for the ABWR and the next generation BWR, HP-ABWR (High-Performance ABWR).The core characteristics with the SSR were evaluated and compared with those when using the conventional water rod. Influences of uncertainty of the water level in the SSR on the safety limit minimum critical power ratio (SLMCPR) were considered for evaluation of the uranium saving effect attained by the SSR. As a result, it was found that the amount of natural uranium needed for an operation cycle could be reduced more than 3% with 20% core coolant flow change and more than 5% with 30% core coolant flow change, in the form of increased discharge exposure by using the SSR compared with the conventional water rod use. (authors)

  13. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pilgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on the PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs.; 9 figs.; 30 tabs.

  14. Latest experiences in inspecting the inside of BWR vessel shields

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.

    2001-07-01

    In the last few years, the owners of BWR nuclear power plants have been forced to address new fuel shield inspection requirements, TECNATOM has responded to this situation by launching the TEIDE projects, which include development of an inspection machine and the corresponding Non-Destructive Tests to examine the inside of this shield. With these projects, TECNATOM has performed more than 12 fuel shield inspections in different countries. This article describes the experience gained in the last three years. (Author)

  15. Thermohydraulic stability coupled to the neutronic in a BWR; Estabilidad termohidraulica acoplada a la neutronica en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A. [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Carretera Cardel-Nautla Km. 42.5, Mpio. Alto Lucero, Veracruz (Mexico); Castlllo D, R. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: gcm9acpp@cfe.gob.mx

    2006-07-01

    In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the

  16. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T.; Piippo, J.; Sirkiae, P. [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  17. Prony's method application for BWR instabilities characterization

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rogelio, E-mail: rogelio.castillo@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Ramírez, J. Ramón, E-mail: ramon.ramirez@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Alonso, Gustavo, E-mail: gustavo.alonso@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico)

    2015-04-01

    Highlights: • Prony's method application for BWR instability events. • Several BWR instability benchmark are assessed using this method. • DR and frequency are obtained and a new parameter is proposed to eliminate false signals. • Adequate characterization of in-phase and out-of-phase events is obtained. • The Prony's method application is validated. - Abstract: Several methods have been developed for the analysis of reactor power signals during BWR power oscillations. Among them is the Prony's method, its application provides the DR and the frequency of oscillations. In this paper another characteristic of the method is proposed to determine the type of oscillations that can occur, in-phase or out-of-phase. Prony's method decomposes a given signal in all the frequencies that it contains, therefore the DR of the fundamental mode and the first harmonic are obtained. To determine the more dominant pole of the system a normalized amplitude W of the system is calculated, which depends on the amplitude and the damping coefficient. With this term, it can be analyzed which type of oscillations is present, if W of the fundamental mode frequency is the greater, the type of oscillations is in-phase, if W of the first harmonic frequency is the greater, the type of oscillations is out-of-phase. The method is applied to several stability benchmarks to assess its validity. Results show the applicability of the method as an alternative analysis method to determine the type of oscillations occurred.

  18. Steam Turbines

    Science.gov (United States)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  19. Neutron dosimetry. Environmental monitoring in a BWR type reactor; Dosimetria de neutrones. Monitoreo ambiental en un reactor del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tavera D, L.; Camacho L, M.E

    1991-01-15

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  20. Stability prediction of continuous surveillance in BWR reactor; Predictor de estabilidad para la vigilancia continua de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tofino Gomez, Y.

    2006-07-01

    As result of the susceptibility of the Boiling Water Reactors (BWR) to suffer from power instabilities, the program LIP has been developed (LAPUR Input Preprocessor), which automatically determines the decay ratio (DR), as stability margin indication. For DR calculation, LAPUR program is a good predictive alternative: a fast execution for an acceptable precision. LAPUR demands a complex input, dependent on the instantaneous core configuration, requiring an exhaustive control of its generation. LIP, with a modular character, automatically generates the input from the core monitoring system, CAPRICORE (based on Simulate-3), obtaining the DR during the operation. This tool can accelerate the start-up maneuvers and other transients, increasing the plant availability. (Author)

  1. BWR Servicing and Refueling Improvement Program: Phase I summary report

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.R.

    1978-09-01

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was to identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development.

  2. BWR online monitoring system based on noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Villafuerte, Javier [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: jov@nuclear.inin.mx; Castillo-Duran, Rogelio [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: rcd@nuclear.inin.mx; Alonso, Gustavo [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: galonso@nuclear.inin.mx; Calleros-Micheland, Gabriel [Central Nuclear de Laguna Verde, Comision Federal de Electricidad, Carr. Cardel-Nautla, km. 42.5, Alto Lucero, Veracruz (Mexico)]. E-mail: gcm9acpp@cfe.gob.mx

    2006-11-15

    A monitoring system for during operation early detection of an anomaly and/or faulty behavior of equipment and systems related to the dynamics of a boiling water reactor (BWR) has been developed. The monitoring system is based on the analysis of the 'noise' or fluctuations of a signal from a sensor or measurement device. An efficient prime factor algorithm to compute the fast Fourier transform allows the continuous, real-time comparison of the normalized power spectrum density function of the signal against previously stored reference patterns in a continuously evolving matrix. The monitoring system has been successfully tested offline. Four examples of the application of the monitoring system to the detection and diagnostic of faulty equipment behavior are presented in this work: the detection of two different events of partial blockage at the jet pump inlet nozzle, miss-calibration of a recirculation mass flow sensor, and detection of a faulty data acquisition card. The events occurred at the two BWR Units of the Laguna Verde Nuclear Power Plant. The monitoring system and its possible coupling to the data and processing information system of the Laguna Verde Nuclear Power Plant are described. The signal processing methodology is presented along with the introduction of the application of the evolutionary matrix concept for determining the base signature of reactor equipment or component and the detection of off normal operation conditions.

  3. Turbine system

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  4. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  5. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  6. Oxide evolution on Alloy X-750 in simulated BWR environment

    Science.gov (United States)

    Tuzi, Silvia; Göransson, Kenneth; Rahman, Seikh M. H.; Eriksson, Sten G.; Liu, Fang; Thuvander, Mattias; Stiller, Krystyna

    2016-12-01

    In order to simulate the environment experienced by spacer grids in a boiling water reactor (BWR), specimens of the Ni-based Alloy X-750 were exposed to a water jet in an autoclave at a temperature of 286 °C and a pressure of 80 bar. The oxide microstructure of specimens exposed for 2 h, 24 h, 168 h and 840 h has been investigated mainly using electron microscopy. The specimens suffer mass loss due to dissolution during exposure. At the same time a complex layered oxide develops. After the longest exposure the oxide consists of two outer spinel layers consisting of blocky crystals, one intermediate layer of nickel oxide interspersed with Ti-rich oxide needles, and an inner layer of oxidized base metal. The evolution of the oxide leading up to this structure is discussed and a model is presented.

  7. PWR and BWR spent fuel assembly gamma spectra measurements

    Science.gov (United States)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  8. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  9. Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yeoman, J.C. Jr.

    1978-12-01

    This evaluation of wind turbines is part of a series of Technology Evaluations of possible components and subsystems of community energy systems. Wind turbines, ranging in size from 200 W to 10 MW, are discussed as candidates for prime movers in community systems. Estimates of performance characteristics and cost as a function of rated capacity and rated wind speed are presented. Data concerning material requirements, environmental effects, and operating procedures also are given and are represented empirically to aid computer simulation.

  10. Analysis of the behavior of irradiated BWR fuel rod in storage dry conditions; Analisis del comportamiento de una barra combustible irradiada BWR en condiciones de almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A.; Montes, D.; Ruiz-Hervias, J.; Munoz-Reja, C.

    2014-07-01

    In order to complete previous studies of creep on PWR sheath material, developed a joint experimental program by CSN, ENRESA and ENUSA about BWR (Zircaloy-2) sheath material. This program consisted in creep tests and then on the material under creep, compression testing diametral obtaining the permissible displacement of the sheath to break. (Author)

  11. An A BWR demonstration simulator for training and developing technical staff

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Yonezawa, H.; Aoyagi, Y.; Kataoka, K., E-mail: jim.powers@toshiba.com [Toshiba Corporation, Kawasaki, Kanagawa (Japan)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  12. BWR/5 Pressure-Suppression Pool Response during an SBO

    Directory of Open Access Journals (Sweden)

    Javier Ortiz-Villafuerte

    2013-01-01

    Full Text Available RELAP/SCDAPSIM Mod 3.4 has been used to simulate a station blackout occurring at a BWR/5 power station. Further, a simplified model of a wet well and dry well has been added to the NSSS model to study the response of the primary containment during the evolution of this accident. The initial event leading to severe accident was considered to be a LOOP with simultaneous scram. The results show that RCIC alone can keep the core fully covered, but even in this case about 30% of the original liquid water inventory in the PSP is vaporized. During the SBO, without RCIC, this inventory is reduced about 5% more within six hours. Further, a significant pressure rise occurs in containment at about the time when a sharp increase of heat generation occurs in RPV due to cladding oxidation. Failure temperature of fuel clad is also reached at this point. As the accident progresses, conditions for containment venting can be reached in about nine hours, although there still exists considerable margin before reaching containment design pressure. Detailed information of accident progress in reactor vessel and containment is presented and discussed.

  13. A New Methodology for Early Anomaly Detection of BWR Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, K. N.

    2005-11-27

    The objective of the performed research is to develop an early anomaly detection methodology so as to enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated operation schedule. The research utilizes a model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, which is used as a generator of time series data for anomaly detection at an early stage. The model captures critical nonlinear features of coupled thermal-hydraulic and nuclear reactor dynamics and (slow time-scale) evolution of the anomalies as non-stationary parameters. The time series data derived from this nonlinear non-stationary model serves as the source of information for generating the symbolic dynamics for characterization of model parameter changes that quantitatively represent small anomalies. The major focus of the presented research activity was on developing and qualifying algorithms of pattern recognition for power instability based on anomaly detection from time series data, which later can be used to formulate real-time decision and control algorithms for suppression of power oscillations for a variety of anticipated operating conditions. The research being performed in the framework of this project is essential to make significant improvement in the capability of thermal instability analyses for enhancing safety, availability, and operational flexibility of currently operating and next generation BWRs.

  14. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  15. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  16. Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.

    1998-01-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  17. Validation of SCALE (SAS2H) isotopic predictions for BWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.; DeHart, M.D.

    1998-09-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  18. AREVA solutions to licensing challenges in PWR and BWR reload and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tivig, Florin [AREVA GmbH, Erlangen (Germany)

    2016-05-15

    Regulatory requirements for reload and safety analyses are evolving: new safety criteria, request for enlarged qualification databases, statistical applications, uncertainty propagation.. In order to address these challenges and access more predictable licensing processes, AVERA is implementing consistent code and methodology suites for PWR and BWR core design and safety analysis, based on first principles modeling and extremely broad verification and validation data base. Thanks to the high computational power increase in the last decades methods' development and application now include new capabilities. An overview of the main AREVA codes and methods developments is given covering PWR and BWR applications in different licensing environments.

  19. Design of a redundant meteorological station for a BWR reactor; Diseno de una estacion meteorologica redundante para un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, R.; Celis del Angel, L.; Bucio, F.; Rivero, T.; Palacios, J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: ramses@nuclear.inin.mx

    2008-07-01

    In this work the design of a meteorological station for a reactor type BWR is proposed. Two independent channels of data acquisition that allow him to have a bigger readiness is exposed. It is incorporate sensors without mobile parts to measure speed, wind direction and pluvial precipitation. It also counts, with sensors of global solar radiation, net radiation, barometric pressure, relative humidity and ambient temperature; with them they are possible to be calculated, moreover, other variables as temperature differential, dew point and atmospheric stability. The sensors are placed on a tower to different heights and send their information (each second) to a local registration system, the one which in turn, it remits the data to the monitoring office so that a computer is linked with the system, display and management the information in real time and automatic way. The redundant structure allows that in the event of maintenance the data acquisition is not interrupted, even if the information is transferred to another place. In all the station sections it is used protocols of standard communication to allow that a great quantity of devices can be connected without major problem. The above-mentioned would allow to the operators in the control room to have reliable information during the whole time of the reactor operation. (Author)

  20. Identification of the reduced order models of a BWR reactor; Identificacion de modelos de orden reducido de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez S, A. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: augusto@correo.unam.mx

    2004-07-01

    The present work has as objective to analyze the relative stability of a BWR type reactor. It is analyzed that so adaptive it turns out to identify the parameters of a model of reduced order so that this it reproduces a condition of given uncertainty. This will take of a real fact happened in the La Salle plant under certain operation conditions of power and flow of coolant. The parametric identification is carried out by means of an algorithm of recursive least square and an Output Error model (Output Error), measuring the output power of the reactor when the instability is present, and considering that it is produced by a change in the reactivity of the system in the same way that a sign of type step. Also it is carried out an analytic comparison of the relative stability, analyzing two types of answers: the original answer of the uncertainty of the reactor vs. the obtained response identifying the parameters of the model of reduced order, reaching the conclusion that it is very viable to adapt a model of reduced order to study the stability of a reactor, under the only condition to consider that the dynamics of the reactivity is of step type. (Author)

  1. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  2. Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR

    Energy Technology Data Exchange (ETDEWEB)

    G. S. Chang; Hongbin Zhang

    2009-09-01

    One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

  3. Numerical simulation of boron injection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, Hernan, E-mail: htb@forsmark.vattenfall.s [Forsmarks Kraftgrupp AB, SE-742 03 Osthammar (Sweden); Buchwald, Przemyslaw [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Frid, Wiktor, E-mail: wiktor@reactor.sci.kth.s [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2010-02-15

    The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of

  4. THERMAL EVALUATION OF THE USE OF BWR MOX SNF IN THE WASTE PACKAGE DESIGN (SCPB: N/A)

    Energy Technology Data Exchange (ETDEWEB)

    H. Wang

    1997-01-23

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24, 5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 40 BWR and 24 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. (2) Characterize the conceptual 44 BWR and 24 BWR Uncanistered Fuel (UCF) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. The purpose of this analysis is to respond to a concern that the long-term disposal thermal issues for the WP Design, if used with SNF designed for a MOX fuel cycle, do not preclude WP compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual WP design with disposal container which is loaded with BWR MOX SNF under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation, and to provide the required guidance to determining the major design issues for future design efforts, and to show that the BWR MOX SNF loaded WP performance is similar to an WP loaded with commercial BWR SNF.

  5. Propagation of cracks by stress corrosion in conditions of BWR type reactor; Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua en ebullicion (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, F.J. [ININ, 52045 Estado de Mexico (Mexico); Fuentes C, P. [ITT, Metepec, Estado de Mexico (Mexico)]. E-mail: fjmc@nuclear.inin.mx

    2004-07-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  6. Corrosion fatigue in LP steam turbine blading - experiences, causes and appropriate measures; Korrosionsutmattning i aangturbinskovlar - Erfarenheter, inverkande faktorer och moejliga aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Tavast, J. [ABB STAL AB, Finspaang (Sweden)

    1996-12-01

    Corrosion fatigue in LP steam turbine blading was reviewed together with result of tests performed in order to find blade materials with improved resistance against this. According to international experience, corrosion fatigue of 12Cr steam turbine blades in the transition zone between dry and wet steam, is one of the major causes, if not the major cause, for unavailability of steam turbines. Corrosion fatigue in LP blading is a frequent problem also in Swedish and Finnish nuclear power plants, especially in turbines of type D54 in BWR-plants. Corrosion fatigue has also been discovered in at least one type of nuclear turbine. Initiation times have been very long and the varying experiences in different types of turbines may simply reflect differing initiation times. Corrosion fatigue may therefore become more frequent in other types of turbines in the future. The type of water treatment (BWR/PWR) and possibly temperature after reheating seem to influence the risk for corrosion fatigue. Influence of inleakage of cooling water is less clear for these nuclear plants. The long initiation times together with the fact that very few of the cracked blades have actually failed, indicate that the cracks initiate and/or propagate during transients. Extensive laboratory tests show that there are alternative blade materials available with improved resistance against corrosion fatigue, with the most promising being 15/5 PH and A905, together with Ti6Al4V. The Ti alloy shows the best resistance against corrosion fatigue in most environments and is already used in some turbines. Disadvantage is a higher cost and possible need for redesign of the blades. The alternative materials are recommended for use for blades in the transition zone between dry and wet steam in LP turbines. The main disadvantage is a lack of references, even if 15%5 PH has been used to a very limited extent. 40 refs, 24 figs, 12 tabs, 9 appendices

  7. Determination of stresses caused by fluctuation of acoustic load in the steam dryers of a BWR; Determinacion de esfuerzos originados por fluctuacion de carga acustica en los secadores de vapor de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Centeno P, J.; Quezada G, S.; Prieto G, A.; Vazquez R, A.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Nunez C, A., E-mail: javcuami26@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2014-10-15

    The extended power up-rate (EPU) in a nuclear power plant cause various problems in BWR components also in the steam system. This due to increased steam flow generated in the reactor and is conveyed to the turbine by the four main steam lines (MSL). One of the most serious problems is the generation of acoustic pressure loads in the metal structure of the steam dryer which eventually leads to fatigue failure and even the appearance of cracks, and in turn it causes loose parts that are entrained by the steam and transported in the MSL. This problem is due to the fluctuation of load acoustics caused by the union of the safety or relief valves (SRV) with the MSL, spreading through these to reach the reactor pressure vessel (RPV) where the effect of resonance of the acoustic wave is amplified and impacts directly in the supporting structure of the steam dryer, skirt and the panels where the mixture liquid-steam is dried, by centrifugation effect and runoff of liquid water. Efforts in the steam dryer operating conditions of EPU for two cases will be analyzed in this work, the first is before the installation of Acoustic Side Branch (ASB), and in the second case we consider the installation of said ASB in the standpipes of SRV. The analysis was performed with numerical experiments on a platform for computational fluid dynamics with virtual geometries previously designed based on the actual components of the reactor and steam system. The model to study is delimited by the top of the RPV, the steam dryer and a section of each of the four MSL with ten standpipes of SRV. With the obtained data and considering the mechanical-structural properties of the steam dryer material, we can evaluate the mechanical resistance to impacts by acoustic pressure load and its possible deformation or cracking. (Author)

  8. Analysis CFD for the hydrogen transport in the primary containment of a BWR; Analisis CFD para el transporte de hidrogeno en la contencion primaria de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez P, D. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: guerreroazteca_69@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  9. Signal analysis of acoustic and flow-induced vibrations of BWR main steam line

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Prieto-Guerrero, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Núñez-Carrera, A. [Comisión Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragán 779, Col. Narvarte, México, D.F. 03020 (Mexico); Vázquez-Rodríguez, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Centeno-Pérez, J. [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas Unidad Profesional “Adolfo López Mateos”, Av. IPN, s/n, México, D.F. 07738 (Mexico); Espinosa-Martínez, E.-G. [Departamento de Sistemas Energéticos, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); and others

    2016-05-15

    Highlights: • Acoustic and flow-induced vibrations of BWR are analyzed. • BWR performance after extended power uprate is considered. • Effect of acoustic side branches (ASB) is analyzed. • The ASB represents a reduction in the acoustic loads to the steam dryer. • Methodology developed for simultaneous analyzing the signals in the MSL. - Abstract: The aim of this work is the signal analysis of acoustic waves due to phenomenon known as singing in Safety Relief Valves (SRV) of the main steam lines (MSL) in a typical BWR5. The acoustic resonance in SRV standpipes and fluctuating pressure is propagated from SRV to the dryer through the MSL. The signals are analyzed with a novel method based on the Multivariate Empirical Mode Decomposition (M-EMD). The M-EMD algorithm has the potential to find common oscillatory modes (IMF) within multivariate data. Based on this fact, we implement the M-EMD technique to find the oscillatory mode in BWR considering the measurements obtained collected by the strain gauges located around the MSL. These IMF, analyzed simultaneously in time, allow obtaining an estimation of the effects of the multiple-SRV in the MSL. Two scenarios are analyzed: the first is the signal obtained before the installation of the acoustic dampers (ASB), and the second, the signal obtained after installation. The results show the effectiveness of the ASB to damp the strong resonances when the steam flow increases, which represents an important reduction in the acoustic loads to the steam dryer.

  10. Development and Testing of CTF to Support Modeling of BWR Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)

    2016-01-29

    This milestone supports developing and assessing COBRA-TF (CTF) for the modeling of boiling water reactors (BWRs). This is achieved in three stages. First, a new preprocessor utility that is capable of handling BWR-specic design elements (e.g., channel boxes and large water rods) is developed. A previous milestone (L3:PHI.CTF.P12.01) led to the development of this preprocessor capability for single assembly models. This current milestone expands this utility so that it is applicable to multi-assembly BWR models that can be modeled in either serial or parallel. The second stage involves making necessary modications to CTF so that it can execute these new models. Specically, this means implementing an outer-iteration loop, specic to BWR models, that equalizes the pressure loss over all assemblies in the core (which are not connected due to the channel boxes) by adjusting inlet mass ow rate. A third stage involves assessing the standard convergence metrics that are used by CTF to determine when a simulation is steady-state. The nal stage has resulted in the implementation of new metrics in the code that give a better indication of how steady the solution is at convergence. This report summarizes these eorts and provides a demonstration of CTF's BWR-modeling capabilities. CASL-U-2016-1030-000

  11. Predictions by the proper orthogonal decomposition reduced order methodology regarding non-linear BWR stability

    Energy Technology Data Exchange (ETDEWEB)

    Prill, Dennis; Class, Andreas G. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). AREVA Nuclear Professional School (ANPS)

    2013-07-01

    Unexpected non-linear boiling water reactor (BWR) instability events in various plants, e.g. LaSalle II in 1988 and Oskarshamn II in 1990 amongst others, emphasize the major safety relevance and the existence of parameter regions with unstable behavior. A detailed description of the complete dynamical non-linear behavior is of paramount importance for BWR operation. An extension of state-of-the-art methodology towards a more general stability description, also applicable in the non-linear region, could lead to a deeper understanding of non-linear BWR stability phenomena. With the intention of a full non-linear stability analysis of the two-phase BWR system, the present paper aims at a general non-linear methodology capable to achieve reliable and numerical stable reduced order models (ROMs), representing the dynamical behavior of an original system based on a small number of transients. Model-specific options and aspects of the proposed methodology are focused on and illustrated by means of a strongly non-linear dynamical system showing complex oscillating behavior. Prediction capability of the proposed methodology is also addressed. (orig.)

  12. Plutonium and Minor Actinides Recycling in Standard BWR using Equilibrium Burnup Model

    Directory of Open Access Journals (Sweden)

    Abdul Waris

    2008-03-01

    Full Text Available Plutonium (Pu and minor actinides (MA recycling in standard BWR with equilibrium burnup model has been studied. We considered the equilibrium burnup model as a simple time independent burnup method, which can manage all possible produced nuclides in any nuclear system. The equilibrium burnup code was bundled with a SRAC cell-calculation code to become a coupled cell-burnup calculation code system. The results show that the uranium enrichment for the criticality of the reactor, the amount of loaded fuel and the required natural uranium supply per year decrease for the Pu recycling and even much lower for the Pu & MA recycling case compared to those of the standard once-through BWR case. The neutron spectra become harder with the increasing number of recycled heavy nuclides in the reactor core. The total fissile rises from 4.77% of the total nuclides number density in the reactor core for the standard once-through BWR case to 6.64% and 6.72% for the Plutonium recycling case and the Pu & MA recycling case, respectively. The two later data may become the main basis why the required uranium enrichment declines and consequently diminishes the annual loaded fuel and the required natural uranium supply. All these facts demonstrate the advantage of plutonium and minor actinides recycling in BWR.

  13. Flex concept for US-A BWR extended loss of AC power events

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Aoyagi, Y.; Kataoka, K. [Toshiba Corporation, Kawasaki, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (US-A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (Stp 3 and 4) Combined License Application (Cola) and incorporates numerous design and technology enhancements for improved safety performance. Nuclear Innovation North America (NINA) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The Stp 3 and 4 project has finished the US NRC technical review of the Cola, and the final safety evaluation report (FSER) is scheduled to be issued by the US NRC in 2015. Following the accident at the Fukushima Dai-ichi plant, the US-A BWR was reviewed for Beyond Design Basis Event (BDBE) safety using industry and regulatory guidance for US NRC Order EA-12-049 Order Modifying Licenses with Regard to Requirements for Mitigation of Beyond Design Basis External Events (BDBEE). By virtue of the design approach, the US-A BWR is capable of providing an indefinite coping period for a station blackout. The use of installed systems with extended coping times is a significant advantage of the US-A BWR compared to most of the plants currently operating in the U.S. In addition, the Stp 3 and 4 design incorporates enhancements consistent with the current US industry Diverse and Flexible Coping Strategies (Flex) initiative. The final technical topic requiring review by the US NRC Advisory Committee on Reactor Safeguards was the Flex Integrated Plan submitted by NINA, and this review was successfully completed. This paper summarizes the progress of the US-A BWR in licensing the Flex Integrated Plan for the project, and describes the technology and features of the US-A BWR design that contribute to safety post-Fukushima. It also provides an informational comparison of the design capabilities of the US-A BWR for extreme external events, and relates these capabilities to re

  14. Assessment of the Prony's method for BWR stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico); Castillo-Duran, Rogelio, E-mail: rogelio.castillo@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico); Palacios-Hernandez, Javier C., E-mail: javier.palacios@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico)

    2011-05-15

    Highlights: This paper describes a method to determine the degree of stability of a BWR. Performance comparison between Prony's and common AR techniques is presented. Benchmark data and actual BWR transient data are used for comparison. DR and f results are presented and discussed. The Prony's method is shown to be a robust technique for BWR stability. - Abstract: It is known that Boiling Water Reactors are susceptible to present power oscillations in regions of high power and low coolant flow, in the power-flow operational map. It is possible to fall in one of such instability regions during reactor startup, since both power and coolant flow are being increased but not proportionally. One other possibility for falling into those areas is the occurrence of a trip of recirculation pumps. Stability monitoring in such cases can be difficult, because the amount or quality of power signal data required for calculation of the stability key parameters may not be enough to provide reliable results in an adequate time range. In this work, the Prony's Method is presented as one complementary alternative to determine the degree of stability of a BWR, through time series data. This analysis method can provide information about decay ratio and oscillation frequency from power signals obtained during transient events. However, so far not many applications in Boiling Water Reactors operation have been reported and supported to establish the scope of using such analysis for actual transient events. This work presents first a comparison of decay ratio and frequency oscillation results obtained by Prony's method and those results obtained by the participants of the Forsmark 1 and 2 Boiling Water Reactor Stability Benchmark using diverse techniques. Then, a comparison of decay ratio and frequency oscillation results is performed for four real BWR transient event data, using Prony's method and two other techniques based on an autoregressive modeling. The four

  15. Axial profiles of burned and fraction of holes for calculations of criticality with credit for BWR fuel burning; Perfiles axiales de quemado y fraccion de huecos para calculos de criticidad con credito al quemado para combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Casado Sanchez, C.; Rubio Oviedo, P.

    2014-07-01

    This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)

  16. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  17. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1998-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  18. Rotating housing turbine

    Energy Technology Data Exchange (ETDEWEB)

    Allouche, Erez; Jaganathan, Arun P.

    2016-10-11

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  19. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Kenji; Ebata, Shigeo [Toshiba Corp., Yokohama (Japan)

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding of the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.

  20. Design and axial optimization of nuclear fuel for BWR reactors; Diseno y optimizacion axial de combustible nuclear para reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Garcia V, M.A

    2006-07-01

    In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the

  1. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Martinez-Gonzalez, Jesus S [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in

  2. Turbine oil

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, E.A.; Bogdanov, Sh.K.; Dovgopolyi, E.E.; Gryaznov, B.V.; Ivanov, V.S.; Ivanova, Z.M.; Kozlova, E.K.; Nikolaeva, N.M.; Rozhdestvenskaya, A.A.

    1981-03-10

    In the known turbine oil (TO), for the purpose of improving the anticorrosion and demulsifying properties, a polyoxypropylene glycol ether, ethylenediamine or propylene glycol or an alkylphenol are additionally introduced, where the C/sub 8/-C/sub 12/ alkyl has a molecular weight of 2000-10,000. The proportions of the components are: 2, 6-di-tert-butyl-4-methylphenol 0.2-1.0%, quinizarin 0.01-0.05%, an acid ester of an alkenylsuccinic acid 0.02-0.1%, a polyoxypropylene glycol ether 0.02-0.2%, polymethylsiloxane 0.003-0.005%, and petroleum oil the remainder. The TO is prepared by mixing the petroleum oil with the additives in any sequence at a temperature of 60-80/sup 0/ by mechanical stirring. On the five TO samples the antioxidative, demulsifying, and anticorrosion properties by comparison with the prototype were investigated. It was shown that the obtained TO possesses improved anticorrosion properties (time until the appearance of Kr (staining.), up to 60 h as against 35 on the prototype) and demulsifying properties (quantity of water separating on breaking the emulsion 10 mg/L as against 65 mg/L on the prototype) for an antioxidative stability equal to that of the analog. The TO is designated for use in various turbo-units, in the first place in marine steam turbine units, where there is the probability of contact of the TO with seawater. Use of the TO makes it possible to increase the service life of the mechanisms, to reduce the amount of oil mixable in the form of an emulsion (by a factor of 1.5 to 2), and to lower the operating expenses.

  3. BWR Spent Nuclear Fuel Interfacial Bonding Efficiency Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    The objective of this project is to perform a systematic study of spent nuclear fuel (SNF, also known as “used nuclear fuel” [UNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. Additional CIRFT testing was conducted on three HBR rods; two specimens failed, and one specimen was tested to over 2.23 × 107 cycles without failing. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of the SNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, eleven SNF rod segments from the Limerick BWR were tested using the ORNL CIRFT equipment; one test under static conditions and ten tests under dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at a maximum curvature of 4.0 m-1. The specimen did not show any sign of failure during three repeated loading cycles to a similar maximum curvature. Ten cyclic tests were conducted with amplitudes varying from 15.2 to 7.1 N·m. Failure was observed in nine of

  4. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Martinez-Gonzalez, Jesus S [ORNL

    2015-05-01

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents the analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.

  5. Full scale stability and void fraction measurements for the ATRIUM trademark 10XM BWR fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Wehle, Franz; Velten, Roger; Kronenberg, Juris; Beisiegel, Achim [AREVA NP GmbH, Erlangen (Germany); Pruitt, D.W.; Greene, K.R. [AREVA NP Inc., Lynchburg, VA (United States); Farawila, Y.M. [Farawila et al., Inc., Richland, WA (United States)

    2011-07-01

    This paper describes recent advances in BWR fuel testing at AREVA NP's KATHY loop including stability and void fraction measurements. The stability tests for the ATRIUM trademark 10XM bundle with corner PLFR's were expanded in scope compared with previous campaigns to include simulated reactivity and power feedback essentially reproducing BWR operational environment. The oscillation magnitude was allowed to grow to explore inlet flow reversal and cyclical dryout and rewetting. The void fraction measurements employed a gamma ray computed tomography technique that reveals not only the average but the detailed sub-channel void distribution, and the range of measured void fraction has been expanded to higher values than was previously attained. With the completion of the required licensing tests and stability performance demonstration, the ATRIUM trademark 10XM is available and fully qualified for reload supply. (orig.)

  6. Development of a scatter search optimization algorithm for BWR fuel lattice design

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J.L.; Martin-del-Campo, C. [Mexico Univ. Nacional Autonoma, Facultad de Ingenieria (Mexico); Morales, L.B.; Palomera, M.A. [Mexico Univ. Nacional Autonoma, Instituto de Investigaciones en Matematicas Aplicadas y Sistemas, D.F. (Mexico)

    2005-07-01

    A basic Scatter Search (SS) method, applied to the optimization of radial enrichment and gadolinia distributions for BWR fuel lattices, is presented in this paper. Scatter search is considered as an evolutionary algorithm that constructs solutions by combining others. The goal of this methodology is to enable the implementation of solution procedures that can derive new solutions from combined elements. The main mechanism for combining solutions is such that a new solution is created from the strategic combination of two other solutions to explore the solutions' space. Results show that the Scatter Search method is an efficient optimization algorithm applied to the BWR design and optimization problem. Its main features are based on the use of heuristic rules since the beginning of the process, which allows directing the optimization process to the solution, and to use the diversity mechanism in the combination operator, which allows covering the search space in an efficient way. (authors)

  7. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Betzler, Benjamin R [ORNL; Ade, Brian J [ORNL

    2017-01-01

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay, and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.

  8. Uncertainty analysis of suppression pool heating during an ATWS in a BWR-5 plant. An application of the CSAU methodology using the BNL engineering plant analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.; Cheng, H.S.; Mallen, A.N. [Brookhaven National Lab., Upton, NY (United States); Johnsen, G.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Lellouche, G.S. [Technical Data Services, Chicago, IL (United States)

    1994-03-01

    The uncertainty has been estimated of predicting the peak temperature in the suppression pool of a BWR power plant, which undergoes an NRC-postulated Anticipated Transient Without Scram (ATWS). The ATWS is initiated by recirculation-pump trips, and then leads to power and flow oscillations as they had occurred at the LaSalle-2 Power Station in March of 1988. After limit-cycle oscillations have been established, the turbines are tripped, but without MSIV closure, allowing steam discharge through the turbine bypass into the condenser. Postulated operator actions, namely to lower the reactor vessel pressure and the level elevation in the downcomer, are simulated by a robot model which accounts for operator uncertainty. All balance of plant and control systems modeling uncertainties were part of the statistical uncertainty analysis that was patterned after the Code Scaling, Applicability and Uncertainty (CSAU) evaluation methodology. The analysis showed that the predicted suppression-pool peak temperature of 329.3 K (133{degrees}F) has a 95-percentile uncertainty of 14.4 K (26{degrees}F), and that the size of this uncertainty bracket is dominated by the experimental uncertainty of measuring Safety and Relief Valve mass flow rates under critical-flow conditions. The analysis showed also that the probability of exceeding the suppression-pool temperature limit of 352.6 K (175{degrees}F) is most likely zero (it is estimated as < 5-104). The square root of the sum of the squares of all the computed peak pool temperatures is 350.7 K (171.6{degrees}F).

  9. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff`s basis for issuing GL 94-03, as well as the staff`s assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date.

  10. Characterization of corrosion layers on irradiated and non-irradiated surfaces in BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J.; Balek, V.; Zmitko, M.; Brozova, A.; Burda, J. [Nuclear Research Inst., Rez (Czech Republic); Hoffmann, H.; Ruehle, W. [VGB Essen (Germany); Bezdicka, P. [Institute of Inorganic Chemistry, ASCR, Rez (Czech Republic)

    2002-07-01

    Stress corrosion cracking of low-alloyed steel 22NiMoCr37 is evaluated with the goal to determine crack growth rate in irradiated steel under conditions simulating closely conditions of BWR RPV under operation. For the experiment, in pile BWR experimental loop has been built at Nuclear Research Institute, Rez. During the experiment, specimens are loaded by cyclic and constant load. Crack growth is monitored by means of potential drop measurement and COD. Corrosion layers formed on specimens in reactor water loop exposed to BWR primary water chemistry and radiation were studied. Two sets of specimens were placed in loop channels. One set of specimens was situated in reactor conditions and the second set out of reactor, other parameters like water chemistry (e.g. concentration of hydrogen, oxygen and conductivity), temperature and flow rate were identical. By means of this an effect of radiation could be studied. The differences in chemical composition, structure and microstructure of corrosion products were characterized by SEM and X-ray powder diffractometry. The differences in microstructure of corrosion layer formed under different conditions were observed. (authors)

  11. MELCOR 1.8.2 assessment: The DF-4 BWR Damaged Fuel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tautges, T.J.

    1993-10-01

    MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data.

  12. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  13. Damage by radiation in structural materials of BWR reactor vessels; Dano por radiacion en materiales estructurales de vasijas de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [Departamento de Sintesis y Caracterizacion de Materiales, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The structural materials which are manufactured the pressure vessels of the BWR reactors undergo degradation in their mechanical properties mainly due to the damage produced by the fast neutrons (E> 1 MeV) coming from the reactor core. The mechanisms of neutron damage in this type of materials are experimentally studied, through the irradiation of vessel steel in experimental reactors for a quickly ageing. Alternately the neutron damage through steel irradiation with heavy ions is simulated. In this work the first results of the damage induced by irradiation of a similar steel to the vessel of a BWR reactor are shown. The irradiation was performed with fast neutrons (E> 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA Mark III Salazar reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator (E= 4.8 MeV and an ion flux rank of 0.1 to 53 ions/A{sup 2}). (Author)

  14. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  15. Entrainment and deposition modeling of liquid films with applications for BWR fuel rod dryout

    Science.gov (United States)

    Ratnayake, Ruwan Kumara

    While best estimate computer codes provide the licensing basis for nuclear power facilities, they also serve as analytical tools in overall plant and component design procedures. An ideal best estimate code would comprise of universally applicable mechanistic models for all its components. However, due to the limited understanding in these specific areas, many of the models and correlations used in these codes reflect high levels of empiricism. As a result, the use of such models is strictly limited to the range of parameters within which the experiments have been conducted. Disagreements between best estimate code predictions and experimental results are often explained by the mechanistic inadequacies of embedded models. Significant mismatches between calculated and experimental critical power values are common observations in the analyses of Boiling Water Reactors (BWR). Based on experimental observations and calculations, these mismatches are attributed to the additional entrainment and deposition caused by spacer grids in BWR fuel assemblies. In COBRA-TF (Coolant Boiling in Rod Arrays-Two Fluid); a state of the art industrial best estimate code, these disagreements are hypothesized to occur due the absence of an appropriate spacer grid model. In this thesis, development of a suitably detailed spacer grid model and integrating it to COBRA-TF is documented. The new spacer grid model is highly mechanistic so that the applicability of it is not seriously affected by geometric variations in different spacer grid designs. COBRA-TF (original version) simulations performed on single tube tests and BWR rod bundles with spacer grids showed that single tube predictions were more accurate than those of the rod bundles. This observation is understood to arise from the non-availability of a suitable spacer grid model in COBRA-TF. Air water entrainment experiments were conducted in a test section simulating two adjacent BWR sub channels to visualize the flow behavior at

  16. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  17. Turbine Imaging Technology Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  18. Bilateral inferior turbinate osteoma

    Science.gov (United States)

    Sahemey, R.; Warfield, A.T.; Ahmed, S.

    2016-01-01

    Osteomas are the most common benign osteoclastic tumours of the paranasal sinuses. However, nasal cavity and turbinate osteomas are extremely rare. Only nine middle turbinate, three inferior turbinate and one inferior turbinate osteoma cases have been reported to date. The present case report describes the management and follow-up of symptomatic bilateral inferior turbinate osteoma. A 60-year-old female presented with symptoms of bilateral nasal obstruction and right-sided epiphora. Radiological investigation found hypertrophic bony changes involving both inferior turbinates. The patient was managed successfully by endoscopic inferior turbinectomies in order to achieve a patent airway, with no further recurrence of tumour after 3 months postoperatively. To the best of our knowledge, this is the first reported case of bilateral inferior turbinate osteoma. We describe a safe and minimally invasive method of tumour resection, which has a better cosmetic outcome compared with other approaches. PMID:27534890

  19. PVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS

    DEFF Research Database (Denmark)

    Yan, Wei; Varzandeh, Farhad; Stenby, Erling Halfdan

    2015-01-01

    non-cubic EoS models, such as the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) EoS and the Soave modified Benedict-Webb-Rubin (Soave-BWR) EoS, may partly replace the roles of these classical cubic models in the upstream oil industry. Here, we attempt to make a comparative study...... of non-cubic models (PC-SAFT and Soave-BWR) and cubic models (SRK and PR) in several important aspects related to PVT modeling of reservoir fluids, including density description for typical pure components in reservoir fluids, description of binary VLE, prediction of multicomponent phase envelopes...... and Soave-BWR. For PC-SAFT, new correlations for estimating its model parameters in heptanes plus are developed. The results reveal that the non-cubic models are clearly advantageous in density calculation of pure components. For binary VLE and multicomponent phase envelopes, the results are similar...

  20. Analysis of high fidelity of a BWR fuel element with COBRA-TF/PARCS codes and TRACE; Analisis de Alta Fidelidad de un Elemento Combustible BWR con los codigos COBRA-TF/PARCS y TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G.; Solar, A.; Concejal, A.; Melara, J.; Albendea, M.

    2013-07-01

    It has been modeled a 10 x 10 BWR fuel element, containing 91 fuel rods (81 of 10 partial length and total length) and a great water bar of square section in the central part of it. Such fuel element has been modeled in detail: at the level of sub-channel code COBRA-TF and using parametric models for fuel elements BWR that owns the plant code TRACE. Has been an exercise in comparison of the results obtained by both codes in the simulation of a stationary and a small transient flow injection, highlighting the differences observed.

  1. Crack growth tests on a ferritic reactor pressure vessel steel under the simultaneous influence of simulated BWR coolant and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H. [VGB PowerTech e.V., Essen (Germany); Huettner, F. [Hamburgische Electricitaets-Werke AG, Hamburg (Germany); Ilg, U. [EnBW Kraftwerke AG, Philippsburg (Germany); Wachter, O. [E.ON Kernkraft GmbH, Hannover(Germany); Widera, M. [RWE Power AG, Essen (Germany); Brozova, A.; Ernestova, M.; Kysela, J.; Vsolak, R. [Nuclear Research Institute Rez plc (Czech Republic)

    2004-07-01

    Crack growth tests under constant load with initial in-situ cycling were performed on the low alloy reactor pressure vessel (RPV) steel 22 NiMoCr 3 7 (A 508 Cl. 2) with the goal to determine crack growth rates of irradiated and non-irradiated steel under the simultaneous influence of simulated BWR coolant and irradiation. The tests were performed under conditions as near as possible to operational conditions in a commercial BWR reactor. The research results are summarized and are compared with international data. (orig.)

  2. Behavior of irradiated BWR fuel under reactivity-initiated-accident conditions; Results of tests FK-1, -2 and -3

    OpenAIRE

    2004-01-01

    Boiling water reactor (BWR) fuels with burnups of 41 to 45 GWd/tU were pulse-irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity-initiated-accident (RIA) conditions. BWR fuel segment rods of 8times8BJ (STEP I) type from Fukushima-Daiichi Unit 3 nuclear power plant were refabricated into short test rods, and they were subjected to prompt enthalpy insertion from 293 to 607 J/g (70 to 145 cal/g) within about 20 ms. The fuel cladding...

  3. Study of transient rod extraction failure without RBM in a BWR; Estudio del transitorio error de extraccion de barra sin RBM en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L., E-mail: amhed_jvq@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-09-15

    The study and analysis of the operational transients are important for predicting the behavior of a system to short-term events and the impact that would cause this transient. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could cause an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis results of the transient rod extraction failure in which not taken into operation the RBM is presented. The study was conducted for a BWR of 2027 MWt, in an intermediate cycle of its useful life and using the computer code Simulate-3K a scenario of anomalies was created in the core reactivity which gave a coherent prediction to the type of presented event. (Author)

  4. Obtention control bars patterns for a BWR using Tabo search; Obtencion de patrones de barras de control para un BWR usando busqueda Tabu

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, A.; Ortiz, J.J.; Alonso, G. [Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carretera Mexico-Toluca, Ocoyoacac, Estado de Mexico 52045 (Mexico); Morales, L.B. [UNAM, IIMAS, Ciudad Universitaria, D. F. 04510 (Mexico); Valle, E. del [IPN, ESFM, Unidad Profesional ' Adolfo Lopez Mateos' , Col. Lindavista 07738, D. F. (Mexico)]. e-mail: jacm@nuclear.inin.mx

    2004-07-01

    The obtained results when implementing the technique of tabu search, for to optimize patterns of control bars in a BWR type reactor, using the CM-PRESTO code are presented. The patterns of control bars were obtained for the designs of fuel reloads obtained in a previous work, using the same technique. The obtained results correspond to a cycle of 18 months using 112 fresh fuels enriched at the 3.53 of U-235. The used technique of tabu search, prohibits recently visited movements, in the position that correspond to the axial positions of the control bars, additionally the tiempo{sub t}abu matrix is used for to manage a size of variable tabu list and the objective function is punished with the frequency of the forbidden movements. The obtained patterns of control bars improve the longitude of the cycle with regard to the reference values and they complete the restrictions of safety. (Author)

  5. Thermal hydraulics characterization of the core and the reactor vessel type BWR; Caracterizacion termohidraulica del nucleo y de la vasija de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Zapata Y, M.; Lopez H, L.E. [CFE, Carretera Cardel-Nautla Km. 42.5, Municipio Alto Lucero, Veracruz (Mexico)]. e-mail: marxlenin.zapata@cfe.gob.mx

    2008-07-01

    The thermal hydraulics design of a reactor type BWR 5 as the employees in the nuclear power plant of Laguna Verde involves the coupling of at least six control volumes: Pumps jet region, Stratification region, Core region, Vapor dryer region, Humidity separator region and Reactor region. Except by the regions of the core and reactor, these control volumes only are used for design considerations and their importance as operative data source is limited. It is for that is fundamental to complement the thermal hydraulics relations to obtain major data that allow to determine the efficiency of internal components, such as pumps jet, humidity separator and vapor dryer. Like example of the previous thing, calculations are realized on the humidity of the principal vapor during starting, comparing it with the values at the moment incorporated in the data banks of the computers of process of both units. (Author)

  6. Optimization of fuel reloads for a BWR using the ant colony system; Optimizacion de recargas de combustible para un BWR usando el sistema de colonia de hormigas

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel E, J. [Universidad Autonoma del Estado de Mexico, Facultad de Ingenieria, Cerro de Coatepec s/n, Ciudad Universitaria, 50110 Toluca, Estado de Mexico (Mexico); Ortiz S, J. J. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: jaime.es.jaime@gmail.com

    2009-10-15

    In this work some results obtained during the development of optimization systems are presented, which are employees for the fuel reload design in a BWR. The systems use the ant colony optimization technique. As first instance, a system is developed that was adapted at travel salesman problem applied for the 32 state capitals of Mexican Republic. The purpose of this implementation is that a similarity exists with the design of fuel reload, since the two problems are of combinatorial optimization with decision variables that have similarity between both. The system was coupled to simulator SIMULATE-3, obtaining good results when being applied to an operation cycle in equilibrium for reactors of nuclear power plant of Laguna Verde. (Author)

  7. Analysis of assemblies exchange in the core of a reactor BWR; Analisis del intercambio de ensambles en el nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kauil U, J. S. [Universidad Autonoma de Yucatan, Facultad de Ingenieria, Av. Industrias no contaminantes por Anillo Periferico Norte s/n, Apdo. Postal 150 Cordemex, Merida, Yucatan (Mexico); Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia del Cueto, R., E-mail: san_dino@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The performance of the core of a boiling water reactor (BWR) was evaluated when two assemblies are exchanged during the fuel reload in erroneous way. All with the purpose of analyzing the value of the neutrons effective multiplication factor and the thermal limits for an exchange of assemblies. In their realization the mentioned study was based in a transition cycle of the Unit 1 of the nuclear power plant of Laguna Verde. The obtained results demonstrate that when carrying out an exchange between two fuel assemblies in erroneous way, with regard to the original reload, the changes in the neutrons effective multiplication factor do not present a serious problem, unless the exchange has been carried out among a very burnt assembly with one fresh, where this last is taken to the periphery. (Author)

  8. Coalescing Wind Turbine Wakes

    Science.gov (United States)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-01

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a “triplet” structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. The turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions.

  9. Estimation of dose rate around the spent control rods of a BWR; Estimacion de la rapidez de dosis alrededor de las barras de control gastadas de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cancino P, G.

    2016-10-01

    The energy can come from fossil renewable sources (solar (natural gas, oil), wind, hydro, tidal, geothermal, biomass, bio energy and nuclear. Nuclear power can be obtained by fission reactions and fusion (still under investigation) atomic nuclei. Fission, is a partition of a very heavy nucleus (Uranium 235, for example) into two lighter nuclei. Much of the world's electric power is generated from the energy released by fission processes. In a nuclear power reactor, light water as the BWR, there are many important elements that allow safe driving operation, one of them are the elements or control systems, the burnable poison or neutron absorber inherently allow control power reactor. The control rods, which consist mostly of stainless steel and absorbing elements (such as boron carbide, hafnium, cadmium, among others) of thermal neutrons is able to initiate, regulate or stop the reactor power. These, due to the use of depleted burned or absorbing material and therefore reach their lifespan, which can be 15 years or have other values depending on the manufacturer. Control rods worn should be removed, stored or confined in expressly places. Precisely at this stage arises the importance of knowing their radiological condition to manipulate safely and without incident to the people health responsible for conducting these proceedings state arises. This thesis consists in the estimation of the dose rate in spent control rod made of boron carbide, from a typical BWR reactor. It will be estimated by direct radiation measurements with measurement equipment for radiotherapy ionization chamber, in six spent control rods, which were taken at different reactor operating cycles and are in a spent fuel pool. Using bracket electromechanical and electronic equipment for positioning and lifting equipment for radiation measurement around the control rod in the axial and radial arrangement for proper scanning. Finally will be presented a graphic corresponding to the dose

  10. Crack growth rate in core shroud horizontal welds using two models for a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Arganis Juárez, C.R., E-mail: carlos.arganis@inin.gob.mx; Hernández Callejas, R.; Medina Almazán, A.L.

    2015-05-15

    Highlights: • Two models were used to predict SCC growth rate in a core shroud of a BWR. • A weld residual stress distribution with 30% stress relaxation by neutron was used. • Agreement is shown between the measurements of SCC growth rate and the predictions. • Slip–oxidation model is better at low fluences and empirical model at high fluences. - Abstract: An empirical crack growth rate correlation model and a predictive model based on the slip–oxidation mechanism for Stress Corrosion Cracking (SCC) were used to calculate the crack growth rate in a BWR core shroud. In this study, the crack growth rate was calculated by accounting for the environmental factors related to aqueous environment, neutron irradiation to high fluence and the complex residual stress conditions resulting from welding. In estimating the SCC behavior the crack growth measurements data from a Boiling Water Reactor (BWR) plant are referred to, and the stress intensity factor vs crack depth throughout thickness is calculated using a generic weld residual stress distribution for a core shroud, with a 30% stress relaxation induced by neutron irradiation. Quantitative agreement is shown between the measurements of SCC growth rate and the predictions of the slip–oxidation mechanism model for relatively low fluences (5 × 10{sup 24} n/m{sup 2}), and the empirical model predicted better the SCC growth rate than the slip–oxidation model for high fluences (>1 × 10{sup 25} n/m{sup 2}). The relevance of the models predictions for SCC growth rate behavior depends on knowing the model parameters.

  11. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments.

  12. A Mechanistic Approach for the Prediction of Critical Power in BWR Fuel Bundles

    Science.gov (United States)

    Chandraker, Dinesh Kumar; Vijayan, Pallipattu Krishnan; Sinha, Ratan Kumar; Aritomi, Masanori

    The critical power corresponding to the Critical Heat Flux (CHF) or dryout condition is an important design parameter for the evaluation of safety margins in a nuclear fuel bundle. The empirical approaches for the prediction of CHF in a rod bundle are highly geometric specific and proprietary in nature. The critical power experiments are very expensive and technically challenging owing to the stringent simulation requirements for the rod bundle tests involving radial and axial power profiles. In view of this, the mechanistic approach has gained momentum in the thermal hydraulic community. The Liquid Film Dryout (LFD) in an annular flow is the mechanism of CHF under BWR conditions and the dryout modeling has been found to predict the CHF quite accurately for a tubular geometry. The successful extension of the mechanistic model of dryout to the rod bundle application is vital for the evaluation of critical power in the rod bundle. The present work proposes the uniform film flow approach around the rod by analyzing individual film of the subchannel bounded by rods with different heat fluxes resulting in different film flow rates around a rod and subsequently distributing the varying film flow rates of a rod to arrive at the uniform film flow rate as it has been found that the liquid film has a strong tendency to be uniform around the rod. The FIDOM-Rod code developed for the dryout prediction in BWR assemblies provides detailed solution of the multiple liquid films in a subchannel. The approach of uniform film flow rate around the rod simplifies the liquid film cross flow modeling and was found to provide dryout prediction with a good accuracy when compared with the experimental data of 16, 19 and 37 rod bundles under BWR conditions. The critical power has been predicted for a newly designed 54 rod bundle of the Advanced Heavy Water Reactor (AHWR). The selected constitutive models for the droplet entrainment and deposition rates validated for the dryout in tube were

  13. LOCA steam condensation loads in BWR Mark II pressure suppression containment system

    Energy Technology Data Exchange (ETDEWEB)

    Kukita, Y.; Namatame, K.; Takeshita, I.; Shiba, M.

    1987-06-01

    Hydrodynamic loads induced in the BWR Mark II pressure suppression containment system during a loss-of-coolant accident (LOCA) were investigated using a large scale test facility. The maximum-bounding loading conditions on the pressure suppression pool-boundary structures were defined by conducting experiments for a wide range of parameters. The maximum-bounding loads occurred when steam, with air concentration less than 1% in weight, was injected at moderate rates (approx. = 30 kg/m/sup 2/.s) into a low-temperature (below 310 K) pool. Such conditions are most likely to be encountered during LOCAs with intermediate break sizes.

  14. LOCA air-injection loads in BWR Mark II pressure suppression containment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kukita, Y.; Shiba, M. (Japan Atomic Energy Research Inst., Tokai, Ibaraki); Namatame, K. (Institute of Nuclear Safety, Tokyo (Japan))

    1984-02-01

    Large-scale blowdown tests were conducted to investigate the thermal-hydrodynamic response of a boiling-water reactor (BWR) Mark II pressure suppression containment system to a postulated loss-of-coolant accident. This paper presents the test results on the early blowdown transients, where air in the drywell is injected into the pressure suppression pool and induces various hydrodynamic loads onto the containment pressure boundary and internal structures. The test data are compared to predictions by analytical models used for the licensing evaluation of the hydrodynamic loads to assess these models.

  15. Effect of non-heterogeneous wetwell boundaries on pressure suppression system response. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    McCauley, E.W.; Holman, G.S.; Namatame, K.; Kukita, Y.; Shiba, M.

    1980-08-29

    The Full-Scale Mark II CRT (Containment Response Test) Program is in progress at the Tokai-Mura Establishment of the Japan Atomic Energy Research Institute (JAERI). The primary objective of the on-going CRT Program is to provide a data base for evaluation of the pressure suppression pool (wetwell) hydrodynamic loads associated with a postulated loss-of-coolant accident (LOCA) in the BWR Mark II containment system. The test facility is 1/18 of full scale in volume and has a wetwell which is a full-scale geometric replica of one 20/sup 0/-sector of a reference 1100MWe Mark II.

  16. TRACE code validation for BWR spray cooling injection based on GOTA facility experiments

    Energy Technology Data Exchange (ETDEWEB)

    Racca, S. [San Piero a Grado Nuclear Research Group (GRNSPG), Pisa (Italy); Kozlowski, T. [Royal Inst. of Tech., Stockholm (Sweden)

    2011-07-01

    Best estimate codes have been used in the past thirty years for the design, licensing and safety of NPP. Nevertheless, large efforts are necessary for the qualification and the assessment of such codes. The aim of this work is to study the main phenomena involved in the emergency spray cooling injection in a Swedish designed BWR. For this purpose, data from the Swedish separate effect test facility GOTA have been simulated using TRACE version 5.0 Patch 2. Furthermore, uncertainty calculations have been performed with the propagation of input errors method and the identification of the input parameters that mostly influence the peak cladding temperature has been performed. (author)

  17. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  18. Rampressor Turbine Design

    Energy Technology Data Exchange (ETDEWEB)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  19. Investigation of control rod worth and nuclear end of life of BWR control rods

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Per

    2008-01-15

    This work has investigated the Control Rod Worth (CRW) and Nuclear End of Life (NEOL) values for BWR control rods. A study of how different parameters affect NEOL was performed with the transport code PHOENIX4. It was found that NEOL, expressed in terms of {sup 10}B depletion, can be generalized beyond the conditions for which the rod is depleted, such as different power densities and void fractions, the corresponding variation in the NEOL will be about 0.2-0.4% {sup 10}B. It was also found that NEOL results for different fuel types and different fuel enrichments have a variation of about 2-3% in {sup 10}B depletion. A comparative study on NHOL and CRW was made between PHOENIX4 and the stochastic Monte Carlo code MCNP. It was found that there is a significant difference, both due to differences in the codes and to limitations in the geometrical modeling in PHOENIX4. Since MCNP is considered more physically correct, a methodology was developed to calculate the nuclear end of life of BWR control rods with MCNP. The advantages of the methodology are that it does not require other codes to perform the depletion of the absorber material, it can describe control rods of any design and it can deplete the control rod absorber material without burning the fuel. The disadvantage of the method is that is it time-consuming.

  20. Transient and stability analysis of a BWR core with thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779 Col. Narvarte, 03020 Mexico, DF (Mexico); Espinosa-Paredes, Gilberto [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, DF (Mexico)], E-mail: gepe@xanum.uam.mx; Francois, Juan-Luis [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec Mor. (Mexico)

    2008-08-15

    The kinetic response of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material, in an integrated blanket-seed assembly, is presented in this work. Additionally an in-house code was developed to evaluate this core under steady state and transient conditions including a stability analysis. The code has two modules: (a) the time domain module for transient analysis and (b) the frequency domain module for stability analysis. The thermal-hydraulic process is modeled by a set of five equations, considering no homogeneous flow with drift-flux approximation and non-equilibrium thermodynamic. The neutronic process is calculated with a point kinetics model. Typical BWR reactivity effects are considered: void fraction, fuel temperature, moderator temperature and control rod density. Collapsed parameters were included in the code to represent the core using an average fuel channel. For the stability analysis, in the frequency domain, the transfer function is determined by applying Laplace-transforming to the calculated pressure drop perturbations in each of the considered regions where a constant total pressure drop was considered. The transfer function was used to study the system response in the frequency domain when an inlet flow perturbation is applied. The results show that the neutronic behavior of the core with thorium uranium fuel is similar to a UO{sub 2} core, even during transient conditions. The stability and transient analysis show that the thorium-uranium fuel can be operated safely in current BWRs.

  1. Analysis of containment venting following a core damage at a BWR Mark I using THALES-2

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, Surip [Nuclear Safety Technology Development Center, National Nuclear Energy Agency (BATAN), Tangerang (Indonesia); Ishikawa, Jun; Muramatsu, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sakamoto, Toru [Toshiba Advanced System Co., Kawasaki, Kanagawa (Japan)

    2000-11-01

    Analysis of containment venting following a core damage at a boiling water reactor (BWR) Mark I using THALES-2 was performed. In this analysis, the effect of various parameters, namely, the areas of the vent path, containment venting pressure, and accident sequences on the containment thermodynamic response, and radionuclide transport and release in the containment venting at a BWR was examined. The code THALES-2B developed by the Japan Atomic Energy Research Institute (JAERI) was used in this analysis. The model plant in this analysis was the Browns Ferry plant. From this analysis was found that the 4-inch pipe of containment venting flow path is sufficient to maintain the containment pressure in the specified range if the containment was pressurized by the decay heat power. The entrainment by the pool swelling as well as by the flashing was not occurred during the containment venting. The source terms are not sensitive to the variation of containment venting flow path area. The containment venting pressure operation setting point has important rule in the containment venting. In the containment venting, the source terms are not sensitive to the accident sequence, except for Sr source term. In order to get better understanding on the containment venting strategy, the following analyses are necessary. Analyses of accident sequence which has a high power such as anticipated transient without scram are necessary, as well as analyses of accident sequence which pressurize the containment before the core damage. (author)

  2. Identification and initial assessment of candidate BWR late-phase in-vessel accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, S.A.

    1991-04-15

    Work sponsored by the United States Nuclear Regulatory Commission (USNRC) to identify and perform preliminary assessments of candidate BWR (boiling water reactor) in-vessel accident management strategies was completed at Oak Ridge National Laboratory (ORNL) during fiscal year 1990. Mitigative strategies for containment events have been the subject of a companion study at Brookhaven National Laboratory. The focus of this Oak Ridge effort was the development of new strategies for mitigation of the late phase events, that is, the events that would occur in-vessel after the onset of significant core damage. The work began with an investigation of the current status of BWR in-vessel accident management procedures and proceeded through a preliminary evaluation of several candidate new strategies. The steps leading to the identification of the candidate strategies are described. The four new candidate late-phase (in-vessel) accident mitigation strategies identified by this study and discussed in the report are: (1) keep the reactor vessel depressurized; (2) restore injection in a controlled manner; (3) inject boron if control blade damage has occurred; and (4) containment flooding to maintain core and structural debris in-vessel. Additional assessments of these strategies are proposed.

  3. High-fidelity multiphysics simulation of BWR assembly with coupled TORT-TD/CTF

    Energy Technology Data Exchange (ETDEWEB)

    Magedanz, J. [Dept. of Mechanical and Nuclear Engineering, Pennsylvania State Univ., Reber Building, Univ. Park, PA 16802 (United States); Perin, Y. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS mbH, Forschungsinstitute, D-85748 Garching (Germany); Avramova, M. [Dept. of Mechanical and Nuclear Engineering, Pennsylvania State Univ., Reber Building, Univ. Park, PA 16802 (United States); Pautz, A.; Puente-Espel, F.; Seubert, A.; Sureda, A.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS mbH, Forschungsinstitute, D-85748 Garching (Germany)

    2012-07-01

    This paper describes the application of the coupled codes TORT-TD and CTF to the pin-by-pin modeling of a BWR fuel assembly with thermal-hydraulic feedback. TORT-TD, developed at GRS, is a time-dependent three dimensional discrete ordinates code. CTF is the PSU's improved version of the subchannel code COBRA-TF, which uses a two-fluid, three-field model to represent two-phase flow with entrained droplets, and is commonly applied to evaluate LWR safety margins. The coupled codes system TORT-TD/CTF, already applied to several PWR cases involving MOX, was adapted from PWR to BWR applications. The purpose of the research described in this paper is to verify the coupling for modeling two-phase flow at the pin cell level. Using an ATRIUM-10 assembly, the system's steady-state capabilities were tested on two cases: one without control blade insertion and another with partially inserted blades. The influence of the neutron absorber on local axial and radial parameters is presented. The description of an inlet flow reduction transient is an example for the time-dependent capability of the coupled system. (authors)

  4. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  5. Analysis of a German BWR core with TRACE/PARCS using different cross section sets

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, C., E-mail: Christoph.Hartmann@kit.edu [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Westinghouse Electric Germany GmbH, Mannheim (Germany); Sanchez, V.H. [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Tietsch, W. [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2011-07-01

    'Full text:' Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools as well as appropriate cross sections (XS) libraries depending on the individual thermal hydraulic state parameters. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running and user-friendly lattice codes such as Casco and Helios. At research institutions and universities, alternative tools to the commercial ones with full access to the source code as well as moderate cost are urgently needed. The Scale system is being developed and improved for lattice physics calculations of real core loading of Light Water Reactors (LWR). It represents a promising alternative to the commercial lattice codes. At Karlsruhe Institute of Technology (Kit) a computational route based on Scale/Triton/Newt for BWR core loading is under development. The generated XS-data sets have to be transformed in PMAXS-format for use in the reactor dynamic code PARCS. This task is performed by the module GenPMAXS being developed and tested at the Michigan University. To verify the computational route, a BWR fuel assembly depletion problem was calculated by PARCS and compared to the CASMO results. Since the SCALE/TRITON XS-file does actually not contain all required neutronic data, FORTRAN routines have been developed to incorporate the missing data e.g. the yields of Iodine, Xenon and Promethium into the XS-data sets in the PMAXS-format. The comparison of the results obtained with PARCS (using the corrected PMAXS file) and CASMO for the depletion problem exhibited a good agreement. Consequently, this approach was followed for the generation of a complete XS-set for a real BWR core to be used in subsequent transient analysis. Then 3D neutronic and thermal hydraulic core model were elaborated for a TRACE/PARCS analysis. The thermal hydraulic model is based on the 3D VESSEL

  6. Optimization of fuel cells for BWR based in Tabu modified search; Optimizacion de celdas de combustible para BWR basada en busqueda Tabu modificada

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Francois L, J.L. [Facultad de Ingenieria, UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Palomera P, M.A. [Facultad de Ingenieria, UNAM, Posgrado en Ingenieria en Computacion, Circuito exterior s/n, Ciudad Universitaria, Mexico, D.F. (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2004-07-01

    The advances in the development of a computational system for the design and optimization of cells for assemble of fuel of Boiling Water Reactors (BWR) are presented. The method of optimization is based on the technique of Tabu Search (Tabu Search, TS) implemented in progressive stages designed to accelerate the search and to reduce the time used in the process of optimization. It was programed an algorithm to create the first solution. Also for to diversify the generation of random numbers, required by the technical TS, it was used the Makoto Matsumoto function obtaining excellent results. The objective function has been coded in such a way that can adapt to optimize different parameters like they can be the enrichment average or the peak factor of radial power. The neutronic evaluation of the cells is carried out in a fine way by means of the HELIOS simulator. In the work the main characteristics of the system are described and an application example is presented to the design of a cell of 10x10 bars of fuel with 10 different enrichment compositions and gadolinium content. (Author)

  7. SUN-RAH: a nucleoelectric BWR university simulator based in reduced order models; SUN-RAH: simulador universitario de nucleoelectrica BWR basado en modelos de orden reducido

    Energy Technology Data Exchange (ETDEWEB)

    Morales S, J.B.; Lopez R, A.; Sanchez B, A.; Sanchez S, R.; Hernandez S, A. [DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com

    2003-07-01

    The development of a simulator that allows to represent the dynamics of a nucleo electric central, with nuclear reactor of the BWR type, using reduced order models is presented. These models present the characteristics defined by the dominant poles of the system (1) and most of those premature operation transitories in a power station can be reproduced with considerable fidelity if the models are identified with data of plant or references of a code of better estimate like RAMONA, TRAC (2) or RELAP. The models of the simulator are developments or own simplifications starting from the physical laws and retaining the main terms. This work describes the objective of the project and the general specifications of the University student of Nucleo electric simulator with Boiling Water Reactor type (SUN-RAH) as well as the finished parts that fundamentally are the nuclear reactor, the one of steam supply (NSSS), the plant balance (BOP), the main controllers of the plant and the implemented graphic interfaces. The pendent goals as well as the future developments and applications of SUN-RAH are described. (Author)

  8. Artificial intelligence applied to fuel management in BWR type reactors; Inteligencia artificial aplicada a la administracion de combustible en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J

    1998-10-01

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  9. Prediction of the stability of BWR reactors during the start-up process; Prediccion de la estabilidad de reactores BWR durante el proceso de arranque

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz E, J.A.; Castillo D, R. [ININ, Km. 36.5 Carretera Mexico-Toluca, 52045 Salazar, Estado de Mexico (Mexico); Blazquez M, J.B. [Centro de Investigaciones Energetics, Medioambientales y Tecnologicas, Av Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    The Boiling Water Reactors (BWR) are susceptible of uncertainties of power when they are operated to low flows of coolant (W) and high powers (P), being presented this situation mainly in the start-up process. The start-up process could be made but sure if the operator knew the value of the stability index Decay reason (Dr) before going up power and therefore to guarantee the stability. The power and the flow are constantly measures, the index Dr could also be considered its value in real time. The index Dr depends on the power, flow and many other values, such as, the distribution of the flow axial and radial neutronic, the temperature of the feeding water, the fraction of holes and other thermohydraulic and nuclear parameters. A simple relationship of Dr is derived leaving of the pattern reduced of March-Leuba, where three independent variables are had that are the power, the flow and a parameter that it contains the rest of the phenomenology, that is to say all the other quantities that affect the value of Dr. This relationship developed work presently and verified its prediction with data of start-up of commercial reactors could be used for the design of a practical procedure practice of start-up, what would support to the operator to prevent this type of events of uncertainty. (Author)

  10. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-12-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  11. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  12. Optimized clearing work concept for the BWR containment; Optimiertes Raeumungskonzept fuer SWR-Sicherheitsbehaelter

    Energy Technology Data Exchange (ETDEWEB)

    Kraps, Uwe [AREVA NP GmbH (Germany)

    2012-11-01

    Based on the experiences of reactor dismantling in the NPPs Wuergasse, Obrigheim and Stade an optimized clearing work concept for the BWR containment including the reactor pressure vessel and the biological shield was developed. The concept is focused on the safety objective, the reduction of the collective dose and the reduction of the execution time. Precondition for the decommissioning license was up to now the removal of fuel elements from the reactor; due to the significantly increased period until fulfillment of this premises concepts are developed that can be performed with simultaneous reduction of the radiological inventories and the fire loads. The most important step of the guideline of the concept is the transition from hot to cold. The in-situ disassembling of the reactor internals can be performed with decreased water level in the reactor pressure vessel, with following water treatment and complete shutdown of operational systems. This status allows an accelerated further dismantling of the plant.

  13. Revised uranium--plutonium cycle PWR and BWR models for the ORIGEN computer code

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A. G.; Bjerke, M. A.; Morrison, G. W.; Petrie, L. M.

    1978-09-01

    Reactor physics calculations and literature searches have been conducted, leading to the creation of revised enriched-uranium and enriched-uranium/mixed-oxide-fueled PWR and BWR reactor models for the ORIGEN computer code. These ORIGEN reactor models are based on cross sections that have been taken directly from the reactor physics codes and eliminate the need to make adjustments in uncorrected cross sections in order to obtain correct depletion results. Revised values of the ORIGEN flux parameters THERM, RES, and FAST were calculated along with new parameters related to the activation of fuel-assembly structural materials not located in the active fuel zone. Recommended fuel and structural material masses and compositions are presented. A summary of the new ORIGEN reactor models is given.

  14. Experimental simulation of the water cooling of corium spread over the floor of a BWR containment

    Energy Technology Data Exchange (ETDEWEB)

    Morage, F.; Lahey, R.T. Jr.; Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    This paper is concerned with an experimental investigation of the cooling effect of water collected on the surface of corium released onto the floor of a BWR drywell. In the present experiments, the actual reactor materials were replaced by simulant materials. Specifically, the results are shown for Freon-11 film boiling over liquid Wood`s metal spread above a solid porous surface through which argon gas was injected. An analysis of the obtained experimental data revealed that the actual film boiling heat transfer between a molten pool of corium and the water above the pool should be more efficient than predicted by using standard correlations for boiling over solid surfaces. This effect will be further augmented by the gas released due to the ablation of concrete floor beneath the corium and percolating towards its upper surface and into through the water layer above.

  15. Kuosheng BWR/6 containment pressure and temperature responses after recirculation line break using GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Lin, A.; Wang, J-R.; Chen, Y-S., E-mail: samuellin1999@iner.gov.tw, E-mail: jrwang@iner.gov.tw, E-mail: yschen@iner.gov.tw [Inst. of Nuclear Energy Research Atomic Energy Council (China); Shih, C., E-mail: ckshih@ess.nthu.edu.tw [National Tsing Hua Univ., Dept. of Engineering and System Science (China)

    2011-07-01

    In this study, we presented the calculated results of the containment P/T (pressure and temperature) response after the recirculation line break (RCLB) accident of a GE-designed twin-unit BWR/6 plant, which can be served as the design basis for the containment system. During the simulation, a power of SPU (stretch power uprate) range was used and a model of the Mark III type containment was built using the GOTHIC (Generation of Thermal-Hydraulic Information for Containments) code. The calculated results, similar to the FSAR (Final Safety Analysis Report) results, indicate the GOTHIC code has the capability to simulate the containment P/T response to the RCLB accident. (author)

  16. Development of a parametric containment event tree model for a severe BWR accident

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1995-04-01

    A containment event tree (CET) is built for analysis of severe accidents at the TVO boiling water reactor (BWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to correspond to new research results. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting, and are focused mainly on the use and effects of the dedicated severe accident management (SAM) systems. Severe accident progression from eight plant damage states (PDS), involving different pre-core-damage accident evolution, is examined, but the inclusion of their relative or absolute probabilities, by integration with Level 1, is deferred to integral safety assessments. (33 refs., 5 figs., 7 tabs.).

  17. CSAU methodology and results for an ATWS event in a BWR using information theory methods

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J.L., E-mail: jlcobos@iqn.upv.es [Universitat Politècnica de València, Thermal-Hydraulics and Nuclear Engineering Group (TIN), Institute for Energy Engineering (IEE), Valencia (Spain); Escrivá, A., E-mail: aescriva@iqn.upv.es [Universitat Politècnica de València, Thermal-Hydraulics and Nuclear Engineering Group (TIN), Institute for Energy Engineering (IEE), Valencia (Spain); Mendizabal, R., E-mail: rmsanz@csn.es [Consejo de Seguridad Nuclear, 28040 Madrid (Spain); Pelayo, F., E-mail: fpl@csn.es [Consejo de Seguridad Nuclear, 28040 Madrid (Spain); Melara, J., E-mail: jls@iberdrola.es [IBERINCO, IBERDROLA Ingeniería y Construcción, Madrid (Spain)

    2014-10-15

    Highlights: • We apply the CSAU methodology to an ATWS in a BWR using information theory methods. • We show how to perform the selection of the most influential inputs on the critical safety parameter. • We apply the maximum entropy principle to get the input parameter distribution. • We examine the maximum relative entropy principle to update the input parameter PDF. • We quantify the uncertainty of the critical safety parameter using order statistics and information theory. - Abstract: This paper shows an application of the CSAU methodology to an ATWS in a BWR reactor, when the temperature of the suppression pool is taken as the critical safety parameter. The method combines CSAU methodology with recent techniques of information theory. In this paper we use auxiliary tools to help in the evaluation and improvement of the parameters distribution that enter in the elements II and III of CSAU based methodologies. These tools have been implemented in two FORTRAN programs: GEDIPA (Generation of the Parameter Distribution) and UNTHERCO (Uncertainty in Thermal Hydraulic Codes). The first one analyzes the information data available on a given parameter or parameters with the goal to know all the information about the probability distribution function of these parameters. The second apply information theory methods, as the maximum entropy principle (MEP) and the maximum relative entropy Principle (MREP), in order to build conservative distribution functions for the parameters from the available data. Also, the distribution function of a given parameter can be updated using the MREP principle when new information is provided. UNTHERCO performs the MONTECARLO sampling for a given set of parameters when the distribution function of these parameters is previously known. If the distribution of a parameter is unknown, then, the MEP is applied to deduce the distribution function for this parameter.

  18. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Chopra, O. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Gruber, Eugene E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shack, William J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (≤3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC

  19. Influence of iron and nickel species upon activity buildup under simulated BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bjornsson, S.; Chen, J. [Studsvik Nuclear AB, Nykoping (Sweden); Lejon, J. [OKG AB, Oskarshamn (Sweden); Granath, G. [Ringhals AB, Varobacka (Sweden); Tanse-Larsson, M. [Forsmarks Kraftgrupp AB, Osthammar (Sweden)

    2010-07-01

    Activity build-up in BWR systems are of importance for service- and maintenance work performed at the plants. Minimizing the activity build-up is desirable for minimizing doses of personnel at the plants. Numerous studies have been carried out in this important field to understand the activity uptake mechanisms. This paper studied the possible role of Fe(II/III) and Ni(II) impurities in reactor water in activity uptake on stainless steel surfaces. The study was carried out by using a test loop with simulated BWR water containing Fe(II/III), Ni(II) and Co-60 marked Co(II) species of varied concentration and 500 ppb O{sub 2}. The test tube section in the loop system was pre-exposed type 316L stainless steel material. The microstructures of the formed oxide films were examined with high resolution electron microscopy (FE-SEM and FE-TEM). The activity monitoring on the test section showed that injection of 10 ppb Ni(II) and 0.1 ppb Fe(II/III) in the water with 0.1 ppb Co(II) was capable of stopping completely activity uptake. When Co(II) addition in the loop was stopped no activity return to the water could be seen. In another exposure test, injection of combined 2 ppb Fe(II/III) and 0.5∼10 ppb Ni(II) profoundly increased activity uptake on the test section with a maximum in activity buildup at 5 ppb Ni(II). When Co(II) addition in the loop was stopped a slight activity return was seen. The observed differences as seen in the two tests are discussed in view of the microstructures of the oxide films formed. (author)

  20. Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2014-01-01

    The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for

  1. An efficient modeling method for thermal stratification simulation in a BWR suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang; Hua Li; Walter Villanueva; Pavel Kudinov

    2012-09-01

    The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safety analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.

  2. Cofrentes EOC16B poolside measurements of channels from the three BWR vendors

    Energy Technology Data Exchange (ETDEWEB)

    Sedano, Pablo J. Garcia; Ayuela, Javier Iglesias [Iberdrola Ingenieria Construccion SAU, Veronica Anaures (Mexico); Albendea, Manuel [Iberdrola Generation S. A., Plaza Euskadi, 5 48009 BILBAO (Spain)

    2008-10-15

    As part of the EPRI Fuel Reliability Program, a fuel channel focus group was formed in 2002 to initiate measurements on irradiated BWR fuel channels. Fuel channels from GNF and AREVA have been measured in campaigns performed during 2004{approx}2007. Fuel channels designed and supplied by Westinghouse were of particular interest since no measurement information had been previously taken on modern Westinghouse channels operating on conventional loading pattern cycles, either in European or U.S. plants. Conventional loading pattern cycles are more susceptible to experience shadow corrosion induced bow since the fresh bundles are exposed to control blade influence early in life. During summer of 2007 extensive poolside measurements of a total of 180 fuel channels (24 SVEA-96 +/L, 68 SVEA-96 Optima-2, 36 GE-12, 42 GE-14 and 10 ATRIUM-10XP) have been performed by Westinghouse at Cofrentes NPP (Spanish BWR-6 operating on 24 month cycle strategy). This campaign has been co-sponsored by EPRI, Iberdrola and Westinghouse Sweden. Channels covering a range of exposure and control blade history were selected in order to determine the dependency of the channel deformation with those parameters. Channels with the most limiting conditions of exposure and control blade history were included. Channel bow, bulge and twist have been measured and fast neutron fluence calculations have been performed in order to determine the effects of neutron fluence gradient and shadow corrosion on the total channel deformation. Additionally channel oxide measurements have been performed on 20 channels from the three fuel vendors.The results indicate that channel bow and bulge remained at anticipated levels with no indication of significant channel bow due to shadow corrosion phenomenon. Destructive metallographic evaluations of samples taken from one cycle Westinghouse channels with high control blade exposure are underway at Studsvik hot cell facilities. These examinations will provide additional

  3. Analysis of the performance of fuel cells BWR with a single enrichment and radial distribution of enrichments; Analisis del desempeno de celdas combustibles BWR con un solo enriquecimiento y con distribucion radial de enriquecimientos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Vargas, S.; Alonso, G.; Del Valle, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, Mexico D. F. 07738 (Mexico); Xolocostli M, J. V. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: govaj666@hotmail.com

    2008-07-01

    The efficient use of the fuel is one of the objectives in the assemblies design of type BWR. The present tendency in the assemblies design of type BWR is through a radial distribution of enrichments. The present work has like object showing the because of this decision, for what a comparison of the neutronic performance of two fuel cells with the same enrichment average but one of them with radial distribution of enrichment and the other with a single enrichment equal to the average. The cells were analyzed with the CASMO-4 code and the obtained results of the behavior of the neutron flow and the power sustain the because of the radial distribution of enrichments. (Author)

  4. Wind turbine state estimation

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2014-01-01

    Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify...... the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has therefore been developed. The unscented Kalman filter was first tested on linear and non-linear test cases...... which was successful. Then the estimation of a wind turbine state including dynamic inflow was tested on a simulated NREL 5MW turbine was performed. This worked perfectly with wind speeds from low to nominal wind speed as the output prediction errors where white. In high wind where the pitch actuator...

  5. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However......, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...

  6. Gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  7. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...... conditions. So, a new aeroelastic blade model has been derived, which includes important features of large wind turbines, yet simple enough to be suitable for analytical analysis and control design....

  8. Comparative analysis of results between CASMO, MCNP and Serpent for a suite of Benchmark problems on BWR reactors; Analisis comparativo de resultados entre CASMO, MCNP y SERPENT para una suite de problemas Benchmark en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J. V.; Vargas E, S.; Gomez T, A. M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Reyes F, M. del C.; Del Valle G, E., E-mail: vicente.xolocostli@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, UP - Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico)

    2014-10-15

    In this paper a comparison is made in analyzing the suite of Benchmark problems for reactors type BWR between CASMO-4, MCNP6 and Serpent code. The Benchmark problem consists of two different geometries: a fuel cell of a pin and assembly type BWR. To facilitate the study of reactors physics in the fuel pin their nuclear characteristics are provided to detail, such as burnt dependence, the reactivity of selected nuclide, etc. With respect to the fuel assembly, the presented results are regarding to infinite multiplication factor for burning different steps and different vacuum conditions. Making the analysis of this set of Benchmark problems provides comprehensive test problems for the next fuels generation of BWR reactors with high extended burned. It is important to note that when making this comparison the purpose is to validate the methodologies used in modeling for different operating conditions, if the case is of other BWR assembly. The results will be within a range with some uncertainty, considering that does not depend on code that is used. Escuela Superior de Fisica y Matematicas of Instituto Politecnico Nacional (IPN (Mexico) has accumulated some experience in using Serpent, due to the potential of this code over other commercial codes such as CASMO and MCNP. The obtained results for the infinite multiplication factor are encouraging and motivate the studies to continue with the generation of the X S of a core to a next step a respective nuclear data library is constructed and this can be used by codes developed as part of the development project of the Mexican Analysis Platform of Nuclear Reactors AZTLAN. (Author)

  9. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  10. Wind turbines and health

    Energy Technology Data Exchange (ETDEWEB)

    Rideout, K.; Copes, R.; Bos, C. [National Colaborating Centre for Environmental Health, Vancouver, BC (Canada)

    2010-01-15

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  11. Pre-study of dynamic loads on the internals caused by a large pipe break in a BWR; Foerstudie av stroemningsinducerade laster paa interndelar vid brott i huvudcirkulationskretsarna i BWR

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, Jerzy; Lindgren, Anders [Det Norske Veritas Nuclear Technology AB, Stockholm (Sweden)

    2002-12-01

    Det Norske Veritas Nuclear Technology has performed a literature study of dynamic load on a BWR (Boiling Water Reactor) internals caused by a large pipe break. The goal of the study was to improve the knowledge about the physics of phenomena occurring in the RPV (Reactor Pressure Vessel) after pipe break in the main circulation system and also to make a review of calculation methods, models and computer programs including their capabilities when calculating the dynamic loads. The report presents description of relevant parts of a BWR, initial and boundary conditions, and phenomena determining the loads - rapid depressurization and propagation of pressure wave (including none-equilibrium). Furthermore, the report generally describes possible methodologies for calculating the dynamic loads on internals after the pipe break and the experiences from calculations the dynamic loads with different methods (computer programs) including comparisons with experimental data. Fluid-Structure Interaction methodology and its importance for calculation of dynamic loads on reactor internals is discussed based on experimental data. A very intensive research program for studying and calculating the dynamic loads on internals after pipe breaks has been performed in USA and Germany during the seventies and the eighties. Several computer programs have been developed and a number of large-scale experiments have been performed to calibrate the calculation methods. In spite of the fact that all experiments were performed for PWR several experiences should be valid also for BWR. These experiences, connected mainly to capabilities of computer programs calculating dynamic loads, are discussed in the report.

  12. Estimate of coolant flow in assemblies of a natural circulation BWR applying and equivalent electric model; Estimacion del flujo de refrigerante en los ensambles de un BWR de circulacion natural aplicando un modelo electrico equivalente

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, DEPFI, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: julfi_jg@yahoo.com.mx

    2009-10-15

    The present work exposes the design and implementation of an advanced controller that it allows to estimate the coolant flow in fuel assemblies of a natural circulation BWR in real time. the complete development of this study is part of a doctoral project in course. In this work the construction of optimal controller is shown that allows to estimate the coolant flows in reactor and its operation applied to an equivalent electric model to natural circulation ESBWR. The controller design that allows the completely automatic starter of natural circulation reactor, required of a variables estimator not meter directly of nuclear power plant and use of local distributions estimates of coolant flow, (this controller type at the moment is utilized in the A BWR and several BWR in operation in Japan). The construction of estimator controller is mathematically based in the theory referring to Kalman filter, whose algorithm provides an advanced control of system. To prove the estimator operation was developed a simplified model that reproduces the basic dynamic of coolant flowing in the ESBWR, a practice way and very interesting of representing this phenomenon is by means the use of an equivalent electric model, which was developed starting from analogies that there is among the relation that keep the pressure differences with the mass flow and differences of electric potential with electric current. A detailed analysis of equivalence among models will be presented in a later article. (Author)

  13. Alternative cooling water flow path for RHR heat exchanger and its effect on containment response during extended station blackout for Chinshan BWR-4 plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw

    2016-04-15

    Highlights: • Motivating alternative RHR heat exchanger tube-side flow path and determining required capacity. • Calculate NSSS and containment response during 24-h SBO for Chinshan BWR-4 plant. • RETRAN and GOTHIC models are developed for NSSS and containment, respectively. • Safety relief valve blowdown flow and energy to drywell are generated by RETRAN. • Analyses are performed with and without reactor depressurization, respectively. - Abstract: The extended Station Blackout (SBO) of 24 h has been analyzed with respect to the containment response, in particular the suppression pool temperature response, for the Chinshan BWR-4 plant of MARK-I containment. The Chinshan plant, owned by Taiwan Power Company, has twin units with rated core thermal power of 1840 MW each. The analysis is aimed at determining the required alternative cooling water flow capacity for the residual heat removal (RHR) heat exchanger when its tube-side sea water cooling flow path is blocked, due to some reason such as earthquake or tsunami, and is switched to the alternative raw water source. Energy will be dissipated to the suppression pool through safety relief valves (SRVs) of the main steam lines during SBO. The RETRAN model is used to calculate the Nuclear Steam Supply System (NSSS) response and generate the SRV blowdown conditions, including SRV pressure, enthalpy, and mass flow rate. These conditions are then used as the time-dependent boundary conditions for the GOTHIC code to calculate the containment pressure and temperature response. The shaft seals of the two recirculation pumps are conservatively assumed to fail due to loss of seal cooling and a total leakage flow rate of 36 gpm to the drywell is included in the GOTHIC model. Based on the given SRV blowdown conditions, the GOTHIC containment calculation is performed several times, through the adjustment of the heat transfer rate of the RHR heat exchanger, until the criterion that the maximum suppression pool temperature

  14. VIPRE-W / MEFISTO-T - A mechanistic tool for transient prediction of dryout in BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Adamsson, C., E-mail: carl.adamsson@psi.ch [Westinhouse Electric Sweden, Vasteras (Sweden); Paul Scherrer Institut, Villigen (Switzerland); Le Corre, J-M., E-mail: lecorrjm@westinghouse.com [Westinhouse Electric Sweden, Vasteras (Sweden)

    2011-07-01

    The VIPRE-W/MEFISTO-T code package constitutes a simplified approach to sub-channel film-flow analysis whereby the transport equations for the liquid films are decoupled from each other. The approach allows fast and robust simulation with high axial resolution of realistic BWR transients. It has previously been shown that a steady-state version of the model agrees well with dryout measurements in full-scale fuel assembly mock-ups performed at the Westinghouse FRIGG loop. In this paper, we present validation of the transient version of the code with around 300 transient dryout experiments from the same loop. The transients involve realistic variations of flow and power and three different axial power distributions at conditions typical for BWR operation. The results from the film-flow analysis show high precision in the dryout prediction but a hitherto unexplained bias that reduces the accuracy. (author)

  15. Stakes and Solutions for current and up-coming Licensing Challenges in PWR and BWR Reload and Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tiving, F.; Opel, S.

    2014-07-01

    Regulatory requirements for reloads and safety analyses are evolving: New safety criteria, requests for enlarged qualification databases, statistical applications, uncertainty propagation... In order to address these challenges and access more predictable licensing processes, AREVA implements a consistent code and methodology suite for PWR and BWR core design and safety analysis, based on a first principles modeling with an extremely broad international verification and validation data base. (Author)

  16. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, Jesus S. [Univ. Politecnica de Madrid (Spain); Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William BJ J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  17. Development of a fuzzy logic method to build objective functions in optimization problems: application to BWR fuel lattice design

    Energy Technology Data Exchange (ETDEWEB)

    Martin-del-Campo, C.; Francois, J.L.; Barragan, A.M. [Universidad Nacional Autonoma de Mexico - Facultad de Ingenieria (Mexico); Palomera, M.A. [Universidad Nacional Autonoma de Mexico - Instituto de Investigaciones en Matematicas Aplicadas y Sistema, Mexico, D. F. (Mexico)

    2005-07-01

    In this paper we develop a methodology based on the use of the Fuzzy Logic technique to build multi-objective functions to be used in optimization processes applied to in-core nuclear fuel management. As an example, we selected the problem of determining optimal radial fuel enrichment and gadolinia distributions in a typical 'Boiling Water Reactor (BWR)' fuel lattice. The methodology is based on the use of the mathematical capability of Fuzzy Logic to model nonlinear functions of arbitrary complexity. The utility of Fuzzy Logic is to map an input space into an output space, and the primary mechanism for doing this is a list of if-then statements called rules. The rules refer to variables and adjectives that describe those variables and, the Fuzzy Logic technique interprets the values in the input vectors and, based on the set of rules assigns values to the output vector. The methodology was developed for the radial optimization of a BWR lattice where the optimization algorithm employed is Tabu Search. The global objective is to find the optimal distribution of enrichments and burnable poison concentrations in a 10*10 BWR lattice. In order to do that, a fuzzy control inference system was developed using the Fuzzy Logic Toolbox of Matlab and it has been linked to the Tabu Search optimization process. Results show that Tabu Search combined with Fuzzy Logic performs very well, obtaining lattices with optimal fuel utilization. (authors)

  18. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  19. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England University; Madden, Frank [FloDesign Wind Turbine Corp

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually benficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT'w mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  20. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  1. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  2. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  3. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van

    1995-12-31

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  4. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  5. Banki turbines with power adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Darzan, Mihai; Dumitrache, Marius

    2010-09-15

    The paper presents features of the BANKI turbine realized by SC. Electra Total Consulting SA Bucharest, member of Energy Services Group, in consortium with STRAERO SA Bucharest. In this way is presented the prototype of this turbine and its performances which recommends it for the interior rivers of Romania compared with the Ossberger and/or Cink turbines.

  6. Turbine airfoil manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

    1995-10-01

    The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.

  7. Wind turbine spoiler

    Science.gov (United States)

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  8. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  9. Multiple Turbine Wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Mann, Jakob

    characteristics was investigated.Later, wake interaction resulting from two stall regulated turbines aligned with the incoming wind were studied experimentally and numerically. The experimental work was based on a new dedicated full-scale measurement campaign involving 3 nacelle mounted Continuous Wave scanning......The central goal of the present research was to study single and multiple interacting wind turbine wakes using both full-scale lidar experiments and high fidelity CFD numerical approaches.Firstly, single wake dynamics have been studied experimentally using full-scale (nacelle based) pulsed lidar...... measurements conducted on a stall regulated 500 kW turbine at the DTU Wind Energy, Risø campus test site. As part of the experimental analysis, basic Dynamic Wake Meandering modeling assumptions were validated. A wake center tracking algorithm was used to estimate the measured wake advection velocity...

  10. Offshore Wind Turbine Design

    DEFF Research Database (Denmark)

    Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo

    2006-01-01

    Current offshore wind turbine design methods have matured to a 1st generation state, manifested in the draft of a possible standard, IEC 61400-3 (2005). It is now time to investigate the possibilities of improving existing methods. To do so in an efficient manner a clear identification of the most...... important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...

  11. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  12. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  13. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  14. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR); Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua hirviente (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes C, P

    2003-07-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O{sub 2}; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  15. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  16. Mechanical (turbines and auxiliary equipment)

    CERN Document Server

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  17. Environmentally assisted cracking behavior of dissimilar metal weldments in simulated BWR coolant environments

    Science.gov (United States)

    Huang, J. Y.; Chiang, M. F.; Jeng, S. L.; Huang, J. S.; Kuo, R. C.

    2013-01-01

    The environmentally assisted cracking behavior of dissimilar metal (DM) welds, including Alloy 52-A 508 and Alloy 82-A508, under simulated BWR coolant conditions was studied. Effects of postweld heat treatment and sulfur content of the base metal on the corrosion fatigue and SCC growth rates of DM welds were evaluated. The crack growth rates for the DM weld heat-treated at 621 °C for 24 h were observed to be faster than those for the as-welded. But the DM weld heat-treated at 621 °C for 8 h + 400 °C for 200 h showed better SCC resistance than the as-welded. The longer the heat treatment at 621 °C, the higher the chromium carbides density along the grain boundary was observed. Sulfur could diffuse out of the base metal and segregate along the grain boundaries of the dilution zone, leading to weakening the grain boundary strength and the SCC resistance of the Alloy 52-A508 weld.

  18. Plant analyzer for high-speed interactive simulation of BWR power plant transients

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Wulff, W.; Cerbone, R.J.

    1984-04-01

    A combination of advanced modeling techniques and modern, special-purpose peripheral minicomputer technology is presented which affords realistic predictions of plant transient and severe off-normal events in LWR power plants through on-line simulations at a speed ten times faster than actual process speeds. Results are shown for a BWR plant simulation. The mathematical models account for nonequilibrium, nonhomogeneous two-phase flow effects in the coolant, for acoustical effects in the steam line and for the dynamics of the recirculation loop and feedwater train. Point kinetics incorporate reactivity feedback due to void fraction, fuel temperature, coolant temperature, and boron concentration. Control systems and trip logic are simulated for the nuclear steam supply system. The AD10 of Applied Dynamics International is the special-purpose peripheral processor. It is specifically designed for high-speed digital system simulation, accommodates hardware (instrumentation) in the input/output loop, and operates interactively on-line, like an analog computer. Results are shown to demonstrate computing capacity, accuracy, and speed. Simulation speeds have been achieved which are orders of magnitude faster than those of a CDC-7600 mainframe computer or ten times faster than real-time speed.

  19. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  20. Standard technical specifications General Electric plants, BWR/6. Volume 1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/6 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS.

  1. Generic BWR-4 degraded core in-vessel study. Status report

    Energy Technology Data Exchange (ETDEWEB)

    1984-11-01

    Original intent of this project was to produce a phenomenological study of the in-vessel degradation which occurs during the TQUX and TQUV sequences for a generic BWR-4 from the initiation of the FSAR Chapter 15 operational transient through core debris bed formation to the failure of the primary pressure boundary. Bounding calculations were to be performed for the two high pressure and low pressure non-LOCA scenarios to assess the uncertainties in the current state of knowledge regarding the source terms for containment integrity studies. Source terms as such were defined in terms of hydrogen generation, unreacted metal, and coolant inventroy, and in terms of the form, sequencing and mode of dispersal through the primary vessel boundary. Fission product release was not to be considered as part of this study. Premature termination of the project, however, led to the dicontinuation of work on an as is basis. Work on the in-core phase from the point of scram to core debris bed formation was largely completed. A preliminary scoping calculation on the debris bed phase had been initiated. This report documents the status of the study at termination.

  2. Void Reactivity Coefficient Analysis during Void Fraction Changes in Innovative BWR Assemblies

    Directory of Open Access Journals (Sweden)

    Andrius Slavickas

    2015-01-01

    Full Text Available The study of the void reactivity variation in innovative BWR fuel assemblies is presented in this paper. The innovative assemblies are loaded with high enrichment fresh UO2 and MOX fuels. UO2 fuel enrichment is increased above existing design limitations for LWR fuels (>5%. MOX fuel enrichment with fissile Pu content is established to achieve the same burnup level as that of high enrichment UO2 fuel. For the numerical analysis, the TRITON functional module of SCALE 6.1 code with the 238-group ENDF/B-VI cross section data library was applied. The investigation of the void reactivity feedback is performed in the entire 0–100% void fraction range. Higher values of void reactivity coefficient for assembly loaded with MOX fuel are found in comparison with values for assembly loaded with UO2 fuel. Moreover, coefficient values for MOX fuel are positive over 75% void fraction. The variation of the void reactivity coefficient is explained by the results of the decomposition analysis based on four-factor formula and neutron absorption reactions for main isotopes. Additionally, the impact of the moderation enhancement on the void reactivity coefficient was investigated for the innovative assembly with MOX fuel.

  3. Decomposition Analysis of Void Reactivity Coefficient for Innovative and Modified BWR Assemblies

    Directory of Open Access Journals (Sweden)

    Andrius Slavickas

    2014-01-01

    Full Text Available The decomposition analysis of void reactivity coefficient for innovative BWR assemblies is presented in this paper. The innovative assemblies were loaded with high enrichment UO2 and MOX fuels. Additionally the impact of the moderation enhancement on the void reactivity coefficient through a full fuel burnup discharge interval was investigated for the innovative assembly with MOX fuel. For the numerical analysis the TRITON functional module of SCALE code with ENDF/B-VI cross section library was applied. The obtained results indicate the influence of the most important isotopes to the void reactivity behaviour over a fuel burnup interval of 70 GWd/t for both UO2 and MOX fuels. From the neutronic safety concern positive void reactivity coefficient values are observed for MOX fuel at the beginning of the fuel irradiation cycle. For extra-moderated assembly designs, implementing 8 and 12 water holes, the neutron spectrum softening is achieved and consequently the lower void reactivity values. Variations in void reactivity coefficient values are explained by fulfilled decomposition analysis based on neutrons absorption reactions for separate isotopes.

  4. Diffusion bonded matrix of HGMF applied for BWR condensate water purification

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Fumitaka; Yukawa, Takao; Ito, Kazuyuki

    1984-03-01

    A high Gradient Magnetic Filter (HGMF) applied to the purification of power plant primary water has recently attracted much attention. In the application of HGMF to the water treatment of power plants, especially nuclear power plants, reliabillties of matrix (filtering medium) as well as removal performance for cruds (insoluble corrosion products) are considered to be important factors. To satisfy these factors, a new filtering medium named Diffision Bonded Matrix (DBM) has been developed and the test results are reported. Filtering efficiency and mechanical stiffness of DBM were examined using HGMF pilot test units consisting of 160 mm diameters x 240 mm length filter. The filtering velocity and the magnetic flux density used in this test were 800 m/h 5 kG, respectively. The filtering efficiencies and of 85-100% were obtained for artificial cruds for DBM. The DBM indicated slightly better filtering efficiency than for conventional wool matrix under the same filtering and matrix conditions. The DBM kept its original mechanical properties and very few pieces of fibers were broken off while the conventional wool matrix lost its volume elasticities and the considerable amount of fibers was broken off during the test operation. The results described here demonstrated the applicability of DBM for treatment of BWR primary water by High Gradient Magnetic Filter.

  5. A conceptual study on large-capacity safety relief valve (SRV) for future BWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Katsumi; Tokunaga, Takashi; Iwanaga, Masakazu; Kurosaki, Toshikazu [Toshiba Corporation, Isogo Nuclear Engineering Center, Yokohama (Japan)

    1999-07-01

    This paper presents a conceptual study of Safety Relief Valve (SRV) which has larger flow capacity than that of the conventional one and a new structure. Maintenance work of SRVs is one of the main concerns for next-generation Boiling Water Reactor (BWR) plants whose thermal power is planned to be increased. Because the number of SRVs increases with the thermal power, their maintenance would become critical during periodic inspections. To decrease the maintenance work, reduction of the number by increasing the nominal flow rate per SRV and a new structure suitable for easier treatment have been investigated. From a parameter survey of the initial and maintenance cost, the optimum capacity has been estimated to be between 180 and 200 kg/s. Primarily because the number of SRVs decreases in inversely proportional to the capacity, the total maintenance work decreases. The new structure of SRV, with an internally mounted actuator, decreases the number of the connecting parts and will make the maintenance work easier. A 1/4-scale model of the new SRV has been manufactured and performance tests have been conducted. The test results satisfied the design target, which shows the feasibility of the new structure. (author)

  6. In-plant material test experience under hydrogen water chemistry at a Japanese BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masami; Koshiishi, Masato; Kato, Takahiko [Hitachi Ltd., Ibaraki (Japan). Hitachi Works; Abe, Ayumi; Sekiguchi, Masahiko; Takiguchi, Hideki

    1999-07-01

    Hydrogen injection technology has been applied to Japanese domestic aged BWR plants since 1994 to mitigate corrosive environment regarding Intergranular Stress Corrosion Cracking (IGSCC) of Reactor Internals (RINs). The Tsuruga Unit-1 plant has also been operated with this technology since 1997, considering suppression of radiation increase in the main steam piping system besides mitigation of corrosive environment in the reactor; the hydrogen injection rate in the feed water was about 0.5 ppm. In order to confirm the effects of the hydrogen injection on suppression of SCC susceptibility of the RIN materials, several in-plant material tests have been conducted using the reactor water clean up system (RWCU). Cyclic-Slow Strain Rate Tensile (C-SSRT) test, Slow Strain Rate Tensile (SSRT) test and Compact Tension (CT) test were performed in the test facilities which were installed at the sampling line from the RWCU. Evaluation of SCC life by means of the C-SSRT test was the first application as an accelerated SCC test for in-plant material tests. It was confirmed that the hydrogen injection in the feed water has a good mitigation effects on IGSCC performance of the RIN materials. Results will be discussed from a viewpoint of the test condition such as total oxidant, ECP, conductivity and loading/unloading. (author)

  7. Thermal utilization opportunities with a small-to-medium sized BWR

    Energy Technology Data Exchange (ETDEWEB)

    Konkin, D.; Simonson, C.J.; Dalai, A.K.; Tanino, K.; Guo, H., E-mail: doug.konkin@usask.ca [Univ. of Saskatchewan, Saskatchewan (Canada); Nishida, K.; Mochida, T. [Hitachi-GE Nuclear Energy, Ltd., Ibaraki (Japan); Ikegawa, T.; Kito, K. [Hitachi, Ltd., Ibaraki (Japan); Knudsen, R. [LeanOptions Consulting, Inc., Regina, Saskatchewan (Canada); Aikman, A. [SNC-Lavalin, Saskatoon, Saskatchewan (Canada); Humphries, R. [AMEC, Toronto, Ontario (Canada)

    2014-07-01

    Hitachi-GE Nuclear Energy Ltd. (Hitachi-GE) has developed a conceptual design for a Double MS: Modular Simplified & Medium Small Reactor (DMS) under the sponsorship of The Japan Atomic Power Company. Recent efforts have yielded enhancements for improved safety and reactor core performance. The DMS is an innovative small-to-medium sized Boiling Water Reactor (BWR), which, based only on electricity generation, has been estimated to almost overcome economy of scale concerns when compared to proven conventional Advanced Boiling Water Reactor (ABWR) technologies. In order to make the DMS more attractive, the University of Saskatchewan (U of S), Hitachi-GE and Hitachi Ltd. (Hitachi) have collaborated on a joint research and development (R&D) initiative to study the utilization of heat and steam from the Balance of Plant (BOP) associated with the DMS for thermal utilization (TU) applications. In this paper, the advanced features of the DMS and the individual projects of the R&D program will be described. (author)

  8. Genusa Bepu methodologies for the safety analysis of BWRs; Metodologias Bepu de Genusa para el analisis de seguridad de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, M.; Garcia, J.; Goodson, C.; Ibarra, L.

    2016-08-01

    This article describes the BEPU methodologies developed by General Electric-Hitachi (GEH) for the evaluation of the BWR reactor safety analysis based on the TRACG best-estimate code. These methodologies are applicable to a wide range of events, operational transients (AOO), anticipated transients without scram (ATWS), loss of coolant accidents (LOCA) and instability events; to different BWR types operating commercially. General Electric (GE( designs and other vendors, including Generation III+ESBWR; to the new operation strategies, and to all types of BWR fuel. Their application achieves, among other benefits, a better understanding of the overall plant response and an improvement in margins to the operating limits; thus, the increase of flexibility in reactor operation and reduction in generation costs. (Author)

  9. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  10. Turbine imaging technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  11. Radial gas turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Krausche, S.; Ohlsson, Johan

    1998-04-01

    The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs

  12. Piezoelectric wind turbine

    Science.gov (United States)

    Kishore, Ravi Anant; Priya, Shashank

    2013-03-01

    In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.

  13. Application requirements for wind turbine gearboxes

    Science.gov (United States)

    Errichello, Robert; Muller, Jane

    1994-09-01

    This report is a technical guide which documents the wind turbine gearbox experience of the GEARTECH consulting firm. The report provides a reference on wind turbine gearbox applications for the gear industry, wind turbine designers, and wind turbine operators. This report will assist in selecting, designing, manufacturing, procuring, operating, and maintaining gearboxes for use on wind turbines.

  14. Water turbine technology for small power stations

    Science.gov (United States)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  15. Optimization of analysis best-estimate of a fuel element BWR with Code STAR-CCM+; Optimizacion del analisis best-estimate de un elemento combustible BWR con el codigo STAR-CCM+

    Energy Technology Data Exchange (ETDEWEB)

    Morgado Canada, E.; Concejal Barmejo, A.; Jimenez Varas, G.; Solar Martinez, A.

    2014-07-01

    The objective of the project is the evaluation of the code STAR-CCM +, as well as the establishment of guidelines and standardized procedures for the discretization of the area of study and the selection of physical models suitable for the simulation of BWR fuel. For this purpose several of BFBT experiments have simulated [1] provide a data base for the development of experiments for measuring distribution of fractions of holes to changes in power in order to find the most appropriate models for the simulation of the problem. (Author)

  16. Benchmark calculation for radioactivity inventory using MAXS library based on JENDL-4.0 and JEFF-3.0/A for decommissioning BWR plants

    Directory of Open Access Journals (Sweden)

    Tanaka Ken-ichi

    2016-01-01

    Full Text Available We performed benchmark calculation for radioactivity activated in a Primary Containment Vessel (PCV of a Boiling Water Reactor (BWR by using MAXS library, which was developed by collapsing with neutron energy spectra in the PCV of the BWR. Radioactivities due to neutron irradiation were measured by using activation foil detector of Gold (Au and Nickel (Ni at thirty locations in the PCV. We performed activation calculations of the foils with SCALE5.1/ORIGEN-S code with irradiation conditions of each foil location as the benchmark calculation. We compared calculations and measurements to estimate an effectiveness of MAXS library.

  17. Turbine repair process, repaired coating, and repaired turbine component

    Energy Technology Data Exchange (ETDEWEB)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  18. SMART POWER TURBINE

    Energy Technology Data Exchange (ETDEWEB)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was

  19. CCF analysis of high redundancy systems safety/relief valve data analysis and reference BWR application. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Mankamo, T. [Avaplan Oy (Finland); Bjoere, S.; Olsson, Lena [ABB Atom AB, Vaesteraas (Sweden)

    1992-12-01

    Dependent failure analysis and modeling were developed for high redundancy systems. The study included a comprehensive data analysis of safety and relief valves at the Finnish and Swedish BWR plants, resulting in improved understanding of Common Cause Failure mechanisms in these components. The reference application on the Forsmark 1/2 reactor relief system, constituting of twelve safety/relief lines and two regulating relief lines, covered different safety criteria cases of reactor depressurization and overpressure protection function, and failure to re close sequences. For the quantification of dependencies, the Alpha Factor Model, the Binomial Probability Model and the Common Load Model were compared for applicability in high redundancy systems.

  20. Modeling and validation of a mechanistic tool (MEFISTO) for the prediction of critical power in BWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Adamsson, Carl, E-mail: carl.adamsson@psi.ch [Westinghouse Electric Sweden, SE-721 63, Vaesteras (Sweden); Le Corre, Jean-Marie, E-mail: lecorrjm@westinghouse.com [Westinghouse Electric Sweden, SE-721 63, Vaesteras (Sweden)

    2011-08-15

    Highlights: > The MEFISTO code efficiently and accurately predicts the dryout event in a BWR fuel bundle, using a mechanistic model. > A hybrid approach between a fast and robust sub-channel analysis and a three-field two-phase analysis is adopted. > MEFISTO modeling approach, calibration, CPU usage, sensitivity, trend analysis and performance evaluation are presented. > The calibration parameters and process were carefully selected to preserve the mechanistic nature of the code. > The code dryout prediction performance is near the level of fuel-specific empirical dryout correlations. - Abstract: Westinghouse is currently developing the MEFISTO code with the main goal to achieve fast, robust, practical and reliable prediction of steady-state dryout Critical Power in Boiling Water Reactor (BWR) fuel bundle based on a mechanistic approach. A computationally efficient simulation scheme was used to achieve this goal, where the code resolves all relevant field (drop, steam and multi-film) mass balance equations, within the annular flow region, at the sub-channel level while relying on a fast and robust two-phase (liquid/steam) sub-channel solution to provide the cross-flow information. The MEFISTO code can hence provide highly detailed solution of the multi-film flow in BWR fuel bundle while enhancing flexibility and reducing the computer time by an order of magnitude as compared to a standard three-field sub-channel analysis approach. Models for the numerical computation of the one-dimensional field flowrate distributions in an open channel (e.g. a sub-channel), including the numerical treatment of field cross-flows, part-length rods, spacers grids and post-dryout conditions are presented in this paper. The MEFISTO code is then applied to dryout prediction in BWR fuel bundle using VIPRE-W as a fast and robust two-phase sub-channel driver code. The dryout power is numerically predicted by iterating on the bundle power so that the minimum film flowrate in the bundle

  1. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  2. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller...... is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without...... changing the operation of the wind turbine to a more efficient working point.; When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical...

  3. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  4. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  5. Overview of New Tools to Perform Safety Analysis: BWR Station Black Out Test Case

    Energy Technology Data Exchange (ETDEWEB)

    D. Mandelli; C. Smith; T. Riley; J. Nielsen; J. Schroeder; C. Rabiti; A. Alfonsi; Cogliati; R. Kinoshita; V. Pasucci; B. Wang; D. Maljovec

    2014-06-01

    Dynamic Probabilistic Risk Assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP, MELCOR) with simulation controller codes (e.g., RAVEN, ADAPT). While system simulator codes accurately model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by: 1) sampling values of a set of parameters from the uncertainty space of interest (using the simulation controller codes), and 2) simulating the system behavior for that specific set of parameter values (using the system simulator codes). For complex systems, one of the major challenges in using DPRA methodologies is to analyze the large amount of information (i.e., large number of scenarios ) generated, where clustering techniques are typically employed to allow users to better organize and interpret the data. In this paper, we focus on the analysis of a nuclear simulation dataset that is part of the Risk Informed Safety Margin Characterization (RISMC) Boiling Water Reactor (BWR) station blackout (SBO) case study. We apply a software tool that provides the domain experts with an interactive analysis and visualization environment for understanding the structures of such high-dimensional nuclear simulation datasets. Our tool encodes traditional and topology-based clustering techniques, where the latter partitions the data points into clusters based on their uniform gradient flow behavior. We demonstrate through our case study that both types of clustering techniques complement each other in bringing enhanced structural understanding of the data.

  6. BWR: Development and Validation of KERENA reactor; Les REB: Developpement et validation du reacteur KERENA

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, F.; Fuchs, M. [E.ON Kernkraft GmbH (Germany); Erve, M.; Pasler, D. [AREVA (Germany)

    2010-07-01

    KERENA is an advanced boiling water reactor, combining AREVA's and E.ON's expertise. A project was launched to customize the final basic design for this advanced nuclear power plant having a net power output of about 1, 250 MW, a net efficiency of about 37% and a design service life of 60 years. The development takes into account the technical and accumulated operating experience of the project partners. The plant safety concept is based on an optimized combination of a reduced number of proven active safety systems and passive safety systems, utilizing basic laws of physics, such as gravity, enabling them to function without electrical power supplies or activation by powered instrumentation and control systems. Control of a postulated core melt accident is assured with considerable safety margins thanks to passive flooding of the containment for in-vessel melt retention. All passive safety systems are validated in an experimental test program at AREVA, using 1:1 scale test facilities (INKA test facility Karlstein). The KERENA boiling water reactor is compliant with international nuclear codes and standards, and is also designed to withstand the effects of an aircraft crash involving a military aircraft or a large passenger airline. The safety level of the KERENA reactor has been able to be significantly increased compared to existing BWR plants. The advantages of the new safety concept are: -) Reduced susceptibility of safety systems to failures; -) Larger safety margins; -) Good plant behavior in the event of accidents due to the fact that conditions change at a slower rate; -) Grace periods of several days after an accident before operator intervention is required; -) Significantly reduced impact of operator error on reactor safety; -) No need for large-scale emergency response actions such as temporary evacuation or relocation of the neighboring population following a core melt accident. (A.C.)

  7. Environmental mitigation for SCC initiation of BWR core internals by hydrogen injection during start-up

    Energy Technology Data Exchange (ETDEWEB)

    Dozaki, K.; Abe, A.; Nagata, N.; Takiguchi, H. [The Japan Atomic Power Co. (Japan)

    2004-07-01

    Hydrogen injection into the reactor water has been applied to many BWR power stations. Since hydrogen injected accelerates recombination of oxidant generated by water radiolysis, oxidant concentration, such as dissolved oxygen concentration in reactor water can be reduced. As the result of the reduction of oxidant concentration, Electrochemical Corrosion Potential (ECP) at the surface of structural material can be lowered. Lowered ECP moderates Stress Corrosion Cracking (SCC) sensitivity of structural materials, such as stainless steels. As usual, hydrogen injection system begins to work after the plant start-up is finished, when the condition of normal operation is established. Accordingly, Hydrogen Water Chemistry (HWC) does not cover all the period of plant operation. As far as SCC crack growth is considered, loss of HWC during plant start-up does not result in significant crack growth, because of duration of plant start-up is much shorter than that of plant normal operation, when HWC condition is being satisfied. However, the reactor water environment and load conditions during a plant start-up may contribute to the initiation of SCC. It is estimated that the core internals are subjected to the strain rate that may cause susceptibility to SCC initiation during start-up. Dissolved oxygen (DO) and hydrogen peroxide (H{sub 2}O{sub 2}) has a peak, and ECP is in high levels during start-up. Therefore it is beneficial to perform hydrogen injection during start-up as well in order to suppress SCC initiation. We call it HWC During Start-up (HDS) here. (orig.)

  8. A safety and regulatory assessment of generic BWR and PWR permanently shutdown nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Travis, R.J.; Davis, R.E.; Grove, E.J.; Azarm, M.A. [Brookhaven National Lab., Upton, NY (United States)

    1997-08-01

    The long-term availability of less expensive power and the increasing plant modification and maintenance costs have caused some utilities to re-examine the economics of nuclear power. As a result, several utilities have opted to permanently shutdown their plants. Each licensee of these permanently shutdown (PSD) plants has submitted plant-specific exemption requests for those regulations that they believe are no longer applicable to their facility. This report presents a regulatory assessment for generic BWR and PWR plants that have permanently ceased operation in support of NRC rulemaking activities in this area. After the reactor vessel is defueled, the traditional accident sequences that dominate the operating plant risk are no longer applicable. The remaining source of public risk is associated with the accidents that involve the spent fuel. Previous studies have indicated that complete spent fuel pool drainage is an accident of potential concern. Certain combinations of spent fuel storage configurations and decay times, could cause freshly discharged fuel assemblies to self heat to a temperature where the self sustained oxidation of the zircaloy fuel cladding may cause cladding failure. This study has defined four spent fuel configurations which encompass all of the anticipated spent fuel characteristics and storage modes following permanent shutdown. A representative accident sequence was chosen for each configuration. Consequence analyses were performed using these sequences to estimate onsite and boundary doses, population doses and economic costs. A list of candidate regulations was identified from a screening of 10 CFR Parts 0 to 199. The continued applicability of each regulation was assessed within the context of each spent fuel storage configuration and the results of the consequence analyses.

  9. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  10. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik;

    2012-01-01

    is not shut down for its protection. We also found that there is a a large spread across the various turbines within a wind park, in the amount of icing. This is currently not taken into account by our model. Evaluating and adding these small scale differences to the model will be undertaken as future work....... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine......In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...

  11. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  12. Application of the MOVE algorithm for the identification of reduced order models of a core of a BWR type reactor; Aplicacion del algoritmo MOVE para la identificacion de modelos de orden reducido del nucleo de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Victoria R, M.A.; Morales S, J.B. [UNAM, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: angelvr@gmail.com

    2005-07-01

    Presently work is applied the modified algorithm of the ellipsoid of optimal volume (MOVE) to a reduced order model of 5 differential equations of the core of a boiling water reactor (BWR) with the purpose of estimating the parameters that model the dynamics. The viability is analyzed of carrying out an analysis that calculates the global dynamic parameters that determine the stability of the system and the uncertainty of the estimate. The modified algorithm of the ellipsoid of optimal volume (MOVE), is a method applied to the parametric identification of systems, in particular to the estimate of groups of parameters (PSE for their initials in English). It is looked for to obtain the ellipsoid of smaller volume that guarantees to contain the real value of the parameters of the model. The PSE MOVE is a recursive identification method that can manage the sign of noise and to ponder it, the ellipsoid represents an advantage due to its easy mathematical handling in the computer, the results that surrender are very useful for the design of Robust Control since to smaller volume of the ellipsoid, better is in general the performance of the system to control. The comparison with other methods presented in the literature to estimate the reason of decline (DR) of a BWR is presented. (Author)

  13. Connected analysis nuclear-thermo-hydraulic of parallel channels of a BWR reactor using distributed computation; Analisis acoplado nuclear-termohidraulico de canales paralelos de un reactor BWR empleando computacion distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Campos Gonzalez, Rina Margarita

    2007-07-15

    This work consists of the integration of three models previously developed which are described widely in Literature: model of the thermo-hydraulic channel, model of the modal neutronic and the model of the recirculation bows. The tool used for this connection of models is the PVM system, Parallel Virtual Machine that allowed paralleling the model by means of the concept of distributed computation. The purpose of making this connection of models is the one of obtaining a more complete tool than better represents the real configuration and the phenomenology of the nucleus of a BWR reactor, thus obtaining better results. In addition to maintaining the flexibility to improve the resulting model at any time, since the very complex or sophisticated models are difficult to improve being impossible to modify the equations they use and can include variables that are not of primary importance in the tackled problem or that mask relations among variables due to the excess of results. Also maintaining the flexibility for adding component of models or systems of the BWR reactor, all of this following the modeling needs. The Swedish Ringhals power plant was chosen to characterize the resulting connected model for counting on a Stability Benchmark that offers the opportunity to count on real plant data. Besides that in case 9 of cycle 14 of this Benchamark oscillations outside phase appeared, which are from great interest because the detection systems that register the average of the power of the nucleus do not detect them. Additionally in this work the model of the recirculation bows as an independent module is obtained in an individual way, since this model belongs to another work and works connected to the reactor vessel. The model of the recirculation bows is able to model several transients of interest, as it is shown in the Appendix A of this work, among which are found the tripping of recirculation pumps or the transference at low or high velocity of them. The scope of the

  14. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor; Diseno de una recarga mixta con ensambles MOX de mayor relacion de moderacion para un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios H, J. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2004-07-01

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  15. Turbine Development in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In view of the development of the electric power industry in China,in this paper,the author expounds the development of turbine manufacturing industry in recent years and analyses the development trends of the industry in the future,involving domestic market demand,the adjustment of power sources' structure,independent research and development and innovation,product structural adjustment,product technical level,enterprise management and market service,etc.

  16. Turbine Development in China

    Institute of Scientific and Technical Information of China (English)

    Zheng Jianfu; Li Jialu

    2009-01-01

    @@ In view of the development of the electric power industry in China,in this paper,the author expounds the development of turbine manufacturing industry in recent years and analyses the development trends of the industry in the future,involving domestic market demand,the adjustment of power sources' structure,independent research and development and innovation,product structural adjustment,product technical level,enterprise management and market service,etc.

  17. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  18. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  19. Regenerative superheated steam turbine cycles

    Science.gov (United States)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  20. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  1. Turbine and Structural Seals Team Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Seals Team Facilities conceive, develop, and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. Current projects include...

  2. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  3. Technical Specification action statements requiring shutdown. A risk perspective with application to the RHR/SSW systems of a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Mankamo, T. [Avaplan Oy, Espoo (Finland); Kim, I.S.; Samanta, P.K. [Brookhaven National Lab., Upton, NY (United States)

    1993-11-01

    When safety systems fail during power operation, the limiting conditions for operation (LCOs) and associated action statements of technical specifications typically require that the plant be shut down within the limits of allowed outage time (AOT). However, when a system needed to remove decay heat, such as the residual heat removal (RHR) system, is inoperable or degraded, shutting down the plant may not necessarily be preferable, from a risk perspective, to continuing power operation over a usual repair time, giving priority to the repairs. The risk impact of the basic operational alternatives, i.e., continued operation or shutdown, was evaluated for failures in the RHR and standby service water (SSW) systems of a boiling-water reactor (BWR) nuclear power plant. A complete or partial failure of the SSW system fails or degrades not only the RHR system but other front-line safety systems supported by the SSW system. This report presents the methodology to evaluate the risk impact of LCOs and associated AOT; the results of risk evaluation from its application to the RHR and SSW systems of a BWR; the findings from the risk-sensitivity analyses to identify alternative operational policies; and the major insights and recommendations to improve the technical specifications action statements.

  4. Data report of BWR post-CHF tests. Transient core thermal-hydraulic test program. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Itoh, Hideo; Kiuchi, Toshio; Watanabe, Hironori; Kimura, Mamoru; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    JAERI has been performing transient core thermal-hydraulic test program. In the program, authors performed BWR/ABWR DBE simulation tests with a test facility, which can simulate BWR/ABWR transients. The test facility has a 4 x 4 bundle core simulator with 15-rod heaters and one non-heated rod. Through the tests, authors quantified the thermal safety margin for core cooling. In order to quantify the thermal safety margin, authors collected experimental data on post-CHF. The data are essential for the evaluation of clad temperature transient when core heat-up occurs during DBEs. In comparison with previous post-CHF tests, present experiments were performed in much wider experimental condition, covering high clad temperature, low to high pressure and low to high mass flux. Further, data at wider elevation (lower to higher elevation of core) were obtained in the present experiments, which make possible to discuss the effect of axial position on thermal-hydraulics, while previous works usually discuss the thermal-hydraulics at the position where the first heat-up occurs. This data report describes test procedure, test condition and major experimental data of post-CHF tests. (author)

  5. An assessment of BWR (boiling water reactor) Mark-II containment challenges, failure modes, and potential improvements in performance

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L.; Jones, K.R.; Dallman, R.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Wagner, K.C. (Science Applications International Corp., Albuquerque, NM (USA))

    1990-07-01

    This report assesses challenges to BWR Mark II containment integrity that could potentially arise from severe accidents. Also assessed are some potential improvements that could prevent core damage or containment failure, or could mitigate the consequences of such failure by reducing the release of fission products to the environment. These challenges and improvements are analyzed via a limited quantitative risk/benefit analysis of a generic BWR/4 reactor with Mark II containment. Point estimate frequencies of the dominant core damage sequences are obtained and simple containment event trees are constructed to evaluate the response of the containment to these severe accident sequences. The resulting containment release modes are then binned into source term release categories, which provide inputs to the consequence analysis. The output of the consequences analysis is used to construct an overall base case risk profile. Potential improvements and sensitivities are evaluated by modifying the event tree spilt fractions, thus generating a revised risk profile. Several important sensitivity cases are examined to evaluate the impact of phenomenological uncertainties on the final results. 75 refs., 25 figs., 65 tabs.

  6. Composite wind turbine blades

    Science.gov (United States)

    Ong, Cheng-Huat

    Researchers in wind energy industry are constantly moving forward to develop higher efficiency wind turbine. One major component for wind turbine design is to have cost effective wind turbine blades. In addition to correct aerodynamic shape and blade geometry, blade performance can be enhanced further through aero-elastic tailoring design and material selections. An analytical tool for blade design has been improved and validated. This analytical tool is utilized to resolve issues related to elastic tailoring design. The investigation looks into two major issues related to the design and fabrication of a bend-twist-coupled blade. Various design parameters for a blade such as materials, laminate lay-up, skin thickness, ply orientation, internal spar, etc. have been examined for designing a bend-twist-coupled blade. The parametric study indicates that the critical design parameters are the ply material, the ply orientation, and the volume fraction ratio between the anisotropic layers and orthotropic layers. To produce a blade having the bend-twist coupling characteristics, the fiber lay-ups at the top and bottom skins of the blade must have a "mirror" lay-up in relation to the middle plane of the blade. Such lay-up causes fiber discontinuation at the seam. The joint design at the seam is one major consideration in fabricating a truly anisotropic blade. A new joint design was proposed and tensile failure tests were carried out for both the old and new joint designs. The tests investigated the effects of different types of joint designs, the laminate lay-up at the joints, and the stacking sequence of the joint retention strength. A major component of a wind turbine blade, D-spar, was designed to maximum coupling. Two D-spars were then fabricated using the new joint design; one of them was subjected to both static and modal testings. Traditionally, wind turbine blades are made of low cost glass material; however, carbon fibers are proposed as alternative material. Our

  7. Wind turbines and idiopathic symptoms

    DEFF Research Database (Denmark)

    Blanes-Vidal, Victoria; Schwartz, Joel

    2016-01-01

    of wind turbines confounders using confounders' selection criteria and used adjusted logistic regression models to estimate associations. When controlling only....... Wind turbines-health associations can be confounded by personal reactions to other environmental co-exposures. Isolated associations reported in the literature may be due to confounding bias....

  8. Turbine with radial acting seal

    Energy Technology Data Exchange (ETDEWEB)

    Eng, Darryl S; Ebert, Todd A

    2016-11-22

    A floating brush seal in a rim cavity of a turbine in a gas turbine engine, where the floating brush seal includes a seal holder in which the floating brush seal floats, and a expandable seal that fits within two radial extending seal slots that maintains a seal with radial displacement of the floating brush seal and the seal holder.

  9. Controlling the feedwater flow in a BWR. Examples from Forsmark 2; Regleringen av matarvattenfloedet i en BWR. Med exempel fraan Forsmark 2

    Energy Technology Data Exchange (ETDEWEB)

    Bergdahl, Bengt-Goeran; Oguma, Ritsuo (GSE Power Systems AB, Nykoeping (Sweden))

    2009-03-15

    An investigation of the feedwater controller at Forsmark 2 has been performed. The investigation is based on signal analysis of measurement signals recorded during operation of the plant during different tests. The feedwater controller consists of the water level controller, the flow controller and the condenser balance controller. The overall goal of the feedwater control is to maintain constant water level (level controller) in the reactor and at the same time balance the water levels in the two condensers (condenser balance controller) to avoid that one condenser is full of water while the other one is operated with too low level. There is also a feed forward of the difference between steam flow and feedwater flow (flow controller) for each turbine system with the aim to reduce the fluctuation in reactor water level. The relation in strength between the three controllers is such that the level controller is the strongest followed by the condenser balance controller and finally the flow controller. Tests with trip of the feedwater pump and automatic start of the spare pump in each turbine system indicates a fast reduction in reactor water level that is restored after the transient in the control system. The transient in water level is stable without oscillations. However, it takes about 100 s before the reactor water level is restored. The function of the flow controller has been questioned by the authors. It does not take the action that is expected when a disturbance takes place in the difference between steam and feedwater flow. In addition to this principal weakness there is an offset in the feedwater controller output for feedwater flow 22 that reduces the contribution in flow control that is expected during the introduction of a disturbance. This offset should be adjusted during instrument maintenance of the feedwater controller. The PIP parameters for the level controller are gain factors and time constants. These have been evaluated with the aid of

  10. Type IV Wind Turbine Model

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Margaris, Ioannis D.

    project to be incorporated in the wind power plant level. This document describes the Type 4 wind turbine simulation model, implemented in the EaseWind project. The implemented wind turbine model is one of the initial necessary steps toward integrating new control services in the wind power plant level....... In the project, this wind turbine model will be further incorporated in a wind power plant model together with the implementation in the wind power control level of the new control functionalities (inertial response, synchronising power and power system damping). For this purpose an aggregate wind power plant...... (WPP) will be considered. The aggregate WPP model, which will be based on the upscaling of the individual wind turbine model on the electrical part, will make use of an equivalent wind speed. The implemented model follows the basic structure of the generic standard Type 4 wind turbine model proposed...

  11. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  12. Reliability Assessment of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  13. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  14. NEXT GENERATION TURBINE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which

  15. Mitigation strategies of intergranular corrosion in systems of reactors of water boiling (BWR). Combined action of the chemistry of the hydrogen and the oxygen; Estrategias de mitigacion de la corrosion intergranular en sistemas de reactores de agua en ebullicion (BWR). Accion combinada de la quimica del hidrogeno y del oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Verdugo, M.

    2015-07-01

    Inter-Granular Stress Corrosion cracking (IGSCC) in austenitic stainless steel and in austenitic nickel-based alloys has been the subject of many studies the aim of which was to resolve one of the main problems faced by BWR nuclear power plants since the 1960s. This corrosion phenomenon is the result of the combined action of three factors: sensitization of the material, high local stresses and an aggressive medium. This paper deals with these factors separately and analyzes the oxidative chemistry of BWR reactors (aggressivity of the medium) as one the main causes if IGSCC. (Author)

  16. Calculation of gas turbine characteristic

    Science.gov (United States)

    Mamaev, B. I.; Murashko, V. L.

    2016-04-01

    The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.

  17. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    utilized or referenced, justification has been provided as to why the data can be utilized for BWR fuel.

  18. Qualification of helium measurement system for detection of fuel failures in a BWR

    Science.gov (United States)

    Larsson, I.; Sihver, L.; Loner, H.; Grundin, A.; Helmersson, J.-O.; Ledergerber, G.

    2014-05-01

    There are several methods for surveillance of fuel integrity during the operation of a boiling water reactor (BWR). The detection of fuel failures is usually performed by analysis of grab samples of off-gas and coolant activities, where a measured increased level of ionizing radiation serves as an indication of new failure or degradation of an already existing one. At some nuclear power plants the detection of fuel failures is performed by on-line nuclide specific measurements of the released fission gases in the off-gas system. However, it can be difficult to distinguish primary fuel failures from degradation of already existing failures. In this paper, a helium measuring system installed in connection to a nuclide specific measuring system to support detection of fuel failures and separate primary fuel failures from secondary ones is presented. Helium measurements provide valuable additional information to measurements of the gamma emitting fission gases for detection of primary fuel failures, since helium is used as a fill gas in the fuel rods during fabrication. The ability to detect fuel failures using helium measurements was studied by injection of helium into the feed water systems at the Forsmark nuclear power plant (NPP) in Sweden and at the nuclear power plant Leibstadt (KKL) in Switzerland. In addition, the influence of an off-gas delay line on the helium measurements was examined at KKL by injecting helium into the off-gas system. By using different injection rates, several types of fuel failures with different helium release rates were simulated. From these measurements, it was confirmed that the helium released by a failed fuel can be detected. It was also shown that the helium measurements for the detection of fuel failures should be performed at a sampling point located before any delay system. Hence, these studies showed that helium measurements can be useful to support detection of fuel failures. However, not all fuel failures which occurred at

  19. Development of an Input Model to MELCOR 1.8.5 for the Oskarshamn 3 BWR

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Lars [Lentek, Nykoeping (Sweden)

    2006-05-15

    An input model has been prepared to the code MELCOR 1.8.5 for the Swedish Oskarshamn 3 Boiling Water Reactor (O3). This report describes the modelling work and the various files which comprise the input deck. Input data are mainly based on original drawings and system descriptions made available by courtesy of OKG AB. Comparison and check of some primary system data were made against an O3 input file to the SCDAP/RELAP5 code that was used in the SARA project. Useful information was also obtained from the FSAR (Final Safety Analysis Report) for O3 and the SKI report '2003 Stoerningshandboken BWR'. The input models the O3 reactor at its current state with the operating power of 3300 MW{sub th}. One aim with this work is that the MELCOR input could also be used for power upgrading studies. All fuel assemblies are thus assumed to consist of the new Westinghouse-Atom's SVEA-96 Optima2 fuel. MELCOR is a severe accident code developed by Sandia National Laboratory under contract from the U.S. Nuclear Regulatory Commission (NRC). MELCOR is a successor to STCP (Source Term Code Package) and has thus a long evolutionary history. The input described here is adapted to the latest version 1.8.5 available when the work began. It was released the year 2000, but a new version 1.8.6 was distributed recently. Conversion to the new version is recommended. (During the writing of this report still another code version, MELCOR 2.0, has been announced to be released within short.) In version 1.8.5 there is an option to describe the accident progression in the lower plenum and the melt-through of the reactor vessel bottom in more detail by use of the Bottom Head (BH) package developed by Oak Ridge National Laboratory especially for BWRs. This is in addition to the ordinary MELCOR COR package. Since problems arose running with the BH input two versions of the O3 input deck were produced, a NONBH and a BH deck. The BH package is no longer a separate package in the new 1

  20. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  1. Alternative aviation turbine fuels

    Science.gov (United States)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  2. Floating offshore turbines

    DEFF Research Database (Denmark)

    Tande, John Olav Giæver; Merz, Karl; Schmidt Paulsen, Uwe

    2014-01-01

    phase applying (mostly) well-known technology, albeit in a new setting. DeepWind is a European research project based mostly on new technology. The concepts are described in some detail with emphasis on control and operation. Prospects are discussed including technical challenges and a performance...... metric of energy production per unit steel mass. Floating offshore wind turbines represent a promising technology. The successful operation of HyWind and WindFloat in full scale demonstrates a well advanced technology readiness level, where further development will go into refining the concepts, cost...

  3. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  4. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  5. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  6. TURBINE COOLING FLOW AND THE RESULTING DECREASE IN TURBINE EFFICIENCY

    Science.gov (United States)

    Gauntner, J. W.

    1994-01-01

    This algorithm has been developed for calculating both the quantity of compressor bleed flow required to cool a turbine and the resulting decrease in efficiency due to cooling air injected into the gas stream. Because of the trend toward higher turbine inlet temperatures, it is important to accurately predict the required cooling flow. This program is intended for use with axial flow, air-breathing jet propulsion engines with a variety of airfoil cooling configurations. The algorithm results have compared extremely well with figures given by major engine manufacturers for given bulk metal temperatures and cooling configurations. The program calculates the required cooling flow and corresponding decrease in stage efficiency for each row of airfoils throughout the turbine. These values are combined with the thermodynamic efficiency of the uncooled turbine to predict the total bleed airflow required and the altered turbine efficiency. There are ten airfoil cooling configurations and the algorithm allows a different option for each row of cooled airfoils. Materials technology is incorporated and requires the date of the first year of service for the turbine stator vane and rotor blade. The user must specify pressure, temperatures, and gas flows into the turbine. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 3080 series computer with a central memory requirement of approximately 61K of 8 bit bytes. This program was developed in 1980.

  7. Potential health impact of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  8. PSI contribution to the CASTOC round robin on EAC of low-alloy RPV steels under BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2001-08-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack growth (EAC) behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state BWR power operation conditions by 6 European laboratories. The present report contains a summary of the PSI contribution to the Working Package 1 (WP1) of this project. WP1 is an interlaboratory round robin EAC test in simulated BWR/NWC environment under cyclic and static loading conditions. The round robin shall demonstrate the applicability of the used advanced test technique and establishes the technical basis for the decision of test conditions in the other working packages. In the first part of the report, the PSI testing facility/measurement instruments and the applied test and evaluation procedure are discussed in detail. In the second part, the exact test conditions and test results with detailed post-test fractographical evaluation in the SEM are presented. The test results are compared with other PSI results, literature data and nuclear codes. Stable and stationary test conditions within the specified range could be achieved in the PSI test during the whole conditioning and experimental phase. The cyclic crack growth rate results agree well with recent PSI results at a higher dissolved oxygen content of 8 ppm and are slightly below the 'high-sulphur line' of the PLEDGE-model. The crack growth rates are significantly above the ASME XI 'wet' curve. Compared to fatigue crack growth rates in air under otherwise identical test conditions, the effect of the high-temperature water environment resulted in an acceleration of crack growth by a factor of 150-250 under these low-cyclic loading conditions. The test results at constant load confirm the extremely low susceptibility to SCC crack growth under static load at 288 {sup o}C observed in tests at MPA, PSI and in a European Round Robin. They agree well with the RPV

  9. Estimation of the coolant flow through a natural circulation BWR fuel channel applying and equivalent electrical model

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, DEPFI, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Campus Morelos en IMTA, Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: julfi_ig@yahoo.com.m [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2010-10-15

    This work presents the design and implementation of an advanced controller for a reduced order model of a BWR reactor core cooled by natural circulating water, which allows real time estimates of coolant flows through fuel assemblies about standard neutron flux strings. Nuclear power plants with boiling water reactors control individual fuel assembly coolant flows by forced circulation using external or internal water pumps and different core support plate orifices. These two elements reduce flow dependency on local channel pressure drops. In BWR reactors using only natural circulation coolant flows, these two elements are not available and therefore individual channel coolant flows are highly dependent in local conditions, such as power distributions and local pressure drops. Therefore it is expected that grater uncertainties in these variables be used during safety, fuel management and other analysis, which in turns may lead to increased operation penalties, such as tighter operating limits. The objective of this work is to asses by computer simulations means to reduce uncertainties in the measurement of fuel assembly coolant flows and eventually the associated penalties. During coolant phase transitions, pressure drops and local power may alter local natural circulation through fuel assemblies and flow estimates can be helped or not by control rod moves. This work presents the construction of an optimal controller for a core flow estimator based on a reduced order model of the coolant going though the reactor vessel components and nuclear core. This model is to be driven by plant signals from standard BWR instrumentation in order to estimate the coolant flows in selected fuel assemblies about a LPRM string. For this purpose an equivalent electrical model has been mathematically developed and numerically tested. The power-flow maps of typical BRW are used as steady state references for this equivalent model. Once these were fully reproduced for steady state

  10. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  11. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part); MCTP, un codigo para el analisis termo-mecanico de una barra combustible de reactores tipo BWR (Parte Neutronica)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Ortiz V, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: hhl@nuclear.inin.mx

    2003-07-01

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  12. Impact analysis of modifying the composition of the nuclear fuel of a BWR with beryllium oxide; Analisis del impacto de modificar la composicion del combustible nuclear de un BWR con oxido de berilio

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo V, J. M.; Morales S, J. B., E-mail: euqrop@hotmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2013-10-15

    The beryllium oxide (Be O) presents excellent physical properties, especially its high thermal conductivity that contrasts clearly with that of the uranium dioxide (UO{sub 2}) used at the present as fuel in a great number of nuclear plants. The present work models a nuclear reactor cooled by light water in boiling with two external recirculation loops (BWR/5) using the code for the transitory analysis and postulated accidents Trac-B F1, implementing a UO{sub 2} mixture and different fractions of Be O, with the objective of improving the thermal conductivity of the fuel. The numeric results and the realized analyses indicate that when adding a fraction in volume of 10% the central temperature decreases in 30.4% in stationary state, while during the large break loss of coolant accident the peak cladding temperature diminishes in 7%. Although the real interaction of the mixture has not been determined experimentally, the obtained results are promising. (Author)

  13. A methodology for obtaining the control rod patterns in a BWR using genetic algorithms; Una metodologia para obtener los patrones de barras de control en un BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J.; Montes T, J.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Requena R, I. [Universidad de Granada, 18071 Granada (Spain)]. e-mail: jjortiz@nuclear.inin.mx

    2003-07-01

    In this work the GACRP system based on the genetic algorithms technique for the obtaining of the drivers of control bars in a BWR reactor is presented. This methodology was applied to a transition cycle and a one of balance of the Laguna Verde nuclear power station (CNLV). For each one of the studied cycles, it was executed the methodology with a fixed length of the cycle and it was compared the effective multiplication factor of neutrons at the end of the cycle that it is obtained with the proposed drivers of control bars and the multiplication factor of neutrons obtained by means of a Haling calculation. It was found that it is possible to extend several days the length of both cycles with regard to the one Haling calculation. (Author)

  14. Recent trends in the mitigation of the IGSCC through modifications in the water chemistry of BWR reactors; Tendencias recientes en la mitigacion del IGSCC mediante modificaciones en la quimica del agua de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Robles, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    During the last years, the Nuclear Power stations had been that to adequate or to modify the parameters and operational conditions, attempting to maintain and to safeguard the integrity and functionality of its components and systems, as well as the personnel safety involved in its operation. In a Boiling water reactor (BWR), the chemical control of the water, constitutes one of the fundamental aspects to get a sure and reliable operation, having as main objectives: (a) The protection of the reactor vessel, of the structural materials of the same one and of the pipes and components of those recirculation systems against the Intergranular stress corrosion phenomena (IGSCC); (b) To guarantee the integrity of the nuclear fuel minimizing the corrosion phenomena in the fuel elements; and (c) The reduction of the operational dose of the personnel involved directly in the operation and maintenance by means of the control of the activated corrosion products. (Author)

  15. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR; BUTREN-RC un sistema hibrido para la optimizacion de recargas de combustible nuclear en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J.; Castillo M, J.A. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico); Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  16. BWR simulation in a stationary state for the evaluation of fuel cell design; Simulacion de un reactor BWR en estado estacionario para la evaluacion del diseno de celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J. L.; Ortiz S, J. J.; Perusquia del C, R.; Castillo M, A., E-mail: joseluis.montes@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this paper the simulation of a BWR in order to evaluate the performance of a set of fuel assemblies under stationary state in three dimensions (3-D) is presented. 15 cases selected from a database containing a total of 18225 cases are evaluated. The main selection criteria were based on the results of the design phase of the power cells in two dimensions (2-D) and 3-D initial study. In 2-D studies the parameters that were used to qualify and select the designs were basically the local power peaking factor and neutron multiplication factor of each fuel cell. In the initial 3-D study variables that defined the quality of results, and from which the selection was realized, are the margins to thermal limits of reactor operation and the value of the effective multiplication factor at the end of cycle operation. From the 2-D and 3-D results of the studies described a second 3-D study was realized, where the optimizations of the fuel reload pattern was carried out. The results presented in this paper correspond to this second 3-D study. It was found that the designs of the fuel cell they had a similar behavior to those provided by the fuel supplier of reference BWR. Particularly it noted the impact of reload pattern on the cold shut down margin. An estimate of the operation costs of reference cycle analyzed with each one designed reload batch was also performed. As a result a positive difference (gain) up to 10,347 M/US D was found. (Author)

  17. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor; Evaluacion del diseno radial de celdas de combustible en un ciclo de operacion de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, J.; Martin del Campo M, C. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jgco@ver.megared.net.mx

    2003-07-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  18. Simulation in 3 dimensions of a cycle 18 months for an BWR type reactor using the Nod3D program; Simulacion en 3 dimensiones de un ciclo de 18 meses para un reactor BWR usando el programa Nod3D

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, N.; Alonso, G. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail: nhm@nuclear.inin.mx; Valle, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The development of own codes that you/they allow the simulation in 3 dimensions of the nucleus of a reactor and be of easy maintenance, without the consequent payment of expensive use licenses, it can be a factor that propitiates the technological independence. In the Department of Nuclear Engineering (DIN) of the Superior School of Physics and Mathematics (ESFM) of the National Polytechnic Institute (IPN) a denominated program Nod3D has been developed with the one that one can simulate the operation of a reactor BWR in 3 dimensions calculating the effective multiplication factor (kJJ3, as well as the distribution of the flow neutronic and of the axial and radial profiles of the power, inside a means of well-known characteristics solving the equations of diffusion of neutrons numerically in stationary state and geometry XYZ using the mathematical nodal method RTN0 (Raviart-Thomas-Nedelec of index zero). One of the limitations of the program Nod3D is that it doesn't allow to consider the burnt of the fuel in an independent way considering feedback, this makes it in an implicit way considering the effective sections in each step of burnt and these sections are obtained of the code Core Master LEND. However even given this limitation, the results obtained in the simulation of a cycle of typical operation of a reactor of the type BWR are similar to those reported by the code Core Master LENDS. The results of the keJ - that were obtained with the program Nod3D they were compared with the results of the code Core Master LEND, presenting a difference smaller than 0.2% (200 pcm), and in the case of the axial profile of power, the maxim differs it was of 2.5%. (Author)

  19. H gas turbine combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Corman, J. [General Electric Co., Schenectady, NY (United States)

    1995-10-01

    A major step has been taken in the development of the Next Power Generation System - {open_quotes}H{close_quotes} Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1430 C (2600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The {open_quotes}H{close_quotes} Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

  20. Innovation in wind turbine design

    CERN Document Server

    Jamieson, Peter

    2011-01-01

    Innovation in Wind Turbine Design addresses the fundamentals of design, the reasons behind design choices, and describes the methodology for evaluating innovative systems and components. Always referencing a state of the art system for comparison, Jamieson discusses the basics of wind turbine theory and design, as well as how to apply existing engineering knowledge to further advance the technology, enabling the reader to gain a thorough understanding of current technology before assessing where it can go in the future. Innovation in Wind Turbine Design is divided into four mai

  1. Turbine efficiency test on a large hydraulic turbine unit

    Institute of Scientific and Technical Information of China (English)

    YAN ZongGuo; ZHOU LingJiu; WANG ZhengWei

    2012-01-01

    The flow rate measurements are the most difficult part of efficiency tests on prototype hydraulic turbines.Among the numerous flow rate measurement methods,the Winter Kennedy method is preferred for measuring turbine flow rates,since it is convenient,practical and economical.This paper describes efficiency tests on a large 300 MW Francis turbine,with the flow rate measured using the Winter Kennedy method and the Winter Kennedy flow rate coefficient calibrated using the Gibson method.The measured turbine efficiency curve is then compared with the curve provided by the manufacturer.The CFD calculations including the spiral case are then used to analyze the influence with the coefficient K and index n in the Winter Kennedy flow rate formula on the flow rate measurement.The uncertainty values of n and K are a key reason for the differences between the curves obtained from the efficiency test and the curves provided by the manufacturer.

  2. Calculation of releases of radioactive materials in gaseous and liquid effluents from boiling water reactors (BWR-GALE Code)

    Energy Technology Data Exchange (ETDEWEB)

    Bangart, R.L.; Bell, L.G.; Boegli, J.S.; Burke, W.C.; Lee, J.Y.; Minns, J.L.; Stoddart, P.G.; Weller, R.A.; Collins, J.T.

    1978-12-01

    The calculational procedures described in the report reflect current NRC staff practice. The methods described will be used in the evaluation of applications for construction permits and operating licenses docketed after January 1, 1979, until this NUREG is revised as a result of additional staff review. The BWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from boiling water reactors (BWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment.

  3. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    Science.gov (United States)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  4. Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation

    Science.gov (United States)

    Chapman, Jeffryes W.; Kratz, Jonathan; Guo, Ten-Huei; Litt, Jonathan

    2016-01-01

    Gas turbine compressor and turbine blade tip clearance (i.e., the radial distance between the blade tip of an axial compressor or turbine and the containment structure) is a major contributing factor to gas path sealing, and can significantly affect engine efficiency and operational temperature. This paper details the creation of a generic but realistic high pressure turbine tip clearance model that may be used to facilitate active tip clearance control system research. This model uses a first principles approach to approximate thermal and mechanical deformations of the turbine system, taking into account the rotor, shroud, and blade tip components. Validation of the tip clearance model shows that the results are realistic and reflect values found in literature. In addition, this model has been integrated with a gas turbine engine simulation, creating a platform to explore engine performance as tip clearance is adjusted. Results from the integrated model explore the effects of tip clearance on engine operation and highlight advantages of tip clearance management.

  5. Analysis of BWR instabilities coupled with 3D code RELAP5 / PARCSv2.7. Application to the event happened in Oskarshamn-2 in 1999; Analisis de inestabilidades en BWR con el codigo acoplado 3D RELAP5/PARCSv2.7. Aplicacion al evento sucedido en Oskarshamn-2 en1999

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fenoll, M.; Barrachina, T.; Miro, R.; Verdu, G.

    2014-07-01

    In this work, part of our works in the frame of the OECD/NEA Oskarshamn-2 (O{sub 2}) BWR Stability Benchmark for Coupled Code Calculations and Uncertainty Analysis in Modelling are shown. The objective is to simulate the instability event registered in February 1999 at the Swedish NPP Oskarshamn-2 with the coupled code RELAP5/PARCSv2.7. (Author)

  6. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine...

  7. Wind turbine airfoil catalogue

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe

    2001-01-01

    method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which airfoils it does not perform well compared to the experiments, as well as why, when it does so. Theairfoils are classified according to the agreement between the numerical results and experimental...... to these discrepancies is identified. Some advices are given for elaborating future airfoil design processes that would involvethe numerical code EllipSys2D in particular, and transition modelling in general.......The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel...

  8. Sprayed skin turbine component

    Science.gov (United States)

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  9. Gas turbine combustor

    Science.gov (United States)

    Burd, Steven W. (Inventor); Cheung, Albert K. (Inventor); Dempsey, Dae K. (Inventor); Hoke, James B. (Inventor); Kramer, Stephen K. (Inventor); Ols, John T. (Inventor); Smith, Reid Dyer Curtis (Inventor); Sowa, William A. (Inventor)

    2011-01-01

    A gas turbine engine has a combustor module including an annular combustor having a liner assembly that defines an annular combustion chamber having a length, L. The liner assembly includes a radially inner liner, a radially outer liner that circumscribes the inner liner, and a bulkhead, having a height, H1, which extends between the respective forward ends of the inner liner and the outer liner. The combustor has an exit height, H3, at the respective aft ends of the inner liner and the outer liner interior. The annular combustor has a ratio H1/H3 having a value less than or equal to 1.7. The annular combustor may also have a ration L/H3 having a value less than or equal to 6.0.

  10. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    . The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind......This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model...

  11. Cooled Ceramic Turbine Vane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  12. Probabilistic Design of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Henrik S. Toft

    2010-02-01

    Full Text Available Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability levels and recommendation for consideration of system aspects. The uncertainties are characterized as aleatoric (physical uncertainty or epistemic (statistical, measurement and model uncertainties. Methods for uncertainty modeling consistent with methods for estimating the reliability are described. It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated.

  13. Life cycle assessment of turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    This report forms part of the final reporting of the project 'LCA and turbines, which has been carried out as a cooperation between Vestas Wind Systems A/S and Tech-wise A/S on behalf of Elsam A/S. The goal of the project was to create a life cycle model for a big Vestas offshore turbine. Based on the offshore model an analysis has been prepared and this analysis will show the most significant environmental impacts a turbine will be subject to during its life cycle. Furthermore we have prepared a recommendation on how an improvement strategy on a selected area can be drafted. Finally, a preliminary environmental declaration of contents will be prepared for the turbine in question and 1 kWh generated from here. (BA)

  14. Online wind turbine measurement laboratory

    DEFF Research Database (Denmark)

    Hansen, K.S.; Helgesen Pedersen, K.O.; Schmidt Paulsen, U.

    2006-01-01

    As part of the International Master of Science Program in Wind Energy at DTU, a complete interactive wind turbine measurement laboratory has been developed. A 500 kW stall regulated wind turbine has been instrumented with sensors for recording 1) turbine operational parameters, 2) meteorological...... conditions, 3) electrical quantities and 4) mechanical loads in terms of strain gauge signals. The data acquisition system has been designed and implemented by Risø together with students and teachers from DTU. It is based on LabVIEW© combined with a MySQL database for data management. The system enables...... calculations and extreme loads estimation in basic wind turbine courses. Power quality analysis is carried out based on high speed sampled, three-phase voltage and current signals. The wide spectrum of sensors enables a detailed study of the correlation between meteorological, mechanical and electrical...

  15. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, H.S.

    2010-01-01

    Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability....... It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....

  16. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  17. Improved automobile gas turbine engine

    Science.gov (United States)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.

    1976-01-01

    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  18. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  19. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T.; Brask, M.H. [DEFU (Denmark); Jensen, F.V.; Raben, N. [SEAS (Denmark); Saxov, J. [Nordjyllandsvaerket (Denmark); Nielsen, L. [Vestkraft (Denmark); Soerensen, P.E. [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  20. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  1. Development of Sirius facility that simulates void-reactivity feedback, and regional and core-wide stability estimation of natural circulation BWR

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, M.; Inada, F.; Yasuo, A. [Tokyo Electric Power Co., Inc., Central Research Institute (Japan)

    2001-07-01

    The SIRIUS facility was designed and constructed for highly accurate simulation of core-wide and regional instabilities of the BWR. A real-time simulation was performed in the digital controller for modal point kinetics of reactor neutronics and fuel-rod conduction on the basis of measured void fractions in reactor core sections of the thermal-hydraulic loop. Stability experiments were conducted for a wide range of fluid conditions, power distributions, and fuel rod thermal conductivity time constants, including the normal operating conditions of a typical natural circulation BWR. The results showed that there is a sufficiently wide stability margin under normal operating conditions, even when void-reactivity feedback is taken into account. (author)

  2. BWR spent fuel transport and storage system for KKL: TN trademark 52L, TN trademark 97L, TN trademark 24 BHL

    Energy Technology Data Exchange (ETDEWEB)

    Sicard, D.; Verdier, A. [COGEMA Logistics (AREVA Group) (France); Monsigny, P.A. [NOK/KKL (Switzerland)

    2004-07-01

    The LEIBSTADT (KKL) nuclear power plant in Switzerland has opted to ship spent fuel to a central facility called ZWILAG for interim storage. In the mid-nineties, COGEMA LOGISTICS was contracted by KKL for the supply of the TN trademark a52L and TN trademark 97L transport and storage casks for BWR fuel types. In 2003, KKL also ordered from COGEMA LOGISTICS the supply of six TNae24 BHL transport and storage casks. This paper shows how all the three cask designs have responded to the KKL needs to ship and store BWR spent fuel. In addition, it highlights the already significant operational feedback of the TN trademark 52L and TN trademark 97L casks by the KKL and ZWILAG operators.

  3. Efisiensi Prototipe Turbin Savonius pada Kecepatan Angin Rendah

    OpenAIRE

    Melda Latif

    2013-01-01

    Wind energy can be transformed into electrical energy using wind turbine. Based on rotation axis, there are two types of wind turbine, namely turbine with horizontal axis and the one with vertical axis. Turbine with vertical axis has been known with various names that are Darrieus turbine, Savonius turbine and H turbine. This research designed and implemented a prototype of simple Savonius turbine for small scale wind speed. Resistor with resistance of 200 ohm and LED are used as the load. Ma...

  4. Micro Gas Turbine – A Review

    OpenAIRE

    2013-01-01

    Turbomachines is a class of machines which comprise of turbines and compressors. These machines are widely used for power generation, aircraft propulsion and in a wide range of heavy and medium industries. When we scale down these large turbines, we get micro turbines, which are compact and miniaturized form of these large turbines. The process of scaling down a turbine is not as simple as it looks like, it is a very tedious job and researches are going on in this area. These micro gas turbin...

  5. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    Science.gov (United States)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  6. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  7. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - models and correlations

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document describes the major modifications and improvements made to the modeling of the RAMONA-3B/MOD0 code since 1981, when the code description and assessment report was completed. The new version of the code is RAMONA-4B. RAMONA-4B is a systems transient code for application to different versions of Boiling Water Reactors (BWR) such as the current BWR, the Advanced Boiling Water Reactor (ABWR), and the Simplified Boiling Water Reactor (SBWR). This code uses a three-dimensional neutron kinetics model coupled with a multichannel, non-equilibrium, drift-flux, two-phase flow formulation of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients and instability issues. Chapter 1 is an overview of the code`s capabilities and limitations; Chapter 2 discusses the neutron kinetics modeling and the implementation of reactivity edits. Chapter 3 is an overview of the heat conduction calculations. Chapter 4 presents modifications to the thermal-hydraulics model of the vessel, recirculation loop, steam separators, boron transport, and SBWR specific components. Chapter 5 describes modeling of the plant control and safety systems. Chapter 6 presents and modeling of Balance of Plant (BOP). Chapter 7 describes the mechanistic containment model in the code. The content of this report is complementary to the RAMONA-3B code description and assessment document. 53 refs., 81 figs., 13 tabs.

  8. Wind turbines and human health.

    Science.gov (United States)

    Knopper, Loren D; Ollson, Christopher A; McCallum, Lindsay C; Whitfield Aslund, Melissa L; Berger, Robert G; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  9. Wind turbines and human health

    Directory of Open Access Journals (Sweden)

    Loren eKnopper

    2014-06-01

    Full Text Available The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation (electromagnetic fields (EMF, shadow flicker, audible noise, low frequency noise, infrasound. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low frequency noise and infrasound, EMF and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low frequency noise and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance especially at sound pressure levels >40 dB(A. Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  10. Advanced Turbine Blade Cooling Techniques Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can...

  11. Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving......Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... are controlled by pitching the blades and by controlling the electro-magnetic torque of the generator, thus slowing the rotation of the blades. Improved control of wind turbines, leading to reduced fatigue loads, can be exploited by using less materials in the construction of the wind turbine or by reducing...

  12. Prediction of the local power factor in BWR fuel cells by means of a multilayer neural network; Prediccion del factor local de potencia en celdas de combustible BWR mediante una red neuronal multicapas

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J.L.; Ortiz, J.J.; Perusquia C, R. [ININ, Carretera Mexico-Toluca s/n, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico); Francois, J.L.; Martin del Campo M, C. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: jlmt@nuclear.inin.mx

    2007-07-01

    To the beginning of a new operation cycle in a BWR reactor the reactivity of this it increases by means of the introduction of fresh fuel, the one denominated reload fuel. The problem of the definition of the characteristics of this reload fuel represents a combinatory optimization problem that requires significantly a great quantity of CPU time for their determination. This situation has motivated to study the possibility to substitute the Helios code, the one which is used to generate the new cells of the reload fuel parameters, by an artificial neuronal network, with the purpose of predicting the parameters of the fuel reload cell of a BWR reactor. In this work the results of the one training of a multilayer neuronal net that can predict the local power factor (LPPF) in such fuel cells are presented. The prediction of the LPPF is carried out in those condition of beginning of the life of the cell (0.0 MWD/T, to 40% of holes in the one moderator, temperature of 793 K in the fuel and a moderator temperature of 560 K. The cells considered in the present study consist of an arrangement of 10x10 bars, of those which 92 contains U{sup 235}, some of these bars also contain a concentration of Gd{sub 2}O{sub 3} and 8 of them contain only water. The axial location inside the one assembles of recharge of these cells it is exactly up of the cells that contain natural uranium in the base of the reactor core. The training of the neuronal net is carried out by means of a retro-propagation algorithm that uses a space of training formed starting from previous evaluations of cells by means of the Helios code. They are also presented the results of the application of the neuronal net found for the prediction of the LPPF of some cells used in the real operation of the Unit One of the Laguna Verde Nuclear Power station. (Author)

  13. Design and optimization of a fuel reload of BWR with plutonium and minor actinides; Diseno y optimizacion de una recarga de combustible de BWR con plutonio y actinidos menores

    Energy Technology Data Exchange (ETDEWEB)

    Guzman A, J. R.; Francois L, J. L.; Martin del Campo M, C.; Palomera P, M. A. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: maestro_juan_rafael@hotmail.com

    2008-07-01

    In this work is designed and optimized a pattern of fuel reload of a boiling water reactor (BWR), whose fuel is compound of uranium coming from the enrichment lines, plutonium and minor actinides (neptunium, americium, curium); obtained of the spent fuel recycling of reactors type BWR. This work is divided in two stages: in the first stage a reload pattern designs with and equilibrium cycle is reached, where the reload lot is invariant cycle to cycle. This reload pattern is gotten adjusting the plutonium content of the assembly for to reach the length of the wished cycle. Furthermore, it is necessary to increase the concentration of boron-10 in the control rods and to introduce gadolinium in some fuel rods of the assembly, in order to satisfy the margin approach of out. Some reactor parameters are presented: the axial profile of power average of the reactor core, and the axial and radial distribution of the fraction of holes, for the one reload pattern in balance. For the design of reload pattern codes HELIOS and CM-PRESTO are used. In the second stage an optimization technique based on genetic algorithms is used, along with certain obtained heuristic rules of the engineer experience, with the intention of optimizing the reload pattern obtained in the first stage. The objective function looks for to maximize the length of the reactor cycle, at the same time as that they are satisfied their limits related to the power and the reactor reactivity. Certain heuristic rules are applied in order to satisfy the recommendations of the fuel management: the strategy of the control cells core, the strategy of reload pattern of low leakage, and the symmetry of a quarter of nucleus. For the evaluation of the parameters that take part in the objective function it simulates the reactor using code CM-PRESTO. Using the technique of optimization of the genetic algorithms an energy of the cycle of 10834.5 MW d/tHM is obtained, which represents 5.5% of extra energy with respect to the

  14. Fatigue damage of steam turbine shaft at asynchronous connections of turbine generator to electrical network

    Science.gov (United States)

    Bovsunovsky, A. P.

    2015-07-01

    The investigations of cracks growth in the fractured turbine rotors point out at theirs fatigue nature. The main reason of turbine shafts fatigue damage is theirs periodical startups which are typical for steam turbines. Each startup of a turbine is accompanied by the connection of turbine generator to electrical network. During the connection because of the phase shift between the vector of electromotive force of turbine generator and the vector of supply-line voltage the short-term but powerful reactive shaft torque arises. This torque causes torsional vibrations and fatigue damage of turbine shafts of different intensity. Based on the 3D finite element model of turbine shaft of the steam turbine K-200-130 and the mechanical properties of rotor steel there was estimated the fatigue damage of the shaft at its torsional vibrations arising as a result of connection of turbine generator to electric network.

  15. Effect of a Sulphate Transient on the EAC Crack Growth Behaviour of Low-Alloy RPV Steels under Simulated BWR Operating Conditions (CASTOC WP 3, PSI Test 1)

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H. P

    2002-03-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack (EAC) growth behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state boiling water reactor (BWR) power operation conditions by six European laboratories. Within WP 3 of this project, the Paul Scherrer Institut (PSI) investigates the effect of water chemistry transients on the EAC crack growth behaviour under periodical partial unloading (PPU) conditions. The present report is a summary of the first PSI test of WP 3 with a Na{sub 2}SO{sub 4} transient. In the first part of the report, the theoretical background on crack growth mechanisms, crack chemistry, mass transport and water chemistry transients as well as a brief literature survey on other water chemistry transient investigations is given. Furthermore, the experimental equipment and test procedure is presented, followed by a summary of the results of PSI test 1 of WP 3. Finally the results are discussed in detail and compared to literature data. In the first part of the experiment, an actively growing EAC crack was generated by PPU in oxygenated high-temperature, high-purity water (T = 288 {sup o}C, DO = 8 ppm, SO{sub 4}{sup 2-} < 0.6 ppb). Then a sulphate transient was applied. The duration ({approx} 300 h) and the amount of sulphate (SO{sub 4}{sup 2-} = 368 ppb) of the applied sulphate transient conservatively covered all sulphate transients, which might occur in BWR/normal water chemistry (NWC) practice. After the transient, outlet conductivity was lowered from ca. 1 {mu}S/cm to less than 0.15 {mu}S/cm within 2.6 h by a 'two-loop technique'. No accelerating effect of the sulphate transient on the EAC crack growth of both tested fracture mechanics specimens under highly oxidising BWR/NWC conditions was observed, making it impossible to deterrnine incubation or delay times. The EAC crack growth rates (CGR) before, during and after the

  16. Small Wind Turbine Installation Compatibility Demonstration Methodology

    Science.gov (United States)

    2013-08-01

    axis wind turbine (HAWT) and one 2.9-kW vertical-axis wind turbine (VAWT), we planned to measure radar, acoustic and seismic , turbulence, bird and...personnel also developed plans to measure radar, acoustic and seismic , turbulence, bird and bat, cold, and icing effects on the turbines and, hence...4 23 5 Seismic Acoustic Signature Background and Methodology Acoustic noise produced by large wind turbines has been studied for years, but there

  17. Simulating Collisions for Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  18. The Cross Flow Turbine Behavior towards the Turbine Rotation Quality, Efficiency, and Generated Power

    OpenAIRE

    Haurissa, Jusuf; Wahyudi, Slamet; Irawan,Yudy Surya; Soenoko, Rudy

    2012-01-01

    page number: 448-453; International audience; The focus of this research is the turbine flow behavior toward the turbine rotation quality, the turbine efficiency and the turbine power generated. The turbine rotation quality is really needed for the high quality electricity power generated. The method used in this research is the experimental method. The fluid flow behavior was observed by using a Casio 1000 handy camera and a Canon 550D camera. The data obtained from this observation is in a ...

  19. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  20. A novel floating offshore wind turbine concept

    DEFF Research Database (Denmark)

    Vita, Luca; Schmidt Paulsen, Uwe; Friis Pedersen, Troels

    2009-01-01

    This paper will present a novel concept of a floating offshore wind turbine. The new concept is intended for vertical-axis wind turbine technology. The main purpose is to increase simplicity and to reduce total costs of an installed offshore wind farm. The concept is intended for deep water...... and large size turbines....

  1. Performance of wind turbines during icing events

    Energy Technology Data Exchange (ETDEWEB)

    Gillenwater, D. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Mechanical Engineering; Masson, C. [Canada Research Chair on Nordic Environment Aerodynamics of Wind Turbines, Ottawa, ON (Canada)]|[Ecole de Technologie Superieure, Montreal, PQ (Canada); Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada). Anti-Icing Materials International Laboratory

    2007-07-01

    Wind turbines are increasingly being installed in cold climate sites where the cold climate can have a great impact on the operation and performance of the wind turbine. Issues of concern include turbine stoppage, mechanical failure, instrument failure, aerodynamic disruption, difficult access and safety concerns. The scope of this study was to calculate energy losses caused by ice accretions on a wind turbine and to analyze different icing prediction and icing detection tools. The purpose was to improve knowledge on wind turbine operation in cold climate and assist pertinent parties in wind farm siting and wind turbine operation. Another objective was to precisely calculate the financial losses caused by icing of wind turbines. The study was based on stall regulated wind turbines that have a nominal power of 750 kW. Data from Environment Canada included various meteorological measurements as well as visual observations. The reference mast's measurement data included various meteorological measurements as well as some wind turbine operational parameters. The wind turbine's operational data included all measurements saved by the wind turbine's acquisition system. The study revealed that stall controlled turbines are seriously affected by icing and that all measuring instruments should be selected with care. It was recommended that precise evaluation of losses due to icing should be made in order to avoid overestimating losses. The probability and severity of icing events on Quebec territory will be determined. figs.

  2. Innovative Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad

    2013-01-01

    The wind turbines can be classified as: i) Horizontal axis wind turbines (HAWT), and ii) Vertical axis wind turbines (VAWT). The HAWT is fully developed and the size is growing higher. Whereas, the VAWT is not developed because of the less efficiency and vibration issues of big structure. However...

  3. Modern low-pollutive industrial gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, A.

    1987-01-01

    As illustrated by aviation gas turbines, industrial gas-turbine engineering saw a rapid development towards light-weight compact units with enhanced efficiency. The Sulzer gas turbine type 10 is a most up-to-date machine which has not been derived simply from the aircraft engine but will also fully meet the requirements for stationary industrial operation.

  4. Meteorological Controls on Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca J.; Hansen, Kurt Schaldemose; Pryor, S.C.

    2013-01-01

    The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient...

  5. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  6. Heat Transfer in Gas Turbines

    Science.gov (United States)

    Garg, Vijay K.

    2001-01-01

    The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.

  7. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... to the event of failure in ultimate loading in flapwise bending in the normal operating condition of a site-specific turbine....

  8. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor; Caracterizacion de soldaduras de acero inoxidable AISI 304L similares a las de la envolvente del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J{sub IC}) to ambient temperature for the base metal of 528 KJ/m{sup 2}, which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  9. Simulation of the automatic depressurization system (Ads) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de despresurizacion automatica (ADS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, C.; Chavez M, C., E-mail: ces.raga@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The automatic depressurization system (Ads) of the boiling water reactor (BWR) like part of the emergency cooling systems is designed to liberate the vapor pressure of the reactor vessel, as well as the main vapor lines. At the present time in the Engineering Faculty, UNAM personnel works in the simulation of the Laguna Verde reactor based on the nuclear code RELAP/SCADAP and in the incorporation to the same of the emergency cooling systems. The simulation of the emergency cooling systems began with the inclusion of two hydrodynamic volumes, one source and another drain, and the incorporation of the initiation logic for each emergency system. In this work is defined and designed a simplified model of Ads of the reactor, considering a detail level based on the main elements that compose it. As tool to implement the proposed model, the RELAP code was used. The simulated main functions of Ads are centered in the quick depressurization of the reactor by means of the vapor discharge through the relief/safety valves to the suppression pool, and, in the event of break of the main vapor line, the reduction of the vessel pressure operates for that the cooling systems of the core to low pressure (Lpcs and Lpci) they can begin their operation. (Author)

  10. Comparison of results for burning with BWR reactors CASMO and SCALE 6.2 (TRITON / NEWT); Comparacion de los resultados de quemado para reactores BWR con CASMO y SCALE 6.2 (TRITON/NEWT)

    Energy Technology Data Exchange (ETDEWEB)

    Mesado, C.; Miro, R.; Barrachina, T.; Verdu, G.

    2014-07-01

    In this paper we compare the results from two codes burned, CASMO and SCALE 6.2 (TRITON). To do this, is simulated all segments corresponding to a boiling water reactor (BWR) using both codes. In addition, to account for different working points, simulations changing the instantaneous variables, these are repeated: void fractions (6 points), fuel temperature (6 points) and control rods (two points), with a total of 72 possible combinations of different instantaneous variables for each segment. After all simulations are completed for each segment, we can reorder the obtained cross sections, as SCALE CASMO both, to create a library of compositions nemtab format. This format is accepted by the neutronic code of nodal diffusion, PARCS v2.7. Finally compares the results obtained with PARCS and with the SIMULATE3 -SIMTAB methodology to level of full reactor. Also, we have made use of the KENO-VI and MCDANCOFF modules belonging to SCALE. The first is a Monte Carlo transport code with which you can validate the value of the multiplier, the second has been used to obtain values of Dancoff factor and increase the accuracy of model SCALE. (Author)

  11. Optimal estimate of the coolant flow in the assemblies of a BWR of natural circulation in real time; Estimacion optima del flujo de refrigerante en los ensambles de un BWR de circulacion natural en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, Facultad de Ingenieria, Division de Estudios de Posgrado, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: julfi_jg@yahoo.com.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2012-10-15

    The present work exposes the design and the implementation of an advanced controller that allows estimating the coolant flow in the fuel assemblies of a BWR reactor of natural circulation in real time. To be able to reduce the penalizations that are established in the calculations of the operation limits due to the magnitude of the uncertainties in the coolant flows of a natural circulation reactor, is the objective of this research. In this work the construction of the optimal controller that allows estimating the coolant flows in a fuel channels group of the reactor is shown, as well as the operation of this applied to a reduced order model that simulates the dynamics of a natural circulation reactor. The controller design required of an estimator of the valuation variables not directly of the plant and of the estimates use of the local distributions of the coolant flow. The controller construction of the estimator was based mathematically in the filter Kalman whose algorithm allows to be carried out an advanced control of the system. To prove the estimator operation was development a simplified model that reproduces the basic dynamics of the flowing coolant in the reactor, which works as observer of the system, this model is coupled by means of the estimator controller to a detail model of the plant. The results are presented by means of graphics of the interest variables and the estimate flow, and they are documented in the chart that is presented at the end of this article. (Author)

  12. Optimization of fuel cells for BWR using Path Re linking and flexible strategies of solution;Optimizacion de celdas de combustible para BWR empleando Path Relinking y estrategias flexibles de solucion

    Energy Technology Data Exchange (ETDEWEB)

    Castillo M, J. A.; Ortiz S, J. J.; Torres V, M.; Perusquia del Cueto, R., E-mail: alejandro.castillo@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-10-15

    In this work are presented the obtained preliminary results to design nuclear fuel cells for boiling water reactors (BWR) using new strategies. To carry out the cells design some of the used rules in the fuel administration were discarded and other were implemented. The above-mentioned with the idea of making a comparative analysis between the used rules and those implemented here, under the hypothesis that it can be possible to design nuclear fuel cells without using all the used rules and executing the security restrictions that are imposed in these cases. To evaluate the quality of the obtained cells it was taken into account the power pick factor and the infinite multiplication factor, in the same sense, to evaluate the proposed configurations and to obtain the mentioned parameters was used the CASMO-4 code. To optimize the design it is uses the combinatorial optimization technique named Path Re linking and the Dispersed Search as local search method. The preliminary results show that it is possible to implement new strategies for the cells design of nuclear fuel following new rules. (Author)

  13. Actinides record, power calculations and activity for present isotopes in the spent fuel of a BWR; Historial de actinidos y calculos de potencia y actividad para isotopos presentes en el combustible gastado de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez C, P.; Ramirez S, J. R.; Lucatero, M. A., E-mail: pastor.enriquez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The administration of spent fuel is one of the more important stages of the nuclear fuel cycle, and this has become a problem of supreme importance in countries that possess nuclear reactors. Due to this in this work, the study on the actinides record and present fission products to the discharge of the irradiated fuel in a light water reactor type BWR is shown, to quantify the power and activity that emit to the discharge and during the cooling time. The analysis was realized on a fuel assembly type 10 x 10 with an enrichment average of 3.69 wt % in U-235 and the assembly simulation assumes four cycles of operation of 18 months each one and presents an exposition of 47 G Wd/Tm to the discharge. The module OrigenArp of the Scale 6 code is the computation tool used for the assembly simulation and to obtain the results on the actinides record presents to the fuel discharge. The study covers the following points: a) Obtaining of the plutonium vector used in the fuel production of mixed oxides, and b) Power calculation and activity for present actinides to the discharge. The results presented in this work, correspond at the same time immediate of discharge (0 years) and to a cooling stage in the irradiated fuel pool (5 years). (Author)

  14. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  15. Turbulence in vertical axis wind turbine canopies

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-11-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the importance of vertical transport for large array configurations. Quadrant-hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT arrays. The results show a striking similarity between the flows in the VAWT arrays and the adjustment region of canopies. Namely, an increase in ejections and sweeps and decrease in inward and outward interactions occur inside the turbine array. Ejections are the strongest contributor, which is in agreement with the literature on evolving and sparse canopy flows. The influence of the turbine array size on the power output of the downstream turbines is examined by comparing a streamwise row of four single turbines with square arrays of nine turbine pairs. The results suggest that a new boundary layer forms on top of the larger turbine arrays as the flow adjusts to the new roughness length. This increases the turbulent energy transport over the whole planform area of the turbine array. By contrast, for the four single turbines, the vertical energy transport due to turbulent fluctuations is only increased in the near wake of the turbines. These findings add to the knowledge of energy transport in turbine arrays and therefore the optimization of the turbine spacing in wind farms.

  16. Appropriate technology for small turbines

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.; Walch, E.

    1981-11-01

    The investment costs of small-scale hydro plants are relatively high; of these the electro-mechanical equipment is generally a high proportion. One way of reducing these costs is to use information and experience gained in the manufacture of equipment for large plants, avoiding expensive testing and assessment. To exploit this experience, a standard program has been developed which can be applied quickly and easily for the design of small turbines. In this way the best choice of turbines and configurations can be determined rapidly for any site.

  17. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  18. Airfoil characteristics for wind turbines

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.

    1999-01-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum...... to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFDcomputations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived...

  19. Extreme Response for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    The characteristic load on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and type and settings of the control system. The characteristic load during operation is normally estimated by statistical extrapolation of a limited number...... of simulated 10min time series of the response according to the wind turbine standard IEC 61400-1. However, this method assumes that the individual 10min time series and the extracted peaks from the time series are independent. In the present paper is this assumption investigated based on field measurements...

  20. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  1. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  2. Coordinated Control of Cross-Flow Turbines

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2016-11-01

    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  3. Analyses of containment source term of BWR5 considering iodine chemistry suppression pool with THALES-2 code

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Jun; Moriyama, Kiyofumi [Japan Atomic Energy Agency, Ibaraki (Japan)

    2009-05-15

    After JCO criticality accident in 1999, recognized the importance of PSA application research for emergency planning and basic technical study supporting decision making in protective actions. In order to evaluate containment source term in the late phase SA, coupling of severe accident analysis code THALES-2 and kinetics of iodine chemistry code Kiche was done. And containment source term analyses were performed a typical accident sequence TQUV of BWR5/Mark-II. The lower the pH in the pool was, the more fraction of iodine were released to gas phase, as was in agreement with the known tendency. Total release fractions of all iodine species to gas phase at 40 hr were 0.1[-](pH=5), 0.01[-](pH=7), 4x10{sup -4}[-] (pH=9). I{sub 2} was dominant in released iodine to gas phase and most of released I{sub 2} was adsorbed to the wall. As the operation of the containment spray, the release of iodine tot the gas phase was enhanced due to the break of a steady state by the circulation in the containment. In future, JAEA will perform containment source term analyses for extensive accident sequences with consideration of iodine chemistry.

  4. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  5. Radiological consequence assessments of degraded core accident scenarios derived from a generic Level 2 PSA of a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Toshimitsu; Ishikawa, Jun; Tomita, Kenichi; Muramatsu, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-12-01

    The radiological consequence assessments have been made of postulated core damage accidents with source terms derived from a generic Level 2 PSA of a BWR carried out by the Japan Atomic Energy Research Institute (JAERI). The source terms used were for the five core damage accident sequences with the drywell and wetwell failure cases, the release control case by venting of the containment and the accident termination case by the containment spray. The radiological consequences have been assessed for individual dose, collective dose, individual risk of early health effects and individual risk of late health effects by a probabilistic accident consequence assessment code, OSCAAR developed in JAERI. Following conclusions were obtained for the assumed source terms. In case of the over pressure failures of the primary containment vessel, the early fatalities can be mitigated through the implementation of early countermeasures, and the late cancer fatalities remains small. For the release control and accident termination cases, the individual and collective doses to the public can be reduced without any countermeasures due to the release reduction of the volatile radionuclides such as iodine and cesium. (author)

  6. OECD/NEA burnup credit criticality benchmarks phase IIIA: Criticality calculations of BWR spent fuel assemblies in storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ando, Yoshihira [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2000-09-01

    The report describes the final results of Phase IIIA Benchmarks conducted by the Burnup Credit Criticality Calculation Working Group under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The benchmarks are intended to confirm the predictive capability of the current computer code and data library combinations for the neutron multiplication factor (k{sub eff}) of a layer of irradiated BWR fuel assembly array model. In total 22 benchmark problems are proposed for calculations of k{sub eff}. The effects of following parameters are investigated: cooling time, inclusion/exclusion of FP nuclides and axial burnup profile, and inclusion of axial profile of void fraction or constant void fractions during burnup. Axial profiles of fractional fission rates are further requested for five cases out of the 22 problems. Twenty-one sets of results are presented, contributed by 17 institutes from 9 countries. The relative dispersion of k{sub eff} values calculated by the participants from the mean value is almost within the band of {+-}1%{delta}k/k. The deviations from the averaged calculated fission rate profiles are found to be within {+-}5% for most cases. (author)

  7. Industrial Advanced Turbine Systems Program overview

    Energy Technology Data Exchange (ETDEWEB)

    Esbeck, D.W. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  8. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  9. Dynamic survey of wind turbine vibrations

    Science.gov (United States)

    Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi; Pan, Chieh-Chen; Huang, Chi-Luen; Cheng, Tao-Ming

    2016-04-01

    Six wind turbines were blown to the ground by the wind gust during the attack of Typhoon Soudelor in August 2015. Survey using unmanned aerial vehicle, UAV, found the collapsed wind turbines had been broken at the lower section of the supporting towers. The dynamic behavior of wind turbine systems is thus in need of attention. The vibration of rotor blades and supporting towers of two wind turbine systems have been measured remotely using IBIS, a microwave interferometer. However the frequency of the rotor blade can be analyzed only if the microwave measurements are taken as the wind turbine is parked and secured. Time-frequency analyses such as continuous wavelet transform and reassigned spectrograms are applied to the displacement signals obtained. A frequency of 0.44Hz exists in both turbines B and C at various operating conditions. Possible links between dynamic characteristics and structural integrity of wind turbine -tower systems is discussed.

  10. New guidelines for wind turbine gearboxes

    Energy Technology Data Exchange (ETDEWEB)

    McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States); Errichello, R. [GEARTECH, Townsend, MT (United States)

    1997-12-31

    The American Gear Manufacturers Association in cooperation with the American Wind Energy Association will soon be publishing AGMA/AWEA 921-A97 {open_quotes}Recommended Practices for Design and Specification of Gearboxes for Wind Turbine Generator Systems.{close_quotes} Much has been learned about the unique operation and loading of gearboxes in wind turbine applications since the burgeoning of the modern wind turbine industry in the early 1980`s. AGMA/AWEA 921-A97 documents this experience in a manner that provides valuable information to assist gear manufacturers and wind turbine designers, operators, and manufacturers in developing reliable wind turbine gearboxes. The document provides information on procurement specification development, wind turbine architecture, environmental considerations, and gearbox load determination, as well as the design, manufacturing, quality assurance, lubrication, operation and maintenance of wind turbine gearboxes. This paper presents the salient parts of the practices recommended in AGMA/AWEA 921-A97.

  11. Micro Gas Turbine – A Review

    Directory of Open Access Journals (Sweden)

    Tushar Shukla

    2013-10-01

    Full Text Available Turbomachines is a class of machines which comprise of turbines and compressors. These machines are widely used for power generation, aircraft propulsion and in a wide range of heavy and medium industries. When we scale down these large turbines, we get micro turbines, which are compact and miniaturized form of these large turbines. The process of scaling down a turbine is not as simple as it looks like, it is a very tedious job and researches are going on in this area. These micro gas turbines are usually found with a power generating capacity of 250kW. They use any gas like natural gas, biogas, etc. as its input. The advantages of a micro gas turbine are that it has high expansion ratio and less moving components. The drawbacks of these turbines are that it requires high angular velocity as well as advanced electronics which can convert electricity of high frequency which gets produced into useful frequency of 50/60 Hz. This turbine is a very viable solution for distributed power generation which can be used for stationary energy applications. Also, micro gas turbine has found great use as cogeneration systems. These micro gas turbines can produce power between less than a kilowatt to hundreds of watts, which can be used for various purposes like electricity generation or head creation. These turbines are cost-effective, eco-friendly and pollution free as they can work by burning any gas like natural gas, land fill gas, etc. The manuscript presented gives an outlook on the past, present and future of these micro gas turbines. This paper will discuss the advantages and its uses. It will also discuss the drawbacks and the limitations of these turbines. This manuscript will prove to be a reference to all the researchers who want work in this field

  12. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  13. Maintenance of Power Steam Turbine

    OpenAIRE

    Kapelovich, Boris; Khmelnik, Solomon; Kapelovich, David; Benenson, Evgeny

    2008-01-01

    The diagnostics system of the power steam turbine is offered. It can be executed also in the form of telediagnostic system. The system is presented on a site http://turbo.mic34.com/ System engineering can is ordered to authors.

  14. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  15. 11kW Stand Alone Wind Turbine Based on Proven Wind Turbine

    DEFF Research Database (Denmark)

    Bindner, Henrik; Wodstrup, Jens; Andersen, Jesper

    2004-01-01

    The paper will present the rationale behind the design of a stand-alone version of a existing 11kW wind turbine that has been installed at 100 sites mainly in Denmark. The wind turbine has been developed as a part of the Danish household wind turbine programme that included certification......, and a measurement programme. The positive operational experience with the turbine has motivated the development of a stand-alone version. The stand-alone version uses the standard version of the wind turbine combined with a back-to-back converter arrangement in order to decouple the wind turbine from the grid...

  16. Construction of an external electrode for determination of electrochemical corrosion potential in normal operational conditions of an BWR type reactor for hot cells; Construccion de un electrodo externo para determinacion del potencial de corrosion electroquimico en condiciones normales de operacion de un reactor tipo BWR para celdas calientes

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar T, J.A.; Rivera M, H.; Hernandez C, R. [Departamento de Sintesis y Caracterizacion de Materiales, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    The behavior of the corrosion processes at high temperature requires of external devices that being capable to resist a temperature of 288 Centigrade and a pressure of 80 Kg/cm{sup 2}, to give stable and reproducible results of some variable and resisting physically and chemically the radiation. The external electrode of Ag/AgCl fulfils all the requirements in the determination of the electrochemical corrosion potential under normal operational conditions of a BWR type reactor in hot cells. (Author)

  17. Implementation of a Newton-Krylov iterative method to address strong non-linear feedback effects in FORMOSA-B BWR core simulator

    Science.gov (United States)

    Kastanya, Doddy Febrian

    A Newton-BICGSTAB solver has been developed to reduce the CPU execution time of the FORMOSA-B boiling water reactor (BWR) core simulator. The new solver treats the strong non-linearities in the problem explicitly using the Newton's method, replacing the traditionally used nested iterative approach. Taking advantage of the higher convergence rate provided by the Newton's method, assuming that a good initial estimate of the unknowns is provided, and utilizing an efficient preconditioned BICGSTAB solver, we have developed a computationally efficient Newton-BICGSTAB solver to evaluate the three-dimensional, two-group neutron diffusion equations coupled with a two-phase flow model within a BWR core simulator. The robustness of the solver has been tested against numerous BWR core configurations and consistent results have been observed each time. The best exact Newton-BICGSTAB solver performance provides an overall speedup of 2.07 to the core simulator, with reference to the traditional approach, i.e. outer (fission-source)-inner (red/black line SOR). When solving the same problem using the traditional approach but with the BICGSTAB solver as the inner iteration solver [traditional (BICGSTAB)], we observed a speedup of 1.85. This means that the Newton-BICGSTAB solver provides an additional 12% increase in the overall speedup over the traditional (BICGSTAB) solver. However, one needs to note that, on average, the exact Newton-BICGSTAB solver provides an overall speedup of around 1.70; whereas, on average, the traditional (BICGSTAB) provides an overall speedup of around 1.60. An investigation on the feasibility of implementing an inexact Newton-BICGSTAB solver indicates that further reduction in the execution time can likely be obtained through this approach. This study shows that the inexact Newton-BICGSTAB solver can provide speedups of 1.73 to 2.10 with respect to the traditional solver.

  18. Interactive flow field around two Savonius turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shigetomi, Akinari; Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi [Laboratory for Flow Control, Division of Energy and Environmental System, Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628 (Japan)

    2011-02-15

    The use of a Savonius type of vertical axis wind turbine is expanding in urban environments as a result of its ability to withstand turbulence as well as its relatively quiet operation. In the past, single turbine performance has been investigated primarily for determining the optimum blade configuration. In contrast, combining multiple Savonius turbines in the horizontal plane produces extra power in particular configurations. This results from the interaction between the two flow fields around individual turbines. To understand quantitatively the interaction mechanism, we measured the flow field around two Savonius turbines in close configurations using particle image velocimetry. The phase-averaged flow fields with respect to the rotation angle of the turbines revealed two types of power-improvement interactions. One comes from the Magnus effect that bends the main stream behind the turbine to provide additional rotation of the downstream turbine. The other is obtained from the periodic coupling of local flow between the two turbines, which is associated with vortex shedding and cyclic pressure fluctuations. Use of this knowledge will assist the design of packaged installations of multiple Savonius turbines. (author)

  19. Stability analysis of a recycling circuit of a BWR type reactor. Theoretical study; Analisis de estabilidad de un circuito de recirculacion de un reactor del tipo BWR. Estudio teorico

    Energy Technology Data Exchange (ETDEWEB)

    Salinas H, J.G.; Espinosa P, G. [Universidad Autonoma Metropolitana-Iztapalapa, 09000 Mexico D.F. (Mexico); Gonzalez M, V.M. [Comision Nacional de Seguridad Nuclear y Salvaguardias, 04000 Mexico D.F. (Mexico)

    2000-07-01

    The Technology, Regulation and Services Management of the National Commission of Nuclear Safety and Safeguards financed and in coordinate form with the I.P.H. Department of the Metropolitan Autonomous-Iztapalapa University developed the present project with the purpose of studying the effect of the recycling system on the linear stability of a BWR reactor whose reference central is the Laguna Verde power station. The present project forms part of a work series focused to the linear stability of the nuclear reactor of the Unit 1 at Laguna Verde power station. The components of the recycling system considered for the study of stability are the recycling external circuit (recycling pumps, valves) and the internal circuit (downcomer, jet pumps, lower full, driers, separators). The mathematical model is obtained applying mass balances and movement quantity in each one of the mentioned circuits. With respect to the nucleus model two regions are considered, the first one is made of a flow in one phase and the second one of a flow in two phases. For modelling the biphasic region it is considered homogenous flow. Generally it is studied the system behavior in the frequency domain starting from the transfer function applied to four operational states which correspond to the lower stability zone in the map power-flow of the Unit 1 of Laguna Verde power station. The Nyquist diagrams corresponding to each state as well as their characteristic frequency were determined. The results show that exists a very clear dependence of the power-flow relation on the stability of the system. It was found that the boiling length is an important parameter for the linear stability of the system. The obtained results show that the characteristic frequencies in unstability zones are similar to the reported data of the Unit 1 of the Laguna Verde power station in the event of power oscillations carried out in January 1995. (Author)

  20. Simplified system for the pressure control of a Nucleo electric central of the BWR type; Sistema simplificado para el control de presion de una central Nucleoelectrica del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez J, J. [FI-UNAM, DEPFI Campus Morelos, Jiutepec, Morelos (Mexico)

    2003-07-01

    One of the main preoccupations of the electric power generator stations is the appropriate operation of the same ones. The operators must be qualified to respond in an adequate way and to be able to take to these power stations to an optimal, sure and stable operation condition under any circumstance. The Laboratory of Analysis in Nuclear Reactors Engineering (LAIRN) of the Engineering Faculty of UNAM (Fl) in collaboration with the International Atomic Energy Agency (IAEA), it develops an interactive classroom simulator in which simulations of the phenomena which take place in a nuclear power station are executed. The classroom simulator bases its operation on specialized nuclear codes feeding interactive graphic unfolding with those that it is possible to make a monitoring, supervision and control of the behavior of the power station under any operation regime, either in normal operation, transitory events or postulated accident sequence. The development of this classroom simulator includes a modular and re configurable structure. Due to it is indispensable to count with a higher inter activity with the system it is included the simulation of the control system of the plant and inside the same, one of those more important it is the reactor pressure control system. The present work describes the conceptual design and the used methodology for the development and implementation in the simulator of a simplified model of the pressure control system for a BWR generic central. The reach of the development will allow to accomplish the necessary tests to demonstrate that this has an adequate performance according to the carried out simplifications. (Author)

  1. Study of environmental noise in a BWR plant like the Nuclear Power Plant Laguna Verde; Estudio de ruido ambiental en una planta BWR como la Central Nuclear Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F.; Cruz G, M.; Amador C, C., E-mail: francisco.tijerina@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Carretera Cardel-Nautla Km. 42.5, Alto Lucero, Veracruz (Mexico)

    2013-10-15

    In all industry type the health costs generated by the noise are high, because the noise can cause nuisance and to harm the capacity to work when causing tension and to perturb the concentration, and in more severe cases to reach to lose the sense of the hearing in the long term. The noise levels in the industry have been designated for the different types of use like residential, commercial, and industrial and silence areas. The noise can cause accidents when obstructing the communications and alarm signs. For this reason the noise should be controlled and mitigated, at a low level as reasonably is possible, taking into account that the noise is an acoustic contamination. The present study determines a bases line of the environmental noise levels in a nuclear power plant BWR-5 as Laguna Verde, (like reference) to be able to determine and to give pursuit to the possible solutions to eliminate or to limit the noise level in the different job areas. The noise levels were registered with a meter of integrative noise level (sonometer) and areas of noise exposure levels mapping the general areas in the buildings were established, being the registered maximum level of 96.94 dba in the building of the Reactor-elevation 0.65 m under the operation conditions of Extended Power Up rate (EPU) of 120% PTN. Knowing that the exposition to noises and the noise dose in the job place can influence in the health and in the safety of the workers, are extensive topics that they should be analyzed for separate as they are: to) the effects in the health of the exposure to the noise, b) how measuring the noise, c) the methods and technologies to combat and to control the noise in the industry by part of engineering area and d) the function of the industrial safety bodies as delegates of the health and safety in the task against the noise in the job. (author)

  2. Description and assessment of RAMONA-3B Mod. 0 Cycle 4: a computer code with three-dimensional neutron kinetics for BWR system transients

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W; Cheng, H S; Diamond, D J; Khatib-Rahbar, M

    1984-01-01

    This report documents the physical models and the numerical methods employed in the BWR systems code RAMONA-3B. The RAMONA-3B code simulates three-dimensional neutron kinetics and multichannel core hydraulics of nonhomogeneous, nonequilibrium two-phase flows. RAMONA-3B is programmed to calculate the steady and transient conditions in the main steam supply system for normal and abnormal operational transients, including the performances of plant control and protection systems. Presented are code capabilities and limitations, models and solution techniques, the results of development code assessment and suggestions for improving the code in the future.

  3. Influence of the wet-well nodalization of a BWR3 Mark I on the containment thermal-hydraulic response during an SBO accident

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, Luis E., E-mail: luisen.herranz@ciemat.es; Fontanet, Joan; Fernández, Elena; López, Claudia

    2015-12-15

    Highlights: • Analysis of SBO sequences in BWR3 Mark I containments. • Multiple-mesh nodalization allows pool stratification set up. • Mass, momentum and energy exchanges between nodes play a key role. • Validation/verification against a scaled-down database required to credit meshing schemes. - Abstract: In the field of severe accidents simulation one of the most challenging issues is nodalization. This paper explores the effect of the wet well modeling on significant variables describing the sequence evolution. The code used for the study has been MELCOR 2.1 and the scenario chosen has been a prolonged SBO occurring in a BWR3 Mark I. The results indicate that some significant magnitudes show a moderate scatter depending on WW nodalization (i.e., core uncovery, RPV failure, hydrogen production), whereas the SP thermal state might display outstanding deviations, which sometimes affect significantly key variables like containment pressure. The difficulties and uncertainties around defining a suitable WW nodalization have been highlighted and the need to properly balance the entire plant meshing has been stressed. Even though a number of noding schemes has been explored, the results discussion underlines the importance of having a deep understanding of the potential phenomena governing the scenario and of mastering the code facilities to better model it. Some insights into WW nodalization in MELCOR 2.1 have been gained for the specific scenario (i.e., a prolonged SBO in a BWR3 Mark I) explored: a single node assumption might underestimate PCV pressurization; a loose coupling of water and gas exchanges in the WW nodalization would be preferred if the drift flux model is chosen for momentum exchange in the flow pathways between WW nodes; the potential of some axial thermal stratification in the pool should be taken into account when noding the WW; sensitivity analyses on physically supported WW nodalization schemes should be conducted and focused on key

  4. Final turbine and test facility design report Alden/NREC fish friendly turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Thomas C. [Alden Research Lab., Holden, MA (United States); Cain, Stuart A. [Alden Research Lab., Holden, MA (United States); Fetfatsidis, Paul [Alden Research Lab., Holden, MA (United States); Hecker, George E. [Alden Research Lab., Holden, MA (United States); Stacy, Philip S. [Alden Research Lab., Holden, MA (United States)

    2000-09-01

    The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.

  5. Effects of wake-turbine blade interactions on power production of wind turbines

    Science.gov (United States)

    Tadokoro, Maki; Yokoyama, Hiroshi; Iida, Akiyoshi

    2017-01-01

    In offshore wind farms, deterioration in power generation performance due to the mutual interference of flow around the wind turbines is a serious issue. To clarify the effects of wake-turbine blade interactions on the performance of wind farms, we conducted large-scale simulations of the flow around two full-scale wind turbines in a tandem-arrangement with two different spacings. The spacing between the two turbines was L/D = 1.0 and L/D = 2.0, with D being the rotor diameter. The predicted results show that vortices generated in the wake of the first turbine interfere with the blades of the second turbine and the interference becomes more intense for the case of L/D = 1.0. Thus, the power coefficient of the downstream turbine becomes lower by 80% for the case of L/D = 1.0 compared with the case of a single wind turbine.

  6. Optimal, reliability-based turbine placement in off-shore wind turbine parks

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    Offshore wind turbines for electricity production placed in wind farms are expected to be of one of the major future contributors for sustainable energy production. In this paper some of the problems associated with optimal planning and design of wind turbine parks are addressed. The number of wind...... turbines in a park is usually restricted to be placed within a fixed, limited geographical area. Behind a wind turbine a wake is formed where the mean wind speed decreases and the turbulence intensity increases. The distance between the turbines is among other things dependent on the recovery of wind...... energy behind the neighboring turbines and the increased wind load. Models for the mean wind speed and turbulence intensity in wind turbine parks are considered with emphasis on modeling the spatial correlation. Representative limit state equations for structural failure of wind turbine towers...

  7. Gas turbine Type 10 - a modern, environmentally-compatible industrial turbine

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, A.

    1987-01-01

    A rapid development to lighter, more compact units of higher efficiency has taken place in industrial gas turbine design, following the example set by aviation gas turbines. The Sulzer Type 10 gas turbine is an up-to-date machine, the design of which is not merely derived from that of jet engines, but also fully complies with the requirements of industrial service. The performance of this gas turbine is discussed.

  8. Brush Seals for Improved Steam Turbine Performance

    Science.gov (United States)

    Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter

    2006-01-01

    GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.

  9. On the Fatigue Analysis of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  10. Diffuser Augmented Horizontal Axis Tidal Current Turbines

    Directory of Open Access Journals (Sweden)

    Nasir Mehmood

    2012-09-01

    Full Text Available The renewal energy technologies are increasingly popular to ensure future energy sustenance and address environmental issues. The tides are enormous and consistent untapped resource of renewable energy. The growing interest in exploring tidal energy has compelling reasons such as security and diversity of supply, intermittent but predictable and limited social and environmental impacts. The tidal energy industry is undergoing an increasing shift towards diffuser augmented turbines. The reason is the higher power output of diffuser augmented turbines compared to conventional open turbines. The purpose of this study is to present a comprehensive review of diffuser augmented horizontal axis tidal current turbines. The components, relative advantages, limitations and design parameters of diffuser augmented horizontal axis tidal current turbines are presented in detail. CFD simulation of NACA 0016 airfoil is carried out to explore its potential for designing a diffuser. The core issues associated with diffuser augmented horizontal axis tidal current turbines are also discussed.

  11. Physical model tests for floating wind turbines

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Mikkelsen, Robert Flemming; Borg, Michael

    Floating offshore wind turbines are relevant at sites where the depth is too large for the installation of a bottom fixed substructure. While 3200 bottom fixed offshore turbines has been installed in Europe (EWEA 2016), only a handful of floating wind turbines exist worldwide and it is still...... an open question which floater concept is the most economically feasible. The design of the floaters for the floating turbines relies heavily on numerical modelling. While several coupled models exist, data sets for their validation are scarce. Validation, however, is important since the turbine behaviour...... is complex due to the combined actions of aero- and hydrodynamic loads, mooring loads and blade pitch control. The present talk outlines two recent test campaigns with a floating wind turbine in waves and wind. Two floater were tested, a compact TLP floater designed at DTU (Bredmose et al 2015, Pegalajar...

  12. Last experiences on ID BWR shroud inspection and the new developments to examine the below core plate areas

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.; Willke, A.; Yague, L. [TECNATOM SA, Madrid (Spain)

    2001-07-01

    In recent years, the owners of BWR type nuclear power plants have had to address new inspection requirements relating to the core shroud inside the reactor vessel, the aim of which is to contain the fuel assemblies and provide support for the structures located in the upper part of the reactor. The shroud consists of a cylinder measuring some 40-50 mm in thickness, manufactured from various sections of AISI-304 stainless steel and INCONEL, joined by vertical and circumferential welds. The appearance of unstable cracks in these welds would directly affect the structural integrity of the component and the safety of the plant. As regards access to the core shroud and to the surface to be examined, two alternatives might be considered: inspection from outside the component, moving along the so-called annulus between the reactor vessel wall and the component (OD inspection), or from the interior (ID inspection). With a view to addressing this problem, Tecnatom has in recent years launched several projects, grouped under the generic name TEIDE, in order to develop scanners and NDT techniques achieving the maximum inspection coverage of this component. The decision was taken to perform ID inspections, mainly because this type of scanners were not available at that time, and which provide the 4 following advantages. 1) Maximum inspected weld length. This avoids interference with the jet pumps and the systems present in the annulus and affecting OD inspections. Besides, the repairs performed on in-service core shrouds in all cases imply the addition of new fixed elements on their outer surface, since the fuel assembly space must be left free. 2) Reduction of inspection times and of unforeseen events: maintenance of planning schedules, reduction of personnel doses, reduced critical path time. 3) High inspection accuracy and repeatability. 4) Simplification of equipment positioning work (similar to the installation of fuel assemblies). As regards inspection techniques, the

  13. Experimental data report for test TS-2; Reactivity initiated accident test in NSRR with pre-irradiated BWR fuel rod

    OpenAIRE

    1993-01-01

    本報告書は、1990年2月に実施した照射済BWR燃料を用いた2回目の反応度事故模擬実験であるTS-2について実験データをまとめたものである。TS-2実験に使用した試験燃料は初期濃縮度2.79%であり、敦賀1号炉で照射されたBWR7times7型燃料棒を短尺化したものである。短尺化に供した実用燃料のバンドル平均燃焼度は21.3Gwd/tであった。NSRRにおける照射実験は、大気圧、室温の静止水冷却条件下で行い、発熱量は72pm5cal/g・fuel(ピークエンタルピ66pm5cal/g・fuel)を与えた。その結果燃料破損は生じなかった。実験条件、実験方法、パルス照射時の燃料の過渡挙動及び照射後検査の結果をまとめて示した。...

  14. Experimental data report for test TS-1; Reactivity initiated accident test in NSRR with pre-irradiated BWR fuel rod

    OpenAIRE

    1992-01-01

    本報告書は、1989年10月に実施した照射済BWR燃料を用いた最初の反応度事故模擬実験であるTS-1について、実験データをまとめたものである。TS-1実験に使用した試験燃料は、初期濃縮度2.79%であり、敦賀1号炉で照射されたBWR7times7型燃料棒を短尺化したものである。短尺化に供した実用燃料のバンドル平均燃焼度は21.3GWd/tであった。NSRRにおける照射実験は、新たに開発した専用の2重カプセルを用い、大気圧・室温の静止水冷却条件下で行い、発熱量61cal/g・fuel(ピークエンタルピ55cal/g・fuel)を与えた。その結果、燃料破損は生じなかった。実験条件、実験方法、燃料燃焼度の測定結果、パルス照射時の燃料の過渡挙動及び照射後検査の結果をまとめて示した。...

  15. Validation of the CASMO-4 code against SIMS-measured spatial gadolinium distributions inside a BWR pin

    Energy Technology Data Exchange (ETDEWEB)

    Holzgrewe, F.; Gavillet, D.; Restani, R.; Zimmermann, M.A

    2000-07-01

    The purpose of the present study was to establish a database, useful for the assessment of the predictive capabilities of assembly burnup codes with respect to the depletion of the burnable absorber gadolinium (Gd). An SVEA-96 fuel assembly containing one unique Gd rod, with an initial Gd{sub 2}O{sub 3}-content of 9 wt%, was irradiated for one cycle in a Swiss Boiling Water Reactor (BWR), and then transported to the PSI hotcells for post-irradiation examination. Relative radial and azimuthal Gd distributions were obtained from Secondary Ion Mass Spectrometry (SIMS) at three axial positions. Two perpendicular line scans were performed at each position in order to capture the expected asymmetry in the Gd depletion. Since such high-spatial-resolution experimental data for individual fuel pins are quite rare, they form a valuable basis for the further validation of the calculational methods in reactor physics codes. The goal of this study was to contribute to the validation of the micro-region depletion model of CASMO-4 with respect to its standard application of generating two-group cross sections for the 3-D core simulator SIMULATE-3. The only notable difference to the standard application is a more detailed noding scheme for the Gd pin, required to obtain an improved resolution of the calculated distributions. The comparison of measurements with calculational results was found to be quite insensitive to the axial position, and the agreement was found to be very good for all isotopes investigated. The two important neutron-absorbing isotopes {sup 155} Gd and {sup 157} Gd, in particular, show excellent agreement. In conclusion, the CASMO-4 micro-region depletion model has been demonstrated to accurately predict the evolution of the radial distribution of the burnable absorber gadolinium. (authors)

  16. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  17. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  18. Small Wind Research Turbine: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  19. Experimental study on a simplified crossflow turbine

    Directory of Open Access Journals (Sweden)

    Chiyembekezo S. Kaunda, Cuthbert Z. Kimambo, Torbjorn K. Nielsen

    2014-01-01

    Full Text Available The main aim of the study is to enhance the design of a Crossflow turbine, as an appropriate technology for small-scale power generation. This study evaluates the performance of a simplified Crossflow turbine at conditions other than the ‘best efficiency point’. It also explores the ‘reaction’ behavior of the Crossflow turbine as well as characterizes the torque transfer in the two stages of the turbine. The experiments were conducted on a physical simplified Crossflow turbine model using the test facilities in the Waterpower Laboratory at the Norwegian University of Science and Technology. The results show that the maximum turbine efficiency is 79%, achieved at a head of 5m and reduced speed of 13.4; making it a low speed turbine. This turbine efficiency compares well with some reported efficiency values. The result also show that the turbine is efficient when it operates with a degree of reaction and this is achieved at large valve openings; validating observations that the Crossflow turbine is not a pure impulse turbine. Performance evaluation outside the best efficiency point shows that the efficiency decreases with increase in head above the best efficiency head. The turbine efficiency is not sensitive to flow variations: except at a head of 3m, at all tested heads, 25% of the flow at best efficiency point still generates efficiency of above 50%. Torque characterization shows that the second stage plays a significant role in torque transfer, especially when at large valve openings. Therefore, design efforts must also look at how the flow inside the runner interior space can be controlled so that the jet enters the second stage with optimum flow angles. The use of strain gauge to characterize the torque produced using momentum principle as employed in this study presents an additional opportunity to analyze the trends in the torque transfer.

  20. Power turbine bypass for improved compression braking

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, R.M.; Lutz, T.P.; Stang, J.

    1992-06-09

    This patent describes a turbocompound engine having a power turbine bypass control. It comprises an internal combustion engine having a crankshaft, an intake manifold and an exhaust manifold; turbocharger means connected with the intake and exhaust manifolds for converting exhaust gas energy into mechanical energy for boosting intake air pressure; power turbine means for producing mechanical energy from energy remaining in the exhaust gases exiting the first turbine.

  1. Combustion modeling in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H. [Brigham Young Univ., Provo, UT (United States)] [and others

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  2. Multivariable Control for a Variable Area Turbine Engine

    Science.gov (United States)

    1977-08-01

    high turbine gas flow total temperature after energy loss to seals and dis.s. TT45hi - low turbine gas flow total temperature after energy loss to...vanes and blades. TT451o - low turbine gas flow total temperature after energy loss to seals and discs. TT5 - low turbine gas flow exit total temperature...Proposed advanced gas turbine engine cycles will have many variable geometry components including fan and compressorvane angles, high and low turbine flow

  3. Wind Turbine Manufacturing Process Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  4. Wind turbine sound power measurements.

    Science.gov (United States)

    Keith, Stephen E; Feder, Katya; Voicescu, Sonia A; Soukhovtsev, Victor; Denning, Allison; Tsang, Jason; Broner, Norm; Richarz, Werner; van den Berg, Frits

    2016-03-01

    This paper provides experimental validation of the sound power level data obtained from manufacturers for the ten wind turbine models examined in Health Canada's Community Noise and Health Study (CNHS). Within measurement uncertainty, the wind turbine sound power levels measured using IEC 61400-11 [(2002). (International Electrotechnical Commission, Geneva)] were consistent with the sound power level data provided by manufacturers. Based on measurements, the sound power level data were also extended to 16 Hz for calculation of C-weighted levels. The C-weighted levels were 11.5 dB higher than the A-weighted levels (standard deviation 1.7 dB). The simple relationship between A- and C- weighted levels suggests that there is unlikely to be any statistically significant difference between analysis based on either C- or A-weighted data.

  5. Turbine Blade Cooling System Optimization

    OpenAIRE

    GIRARDEAU, Julian; PAILHES, Jérôme; SEBASTIAN, Patrick; PARDO, Frédéric; Nadeau, Jean-Pierre

    2013-01-01

    The authors wish to thank turbine designers from TURBOMECA SAFRAN Group.; International audience; Designing high performance cooling systems suitable for preserving the service lifetime of nozzle guide vanes of turboshaft engines leads to significant aerodynamic losses. These losses jeopardize the performance of the whole engine. In the same time, a low efficiency cooling system may affect the costs of maintenance repair and overhaul of the engine as component life decreases. Consequently, de...

  6. Secondary middle turbinate: case report

    Energy Technology Data Exchange (ETDEWEB)

    Aburjeli, Bruna de Oliveira Melim; Avila, Ana Flavia Assis de; Diniz, Renata Lopes Furletti Caldeira; Motta, Emilia Guerra Pinto Coelho; Ribeiro, Marcelo Almeida; Moreira, Wanderval, E-mail: bruninha86@hotmail.com [Radiology and Imaging Diagnosis, Hospital Mater Dei, Belo Horizonte, MG (Brazil)

    2012-11-15

    Secondary middle turbinate is an anatomical variant rarely observed in the nasal cavity, firstly described by Khanobthamchai et al. as a bone structure originating from the lateral nasal wall and covered by soft tissue. In most cases reported in the literature, this variant is bilateral, occurring without associated complications. In the present report, the authors describe the case of patient of their institution with such anatomical variation. (author)

  7. Gas Turbine Engine Behavioral Modeling

    OpenAIRE

    Meyer, Richard T; DeCarlo, Raymond A.; Pekarek, Steve; Doktorcik, Chris

    2014-01-01

    This paper develops and validates a power flow behavioral model of a gas tur- bine engine with a gas generator and free power turbine. “Simple” mathematical expressions to describe the engine’s power flow are derived from an understand- ing of basic thermodynamic and mechanical interactions taking place within the engine. The engine behavioral model presented is suitable for developing a supervisory level controller of an electrical power system that contains the en- gine connected to a gener...

  8. Built Environment Wind Turbine Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsyth, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sinclair, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oteri, F. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy’s National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  9. Development of New Micro Hydropower Turbine

    OpenAIRE

    Dousith, Phommachanh; Kurokawa, Junichi; Matsui, Jun; Choi, Young-Do

    2005-01-01

    There is a huge of available hydropower potential in the water supply system (WSS) that has been abandoned.Each time when we use a water faucet, the power of 10 to 80 watts is dissipated.In fact, this dissipated energy can be converted to useful energy by hydraulic turbine. Presently, there is not suitable turbine to use in WSS. Therefore, the new type turbine is needed to explore. In this study, Positive Displacement Turbine (PDT) is proposed. The main objective of this study is to develop n...

  10. Optimal Structural Reliability of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2005-01-01

    The main failure modes of modern large wind turbines are fatigue failure of wings, hub, shaft and main tower, local buckling of main tower, and failure of the foundation. This paper considers reliability-based optimal design of wind turbines. Compared to onshore wind turbines and building...... can be lower than for onshore wind turbines and other civil engineering structures and can be assessed by reliability-based cost-optimization. Specifically this paper considers the main tower and foundation. Both fatigue and ultimate strength failure modes are included. Different formulations...

  11. AGT 100 automotive gas turbine system development

    Science.gov (United States)

    Helms, H. E. G.

    1982-01-01

    General Motors is developing an automotive gas turbine system that can be an alternate powerplant for future automobiles. Work sponsored by DOE and administered by NASA Lewis Research Center is emphasizing small component aerodynamics and high-temperature structural ceramics. Reliability requirements of the AGT 100 turbine system include chemical and structural ceramic component stability in the gas turbine environment. The power train system, its configuration and schedule are presented, and its performance tested. The aerodynamic component development is reviewed with discussions on the compressor, turbine, regenerator, interturbine duct and scroll, and combustor. Ceramic component development is also reviewed, and production cost and required capital investment are taken into consideration.

  12. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  13. Aviation turbine fuels: An assessment of alternatives

    Science.gov (United States)

    1982-01-01

    The general outlook for aviation turbine fuels, the effect that broadening permissible aviation turbine fuel properties could have on the overall availability of such fuels, the fuel properties most likely to be affected by use of lower grade petroleum crudes, and the research and technology required to ensure that aviation turbine fuels and engines can function satisfactorily with fuels having a range of fuel properties differing from those of current specification fuel are assessed. Views of industry representatives on alternative aviation turbine fuels are presented.

  14. Advanced gas turbine systems program

    Energy Technology Data Exchange (ETDEWEB)

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  15. Orthogonal Bases used for Feed Forward Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2011-01-01

    In optimizing wind turbines it can be of a large help to use information of wind speeds at upwind turbine for the control of downwind turbines, it is, however, problematic to use these measurements directly since they are highly influenced by turbulence behind the wind turbine rotor plane. In this......In optimizing wind turbines it can be of a large help to use information of wind speeds at upwind turbine for the control of downwind turbines, it is, however, problematic to use these measurements directly since they are highly influenced by turbulence behind the wind turbine rotor plane...

  16. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    Science.gov (United States)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  17. Strain-induced corrosion cracking in ferritic components of BWR primary circuits; Risskorrosion in druckfuehrenden ferritischen Komponenten des Primaerkreislaufes von Siedewasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S.; Ineichen, U.; Tschanz, U.; Gerodetti, B

    2003-04-01

    The present final report of the RIKORR project is a summary of a literature survey and of the experimental work performed by PSI on the environmentally-assisted cracking (EAC) and dynamic strain ageing (DSA) susceptibility of low-alloy steels (LAS) in high-temperature (HT) water. Within this project, the EAC crack growth behaviour of different low-alloy RPV steels, weld filler and weld heat-affected zone materials has been investigated under simulated transient and steady-state BWR/NWC power operation conditions. The strain-induced corrosion cracking (SICC) / low-frequency corrosion fatigue (CF) and stress corrosion cracking (SCC) crack growth behaviour of different low-alloy RPV steels under simulated transient and stationary BWR/NWC conditions was characterized by slow rising load / low-frequency corrosion fatigue and constant load / periodical partial unloading / ripple load tests with pre-cracked fracture mechanics specimens in oxygenated HT water at temperatures of either 288, 250, 200 or 150 {sup o}C. Modern high-temperature water loops, on-line crack growth monitoring and fractographic analysis by scanning electron microscopy (SEM) were used to quantify the cracking response. (author)

  18. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.

  19. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders

    1999-07-01

    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  20. Fuel design with low peak of local power for BWR reactors with increased nominal power; Diseno de un combustible con bajo pico de potencia local para reactores BWR con potencia nominal aumentada

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia C, R.; Montes, J.L.; Hernandez, J.L.; Ortiz, J.J.; Castillo, A. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mrpc@nuclear.inin.mx

    2006-07-01

    The Federal Commission of Electricity recently announcement the beginning of the works related with the increase of the power to 120% of the original nominal one in the Boiling Water Reactors (BWR) of the Laguna Verde Central (CLV): In the National Institute of Nuclear Research (ININ) are carried out studies of the impact on the design of the recharge of derived fuel of this increase. One of the main effects of the power increase type that it is promoting, is the increment of the flow of generated vapor, what takes, to a bigger fraction of vacuum in the core presenting increased values of the maximum fraction to the limit, so much of the ratio of lineal heat generation (XFLPD) as of the ratio of critic power (MFLCPR). In the made studies, it is found that these fractions rise lineally with the increase of the nominal power. Considering that the reactors of the CLV at the moment operate to 105% of the original nominal power, it would imply an increment of the order of 13.35% in the XFLPD and in the MFLCPR operating to a nominal power of 120% of the original one. This would propitiate bigger problems to design appropriately the fuel cycle and the necessity, almost unavoidable, of to resort to a fuel assembly type more advanced for the recharges of the cores. As option, in the ININ the feasibility of continuing using the same type of it fuel assembles that one has come using recently in the CLV, the type GE12 is analyzed. To achieve it was outlined to diminish the peak factor of local power (LPPF) of the power cells that compose the fuel recharge in 13.35%. It was started of a fuel design previously used in the recharge of the unit 1 cycle 12 and it was re-design to use it in the recharge design of the cycle 13 of the unit 1, considering an increase to 120% of the original power and the same requirements of cycle extension. For the re-design of the fuel assembly cell it was used the PreDiCeldas computer program developed in the ININ. It was able to diminish the LPPF

  1. Cause-Effect relationship of the Laguna Verde BWR power instability by empirical mode decomposition; Relacion efecto-causa de la inestabilidad de potencia del BWR de Laguna Verde por descomposicion modal empirica

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, J.; Ruiz, J.; Castillo, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    The signals coming from natural phenomena are in essence non lineal and not stationary. A recent development, well-known as Empirical Mode Decomposition (EMD) it presents a novel focus that allows to represent in adaptative form non stationary signals as a sum of components of half zero. These components denominated Intrinsic Mode Functions (IMF) they help to the analysis of the frequency composition of unidimensional signals. The use of the EMD followed by the Hilbert transform of the IMFs it allows to carry out an analysis in time-frequency of the non lineal and not stationary data. This technique is known as the Hilbert Huang Transform (HHT). In this work a power instability event occurred in January 24, 1995 in the unit I of the nuclear power station of Laguna Verde (Mexico), corresponding to a BWR/5 is analyzed. When a Nuclear Plant suffers a power instability event, it is required obligatorily to explain to the Regulator Organism the effects and the causes of the event. The effects are described simply; not in vain there is a registration of signals in the Process Computer of where the required information is extracted. But the causes are not always immediate and easy for to identify. The power instability can happen during the start, when the refrigeration flow is relatively low in front to the power. By reason of that the reactivity coefficient by holes is negative, the power oscillates with a very defined frequency, generally of the order of 0.5 Hz. If the oscillations increase progressively of amplitude, we are in an instability event. It is interesting to include in the report the instant in that the began instability and the actions of the operator before and after the same one. As the actions are registered, the investigation is focused toward the instant of the beginning to be able to identify them. In this work the power signal in five empiric ways of Hilbert-Huang and a residual breaks down. The instability is only reflected in the way of smaller

  2. Neutron flux calculation and fluence in the encircling of the core and vessel of a reactor BWR; Calculo de flujo neutronico y fluencia en la envolvente del nucleo y la vasija de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.

    2011-07-01

    One of the main objectives related to the safety of any nuclear power plant, including the nuclear power plant of Laguna Verde is to ensure the structural integrity of reactor pressure vessel. To identify and quantify the damage caused by neutron irradiation in the vessel of any nuclear reactor, it is necessary to know both the neutron flux and the neutron fluence that the vessel has been receiving during its operation lifetime, and that the damage observed by mechanical testing are products of microstructural effects induced by neutron irradiation; therefore, it is important the study and prediction of the neutron flux in order to have a better understanding of the damage that these materials are receiving. The calculation here described uses the DORT code, which solves the neutron transport equation in discrete ordinates in two dimensions (x-y, r-{theta} and r-z), according to a regulatory guide, it should make an approximation of the neutron flux in three dimensions by the so called synthesis method. It is called in that way because it achieves a representation of 3 Dimensional neutron flux combining or summarizing the fluxes calculated by DORT r-{theta}, r-z and r. This work presents the application of synthesis method, according to Regulatory Guide 1190, to determine the 3 Dimensional fluxes in internal BWR reactor using three different spatial meshes. The results of the neutron flux and fluence, using three different meshes in the directions r, {theta} and z were compared with results reported in the literature obtaining a difference not larger than 9.61%, neutron flux reached its maximum, 1.58 E + 12 n/cm{sup 2}s, at a height H 4 (239.07 cm) and angle 32.236{sup o} in the core shroud and 4.00 E + 09 n/cm{sup 2}s at a height H 4 and angle 35.27{sup o} in the inner wall of the reactor vessel, positions that are consistent to within {+-}10% over the ones reported in the literature. (Author)

  3. Decay profiles of {beta} and {gamma} for a radionuclide inventory in equilibrium cycle of a BWR type reactor; Perfiles de decaimiento de radiacion {beta} y {gamma} para un inventario de radionuclidos en ciclo de equilibrio de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Salaices, M.; Sandoval, S.; Ovando, R. [Instituto de Investigaciones Electricas. Gerencia de Energia Nuclear, Av. Reforma 113 Col. Palmira. 62490 Cuernavaca, Morelos (Mexico)]. e-mail: sal@iie.org.mx

    2007-07-01

    Presently work the {beta} and {gamma} radiation decay profiles for a radionuclides inventory in equilibrium cycle of a BWR type reactor is presented. The profiles are presented in terms of decay in the activity of the total inventory as well as of the chemical groups that conform the inventory. In the obtaining of the radionuclides inventory in equilibrium cycle the ORIGEN2 code, version 1 was used, which simulates fuel burnup cycles and it calculates the evolution of the isotopic composition as a result of the burnt one, irradiation and decay of the nuclear fuel. It can be observed starting from the results that the decrease in the activity for the initial inventory and the different chemical groups that conform it is approximately proportional to the base 10 logarithm of the time for the first 24 hours of having concluded the burnt one. It can also be observed that the chemical groups that contribute in more proportion to the total activity of the inventory are the lanthanides-actinides and the transition metals, with 39% and 28%, respectively. The groups of alkaline earth metals, halogens, metalloids, noble gases and alkaline metals, contribute with percentages that go from the 8 to 5%. The groups that less they contribute to the total activity of the inventory they are the non metals and semi-metals with smaller proportions that 1%. The chemical groups that more contribute to the energy of {beta} and {gamma} radiation its are the transition metals and the lanthanides-actinides with a change in the order of importance at the end of the 24 hours period. The case of the halogens is of relevance for the case of the {gamma} radiation energy due that occupying the very near third site to the dimensions of the two previous groups. Additionally, the decay in the activity for the total inventory and the groups that conform it can be simulated by means of order 6 polynomials or smaller than describe its behavior appropriately. The results presented in this work, coupled

  4. Performance of the primary containment of a BWR during a severe accident whit the code RELAP/SCDAPSIM; Comportamiento del contenedor primario de un reactor BWR durante un accidente severo con el codigo RELAP/SCDAPSIM

    Energy Technology Data Exchange (ETDEWEB)

    Castillo G, F.

    2015-07-01

    In this thesis work, it was developed a model of the vacuum breaker valves and down comers for a BWR Mark II primary containment for the code RELAP/SCDAPSIM Mod. 3.4. This code was used to simulate a Station Blackout (Sbo) that evolves to a severe accident scenario. To accomplish this task, the vacuum breaker valves and down comers were included in a simplified model of the primary containment that includes both wet well and dry well, which was coupled with a model of the Nuclear Steam Supply System (NSSS), in order to study the behavior of the primary containment during the evolution of the accident scenario. In the analysis of the results of the simulation, the behavior of the wet well and dry well during the event was particularly monitored, by analyzing the evolution of temperature and pressure profiles in such volumes, this to determine the impact of the inclusion of the breaker vacuum valves and down comers. The results show that the effect of this extension of the model is that more conservative results are obtained, i.e., higher pressures are reached in both wet well and dry well than when it is used a containment model that does not include neither the vacuum valves nor the down comers. The most relevant results obtained show that the Rcic alone is able to keep the core fully covered, but even in such a case, it evaporates about 15% of the initial inventory of liquid water in the Pressure Suppression Pool (Psp). When the Rcic operation is lost, 20% more of the liquid water inventory in the Psp is further reduced within four to twelve hours (approximately), time at which the simulation crashed. Besides, there is a significant increase of pressure in the containment. As the accident evolves, the pressure in the containment continues increasing, but there is still considerable margin to reach the design pressure of the containment. At the end of the simulation, the results show a gauge pressure value of 224,550 Pa in the Psp and 187,482 Pa in the wet well

  5. A partially static turbine - first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Grassmann, H.; Bet, F.; Cabras, G.; Ceschia, M.; Cobai, D.; DelPapa, C. [Universitadi Udine (Italy). Dpto. di Fisica

    2003-09-01

    Recently it has been shown in a fluidodynamic simulation, that a wing-profiled structure of rather small size placed in the vicinity of a wind turbine augments the power of the wind turbine. In this paper we present the first experimental results from a prototype. (author)

  6. Tjæreborg Wind Turbine (Esbjerg)

    DEFF Research Database (Denmark)

    Øye, Stig

    1991-01-01

    This paper presents the first measured timeseries for the Tjæreborg (Tjaereborg) Wind Turbine during operation with stepwise pitch angle changes.......This paper presents the first measured timeseries for the Tjæreborg (Tjaereborg) Wind Turbine during operation with stepwise pitch angle changes....

  7. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  8. Recent Development in Turbine Blade Film Cooling

    Directory of Open Access Journals (Sweden)

    Je-Chin Han

    2001-01-01

    Full Text Available Gas turbines are extensively used for aircraft propulsion, land-based power generation, and industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature (RIT. The current RIT level in advanced gas turbines is far above the .melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. Gas turbine blades are cooled internally and externally. This paper focuses on external blade cooling or so-called film cooling. In film cooling, relatively cool air is injected from the inside of the blade to the outside surface which forms a protective layer between the blade surface and hot gas streams. Performance of film cooling primarily depends on the coolant to mainstream pressure ratio, temperature ratio, and film hole location and geometry under representative engine flow conditions. In the past number of years there has been considerable progress in turbine film cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling.

  9. Dynamic Phase Compensation of wind turbines

    DEFF Research Database (Denmark)

    Soerensen, P.; Skaarup, J.; Iov, Florin

    2004-01-01

    This paper describes a dynamic phase compensation unit for a wind turbine with directly connected induction generators. The compensation unit is based on thyristor switched capacitors, where conventional wind turbine compensations use mechanical contactors to switch the capacitors. The unit modul...

  10. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  11. Smart Wind Turbine: Analysis and Autonomous Flap

    NARCIS (Netherlands)

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure, t

  12. Probabilistic Meteorological Characterization for Turbine Loads

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Larsen, Gunner Chr.; Dimitrov, Nikolay Krasimirov;

    2014-01-01

    Beyond the existing, limited IEC prescription to describe fatigue loads on wind turbines, we look towards probabilistic characterization of the loads via analogous characterization of the atmospheric flow, particularly for today's "taller" turbines with rotors well above the atmospheric surface....... These are used as input to loads calculation, and with a statistical loads output description, they allow for improved design and loads calculations....

  13. Grid support capabilities of wind turbines

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2013-01-01

    turbines, such as fault ride-through and reactive power supply during voltage sags. To date different wind turbine concepts exist on the market comprising different control features in order to provide ancillary services to the power system. In the first place the present chapter emphasizes the most...

  14. Parametric study of composite wind turbine blades

    DEFF Research Database (Denmark)

    Kim, Taeseong; Branner, Kim; Hansen, Anders Melchior

    2011-01-01

    In this paper an anisotropic beam element for a composite wind turbine blades is developed. Eigenvalue analysis with the new beam element is conducted in order to understand its responses associated with the wind turbine performances. From the results of natural frequencies and mode shapes...

  15. Reliability-Based Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2004-01-01

    Reliability-based optimization of the main tower and monopile foundation of an offshore wind turbine is considered. Different formulations are considered of the objective function including benefits and building and failure costs of the wind turbine. Also different reconstruction policies in case...

  16. Land-based turbine casting initiative

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, B.A.; Spicer, R.A. [Howmet Corp., Whitehall, MI (United States)

    1995-10-01

    The Advanced Turbine Systems (ATS) program has set goals which include a large-scale utility turbine efficiency that exceeds 60 percent (LHV) on natural gas and an industrial turbine system heat rate improvement of 15 percent. To meet these goals, technological advances developed for aircraft gas turbine engines need to be applied to land based gas turbines. These technological advances include: directionally solidified and single crystal castings, alloys tailored to exploit these microstructures, complex internal cooling schemes, and coatings. Equiaxed and directionally solidified castings are employed in current land based power generation equipment. These castings do not possess the ability to meet the efficiency targets as outlined above. The production use of premium single crystal components with complex internal cooling schemes in the latest generation of alloys is necessary to meet the ATS goals. However, at present, the use of single crystal components with complex internal cooling schemes is restricted to industrial sized or aeroderivative engines, and prototype utility sized components.

  17. Small power wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2012-03-01

    Full Text Available This presentation focuses on the calculation for small vertical axis wind turbines (VAWT for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system. This turbine is useful for moderate wind speeds (3 - 6 m/s. A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a linear static analysis in the structure, the commercial finite element analysis code ANSYS is used because of its flexibility for handling information in files written in a more or less free format.

  18. Prototype bucket foundation for wind turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers...... and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental...... estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models...

  19. Experimental result of BWR post-CHF tests. Critical heat flux and post-CHF heat transfer coefficient. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwaki, Chikako [Toshiba Corp., Tokyo (Japan)

    2002-02-01

    Authors performed post-CHF experiments under wider pressure ranges of 2 MPa - 18 MPa, wider mass flux ranges of 33 kg/m{sup 2}s - 1651 kg/m{sup 2}s and wider superheat of heaters up to 500 K in comparison to experimental ranges at previous post-CHF experiments. Data on boiling transition, critical heat flux and post-CHF heat transfer coefficient were obtained. Used test section was 4x4-rod bundle with heaters, which diameter and length were the same as those of BWR nuclear fuels. As the result of the experiments, it was found that the boiling transition occurred just below several grid spacers, and that the fronts of the boiling transition region proceeded lower with increase of heated power. Heat transfer was due to nucleate boiling above grid spacers, while it was due to film boiling below grid spacers. Consequently, critical heat flux is affected on the distance from the grid spacers. Critical heat flux above the grid spacers was about 15% higher than that below the grid spacers, by comparing them under the same local condition. Heat transfer by steam turbulent flow was dominant to post-CHF heat transfer, when superheat of heaters was sufficiently high. Then, post-CHF heat transfer coefficient was predicted with heat transfer correlations for single-phase flow. On the other hand, when superhead of heaters was not sufficiently high, post-CHF heat transfer coefficient was higher than the prediction with heat transfer correlations for single-phase flow. Mass flux effect on post-CHF heat transfer coefficient was described by standardization of post-CHF heat transfer coefficient with the prediction for single-phase flow. However, pressure effect, superheat effect and effect of position were not described. Authors clarified that those effects could be described with functions of heater temperature and position. Post-CHF heat transfer coefficient was lowest just blow the grid spacers, and it increased with the lower positions. It increased by about 30% in one span of

  20. Implementation of a methodology to perform the uncertainty and sensitivity analysis of the control rod drop in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M. del C.

    2015-07-01

    A methodology to perform uncertainty and sensitivity analysis for the cross sections used in a Trace/PARCS coupled model for a control rod drop transient of a BWR-5 reactor was implemented with the neutronics code PARCS. A model of the nuclear reactor detailing all assemblies located in the core was developed. However, the thermohydraulic model designed in Trace was a simple model, where one channel representing all the types of assemblies located in the core, it was located inside a simple vessel model and boundary conditions were established. The thermohydraulic model was coupled with the neutronics model, first for the steady state and then a Control Rod Drop (CRD) transient was performed, in order to carry out the uncertainty and sensitivity analysis. To perform the analysis of the cross sections used in the Trace/PARCS coupled model during the transient, Probability Density Functions (PDFs) were generated for the 22 parameters cross sections selected from the neutronics parameters that PARCS requires, thus obtaining 100 different cases for the Trace/PARCS coupled model, each with a database of different cross sections. All these cases were executed with the coupled model, therefore obtaining 100 different outputs for the CRD transient with special emphasis on 4 responses per output: 1) The reactivity, 2) the percentage of rated power, 3) the average fuel temperature and 4) the average coolant density. For each response during the transient an uncertainty analysis was performed in which the corresponding uncertainty bands were generated. With this analysis it is possible to observe the results ranges of the responses chose by varying the uncertainty parameters selected. This is very useful and important for maintaining the safety in the nuclear power plants, also to verify if the uncertainty band is within of safety margins. The sensitivity analysis complements the uncertainty analysis identifying the parameter or parameters with the most influence on the

  1. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J.V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  2. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J.V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  3. Turbine Fuel Alternatives (Near Term)

    Science.gov (United States)

    1989-10-01

    There was some evidence that the use of the alcohol blends affected the combustion properties of the fuel. A temperature survey was conducted with a T-34C...Jet-A. Also, the corrected fuel flow is lower when using an alcohol blend than when operating on Jet-A. These two factors indicate the combustion ...VERSUS CORRECTED TURBINE OUTLET TEMPERATURE A-7 200, -T ’go-I 190 170- ETA oix 15X ETANOL ! ¶,0-1 1 20- S 110j 1. 001 9 0 I 7 0 10 zo 460 500 540 580

  4. Through an Annular Turbine Nozzle

    Directory of Open Access Journals (Sweden)

    Rainer Kurz

    1995-01-01

    is located in the gas turbine. The experiments were performed using total pressure probes and wall static pressure taps. The pitch variation modifies the flow field both upstream and downstream of the nozzle, although the experiments show that the effect is localized to the immediate neighborhood of the involved blades. The effects on the wakes and on the inviscid flow are discussed separately. The mean velocities show a strong sensitivity to the changes of the pitch, which is due to a potential flow effect rather than a viscous effect.

  5. Wind-turbine-performance assessment

    Science.gov (United States)

    Vachon, W. A.

    1982-06-01

    An updated summary of recent test data and experiences is reported from both federally and privately funded large wind turbine (WT) development and test programs, and from key WT programs in Europe. Progress and experiences on both the cluster of three MOD-2 2.5-MW WT's, the MOD-1 2-MW WT, and other WT installations are described. An examination of recent test experiences and plans from approximately five privately funded large WT programs in the United States indicates that, during machine checkout and startup, technical problems are identified, which require and startup, a number of technical problems are identified, which will require design changes and create program delays.

  6. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  7. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  8. Steam Turbine Materials and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.H.; Hsu, D.H.

    2008-07-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

  9. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    Horizontal axis wind turbines utilize a yaw system to keep the rotor plane of the wind turbine perpendicular to the main wind direction. If the wind direction changes, the wind turbine follows the direction change by yawing. If the wind turbine does not yaw, there will be a reduction in produced...... of nine concepts for hydraulic yaw systems and shown that the loading of the turbine structure may be damped if the yaw system is allowed to deflect under loading. An extensions of the open source wind turbine code FAST of a state of the art wind turbine including the yaw degree of freedom and friction...

  10. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  11. Study of instabilities in phase by using the tool {sup D}ynamics{sup :} analysis of the evolution space temporary of the waves of density in channels of reactors BWR; Estudio de las Inestabilidades en Fase Mediante la Herramienta Dinamics: analisis de la Evolucion Espacio Temporal de las Ondas de Densidad en Canales de Reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J. L.; Escriva, R.; Merino, R.; Melara, J.

    2013-07-01

    This paper presents the basics of Dynamics V2 to code It allows calculations of stability for oscillations in phase in BWR reactors in the time domain. The equations of the model are exposed and is the integration of the equations. The model can be used in a large number of nodes thrust for the calculations to an acceptable computational cost, it has simplified dynamics of recirculation loop and the code has been incorporated the Oscillation in phase boundary conditions. The code incorporates the equations of boiling sub-cooled which allows to make more realistic calculations as well as subroutines to calculate the subroutines-based properties of the MATPRO and ASME.

  12. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  13. Turbine Stages with Heat Transfer

    Directory of Open Access Journals (Sweden)

    E. Y. K. Ng

    1998-01-01

    Full Text Available A better understanding of the flow inside the multi-stage turbomachines will be very useful to both the designer and operator. The numerical calculation for single blade row has been well established with the time marching computation of the Navier-Stokes equations. But there will exist much more difficulties for the multi-blade rows due to the rotor-stator interaction. The major problems are related to the unsteady flow which will inevitably exist in the blade passages due to the different rotating speed and possible the different in blade number. A method is presented for simulating various turbine blade rows in single-stage environment. A solver has been developed for studying the complex flow analysis of ‘proposed high pressure turbine’ (HPT using quasi-3-D Reynolds-averaged Navier-Stokes (Q3D RNS equations. The code achieves good quality solutions quickly even with relatively coarse mesh sizes. The work is first validated both with UTRC's and Zeschky and Gallus' subsonic turbine test cases covering inlet boundary conditions and Reynolds-averaged values. A H-type grid is adopted as it is easy to generate and can readily extend to 3D application. When rows are closely spaced, there can be a strong interaction which will impact the aerodynamic, thermal and structural performance of the blade.

  14. GAS TURBINE ENGINES CONSUMING BIOGAS

    Directory of Open Access Journals (Sweden)

    Е. Ясиніцький

    2011-04-01

    Full Text Available A problem of implementation of biofuel for power plants of big capacity was considered in thisarticle. Up to date in the world practice a wide implementation of biogas plants of low and medialcapacity are integrated. It is explained by the big amount of enterprises in which relatively smallvolumes of organic sediment excrete in the process of its activity. An emphasis of article is on thatenterprises, which have big volumes of sediments for utilizing of which module system of medialcapacity biogas plants are non-effective. The possibility of using biogas and biomethane as a fuelfor gas turbine engine is described. The basic problems of this technology and ways of its solutionsare indicated. Approximate profitability of biogas due to example of compressor station locatednearby poultry factory was determined also. Such factors as process characteristics of engine withcapacity of 5 MW, approximate commercial price for natural gas and equipment costs due toofficial sources of “Zorg Ukraine” company was taken into consideration. The necessity forproviding researches on influence of biogas on the process characteristics of gas turbine engine andits reliability, constructing modern domestic purification system for biogas was shown.

  15. Design And Analysis Of Savonius Wind Turbine Blades

    OpenAIRE

    2015-01-01

    There are two kinds of wind turbines according to the axis of rotation to the ground, horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). VAWTs include both a drag type configuration like Savonius wind turbine and a lift-type configuration like Darrieus wind turbine. Savonius wind rotor has many advantages such as low starting speeds and no need for external torque for its starting. Moreover it is cheaper in construction and has low maintenance. It is inde...

  16. Protection of large wind turbine blades against lightning

    OpenAIRE

    Montañá Puig, Juan; Rachidi-Haeri, Farhad; Rubinstein, Marcos; Bermúdez, José Luis; Solà de Las Fuentes, Gloria; Hermoso Alameda, Blas

    2008-01-01

    Lightning protection of modern wind turbines presents a number of new challenges due to the geometrical, electrical and mechanical particularities of the turbines. The risk assessment requires the estimation of the number of expected strikes. In the case of modern turbines, most of the expected lightning flashes will be upward. In addition, due to the rotation of the blades, modern wind turbines may trigger their own lightning. Moreover, since wind turbines are becoming tall struc...

  17. Increasing turbine vendor competition in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Magee, J.T. [Emerging Energy Research, Cambridge, MA (United States)

    2008-07-01

    An overview of the wind turbine market in Canada was presented. Canada is now experiencing increased turbine vendor competition. Trends in wind turbine OEM market shares in Canada have increased from 10 per cent in 2000 to over 70 per cent in 2007. Several major companies in Canada have signed large-scale orders for delivery in 2010. It is expected that future wind turbine demands in all areas of Canada will increase. However, projections for Canadian wind growth demonstrate the difficulties provinces are now facing in trying to attract manufacturing investment away from the United States. Growth in wind turbine investment is in the process of creating a more robust North American wind turbine generator chain. However, the majority of new facilities are located in the United States. It is not known if Quebec's wind turbine generators will be viable outside of fulfilling Hydro-Quebec's tendering process. Canada's wind industry must consider equipment transport costs as well as a shortage of operating and maintenance service infrastructure. It was concluded that growth in the United States is expected to have a positive impact on Canadian wind energy customers. tabs., figs.

  18. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  19. Sandwich materials for wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Thybo Thomsen, O. [Aalborg Univ., Dept. of Mechanical Engineering, Aalborg (Denmark)

    2006-07-01

    Wind turbine blades are being manufactured using polymer matrix composite materials (PMC), in a combination of monolithic (single skin) and sandwich composites. Present day designs are mainly based on glass fibre reinforced composites (GFRP), but for very large blades carbon fibre reinforced composites (CFRP) are being used increasingly, in addition to GFRP by several manufacturers to reduce the weight. The size of wind turbines have increased significantly over the last 25 years, and this trend is expected to continue in the future. Thus, it is anticipated that wind turbines with a rated power output in the range of 8-10 MW and a rotor diameter about 170-180 m will be developed and installed within the next 10-15 years. The paper presents an overview of current day design principles and materials technology applied for wind turbine blades, and it highlights the limitations and important design issues to be addressed for up-scaling of wind turbine blades from the current maximum length in excess of 61 m to blade lengths in the vicinity of 90 m as envisaged for future very large wind turbines. In particular, the paper discusses the potential advantages and challenges of applying sandwich type construction to a larger extent than is currently being practiced for the load carrying parts of wind turbine blades. (au)

  20. Design tool for wind turbine control algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hooft, E.L.; Van Engelen, T.G.; Schaak, P.; Wiggelinkhuizen, E.J. [ECN Wind Energy, Petten (Netherlands)

    2004-11-01

    Advanced wind turbine control algorithms have become more important over the last years in order to deal with high requirements on reliability, cost of energy and extreme operating (offshore) conditions. An open source modular 'Design tool for wind turbine control algorithms' within the Matlab environment enables possibilities for wind turbine designers to develop industrial control algorithms and to utilize the benefits of more advanced control solutions. The design tool offers a proven design procedure, which takes the different design stages of a wind turbine into account. It supports initial design and evaluation of control algorithms, linking to aero-elastic codes and implementation in the turbine controller. In addition, the tool assists the designer to operate the design procedure, to avoid design failures and ordering of all the design data, models and versions. Currently, the incorporated design and evaluation models are focussed on design of classic 'rotor speed feedback control' for a variable speed and active pitch turbine and have been verified in practice. More advanced control design modules are within reach as a result of current developments on frequency domain analysis and synthesis of (linearised) turbine models.

  1. Computational Tools to Assess Turbine Biological Performance

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Serkowski, John A.; Rakowski, Cynthia L.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2014-07-24

    Public Utility District No. 2 of Grant County (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now more than 50 years old. Plans are underway to refit these aging turbines with new runners. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when upgrading the turbines. In this paper, a method for turbine biological performance assessment (BioPA) is demonstrated. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We present an application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  2. Cogeneration turbine unit with a new T-295/335-23.5 steam turbine

    Science.gov (United States)

    Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Stepanov, M. Yu.; Shekhter, M. V.; Bilan, V. N.; Polyaeva, E. N.

    2016-11-01

    The design, schematics, and arrangement of a T-295/335-23.5 turbine and the basic features of a steam-turbine unit (STU) intended for replacement of STUs with a T-250/300-23.5 turbine with the expired service life and installed in large cities, such as Moscow, St. Petersburg, Kiev, Minsk, and Kharkov, for heat and power generation are considered. The basic solutions for an automatic electrohydraulic control and protection system using high-pressure (HP) technology are described. As the turbine operates in a power unit together with a supercritical boiler and the design turbine service life of 250000 hours must be attained, turbine component construction materials complying with these requirements are listed.

  3. Integrated analysis of wind turbines - The impact of power systems on wind turbine design

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio

    conditions that stem from disturbances in the power system. An integrated simulation environment, wind turbine models, and power system models are developed in order to take an integral perspective that considers the most important aeroelastic, structural, electrical, and control dynamics. Applications...... system frequency control studies of variable-speed wind turbines with the integrated simulation environment, show that is possible to make a sensible estimation of the contribution of a wind farm to power system frequency control, while studying the impact on wind turbine structural loads. Finally......Megawatt-size wind turbines nowadays operate in very complex environmental conditions, and increasingly demanding power system requirements. Pursuing a cost-effective and reliable wind turbine design is a multidisciplinary task. However nowadays, wind turbine design and research areas...

  4. Behavior of bats at wind turbines.

    Science.gov (United States)

    Cryan, Paul M; Gorresen, P Marcos; Hein, Cris D; Schirmacher, Michael R; Diehl, Robert H; Huso, Manuela M; Hayman, David T S; Fricker, Paul D; Bonaccorso, Frank J; Johnson, Douglas H; Heist, Kevin; Dalton, David C

    2014-10-21

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

  5. Behavior of bats at wind turbines

    Science.gov (United States)

    Cryan, Paul M.; Gorresen, P. Marcos; Hine, Cris D.; Schirmacher, Michael; Diehl, Robert H.; Huso, Manuela M.; Hayman, David T.S.; Fricker, Paul D.; Bonaccorso, Frank J.; Johnson, Douglas H.; Heist, Kevin W.; Dalton, David C.

    2014-01-01

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

  6. Load prediction of stall regulated wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)

    1996-12-01

    Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs

  7. Rotating transformers in wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Hylander, J. [Chalmers Univ. of Technology, Goeteborg (Sweden); Engstroem, S. [Aegir konsult AB, Lidingoe (Sweden)

    1996-12-01

    The power consumption of rotating electrical components is often supplied via slip-rings in wind turbines. Slip-ring equipment is expensive and need maintenance and are prone to malfunction. If the slip-rings could be replaced with contact-less equipment better turbines could be designed. This paper presents the design, some FE calculations and some measurements on a prototype rotating transformer. The proposed transformer consists of a secondary rotating winding and a stationary exciting primary winding. The results indicate that this transformer could be used to replace slip-rings in wind turbines. 4 refs, 3 figs

  8. New type steam turbine for cogeneration

    Institute of Scientific and Technical Information of China (English)

    He Jianren; Yang Qiguo; Xu Damao

    2010-01-01

    A concept of energy saving & efficiency improving from cold source for cogeneration steam turbine was discussed herein.A new type"NCB"cogeneration steam turbine was proposed,which could considerably increase heat supply capacity,thermal efficiency and electric power.Taking 300 MW cogeneration steam turbine as an example,the results show that heat supply capacity reaches the maximum,i.e.increases by 30%,thermal efficiency is improved by12%,and electric power is enhanced by 15 MW during peak heat load.

  9. RBI Optimization of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    support structure is a steel structure consisting of a tower and a monopile, tripod or jacket type foundation. This paper considers aspects of inspection and maintenance planning of fatigue prone details in jacket and tripod type of wind turbine support structures. Based on risk-based inspection planning...... methods for oil & gas installations, a framework for optimal inspection and maintenance planning of offshore wind turbines is presented. Special aspects for offshore wind turbines considered are the fatigue loading characteristics where usually the wind loading are dominating the wave loading, wake...

  10. Wind Farm Turbine Type and Placement Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan

    2016-10-03

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  11. MEASUREMENTS ON THE VT 400 AIR TURBINE

    Directory of Open Access Journals (Sweden)

    Marek Klimko

    2016-04-01

    Full Text Available This paper presents a basic description of measurements on the experimental air turbine located in the laboratories of the Department of Power System Engineering (KKE. The research on this turbine focuses on the flow in a one-stage air turbine. It monitors the influence of the spatial formation of the blades on the efficiency of the stage. A new geometry with reaction blading is currently being tested. This work has been carried out in cooperation with an industrial partner, Doosan Skoda Power (DSPW.

  12. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element....... The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes....

  13. Analysis of counter-rotating wind turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zakkam, Vinod Arun Kumar; Sørensen, Jens Nørkær

    2007-01-01

    This paper presents a study on the performance of a wind turbine with two counter-rotating (CRWT) rotors. The characteristics of the two counter-rotating rotors are on a 3-bladed Nordtank 500 kW rotor. The analysis has been carried out by using an Actuator Line technique implemented in the Navier......-Stokes code EllipSys3D. The analysis shows that the Annual Energy Production can be increased to about 43.5 %, as compared to a wind turbine with a single rotor. In order to determine the optimal settings of the CRWT turbine, parameters such as distance between two rotors and rotational speed have been...

  14. Virtual inertia for variable speed wind turbines

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Rudolph, Andreas Jakob; Münster-Swendsen, Janus

    2013-01-01

    Inertia provision for frequency control is among the ancillary services that different national grid codes will likely require to be provided by future wind turbines. The aim of this paper is analysing how the inertia response support from a variable speed wind turbine (VSWT) to the primary...... frequency control of a power system can be enhanced. Unlike fixed speed wind turbines, VSWTs do not inherently contribute to system inertia, as they are decoupled from the power system through electronic converters. Emphasis in this paper is on how to emulate VSWTs inertia using control of the power...

  15. On System Identification of Wind Turbines

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Perisic, Nevena; Pedersen, B.J.

    Recently several methods have been proposed for the system identification of wind turbines which can be considered as a linear time-varying system due to the operating conditions. For the identification of linear wind turbine models, either black-box or grey-box identification can be used....... The operational model analysis (OMA) methodology can provide accurate estimates of the natural frequencies, damping ratios and mode shapes of the systems as long as the measurements have a low noise to signal ratio. However, in order to take information about the wind turbine into account a grey...

  16. Aircraft gas turbine materials and processes.

    Science.gov (United States)

    Kear, B H; Thompson, E R

    1980-05-23

    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.

  17. Estimating boiling water reactor decommissioning costs: A user`s manual for the BWR Cost Estimating Computer Program (CECP) software. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierschbach, M.C. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-06-01

    Nuclear power plant licensees are required to submit to the US Nuclear Regulatory Commission (NRC) for review their decommissioning cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning boiling water reactor (BWR) power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  18. Estimating boiling water reactor decommissioning costs. A user`s manual for the BWR Cost Estimating Computer Program (CECP) software: Draft report for comment

    Energy Technology Data Exchange (ETDEWEB)

    Bierschbach, M.C. [Pacific Northwest Lab., Richland, WA (United States)

    1994-12-01

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the U.S. Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning BWR power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  19. Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell Code Serpent v.1.1.7

    Directory of Open Access Journals (Sweden)

    Diego Ferraro

    2011-01-01

    Full Text Available Monte Carlo neutron transport codes are usually used to perform criticality calculations and to solve shielding problems due to their capability to model complex systems without major approximations. However, these codes demand high computational resources. The improvement in computer capabilities leads to several new applications of Monte Carlo neutron transport codes. An interesting one is to use this method to perform cell-level fuel assembly calculations in order to obtain few group constants to be used on core calculations. In the present work the VTT recently developed Serpent v.1.1.7 cell-oriented neutronic calculation code is used to perform cell calculations of a theoretical BWR lattice benchmark with burnable poisons, and the main results are compared to reported ones and with calculations performed with Condor v.2.61, the INVAP's neutronic collision probability cell code.

  20. Effects of hydrogen water chemistry on corrosion fatigue behavior of cold-worked 304L stainless steel in simulated BWR coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, M.F., E-mail: mfchiang@iner.gov.tw [Institute of Nuclear Energy Research, Division of Nuclear Fuels and Materials, Lungtan, Taoyuan 325, Taiwan (China); Young, M.C.; Huang, J.Y. [Institute of Nuclear Energy Research, Division of Nuclear Fuels and Materials, Lungtan, Taoyuan 325, Taiwan (China)

    2011-04-15

    Corrosion fatigue behavior of stainless steel 304L (SS304L) in a simulated BWR coolant with hydrogen injection was investigated. Hydrogen water chemistry slightly mitigated the corrosion fatigue degradation of the as-received SS304L specimens, but, on the contrary, it slightly increased the corrosion fatigue crack growth rates (CFCGRs) of the cold-worked specimens. All the CFCGR-tested specimens showed similar fracture features, except for the amounts of deposited corrosion debris. The results indicated that decreasing the oxygen concentration of water environment is not an effective measure to suppress the fatigue crack growth rate of cold-worked SS304L. The CFCGRs of the SS304L were determined by an interaction between corrosion, oxide-induced crack closure and cold work in corrosive environments. At a specific level of reduction, cold work could enhance the corrosion fatigue resistance of SS304 both in the air-saturated and HWC coolant environments.

  1. Effects of hydrogen water chemistry on corrosion fatigue behavior of cold-worked 304L stainless steel in simulated BWR coolant environments

    Science.gov (United States)

    Chiang, M. F.; Young, M. C.; Huang, J. Y.

    2011-04-01

    Corrosion fatigue behavior of stainless steel 304L (SS304L) in a simulated BWR coolant with hydrogen injection was investigated. Hydrogen water chemistry slightly mitigated the corrosion fatigue degradation of the as-received SS304L specimens, but, on the contrary, it slightly increased the corrosion fatigue crack growth rates (CFCGRs) of the cold-worked specimens. All the CFCGR-tested specimens showed similar fracture features, except for the amounts of deposited corrosion debris. The results indicated that decreasing the oxygen concentration of water environment is not an effective measure to suppress the fatigue crack growth rate of cold-worked SS304L. The CFCGRs of the SS304L were determined by an interaction between corrosion, oxide-induced crack closure and cold work in corrosive environments. At a specific level of reduction, cold work could enhance the corrosion fatigue resistance of SS304 both in the air-saturated and HWC coolant environments.

  2. Preliminary Assessment of the Possible BWR Core/Vessel Damage States for Fukushima Daiichi Station Blackout Scenarios Using RELAP/SCDAPSIM

    Directory of Open Access Journals (Sweden)

    C. M. Allison

    2012-01-01

    Full Text Available Immediately after the accident at Fukushima Daiichi, Innovative Systems Software and other members of the international SCDAP Development and Training Program started an assessment of the possible core/vessel damage states of the Fukushima Daiichi Units 1–3. The assessment included a brief review of relevant severe accident experiments and a series of detailed calculations using RELAP/SCDAPSIM. The calculations used a detailed RELAP/SCDAPSIM model of the Laguna Verde BWR vessel and related reactor cooling systems. The Laguna Verde models were provided by the Comision Nacional de Seguridad Nuclear y Salvaguardias, the Mexican nuclear regulatory authority. The initial assessment was originally presented to the International Atomic Energy Agency on March 21 to support their emergency response team and later to our Japanese members to support their Fukushima Daiichi specific analysis and model development.

  3. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Capstone Turbine Corporation

    2007-12-31

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  4. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 5: Analysis of the reactivity coefficients and the stability of a BWR loaded with MOx fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    2000-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). For this purpose, the Core Management System (CMS) codes of Studsvik Scandpower are used. This package is constituted by CASMO-4/TABLES-3/SIMULATE-3. It has been shown in previous reports that these codes are able to accurately represent and model MOx bundles. This report is thus devoted to the study of BWR cores loaded (partially or totally) with MOx bundles. The plutonium quality used is the Pu type 2016 (mostly Pu-239, 56 %, and Pu-240, 26 %), but a variation of the plutonium isotopic vector was also investigated, in case of a partial MOx loading. One notices that the reactivity coefficients do not present significant changes in comparison with a full UOx loading. Nevertheless, two main problems arise: the shutdown margin at BOC is lower than 1 % and the stability to in-phase oscillations is slightly decreased. (The SIMULATE-3 version used for this study does not contain the latest MOx enhancements described in literature, since these code developments have not been provided to the department. Nevertheless, as the nominal average enrichment of the MOx bundles is 5.41 % (total amount of plutonium), which can still be considered as a relatively low enrichment, the accuracy of the CMS codes is acceptable without the use of the MOx improvements for this level of Pu enrichment.

  5. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  6. High efficiency turbine blade coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  7. Behavior to the fracture of an AISI 304 stainless steel sensitized in BWR reactor conditions (288 degrees Centigrade and 80 Kg/cm{sup 2}); Comportamiento a la fractura de un acero inoxidable AISI 304 sensibilizado en condiciones de reactor BWR (288 grados Centigrados y 80 Kg/cm{sup 2})

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Garcia R, R.; Aguilar T, A.; Gachuz M, M.; Arganis J, C.; Merino C, J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    It is a knew fact that ductility of a lot of structural alloys can be deteriorated by the environment effect which are exposed, and that their consequent embrittlement can put in doubt the safety of their functioning; such is the case of austenitic stainless steels used in internal components of the BWR type reactors which not only is subjected to the effect combined of the aggressive environment which surround it (pressure, temperature, corrosion potential, conductivity medium, local state of efforts, etc.), but also to the action of present neutron radiation, manifesting microstructural changes which are reflected in the augmentation of its susceptibility to the intergranular cracking, phenomena generally known as IASCC ''Irradiation Assisted Stress Corrosion Cracking''. Once appeared the cracking in the material, the useful life of a component is limited by the rapidity to growth of these cracking, making necessary evaluations which can to predict its behavior, therefore the present work shows the preliminary results for determining the behavior to the fracture of an AISI 304 stainless steel sensitized, in a dynamic recirculation circuit which allows to simulate the operation conditions of a BWR reactor (288 Centigrade and 80 kg/cm{sup 2}). (Author)

  8. Development and validation of advanced CFD models for detailed predictions of void distribution in a BWR bundle

    Science.gov (United States)

    Neykov, Boyan

    In recent years, a commonly adopted approach is to use Computational Fluid Dynamics (CFD) codes as computational tools for simulation of different aspects of the nuclear reactor thermal-hydraulic performance where high-resolution and high-fidelity modeling is needed. Within the framework of this PhD work, the CFD code STAR-CD [1] is used for investigations of two phase flow in air-water systems as well as boiling phenomena in simple pipe geometry and in a Boiling Water Reactor (BWR) fuel assembly. Based on the two-fluid Eulerian solver, improvements of the STAR-CD code in the treatment of the drag, lift and wall lubrication forces in a dispersed two phase flow at high vapor (gas) phase fractions are investigated and introduced. These improvements constitute a new two phase modeling framework for STAR-CD, which has been shown to be superior as compared to the default models in STAR-CD. The conservation equations are discretized using the finite-volume method and solved using a solution procedure is based on Pressure Implicit with Splitting of Operators (PISO) algorithm, adapted to the solution of the two-fluid model. The improvements in the drag force modeling include investigation and integration of models with dependence on both void fraction and bubble diameter. The set of the models incorporated into STAR-CD is selected based on an extensive literature review focused on two phase systems with high vapor fractions. The research related to the modeling of wall lubrication force is focused on the validation of the already existing model in STAR-CD. The major contribution of this research is the development and implementation of an improved correlation for the lift coefficient used in the lift force formula. While a variety of correlations for the lift coefficient can be found in the open literature, most of those were derived from experiments conducted at low vapor (gas) phase fractions and are not applicable to the flow conditions existing in the BWRs. Therefore

  9. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Gauld, Ian C [ORNL

    2011-10-01

    in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  10. Design Mining Interacting Wind Turbines.

    Science.gov (United States)

    Preen, Richard J; Bull, Larry

    2016-01-01

    An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.

  11. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    and uncertainties are quantified. Further, estimation of annual failure probability for structural components taking into account possible faults in electrical or mechanical systems is considered. For a representative structural failure mode, a probabilistic model is developed that incorporates grid loss failures...... components. Thus, models of reliability should be developed and applied in order to quantify the residual life of the components. Damage models based on physics of failure combined with stochastic models describing the uncertain parameters are imperative for development of cost-optimal decision tools...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  12. Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    2016-01-01

    In this section the research program framework for European PhD network MARE-WINT is presented, particularly the technology development work focussing on reliability/maintenance and the models describing multi-body fluid structure interaction for the Rotor Blade structure. In order to give a cont...... a context for the effort undertaken by the individual researchers this section gives a general background for Wind Turbine blades identifying the trends and issues of importance for these structures as well as concepts for “smarter” blades that address these issues.......In this section the research program framework for European PhD network MARE-WINT is presented, particularly the technology development work focussing on reliability/maintenance and the models describing multi-body fluid structure interaction for the Rotor Blade structure. In order to give...

  13. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  14. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    , new and more refined design methods must be developed. These methods can for instance be developed using probabilistic design where the uncertainties in all phases of the design life are taken into account. The main aim of the present thesis is to develop models for probabilistic design of wind......, the uncertainty is dependent on the method used for load extrapolation, the number of simulations and the distribution fitted to the extracted peaks. Another approach for estimating the uncertainty on the estimated load effects during operation is to use field measurements. A new method for load extrapolation......, which is based on average conditional exceedence rates, is applied to wind turbine response. The advantage of this method is that it can handle dependence in the response and use exceedence rates instead of extracted peaks which normally are more stable. The results show that the method estimates...

  15. Flameless Combustion for Gas Turbines

    Science.gov (United States)

    Gutmark, Ephraim; Li, Guoqiang; Overman, Nick; Cornwell, Michael; Stankovic, Dragan; Fuchs, Laszlo; Milosavljevic, Vladimir

    2006-11-01

    An experimental study of a novel flameless combustor for gas turbine engines is presented. Flameless combustion is characterized by distributed flame and even temperature distribution for high preheat air temperature and large amount of recirculating low oxygen exhaust gases. Extremely low emissions of NOx, CO, and UHC are reported. Measurements of the flame chemiluminescence, CO and NOx emissions, acoustic pressure, temperature and velocity fields as a function of the preheat temperature, inlet air mass flow rate, exhaust nozzle contraction ratio, and combustor chamber diameter are described. The data indicate that larger pressure drop promotes flameless combustion and low NOx emissions at the same flame temperature. High preheated temperature and flow rates also help in forming stable combustion and therefore are favorable for flameless combustion.

  16. Turbine airfoil to shround attachment

    Science.gov (United States)

    Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J

    2014-05-06

    A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.

  17. Mobile measurement system for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kildemoes Moeller, T.

    1997-06-01

    The aim of this project `Udviklingsafproevning af smaa moellevinger` has been to develop a mobile measurement system for wind turbines. The following report describes the measurement system. The project has been financed by the Danish Ministry of Energy. (au)

  18. Illustration of Modern Wind Turbine Ancillary Services

    DEFF Research Database (Denmark)

    Margaris, Ioannis D.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2010-01-01

    Increasing levels of wind power penetration in modern power systems has set intensively high standards with respect to wind turbine technology during the last years. Security issues have become rather critical and operation of wind farms as conventional power plants is becoming a necessity as wind...... turbines replace conventional units on the production side. This article includes a review of the basic control issues regarding the capability of the Doubly Fed Induction Generator (DFIG) wind turbine configuration to fulfill the basic technical requirements set by the system operators and contribute...... to power system security. An overview of ancillary services provided by wind turbine technology nowadays is provided, i.e., fault ride-through capability, reactive power supply and frequency-active power control....

  19. Wind turbines fundamentals, technologies, application, economics

    CERN Document Server

    Hau, Erich

    2013-01-01

    "Wind Turbines" addresses all those professionally involved in research, development, manufacture and operation of wind turbines. It provides a cross-disciplinary overview of modern wind turbine technology and an orientation in the associated technical, economic and environmental fields.  In its revised third edition, special emphasis has been given to the latest trends in wind turbine technology and design, such as gearless drive train concepts, as well as on new fields of application, in particular the offshore utilisation of wind energy. The author has gained experience over decades designing wind energy converters with a major industrial manufacturer and, more recently, in technical consulting and in the planning of large wind park installations, with special attention to economics.

  20. Illustration of Modern Wind Turbine Ancillary Services

    Directory of Open Access Journals (Sweden)

    Ioannis D. Margaris

    2010-06-01

    Full Text Available Increasing levels of wind power penetration in modern power systems has set intensively high standards with respect to wind turbine technology during the last years. Security issues have become rather critical and operation of wind farms as conventional power plants is becoming a necessity as wind turbines replace conventional units on the production side. This article includes a review of the basic control issues regarding the capability of the Doubly Fed Induction Generator (DFIG wind turbine configuration to fulfill the basic technical requirements set by the system operators and contribute to power system security. An overview of ancillary services provided by wind turbine technology nowadays is provided, i.e., fault ride-through capability, reactive power supply and frequency-active power control.

  1. Nonlinear Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian

    The continuing development of wind turbines aim at higher effect production and reducing the purchase and maintenance costs for the customers. This demands that the components in the wind turbine are optimized closer to the limit than previously. In order to determine the design loads it is neces......The continuing development of wind turbines aim at higher effect production and reducing the purchase and maintenance costs for the customers. This demands that the components in the wind turbine are optimized closer to the limit than previously. In order to determine the design loads...... is investigated. I the first method a Ritz basis is used, which contains rigid body modes and a number of elastic eigenmodes compatible to the kinematical boundary conditions. By use of very few elastic eigenmodes to model a blade it has shown convenient to use a quasi-static term for the truncated elastic...

  2. REGENERATIVE GAS TURBINES WITH DIVIDED EXPANSION

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Qvale, Einar Bjørn

    2004-01-01

    divided expansion can be advantageous under certain circumstances. But, in order for todays micro gas turbines to be competitive, the thermodynamic efficiencies will have to be rather high. This requires that all component efficiencies including the recuperator effectiveness will have to be high......Recuperated gas turbines are currently drawing an increased attention due to the recent commercialization of micro gas turbines with recuperation. This system may reach a high efficiency even for the small units of less than 100 kW. In order to improve the economics of the plants, ways to improve....... The advantages of the divided expansion manifest themselves over a rather limited range of the operating parameters, that lies outside the range required to make modern micro turbines economically competitive....

  3. A MEMS turbine prototype for respiration harvesting

    Science.gov (United States)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  4. Who should own the nearshore wind turbines?

    DEFF Research Database (Denmark)

    Jensen, Louise Krog; Sperling, Karl

    This report examines the possibility for non-profit organisations to participate in tenders for nearshore wind turbines in Denmark under the current frame-work conditions in the area. The point of departure is a case study of the non-profit organisation Wind People’s attempt to participate...... with a popular project in the Danish tender for 350 MW nearshore wind turbines. A series of in-depth interviews have been carried out with Wind People’s staff in order to make an in-depth analysis of their actions and experiences of entering into the market for nearshore wind turbines. The report concludes...... that it is not possible for non-profit organisations to participate with popular projects in connection with tenders for nearshore wind turbines in Denmark under the current framework conditions. Therefore, it is necessary to make a modification of the framework conditions. In itself, this is not sufficient to pave...

  5. Design Load Basis for Offshore Wind turbines

    DEFF Research Database (Denmark)

    Natarajan, Anand; Hansen, Morten Hartvig; Wang, Shaofeng

    2016-01-01

    DTU Wind Energy is not designing and manufacturing wind turbines and does therefore not need a Design Load Basis (DLB) that is accepted by a certification body. However, to assess the load consequences of innovative features and devices added to existing offshore turbine concepts or new offshore...... turbine concept developed in our research, it is useful to have a full DLB that follows the current design standard and is representative of a general DLB used by the industry. It will set a standard for the offshore wind turbine design load evaluations performed at DTU Wind Energy, which is aligned...... with the challenges faced by the industry and therefore ensures that our research continues to have a strong foundation in this interaction. Furthermore, the use of a full DLB that follows the current standard can improve and increase the feedback from the research at DTU Wind Energy to the international...

  6. Wind Turbine Drivetrain Condition Monitoring - An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  7. RELIABILITY OF MACHINE ELEMENTS IN WIND TURBINES

    Directory of Open Access Journals (Sweden)

    Willi GRUENDER

    2010-06-01

    Full Text Available Worldwide electrical energy production generated by wind turbines grows at a rate of 30 percent. This doubles the total production every three years. At the same time the power of individual stations goes up by 20 percent annually. Whereas today the towers, rotors and drive trains have to handle 5 MW, in about six to eight years they might produce up to fifteen MW. As a consequence, enormous pressure is put on the wind turbine manufacturers, the component suppliers and the operators. And because prototype and field testing is limited by its expense, the design of new turbines demands thorough analysis and simulation. Looking at the critical components of a wind turbine this paper describes advanced design tools which help to anticipate failures, but also assists in optimizing reliability and service life. Development of the software tools has been supported by research activities in many universities.

  8. ? stability of wind turbine switching control

    Science.gov (United States)

    Palejiya, Dushyant; Shaltout, Mohamed; Yan, Zeyu; Chen, Dongmei

    2015-01-01

    In order to maximise the wind energy capture, wind turbines are operated at variable speeds. Depending on the wind speed, a turbine switches between two operating modes: a low wind speed mode and a high wind speed mode. During the low wind speed mode, the control objective is to maximise wind energy capture by controlling both the blade pitch angle and the electrical generator torque. During the high wind speed mode, the control goal is to maintain the rated power generation by only adjusting the blade pitch angle. This paper establishes the stability criteria for the switching operation of wind turbines using ? gain under the nonlinear control framework. Also, the performance of the wind turbine system is analysed by using the step response, a well-known measure for second-order linear systems.

  9. Actuator Line Modeling of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2009-01-01

    This thesis contains a comprehensive 3D Navier-Stokes computational study of the characteristics of wakes of wind turbines operating in various flow conditions including interacting wakes between a row of turbines. The computations were carried out using the actuator line technique combined...... and it is shown that the turbines are subject to rather severe yaw moments, even in situations where the mean wind is oriented along the row. This observation is indicative of large scale dynamics of the wakes....... with the 3D Navier Stokes solver EllipSys3D and a LES turbulence model. Simple models, based on applying body forces in the computational domain, are developed for imposing sheared and turbulent infow and their validity is discussed. A few computations on stand alone turbines are compared to measurements...

  10. Turbine adapted maps for turbocharger engine matching

    Energy Technology Data Exchange (ETDEWEB)

    Tancrez, M. [PSA - Peugeot Citroen, 18 rue des fauvelles, La Garenne-Colombes (France); Galindo, J.; Guardiola, C.; Fajardo, P.; Varnier, O. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)

    2011-01-15

    This paper presents a new representation of the turbine performance maps oriented for turbocharger characterization. The aim of this plot is to provide a more compact and suited form to implement in engine simulation models and to interpolate data from turbocharger test bench. The new map is based on the use of conservative parameters as turbocharger power and turbine mass flow to describe the turbine performance in all VGT positions. The curves obtained are accurately fitted with quadratic polynomials and simple interpolation techniques give reliable results. Two turbochargers characterized in an steady flow rig were used for illustrating the representation. After being implemented in a turbocharger submodel, the results obtained with the model have been compared with success against turbine performance evaluated in engine tests cells. A practical application in turbocharger matching is also provided to show how this new map can be directly employed in engine design. (author)

  11. Adaptive Extremum Control and Wind Turbine Control

    DEFF Research Database (Denmark)

    Ma, Xin

    1997-01-01

    This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important...... role. If it can be emphasis on control design. The models have beenvalidated by experimental data obtained from an existing wind turbine. The e ective wind speed experienced by the rotor of a wind turbine, which is often required by some control methods, is estimated by using a wind turbine as a wind...

  12. Active load control techniques for wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  13. Applied modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Pedersen, H.B.; Kristensen, O.J.D.

    2003-01-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Differentequipment for mounting the accelerometers...... is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use ofaccelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded...... and unloaded wind turbine blade. During this campaign the modal analysis are performed on ablade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Øyes blade_EV1...

  14. A Reinforced Blade for a Wind Turbine

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a reinforced blade for a wind turbine having elongated reinforcing members in the blade extending substantially in the plane of the profile chord in order to strengthen the blade against edgewise and flapwise forces....

  15. Frequency Based Fault Detection in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    In order to obtain lower cost of energy for wind turbines fault detection and accommodation is important. Expensive condition monitoring systems are often used to monitor the condition of rotating and vibrating system parts. One example is the gearbox in a wind turbine. This system is operated...... in parallel to the control system, using different computers and additional often expensive sensors. In this paper a simple filter based algorithm is proposed to detect changes in a resonance frequency in a system, exemplified with faults resulting in changes in the resonance frequency in the wind turbine...... gearbox. Only the generator speed measurement which is available in even simple wind turbine control systems is used as input. Consequently this proposed scheme does not need additional sensors and computers for monitoring the condition of the wind gearbox. The scheme is evaluated on a wide-spread wind...

  16. NEXT GENERATION TURBINE SYSTEM STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  17. Wind Turbine Contingency Control Through Generator De-Rating

    Science.gov (United States)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  18. System Reliability for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    Deeper waters and harsher environments are the main factors that make the electricity generated by offshore wind turbines (OWTs) expensive due to high costs of the substructure, operation & maintenance and installation. The key goal of development is to decrease the cost of energy (Co...... in inspections or measurements from condition monitoring systems. Finally, an example is established to illustrate the practical application of this framework for jacket type wind turbine substructure considering system effects....

  19. Offshore wind turbines reliability, availability and maintenance

    CERN Document Server

    Tavner, Peter

    2012-01-01

    The first book to specifically focus on offshore wind turbine technology and which addresses practically wind turbine reliability and availability. The book draws on the author's experience of power generation reliability and availability and the condition monitoring of that plant to describe the problems facing the developers of offshore wind farms and the solutions available to them to raise availability, reduce cost of energy and improve through life cost.

  20. Assessment of wind turbine load measurement instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Morfiadakis, E.; Papadopoulos, K. [CRES (Greece); Borg, N. van der [ECN, Petten (Netherlands); Petersen, S.M. [Risoe, Roskilde (Denmark); Seifert, H. [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In the framework of Sub-Task3 `Wind turbine load measurement instrumentation` of EU-project `European Wind Turbine Testing Procedure Development`, the load measurement techniques have been assessed by laboratory, full scale and numerical tests. The existing methods have been reviewed with emphasis on the strain gage application techniques on composite materials and recommendations are provided for the optimisation of load measurement techniques. (au) EU. 14 refs.

  1. Advantages on monitoring wind turbine nacelle oscillation

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Marhadi, Kun Saptohartyadi; Hilmisson, Reynir

    2015-01-01

    Nacelle oscillation monitoring, where accelerometers are mounted on the nacelle frame, is integral part of modern condition monitoring systems towards holistic and consistent health assessment of wind turbines. It enables detection of abnormal behavior associated to increased stresses...... and vibrations on blades, tower and drive train components, which may jeopardize their working condition. The present paper deals with the comparison and analysis of vibration signals from wind turbines subjected to various failure modes and operating conditions, such as blade misalignment, pitch malfunction...

  2. Failure analysis of jet engine turbine blade

    OpenAIRE

    MILAN T. JOVANOVIĆ; Vesna Maksimović; Ivana Cvijović-Alagić

    2016-01-01

    Jet engine turbine blade cast by investment precision casting of Ni-base superalloy, which failed during exploatation, was the subject of investigation. Failure analysis was executed applying optical microscopy (OM), transmission electron microscopy (TEM) using replica technique, scaning electron microscopy (SEM) and stress rupture life tests. On the ground of obtained results it was concluded that the failure occurred as a result of structural changes caused by turbine blade overheating abov...

  3. Failure analysis of jet engine turbine blade

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2016-03-01

    Full Text Available Jet engine turbine blade cast by investment precision casting of Ni-base superalloy, which failed during exploatation, was the subject of investigation. Failure analysis was executed applying optical microscopy (OM, transmission electron microscopy (TEM using replica technique, scaning electron microscopy (SEM and stress rupture life tests. On the ground of obtained results it was concluded that the failure occurred as a result of structural changes caused by turbine blade overheating above the exploitation temperature.

  4. FEM Analysis of Turgo Impulse Turbine Blade

    Directory of Open Access Journals (Sweden)

    Sourabh KHURANA

    2013-07-01

    Full Text Available The present research work describes the development of Turgo turbine blades on the Solidworks software. Finite element simulation (Ansys V14 has been used for analysis of stress and total deformation produced inside the Turgo impulse turbine. Finite element simulation is effective when it is used to analyze the strain and stress distribution. It has been observed during analysis that the maximum stress occurs at the root of blade suction side.

  5. Harmonic Current Predictors for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Shun-Yu Chan

    2013-03-01

    Full Text Available The harmonic impact caused by wind turbines should be carefully investigated before wind turbines are interconnected. However, the harmonic currents of wind turbines are not easily predicted due to the variations of wind speed. If the harmonic current outputs can be predicted accurately, the harmonic impact of wind turbines and wind farms for power grids can be analyzed efficiently. Therefore, this paper analyzes the harmonic current characteristics of wind turbines and investigates the feasibility of developing harmonic current predictors. Field measurement, data sorting, and analysis are conducted for wind turbines. Two harmonic current predictors are proposed based on the measured harmonic data. One is the Auto-Regressive and Moving Average (ARMA-based harmonic current predictor, which can be used for real-time prediction. The other is the stochastic harmonic current predictor considering the probability density distributions of harmonic currents. It uses the measured harmonic data to establish the probability density distributions of harmonic currents at different wind speeds, and then uses them to implement a long-term harmonic current prediction. Test results use the measured data to validate the forecast ability of these two harmonic current predictors. The ARMA-based predictor obtains poor performance on some harmonic orders due to the stochastic characteristics of harmonic current caused by the variations of wind speed. Relatively, the prediction results of stochastic harmonic current predictor show that the harmonic currents of a wind turbine in long-term operation can be effectively analyzed by the established probability density distributions. Therefore, the proposed stochastic harmonic current predictor is helpful in predicting and analyzing the possible harmonic problems during the operation of wind turbines and wind farms.

  6. Automatic Control of Freeboard and Turbine Operation

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik;

    The report deals with the modules for automatic control of freeboard and turbine operation on board the Wave dragon, Nissum Bredning (WD-NB) prototype, and covers what has been going on up to ultimo 2003.......The report deals with the modules for automatic control of freeboard and turbine operation on board the Wave dragon, Nissum Bredning (WD-NB) prototype, and covers what has been going on up to ultimo 2003....

  7. Photoacoustic microscopy of ceramic turbine blades

    Science.gov (United States)

    Khandelwal, P. K.; Kinnick, R. R.; Heitman, P. W.

    1985-01-01

    Scanning photoacoustic microscopy (SPAM) is evaluated as a nondestructive technique for the detection of both surface and subsurface flaws in polycrystalline ceramics, such as those currently under consideration for the high temperature components of small vehicular and industrial gas turbine engines; the fracture strength of these brittle materials is controlled by small, 25-200 micron flaws. Attention is given to the correlation of SPAM-detected flaws with actual, fracture-controlling flaws in ceramic turbine blades.

  8. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  9. Fish passage assessment of an advanced hydropower turbine and conventional turbine using blade-strike modeling

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z.; Carlson, T. J.; Dauble, D. D.; Ploskey, G. R. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2011-07-01

    Hydropower is the largest renewable energy source in the world. However, in the Columbia and Snake River basins, several species of Pacific salmon and steelhead have been listed for protection under the Endangered Species Act due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making hydroelectric facilities more fish friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for relicensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to compare fish passage performance of the newly installed advanced turbine to an existing turbine. Modeled probabilities were compared to the results of a large-scale live-fish survival study and a Sensor Fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury, while those predicted by the stochastic model were in close agreement with experimental results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, no statistical evidence suggested significant differences in blade-strike injuries between the two turbines, thus the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal to or higher than that for fish passing through the conventional turbine could not be rejected. (authors)

  10. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-Strike Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqun Deng

    2011-01-01

    Full Text Available Hydropower is the largest renewable energy source in the world. However, in the Columbia and Snake River basins, several species of Pacific salmon and steelhead have been listed for protection under the Endangered Species Act due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making hydroelectric facilities more fish friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for relicensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to compare fish passage performance of the newly installed advanced turbine to an existing turbine. Modeled probabilities were compared to the results of a large-scale live-fish survival study and a Sensor Fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury, while those predicted by the stochastic model were in close agreement with experimental results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, no statistical evidence suggested significant differences in blade-strike injuries between the two turbines, thus the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal to or higher than that for fish passing through the conventional turbine could not be rejected.

  11. Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2013-06-25

    Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  12. Effective solidity in vertical axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  13. Annual Report: Turbines (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, Mary Anne [NETL; Richards, George [NETL

    2012-09-30

    The FY12 NETL-RUA Turbine Thermal Management effort supported the Department of Energy (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach includes explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address Development and design of aerothermal and materials concepts in FY12-13. Design and manufacturing of these advanced concepts in FY13. Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. The Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of aerothermal and heat transfer, coatings and materials development, design integration and testing, and a secondary flow rotating rig.

  14. An optimal tuning strategy for tidal turbines

    Science.gov (United States)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  15. An improved radial impulse turbine for OWC

    Energy Technology Data Exchange (ETDEWEB)

    Pereiras, Bruno; Castro, Francisco; Rodriguez, Miguel A. [Energy Engineering and Fluid Mechanics Department, University of Valladolid, Paseo del cauce 59, 47011, Valladolid (Spain); Marjani, Abdelatif el [Labo. de Turbomachines, Ecole Mohammadia d' Ingenieurs (EMI), University of Mohammed V Agdal. Av Ibn Sina, B.P. 765 Agdal Rabat (Morocco)

    2011-05-15

    Traditionally, wells turbines have been widely used in OWC plants. However, an alternative has been studied over recent years: a self-rectifying turbine known as an impulse turbine. We are interested in the radial version of the impulse turbine, which was initially proposed by M. McCormick. Previous research was carried out using CFD (FLUENT {sup registered}), which aimed to improve knowledge of the local flow behavior and the prediction of the performance for this kind of turbine. This previous work was developed with a geometry taken from the literature, but now our goal is to develop a new geometry design with a better performance. To achieve this, we have redesigned the blade and vane profiles and improved the interaction between them by means of a new relation between their setting angles. Under sinusoidal flow conditions the new design improves the turbine efficiency by up to 5% more than the geometry proposed by Professor Setoguchi, in 2002. In this paper, the design criteria we have used is described, and the flow behavior and the performance of this new design are compared with the previous one. (author)

  16. Site-optimization of wind turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.J. de; Thillerup, J. [Nordtank Energy Group, Richmond, VA (United States)

    1997-12-31

    The Danish Company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2500 wind turbine generators with a total name plate capacity that is exceeding 450 MW. The opening up of new and widely divergent markets has demanded an extremely flexible approach towards wind turbine construction. The Nordtank product range has expanded considerable in recent years, with the main objective to develop wind energy conversion machines that can run profitable in any given case. This paper will describe site optimization of Nordtank wind turbines. Nordtank has developed a flexible design concept for its WTGs in the 500/750 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Through this flexible design, the 500/750 turbine line can adjust the rotor diameter, tower height and many other components to optimally fit the turbine to each specific project. This design philosophy will be illustrated with some case histories of recently completed projects.

  17. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  18. Increased use of gas turbines as commercial marine engines

    Science.gov (United States)

    Brady, C. O.; Luck, D. L.

    1994-04-01

    Over the last three decades, aeroderivative gas turbines have become established naval ship propulsion engines, but use in the commercial marine field has been more limited. Today, aeroderivative gas turbines are being increasingly utilized as commercial marine engines. The primary reason for the increased use of gas turbines is discussed and several recent GE aeroderivative gas turbine commercial marine applications are described with particular aspects of the gas turbine engine installations detailed. Finally, the potential for future commercial marine aeroderivative gas turbine applications is presented.

  19. The Darrieus wind turbine for electrical power generation

    Science.gov (United States)

    Robinson, M. L.

    1981-06-01

    Aspects of wind as an energy source and the momentum theory of wind turbines are briefly examined. Types of Darrieus wind turbine are described; attention is given to a turbine with airfoil blades curved in troposkein form, and a turbine with straight blades of fixed or variable pitch. The Darrieus vertical-axis wind turbine is then considered with regard to aerodynamics, annual energy output, structures, control systems, and energy storage. Brief reviews of selected Darrieus wind turbine projects are given, including those at Magdalen Islands, Canada, Sandia Laboratories, Reading University, and Australia and New Zealand.

  20. Hydrogen turbines for space power systems: A simplified axial flow gas turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, S.L.

    1988-01-01

    This paper descirbes a relatively simple axial flow gas expansion turbine mass model, which we developed for use in our space power system studies. The model uses basic engineering principles and realistic physical properties, including gas conditions, power level, and material stresses, to provide reasonable and consistent estimates of turbine mass and size. Turbine design modifications caused by boundary layer interactions, stress concentrations, stage leakage, or bending and thermal stresses are not accounted for. The program runs on an IBM PC, uses little computer time and has been incorporated into our system-level space power platform analysis computer codes. Parametric design studies of hydrogen turbines using this model are presented for both nickel superalloy and carbon/carbon composite turbines. The effects of speed, pressure ratio, and power level on hydrogen turbine mass are shown and compared to a baseline case 100-MWe, 10,000-rpm hydrogen turbine. Comparison with more detailed hydrogen turbine designs indicates that our simplified model provides mass estimates that are within 25% of the ones provided by more complex calculations. 8 figs.