WorldWideScience

Sample records for bwr pressure vessel

  1. Inservice inspection of Halden BWR pressure vessel

    International Nuclear Information System (INIS)

    A description is given of how the recertification inspection of the 20 years old Halden Reactor pressure vessel was carried out in accordance with the latest ASME-CODES, despite the fact that inspection accessibility was poor. As no volumetric inspection had been carried out since the preservice radiography in 1957, the ultrasonic inspection included the high flux region of all welds. In total 70% of longitudinal welds and 20% of bottom circumferential welds were inspected as well as the bottom nozzle connection. The vessel was not designed with provisions for inservice inspection, the welds are unaccessible from the outside and removal of the lid is virtually impossible. The ultrasonic probes could only be loaded through 77 mm diameter holes in the top lid and remotely positioned inside the vessel. The inspection was performed using 450C and 60OC 1 MHz angle probes and 2.25 MHz normal probes in immersion technique. In a zone around the welds, small regions with lack of bonding between the stainless steel cladding and the boiler steel were revealed. One root defect known and accepted from the preservice radiographs was examined. The defect was found to be 6x30mm as a maximum and well within acceptable limits according to the fracture mechanics analysis method recommended in ASME X1. The inspection required a period of three weeks' work in the reactor hall. (UK)

  2. Test of 6-in. -thick pressure vessels. Series 3: intermediate test vessel V-7. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, J.G.; Robinson, G.C.; Holz, P.P.; Smith, J.E.; Bryan, R.H.

    1976-08-01

    The test of intermediate test vessel V-7 was a crack-initiation fracture test of a 152-mm-thick (6-in.), 990-mm-OD (39-in.) vessel of ASTM A533, grade B, class 1 steel plate with a sharp outside surface flaw 457 mm (18 in.) long and about 135 mm (5.3 in.) deep. The vessel was heated to 91/sup 0/C (196/sup 0/F) and pressurized hydraulically until leakage through the flaw terminated the test at a peak pressure of 147 MPa (21,350 psi). Fracture toughness data obtained by testing precracked Charpy-V and compact-tension specimens machined from a prolongation of the cylindrical test shell were used in pretest analyses of the flawed vessel. The vessel, as expected, did not burst. Upon depressurization, the ruptured ligament closed so as to maintain static pressure without leakage at about 129 MPa (18,700 psi).

  3. Test of 6-in. -thick pressure vessels. Series 3: intermediate test vessel V-7A under sustained loading. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, R.H.; Cate, T.M.; Holz, P.P.; King, T.A.; Merkle, J.G.; Robinson, G.C.; Smith, G.C.; Smith, J.E.; Whitman, G.D.

    1978-02-01

    HSST intermediate test vessel V-7 was repaired after being tested hydrostatically to leakage and was retested pneumatically as vessel V-7A. Except for the method of applying the load, the conditions in both tests were nearly identical. In each case, a sharp outside surface flaw 547 mm long (18 in.) by about 135 mm deep (5.3 in.) was prepared in the 152-mm-thick (6-in.) test cylinder of A533, grade B, class 1 steel. The inside surface of vessel V-7A was sealed in the region of the flaw by a thin metal patch so that pressure could be sustained after rupture. Vessel V-7A failed by rupture of the flaw ligament without burst, as expected. Rupture occurred at 144.3 MPa (20.92 ksi), after which pressure was sustained for 30 min without any indication of instability. The rupture pressure of vessel V-7A was about 2 percent less than that of vessel V-7.

  4. Analysis of the microstructural evolution of the damage by neutron irradiation in the pressure vessel of a nuclear power reactor BWR

    International Nuclear Information System (INIS)

    Nuclear reactor pressure vessel type BWR, installed in Mexico and in many other countries, are made of an alloy of low carbon steel. The American Society for Testing and Materials (Astm) classifies this alloy as A533-B, class 1. Both the vessel and other internal structures are continuously exposed to the neutron flux from the reactions of fission in nuclear fuel. A large number of neutrons reach the vessel and penetrate certain depth depending on their energy. Its penetration in the neutron collides with the nuclei of the atoms out of their positions in the crystal lattice of steel, producing vacancies, interstitial, segregations, among other defects, capable of affecting its mechanical properties. Analyze the micro-structural damage to the vessel due to neutron irradiation, is essential for reasons of integrity of this enclosure and safety of any nuclear power plant. The objective of this thesis work is theoretical and experimentally determine the microstructural damage of a type nuclear reactor vessel steel BWR, due to neutron radiation from the reactor core, using microscopic and spectroscopic techniques as well as Monte Carlo simulation. Microscopy Optical, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersion of X-rays Spectrometry and X-rays Diffractometry were the techniques used in this research. These techniques helped in the characterization of both the basis of design of pressure vessel steel and steel irradiated, after eight years of neutron irradiation on the vessel, allowing know the surface morphology and crystal structures of the previous steel and post-irradiation, analyze the change in the microstructure of the steel vessel, morphological damage to surface level in an irradiated sample, among which are cavities in the order of microns produced by Atomic displacements due to the impact of neutronic, above all in the first layers of thickness of the vessel, the effect of swelling, regions of greater damage and Atomic

  5. Calculation of a leak in the bottom of a bwr-pressure vessel using THYDE-B1

    International Nuclear Information System (INIS)

    The present report describes the modelling of a boiling water reactor of the Gemeinschaftskraftwerk Tullnerfeld (GKT) plant type. The corresponding input data set for the Japanese computer code THYDE-B1 allows the simulation of the thermohydraulic transient within the reactor coolant system during a loss of coolant accident. The initiating event 'Leak in the Reactor Pressure Vessel Bottom' has been calculated as an application exercise. The results are discussed using graphic representation, where one should be aware that the calculated data do not correspond with any specific plant configuration of the boiling water reactor generic design. 1 ref., 7 figs. (Author)

  6. Test of 6-in. -thick pressure vessels. Series 4: intermediate test vessels V-5 and V-9 with inside nozzle corner cracks. [BWR and PWR

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, J.G.; Robinson, G.C.; Holz, P.P.; Smith, J.E.

    1977-08-01

    Failure testing is described for two 99-cm-diam (39-in.), 15.2-cm-thick (6-in.) steel pressure vessels, each containing one flawed nozzle. Vessel V-5 was tested at 88/sup 0/C (190/sup 0/F) and failed by leaking without fracturing after extensive stable crack growth. Vessel V-9 was tested at 25/sup 0/C (75/sup 0/F) and failed by fracturing. Material properties measured before the tests were used for pretest and posttest fracture analyses. Test results supported by analysis indicate that inside nozzle corner cracks are not subject to plane strain under pressure loading. The preparation of inside nozzle corner cracks is described in detail. Extensive experimental data are tabulated and plotted.

  7. Vibration characteristics of BWR primary containment vessel

    International Nuclear Information System (INIS)

    This paper reports on a part of a seismic proving test of a BWR Primary Containment Vessel (PCV), a vibration analysis that is carried out considering the effect of reinforcement around attached masses such as equipment hatches and a personnel airlock. A deflected shape with the local attached masses and reinforcement is expanded using free vibration modes of an axisymmetric PCV without attached masses and reinforcement. The free vibration modes are calculated considering a coupling effect between the PCV shell and suppression pool water using conical shell finite elements and ring fluid elements. The same expanding functions and free vibration modes are used to express strain energy, kinetic energy and work done by inertia forces due to input acceleration considering locally varying thickness of the PCV and attached masses. The equations of motion are obtained by substituting the strain energy, kinetic energy, and work done by inertia forces into the Lagrange's equation. Calculated natural frequencies, free vibration modes and frequency response functions are compared with numerical results obtained by a general shell finite element analysis and with test results using the large-scale high-performance vibration table of Tadotsu Engineering Laboratory, Nuclear Power Engineering Test Center (NUPEC). The comparison shows a reasonable agreement, leading to better understanding of the dynamic characteristics of the BWR PCV

  8. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessel internals

    International Nuclear Information System (INIS)

    . The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. The report addresses the reactor pressure vessel internals in BWRs. Maintaining the structural integrity of these reactor pressure vessel internals throughout NPP service life, in spite of several ageing mechanisms, is essential for plant safety

  9. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessels

    International Nuclear Information System (INIS)

    . The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. This report addresses the reactor pressure vessel (RPV) in BWRs. Maintaining the structural integrity of this RPV throughout NPP service life in spite of several ageing mechanisms is essential for plant safety

  10. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    International Nuclear Information System (INIS)

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  11. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  12. Analysis of the microstructural evolution of the damage by neutron irradiation in the pressure vessel of a nuclear power reactor BWR; Analisis de la evolucion microestructural del dano por irradiacion neutronica en la vasija de presion de un reactor nuclear de potencia BWR

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel y R, M.

    2012-07-01

    Nuclear reactor pressure vessel type BWR, installed in Mexico and in many other countries, are made of an alloy of low carbon steel. The American Society for Testing and Materials (Astm) classifies this alloy as A533-B, class 1. Both the vessel and other internal structures are continuously exposed to the neutron flux from the reactions of fission in nuclear fuel. A large number of neutrons reach the vessel and penetrate certain depth depending on their energy. Its penetration in the neutron collides with the nuclei of the atoms out of their positions in the crystal lattice of steel, producing vacancies, interstitial, segregations, among other defects, capable of affecting its mechanical properties. Analyze the micro-structural damage to the vessel due to neutron irradiation, is essential for reasons of integrity of this enclosure and safety of any nuclear power plant. The objective of this thesis work is theoretical and experimentally determine the microstructural damage of a type nuclear reactor vessel steel BWR, due to neutron radiation from the reactor core, using microscopic and spectroscopic techniques as well as Monte Carlo simulation. Microscopy Optical, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersion of X-rays Spectrometry and X-rays Diffractometry were the techniques used in this research. These techniques helped in the characterization of both the basis of design of pressure vessel steel and steel irradiated, after eight years of neutron irradiation on the vessel, allowing know the surface morphology and crystal structures of the previous steel and post-irradiation, analyze the change in the microstructure of the steel vessel, morphological damage to surface level in an irradiated sample, among which are cavities in the order of microns produced by Atomic displacements due to the impact of neutronic, above all in the first layers of thickness of the vessel, the effect of swelling, regions of greater damage and Atomic

  13. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  14. Reliability of BWR high pressure core cooling

    International Nuclear Information System (INIS)

    The high pressure coolant injection system (HPCI), and the reactor core isolation cooling system (RCIC) are steam turbine driven systems that can inject water into a boiling water reactor at full operating pressure. Their purpose is to supply water during any failure that allows water to be lost while the reactor is at pressure and temperature. A large number of BWR plants are not meeting HPCI and RCIC performance goals for core cooling. NSAC considers concurrent failure of NPCI and RCIC to be the most probable potential cause of low reactor water level and possibly fuel damage in a boiling water reactor. Between January 1978 and May 1981, 169 licensee event reports were filed where HPCI or RCIC was inoperable or was declared inoperable. The present effort has shown that at least 40% of NPCI and RCIC problems might be averted by a high quality preventive maintenance program. About half of the plants do not perform cold quick-start surveillance testing of HPCI and RCIC. They do perform routine startup tests, but the equipment is first preheated and the startup is relatively gentle. However, emergency start-ups are abrupt and from the cold condition. Therefore, cold quick-start testing is the only way to assure that all components, control systems, and instruments are functioning correctly for automatic safety initiation. (author)

  15. PRESSURE-RESISTANT VESSEL

    NARCIS (Netherlands)

    Beukers, A.; De Jong, T.

    1997-01-01

    Abstract of WO 9717570 (A1) The invention is directed to a wheel-shaped pressure-resistant vessel for gaseous, liquid or liquefied material having a substantially rigid shape, said vessel comprising a substantially continuous shell of a fiber-reinforced resin having a central opening, an inner l

  16. BWR/5 Pressure-Suppression Pool Response during an SBO

    Directory of Open Access Journals (Sweden)

    Javier Ortiz-Villafuerte

    2013-01-01

    Full Text Available RELAP/SCDAPSIM Mod 3.4 has been used to simulate a station blackout occurring at a BWR/5 power station. Further, a simplified model of a wet well and dry well has been added to the NSSS model to study the response of the primary containment during the evolution of this accident. The initial event leading to severe accident was considered to be a LOOP with simultaneous scram. The results show that RCIC alone can keep the core fully covered, but even in this case about 30% of the original liquid water inventory in the PSP is vaporized. During the SBO, without RCIC, this inventory is reduced about 5% more within six hours. Further, a significant pressure rise occurs in containment at about the time when a sharp increase of heat generation occurs in RPV due to cladding oxidation. Failure temperature of fuel clad is also reached at this point. As the accident progresses, conditions for containment venting can be reached in about nine hours, although there still exists considerable margin before reaching containment design pressure. Detailed information of accident progress in reactor vessel and containment is presented and discussed.

  17. Damage by radiation in structural materials of BWR reactor vessels; Dano por radiacion en materiales estructurales de vasijas de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [Departamento de Sintesis y Caracterizacion de Materiales, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The structural materials which are manufactured the pressure vessels of the BWR reactors undergo degradation in their mechanical properties mainly due to the damage produced by the fast neutrons (E> 1 MeV) coming from the reactor core. The mechanisms of neutron damage in this type of materials are experimentally studied, through the irradiation of vessel steel in experimental reactors for a quickly ageing. Alternately the neutron damage through steel irradiation with heavy ions is simulated. In this work the first results of the damage induced by irradiation of a similar steel to the vessel of a BWR reactor are shown. The irradiation was performed with fast neutrons (E> 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA Mark III Salazar reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator (E= 4.8 MeV and an ion flux rank of 0.1 to 53 ions/A{sup 2}). (Author)

  18. Characteristics of fluctuating pressure generated in BWR main steam lines

    International Nuclear Information System (INIS)

    The BWR-3 steam dryer in the Quad Cities Unit 2 Nuclear Power Plant was damaged by high cycle fatigue due to acoustic-induced vibration. The dryer failure was as attributed to flow-induced acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSLs). The acoustic resonance was considered to be generated by interaction between the sound field and an unstable shear layer across the closed side branches with SRV stub pipes. We have started a research program on BWR dryers to develop their loading evaluation methods. Moreover, it has been necessary to evaluate the dryer integrity of BWR-5 plants which are the main type of BWR in Japan. In the present study, we used 1/10-scale BWR tests and analyses to investigate the flow-induced acoustic resonance and acoustic characteristics in MSLs. The test apparatus consisted of a steam dryer, a steam dome and 4 MSLs with 20 SRV stub pipes. A finite element method (FEM) was applied for the calculation of three-dimensional wave equations in acoustic analysis. We demonstrated that remarkable fluctuating pressures occurred in high and low frequency regions. High frequency fluctuating pressures was generated by the flow-induced acoustic resonance in the SRV stub pipes. Low frequency fluctuating pressure was generated in an MSL with the dead leg. The frequency of the latter almost coincided with the natural frequency of the MSL with the dead leg. The amplitude of the fluctuating pressures in the multiple stub pipes became more intense because of interaction between them compared with that in the single stub pipe. Acoustic analysis results showed that the multiple stub pipes caused several natural frequencies in the vicinity of the natural frequency of the single stub pipe and several modes of the standing wave in the MSLs. (author)

  19. High pressure storage vessel

    Science.gov (United States)

    Liu, Qiang

    2013-08-27

    Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

  20. Latest experiences in inspecting the inside of BWR vessel shields

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.

    2001-07-01

    In the last few years, the owners of BWR nuclear power plants have been forced to address new fuel shield inspection requirements, TECNATOM has responded to this situation by launching the TEIDE projects, which include development of an inspection machine and the corresponding Non-Destructive Tests to examine the inside of this shield. With these projects, TECNATOM has performed more than 12 fuel shield inspections in different countries. This article describes the experience gained in the last three years. (Author)

  1. A Deterministic/probalistic analysis of Ex-Vessel melt risk in a BWR

    OpenAIRE

    Abal López, Javier

    2006-01-01

    The present study is concerned with deterministic and probabilistic analysis of ex-vessel melt risks in a Swedish designed BWR plant. The focus is placed on a station blackout (SBO) scenario, with immediate SCRAM and subsequent activation of the main steam valve isolation (at 52 s). Four sequences were examined in detail to study the effect of two valves systems related to the operation of ADS (Automatic Depressurization System), and cavity flooding by water from suppression po...

  2. Study of behavior on bonding and failure mode of pressurized and doped BWR fuel rod

    International Nuclear Information System (INIS)

    The study of transient behavior on the bonding and the failure mode was made using the pressurized/doped 8 x 8 BWR type fuel rod. The dopant was mullite minerals consisted mainly of silicon and aluminum up to 1.5 w/o. Pressurization of the fuel rod with pure helium was made to the magnitude about 0.6 MPa. As a reference, the non-pressurized/non-doped 8 x 8 BWR fuel rod and the pressurized/7 x 7 BWR fuel rod up to 0.6 MPa were prepared. Magnitude of energy deposition given to the tested fuel rods was 248, 253, and 269 cal/g·fuel, respectively. Obtained results from the pulse irradiation in NSRR are as follows. (1) It was found from the experiment that alternation of the fuel design by the adoption of pressurization up to 0.6 MPa and the use of wider gap up to 0.38 mm could avoid the dopant BWR fuel from the overall bonding. The failure mode of the present dopant fuel was revealed to be the melt combined with rupture. (2) The time of fuel failure of the pressurized/doped 8 x 8 BWR fuel defected by the melt/rupture mode is of order of two times shorter than that of the pressurized/ 7 x 7 BWR defected by the rupture mode. Failure threshold of the pressurized/doped 8 x 8 BWR BWR tended to be lower than that of non-pressurized/non-doped 8 x 8 BWR one. Cracked area of the pressurized/doped 8 x 8 BWR was more wider and magnitude of oxidation at the place is relatively larger than the other tested fuels. (3) Failure mode of the non-pressurized/ 8 x 8 BWR fuel rod was the melt/brittle accompanied with a significant bonding at failed location. While, failure mode of the pressurized/ 7 x 7 BWR fuel rod was the cladding rupture accompanied with a large ballooning. No bonding at failed location of the latter was observed. (author)

  3. 46 CFR 169.249 - Pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  4. 46 CFR 182.330 - Pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels. 182.330 Section 182.330 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.330 Pressure vessels. All unfired pressure vessels must be... unfired pressure vessels must meet the applicable requirements of subchapter F (Marine Engineering)...

  5. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  6. Pressure vessel having continuous sidewall

    Science.gov (United States)

    Simon, Xavier D. (Inventor); Barackman, Victor J. (Inventor)

    2011-01-01

    A spacecraft pressure vessel has a tub member. A sidewall member is coupled to the tub member so that a bottom section of the sidewall member extends from an attachment intersection with the tub member and away from the tub member. The bottom section of the sidewall member receives and transfers a load through the sidewall member.

  7. 46 CFR 119.330 - Pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels. 119.330 Section 119.330 Shipping COAST... Machinery § 119.330 Pressure vessels. All unfired pressure vessels must be installed to the satisfaction of the cognizant OCMI. The design, construction, and original testing of such unfired pressure...

  8. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  9. Experimental investigations of BWR pressure suppression pool behavior under loss of coolant accident conditions

    International Nuclear Information System (INIS)

    The experiments discussed in this paper look into different processes which may occur during a loss-of-coolant accident in the pressure suppression pool of a Boiling Water Reactor (BWR). These processes include: a) development of a thermal stratification, b) bubble dynamics and related water flow during continuous release of air and c) air blowdown and associated water slug phenomenon in the water pool. The experiments have been performed in the THAI test facility, which is a cylindrical vessel of 9.2 m height, 3.2 m diameter and with a gas volume of 60 m3. The variation in the investigated test parameters included, steam and air mass flux, initial water pool temperature, blowdown pressures, downcomer submergence, etc. A systematic variation of the test parameters allowed better understanding of the phenomena. Experiments discussed in this paper were performed with a vertical downcomer of 0.1 m diameter and 2 m submergence depth in the water pool. For the blowdown experiments, a separate interconnecting vessel of 1 m3 volume was used to inject air at pressures between 3 bar and 10 bar. A high speed camera (1000 fps) was installed to visualize the formation and propagation of air bubbles in the suppression pool and the resulting pool swelling phenomena. Customized instrumentation applied during the tests included grids of densely spaced thermocouples and of pressure transducers at various locations in order to capture the temperature distribution in the pool and the water slug induced pressure loadings, respectively. The present paper discusses the main outcome of the selected experiments. On the whole the experimental data may be very useful for code validation. (authors)

  10. The calculation of pressure vessels

    International Nuclear Information System (INIS)

    The calculation guidelines of the Arbeitsgemeinschaft Druckbehaelter (task group for pressure vessels) have been revised with the following objective: conversion to international standards (SI), adaption to the latest state of guidelines for production and testing, revision of the contents of individual regulations. Another target of the cooperating interest groups of producers, operators, and supervisory bodies was a harmonization of the approaches for calculation with other German guidelines, in particular the Technische Regeln fuer Dampfkessel (technical regulations for steam boilers). (orig./RW)

  11. Advanced ultrasonic inspection system for the ID-inspection of reactor pressure vessels of BWRs

    International Nuclear Information System (INIS)

    A newly-developed, modular ultrasonic examination system has been developed by Siemens for the ID inspection of BWR RPV'S. It is based on the phased-array technique with hybrid probes using the latest in manipulator and control equipment technology to allow the often hard-to-access weld areas of older reactor pressure vessels in US BWR plants to be examined within a very short time and with minimal radiation exposure of the examination personnel. New NRC stipulations requiring almost complete ultrasonic examination of all RPV welds can be fully satisfied using this system for the ID inspection of all longitudinal and circumferential welds above the jet pump baffle plate

  12. Assessment with coupled thermo-mechanical creep analysis of combined CRGT and external vessel cooling efficiency for a BWR

    International Nuclear Information System (INIS)

    In this paper we consider in-vessel stage of a severe core melt accident in a Nordic design Boiling Water Reactor (BWR). Decay-heated pool of corium melt inflicts thermal and mechanical loads on the lower-head vessel wall. Performed thermo-mechanical creep analysis identified two different modes of vessel wall failure: (i) a ‘ballooning’ of the vessel bottom and (ii) a ‘localized creep’ concentrated within the vicinity of the top surface of the melt pool. Next, given the mechanical and thermal loads from the decay-heated melt, external vessel cooling is applied at a specified time. It is found that combined CRGT and external vessel cooling was able to suppress the creep and subsequently prevent vessel wall failure. (author)

  13. Parametric studies on containment thermal hydraulic loads during high pressure melt ejection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silde, A.; Lindholm, I. [VTT Energy, Espoo (Finland)

    1997-12-01

    The containment thermal hydraulic loads during high pressure melt ejection in a Nordic BWR are studied parametrically with the CONTAIN and the MELCOR codes. The work is part of the Nordic RAK-2 project. The containment analyses were divided into two categories according to composition of the discharged debris: metallic and oxidic debris cases. In the base case with highly metallic debris, all sources from the reactor coolant system to the containment were based on the MELCOR/BH calculation. In the base case with the oxidic debris, the source data was specified assuming that {approx} 15% of the whole core material inventory and 34,000 kg of saturated water was discharged from the reactor pressure vessel (RPV) during 30 seconds. In this case, the debris consisted mostly of oxides. The highest predicted containment pressure peaks were about 8.5 bar. In the scenarios with highly metallic debris source, very high gas temperature of about 1900 K was predicted in the pedestal, and about 1400 K in the upper drywell. The calculations with metallic debris were sensititive to model parameters, like the particle size and the parameters, which control the chemical reaction kinetics. In the scenarios with oxidic debris source, the predicted pressure peaks were comparable to the cases with the metallic debris source. The maximum gas temperatures (about 450-500 K) in the containment were, however, significantly lower than in the respective metallic debris case. The temperatures were also insensitive to parametric variations. In addition, one analysis was performed with the MELCOR code for benchmarking of the MELCOR capabilities against the more detailed CONTAIN code. The calculations showed that leak tightness of the containment penetrations could be jeopardized due to high temperature loads, if a high pressure melt ejection occurred during a severe accident. Another consequence would be an early containment venting. (au). 28 refs.

  14. A thermal hydraulic analysis model for catalytic hydrogen recombiners in the containment vessel of a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashi; Fujimoto, Kiyoshi [Power and Industrial Systems Rand D Division, Hitachi LTD., HItachi Ibaraki (Japan); Yamanari, Shouzou; Yoshinari, Yasuo

    1999-07-01

    Passive catalytic recombiners have been developed as a safety system to lower flammable gases concentrations in a nuclear power plant accident. Passive catalytic recombiners are of very simple construction and free of active components, which hold the promise of better plant economy, maintainability and reliability. In evaluation of the performance of the recombiners, the clarification of the diffusion and mixing behaviors of flammable gases in the primary containment vessel (PCV) is desirable. The diffusion/mixing behaviors of flammable gases are affected by natural circulation flow induced by the exothermic reaction of the recombiner, forced flow due to the PCV spray and interference by the obstacles in the PCV (such as pipings and components). As an analytical tool to deal with thermal hydraulic behaviors for passive catalytic recombiners, the authors have studied applicability of a three-dimensional analysis code. From the viewpoint of analytical capabilities, the authors selected the STAR-CD code. This paper describes the applicability of the code, including verification analysis and preliminary evaluation for a BWR plant. (author)

  15. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  16. BWR/5 Pressure-Suppression Pool Response during an SBO

    OpenAIRE

    Javier Ortiz-Villafuerte; Andrés Rodríguez-Hernández; Enrique Araiza-Martínez; Luis Fuentes-Márquez; Jorge Viais-Juárez

    2013-01-01

    RELAP/SCDAPSIM Mod 3.4 has been used to simulate a station blackout occurring at a BWR/5 power station. Further, a simplified model of a wet well and dry well has been added to the NSSS model to study the response of the primary containment during the evolution of this accident. The initial event leading to severe accident was considered to be a LOOP with simultaneous scram. The results show that RCIC alone can keep the core fully covered, but even in this case about 30% of the original liqui...

  17. Ten year's experience of in-service inspection on BWR vessel stub tubes

    International Nuclear Information System (INIS)

    The stub tube is a component of the control rod housings in boiling water reactor (BWR) nuclear power plants. In certain cases these tubes may undergo cracking, as a result of which fluid leakage may occur from the reactor vessel. Consequently, these components have to be inspected during service in order to determine whether or not they are affected by such defects. The stainless steel/Inconel stub tubes are welded at the upper end to the control rod housing, and at the lower end to the reactor vessel. Given the geometry, material, welds, stresses and corrosive elements associated with these components, intergranular corrosion cracking may occur in the areas adjacent to the welds. For this reason inspections capable of detecting this type of defect must be performed, with a view to determining the integrity of the component. Since 1981, more than 300 stub tube inspections have been carried out at different Spanish nuclear power plants. Initially, a single ultrasonic technique was used to detect the presence of indications; at present, and after several intermediate stages, various ultrasonic and eddy current techniques are used to dimension the length and depth of indications, determine their evolution and ensure dimensional control of the component for subsequent repair. Parallel to the development of non destructive testing techniques, mechanical scanning equipment has been designed and manufactured for use in test performance. Throughout development of these techniques, and prior to application in the field, different validation tests have been performed, initially using blocks containing artificial reflectors and subsequently blocks with actual crack-type reflectors. (author)

  18. Reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    The steel plates and/or forgings and welds in the beltline region of a reactor pressure vessel (RPV) are subject to embrittlement from neutron irradiation. This embrittlement causes the fracture toughness of the beltline materials to be less than the fracture toughness of the unirradiated material. Material properties of RPVs that have been irradiated and embrittled are recoverable through thermal annealing of the vessel. The amount of recovery primarily depends on the level of the irradiation embrittlement, the chemical composition of the steel, and the annealing temperature and time. Since annealing is an option for extending the service lives of RPVs or establishing less restrictive pressure-temperature (P-T) limits; the industry, the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) have assisted in efforts to determine the viability of thermal annealing for embrittlement recovery. General guidance for in-service annealing is provided in American Society for Testing and Materials (ASTM) Standard E 509-86. In addition, the American Society of Mechanical Engineers (ASME) Code Case N-557 addresses annealing conditions (temperature and duration), temperature monitoring, evaluation of loadings, and non-destructive examination techniques. The NRC thermal annealing rule (10 CFR 50.66) was approved by the Commission and published in the Federal Register on December 19, 1995. The Regulatory Guide on thermal annealing (RG 1.162) was processed in parallel with the rule package and was published on February 15, 1996. RG 1.162 contains a listing of issues that need to be addressed for thermal annealing of an RPV. The RG also provides alternatives for predicting re-embrittlement trends after the thermal anneal has been completed. This paper gives an overview of methodology and recent technical references that are associated with thermal annealing. Results from the DOE annealing prototype demonstration project, as well as NRC activities related to the

  19. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  20. Neutron flux calculation and fluence in the encircling of the core and vessel of a reactor BWR

    International Nuclear Information System (INIS)

    One of the main objectives related to the safety of any nuclear power plant, including the nuclear power plant of Laguna Verde is to ensure the structural integrity of reactor pressure vessel. To identify and quantify the damage caused by neutron irradiation in the vessel of any nuclear reactor, it is necessary to know both the neutron flux and the neutron fluence that the vessel has been receiving during its operation lifetime, and that the damage observed by mechanical testing are products of microstructural effects induced by neutron irradiation; therefore, it is important the study and prediction of the neutron flux in order to have a better understanding of the damage that these materials are receiving. The calculation here described uses the DORT code, which solves the neutron transport equation in discrete ordinates in two dimensions (x-y, r-θ and r-z), according to a regulatory guide, it should make an approximation of the neutron flux in three dimensions by the so called synthesis method. It is called in that way because it achieves a representation of 3 Dimensional neutron flux combining or summarizing the fluxes calculated by DORT r-θ, r-z and r. This work presents the application of synthesis method, according to Regulatory Guide 1190, to determine the 3 Dimensional fluxes in internal BWR reactor using three different spatial meshes. The results of the neutron flux and fluence, using three different meshes in the directions r, θ and z were compared with results reported in the literature obtaining a difference not larger than 9.61%, neutron flux reached its maximum, 1.58 E + 12 n/cm2s, at a height H 4 (239.07 cm) and angle 32.236o in the core shroud and 4.00 E + 09 n/cm2s at a height H 4 and angle 35.27o in the inner wall of the reactor vessel, positions that are consistent to within ±10% over the ones reported in the literature. (Author)

  1. Wrapped Wire Detects Rupture Of Pressure Vessel

    Science.gov (United States)

    Hunt, James B.

    1990-01-01

    Simple, inexpensive technique helps protect against damage caused by continuing operation of equipment after rupture or burnout of pressure vessel. Wire wrapped over area on outside of vessel where breakthrough most likely. If wall breaks or burns, so does wire. Current passing through wire ceases, triggering cutoff mechanism stopping flow in vessel to prevent further damage. Applied in other situations in which pipes or vessels fail due to overpressure, overheating, or corrosion.

  2. Evaluation of pressure transitories in BWR type reactors using the BWRDYN code; Evaluacion de transitorios de presion en reactores tipo BWR usando el codigo BWRDYN

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez P, J.A. [ESIME, Unidad Profesional Azcapotzalco, Av. de las Granjas 682, 02550 Mexico D.F. (Mexico)]. e-mail: jrodriguez@ipn.mx

    2007-07-01

    Several simulations of pressure transitory for a nucleo electric power station with BWR/4 type reactor were carried out. The simulated pressure transitories were made for the Peach Bottom 2 Nucleo electric central. Also, it was carried out for the same Plant the simulation of the turbine shot with derivation to the main condenser, of the reference case (benchmark) outlined by the Organization for the Cooperation and the Economic Development and of the Commission Regulatory in Nuclear matter of the United States of America. As tool to carry out the simulations of the transitory ones, the BWRDYN code developed by the Japan Energy Research Institute was used. Among the main suppositions and models that it includes the BWRDYN code its can be mentioned: a) that of punctual kinetics that calculates the neutron flow; for the calculation of the fuel temperature, this it is divided in nodes in the radial and axial directions, the wrapper is considered like a region in the radial direction; c) the pressure is supposed that it is uniform inside the reactor vessel; and d) the thermal hydraulic pattern of the reactor vessel is divided in five regions and the core is divided in several nodes to take into account the distribution of holes in the axial direction. The modeling of the control systems of the feeding water system is also included, of the pressure regulator and of the recirculation system. The systems of what is known as plant balance are also modeled. The numeric results of the simulations provide valuable information of the behavior of the nucleo electric central. The obtained results of the simulation of the reference case agree acceptably with the measurements data, when comparing them with the measurements made in the Peach Bottom 2 Central. The obtained results of each simulation are fundamental to evaluate the transitory one, as well as to delineate the sequence and the impact of diverse events that they happen during the same one transitory. In the case of the

  3. Computerized reactor pressure vessel materials information system

    International Nuclear Information System (INIS)

    A computerized information system for storage and retrieval of reactor pressure vessel materials data was established, as part of Task Action Plan A-11, Reactor Vessel Materials Toughness. Data stored in the system are necessary for evaluating the resistance of reactor pressure vessels to flaw-induced fracture. This report includes (1) a description of the information system; (2) guidance on accessing the system; and (3) a user's manual for the system

  4. Mark I 1/12-scale pressure suppression pool swell tests. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Torbeck, J.E.; Galyardt, D.L.; Walker, J.P.

    1976-05-01

    A second series of 1/12-scale tests of the Mark I BWR containment have been run to define the torus and ring header loads resulting from pressure suppression pool swell following a postulated LOCA. These tests were conducted following modification of the test section used for earlier tests to tighten the sealing and improve control of the test conditions. Forty-two tests were performed, investigating the sensitivity of the pool response to drywell pressurization rate, initial downcomer submergence, initial system pressure and initial drywell/wetwell pressure differential, covering the range of scaled Mark I expected conditions (on the basis of the FSAR).

  5. Calculation of the neutron flux and fluence in the covering of the nucleus and the vessel of a BWR; Calculo del flujo neutronico y fluencia en la envolvente del nucleo y la vasija de un reactor nuclear BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: evalle@esfm.ipn.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    One of the main objectives related with the safety in any nuclear power plant, including the nuclear power plant of Laguna Verde, is to guarantee the structural integrity of the pressure vessel of the reactor. To identify and quantifying the damage caused be neutron irradiation in the vessel of any nuclear reactor, is necessary to know as much the neutron flux as the fluence that it has been receiving during their time of operation life, since the observables damages by means of tests mechanics are products of micro-structural effects, induced by neutron irradiation, therefore, is important the study and prediction of the neutron flux to have a better knowledge of the damage that are receiving these materials. In our calculation the code DORT was used, which solves the transport equation in discreet coordinates and in two dimensions (x-y, r-{theta} and r-z), in accord to the regulator guide, it requires to make and approach of the neutron flux in three dimensions by means of the Synthesis Method. Whit this method is possible to achieve a representation of the flux in 3D combining or synthesizing the calculated fluxes by DORT code in r-{theta}, r-z and r. In this work the application of the Synthesis Method is presented, according to the Regulator Guide 1.190, to determine the fluxes 3D in the interns of a BWR using three different space meshes. (Author)

  6. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  7. High Toughness Light Weight Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is a pressure vessel with 25% better Fracture Strength over equal strength designed Fiberglass to help reduce 10 to 25% weight for aerospace use. Phase I...

  8. Pressure suppression pool mixing in passive advanced BWR plants

    International Nuclear Information System (INIS)

    In the SBWR passive boiling water reactor, the long-term post-accident containment pressure is determined by the combination of noncondensible gas pressure and steam pressure in the wetwell gas space. The suppression pool (SP) surface temperature, which determines the vapor partial pressure, is very important to overall containment performance. Therefore, the thermal stratification of the SP due to blowdown is of primary importance. This work looks at the various phases and phenomena present during the blowdown event and identifies those that are important to thermal stratification, and the scaling necessary to model them in reduced size tests. This is important in determining which of the large body of blowdown to SP data is adequate for application to the stratification problem. The mixing by jets from the main vents is identified as the key phenomena influencing the thermal response of the suppression pool and analytical models are developed to predict the jet influence on thermal stratification. The analytical models are implemented into a system simulation code, TRACG, and used to model thermal stratification behavior in a scaled test facility. The results show good general agreement with the test data

  9. Preliminary Assessment of the Possible BWR Core/Vessel Damage States for Fukushima Daiichi Station Blackout Scenarios Using RELAP/SCDAPSIM

    OpenAIRE

    C. M. Allison; J. K. Hohorst; B. S. Allison; D. Konjarek; Bajs, T.; R. Pericas; Reventos, F.; Lopez, R.

    2012-01-01

    Immediately after the accident at Fukushima Daiichi, Innovative Systems Software and other members of the international SCDAP Development and Training Program started an assessment of the possible core/vessel damage states of the Fukushima Daiichi Units 1–3. The assessment included a brief review of relevant severe accident experiments and a series of detailed calculations using RELAP/SCDAPSIM. The calculations used a detailed RELAP/SCDAPSIM model of the Laguna Verde BWR vessel and related re...

  10. Technical report on material selection and processing guidelines for BWR coolant pressure boundary piping

    International Nuclear Information System (INIS)

    It is the purpose of this report to set forth acceptable methods to reduce the stress corrosion cracking susceptibility of BWR piping and thereby also provide an increased level of reactor coolant pressure boundary integrity. Because the most straightforward and desirable approach or methods may not be practicable, or even possible, for all plants, the bases for varying degrees of conformance to the guidelines are provided. Augmented inservice inspection and leak detection requirements are established for plants that have not fully implemented the provisions presented

  11. Composite pressure vessels for commercial applications

    OpenAIRE

    Nunes, J. P.; Oliveira, Luís; J. F. Silva; Barros, B.; Amorim, Luís Manuel Machado de; Vasconcelos, M

    2013-01-01

    A new generation of composite pressure vessels for large scale market applications has been studied in this work. The vessels consist on a plastic liner wrapped with a filament winding glass fibre reinforced polymer matrix structure. A polyethylene (PE) was selected as liner for water at room temperatures applications and a thermosetting resin was used as matrices in the glass reinforced filament wound laminate. For applications having higher service temperatures, such as, termal accumulat...

  12. Blood vessels, circulation and blood pressure.

    Science.gov (United States)

    Hendry, Charles; Farley, Alistair; McLafferty, Ella

    This article, which forms part of the life sciences series, describes the vessels of the body's blood and lymphatic circulatory systems. Blood pressure and its regulatory systems are examined. The causes and management of hypertension are also explored. It is important that nurses and other healthcare professionals understand the various mechanisms involved in the regulation of blood pressure to prevent high blood pressure or ameliorate its damaging consequences.

  13. 46 CFR 50.30-15 - Class II pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Class II pressure vessels. 50.30-15 Section 50.30-15... Fabrication Inspection § 50.30-15 Class II pressure vessels. (a) Class II pressure vessels shall be subject to... pressure vessels shall be performed during the welding of the longitudinal joint. At this time the...

  14. 46 CFR 61.10-5 - Pressure vessels in service.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure vessels in service. 61.10-5 Section 61.10-5... INSPECTIONS Tests and Inspections of Pressure Vessels § 61.10-5 Pressure vessels in service. (a) Basic requirements. Each pressure vessel must be examined or tested every 5 years. The extent of the test...

  15. 46 CFR 50.30-20 - Class III pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Class III pressure vessels. 50.30-20 Section 50.30-20... Fabrication Inspection § 50.30-20 Class III pressure vessels. (a) Class III pressure vessels shall be subject... specifically exempted by other regulations in this subchapter. (b) For Class III welded pressure vessels,...

  16. Curved and conformal high-pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    2016-10-25

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.

  17. Characterizing Acoustic Sources in Pressure Vessels

    Institute of Scientific and Technical Information of China (English)

    李路明; 郑鹏; 刘时风; 施克仁

    2002-01-01

    The "dream" of acoustic emission (AE) testing is to get the acoustic source characteristics from AE signals, especially when evaluating aging pressure vessels. In this paper, the wavelet transform was used to analyze different AE signals from cracks (surface and inner), pencil-lead-breakage and leakage. These acoustic sources were applied on an actual pressure vessel. While the vessel experienced hydraulic pressure, their AE signals were acquired by a digital AE testing system with a wide frequency band transducer and a high speed A/D converter. Then, the digital signals were analyzed using the wavelet transform method. Correlation coefficients of the transformed data show that the different acoustic sources can be easily identified.

  18. Reactor Structural Materials: Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R

    2000-07-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported.

  19. Proactive life extension of pressure vessels

    Science.gov (United States)

    Mager, Lloyd

    1998-03-01

    For a company to maintain its competitive edge in today's global market every opportunity to gain an advantage must be exploited. Many companies are strategically focusing on improved utilization of existing equipment as well as regulatory compliance. Abbott Laboratories is no exception. Pharmaceutical companies such as Abbott Laboratories realize that reliability and availability of their production equipment is critical to be successful and competitive. Abbott Laboratories, like many of our competitors, is working to improve safety, minimize downtime and maximize the productivity and efficiency of key production equipment such as the pressure vessels utilized in our processes. The correct strategy in obtaining these objectives is to perform meaningful inspection with prioritization based on hazard analysis and risk. The inspection data gathered in Abbott Laboratories pressure vessel program allows informed decisions leading to improved process control. The results of the program are reduced risks to the corporation and employees when operating pressure retaining equipment. Accurate and meaningful inspection methods become the cornerstone of a program allowing proper preventative maintenance actions to occur. Successful preventative/predictive maintenance programs must utilize meaningful nondestructive evaluation techniques and inspection methods. Nondestructive examination methods require accurate useful tools that allow rapid inspection for the entire pressure vessel. Results from the examination must allow the owner to prove compliance of all applicable regulatory laws and codes. At Abbott Laboratories the use of advanced NDE techniques, primarily B-scan ultrasonics, has provided us with the proper tools allowing us to obtain our objectives. Abbott Laboratories uses B-scan ultrasonics utilizing a pulse echo pitch catch technique to provide essential data on our pressure vessels. Equipment downtime is reduced because the nondestructive examination usually takes

  20. PWR pressure vessel integrity during overcooling accidents

    International Nuclear Information System (INIS)

    Pressurized water reactors are susceptible to certain types of hypothetical accidents that under some circumstances, including operation of the reactor beyond a critical time in its life, could result in failure of the pressure vessel as a result of propagation of crack-like defects in the vessel wall. The accidents of concern are those that result in thermal shock to the vessel while the vessel is subjected to internal pressure. Such accidents, referred to as pressurized thermal shock or overcooling accidents (OCA), include a steamline break, small-break LOCA, turbine trip followed by stuck-open bypass valves, the 1978 Rancho Seco and the TMI accidents and many other postulated and actual accidents. The source of cold water for the thermal shock is either emergency core coolant or the normal primary-system coolant. ORNL performed fracture-mechanics calculations for a steamline break in 1978 and for a turbine-trip case in 1980 and concluded on the basis of the results that many more such calculations would be required. To meet the expected demand in a realistic way a computer code, OCA-I, was developed that accepts primary-system temperature and pressure transients as input and then performs one-dimensional thermal and stress analyses for the wall and a corresponding fracture-mechanics analysis for a long axial flaw. The code is briefly described, and its use in both generic and specific plant analyses is discussed

  1. Pressurized wet digestion in open vessels.

    Science.gov (United States)

    Maichin, B; Zischka, M; Knapp, G

    2003-07-01

    The High Pressure Asher (HPA-S) was adapted with a Teflon liner for pressurized wet digestion in open vessels. The autoclave was partly filled with water containing 5% (vol/vol) hydrogen peroxide. The digestion vessels dipped partly into the water or were arranged on top of the water by means of a special rack made of titanium or PTFE-coated stainless steel. The HPA-S was closed and pressurized with nitrogen up to 100 bars. The maximum digestion temperature was 250 degrees C for PFA vessels and 270 degrees C for quartz vessels. Digestion vessels made of quartz or PFA-Teflon with volumes between 1.5 mL (auto sampler cups) and 50 mL were tested. The maximum sample amount for quartz vessels was 0.5-1.5 g and for PFA vessels 0.2-0.5 g, depending on the material. Higher sample intake may lead to fast reactions with losses of digestion solution. The samples were digested with 5 mL HNO(3) or with 2 mL HNO(3)+6 mL H(2)O+2 mL H(2)O(2). The total digestion time was 90-120 min and 30 min for cooling down to room temperature. Auto sampler cups made of PFA were used as digestion vessels for GFAAS. Sample material (50 mg) was digested with 0.2 mL HNO(3)+0.5 mL H(2)O+0.2 mL H(2)O(2). The analytical data of nine certified reference materials are also within the confidential intervals for volatile elements like mercury, selenium and arsenic. No cross contamination between the digestion vessels could be observed. Due to the high gas pressure, the diffusion rate of volatile species is low and losses of elements by volatilisation could be observed only with diluted nitric acid and vessels with large cross section. In addition, cocoa, walnuts, nicotinic acid, pumpkin seeds, lubrication oil, straw, polyethylene and coal were digested and the TOC values measured. The residual carbon content came to 0.2-10% depending on the sample matrix and amount. PMID:12802569

  2. 46 CFR 115.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  3. Heating of reactor pressure vessel bottom head and penetrations in a severe reactor accident

    International Nuclear Information System (INIS)

    The report describes the fundamentals of heat conductivity and convection and numerical methods like finite difference and control volume method for calculation of the thermal history of a reactor pressure vessel bottom head and penetrations. Phase changes from solids to liquids are considered. Time integration is performed by explicit or implicit method. Developed computer codes for thermal conductivity and convection analyses and codes for graphical visualization are described. The codes are applied to two practical cases. They deal with analyses of Swiss CORVIS-experiments and analyses of control rod and instrument penetrations in a BWR bottom head. A model for calculation of effective thermal conductivity of granular corium is developed. The work is also related to EU MVI-project (Core Melt-Pressure Vessel Interactions During a Light Water Reactor Severe Accident), whose coordinator is Prof. B. R. Sehgal at Royal Institute of Technology in Stockholm. (orig.) (11 refs.)

  4. (Irradiation embrittlement of reactor pressure vessels)

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, W.R.

    1990-09-24

    The traveler served as a member of the two-man US Nuclear Regulatory Commission sponsored team who visited the Prometey Complex in Leningrad to assess the potential for expanded cooperative research concerning integrity of the primary pressure boundary in commercial light-water reactors. The emphasis was on irradiation embrittlement, structural analysis, and fracture mechanics research for reactor pressure vessels. At the irradiation seminar in Cologne, presentations were made by German, French, Finnish, Russian, and US delegations concerning many aspects of irradiation of pressure vessel steels. The traveler made presentations on mechanisms of irradiation embrittlement and on important aspects of the Heavy-Section Steel Irradiation Program results of irradiated fracture mechanics tests.

  5. TAPS pressure vessel surveillance - results and evaluation

    International Nuclear Information System (INIS)

    SA302B (nickel modified) steel cladded with stainless steel is used as the pressure vessel material for the two 210 MWe boiling water reactors of the Tarapur Atomic Power Station. Charpy V-notch impact surveillance specimens representing the pressure vessel belt-line base, weld and the heat affected zone were irradiated at the wall and shroud locations. Some of these specimens were removed after 6.5 effective full power years (EFPY) of reactor operation. The neutron fluences at the locations were 5.31 x 1017 and 4.88 x 1018 n/cm2 (E > 1 MeV). The surveillance data generated from specimens removed after 6.5 EFPY were evaluated on the basis of USNRC Regulatory Guide 1.99, Revision 2, and the results had assured the integrity of the vessel beyond the end of design service life (EOL) of 40 years. The recent evaluation of the additional data generated from specimens removed after 13 EFPY has again confirmed the safety of the pressure vessel beyond EOL by an additional 20 EFPY. (author)

  6. Thermal hydraulics characterization of the core and the reactor vessel type BWR

    International Nuclear Information System (INIS)

    The thermal hydraulics design of a reactor type BWR 5 as the employees in the nuclear power plant of Laguna Verde involves the coupling of at least six control volumes: Pumps jet region, Stratification region, Core region, Vapor dryer region, Humidity separator region and Reactor region. Except by the regions of the core and reactor, these control volumes only are used for design considerations and their importance as operative data source is limited. It is for that is fundamental to complement the thermal hydraulics relations to obtain major data that allow to determine the efficiency of internal components, such as pumps jet, humidity separator and vapor dryer. Like example of the previous thing, calculations are realized on the humidity of the principal vapor during starting, comparing it with the values at the moment incorporated in the data banks of the computers of process of both units. (Author)

  7. Numerical simulations of pressure fluctuations at branch piping in BWR main steam line

    International Nuclear Information System (INIS)

    The power uprating of a nuclear power plant may increase/accelerate degradation phenomena such as flow-induced vibration and wall thinking. A steam dryer was damaged by a high cycle fatigue due to an acoustic-induced vibration at the branch piping of safety relief valves (SRVs) in main steam lines. In this study, we conducted the numerical simulations of steam/air flow around a simplified branch piping to clarify the basic characteristics of resonance. LES simulations were conducted in ordinary pressure/temperature air and steam under BWR plant conditions. In both cases, the excitation of the pressure fluctuations at the branch was observed under some inlet velocity conditions. These fluctuations and inlet conditions were normalized and the obtained results were compared. The normalized results showed that the range and maximum amplitude of pressure fluctuations were almost the same in low-pressure/temperature air and high-pressure/temperature steam. We found that ordinary pressure/temperature air experiments and simulations can possibly clarify the characteristics of the resonance in high-pressure/temperature steam. (author)

  8. Conformable pressure vessel for high pressure gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  9. Composite Pressure Vessel Including Crack Arresting Barrier

    Science.gov (United States)

    DeLay, Thomas K. (Inventor)

    2013-01-01

    A pressure vessel includes a ported fitting having an annular flange formed on an end thereof and a tank that envelopes the annular flange. A crack arresting barrier is bonded to and forming a lining of the tank within the outer surface thereof. The crack arresting barrier includes a cured resin having a post-curing ductility rating of at least approximately 60% through the cured resin, and further includes randomly-oriented fibers positioned in and throughout the cured resin.

  10. Kuosheng BWR/6 containment pressure and temperature responses after recirculation line break using GOTHIC code

    International Nuclear Information System (INIS)

    In this study, we presented the calculated results of the containment P/T (pressure and temperature) response after the recirculation line break (RCLB) accident of a GE-designed twin-unit BWR/6 plant, which can be served as the design basis for the containment system. During the simulation, a power of SPU (stretch power uprate) range was used and a model of the Mark III type containment was built using the GOTHIC (Generation of Thermal-Hydraulic Information for Containments) code. The calculated results, similar to the FSAR (Final Safety Analysis Report) results, indicate the GOTHIC code has the capability to simulate the containment P/T response to the RCLB accident. (author)

  11. Noninvasive blood pressure measurement in large vessels

    International Nuclear Information System (INIS)

    Pulse pressure in the aorta was evaluated by the measurement of pulse wave velocity (PWV) and blood flow velocity (BFV). PWV reflects the elasticity of the vessel and was determined by a time-of-flight method. BFV was measured by analyzing the change of magnetization decay due to flow in multiecho experiments. If one neglects pulse wave reflections at vascular branch points and flow resistance due to blood viscosity, pulse pressure is proportional to PWV and BFV. Noninvasive MR imaging measurements were obtained in 12 patients, all of whom underwent correlative arterial catheterization. Values varied between 35 and 100 mm Hg. The results demonstrated a high correlation between the two methods

  12. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. H.; Choi, S.; Park, J. S.; Lee, J. S.; Kim, D. O.; Hur, N. S.; Hur, H.; Yu, J. Y

    2008-09-15

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device.

  13. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device

  14. Modeling Scala Media as a Pressure Vessel

    Science.gov (United States)

    Lepage, Eric; Olofsson, A.˚Ke

    2011-11-01

    The clinical condition known as endolymphatic hydrops is the swelling of scala media and may result in loss in hearing sensitivity consistent with other forms of low-frequency biasing. Because outer hair cells (OHCs) are displacement-sensitive and hearing levels tend to be preserved despite large changes in blood pressure and CSF pressure, it seems unlikely that the OHC respond passively to changes in static pressures in the chambers. This suggests the operation of a major feedback control loop which jointly regulates homeostasis and hearing sensitivity. Therefore the internal forces affecting the cochlear signal processing amplifier cannot be just motile responses. A complete account of the cochlear amplifier must include static pressures. To this end we have added a third, pressure vessel to our 1-D 140-segment, wave-digital filter active model of cochlear mechanics, incorporating the usual nonlinear forward transduction. In each segment the instantaneous pressure is the sum of acoustic pressure and global static pressure. The object of the model is to maintain stable OHC operating point despite any global rise in pressure in the third chamber. Such accumulated pressure is allowed to dissipate exponentially. In this first 3-chamber implementation we explore the possibility that acoustic pressures are rectified. The behavior of the model is critically dependent upon scaling factors and time-constants, yet by initial assumption, the pressure tends to accumulate in proportion to sound level. We further explore setting of the control parameters so that the accumulated pressure either stays within limits or may rise without bound.

  15. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be tested and inspected in accordance with part 61, subpart 61.10, of this...

  16. 46 CFR 58.60-3 - Pressure vessel.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure vessel. 58.60-3 Section 58.60-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND... Pressure vessel. A pressure vessel that is a component in an industrial system under this subpart must...

  17. Computing the partial volume of pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Wiencke, Bent [Nestle USA, Corporate Engineering, 800 N. Brand Blvd, Glendale, CA 91203 (United States)

    2010-06-15

    The computation of the partial and total volume of pressure vessels with various type of head profiles requires detailed knowledge of the head profile geometry. Depending on the type of head profile the derivation of the equations can become very complex and the calculation process cumbersome. Certain head profiles require numerical methods to obtain the partial volume, which for most application is beyond the scope of practicability. This paper suggests a unique method that simplifies the calculation procedure for the various types of head profiles by using one common set of equations without the need for numerical or complex computation methods. For ease of use, all equations presented in this paper are summarized in a single table format for horizontal and vertical vessels. (author)

  18. Recent experience reactor pressure vessel manufacture

    International Nuclear Information System (INIS)

    This paper present the Framatome's recent experience in the manufacture of 1300 MWe PWR vessels; one shows how the very high standards of quality have been obtained to meet the stringent requirements. After a description of a pressure vessel, materials and forgings properties are presented. The nature and sequence of the main fabrication operations are reviewed. This paper deals after with the quality of welds, the preheating and post-heating equipment, the submerged arc welding process and procedures, the cladding process, and the under-clad cracking problems. Ultrasonic inspection procedures of the main welds are described with a comparison of RCCM (design and construction rules for mechanical components of PWR units) and Sizewell B specifications. Support of data on the reproductibility and effectiveness of ultrasonic examination and on the reliability given by repetitive inspection are presented

  19. Digital implementation, simulation and tests in MATLAB of the models of Steam line, the turbines, the pressure regulator of a BWR type nucleo electric power plant

    International Nuclear Information System (INIS)

    In this phase of the project they were carried out exhaustive tests to the models of the steam lines, turbines and pressure regulator of a BWR type nucleo electric central for to verify that their tendencies and behaviors are it more real possible. For it, it was necessary to also analyze the transfer functions of the different components along the steam line until the power generator. Such models define alone the dominant poles of the system, what is not limitation to reproduce a wide range of anticipated transitoriness of a power station operation. In the same manner, it was integrated and proved the integrated model form with the models of feeding water of the SUN-RAH, simulating the nuclear reactor starting from predetermined entrances of the prospective values of the vessel. Also it was coupled with the graphic interface developed with the libraries DirectX implementing a specific monitoring panel for this system. (Author)

  20. Structural integrity of nuclear reactor pressure vessels

    Science.gov (United States)

    Knott, John F.

    2013-09-01

    The paper starts from concerns expressed by Sir Alan Cottrell, in the early 1970s, related to the safety of the pressurized water reactor (PWR) proposed at that time for the next phase of electrical power generation. It proceeds to describe the design and operation of nuclear generation plant and gives details of the manufacture of PWR reactor pressure vessels (RPVs). Attention is paid to stress-relief cracking and under-clad cracking, experienced with early RPVs, explaining the mechanisms for these forms of cracking and the means taken to avoid them. Particular note is made of the contribution of non-destructive inspection to structural integrity. Factors affecting brittle fracture in RPV steels are described: in particular, effects of neutron irradiation. The use of fracture mechanics to assess defect tolerance is explained, together with the failure assessment diagram embodied in the R6 procedure. There is discussion of the Master Curve and how it incorporates effects of irradiation on fracture toughness. Dangers associated with extrapolation of data to low probabilities are illustrated. The treatment of fatigue-crack growth is described, in the context of transients that may be experienced in the operation of PWR plant. Detailed attention is paid to the thermal shock associated with a large loss-of-coolant accident. The final section reviews the arguments advanced to justify 'Incredibility of Failure' and how these are incorporated in assessments of the integrity of existing plant and proposed 'new build' PWR pressure vessels.

  1. Dictionary of pressure vessel and piping technology

    International Nuclear Information System (INIS)

    A specialised dictionary has been compiled containing the appropriate English and German terms in the following technical fields: materials science, welding, destructive and non-destructive testing, thermal and mass transfer, the design and construction in particular of pressure vessels, tanks, heat exchangers, piping, expansion joints, valves, and components associated with the above fields. This dictionary is the result of many years spent in evaluating technical terminology from the relevant American and British regulations, technical rules, standards, and specifications (see bibliography) and correlating these with the terminology of comparable German regulations, rules and standards, together with the essential technical literature. (orig.)

  2. Pressure vessel calculations for VVER-440 reactors.

    Science.gov (United States)

    Hordósy, G; Hegyi, Gy; Keresztúri, A; Maráczy, Cs; Temesvári, E; Vértes, P; Zsolnay, E

    2005-01-01

    For the determination of the fast neutron load of the reactor pressure vessel a mixed calculational procedure was developed. The procedure was applied to the Unit II of Paks NPP, Hungary. The neutron source on the outer surfaces of the reactor was determined by a core design code, and the neutron transport calculations outside the core were performed by the Monte Carlo code MCNP. The reaction rate in the activation detectors at surveillance positions and at the cavity were calculated and compared with measurements. In most cases, fairly good agreement was found.

  3. Device for extending the life of a pressure vessel, particularly a reactor pressure vessel

    International Nuclear Information System (INIS)

    It is proposed to mount a heating device firmly in the annular space between the outer jacket of the reactor pressure vessel and its insulation, which will from time temper the particularly endangered parts of the wall of the pressure vessel and therefore increase their life expectancy. Some constructional details are given in the proposal. Control will be by temperature measuring devices (thermocouples), which can control the heat output. Induction coils, heating resistors, heat radiators and also hot fluids (i.e. gases or liquids) are mentioned as possible heating elements. (UWI) 891 HP/UWI 892 MB

  4. Neural Network Burst Pressure Prediction in Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Hill, Eric v. K.; Dion, Seth-Andrew T.; Karl, Justin O.; Spivey, Nicholas S.; Walker, James L., II

    2007-01-01

    Acoustic emission data were collected during the hydroburst testing of eleven 15 inch diameter filament wound composite overwrapped pressure vessels. A neural network burst pressure prediction was generated from the resulting AE amplitude data. The bottles shared commonality of graphite fiber, epoxy resin, and cure time. Individual bottles varied by cure mode (rotisserie versus static oven curing), types of inflicted damage, temperature of the pressurant, and pressurization scheme. Three categorical variables were selected to represent undamaged bottles, impact damaged bottles, and bottles with lacerated hoop fibers. This categorization along with the removal of the AE data from the disbonding noise between the aluminum liner and the composite overwrap allowed the prediction of burst pressures in all three sets of bottles using a single backpropagation neural network. Here the worst case error was 3.38 percent.

  5. Reactor pressure vessel structural integrity research

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, W.E.; Corwin, W.R. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallows surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT{sub NDT}) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on a shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  6. BWR type nuclear reactor

    International Nuclear Information System (INIS)

    Purpose: To simplify the structure of an emergency core cooling system while suppressing the flow out of coolants upon rapture accidents in a coolant recycling device of BWR type reactors. Constitution: Recirculation pumps are located at a position higher than the reactor core in a pressure vessel, and the lower plenum is bisected vertically by a partition plate. Further, a gas-liquid separator is surrounded with a wall and the water level at the outer side of the wall is made higher than the water level in the inside of the wall. In this structure, coolants are introduced from the upper chamber in the lower plenum into the reactor core, and the steams generated in the reactor core are separated in the gas-liquid separator, whereby the separated liquid is introduced as coolants by way of the inner chamber into the lower chamber of the lower plenum and further sent by way of the outer chamber into the reactor core. Consequently, idle rotation of the recycling pumps due to the flow-in of saturated water is prevented and loss of coolants in the reactor core can also be prevented upon raptures in the pipeway and the driving section of the pump connected to the pressure vessel and in the bottom of the pressure vessel. (Horiuchi, T.)

  7. Pressure Tube and Pressure Vessel Reactors; certain comparisons

    International Nuclear Information System (INIS)

    In a comparison between pressure tube and pressure vessel type reactors for pressurized D2O coolant and natural uranium, one can say that reactors of these two types having the same net electrical output, overall thermal efficiency, reflected core volume and fuel lattice have roughly the same capital cost. In these circumstances, the fuel burn-up obtainable has a significant influence on the relative economics. Comparisons of burn-up values made on this basis are presented in this report and the influence on the results of certain design assumptions are discussed. One of the comparisons included is based on the dimensions and ratings proposed for CANDU. Moderator temperature coefficients are compared and differences in kinetic behaviour which generally result in different design philosophies for the two types are mentioned, A comparison of different methods of obtaining flux flattening is presented. The influence of slight enrichment and other coolants, (boiling D2O and gases) on the comparison between pressure tube and pressure vessel designs is discussed and illustrated with comparative designs for 400 MW electrical output. This paper was presented at the EAES Enlarged Symposium on Heterogeneous Heavy Water Power Reactors, Mallorca, October 10 - 14, 1960

  8. Estimate of radiation-induced steel embrittlement in the BWR core shroud and vessel wall from reactor-grade MOX/UOX fuel for the nuclear power plant at Laguna Verde, Veracruz, Mexico

    Science.gov (United States)

    Vickers, Lisa Rene

    The government of Mexico has expressed interest to utilize the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18--30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons. There is concern that a core with a fraction of MOX fuel (i.e., increased 239Pu wt%) would increase the radiation-induced steel embrittlement within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation-induced steel embrittlement within the core shroud and vessel wall is a concern because of the potentially adverse affect to plant and public safety, environment, and operating life of the reactor. This dissertation provides computational results of the neutron fluence, flux, energy spectrum, and radiation damage displacements per atom per second (dpa-s-1) in steel within the core shroud and vessel wall of the Laguna Verde Unit 1 BWR. The results were computed using the nuclear data processing code NJOY99 and the continuous energy Monte Carlo Neutral Particle transport code MCNP4B. The MCNP4B model of the reactor core was for maximum core loading fractions of ⅓ MOX and ⅔ UOX reactor-grade fuel in an equilibrium core. The primary conclusion of this dissertation was that the addition of the maximum fraction of ⅓ MOX fuel to the LV1 BWR core did significantly accelerate the radiation-induced steel embrittlement such that without mitigation of steel embrittlement by periodic thermal annealing or reduction in operating parameters such as, neutron fluence, core temperature and pressure, it posed a potentially adverse affect to the plant and public safety, environment, and operating life of the reactor.

  9. Asymmetric Bulkheads for Cylindrical Pressure Vessels

    Science.gov (United States)

    Ford, Donald B.

    2007-01-01

    Asymmetric bulkheads are proposed for the ends of vertically oriented cylindrical pressure vessels. These bulkheads, which would feature both convex and concave contours, would offer advantages over purely convex, purely concave, and flat bulkheads (see figure). Intended originally to be applied to large tanks that hold propellant liquids for launching spacecraft, the asymmetric-bulkhead concept may also be attractive for terrestrial pressure vessels for which there are requirements to maximize volumetric and mass efficiencies. A description of the relative advantages and disadvantages of prior symmetric bulkhead configurations is prerequisite to understanding the advantages of the proposed asymmetric configuration: In order to obtain adequate strength, flat bulkheads must be made thicker, relative to concave and convex bulkheads; the difference in thickness is such that, other things being equal, pressure vessels with flat bulkheads must be made heavier than ones with concave or convex bulkheads. Convex bulkhead designs increase overall tank lengths, thereby necessitating additional supporting structure for keeping tanks vertical. Concave bulkhead configurations increase tank lengths and detract from volumetric efficiency, even though they do not necessitate additional supporting structure. The shape of a bulkhead affects the proportion of residual fluid in a tank that is, the portion of fluid that unavoidably remains in the tank during outflow and hence cannot be used. In this regard, a flat bulkhead is disadvantageous in two respects: (1) It lacks a single low point for optimum placement of an outlet and (2) a vortex that forms at the outlet during outflow prevents a relatively large amount of fluid from leaving the tank. A concave bulkhead also lacks a single low point for optimum placement of an outlet. Like purely concave and purely convex bulkhead configurations, the proposed asymmetric bulkhead configurations would be more mass-efficient than is the flat

  10. Containment venting sliding pressure venting process for PWR and BWR plants

    International Nuclear Information System (INIS)

    In order to reduce the residual risk associated with hypothetical severe nuclear accidents, nuclear power plants in Germany as well as in certain other European countries have been or will be backfitted with a system for filtered containment venting. During venting system process design, particular importance is attached to the requirements regarding, for example, high aerosol loading capability, provision for decay heat removal from the scrubber unit, the aerosol spectrum to be retained and entirely passive functioning of the scrubber unit. The aerosol spectrum relevant for process design and testing varies depending on aerosol concentrations, the time at which venting is commenced and whether there is an upstream wetwell, etc. Because of this the Reactor Safety Commission in Germany has specified that SnO2 with a mass mean diameter of approximately 0.5 μm should be used as an enveloping test aerosol. To meet the above-mentioned requirements, a combined venturi scrubber system was developed which comprises a venturi section and a filter demister section and is operated in the sliding pressure mode. This scrubber system was tested using a full-scale model and has now been installed in 14 PWR and BWR plants in Germany and Finland

  11. Reactor pressure vessel stud management automation strategies

    International Nuclear Information System (INIS)

    The adoption of hydraulic tensioner technology as the standard for bolting and unbolting the reactor pressure vessel (RPV) head 35 yr ago represented an incredible commitment to new technology, but the existing technology was so primitive as to be clearly unacceptable. Today, a variety of approaches for improvement make the decision more difficult. Automation in existing installations must meet complex physical, logistic, and financial parameters while addressing the demands of reduced exposure, reduced critical path, and extended plant life. There are two generic approaches to providing automated RPV stud engagement and disengagement: the multiple stud tensioner and automated individual tools. A variation of the latter would include the handling system. Each has its benefits and liabilities

  12. Stress intensities in flawed pressure vessels

    International Nuclear Information System (INIS)

    A technique for determining the stess intensity factor (SIF) near pressure vessel flaws or cracks experimentally from photoelastic data for use in two-dimensional problems was developed in the 1950's. This technique was modified and extended to a variety of two-dimensional problems. The technique has been refined further and what has evolved may be regarded as a hybrid technique which affects a marriage between ''frozen stress'' photoelastic results and a simple least-squares digital computer program for estimating SIF values in three-dimensional problems. This technique, in its original modified form, has been shown to be applicable to a study of surface flaws and the applicability of the method to complex crack body geometries of current technological importance are discussed. The analytical foundations of the method are reviewed

  13. Development of electrical cable penetration for secondary containment vessel of BWR type nuclear power plants

    International Nuclear Information System (INIS)

    The penetration holes in the walls and floors of the secondary containment vessel of the nuclear power plants must be air-tight, shielded against the radiation, and fire-resistant. At present, the penetration holes are air-tightened with iron plates and sealing material after the cables are laid. However, installation of a number of cables and its sealing work now pose a serious problem in nuclear power plant construction in relation to the installation of reactor system components. The authors have recently developed a method for electric wall penetration in an attempt to solve this problem. This method is provided with prefabricated cable portions for wall penetration, reducing field work, saving labor in wiring work through use of multicore cables, and increasing the reliability of the sealing and caulking work. This wall penetration consists of an iron sleeves to be embedded into the wall, a header-plate, and an assembly of modules in which a specified number of insulated conductors are set up, and furthermore termination boxes are installed on both ends of the penetration holes. This paper deals with the design standard and construction of the wall penetration and the results of tests which were performed under various environmental conditions, which has shown excellent properties, such as sealing quality and electric characteristics, of the wall penetration. (author)

  14. Thermal hydraulics characterization of the core and the reactor vessel type BWR; Caracterizacion termohidraulica del nucleo y de la vasija de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Zapata Y, M.; Lopez H, L.E. [CFE, Carretera Cardel-Nautla Km. 42.5, Municipio Alto Lucero, Veracruz (Mexico)]. e-mail: marxlenin.zapata@cfe.gob.mx

    2008-07-01

    The thermal hydraulics design of a reactor type BWR 5 as the employees in the nuclear power plant of Laguna Verde involves the coupling of at least six control volumes: Pumps jet region, Stratification region, Core region, Vapor dryer region, Humidity separator region and Reactor region. Except by the regions of the core and reactor, these control volumes only are used for design considerations and their importance as operative data source is limited. It is for that is fundamental to complement the thermal hydraulics relations to obtain major data that allow to determine the efficiency of internal components, such as pumps jet, humidity separator and vapor dryer. Like example of the previous thing, calculations are realized on the humidity of the principal vapor during starting, comparing it with the values at the moment incorporated in the data banks of the computers of process of both units. (Author)

  15. NDE and Stress Monitoring on Composite Overwrapped Pressure Vessels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Damage caused by composite overwrapped pressure vessels (COPVs) failure can be catastrophic. Thus, monitoring condition and stress in the composite overwrap,...

  16. Simplified distributed parameters BWR dynamic model for transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico, DF 09340 (Mexico)]. E-mail: gepe@xanum.uam.mx; Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragan 779, Col. Narvarte, Mexico, DF 03020 (Mexico); Vazquez-Rodriguez, Alejandro [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico, DF 09340 (Mexico)

    2006-09-15

    This paper describes a simplified model to perform transient and linear stability analysis for a typical boiling water reactor (BWR). The simplified transient model was based in lumped and distributed parameters approximations, which includes vessel dome and the downcomer, recirculation loops, neutron process, fuel pin temperature distribution, lower and upper plenums reactor core and pressure and level controls. The stability was determined by studying the linearized versions of the equations representing the BWR system in the frequency domain. Numerical examples are used to illustrate the wide application of the simplified BWR model. We concluded that this simplified model describes properly the dynamic of a BWR and can be used for safety analysis or as a first approach in the design of an advanced BWR.

  17. Simplified system for the pressure control of a Nucleo electric central of the BWR type

    International Nuclear Information System (INIS)

    One of the main preoccupations of the electric power generator stations is the appropriate operation of the same ones. The operators must be qualified to respond in an adequate way and to be able to take to these power stations to an optimal, sure and stable operation condition under any circumstance. The Laboratory of Analysis in Nuclear Reactors Engineering (LAIRN) of the Engineering Faculty of UNAM (Fl) in collaboration with the International Atomic Energy Agency (IAEA), it develops an interactive classroom simulator in which simulations of the phenomena which take place in a nuclear power station are executed. The classroom simulator bases its operation on specialized nuclear codes feeding interactive graphic unfolding with those that it is possible to make a monitoring, supervision and control of the behavior of the power station under any operation regime, either in normal operation, transitory events or postulated accident sequence. The development of this classroom simulator includes a modular and re configurable structure. Due to it is indispensable to count with a higher inter activity with the system it is included the simulation of the control system of the plant and inside the same, one of those more important it is the reactor pressure control system. The present work describes the conceptual design and the used methodology for the development and implementation in the simulator of a simplified model of the pressure control system for a BWR generic central. The reach of the development will allow to accomplish the necessary tests to demonstrate that this has an adequate performance according to the carried out simplifications. (Author)

  18. Radiation effects on reactor pressure vessel supports

    International Nuclear Information System (INIS)

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue

  19. Fracture assessment for reactor pressure vessel flaw

    International Nuclear Information System (INIS)

    Background: A flaw is discovered by ultrasonic test at reactor pressure vessel during the service. Purpose: In order to insure the structural integrity of RPV, it is necessary to perform the fracture analysis for RPV flaw. Methods: According to ASME rule, fracture analysis is performed, which the flaw is assumed as a circumferential surface crack and crack depth is 10.1 mm. The analysis work contains the calculation of fatigue crack growth and the assessment of stress intensity factor under several category conditions. The loads are the temperature fluctuation, pressure and weld residual stress. The concerned category conditions include normal and upset conditions, emergency conditions, and faulted conditions. Results: The analysis results show that normal and upset conditions transient loading has little effect on the fatigue crack growth of low inner surface crack. The fatigue crack growth is about 0.228 mm at the end of 40 years service life. Conclusions: The stress intensity factor results of all conditions satisfy the requirement of ASME Rule. The RPV with flaw can continue service without repair. (author)

  20. Interpretation of Strain Measurements on Nuclear Pressure Vessels

    DEFF Research Database (Denmark)

    Andersen, Svend Ib Smidt; Engbæk, Preben

    1980-01-01

    Selected results from strain measurements on four nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzles, internal vessel structure and flange bolts...... with a negligible zeroshift. However, deviations from linear behaviour are observed in several cases. This nonlinearity can be explained by friction (flange connections) or by gaps (concentrical nozzles) in certain regions, whereas local plastic deformations during the first pressure loadings of the vessel seem...

  1. Preliminary Assessment of the Possible BWR Core/Vessel Damage States for Fukushima Daiichi Station Blackout Scenarios Using RELAP/SCDAPSIM

    Directory of Open Access Journals (Sweden)

    C. M. Allison

    2012-01-01

    Full Text Available Immediately after the accident at Fukushima Daiichi, Innovative Systems Software and other members of the international SCDAP Development and Training Program started an assessment of the possible core/vessel damage states of the Fukushima Daiichi Units 1–3. The assessment included a brief review of relevant severe accident experiments and a series of detailed calculations using RELAP/SCDAPSIM. The calculations used a detailed RELAP/SCDAPSIM model of the Laguna Verde BWR vessel and related reactor cooling systems. The Laguna Verde models were provided by the Comision Nacional de Seguridad Nuclear y Salvaguardias, the Mexican nuclear regulatory authority. The initial assessment was originally presented to the International Atomic Energy Agency on March 21 to support their emergency response team and later to our Japanese members to support their Fukushima Daiichi specific analysis and model development.

  2. Preliminary Assessment of the Possible BWR Core/Vessel Damage States for Fukushima Daiichi Station Blackout Scenarios Using RELAP/SCDAPSIM

    International Nuclear Information System (INIS)

    Immediately after the accident at Fukushima Daiichi, Innovative Systems Software and other members of the international SCDAP Development and Training Program started an assessment of the possible core/vessel damage states of the Fukushima Daiichi Units 13. The assessment included a brief review of relevant severe accident experiments and a series of detailed calculations using RELAP/SCDAPSIM. The calculations used a detailed RELAP/SCDAPSIM model of the Laguna Verde BWR vessel and related reactor cooling systems. The Laguna Verde models were provided by the Comision Nacional de Seguridad Nuclear y Salvaguardias, the Mexican nuclear regulatory authority. The initial assessment was originally presented to the International Atomic Energy Agency on March 21 to support their emergency response team and later to our Japanese members to support their Fukushima Daiichi specific analysis and model development.

  3. Variability of mechanical properties of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Causes of variability of mechanical properties nuclear pressure vessel steels are reviewed and discussed. The effects of product shape and size, processing history and heat treatment are investigated. Some quantitative informations are given on the scatter of mechanical properties of typical pressure vessel components. The necessity of using recommended or standardized properties for comparing mechanical properties before and after irradiation in pin pointed. (orig.)

  4. Quality assurance in fabrication of boilers and pressure vessels

    International Nuclear Information System (INIS)

    Quality assurance for safety and reliability of boilers and pressure vessels is a systematic approach involving various stages right from material identification to final stages of testing, transportation and storage before commissioning. This paper brings out various quality . Assurance aspects to be implemented by manufacturers of boilers and pressure vessels. 1 fig

  5. Inductive testing of reactor pressure vessels

    International Nuclear Information System (INIS)

    In Service Inspection of Reactor Pressure Vessels is mostly done with ultrasonics. Using special 2 crystal-probes good detectability is achieved for near surface defects. The problem is to detect closely spaced cracks, to decide if the defects are surface braking and, if not, to decide the remaining ligament. The purpose of this study is to investigate to what extent Eddy Current can solve these problems. Detecting surfacebreaking cracks and fields of cracks can be done using conventional Eddy Current techniques. Mapping of closely spaced cracks requires a small probe and a high frequency. Measurement of depths a larger probe, a lower frequency and knowledge of the crackfield since 2 closely spaced shallow cracks might be mistaken for one deep crack. Depths of singel cracks can be measured down to 7-8 mm. In closely spaced crackfields the depths can not be measured. The measurement is mostly based on amplitude. For not surface breaking defects the problem is to decide the ligament, i.e. the distance between surface and cracktip. To achieve good penetration a large probe, low frequency and high energy or pulsed energy is used. Ligament up to 4 mm can be measured with good accuracy. The measurements is mostly based on phase. Noise, which originates from rough surface, varied material structure and lift off, can be reduced using multi frequency mix, probe design and scanning pattern. (author)

  6. Construction and operation of pressure vessels. 2. ed.

    International Nuclear Information System (INIS)

    The safe operation and availability of pressure vessels depends on the quality of the components. Quality assurance measures are of particular importance in design, choice of material and material processing. The present state of design, calculations, materials, welding technique of very strong fine grained structural steel, heat treatment of welds, measurement technique in heat treatment and non-destructive testing are all described. Special attention is paid to safety of operation of pressure vessels and assessing faults in pressurized walls. (DG)

  7. Fatigue and fracture mechanics analysis of high pressure vessels

    International Nuclear Information System (INIS)

    A companion document to the ASME Boiler and Pressure Code, section VIII, Division 3 Alternative rules for Construction of High Pressure Vessels, emphasizes that Division 3 is 'intended for vessels in the design pressure range of about 10,000 to 165,000 psi: but no upper or lower limits are given nor are any upper limits implied for Divisions 1 and 2'. Although Division 3 includes much information on welded vessels, attention herein will be focused on the design of vessels that operate above 10,000 psi and are of monobloc or compound construction, using two or more cylindrical shells, that are forged from low- alloy high strength steel ingots. Threaded, pinned, or clamped closures are often used at one or both ends of such vessels; in some cases one end may be forged integrally with the cylindrical body, so-called 'blind end' closure. High pressure piping is connected to such vessels at holes in the end closures or at holes through the cylindrical part of the vessel, usually referred to as cross-bores. These vessels or components thereof may be overstrained (autofrettaged) to enhance static and/or fatigue performance. Division 3 was first published in 1997. In the interim there have been advances in the static, fatigue, and fracture analysis of such vessels and their closures and connections. The aim of this paper is to review some of these advances. (author)

  8. Design of pressure vessels using shape optimization: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Carbonari, R.C., E-mail: ronny@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Munoz-Rojas, P.A., E-mail: pablo@joinville.udesc.br [Department of Mechanical Engineering, Universidade do Estado de Santa Catarina, Bom Retiro, Joinville, SC 89223-100 (Brazil); Andrade, E.Q., E-mail: edmundoq@petrobras.com.br [CENPES, PDP/Metodos Cientificos, Petrobras (Brazil); Paulino, G.H., E-mail: paulino@uiuc.edu [Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Av., Urbana, IL 61801 (United States); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801-2906 (United States); Nishimoto, K., E-mail: knishimo@usp.br [Department of Naval Architecture and Ocean Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Silva, E.C.N., E-mail: ecnsilva@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil)

    2011-05-15

    Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. - Highlights: > Shape optimization of entire pressure vessel considering an integrated approach. > By increasing the number of spline knots, the convergence stability is improved. > The null angle condition gives lower stress values resulting in a better design. > The cylinder stresses are very sensitive to the cylinder length. > The shape optimization of the entire vessel must be considered for cylinder length.

  9. Evaluation of catastrophic failure risk in pressure vessels

    International Nuclear Information System (INIS)

    Within the Nordic countries a four-year research programme in the area of elastic-plastic fracture mechanics was initiated in 1985. Seven laboratories from Denmark, Finland, Norway and Sweden are participating in the programme. The main technical objective of the programme is to clarify how catastrophic fracture can be prevented in pressure vessels and piping by using the leak-before-break concept. The major experimental effort of the programme is destructive pressurization of a large size pressure vessel up to rupture. The vessel has dimensions similar to a nuclear reactor pressure vessel and it has been in operation for 20 years in a Finnish oil refinery plant. The materials characterization of the vessel has been partially carried out within an extensive Nordic round-robin programme. Two pressure tests have been carried out. In both tests an artificial sharp axial surface flaw was made on the inner wall of the vessel. The experimental details of the last test including repair welding of the vessel, flaw prepration, instrumentation and material characterization are described in this report. The fracture behaviour as well as experimental results are reported. The failure pressure is compared to estimates of the analytical pre-test calculations

  10. ASME code ductile failure criteria for impulsively loaded pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, Robert E.; Duffey, T. A. (Thomas A.); Rodriguez, E. A. (Edward A.)

    2003-01-01

    Ductile failure criteria suitable for application to impulsively loaded high pressure vessels that are designed to the rules of the ASME Code Section VI11 Division 3 are described and justified. The criteria are based upon prevention of load instability and the associated global failure mechanisms, and on protection against progressive distortion for multiple-use vessels. The criteria are demonstrated by the design and analysis of vessels that contain high explosive charges.

  11. Neutronic security calculus for the VVER-440 pressure vessel

    International Nuclear Information System (INIS)

    This paper shows how to estimate flow of quick neutrons as well as other structural components received by the vessel during its useful life span. This is done taking into account standard project loads. Values for the Lead Factor at the surface of the vessel are given also and finally critical fragility temperature is evaluated for the VVER-440 pressure vessel at the Juragua nuclear power station

  12. Influence of residual stresses on failure pressure of cylindrical pressure vessels

    Institute of Scientific and Technical Information of China (English)

    M. Jeyakumar; T. Christopher

    2013-01-01

    The utilization of pressure vessels in aerospace applications is manifold. In this work, finite element analysis (FEA) has been carried out using ANSYS software package with 2D axisym-metric model to access the failure pressure of cylindrical pressure vessel made of ASTM A36 carbon steel having weld-induced residual stresses. To find out the effect of residual stresses on failure pressure, first an elasto-plastic analysis is performed to find out the failure pressure of pressure vessel not having residual stresses. Then a thermo-mechanical finite element analysis is performed to assess the residual stresses developed in the pressure vessel during welding. Finally one more elasto-plastic analysis is performed to assess the effect of residual stresses on failure pressure of the pressure vessel having residual stresses. This analysis indicates reduction in the failure pressure due to unfavorable residual stresses.

  13. Heritability of retinal vessel diameters and blood pressure

    DEFF Research Database (Denmark)

    Taarnhøj, Nina C B B; Larsen, Michael; Sander, Birgit;

    2006-01-01

    and blood glucose, variations in retinal blood vessel diameters and blood pressure were predominantly attributable to genetic effects. A genetic influence may have a role in individual susceptibility to hypertension and other vascular diseases. The results suggest that retinal vessel diameters......PURPOSE: To assess the relative influence of genetic and environmental effects on retinal vessel diameters and blood pressure in healthy adults, as well as the possible genetic connection between these two characteristics. METHODS: In 55 monozygotic and 50 dizygotic same-sex healthy twin pairs......%-80%) for CRAE, 83% (95% CI: 73%-89%) for CRVE, and 61% (95% CI: 44%-73%) for mean arterial blood pressure (MABP). Retinal artery diameter decreased with increasing age and increasing arterial blood pressure. Mean vessel diameters in the population were 165.8 +/- 14.9 microm for CRAE, 246.2 +/- 17.7 microm...

  14. Strain limit dependence on stress triaxiality for pressure vessel steel

    Science.gov (United States)

    Deng, Y.-C.; Chen, G.; Yang, X.-F.; Xu, T.

    2009-08-01

    In this paper, the failure characteristics of pressure vessel materials were investigated, and measurement and analysis approaches for ductile fracture strains were studied. Based on uniaxial tensile tests of notched round bar specimens, combined with finite element analyses and microscopic observations of fracture surface, the relationships between the stress triaxiality factor and the ductile fracture strain are proposed for three typical Chinese pressure vessel steels, 16MnR, Q235 and 0Cr18Ni9. The comparison of experimental fracture strains with the multiaxial strain limit specified in ASME VIII-2 2007 shows that the strain limit criterion of ASME is suitable for carbon steels but not suitable for austenitic stainless steels for Chinese pressure vessel steels. To improve the calculation accuracy for fracture strain of materials and to develop the strain limit criterion for Chinese pressure vessel materials, more experimental studies and numerical analyses on fracture strain are necessary.

  15. Basic conceptions for reactor pressure vessel manipulators and their evaluation

    International Nuclear Information System (INIS)

    The study deals with application fields and basic design conceptions of manipulators in reactor pressure vessels as well as their evaluation. It is shown that manipulators supported at the reactor flange have essential advantages

  16. Calculations of plastic collapse load of pressure vessel using FEA

    Institute of Scientific and Technical Information of China (English)

    Peng-fei LIU; Jin-yang ZHENG; Li MA; Cun-jian MIAO; Lin-lin WU

    2008-01-01

    This paper proposes a theoretical method using finite element analysis (FEA) to calculate the plastic collapse loads of pressure vessels under internal pressure, and compares the analytical methods according to three criteria stated in the ASME Boiler Pressure Vessel Code. First, a finite element technique using the arc-length algorithm and the restart analysis is developed to conduct the plastic collapse analysis of vessels, which includes the material and geometry non-linear properties of vessels. Second,as the mechanical properties of vessels are assumed to be elastic-perfectly plastic, the limit load analysis is performed by employing the Newton-Raphson algorithm, while the limit pressure of vessels is obtained by the twice-elastic-slope method and the tangent intersection method respectively to avoid excessive deformation. Finally, the elastic stress analysis under working pressure is conducted and the stress strength of vessels is checked by sorting the stress results. The results are compared with those obtained by experiments and other existing models. This work provides a reference for the selection of the failure criteria and the calculation of the plastic collapse load.

  17. Heavy wall pressure vessels for energy systems

    International Nuclear Information System (INIS)

    Modifications of steels currently accepted in the Code appear to provide improved mechanical properties. These steels may permit the fabrication of larger diameter vessels with thinner section sizes and improved reliability and integrity. Adapting current specifications should expedite Code approval. Finally the challenge of improving welding procedures and adapting processes for field applications will result in higher quality weldments

  18. Standard- and extended-burnup PWR [pressurized-water reactor] and BWR [boiling-water reactor] reactor models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    The purpose of this report is to describe an updated set of reactor models for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) operating on uranium fuel cycles and the methods used to generate the information for these models. Since new fuel cycle schemes and reactor core designs are introduced from time to time by reactor manufacturers and fuel vendors, an effort has been made to update these reactor models periodically and to expand the data bases used by the ORIGEN2 computer code. In addition, more sophisticated computational techniques than previously available were used to calculate the resulting reactor model cross-section libraries. The PWR models were based on a Westinghouse design, while the BWR models were based on a General Electric BWR/6 design. The specific reactor types considered in this report are as follows (see Glossary for the definition of these and other terms): (1) PWR-US, (2) PWR-UE, (3) BWR-US, (4) BWR-USO, and (5) BWR-UE. Each reactor model includes a unique data library that may be used to simulate the buildup and deletion of isotopes in nuclear materials using the ORIGEN2 computer code. 33 refs., 44 tabs

  19. High pressure gas vessels for neutron scattering experiments

    CERN Document Server

    Done, R; Evans, B E; Bowden, Z A

    2010-01-01

    The combination of high pressure techniques with neutron scattering proves to be a powerful tool for studying the phase transitions and physical properties of solids in terms of inter-atomic distances. In our report we are going to review a high pressure technique based on a gas medium compression. This technique covers the pressure range up to ~0.7GPa (in special cases 1.4GPa) and typically uses compressed helium gas as the pressure medium. We are going to look briefly at scientific areas where high pressure gas vessels are intensively used in neutron scattering experiments. After that we are going to describe the current situation in high pressure gas technology; specifically looking at materials of construction, designs of seals and pressure vessels and the equipment used for generating high pressure gas.

  20. Investigation of impulsively loaded pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.; Cornwell, R.; Hanner, D.; Leichter, H.; Mohr, P.

    1963-10-15

    Explosion containment vessels for containing from 2,000 to 3,000 five ton nuclear explosions are considered. Analysis methods appear adequate and lowest weights using the most advanced materials available in the next five years are projected.None of these materials can be fabricated today and all require extensive development. Present material technology limits the choice of materials and defines the weight. The addition of safety factors and fixtures (nozzles, etc.) will add to this weight considerably, and may well radically alter the vessel response. Improvements in the strength weight ratios of metals and glasses over those considered in this report do not appear reasonable at this time. Winding schemes to utilize the high strength of steel wires and somehow maintain a reasonable thickness appear to offer the most promise. A `ductile` beryllium would of course offer vast improvement, but no indications that this is being developed have appeared and all presently known beryllium is much too brittle.

  1. Light Water Reactor-Pressure Vessel Surveillance project computer system

    International Nuclear Information System (INIS)

    A dedicated process control computer has been implemented for regulating the metallurgical Pressure Vessel Wall Benchmark Facility (PSF) at the Oak Ridge Research Reactor. The purpose of the PSF is to provide reliable standards and methods by which to judge the radiation damage to reactor pressure vessel specimens. Benchmark data gathered from the PSF will be used to improve and standardize procedures for assessing the remaining safe operating lifetime of aging reactors. The computer system controls the pressure vessel specimen environment in the presence of gamma heating so that in-vessel conditions are simulated. Instrumented irradiation capsules, in which the specimens are housed, contain temperature sensors and electrical heaters. The computer system regulates the amount of power delivered to the electrical heaters based on the temperature distribution within the capsules. Time-temperature profiles are recorded along with reactor conditions for later correlation with specimen metallurgical changes

  2. Digital implementation, simulation and tests in MATLAB of the models of Steam line, the turbines, the pressure regulator of a BWR type nucleo electric power plant; Implementacion digital, simulacion y pruebas en MATLAB de los modelos de la linea de vapor, las turbinas y el regulador de presion de una central Nucleoelectrica tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, A. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: andyskamx@yahoo.com.mx

    2004-07-01

    In this phase of the project they were carried out exhaustive tests to the models of the steam lines, turbines and pressure regulator of a BWR type nucleo electric central for to verify that their tendencies and behaviors are it more real possible. For it, it was necessary to also analyze the transfer functions of the different components along the steam line until the power generator. Such models define alone the dominant poles of the system, what is not limitation to reproduce a wide range of anticipated transitoriness of a power station operation. In the same manner, it was integrated and proved the integrated model form with the models of feeding water of the SUN-RAH, simulating the nuclear reactor starting from predetermined entrances of the prospective values of the vessel. Also it was coupled with the graphic interface developed with the libraries DirectX implementing a specific monitoring panel for this system. (Author)

  3. Transportable, small high-pressure preservation vessel for cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, N; Sotome, S; Shimizu, A [Department of Environmental Engineering for Symbiosis, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Nakajima, K [Department of Bioinformatics, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Yoshimura, Y, E-mail: mf_kamimura@yahoo.co.j [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 (Japan)

    2010-03-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4{sup 0}C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4{sup 0}C.

  4. Weld evaluation on spherical pressure vessels using holographic interferometry

    International Nuclear Information System (INIS)

    Waist welds on spherical experimental pressure vessels have been evaluated under pressure using holographic interferometry. A coincident viewing and illumination optical configuration coupled with a parabolic mirror was used so that the entire weld region could be examined with a single hologram. Positioning the pressure vessel at the focal point of the parabolic mirror provides a relatively undistorted 360 degree view of the waist weld. Double exposure and real time holography were used to obtain displacement information on the weld region. Results are compared with radiographic and ultrasonic inspections

  5. Definition of welded joints arrangement in pressure vessels

    International Nuclear Information System (INIS)

    The arrangement of welded joints in a pressure vessel is normally a tiresome and lengthy task. This is especially so when long vessels are provided with a great concentration of nozzles, reinforcements, rings and many other accessories. The manual solution is seldom economical from the viewpoint of minimum waste of plates and minimum labor for cutting, bevelling and welding. This paper presents a computer application that allows a more economical solution in a shorter time. (Author)

  6. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-generating pressure vessels (modifies U-1(g)). 54... ENGINEERING PRESSURE VESSELS General Requirements § 54.01-10 Steam-generating pressure vessels (modifies U-1(g)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except...

  7. 46 CFR 54.01-17 - Pressure vessel for human occupancy (PVHO).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure vessel for human occupancy (PVHO). 54.01-17... PRESSURE VESSELS General Requirements § 54.01-17 Pressure vessel for human occupancy (PVHO). Pressure vessels for human occupancy (PVHO's) must meet the requirements of subpart B (Commercial Diving...

  8. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... applicable chapters of the National Board Inspection Code, a Manual for Boiler and Pressure Vessel...

  9. Expert system for evaluating the safety of pressure vessels

    Institute of Scientific and Technical Information of China (English)

    Dong Zhibo; Lu Yafeng; Wei Yanhong; Yang Yongfu; Ma Rui; Guo Ping

    2009-01-01

    With more application of welding technology in important structures more attention was paid to the evaluation of the safety of welded structures, the life prediction and decision to repair the welded structures. Based on material fiacture mechanism and Chinese standard of safety evaluations of pressure vessels, an expert system was developed to evaluate the safety of welded pressure vessels. The system can analyze the weld defects in a pressure vessel, convert different kinds of defects into equivalent cracks and obtain their equivalent sizes. Furthermore, the system can calculate the stress and strain in the positions of weld defects and make decision on whether the defects are tolerable or not according to the code. When it is tolerable, the system will calculate the safety margin. The fatigue life can be predicted if the defects undergo fatigue load too. Moreover, data bases are built for storing mechanical properties of material and evaluated results.

  10. Beryllium pressure vessels for creep tests in magnetic fusion energy

    International Nuclear Information System (INIS)

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available

  11. A prototype knowledge based system for pressure vessel design

    International Nuclear Information System (INIS)

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD's language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au)

  12. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2002-02-01

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  13. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    International Nuclear Information System (INIS)

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  14. Evaluation of the performance of ultrasonic and eddy current testing of austenitic claddings of reactor pressure vessels

    International Nuclear Information System (INIS)

    In the scope of this project, non-destructive testing methods were carried out on specimens with defects intentionally manufactured in the region of the cladding. The aim of these trials is an evaluation of the performance of ultrasonic and eddy current examinations of austenitic claddings of reactor pressure vessels. A review of the non-destructive testing of claddings showed that the majority of the investigations have been carried out on specimens with artificial defects (notches, holes). Therefore, for the realisation of this project MPA Stuttgart produced specimens with natural defects in the cladding. In detail these are specimens with intergranular stress-corrosion cracking, hot cracks and welding defects in the cladding as well as specimens with underclad cracks. The thickness of the specimens is about 150 mm (BWR-RPV), so that in addition to the testing from the ID (PWR, ultrasonic, eddy current) also the testing from the OD (BWR, ultrasonic) could be examined. The measurements show that most of the cladding defects can be detected with the standard ultrasonic test methods, however, in some cases generate only low echo amplitudes. Favourable results were obtained from the ID testing by means of a phased array probe, in particular in connection with the eddy current technique. Investigations on specimens containing defects not known to the inspection teams (blind tests), which will allow a further evaluation of the performance of non-destructive testing methods under realistic conditions, will be carried out in Phase II of the project. (orig.)

  15. Low Temperature and High Pressure Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.; Martinez-Frias, J.; Garcia-Villazana, O.

    2000-06-25

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures.

  16. Simulation of a scenario of total loss of external and internal power (Sbo) for different vent pressures of the containment of a BWR-5; Simulacion de un escenario de perdida total de potencia externa e interna (SBO) para distintas presiones de venteo de la contencion de un reactor BWR-5

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas V, J.; Mugica R, C. A.; Godinez S, V., E-mail: Jaime.cardenas@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2014-10-15

    The simulation of a Station Black Out (Sbo) was realized with intervention of the vent containment by means of a rigid vent coming from the dry-well and that discharges directly to the atmosphere, with the MELCOR code version 2.1. This scenario was carried out for a BWR-5 and containment type Mark II, with a thermal power of 2317 MWt similar to the reactor of nuclear power plant of Laguna Verde. For this scenario was considered as only available system for coolant injection to the reactor to the Reactor Core Isolation Cooling (Rcic), which remained operating 4 hours with batteries bank. The Security and Relief Valves (SR V) were considered functional (by simplicity) and that they mechanically do not exceed their capacity to liberate pressure due to the performances in their safety way. The operator maneuver to perform the SR V and to de pressurize the vessel until the pressure (13 kg/cm{sup 2}) to operate the low pressure systems was modeled. The results cover approximately 48 hours (172000 seconds), time in which was observed the behavior of the level and pressure in the vessel. Also the scenario evolution was analyzed to different vent pressures of the primary containment (2.0, 3.0, 4.5, 6.0, and 10.0 kg/cm{sup 2}), the temperature profiles of the dry-well, the hydrogen accumulation in the containment, the radio-nuclides liberation through rigid vent to the atmosphere and the inventory of these. In this work an analysis of the pressure behavior in the primary containment is presented, with the purpose of minimizing liberated fission products to the environment. (Author)

  17. Threaded insert for compact cryogenic-capable pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Loza, Francisco; Ross, Timothy O.; Switzer, Vernon A.; Aceves, Salvador M.; Killingsworth, Nicholas J.; Ledesma-Orozco, Elias

    2015-06-16

    An insert for a cryogenic capable pressure vessel for storage of hydrogen or other cryogenic gases at high pressure. The insert provides the interface between a tank and internal and external components of the tank system. The insert can be used with tanks with any or all combinations of cryogenic, high pressure, and highly diffusive fluids. The insert can be threaded into the neck of a tank with an inner liner. The threads withstand the majority of the stress when the fluid inside the tank that is under pressure.

  18. Optimal design of pressure vessel using an improved genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Peng-fei LIU; Ping XU; Shu-xin HAN; Jin-yang ZHENG

    2008-01-01

    As the idea of simulated annealing(SA) is introduced into the fitness function,an improved genetic algorithm(GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weight under burst pressure constraint.The actual burst pressure is calculated using the arc-length and restart analysis in finite element analysis(FEA).A penalty function in the fitness function is proposed to denl with the constrained problem.The erects of the population size and the number of generations in the GA on the weight and burst pressure of the vessel are explored.The optimization results using the proposed GA are also compared with those using the simple GA and the conventional Monte Carlo method.

  19. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    Science.gov (United States)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  20. Reactor pressure vessels as type B transport containment boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E. [Applied Science and Technology, Inc., Poway, CA (United States); Griesbach, T.J. [ATI Consulting, Danville, CA (United States)

    1998-07-01

    Transportation risk and personnel exposure, as well as the cost of decommissioning nuclear power plants, can all be reduced significantly through the one-time use of the reactor pressure vessel as a containment boundary for shipping the activated internal components from the reactor site to a burial site. In order to help provide the technical basis for this end-use application, the ASME Board on Nuclear Codes and Standards, through its Subcommittee XI, has prepared a draft nuclear code case that contains requirements for any modifications to the vessel, including materials, design, fabrication, and examination. In particular, the requirements for evaluation of potential brittle fracture as the result of potentially low ambient shipping temperatures combined with hypothetical transportation accident loading are addressed. Existing ASME Code Section XI rules for linear elastic fracture mechanics evaluation of irradiated reactor pressure vessels have been adapted and included in the code case. (authors)

  1. Monitoring of prestressed concrete pressure vessels for nuclear reactors

    International Nuclear Information System (INIS)

    The paper (1) ''Experience of In-Service Surveillance and Monitoring of Prestressed Concrete Pressure Vessels for Nuclear Reactors'', which was presented by Irving at the York Conference in September 1975, gave details of the statutory requirements for the inspection of prestressed concrete pressure vessels in the United Kingdom, with particular emphasis on the prestressing system. Results were presented of periodic examinations under the Licensing Conditions for the vessels at the gas cooled Magnox reactors at Oldbury and Wylfa, which had been operating since 1967 and 1971 respectively, and these were discussed in relation to design expectations and future requirements. The paper also gave strain, moisture and temperature readings obtained from Oldbury PCPVs over a ten year period and compared these with predictions. The purpose of this paper is to update the information presented in the 1975 York paper by summarizing the results which have been obtained since then up to the present time (1978). The results are summarized below under six headings

  2. Possible research program on a large scale nuclear pressure vessel

    International Nuclear Information System (INIS)

    The nuclear pressure vessel structural integrity is actually one of the main items in the nuclear plants safety field. An international study group aimed at investigating the feasibility of a ''possible research program'' on a scale 1:1 LWR pressure vessel. This report presents the study group's work. The different research programs carried out or being carried out in various countries of the European Community are presented (phase I of the study). The main characteristics of the vessel considered for the program and an evaluation of activities required for making them available are listed. Research topic priorities from the different interested countries are summarized in tables (phase 2); a critical review by the study group of the topic is presented. Then, proposals for possible experimental programs and combination of these programs are presented, only as examples of possible useful research activities. The documents pertaining to the results of phase I inquiry performed by the study group are reported in the appendix

  3. Toughness properties of end of life reactor pressure vessel cladding

    International Nuclear Information System (INIS)

    The inside surface of reactor pressure vessels is protected against corrosion by a clad overlay made of austenic stainless steel. This cladding, applied by automatic submerged arc welding with strip electrode, is constituted by two layers, the first one in 309L (24 CR - 12 Ni) steel and the second one in 308L (18 Cr - 10 Ni) steel. Safety analysis of reactor pressure vessel (RPV) consists to verify the resistance to fracture of the vessel, assumed containing a small crack just under the cladding. That implies the knowledge of the mechanical properties of the cladding. With the objective to evaluate the mechanical properties of the cladding at the end of life of the RPV, a coordinated French experimental programme has been carried out jointly by CEA, EDF, and Framatome. The first experimental results of this programme are given in this paper. 10 figs, 3 tabs

  4. Recent experience and new developments in reactor pressure vessel manufacture

    International Nuclear Information System (INIS)

    In this paper, Framatome's recent experience and new developments in the manufacture of pressurized water reactor (PWR) reactor pressure vessel (RPV)s is described to show the very high standards of quality achieved to meet the most stringent requirements. Outstanding new developments include: qualification and utilisation of thick forged shell rings made from large hollow ingots; fully automatic submerged arc narrow gap welding; electroslag stainless steel cladding process; nozzle buttering by automatic hotwire TIG process

  5. Why and how acoustic emission in pressure vessel first hydrotest

    International Nuclear Information System (INIS)

    The main advantages obtained performing the Acoustic Emission (AE) examination during pressure vessel first hydrotest are presented. The characteristics and performance of the AE instrumentation to be used for a correct test are illustrated. The main criteria for AE source characterization (location, typical AE parameters and their correlation with pressure value), the calibration and test procedures are discussed. The ndt post-test examinations and laboratory specimen experiments are also outlined. Personnel qualification requirements are finally indicated. (Author)

  6. USER SPECIFICATIONS FOR PRESSURE VESSELS AND TECHNICAL INTEGRITY

    Directory of Open Access Journals (Sweden)

    K.S. Johnston

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Specifications translated from user requirements are prescribed in an attempt to capture and incorporate best practices with regards to the design, fabrication, testing, and operation of pressure vessels. The question as to whether these requirements affect the technical integrity of pressure vessels is often a subjective matter. This paper examines typical user requirement specifications against technical integrity of pressure vessels.
    The paper draws on a survey of a convenience sample of practising engineers in a diversified petrochemical company. When compared with failures on selected pressure vessels recorded by Phillips and Warwick, the respondent feedback confirms the user specifications that have the highest impact on technical integrity.

    AFRIKAANSE OPSOMMING: Gebruikersbehoeftes word saamgevat in spesifikasies wat lei tot goeie praktyk vir ontwerp, vervaarding, toetsing en bedryf van drukvate. Subjektiwiteit van die gebruikersbehoeftes mag soms die tegniese integriteit van ‘n drukvat beinvloed.
    Die navorsing maak by wyse van monsterneming gebruik van die kennis van ingenieurs wat werk in ‘n gediversifiseerde petrochemiese bedryf. Die terugvoering bevestig dat bogenoemde spesifikasies inderdaad die grootste invloed het op tegniese integriteit.

  7. Requirements on crack detection in pressurized vessels for ASME authorization

    International Nuclear Information System (INIS)

    The method is presented of training qualified personnel for nondestructive testing of pressure vessels. Personnel is divided according to experience and previous training into three groups of which each has its own educational programme. Written examinations in general knowledge and in specialized subjects and a practical examination in crack detection terminate the training. (E.S.). 1 fig., 4 tabs., 3 refs

  8. Design and Optimization of Filament Wound Composite Pressure Vessels

    NARCIS (Netherlands)

    Zu, L.

    2012-01-01

    One of the most important issues for the design of filament-wound pressure vessels reflects on the determination of the most efficient meridian profiles and related fiber architectures, leading to optimal structural performance. To better understand the design and optimization of filament-wound pres

  9. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief...

  10. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief...

  11. Risk-informed appendices G and E for section XI of the ASME Boiler and Pressure Vessel Code

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B; Spanner, J. [EPRI, (United States); Server, W. [ATI Consulting (United States); Gamble, R. [Sartrex Corporation (United States); Bishop, B.; Palm, N.; Heinecke, C. [Westinghouse Electric Company (United States)

    2011-07-01

    Full text of publication follows: The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, contains two appendices (G and E) related to reactor pressure boundary integrity. Appendix G provides procedures for defining Service Level A and B pressure temperature limits for ferritic components in the reactor coolant pressure boundary. Recently, an alternative risk informed methodology has been developed for ASME Section XI, Appendix G. The alternative methodology provides simple procedures to define risk informed pressure temperature limits for Service Level A and B events, including leak testing and reactor start up and shut down for both pressurized water reactors (PWRs) and boiling water reactors (BWRs). Risk informed pressure temperature limits provide more operational flexibility, particularly for reactor pressure vessels (RPV) with relatively high irradiation levels and radiation sensitive materials. Appendix E of Section XI provides a methodology for assessing conditions when the Appendix G limits are exceeded. A similar risk informed methodology is being considered for Appendix E. The probabilistic fracture mechanics evaluations used to develop the risk informed relationships included appropriate material properties for the range of RPV materials in operating plants in the United States and operating history and system operational constraints in both BWRs and PWRs. The analysis results were used to define pressure temperature relationships that provide an acceptable level of risk, consistent with safety goals defined by the U.S. Nuclear Regulatory Commission. The alternative methodologies for Appendices G and E will provide greater operational flexibility, especially for Service Level A and B events that may adversely affect efficient and safe plant operation, such as low temperature over pressurization for PWRs and BWR leak testing. Overall, application of the risk informed appendices can result in increased plant

  12. Interpretation of strain measurements on nuclear pressure vessels

    International Nuclear Information System (INIS)

    Selected results from strain measurements on 4 nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzels, internal vessel structure and flange bolts. The results presented are based on data obtained by approximately 700 strain-gauges, and a comprehensive knowledge of the quality obtained by such measurements is established. It is shown that a thorough control procedure before and after the test as well as detailed knowledge of the behaviour of the signal from the individual gauges during the test is necessary. If this is omitted, it can be extremely difficult to distinguish between the real structural behaviour and a malfunctioning of a specific gauge installation. In general, most of the measuring results exhibit a very linear behaviour with a negligible zeroshift. However, deviations from linear behaviour are observed in several cases. This nonlinearity can be explained by friction (flange connections) or by gaps (concentrical nozzles) in certain regions, whereas local plastic deformations during the first pressure loadings of the vessel seem to be the reason in other regions. (author)

  13. Circular cylinders and pressure vessels stress analysis and design

    CERN Document Server

    Vullo, Vincenzo

    2014-01-01

    This book provides comprehensive coverage of stress and strain analysis of circular cylinders and pressure vessels, one of the classic topics of machine design theory and methodology. Whereas other books offer only a partial treatment of the subject and frequently consider stress analysis solely in the elastic field, Circular Cylinders and Pressure Vessels broadens the design horizons, analyzing theoretically what happens at pressures that stress the material beyond its yield point and at thermal loads that give rise to creep. The consideration of both traditional and advanced topics ensures that the book will be of value for a broad spectrum of readers, including students in postgraduate, and doctoral programs and established researchers and design engineers. The relations provided will serve as a sound basis for the design of products that are safe, technologically sophisticated, and compliant with standards and codes and for the development of innovative applications.

  14. Welding of the A1 reactor pressure vessel

    International Nuclear Information System (INIS)

    As concerns welding, the A-1 reactor pressure vessel represents a geometrically complex unit containing 1492 welded joints. The length of welded sections varies between 10 and 620 mm. At an operating temperature of 120 degC and a pressure of 650 N/cm2 the welded joints in the reactor core are exposed to an integral dose of 3x1018 n/cm2. The chemical composition is shown for pressure vessel steel as specified by CSN 413090.9 modified by Ni, Ti and Al additions, and for the welding electrodes used. The requirements are also shown for the mechanical properties of the base and the weld metals. The technique and conditions of welding are described. No defects were found in ultrasonic testing of welded joints. (J.B.)

  15. Reliability Considerations for Composite Overwrapped Pressure Vessels on Spacecraft

    Science.gov (United States)

    Murthy, Pappu L. N.; Gyekenyesi, John P.; Grimes-Ledesma, Lorie; Phoenix, S. L.

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are used to store gases under high pressure onboard spacecraft. These are used for a variety of purposes such as propelling liquid fuel etc, Kevlar, glass, Carbon and other more recent fibers have all been in use to overwrap the vessels. COPVs usually have a thin metallic liner with the primary purpose of containing the gases and prevent any leakage. The liner is overwrapped with filament wound composite such as Kevlar, Carbon or Glass fiber. Although the liner is required to perform in the leak before break mode making the failure a relatively benign mode, the overwrap can fail catastrophically under sustained load due to stress rupture. It is this failure mode that is of major concern as the stored energy of such vessels is often great enough ta cause loss of crew and vehicle. The present paper addresses some of the reliability concerns associated specifically with Kevlar Composite Overwrapped Pressure Vessels. The primary focus of the paper is on how reliability of COPV's are established for the purpose of deciding in general their flight worthiness and continued use. Analytical models based on existing design data will be presented showing how to achieve the required reliability metric to the end of a specific period of performance. Uncertainties in the design parameters and how they affect reliability and confidence intervals will be addressed as well. Some trade studies showing how reliability changes with time during a program period will be presented.

  16. Fabrication of toroidal composite pressure vessels. Final report

    International Nuclear Information System (INIS)

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication

  17. Fabrication of toroidal composite pressure vessels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, W.G.; Escalona, A.

    1996-11-24

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication.

  18. Improved Attachment in a Hybrid Inflatable Pressure Vessel

    Science.gov (United States)

    Johnson, Christopher J.; Patterson, Ross; Spexarth, Gary R.

    2010-01-01

    The vessel is a hybrid that comprises an inflatable shell attached to a rigid structure. The inflatable shell is, itself, a hybrid that comprises (1) a pressure bladder restrained against expansion by (2) a restraint layer that comprises a web of straps made from high-strength polymeric fabrics. The present improvements are intended to overcome deficiencies in those aspects of the original design that pertain to attachment of the inflatable shell to the rigid structure. In a typical intended application, such attachment(s) would be made at one or more window or hatch frames to incorporate the windows or hatches as integral parts of the overall vessel.

  19. Estimation of ex-vessel steam explosion pressure loads

    International Nuclear Information System (INIS)

    An ex-vessel steam explosion may occur when, during a severe reactor accident, the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles that may endanger surrounding structures. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. In this article, different scenarios of ex-vessel steam explosions in a typical pressurized water reactor cavity are analyzed with the code MC3D, which is being developed for the simulation of fuel-coolant interactions. A parametric study was performed varying the location of the melt release (central, right and left side melt pour), the cavity water subcooling, the primary system overpressure at vessel failure and the triggering time for explosion calculations. The main purpose of the study was to establish the influence of the varied parameters on the fuel-coolant interaction behaviour, to determine the most challenging cases and to estimate the expected pressure loadings on the cavity walls. For the most explosive central, right side and left side melt pour scenarios a detailed analysis of the explosion simulation results was performed. The study shows that for some ex-vessel steam explosion scenarios higher pressure loads are predicted than obtained in the OECD programme SERENA phase 1.

  20. ESTIMATE OF BURSTING PRESSURE OF MILD STEEL PRESSURE VESSEL AND PRESENTATION OF BURSTING FORMULA

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chuanxiang

    2006-01-01

    In order to get more precise bursting pressure formula of mild steel, hundreds of bursting experiments of mild steel pressure vessels such as Q235(Gr.D) and 20R(1020) are done. Based on statistical data of bursting pressure and modification of Faupel formula, a more precise modified formula is given out according to the experimental data. It is proved to be more accurate after examining other bursting pressure value presented in many references. This bursting formula is very accurate in these experiments using pressure vessels with different diameter and shell thickness.Obviously, this modified bursting formula can be used in mild steel pressure vessels with different diameter and thickness of shell.

  1. Stable and unstable crack growth in pressure vessel models

    International Nuclear Information System (INIS)

    Three identical steel pressure vessels with 254-mm (10-in.) dia, 38-mm (1.5-in.) wall thicknesses and long, deep machined and sharpened axially oriented flaws were tested at three different temperatures. The vessels were assembled by electron-beam welding cylindrical sections with substantially different toughnesses due to different heat treatments. Crack extension initiated in relatively brittle sections, and the cracks extended both stably and unstably, depending on test temperature, toward the tougher sections where crack arrest did and did not occur. Charpy impact specimens and both slow-bend and dynamic precracked Charpy specimens were used for material characterization. The behavior of the vessels is described and related to the Charpy data

  2. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels...

  3. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  4. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  5. Quality Testing of Gaseous Helium Pressure Vessels by Acoustic Emission

    CERN Document Server

    Barranco-Luque, M; Hervé, C; Margaroli, C; Sergo, V

    1998-01-01

    The resistance of pressure equipment is currently tested, before commissioning or at periodic maintenance, by means of normal pressure tests. Defects occurring inside materials during the execution of these tests or not seen by usual non-destructive techniques can remain as undetected potential sources of failure . The acoustic emission (AE) technique can detect and monitor the evolution of such failures. Industrial-size helium cryogenic systems employ cryogens often stored in gaseous form under pressure at ambient temperature. Standard initial and periodic pressure testing imposes operational constraints which other complementary testing methods, such as AE, could significantly alleviate. Recent reception testing of 250 m3 GHe storage vessels with a design pressure of 2.2 MPa for the LEP and LHC cryogenic systems has implemented AE with the above-mentioned aims.

  6. Design Considerations For Blast Loads In Pressure Vessels.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, E. A. (Edward A.); Nickell, Robert E.; Pepin, J. E. (Jason E.)

    2007-01-01

    Los Alamos National Laboratory (LANL), under the auspices of the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA), conducts confined detonation experiments utilizing large, spherical, steel pressure vessels to contain the reaction products and hazardous materials from high-explosive (HE) events. Structural design and analysis considerations include: (a) Blast loading phase (i.e., impulsive loading); (b) Dynamic structural response; (c) Fragment (i.e., shrapnel) generation and penetration; (d) Ductile and non-ductile fracture; and (e) Design Criteria to ASME Code Sec. VIII, Div. 3, Impulsively Loaded Vessels. These vessels are designed for one-time-use only, efficiently utilizing the significant plastic energy absorption capability of ductile vessel materials. Alternatively, vessels may be designed for multiple-detonation events, in which case the material response is restricted to elastic or near-elastic range. Code of Federal Regulations, Title 10 Part 50 provides requirements for commercial nuclear reactor licensing; specifically dealing with accidental combustible gases in containment structures that might cause extreme loadings. The design philosophy contained herein may be applied to extreme loading events postulated to occur in nuclear reactor and non-nuclear systems or containments.

  7. Fractographic study of a thick wall pressure vessel failure

    International Nuclear Information System (INIS)

    The pressure vessel described in this paper is identified as Intermediate Test Vessel 1 (ITV-1) and was fabricated of SA508, Class 2 Steel. It was tested to failure at 540C (1300F). The gross failure appeared to be a brittle fracture although accompanied by a measured strain of 0.9%. Seven regions of the fracture were examined in detail and the observed surfaces were compared to Charpy V-notch (C/sub v/) specimens of SA508, Class 2 steel broken at temperatures above and below the ductile to brittle transition temperature. Three samples from the vessel were taken in the region around the fatigue notch and four from areas well removed from the notch. All these were carefully examined both optically and by scanning electron microscopy (SEM). It was established that early crack extension was by ductile mode until a large flaw approximately 500 mm long 83 mm wide was developed. At this point the vessel could no longer contain the internal pressure and final rupture was by brittle fracture

  8. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  9. Backstreaming of Impurity Gas Through a Leak in Pressurized Vessel

    CERN Document Server

    Dauvergne, J P

    1998-01-01

    The presence of a leak in a vessel containing pure gas can induce the contamination by atmospheric gas diffusing into the vessel. In order to avoid this, a gas which has to be kept pure also in presen ce of a leak is usually pressurized, to reduce the flow of contaminating gas through the leak owing to the molecular drag by the outstreaming pure gas. In this paper, a simple model calculation of ba ckstreaming based on the solution of the diffusion + drag equation in cylindrical coordinates is presented. It is shown that both the pressure difference and the dimension of the leak are critical in determining the contaminating flow, a maximum in the backstreaming flow appearing when the drag velocity of the outstreaming gas equals the diffusion velocity.

  10. Innovations on life management of VVER reactor pressure vessels

    International Nuclear Information System (INIS)

    The embrittlement rate of the pressure vessel weld material is a dominating factor in life management of VVER reactor pressure vessels. In order to maintain adequate safety level, several backfitting measures have been performed in Loviisa. The neutron flux and embrittlement rate was reduced after receiving the first indications of anticipated problems. An increase of emergency core cooling water temperature and other process related changes followed to eliminate and reduce potential transients. Finally, the core weld of Loviisa 1 was successfully annealed in 1996. A current concern is to verify the post-annealing embrittlement rate in order to enable safe and economic life management of the RPV. Post-annealing re-embrittlement is governed by somewhat different mechanisms than the embrittlement of the first irradiation cycle. A new tentative approach for predicting the re-embrittlement rate has been proposed. (orig.)

  11. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL

    2010-08-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  12. The coolability limits of a reactor pressure vessel lower head

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, T.G.; Syri, S. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    Configuration II of the ULPU experimental facility is described, and from a comprehensive set of experiments are provided. The facility affords full-scale simulations of the boiling crisis phenomenon on the hemispherical lower head of a reactor pressure vessel submerged in water, and heated internally. Whereas Configuration I experiments (published previously) established the lower limits of coolability under low submergence, pool-boiling conditions, with Configuration II we investigate coolability under conditions more appropriate to practical interest in severe accident management; that is, heat flux shapes (as functions of angular position) representative of a core melt contained by the lower head, full submergence of the reactor pressure vessel, and natural circulation. Critical heat fluxes as a function of the angular position on the lower head are reported and related the observed two-phase flow regimes.

  13. Pressure distension in leg vessels as influenced by prolonged bed rest and a pressure habituation regimen.

    Science.gov (United States)

    Eiken, Ola; Mekjavic, Igor B; Kounalakis, Stylianos N; Kölegård, Roger

    2016-06-15

    Bed rest increases pressure distension in arteries, arterioles, and veins of the leg. We hypothesized that bed-rest-induced deconditioning of leg vessels is governed by the removal of the local increments in transmural pressure induced by assuming erect posture and, therefore, can be counteracted by intermittently increasing local transmural pressure during the bed rest. Ten men underwent 5 wk of horizontal bed rest. A subatmospheric pressure (-90 mmHg) was intermittently applied to one lower leg [pressure habituation (PH) leg]. Vascular pressure distension was investigated before and after the bed rest, both in the PH and control (CN) leg by increasing local distending pressure, stepwise up to +200 mmHg. Vessel diameter and blood flow were measured in the posterior tibial artery and vessel diameter in the posterior tibial vein. In the CN leg, bed rest led to 5-fold and 2.7-fold increments (P pressure-distension and flow responses, respectively, and to a 2-fold increase in tibial vein pressure distension. In the PH leg, arterial pressure-distension and flow responses were unaffected by bed rest, whereas bed rest led to a 1.5-fold increase in venous pressure distension. It thus appears that bed-rest-induced deconditioning of leg arteries, arterioles, and veins is caused by removal of gravity-dependent local pressure loads and may be abolished or alleviated by a local pressure-habituation regimen.

  14. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section 78.33-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS... vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  15. Probabilistic study of PWR reactor pressure vessel fracture

    International Nuclear Information System (INIS)

    Different methods are used to evaluate the rupture probability of a nuclear pressure vessel. On of them extrapolates to nuclear pressure vessels, data of failure found in conventional pressure vessels. The disadvantage of such an approach is that the effects of systematic changes in key parameters cannot be taken into account. For example, the influence of irradiation and the use of quality assurance programs encompassing design, fabrication and materials cannot be considered. But the most important disadvantage of this method is the limited size of the representative population and consequently the high value of the upper bound failure rate corresponding to a requested confidence level. The method used in the present work involves the development of physical models based on an understanding of the failure modes and expressing the conventional concepts of fracture mechanics in a probabilistic form; the fatigue crack growth rate, calculated for conditions of cyclic loading, the initiation of unstable crack propagation, and the possibility of crack arrest. The analysis therefore requires the statistical expression of the factors and parameters which appear in the expressions of the law of crack growth and of toughness, and also those which are used in the calculation of the stress intensity factor K1. All input data are entered in COVASTOL code in histogram form. This code takes into account the degree of correlation between the flaw size and the Paris' law coefficients. It computes the propagation of a given defect in a given position, and the corresponding failure probability during accidental loading

  16. Composite Pressure Vessel Variability in Geometry and Filament Winding Model

    Science.gov (United States)

    Green, Steven J.; Greene, Nathanael J.

    2012-01-01

    Composite pressure vessels (CPVs) are used in a variety of applications ranging from carbon dioxide canisters for paintball guns to life support and pressurant storage on the International Space Station. With widespread use, it is important to be able to evaluate the effect of variability on structural performance. Data analysis was completed on CPVs to determine the amount of variation that occurs among the same type of CPV, and a filament winding routine was developed to facilitate study of the effect of manufacturing variation on structural response.

  17. Prevention of catastrophic failure in pressure vessels and pipings

    International Nuclear Information System (INIS)

    The fracture resistance and integrity of pressure-loaded components have been assessed in a Nordic research programme. Experiments were performed to validate the computational fracture assessment analysis. Two tests were also conducted on a large decommissioned pressure vessel from an oil refinery plant. Different fracture assessment methods were developed and subsequently applied to the tested components. Interlaboratory round robin programmes with the participation of several laboratories were arranged to examine elastic-plastic finit element calculations and fracture mechanics testing. The transferability of material parameters derived from small specimens with simple crack geometries to more realistic crack geometries in real components has been verified. (author)

  18. Modelling of the dynamics of the vessel and circuits of recirculation of a BWR type nucleo electric as part of the SUN-RAH university simulator

    International Nuclear Information System (INIS)

    In the present project, the development of a model for the dynamics of the process of energy transport generated in the nuclear fuel until the main steam lines of a nucleo electric central with BWR type nuclear reactor, using mathematical models of reduced order is presented. These models present the main characteristics of the reactor vessel and of the recirculation system, defined by the main phenomena that intervene in those physical processes. Likewise, the objective of the general project of the one University student nucleo electric simulator with Boiling Water Reactor (SUN-RAH) for later on to establish the modeling equations for each part of the nuclear reactor as well as of the load pursuit system. Also, its were described the graphic interfaces implemented in an three layers architecture in which the different measuring variables are presented in the monitor. It fits signalize that the advantage presented by the University student nucleo electric simulator is the possibility to carry out changes in the magnitudes of those different variables that intervene in the physical processes made in the one reactor and in the recirculation system in execution time of the same one. Of same way, the creation of a graphic intuitive interface, friendly, and designed with the same technology with the one that the video games are programmed in the present time. Besides all the above mentioned, the pending goals inside of the project are exposed, as well as the developments in construction process or conceptualized to be included in future versions of the simulator. Finally its are thinking about possible scenarios of applications of SUN-RAH, as well as their reaches. (Author)

  19. Online Monitoring of Composite Overwrapped Pressure Vessels (COPV)

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Figueiredo, Joana; Faria, Hugo;

    2015-01-01

    Composite overwrapped pressure vessels (COPV) have been increasingly pointed to as the most effective solution for high pressure storage of liquid and gaseous fluids. Reasonably high stiffness-to-weight ratios make them suitable for both static and mobile applications. However, higher operating...... pressures are sought continuously, to get higher energy densities in such storage systems, and safety aspects become critical. Thus, reliable design and test procedures are required to reduce the risks of undesired and unpredicted failures. An in-service health monitoring system may contribute to a better...... product development, design and optimization, as well as to minimize the risks and improve the public acceptance. Within the scope of developing different COPV models for a wide range of operating pressures and applications, optical fiber Bragg grating (FBG) sensors were embedded in the liner...

  20. STRESS ANALYSIS AND BURST PRESSURE DETERMINATION OF TWO LAYER COMPOUND PRESSURE VESSEL

    Directory of Open Access Journals (Sweden)

    HARERAM LOHAR

    2013-02-01

    Full Text Available Multilayer pressure vessel is designed to work under high-pressure condition. This paper introduces the stress analysis and the burst pressure calculation of a two-layer shrink fitted pressure vessel. In the shrink-fitting problems, considering long hollow cylinders, the plane strain hypothesis can be regarded as more natural. Generally hoops stress distribution is non-linear and sharply reduced toward the outer surface. By shrink fitting concentric shells towards the inner shells are placed in residual compression so that the initial compressive hoop stress must be relieved by internal pressure before hoop tensile stress are developed. Therefore the maximum hoop stress will be reduced, resulting more burst pressure. The analytical results of stress distribution and burst pressure is calculated and validated by ANSYS Workbench results.

  1. Dual shell pressure balanced reactor vessel. Final project report

    International Nuclear Information System (INIS)

    The Department of Energy's Office of Energy Research (OER) has previously provided support for the development of several chemical processes, including supercritical water oxidation, liquefaction, and aqueous hazardous waste destruction, where chemical and phase transformations are conducted at high pressure and temperature. These and many other commercial processes require a pressure vessel capable of operating in a corrosive environment where safety and economy are important requirements. Pacific Northwest Laboratory (PNL) engineers have recently developed and patented (U.S. patent 5,167,930 December 1, 1992) a concept for a novel Dual Shell Pressure Balanced Vessel (DSPBV) which could solve a number of these problems. The technology could be immediately useful in continuing commercialization of an R ampersand D 100 award-winning technology, Sludge-to-oil Reactor System (STORS), originally developed through funding by OER. Innotek Corporation is a small business that would be one logical end-user of the DSPBV reactor technology. Innotek is working with several major U.S. engineering firms to evaluate the potential of this technology in the disposal of wastes from sewage treatment plants. PNL entered into a CRADA with Innotek to build a bench-scale demonstration reactor and test the system to advance the economic feasibility of a variety of high pressure chemical processes. Hydrothermal processing of corrosive substances on a large scale can now be made significantly safer and more economical through use of the DSPBV. Hydrothermal chemical reactions such as wet-air oxidation and supercritical water oxidation occur in a highly corrosive environment inside a pressure vessel. Average corrosion rates from 23 to 80 miles per year have been reported by Rice (1994) and Latanision (1993)

  2. Delivery of cold hydrogen in glass fiber composite pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, Andrew H.; Aceves, Salvador M.; Espinosa-Loza, Francisco; Ledesma-Orozco, Elias; Myers, Blake [Lawrence Livermore National Laboratory, Engineering, 7000 East Avenue L-792, Livermore, CA 94551 (United States)

    2009-12-15

    We are proposing to minimize hydrogen delivery cost through utilization of glass fiber tube trailers at 200 K and 70 MPa to produce a synergistic combination of container characteristics with properties of hydrogen gas: (1) hydrogen cooled to 200 K is {proportional_to}35% more compact for a small increase in theoretical storage energy (exergy); and (2) these cold temperatures (200 K) strengthen glass fibers by as much as 50%, expanding trailer capacity without the use of much more costly carbon fiber composite vessels. Analyses based on US Department of Energy H2A cost and efficiency parameters and economic methodology indicate the potential for hydrogen delivery costs below $1/kg H{sub 2}. Dispensing cold hydrogen may also allow rapid refueling without overtemperatures and overpressures which are typically as high as 25%, simplifying automotive vessel design and improving safety while potentially reducing vessel weight and cost. Based on these results, we suggest hydrogen delivery by truck with trailers carrying hydrogen gas at pressures as high as 70 MPa, cooled to approximately 200 K in glass fiber vessels. (author)

  3. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables...

  4. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... MINES Compressed Air and Boilers § 56.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with the standards and specifications of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code....

  5. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Boilers, pressure vessels, piping and appurtenances. 167... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... the following standards for boilers, pressure vessels, piping and appurtenances: (1)...

  6. 46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection of boilers, pressure vessels, piping and...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure vessels, piping and appurtenances. The inspection of boilers, pressure vessels, piping and...

  7. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  8. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired...

  9. Pressurization of Containment Vessels from Plutonium Oxide Contents

    International Nuclear Information System (INIS)

    Transportation and storage of plutonium oxide is typically done using a convenience container to hold the oxide powder which is then placed inside a containment vessel. Intermediate containers which act as uncredited confinement barriers may also be used. The containment vessel is subject to an internal pressure due to several sources including; (1) plutonium oxide provides a heat source which raises the temperature of the gas space, (2) helium generation due to alpha decay of the plutonium, (3) hydrogen generation due to radiolysis of the water which has been adsorbed onto the plutonium oxide, and (4) degradation of plastic bags which may be used to bag out the convenience can from a glove box. The contributions of these sources are evaluated in a reasonably conservative manner.

  10. BWR suppression pool pressures during safety relief valve discharge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, G.; Gay, R.R.

    1985-04-01

    An analytical understanding of the pool pressures measured during safety relief valve (SRV) discharge in BWRs equipped with x-quenchers has been developed and compared to experimental data. The local conditions inside the SRV discharge lines and inside of the x-quencher were modeled successfully with RELAP5. The measured pressure surges inside the quencher are successfully predicted by the code. In addition, the analytical predictions allow one to associate the peak pressure inside the quencher arm with the onset of air discharge into the suppression pool. A Rayleigh model of bubble dynamics successfully explained both the higher-frequency and the ensuing lower-frequency pressure oscillations that have been measured in suppression pools during SRV discharge tests. The higher-frequency oscillations are characteristic of an air bubble emanating from a single row of quencher holes. The lower-frequency pressure oscillations are characteristic of a large air bubble containing all the air expelled from one side of an x-quencher arm.

  11. Evaluation of Data-Logging Transducer to Passively Collect Pressure Vessel p/T History

    Science.gov (United States)

    Wnuk, Stephen P.; Le, Son; Loew, Raymond A.

    2013-01-01

    Pressure vessels owned and operated by NASA are required to be regularly certified per agency policy. Certification requires an assessment of damage mechanisms and an estimation of vessel remaining life. Since detail service histories are not typically available for most pressure vessels, a conservative estimate of vessel pressure/temperature excursions is typically used in assessing fatigue life. This paper details trial use of a data-logging transducer to passively obtain actual pressure and temperature service histories of pressure vessels. The approach was found to have some potential for cost savings and other benefits in certain cases.

  12. Results of fuel, cladding and reactor pressure vessel computation

    International Nuclear Information System (INIS)

    The cause of the pellet-clad interaction failures are the combined effects of differential thermal expansion driven localized stress, and aggressive fission products, primarily iodine (pitting corrosion). Reactor pressure vessel is also being exposed to high mechanical loads and to an intensive neutron flux irradiation. This leads to a gradual decrease in resistance to brittle fracture. The finite element method has been selected for the solution of the above problems, and results are presented in form of isobars and isotherms respectively in the meridional cross section. (author)

  13. Computing radiation dose to reactor pressure vessel and internals

    International Nuclear Information System (INIS)

    Within the next twenty years many of the nuclear reactors currently in service will reach their design lifetime. One of the key factors affecting decisions on license extensions will be the ability to confidently predict the integrity of the reactor pressure vessel and core structural components which have been subjected to many years of cumulative radiation exposure. This report gives an overview of the most recent scientific literature and current methodologies for computational dosimetry in the OECD/NEA Member countries. Discussion is extended to consider some related issues of materials science, such as the metals, and limitations of the models in current use. Proposals are made for further work. (author)

  14. Metallurgy of steels for nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Technology is described of ingot production for pressure vessel parts consisting in the preparation of the alloying master alloy in an electric arc furnace and of a low-alloyed rimmed steel in an open-hearth furnace. The steels are cast into the ladle and are then vacuum cast into a mould. For securing the desired purity, the preparation of pre-molten charge, careful selection of alloying and refining admixtures and stringent observance of the prescribed technology are necessary. The said method allows producing ingots up to 195 tons in weight, showing the desired properties. This was confirmed by tests of the chemical composition and of mechanical properties. (Ha)

  15. Structural Features and In-service Inspection of the LTNHR-200 Pressure Vessel

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The pressure vessel of 200 MW low temperature nuclear heating reactor (LTNHR-200) is the main part of primary pressure boundary and its reasonable and reliable structural design is the key point to assure the safe operation of LTNHR-200. The double-shell pressure vessels were designed. LTNHR-200 pressure vessel meets the condition of Leak Before Break and has a relatively low failure probability. Metal containment (outer pressure vessel) has the similar features to LTNHR-200 pressure vessel. There exists no LOCA and core melting with the double vessel. The in-service inspection of the pressure vessel can be simplified greatly because of the safety and structural features of the reactor.

  16. Local heat transfer from the corium melt pool to the boiling water reactor pressure vessel wall

    International Nuclear Information System (INIS)

    The present study considers in-vessel accident progression after core melt relocation to the lower head of a Boiling Water Reactor (BWR) and formation of a melt pool containing a forest of Control Rod Guide Tubes (CRGTs) cooled by purging flows. Descending streams of melt that flow along cooled surfaces of CRGT, and impinge on the bottom surface of the vessel wall can significantly increase local heat transfer. The area of enhanced heat transfer enlarges with decreasing of the melt Prandtl (Pr) number, while the peaking value of the heat transfer coefficient is a non-monotone function of Pr number. The melt Pr number depends on the melt composition (fractions of metallic and oxidic melt components) and thus is inherently uncertain parameter of the core melting and relocation scenarios. The effect of Pr number in the range of 1.02 - 0.03 on the local and integral thermal loads on the vessel wall is examined using Computational Fluid Dynamics (CFD). Heat transfer models obtained on the base of CFD simulations are implemented in the Phase-change Effective Convectivity Model (PECM) for simulation of reactor-scale accident progression heat transfer in real 3D geometry of the BWR lower plenum. We found that the influence of the low Pr number on the thermal loads in a big melt pool becomes more significant at later time, than rapid acceleration of the creep in the vessel wall. This result suggests that global vessel failure is insensitive to the melt composition in the considered 0.7 m deep melt pool configuration. However, it is not clear yet if the low Pr number effect has an influence on vessel failure mode in the other possible melt pool configurations. (author)

  17. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    Directory of Open Access Journals (Sweden)

    Thiollay Nicolas

    2016-01-01

    Full Text Available FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10−2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006–2007 in a geometry representative of 1300 MWe PWR.

  18. Test of 6-inch-thick pressure vessels. Series 2. Intermediate test vessels V-3, V-4, and V-6

    International Nuclear Information System (INIS)

    The second series of intermediate vessel tests were crack initiation fracture tests of 6-in.-thick 39-in.-OD steel vessels with sharp surface flaws approximately 21/2 in. deep by 8 in. long in the longitudinal weld seams of the test cylinders. Fracture was initiated by means of hydraulic pressurization. One vessel was tested at each of three temperatures: 75, 130, and 1900F. Pretest analyses were made to predict the failure pressures and strains. Fracture toughness data obtained by equivalent-energy analysis of precracked Charpy-V tests and compact-tension specimen tests were used in the fracture analyses. The vessels behaved generally as had been expected. Posttest fracture analyses were also performed for each vessel. Detailed discussions of the fracture analysis methods developed in support of the vessel tests described are included. 34 references

  19. Finite element analysis of filament-wound composite pressure vessel under internal pressure

    Science.gov (United States)

    Sulaiman, S.; Borazjani, S.; Tang, S. H.

    2013-12-01

    In this study, finite element analysis (FEA) of composite overwrapped pressure vessel (COPV), using commercial software ABAQUS 6.12 was performed. The study deals with the simulation of aluminum pressure vessel overwrapping by Carbon/Epoxy fiber reinforced polymer (CFRP). Finite element method (FEM) was utilized to investigate the effects of winding angle on filament-wound pressure vessel. Burst pressure, maximum shell displacement and the optimum winding angle of the composite vessel under pure internal pressure were determined. The Laminae were oriented asymmetrically for [00,00]s, [150,-150]s, [300,-300]s, [450,-450]s, [550,-550]s, [600,-600]s, [750,-750]s, [900,-900]s orientations. An exact elastic solution along with the Tsai-Wu, Tsai-Hill and maximum stress failure criteria were employed for analyzing data. Investigations exposed that the optimum winding angle happens at 550 winding angle. Results were compared with the experimental ones and there was a good agreement between them.

  20. Pressure vessel codes: Their application to nuclear reactor systems

    International Nuclear Information System (INIS)

    A survey has been made by the International Atomic Energy Agency of how the problems of applying national pressure vessel codes to nuclear reactor systems have been treated in those Member States that had pressurized reactors in operation or under construction at the beginning of 1963. Fifteen answers received to an official inquiry form the basis of this report, which also takes into account some recently published material. Although the answers to the inquiry in some cases data back to 1963 and also reflect the difficulty of describing local situations in answer to standard questions, it is hoped that the report will be of interest to reactor engineers. 21 refs, 1 fig., 2 tabs

  1. BWR [boiling-water reactor] and PWR [pressurized-water reactor] off-normal event descriptions

    International Nuclear Information System (INIS)

    This document chronicles a total of 87 reactor event descriptions for use by operator licensing examiners in the construction of simulator scenarios. Events are organized into four categories: (1) boiling-water reactor abnormal events; (2) boiling-water reactor emergency events; (3) pressurized-water reactor abnormal events; and (4) pressurized-water reactor emergency events. Each event described includes a cover sheet and a progression of operator actions flow chart. The cover sheet contains the following general information: initial plant state, sequence initiator, important plant parameters, major plant systems affected, tolerance ranges, final plant state, and competencies tested. The progression of operator actions flow chart depicts, in a flow chart manner, the representative sequence(s) of expected immediate and subsequent candidate actions, including communications, that can be observed during the event. These descriptions are intended to provide examiners with a reliable, performance-based source of information from which to design simulator scenarios that will provide a valid test of the candidates' ability to safely and competently perform all licensed duties and responsibilities

  2. Retinal vessel diameter changes induced by transient high perfusion pressure

    Institute of Scientific and Technical Information of China (English)

    Yin-Ying; Zhao; Ping-Jun; Chang; Fang; Yu; Yun-E; Zhao

    2014-01-01

    ·AIM: To investigate the effects of transient high perfusion pressure on the retinal vessel diameter and retinal ganglion cells.·METHODS: The animals were divided into four groups according to different infusion pressure and infusion time(60 mm Hg-3min, 60 mm Hg-5min, 100 mm Hg-3min, 100 mm Hg-5min). Each group consisted of six rabbits. The left eye was used as the experimental eye and the right as a control. Retinal vascular diameters were evaluated before, during infusion, immediately after infusion, 5min, 10 min and 30 min after infusion based on the fundus photographs. Blood pressure was monitored during infusion. The eyes were removed after 24 h.Damage to retinal ganglion cell(RGC) was analyzed by histology.·RESULTS: Retina became whiten and papilla optic was pale during perfusion. Measurements showed significant decrease in retinal artery and vein diameter during perfusion in all of the four groups at the proximal of the edge of the optic disc. The changes were significant in the 100 mm Hg-3min group and 100 mm Hg-5min group compared with 60 mm Hg-3min group(P 1=0.025, P 2=0.000).The diameters in all the groups recovered completely after 30 min of reperfusion. The number of RGC)showed no significant changes at the IOP in 100 mm Hg with5 min compared with contralateral untreated eye(P >0.05).·CONCLUSION: Transient fluctuations during infusion lead to temporal changes of retinal vessels, which could affect the retinal blood circulation. The RGCs were not affected by this transient fluctuation. Further studies are necessary to evaluate the effect of pressure during realtime phacoemusification on retinal blood circulation.

  3. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... the applicable chapters of the National Board Inspection Code, a Manual for Boiler and Pressure...

  4. Reassessment of PWR pressure-vessel integrity during overcooling accidents

    International Nuclear Information System (INIS)

    A continuing analysis of the PTS problem associated with PWR postuated OCA's indicates that the previously accepted degree of conservatism in the fracture-mechanics model needs to be more closely evaluated, and if excessive, reducted. One feature that was believed to be conservative was the use of two-dimensional as opposed to finite-length (three-dimensional) flaws. A flaw of particular interest is one that is located in an axial weld of a plate-type vessel. For those vessels that suffer relatively high radiation damage in the welds, the length of the flaw will be no greater than the length of the weld, and recent calculations indicate that a deep flaw of that length (approx. 2 m) is not effectively infinitely long, contrary to previous thinking. The benefit to be derived from consideration of the 2-m flaw and also a semielliptical flaw with a length-to-depth ratio of 6/1 was investigated by analyzing several postulated transients. In doing so the sensitivity of the benefit to a specified maximum crack arrest toughness and to the duration of the transient was investigated. Results of the analysis indicate that for some conditions the benefit in using the 2-m flaw is substantial, but it decreases with increasing pressure, and above a certain pressure there may be no benefit, depending on the duration of the transient and the limit on crack arrest toughness

  5. Remote controlled stud bolt handling device for reactor pressure vessel

    International Nuclear Information System (INIS)

    In nuclear power stations, at the time of regular inspection, the works of opening and fixing the upper covers of reactor pressure vessels are carried out for inspecting the inside of reactor pressure vessels and exchanging fuel rods. These upper covers are fastened with many stud bolts, therefore, the works of opening and fixing require a large amount of labor, and are done under the restricted condition of wearing protective clothings and masks. Babcock Hitachi K.K. has completed the development of a remotely controlled automatic bolt tightenig device for this purpose, therefore, its outline is reported. The conventional method of these works and the problems in it are described. The design of the new device aimed at the parallel execution of cleaning screw threads, loosening and tightening nuts, and taking off and putting on nuts and washers, thus contributing to the shortening of regular inspection period, the reduction of the radiation exposure of workers, and the decrease of the number of workers. The function, reliability and endurance of the new device were confirmed by the verifying test using a device made for trial. The device is composed of a stand, a rail and four stations each with a cleaning unit, a stud tensioner and a nut handling unit. (K.I.)

  6. Inspecting nuclear pressure vessels: the conundrum of minimizing risk

    International Nuclear Information System (INIS)

    The probability of a sudden, massive release of radioactivity from a light-water nuclear reactor through a breach of the containment is assessed on the basis of statistical data which partly consist of subjective estimates. This breach refers to the existence of crack-like defects remaining after a non-destructive examination of the main pressure vessel surrounding the reactor core. Two studies have recently been made of such sources of information about the effectiveness of non-destructive examination of pressure vessels with respect to defects. The results of these studies indicate that the data used as input in the probabilistic calculations do not possess the reliability that might be assumed from the assessments. This type of failure should therefore no longer be considered a de minimis case. In the present review the overconfidence in the efficiency of non-destructive examination is discussed from psychological, sociological and political science points of view. It is concluded that ingrained professional assumptions and values seem to be the main reason for the trust in the technology of inspection. However, there are also psychological constraints that can be understood only in their social and political contexts. (author)

  7. Fatigue of weldments in nuclear pressure vessels and piping

    International Nuclear Information System (INIS)

    Current (ASME) Code fatigue design rules for nuclear pressure vessels and piping include no special considerations for weldments other than purely geometric factors. Research programs aimed at nonnuclear applications have found weldments to display fatigue behavior inferior to that of pure base material. Available information on fatigue of weldments relevant to nuclear pressure vessels and piping was reviewed and determined changes in the current design rules appear to be dictated by the available information. Information was obtained and summarized and stored in a computerized data management system to facilitate correlation of facts and development of conclusions. Significant areas where development of additional data would substantially increase the ability to judge the adequacy of the current ASME design rules include: a better understanding of the relative importance of crack initiation and crack propagation to fatigue life; additional fatigue data for prototypic commercial weldments, including cumulative damage; properties of repair welds; significance of reheat cracks; quantitative effect of Code-allowable weld defects; and the effect of variable microstructure across the weld joint. Based on the information that is available, there is no evidence that the ASME Code fatigue design procedures need to be changed at this time. The current ASME design procedures, which form the general basis for fatigue evaluation both in the US and abroad are reviewed. Included is a review of various factors that influence the fatigue of weldments and of service experience with nuclear systems regarding fatigue of weldments. Research programs that may contribute to available information are reviewed

  8. Corrosion of steel tendons used in prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    The purpose of this investigation was to determine the corrosion behavior of a high strength steel (ASTM A416-74 grade 270), typical of those used as tensioning tendons in prestressed concrete pressure vessels, in several corrosive environments and to demonstrate the protection afforded by coating the steel with either of two commercial petroleum-base greases or Portland Cement grout. In addition, the few reported incidents of prestressing steel failures in concrete pressure vessels used for containment of nuclear reactors are reviewed. The susceptibility of the steel to stress corrosion cracking and hydrogen embrittlement and its general corrosion rate were determined in several salt solutions. Wires coated with the greases and grout were soaked for long periods in the same solutions and changes in their mechanical properties were subsequently determined. All three coatings appeared to give essentially complete protection but small flaws in the grease coatings were detrimental; flaws or cracks less than 1 mm wide in the grout were without effect

  9. Corrosion of steel tendons used in prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    The corrosion behavior of a high-strength steel [Specifications for Uncoated Seven-Wire-Stress-Relieved Strand for Prestressed Concrete (ASTM A 416-74, Grade 270)], typical of those used as tensioning tendons in prestressed concrete pressure vessels was measured in several corrosive environments. The protection obtained by coating the steel with two commercial petroleum-base greases or with Portland cement grout was evaluated. The few reported incidents of prestressing steel failures in concrete pressure vessels used for containment of nuclear reactors were reviewed. The susceptibility of the steel to stress corrosion cracking and hydrogen embrittlement and its general corrosion rate were determined in several salt solutions. Wires coated with the greases and grout were soaked for long periods in the same solutions and changes in their mechanical properties were subsequently determined. All three coatings appeared to give essentially complete protection; however, flaws in the grease coatings could be detrimental, and flaws or cracks less than 1-mm-wide (0.04 in.) in the grout were without effect

  10. Plastic Limit Load Analysis of Cylindrical Pressure Vessels with Different Nozzle Inclination

    Science.gov (United States)

    Prakash, Anupam; Raval, Harit Kishorchandra; Gandhi, Anish; Pawar, Dipak Bapu

    2016-04-01

    Sudden change in geometry of pressure vessel due to nozzle cutout, leads to local stress concentration and deformation, decreasing its strength. Elastic plastic analysis of cylindrical pressure vessels with different inclination angles of nozzle is important to estimate plastic limit load. In the present study, cylindrical pressure vessels with combined inclination of nozzles (i.e. in longitudinal and radial plane) are considered for elastic plastic limit load analysis. Three dimensional static nonlinear finite element analyses of cylindrical pressure vessels with nozzle are performed for incremental pressure loading. The von Mises stress distribution on pressure vessel shows higher stress zones at shell-nozzle junction. Approximate plastic limit load is obtained by twice elastic slope method. Variation in limit pressure with different combined inclination angle of nozzle is analyzed and found to be distinct in nature. Reported results can be helpful in optimizing pressure vessel design.

  11. Research on reasonable winding angle of ribbons of Flat Steel Ribbon Wound Pressure Vessel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Flat Steel Ribbon Wound Pressure Vessels (FSRWPVs) are used in many important industry areas. There is no such kind of pressure vessel exploding on operation for its reasonable structure design. Many explosion experiments on Flat Steel Ribbon Wound Pressure Vessel showed that their limited load pressure is related to the winding angle of the steel ribbons.FSRWPVs with reasonable winding angle have better security and lower cost. Reasonable angels given at the end of this paper facilitate engineering design.

  12. Simulation of the aspersion system of the core low pressure (LPCS) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    The present work presents the modeling and simulation of the aspersion system to low pressure of reactor of the nuclear power plant of Laguna Verde using the nuclear code RELAP/SCDAP. The objective of the emergency systems inside a nuclear reactor is the cooling of the core, nor caring the performance of any other emergency system in the case of an accident design base for coolant loss. To obtain a simulation of the system is necessary to have a model based on their main components, pipes, pumps, valves, etc. This article describes the model for the simulation of the main line and the test line for the HPCS. At the moment we have the simulation of the reactor vessel and their systems associated to the nuclear power plant of Laguna Verde, this work will allow to associate the emergency system model LPCS to the vessel model. The simulation of the vessel and the emergency systems will allow knowing the behavior of the reactor in the stage of the coolant loos, giving the possibility to analyze diverse scenarios. The general model will provide an auxiliary tool for the training in classroom and at distance in the operation of nuclear power plants. (Author)

  13. Transmitted ultrasound pressure variation in micro blood vessel phantoms.

    Science.gov (United States)

    Qin, Shengping; Kruse, Dustin E; Ferrara, Katherine W

    2008-06-01

    Silica, cellulose and polymethylmethacrylate tubes with inner diameters of ten to a few hundred microns are commonly used as blood vessel phantoms in in vitro studies of microbubble or nanodroplet behavior during insonation. However, a detailed investigation of the ultrasonic fields within these micro-tubes has not yet been performed. This work provides a theoretical analysis of the ultrasonic fields within micro-tubes. Numerical results show that for the same tube material, the interaction between the micro-tube and megaHertz-frequency ultrasound may vary drastically with incident frequency, tube diameter and wall thickness. For 10 MHz ultrasonic insonation of a polymethylmethacrylate (PMMA) tube with an inner diameter of 195 microm and an outer diameter of 260 microm, the peak pressure within the tube can be up to 300% of incident pressure amplitude. However, using 1 MHz ultrasound and a silica tube with an inner diameter of 12 microm and an outer diameter of 50 microm, the peak pressure within the tube is only 12% of the incident pressure amplitude and correspondingly, the spatial-average-time-average intensity within the tube is only 1% of the incident intensity. PMID:18395962

  14. 77 FR 23513 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-04-19

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft interim staff guidance; Request for public... Management Criteria for PWR Reactor Vessel Internal Components.'' The original notice provided the...

  15. Development of a crack monitoring technique for use in a corrosion fatigue study of SA533-B pressure vessel steel

    International Nuclear Information System (INIS)

    At present there does not exist a realistic crack growth law which will provide a good description of the relationship between the alternating stress intensity factor and the crack growth per cycle of stress. Such a law should be applicable to either the pressurized water reactor environment (PWR) or boiling water reactor environmnt (BWR). This project was formulated with the aim of examining the fatigue crack growth rate of SA533-B steel (a nuclear pressure vessel steel) in the threshold region in a simulated PWR environment. The aim of this report is to develop a crack monitoring technique for use in corrosion fatigue studies. Factors affecting fatigue crack propagation include: frequency, stress range, the effect of irradiation, ageing and environment. The mechanisms of crack propagation that are discussed include: slip dissolution, hydrogen assisted cracking, corrosion potential, and morphology studies. D.C. electrical potential, the compliance technique and the back-faced strain gauge method can be used for crack monitoring. Details are also given on the experimental equipment and programme. The results of the experiment has shown that the potential difference technique for monitoring crack length is a valuable one and is well suited for use in fatigue testing applications

  16. A Reinforcement Plate for Partially Thinned Pressure Vessel Designed to Measure the Thickness of Vessel Wall Applying Ultrasonic Technique

    International Nuclear Information System (INIS)

    It is very hard to preserve the wall thickness of the vessel because of the erosion or corrosion as time goes by. Therefore, the wall thicknesses of heaters in power plants are periodically measured using ultrasonic test. If the integrity of the wall thickness is estimated not to secure, the reinforcement plate is welled on the thinned area of the vessel. The overlay weld of the reinforcement plate on the thinned vessel is normally the fillet welding. As shown by the references, the reinforcement plate with adequate thickness does its role very well before the vessel wall is perforated due to thinning. However, the integrity of shell cannot insure because the weldment is directly applied by the shell side pressure to after the vessel wall is perforated. Therefore, it is needed to measure the thickness of thinned area under the reinforcement plate continuously for preserving integrity and planning the fabrication of replacement vessel. It is impossible to apply the ultrasonic thickness measurement technique after the reinforcement plate is welded on the shell. In this paper new reinforcement plate, which makes it possible to measure the wall thickness under the reinforcement plate applying the ultrasonic technique, is introduced. A method to evaluate the structural integrity of a fillet weldment for the reinforcement plate welded on a pressure vessel is introduced in this paper. Moreover, new reinforcement plate, which makes it possible to measure the wall thickness of pressure vessels under the reinforcement plate applying the ultrasonic technique, is introduced

  17. Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117

  18. Recent advances in lightweight, filament-wound composite pressure vessel technology

    Science.gov (United States)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single cycle burst and cyclic fatigue loading. Filament wound fiber/epoxy composite vessels were made from S glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessels structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all titanium pressure vessels. Significant findings in each area are summarized.

  19. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  20. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  1. Fracture probability evaluation of a LWR pressure vessel

    International Nuclear Information System (INIS)

    Fracture probability evaluation, of a LWR pressure vessel have been performed in the past, using statistical data from conventional plant. A more accurate evaluation has been requested in 1976 from the SCSIN to the CEA. With this object, a joint collaboration agreement has been signed between CEA, EURATOM/ISPRA and FRAMATOME. The whole program proceeding from this agreement is managed by a joint board including the three partners. The basic objective of this program is to develop a method which integrates, or makes it possible to integrate at a later stage, the greatest number of significant parameters. Also, in order to prepare the practical applications, a special effort is being made to collect the data corresponding to these parameters. Parallel basic research program have been launched in order to clarify our knowledge on some important parts of the main factors contributing to the evaluation. The results of this research will be progressively introduced into the method or will help checking its validity

  2. Continuous Cooling Transformations in Nuclear Pressure Vessel Steels

    Science.gov (United States)

    Pous-Romero, Hector; Bhadeshia, Harry K. D. H.

    2014-10-01

    A class of low-alloy steels often referred to as SA508 represent key materials for the manufacture of nuclear reactor pressure vessels. The alloys have good properties, but the scatter in properties is of prime interest in safe design. Such scatter can arise from microstructural variations but most studies conclude that large components made from such steels are, following heat treatment, fully bainitic. In the present work, we demonstrate with the help of a variety of experimental techniques that the microstructures of three SA508 Gr.3 alloys are far from homogeneous when considered in the context of the cooling rates encountered in practice. In particular, allotriomorphic ferrite that is expected to lead to a deterioration in toughness, is found in the microstructure for realistic combinations of austenite grain size and the cooling rate combination. Parameters are established to identify the domains in which SA508 Gr.3 steels transform only into the fine bainitic microstructures.

  3. The behavior of shallow flaws in reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Rolfe, S.T. (Kansas Univ., Lawrence, KS (United States))

    1991-11-01

    Both analytical and experimental studies have shown that the effect of crack length, a, on the elastic-plastic toughness of structural steels is significant. The objective of this report is to recommend those research investigations that are necessary to understand the phenomenon of shallow behavior as it affects fracture toughness so that the results can be used properly in the structural margin assessment of reactor pressure vessels (RPVs) with flaws. Preliminary test results of A 533 B steel show an elevated crack-tip-opening displacement (CTOD) toughness similar to that observed for structural steels tested at the University of Kansas. Thus, the inherent resistance to fracture initiation of A 533 B steel with shallow flaws appears to be higher than that used in the current American Society of Mechanical Engineers (ASME) design curves based on testing fracture mechanics specimens with deep flaws. If this higher toughness of laboratory specimens with shallow flaws can be transferred to a higher resistance to failure in RPV design or analysis, then the actual margin of safety in nuclear vessels with shallow flaws would be greater than is currently assumed on the basis of deep-flaw test results. This elevation in toughness and greater resistance to fracture would be a very desirable situation, particularly for the pressurized-thermal shock (PTS) analysis in which shallow flaws are assumed to exist. Before any advantage can be taken of this possible increase in initiation toughness, numerous factors must be analyzed to ensure the transferability of the data. This report reviews those factors and makes recommendations of studies that are needed to assess the transferability of shallow-flaw toughness test results to the structural margin assessment of RPV with shallow flaws. 14 refs., 8 figs.

  4. Evaluation of the reactor pressure vessel steels by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Slugeň, V., E-mail: Vladimir.Slugen@elf.stuba.sk [Institute of Nuclear and Physical Engineering, Slovak University of Technology, Ilkovičova 3, 81219 Bratislava (Slovakia); Hein, H. [AREVA NP GmbH, Paul Gossen Strasse 100, 91 001 Erlangen (Germany); Sojak, S.; Simeg Veterníková, J.; Petriska, M.; Sabelová, V.; Pavúk, M.; Hinca, R.; Stacho, M. [Institute of Nuclear and Physical Engineering, Slovak University of Technology, Ilkovičova 3, 81219 Bratislava (Slovakia)

    2013-11-15

    This paper presents a comparison of commercially used German and Russian reactor pressure vessel steels from the positron annihilation spectroscopy (PAS) point of view, having in mind knowledge obtained also from other techniques from the last decades. The second generation of Russian RPV steels seems to be fully comparable with German steels and their quality allows prolongation of NPP operating lifetime over projected 40 years. The embrittlement of CrMoV steels is relatively low due to effect of higher temperature which implies partial in situ annealing of primary microstructural point defects and therefore delays the degradation processes caused by neutron irradiation. PAS techniques can be effectively applied for evaluation of microstructural changes caused by extreme external loads (characterized by high dpa values) by proton implantation, with aim to simulate irradiation and for the evaluation of the effectiveness of post-irradiation thermal treatments. We used our actual and previous results, collected during last 20 years from measurements of different RPV-steels in “as received”, irradiated and post-irradiation annealed state and compare them with the aim to contribute to general knowledge based on experimental PAS data. Actual results from irradiated German and Russian steels confirmed that no large voids or vacancy clusters were formed at defined irradiation conditions stated according to the real operational conditions at nuclear power plants. This indicate the fact that vacancy type defects bear hardly any responsibility for radiation-induced hardening and embrittlement of reactor pressure vessel steels and does not affect significantly the long-term operation of nuclear power plants from safety point of view.

  5. Evaluation of the reactor pressure vessel steels by positron annihilation

    International Nuclear Information System (INIS)

    This paper presents a comparison of commercially used German and Russian reactor pressure vessel steels from the positron annihilation spectroscopy (PAS) point of view, having in mind knowledge obtained also from other techniques from the last decades. The second generation of Russian RPV steels seems to be fully comparable with German steels and their quality allows prolongation of NPP operating lifetime over projected 40 years. The embrittlement of CrMoV steels is relatively low due to effect of higher temperature which implies partial in situ annealing of primary microstructural point defects and therefore delays the degradation processes caused by neutron irradiation. PAS techniques can be effectively applied for evaluation of microstructural changes caused by extreme external loads (characterized by high dpa values) by proton implantation, with aim to simulate irradiation and for the evaluation of the effectiveness of post-irradiation thermal treatments. We used our actual and previous results, collected during last 20 years from measurements of different RPV-steels in “as received”, irradiated and post-irradiation annealed state and compare them with the aim to contribute to general knowledge based on experimental PAS data. Actual results from irradiated German and Russian steels confirmed that no large voids or vacancy clusters were formed at defined irradiation conditions stated according to the real operational conditions at nuclear power plants. This indicate the fact that vacancy type defects bear hardly any responsibility for radiation-induced hardening and embrittlement of reactor pressure vessel steels and does not affect significantly the long-term operation of nuclear power plants from safety point of view

  6. D-Zero Central Calorimeter Pressure Vessel and Vacuum Vessel Safety Notes

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, R.; Luther, R.; /Fermilab

    1990-10-25

    The relief valve and relief piping capacity was calculated to be 908 sefm air. This exceeds all relieving conditions. The vessel also has a rupture disc with a 2640 scfm air stamped capacity. In order to significantly decrease the amount of time required to fill the cryostats, it is desired to raise the setpoint of the 'operating' relief valve on the argon storage dewar to 20 psig from its existing 16 psig setting. This additional pressure increases the flow to the cryostats and will overwhelm the relief capacity if the temperature of the modules within these vessels is warm enough. Using some conservative assumptions and simple calculations within this note, the maximum average temperature that the modules within each cryostat can be at prior to filling from the storage dewar with liquid argon is at least 290 K. The average temperature of the module mass for any of the three cryostats can be as high as 290 K prior to filling that particular cryostat. This should not be confused with the average temperature of a single type or location which is useful in protecting the modules-not necessarily the vessel itself. A few modules of each type and at different elevations should be used in an average which would account for the different weights of each module. Note that at 290 K, the actual flow of argon through the relief valve and the rupture disk was under the maximum theoretical flows for each relief device. This means that the bulk temperature could actually have been raised to flow argon through the reliefs at their maximum capacity. Therefore, the temperature of 290 K is a conservative value for the calculated flow rate of 12.3 gpm. Safeguards in addition to and used in conjunction with operating procedures shall be implemented in such a way so that the above temperature limitation is not exceeded and such that it is exclusive of the programmable logic controller (PLC). One suggestion is using a toggle switch for each cryostat mounted in the PLC I/O box

  7. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Probabilistic fracture mechanics (PFM) analysis is a major element of the comprehensive probabilistic methodology endorsed by the Nuclear Regulatory Commission (NRC) for evaluation of the integrity of pressurized water reactor pressure vessels subjected to pressurized-thermal-shock (PTS) transients. OCA-P and VISA-II are PTS PFM computer codes that are currently referenced in Regulatory Guide 1.154 as acceptable codes for performing plant-specific analyses. These codes perform PFM analyses to estimate the increase in vessel failure probability as the vessel accumulates radiation damage over the operating life of the vessel. Experience with the application of these codes in the last few years has provided insights into areas where they could be improved. As more plants approach the PTS screening criteria and are required to perform plant-specific analyses, there will be an increasing need for an improved and validated PTS PFM code that is accepted by the NRC and utilities. The NRC funded Heavy Section Steel Technology Program (HSST) at the Oak Ridge National Laboratory is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) code, which is expected to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as (1) a PFM global modeling methodology; (2) the calculation of the axial stress component associated with coolant streaming beneath an inlet nozzle; (3) a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an appropriate range of two and three dimensional inner-surface flaws; (4) the flexibility to generate a variety of output reports; and (5) enhanced user friendliness

  8. Influence of gamma irradiation on the deterioration of reactor pressure vessel materials and on reactor dosimetry measurements. Final report

    International Nuclear Information System (INIS)

    Radiation embrittlement of pressure vessel steel in mixed neutron-gamma fields is mostly determined by neutrons, but in some cases also by gamma-radiation. Depending on the reactor type, gamma radiation can influence evaluations of lead factors of surveillance specimens, effect the interpretation of results of irradiation experiments and finally, it can result in changed pressure vessel lifetime evaluations. The project aimed at the evaluation of the importance of gamma radiation for RPV steel damage for several types of light-water reactors. Absolute neutron and gamma fluence rate spectra had been calculated for the Russian PWR types VVER-440 and two core loading variants of VVER-1000, for a German 1300 MW PWR and a German 900 MW BWR. Based on the calculated spectra several flux integrals and radiation damage parameters were derived for the region of the azimuthal flux maxima in the mid-planes for different radial positions between core and biological shield, especially, at the inner and outer surfaces of the PV walls, at the (1/4)-PV-thickness and at the surveillance positions. Fissionable materials are often used as activation detectors for neutron fluence measurements. To get the real value the analysis demands to take into account the gamma induced fissions. Therefore, the part of these fissions in the total number of fissions was estimated for the detector reactions 237Np(n,f) and 238U(n,f) in the calculated neutron/gamma fields. It has been found that considerable corrections of the neutron fluence measurements can be necessary, especially in case of 238U(n,f). Most of the calculations were performed using a three-dimensional synthesis of 2D/1D-flux distributions obtained by the SN-code DORT with the BUGLE-96T group cross-section library. (orig.)

  9. Structural integrity assessment of reactor pressure vessels during pressurized thermal shock

    International Nuclear Information System (INIS)

    A comparative assessment study is performed for the deterministic fracture mechanics approach of the pressurized thermal shock of a reactor pressure vessel. Round robin problems consisting of two transients and two defects are solved. Their results are compared to suggest some recommendations of best practices and to assure an understanding of the key parameters of this type of approach, which will be helpful not only for the benchmark calculations and results comparisons but also as a part of the knowledge management for the future generation. Seven participants from five organizations solved the problem and their results are compiled in this study

  10. Creep of A508/533 Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are

  11. Preservation and management of knowledge on WWER reactor pressure vessels

    International Nuclear Information System (INIS)

    Preservation and management of knowledge are becoming a rising challenge and the importance of collecting all available information about the behaviour of different types of reactors, including WWER, is increasingly being recognized. Several experts are close to retirement, and preservation and use of their knowledge and experience will be nearly impossible in a few years. A new project is in progress at the Joint Research Centre of the European Commission (JRC-EC) Institute for Energy in cooperation with the Nuclear Research Institute Rez with the intention to collect all available information about reactor pressure vessels of WWER type reactors to analyse and summarize the most important items and issues. This project will contribute significantly to the new project Coordinated Action on VVER Safety (COVERS) on WWER Safety under the Framework Programme 6 of the European Commission (EC-FP6), in which all WWER operating countries are also taking part. The results of the project will be useful to young specialists of the new generation in all countries, since they would have access not only to current views and knowledge but also to the history and background on all aspects of WWER power plants. From the very beginning of researched studies and initial experiences with the operation of reactors, a large number of publications were issued in Russian as well as in other national languages (Czech, Slovak, Hungarian, Finnish, etc.). Today, there is no easy access to this substantial amount of information and experience for most foreign experts and WWER reactor operators in different countries. Many publications were also prepared in languages other than Russian for presentation at national conferences or workshops and appearing in national and international journals. Most of this information, experience and knowledge can not be retrieved easily. In the new project, more than 20 specialists, mainly from WWER operating countries, would help with the collection of such

  12. Status update of the BWR cask simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations

  13. Neutron activation analysis and activity in the vessel steel of a BWR reactor for their study without radiological risks in microscopy and spectrometry; Analisis de activacion neutronica y actividad en el acero de la vasija de un reactor nuclear tipo BWR para su estudio sin riesgos radiologicos en microscopia y espectrometria

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel, M.; Garcia B, A. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: mmoranchel@ipn.mx [IAEA, Department of Technical Cooperation, Division for Latin America, Room B1109 Wagramerstrasse 5, PO Box 100, A-1400, Vienna (Austria)

    2012-07-01

    The vessel material of nuclear reactors is subject to irradiation damage induced by the bombardment of neutrons coming from the reactor core. Neutrons are classified as fast and thermal, which produce different effects. Fast neutrons cause damage to the material by dislocation or displacement of atoms in the crystal structure, while the effect of thermal neutrons is a nuclear transmutation that can significantly change the properties of the material. The type and intensity of damage is based on the characteristics of the material, the flow of neutrons and the modes of neutrons interaction with the atomic structures of the material, among others. This work, alluding to nuclear transmutation, makes an analysis of neutron activation of all isotopes in a steel boiling water nuclear reactor (BWR) vessel. An analytical expression is obtained in order to model activity of steel, on the basis of the weight percentage of its atomic components. Its activity is theoretically estimated in a witness sample of the same material as that of the vessel, placed within the nuclear reactor since the beginning of its commercial operation in April 1995, up to August 2010. It was theoretically determined that the witness sample, with a 0.56 g mass (1 x 1 x 0.07 cm{sup 3} dimensions or equivalent) does not present a radiological risks during the stage of preparation, observation and analysis of it in electron microscopy and X-ray diffraction equipment s. The theoretical results were checked experimentally by measuring the activity of the sample by means of gamma spectrometry, measurement of the exposure levels around the sample, as well as the induced level to whole body and limbs, using thermo-luminescent dosimetry (TLD). As a result of the theoretical analysis, new chemical elements are predicted, as a result of the activation phenomena and radioactive decay, whose presence can be a fundamental factor of change in the properties of the vessel. This work is a preamble to the

  14. Technical report on material selection and processing guidelines for BWR [boiling water reactor] coolant pressure boundary piping: Final report

    International Nuclear Information System (INIS)

    This report provides the technical bases for the NRC staff's revised recommended methods to control the intergranular stress corrosion cracking susceptibility of BWR piping. For piping that does not fully comply with the material selection, testing, and processing guideline combinations of this document, varying degrees of augmented inservice inspection are recommended. This revision also includes guidance and NRC staff recommendations (not requirements) regarding crack evaluation and weld overlay repair methods for long-term operation or for continuing interim operation of plants until a more permanent solution is implemented

  15. Instrumentation and testing of a prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Static overpressurization tests of two scale models of nuclear containment structures - a steel containment vessel (SCV) representative of an improved, boiling water reactor (BWR) Mark II design and a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR) - are being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the U.S. Nuclear Regulatory Commission. This paper discusses plans for instrumentation and testing of the PCCV model. 6 refs., 2 figs., 2 tabs

  16. Simplified system for the pressure control of a Nucleo electric central of the BWR type; Sistema simplificado para el control de presion de una central Nucleoelectrica del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez J, J. [FI-UNAM, DEPFI Campus Morelos, Jiutepec, Morelos (Mexico)

    2003-07-01

    One of the main preoccupations of the electric power generator stations is the appropriate operation of the same ones. The operators must be qualified to respond in an adequate way and to be able to take to these power stations to an optimal, sure and stable operation condition under any circumstance. The Laboratory of Analysis in Nuclear Reactors Engineering (LAIRN) of the Engineering Faculty of UNAM (Fl) in collaboration with the International Atomic Energy Agency (IAEA), it develops an interactive classroom simulator in which simulations of the phenomena which take place in a nuclear power station are executed. The classroom simulator bases its operation on specialized nuclear codes feeding interactive graphic unfolding with those that it is possible to make a monitoring, supervision and control of the behavior of the power station under any operation regime, either in normal operation, transitory events or postulated accident sequence. The development of this classroom simulator includes a modular and re configurable structure. Due to it is indispensable to count with a higher inter activity with the system it is included the simulation of the control system of the plant and inside the same, one of those more important it is the reactor pressure control system. The present work describes the conceptual design and the used methodology for the development and implementation in the simulator of a simplified model of the pressure control system for a BWR generic central. The reach of the development will allow to accomplish the necessary tests to demonstrate that this has an adequate performance according to the carried out simplifications. (Author)

  17. Fabrication techniques of metal liner used for pressure vessels made by composite material

    International Nuclear Information System (INIS)

    Different viable techniques for the manufacturing of metal liner used for pressure vessels are presented. The aim of these metal liner is to avoid the fluid leakage from the pressurized vessel and to serve as a mandreal to be wound by composite material. The studied techniques are described and the practical results are illustrated. Finally a comparative study of the manufacturing techniques is made in order to define the process that furnishes the metal liner with the best characteristics. The advantages offered by these type of pressure vessels when compared with the conventional metallic vessels, are also presented. (Author)

  18. Radial Body Forces Influence on FGM and Non-FGM Cylindrical Pressure Vessels

    OpenAIRE

    Jacob Nagler

    2016-01-01

    This study deals with the influence of radial body forces on FGM and non-FGM pressure vessels. It contains an extended overview of pressure vessels made from both kinds of material. Furthermore, full mathematical development of stress-strain field for both kinds of cylindrical vessels while being influenced by body forces has been performed. In addition, a new power law model for FGM materials was suggested and discussed. Finally, tables of composed plastic-elastic states are discussed.

  19. OPTIMUM AUTOFRETTAGE PRESSURE AND SHRINK-FIT COMBINATION FOR MINIMUM STRESS IN MULTILAYER PRESSURE VESSEL

    Directory of Open Access Journals (Sweden)

    S.K. Acharyaa

    2011-05-01

    Full Text Available In present work, more effective ways of decreasing the net working stress in multilayer vessel is brought into focus. Analysis of combined effect of autofrettage and shrink-fit in multi-layeredvessel is carried out. Possible sequences of assembly of autofrettage and shrink-fit in multilayered vessel have been discussed and effective sequence has been sorted out. With the increase in number of layers, sequential order of assembly increases. Optimization of thickness of each vessel for 3-layered vessel, percentage of autofrettage and amount of radial shrink-fit is carried out for all the possible sequences with the help of Genetic Algorithm. While performing optimization, thickness of each layers, autofrettage percentage and radial interference for shrink-fit is considered as design variables, whereas hoop stress throughout the thickness isobjective function. Apart from this, calculation of fatigue life for each case is studied. It is observed that all the possibilities of assembly gives approximately same behaviour under same working pressure with some exceptions.

  20. Experimental Investigation of Composite Pressure Vessel Performance and Joint Stiffness for Pyramid and Inverted Pyramid Joints

    Science.gov (United States)

    Verhage, Joseph M.; Bower, Mark V.; Gilbert, Paul A. (Technical Monitor)

    2001-01-01

    The focus of this study is on the suitability in the application of classical laminate theory analysis tools for filament wound pressure vessels with adhesive laminated joints in particular: pressure vessel wall performance, joint stiffness and failure prediction. Two 18-inch diameter 12-ply filament wound pressure vessels were fabricated. One vessel was fabricated with a 24-ply pyramid laminated adhesive double strap butt joint. The second vessel was fabricated with the same number of plies in an inverted pyramid joint. Results from hydrostatic tests are presented. Experimental results were used as input to the computer programs GENLAM and Laminate, and the output compared to test. By using the axial stress resultant, the classical laminate theory results show a correlation within 1% to the experimental results in predicting the pressure vessel wall pressure performance. The prediction of joint stiffness for the two adhesive joints in the axial direction is within 1% of the experimental results. The calculated hoop direction joint stress resultant is 25% less than the measured resultant for both joint configurations. A correction factor is derived and used in the joint analysis. The correction factor is derived from the hoop stress resultant from the tank wall performance investigation. The vessel with the pyramid joint is determined to have failed in the joint area at a hydrostatic pressure 33% value below predicted failure. The vessel with the inverted pyramid joint failed in the wall acreage at a hydrostatic pressure within 10% of the actual failure pressure.

  1. 77 FR 59408 - Finding of Equivalence; Alternate Pressure Relief Valve Settings on Certain Vessels Carrying...

    Science.gov (United States)

    2012-09-27

    ... SECURITY Coast Guard Finding of Equivalence; Alternate Pressure Relief Valve Settings on Certain Vessels... Coast Guard announces the availability of CG-ENG Policy Letter 04-12, ``Alternative Pressure Relief Valve Settings on Vessels Carrying Liquefied Gases in Bulk in Independent Type B and Type C...

  2. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and...

  3. Advances in crack-arrest technology for reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; Pugh, C.E.

    1988-01-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the US Nuclear Regulatory Commission is continuing to improve the understanding of conditions that govern the initiation, rapid propagation, arrest, and ductile tearing of cracks in reactor pressure vessel (RPV) steels. This paper describes recent advances in a coordinated effort being conducted under the HSST Program by ORNL and several subcontracting groups to develop the crack-arrest data base and the analytical tools required to construct inelastic dynamic fracture models for RPV steels. Large-scale tests are being carried out to generate crack-arrest toughness data at temperatures approaching and above the onset of Charpy upper-shelf behavior. Small- and intermediate-size specimens subjected to static and dynamic loading are being developed and tested to provide additional fracture data for RPV steels. Viscoplastic effects are being included in dynamic fracture models and computer programs and their utility validated through analyses of data from carefully controlled experiments. Recent studies are described that examine convergence problems associated with energy-based fracture parameters in viscoplastic-dynamic fracture applications. Alternative techniques that have potential for achieving convergent solutions for fracture parameters in the context of viscoplastic-dynamic models are discussed. 46 refs., 15 figs., 3 tabs.

  4. Coordinated sensing and autonomous repair of pressure vessels and structures

    Science.gov (United States)

    Huston, Dryver R.; Hurley, David A.; Gollins, Kenneth; Gervais, Anthony

    2010-04-01

    Self-repairing structural systems can potentially improve performance ranges and lifetimes compared to those of conventional systems without self-healing capability. Self-healing materials have been used in automotive and aeronautical applications for over a century. The bulk of these systems operate by using the damage to directly initiate the repair response without any supervisory coordination. Integrating sensing and supervisory control technologies with self-healing may improve the safety and reliability of critical components and structures. This project used laboratory scale test beds to illustrate the benefit of an integrated sensing, control and self-healing system. A thermal healing polymer embedded with resistive heating wires acted as the sensing-healing material. Sensing duties were performed using an impedance, capacitance, and resistance testing device and a PC acted as the controller. As damage occurs to the polymer it is detected, located, and characterized. Based on the sensor signal, a decision is made as to whether to execute a repair and then to subsequently monitor the repair process to ensure completeness. The second demonstration was a self-sealing pressure vessel with integrated sensing and healing capability. These proof-of-concept prototypes can likely be expanded and improved with alternative sensor options, sensing-healing materials, and system architecture.

  5. Towards safe long-term operation of reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Rouden, Jenny; Efsing, Pal [Ringhals AB, Vaeroebacka (Sweden); Hein, Hieronymus; May, Johannes [AREVA GmbH, Erlangen (Germany); Planman, Tapio [VTT (Finland); Todeschini, Patrick [EDF, Paris (France); Brumovsky, Milan [UJV Rez, a.s., Hlavni (Czech Republic); Ballesteros, Antonio [JRC Institute for Energy and Transport, Petten (Netherlands). Nuclear Reactor Safety Assessment Unit; Gillemot, Ferenc [MTA-EK, Budapest (Hungary); Chaouadi, Rachid [SCK-CEN, Mol (Belgium); Altstadt, Eberhard [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2015-05-15

    This publication summarizes the long term operation (LTO) conditions in European NPPs and provides recommendations on reactor pressure vessel (RPV) irradiation surveillance based on the work performed in the Work Package 7 ''Surveillance Guidelines'' of the LONGLIFE international project. The LONGLIFE project ''Treatment of Long Term Irradiation Embrittlement Effects in RPV Safety Assessment'' was 50 % funded by the Euratom 7th Framework Programme of the European Commission. Specific scientific and technical issues addressed in this publication are the following: - Surveillance standards and procedures. - Reuse of tested irradiated surveillance specimens. - Transferability of test reactor results to LWR conditions. - Extension of RPV irradiation surveillance programmes. - Withdrawal scheme for LTO surveillance programmes. The objective of the surveillance guidelines is to support the potential end-user (utilities, nuclear power plants, research institutes, etc.) in selecting the appropriate strategy and technical approaches for RPV irradiation surveillance for LTO. In this way contributing to a reliable monitoring of long-term irradiation effects in RPV, and supporting the European efforts towards harmonisation of procedures for RPV surveillance and safety assessment in the light of LTO.

  6. Investigation on reconstitution of reactor pressure vessel surveillance specimen

    International Nuclear Information System (INIS)

    Since the reconstitution of surveillance specimens became an issue due to the shortage of surveillance test specimens for reactor pressure vessels (RPVs) for long-term operation of nuclear power plants, investigation research had been conducted for seven years until March 2006. As the standard Charpy and CT specimen reconstitution, minimum insert length was obtained from hardness distribution and twice of the sum of plastic zone width plus maximum of heat affected zone width and heat recovery zone width. Plastic zone width was correlated with absorbed energy (J) for Charpy impact test specimen (5.3 mm maximum) and J-integral (kJ/m2) for CT test specimen. Heat affected zone was checked by etching, and 1.2 mm for Charpy specimen of surface activated joining reconstitution and 1.6 mm for CT specimen of laser welding reconstitution. Heat recovery width was obtained by test measurement or thermal analysis of temperature history of inserts under the joining condition, and 1.9 mm for Charpy specimen of surface activated joining reconstitution and 2.5 mm for CT specimen of laser welding reconstitution. Standard surveillance specimen reconstitution could contribute to assessment of the integrity of aged RPVs. (T. Tanaka)

  7. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    Science.gov (United States)

    Hereil, Pierre-Louis; Plassard, Fabien; Mespoulet, Jérôme

    2015-09-01

    Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics) overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  8. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hereil Pierre-Louis

    2015-01-01

    Full Text Available Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  9. Status of reactor pressure vessel embrittlement study in Japan

    International Nuclear Information System (INIS)

    Since the construction of Japanese first commercial nuclear power plant in 1966, 52 nuclear power plants have been commissioned in Japan to commercial operation. Japanese first nuclear power plant has now been service for 30 years and the aging of nuclear power plants is steadily progressing in general. Under these circumstances, the Japan Power Engineering and Inspection Corporation (JAPEIC) is executing, under consignment by the Ministry of International Trade and Industry (MITI), the development and verification test programs for plant integrity evaluation technology by which nuclear power plant aging can be appropriately handled. This paper shows the outline of study dealing with embrittlement of RPV caused by neutron irradiation, as one of the activity of JAPEIC. The embrittlement of RPV caused by neutron irradiation is manifested as a shift of transition temperature and as a reduction in Upper Shelf Energy (USE). In JAPEIC, the study dealing with a shift of transition temperature was conducted in the ''Reactor Pressure Vessel Pressurized Thermal Shock Test Project (the PTS Project)'', and the study dealing with a reduction in USE has been conducted in the ''Nuclear Power Plant Life Management Technology (the PLIM Project)''. And the reconstitution technology of surveillance test specimen has been conducted in PLIM Project as one of the measures to improve monitoring above material characteristic changes. The integrity evaluation under the Pressurized Thermal Shock (PTS) events including the effect of neutron irradiation embrittlement was initiated in 1983 FY as the PTS Project and was completed in the 1991 FY. The study verified that plant integrity could be assured at not only the end of design life, but also an extended service life even when the severest PTS events were postulated. The PLIM Project, designed to develop and verify the integrity evaluation technology dealing with reduction of USE by neutron irradiation, was started in the 1996 FY as a 10

  10. Determination of the critical buckling pressure of blood vessels using the energy approach.

    Science.gov (United States)

    Han, Hai-Chao

    2011-03-01

    The stability of blood vessels under lumen blood pressure is essential to the maintenance of normal vascular function. Differential buckling equations have been established recently for linear and nonlinear elastic artery models. However, the strain energy in bent buckling and the corresponding energy method have not been investigated for blood vessels under lumen pressure. The purpose of this study was to establish the energy equation for blood vessel buckling under internal pressure. A buckling equation was established to determine the critical pressure based on the potential energy. The critical pressures of blood vessels with small tapering along their axis were estimated using the energy approach. It was demonstrated that the energy approach yields both the same differential equation and critical pressure for cylindrical blood vessel buckling as obtained previously using the adjacent equilibrium approach. Tapering reduced the critical pressure of blood vessels compared to the cylindrical ones. This energy approach provides a useful tool for studying blood vessel buckling and will be useful in dealing with various imperfections of the vessel wall.

  11. Experimental studies on heat transfer in external cooling of the reactor pressure vessel

    International Nuclear Information System (INIS)

    The filling of the reactor cavity by accidental initiation of the containment spray system, while reactor is in full power, could have severe consequences. If the relatively cold water suddenly cools down the wall of fully pressurized reactor pressure vessel and a crack is assumed to be located on the outer surface of the vessel, the induced thermal stresses might damage the pressure vessel wall. The effects of the inadvertent cooling and pressurized thermal shock (PTS) were studied experimentally at Lappeenranta University of Technology and the heat transfer coefficients gained from the experimental results were compared with calculations. (author)

  12. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Matthew [Structural Integrity Associates, Inc.; Yin, Shengjun [ORNL; Stevens, Gary [U.S. Nuclear Regulatory Commission; Sommerville, Daniel [Structural Integrity Associates, Inc.; Palm, Nathan [Westinghouse Electric Company, Cranberry Township, PA; Heinecke, Carol [Westinghouse Electric Company, Cranberry Township, PA

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  13. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10{sup -4} Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  14. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness

  15. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Backman, Marie [Univ. of Tennessee, Knoxville, TN (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hoffman, William [Univ. of Idaho, Moscow, ID (United States)

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode I loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.

  16. Embrittlement recovery due to annealing of reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Eason, E.D.; Wright, J.E.; Nelson, E.E. [Modeling and Computing Services, Boulder, CO (United States); Odette, G.R.; Mader, E.V. [Univ. of California, Santa Barbara, CA (United States)

    1996-03-01

    Embrittlement of reactor pressure vessels (RPVs) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. Although such an annealing process has not been applied to any commercial plants in the United States, one US Army reactor, the BR3 plant in Belgium, and several plants in eastern Europe have been successfully annealed. All available Charpy annealing data were collected and analyzed in this project to develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy over a range of potential annealing conditions. Pattern recognition, transformation analysis, residual studies, and the current understanding of the mechanisms involved in the annealing process were used to guide the selection of the most sensitive variables and correlating parameters and to determine the optimal functional forms for fitting the data. The resulting models were fitted by nonlinear least squares. The use of advanced tools, the larger data base now available, and insight from surrogate hardness data produced improved models for quantitative evaluation of the effects of annealing. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and the surrogate hardness data base. The standard errors of the resulting recovery models relative to calibration data are comparable to the uncertainty in unirradiated Charpy data. This work also demonstrates that microhardness recovery is a good surrogate for transition temperature shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes.

  17. Computational methods for fracture analysis of heavy-section steel technology (HSST) pressure vessel experiments

    International Nuclear Information System (INIS)

    This paper summarizes the capabilities and applications of the general-purpose and special-purpose computer programs that have been developed for use in fracture mechanics analyses of HSST pressure vessel experiments. Emphasis is placed on the OCA/USA code, which is designed for analysis of pressurized-thermal-shock (PTS) conditions, and on the ORMGEN/ADINA/ORVIRT system which is used for more general analysis. Fundamental features of these programs are discussed, along with applications to pressure vessel experiments

  18. Advanced Construction of Compact Containment BWR

    International Nuclear Information System (INIS)

    The reactor concept considered in this paper has a mid/small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. Compact Containment BWR (CCR) is being developed with matured BWR technologies together with innovative systems/components, will provide attractiveness for the energy market in the world due to its flexibility in energy demands as well as in site conditions, its high potential in reducing investment risk and its safety feature facilitating public acceptance. The flexibility is achieved by CCR's mid/small power output of 400 MWe class and capability of long operating cycle (refueling intervals). The high investment potential is expected from CCR's simplification/innovation in design such as natural circulation core cooling with the bottom located short core, top mounted upper entry control rod drives (CRDs) with ring-type dryers and simplified safety system with high pressure resistible primary containment vessel (PCV) concept. The natural circulation core eliminates recirculation pumps as well as needs for maintenance of such pumps. The top mounted upper entry CRDs enable the bottom located short core in RPV. The safety feature mainly consists of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), high pressure resistible PCV and in-vessel retention (IVR) capability. The large inventory increases the system response time in case of design base accidents including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. CCR's specific self-standing steel high pressure resistible PCV is designed to contain minimum piping and valves inside with reactor pressure vessel (RPV), only 13 m in diameter and 24 m in height. This compact PCV makes it possible to

  19. Response of a LWR pressure vessel to severe-accident loadings

    Energy Technology Data Exchange (ETDEWEB)

    Ju, F.D.; Bennett, J.G.; Anderson, C.A.

    1982-01-01

    In the recent emphasis on nuclear safety, structural studies of nuclear reactor vessels have been directed toward evaluating their response during severe loading incidents or accidents including even core meltdown - however improbable these accidents may be. The present paper will address some of these problems. The ultimate load carrying capacity of an unflawed nuclear pressure vessel is estimated. The measure of the maximum pressure that the vessel can resist during quasistatic loading is a useful quantitative estimate of overall vessel strength. The paper than analyzes two structural problems during a hypothetical meltdown. In the initial stage, the molten core mixture drops into the lower portion of the pressure vessel, resulting in both temperature and pressure rises. Subsequently, a vapor explosion may occur as a result of the molten metal coming in sudden contact with the water in the lower portion of the vessel. The explosion is postulated to propel a slug of molten metalup the vessel barrel that eventually impacts the upper head of the vessel potentially generating missiles in the containment building. The reactor vessel at Indian Point, New York is used as a prototype of this analysis.

  20. Response of a LWR pressure vessel to severe-accident loadings

    International Nuclear Information System (INIS)

    In the recent emphasis on nuclear safety, structural studies of nuclear reactor vessels have been directed toward evaluating their response during severe loading incidents or accidents including even core meltdown - however improbable these accidents may be. The present paper will address some of these problems. The ultimate load carrying capacity of an unflawed nuclear pressure vessel is estimated. The measure of the maximum pressure that the vessel can resist during quasistatic loading is a useful quantitative estimate of overall vessel strength. The paper than analyzes two structural problems during a hypothetical meltdown. In the initial stage, the molten core mixture drops into the lower portion of the pressure vessel, resulting in both temperature and pressure rises. Subsequently, a vapor explosion may occur as a result of the molten metal coming in sudden contact with the water in the lower portion of the vessel. The explosion is postulated to propel a slug of molten metalup the vessel barrel that eventually impacts the upper head of the vessel potentially generating missiles in the containment building. The reactor vessel at Indian Point, New York is used as a prototype of this analysis

  1. Improvement in reactor pressure vessel reliability through assembly production

    International Nuclear Information System (INIS)

    The importance of the Framatome nuclear programme requires the implementation of significant human and equipment resources for the manufacturing of a large number of reactor vessels, at a rate of six vessels per year. The time needed to fabricate one vessel is approximately three years and as many as eighteen vessels can be present, at the same time, on the assembly line in Framatome workshops. In order to cope with this mass-type production plan, Framatome is geared to transform most of the original manual welding operations into automatic welding processes, which result in a reduction of the number of weld defects and therefore in the number of required weld repairs. Another benefit is the marked improvement in the welders' working conditions. Both resulted in improving component reliability. These developments are described. (author)

  2. Review of pressurized thermal shock studies of large scale reactor pressure vessels in Hungary

    Directory of Open Access Journals (Sweden)

    Tamás Fekete

    2016-03-01

    Full Text Available In Hungary, four nuclear power units were constructed more than 30 years ago; they are operating to this day. In every unit, VVER-440 V213-type light-water cooled, light-water moderated, ressurized water reactors are in operation. Since the mid-1980s, numerous researches in the field of Pressurized Thermal Shock (PTS analyses of Reactor Pressure Vessels (RPVs have been conducted in Hungary; in all of them, the concept of structural integrity was the basis of research and development. During this time, four large PTS studies with industrial relevance have been completed in Hungary. Each used different objectives and guides, and the analysis methodology was also changing. This paper gives a comparative review of the methodologies used in these large PTS Structural Integrity Analysis projects, presenting the latest results as well

  3. Photoacoustic sample vessel and method of elevated pressure operation

    Science.gov (United States)

    Autrey, Tom; Yonker, Clement R.

    2004-05-04

    An improved photoacoustic vessel and method of photoacoustic analysis. The photoacoustic sample vessel comprises an acoustic detector, an acoustic couplant, and an acoustic coupler having a chamber for holding the acoustic couplant and a sample. The acoustic couplant is selected from the group consisting of liquid, solid, and combinations thereof. Passing electromagnetic energy through the sample generates an acoustic signal within the sample, whereby the acoustic signal propagates through the sample to and through the acoustic couplant to the acoustic detector.

  4. Non-invasive method and apparatus for measuring pressure within a pliable vessel

    Science.gov (United States)

    Shimizu, M. (Inventor)

    1983-01-01

    A non-invasive method and apparatus is disclosed for measuring pressure within a pliable vessel such as a blood vessel. The blood vessel is clamped by means of a clamping structure having a first portion housing a pressure sensor and a second portion extending over the remote side of the blood vessel for pressing the blood vessel into engagement with the pressure sensing device. The pressure sensing device includes a flat deflectable diaphragm portion arranged to engage a portion of the blood vessel flattened against the diaphragm by means of the clamp structure. In one embodiment, the clamp structure includes first and second semicylindrical members held together by retaining rings. In a second embodiment the clamp structure is of one piece construction having a solid semicylindrical portion and a hollow semicylindrical portion with a longitudinal slot in the follow semicylindrical portion through which a slip the blood vessel. In a third embodiment, an elastic strap is employed for clamping the blood vessel against the pressure sensing device.

  5. Evaluation of the integrity of SEP reactor vessels

    International Nuclear Information System (INIS)

    A documented review is presented of the integrity of the 11 reactor pressure vessels covered in the Systematic Evaluation Program. This review deals primarily with the design specifications and quality assurance programs used in the vessel construction and the status of material surveillance programs, pressure-temperature operating limits, and inservice inspection programs of the applicable plants. Several generic items such as PWR overpressurization protection and BWR nozzle and safe-end cracking also are evaluated. The 11 vessels evaluated include Dresden Units 1 and 2, Big Rock Point, Haddam Neck, Yankee Rowe, Oyster Creek, San Onofre 1, LaCrosse, Ginna, Millstone 1, and Palisades

  6. Coupled thermomechanical response of a pressure vessel lower head to relocated corium

    International Nuclear Information System (INIS)

    Previous investigations of the pressure vessel lower head subjected to relocated corium, performed as part of the OECD-sponsored Three Mile Island Unit 2 Vessel Investigation Project (TMI-2 VIP), indicated the vessel would fail under the high pressures and extreme temperatures expected from corium relocation. The TMI-2 lower head, however, remained intact and experienced no finite deformation, despite the settling of some 19 tonnes of previously molten material on top of it. The inconsistency between model predictions and TMI-2 vessel behavior were ascribed to an incomplete understanding of corium interaction with the lower head as well as insufficient coupling between vessel deformation and thermal loading. This paper summarizes results obtained to date and efforts to couple the thermal and mechanical response of the corium, overlaying water pool and vessel lower head

  7. A quick guide to API 510 certified pressure vessel inspector syllabus example questions and worked answers

    CERN Document Server

    Matthews, Clifford

    2010-01-01

    The API Individual Certification Programs (ICPs) are well established worldwide in the oil, gas, and petroleum industries. This Quick Guide is unique in providing simple, accessible and well-structured guidance for anyone studying the API 510 Certified Pressure Vessel Inspector syllabus by summarizing and helping them through the syllabus and providing multiple example questions and worked answers.Technical standards are referenced from the API 'body of knowledge' for the examination, i.e. API 510 Pressure vessel inspection, alteration, rerating; API 572 Pressure vessel inspection; API

  8. Evaluation of Progressive Failure Analysis and Modeling of Impact Damage in Composite Pressure Vessels

    Science.gov (United States)

    Sanchez, Christopher M.

    2011-01-01

    NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.

  9. Nonlinear finite element analysis of mechanical characteristics on CFRP composite pressure vessels

    International Nuclear Information System (INIS)

    CFRP(Carbon Fibre Reinforced Plastic) composite pressure vessel was calculated using finite element program of ANSYS for their mechanical characteristics in this paper. The elastic-plastic model and elements of Solid95 were selected for aluminium alloys of gas cylinder. Also liner-elastic model and layer elements of Shell99 were adopted for carbon fibre/epoxy resin. The stress state of CFRP composite pressure vessel was calculated under different internal pressures include pre-stressing pressures, working pressures, test hydraulic pressures, minimum destructive pressures etcetera to determine the size of gas cylinder and layer parameter of carbon fibre. The mechanical characteristics CFRP composite vessel could were using to design and test of gas cylinder. Numerical results showed that finite element model and calculating method were efficient for study of CFRP gas cylinder and useful for engineering design.

  10. Designing of a Fleet-Leader Program for Carbon Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Murthy, Pappu L.N.; Phoenix, S. Leigh

    2009-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases on board spacecraft when mass saving is a prime requirement. Substantial weight savings can be achieved compared to all metallic pressure vessels. For example, on the space shuttle, replacement of all metallic pressure vessels with Kevlar COPVs resulted in a weight savings of about 30 percent. Mass critical space applications such as the Ares and Orion vehicles are currently being planned to use as many COPVs as possible in place of all-metallic pressure vessels to minimize the overall mass of the vehicle. Due to the fact that overwraps are subjected to sustained loads during long periods of a mission, stress rupture failure is a major concern. It is, therefore, important to ascertain the reliability of these vessels by analysis, since it is practically impossible to show by experimental testing the reliability of flight quality vessels. Also, it is a common practice to set aside flight quality vessels as "fleet leaders" in a test program where these vessels are subjected to slightly accelerated operating conditions so that they lead the actual flight vessels both in time and load. The intention of fleet leaders is to provide advanced warning if there is a serious design flaw in the vessels so that a major disaster in the flight vessels can be averted with advance warning. On the other hand, the accelerating conditions must be not so severe as to be prone to false alarms. The primary focus of the present paper is to provide an analytical basis for designing a viable fleet leader program for carbon COPVs. The analysis is based on a stress rupture behavior model incorporating Weibull statistics and power-law sensitivity of life to fiber stress level.

  11. DEVELOPMENT OF ASME SECTION X CODE RULES FOR HIGH PRESSURE COMPOSITE HYDROGEN PRESSURE VESSELS WITH NON-LOAD SHARING LINERS

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G.; Newhouse, N.; Rana, M.; Shelley, B.; Gorman, M.

    2010-04-13

    The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPa (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.

  12. 46 CFR 52.01-2 - Adoption of section I of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... and Pressure Vessel Code. (a) Main power boilers and auxiliary boilers shall be designed, constructed, inspected, tested, and stamped in accordance with section I of the ASME Boiler and Pressure Vessel Code... this part. The provisions in the appendix to section I of the ASME Boiler and Pressure Vessel Code...

  13. 46 CFR 53.01-3 - Adoption of section IV of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... Boiler and Pressure Vessel Code. (a) Heating boilers shall be designed, constructed, inspected, tested, and stamped in accordance with section IV of the ASME Boiler and Pressure Vessel Code (incorporated by... provisions in the appendices to section IV of the ASME Boiler and Pressure Vessel Code are adopted and...

  14. 46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Design and construction of pressure vessel type cargo... LIQUEFIED FLAMMABLE GASES Design and Installation § 38.05-3 Design and construction of pressure vessel type cargo tanks—TB/ALL. (a) Cargo tanks of pressure vessel configuration (e.g. cylindrical, spherical,...

  15. TRAB, a transient analysis program for BWR. Part 1

    International Nuclear Information System (INIS)

    TRAB is a transient analysis program for BWR. The present report describes its principles. The program has been developed from TRAWA-program. It models the interior of the pressure vessel and related subsystems of BWR viz. reactor core, recirculation loop including the upper part of the vessel, recirculation pumps, incoming and outgoing flow systems, and control and protection systems. Concerning core phenomena and all flow channel hydraulics the submodels are one-dimensional of main features. The geometry is very flexible. The program has been made particularly to simulate various reactivity transients, but it is applicable more generally to reactor incidents and accidents in which no flow reversal or no emptying of the circuit must occur below the water level. The program is extensively supplied by input and output capabilities. The user can act upon the simulation of a transient by defining external disturbances, scheduled timevariations for any system variable, by modeling new subsystems, which are representable with ordinary linear differential equations, and by defining relations of functional form between system variables. The run of the program can be saved and restarted. (author)

  16. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T.; Piippo, J.; Sirkiae, P. [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  17. 77 FR 16270 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-03-20

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft interim staff guidance; request for comment... PWR Reactor Vessel Internal Components.'' This draft LR-ISG revises the guidance in the...

  18. Gas-cooled HTR reactor installed in a pressure vessel cavern

    International Nuclear Information System (INIS)

    A pebble-bed reactor in a pressure vessel cavern is described which has a reflector which in case of accidents with pressure equalisation between cold gas and hot gas transfers the resulting loads to a lateral thermal shield constructed in the form of a pressure-tight metal cylinder. (TK)

  19. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    Science.gov (United States)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  20. VVER reactor pressure vessels dosimetry for NPP lifetime management

    International Nuclear Information System (INIS)

    Assessment of the current state and lifetime of the Kozloduy NPP VVER-type reactors has been carried out by monitoring the irradiation exposure of reactor vessels and metal surveillance specimens. The neutron fluence determination is based on three-dimensional neutron transport calculation by the TORT code using the problem-oriented neutron cross-section library BGL, and by the MCNP code using the continuous energy dependence library DLC200. The fluence data are validated by measurements of the induced activity of threshold foil detectors. Reactor core loading patterns are determined to achieve minimal reactor vessel neutron exposure. (author)

  1. Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels Updated January 2014

    Science.gov (United States)

    Skow, Miles G.

    2014-01-01

    This three year project (FY12-14) will design and demonstrate the ability of new Magnetic Stress Gages for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap.

  2. Selected bibliography on pressure vessels for light-water-cooled power reactors (LWRs)

    International Nuclear Information System (INIS)

    Abstracts on LWR pressure vessels are arranged in the following categories: general, design, materials technology, fabrication techniques, inspection and testing, and failures. Author, keyword, and KWIC (keyword-in-content) indices are provided. (U.S.)

  3. Assessment of relative contributions from different mechanisms to radiation embrittlement of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Experimental data on radiation embrittlement in pressure vessel steels of both Russian and American grades, obtained by the authors and also taken from the literature, have been analyzed to assess the relative contributions from the following mechanisms: radiation-induced hardening, inter- and intragranular segregation of impurities at precipitate/matrix interfaces. It is demonstrated that radiation-induced intragranular segregation of impurities frequently provides a significant contribution to radiation embrittlement of pressure vessel steels. (orig.)

  4. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    Science.gov (United States)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  5. Sampling of reactor pressure vessel and core internals

    International Nuclear Information System (INIS)

    Decommissioning and dismantling of nuclear power plants is a growing business as a huge number of plants built in the 1970's have now reached their lifetime. It is well known that dismantling a nuclear power plant means an extraordinary expense for the owner respectively operator. Beside the dismantling works for itself, the disposal of activated components and other nuclear waste is very expensive. What comes next is the fact that final disposal facilities are not available yet in most countries meaning a need for interim storage on-site in specially built facilities. It can be concluded that a special attention is paid on producing a minimal radioactive waste volume. For this, optimized dismantling and packaging concepts have to be developed. AREVA is proud of versatile experience in successfully dismantling nuclear components like core internals and reactor pressure vessel (RPV). The basis of a well-founded and optimized dismantling and packaging concept must always be the detailed knowledge of the radiological condition of the component to be and in the best case a 3D activation- model. For keeping the necessary sampling effort as small as possible, but simultaneously as efficient as possible, representative sampling positions are defined in advance by theoretical radiological examinations. For this, a detailed 3D-CAD-model of the components to be dismantled has proven very helpful and effective. Under these aspects a sampling of RPV and its components is necessary to verify the theoretically calculated radiological data. The obtained results of activation and contamination are taken into account for the optimized dismantling and packaging strategy. The precise 3D-activation-model will reduce the necessary number and type of final disposal containers as security factors are minimized leading to a lower shielding effort, too. Besides, components or even parts of components may be subject of release measurement. In the end, costs can be reduced. In this context

  6. Test system carrier for the ultrasonic testing of the area of connecting nozzles in the case of pressure vessels, in particular reactor pressure vessels from nuclear power plants

    International Nuclear Information System (INIS)

    In the invention at hand a system carrier for the ultrasonic testing of a reactor pressure vessel is described which enables a test for nozzle welds, pipe fitting welds and nozzle edges to be conducted with a single telescope arm. (RW)

  7. French PWR 900 MWe pressure vessel surveillance neutron field characteristics TRIPOLI-3 calculations and experimental determination

    Energy Technology Data Exchange (ETDEWEB)

    Nimal, J.C.; Bourdet, L.; Zheng, S.H.; Vergnaud, T.; Kodeli, I. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Lloret, R.; Bevilacqua, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Reacteurs Experimentaux; Lefebvre, J.C. [Electricite de France (EDF), 69 - Villeurbanne (France)

    1994-12-31

    This paper presents an overview of the studies performed by CEA and EDF in the scope of the pressure vessel surveillance of the French nuclear power plants. The power plants are equipped with surveillance capsules, attached to the thermal shield. They contain the dosimeters and vessel material specimens for monitoring the effects of irradiation on the pressure vessel material. The Monte Carlo code TRIPOLI-3 is used with two nuclear data libraries to calculate the neutron flux, the steel damage and the dosimeter reaction rates, and takes into account the results of sensitivity/uncertainty calculations. 2 figs., 7 tabs., 10 refs.

  8. Analytical and computational methodology to assess the over pressures generated by a potential catastrophic failure of a cryogenic pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, I.; Fradera, J.; Jaskiewicz, F.; Lopez, D.; Hermosa, B.; Aleman, A.; Izquierdo, J.; Buskop, J.

    2014-07-01

    Idom has participated in the risk evaluation of Safety Important Class (SIC) structures due to over pressures generated by a catastrophic failure of a cryogenic pressure vessel at ITER plant site. The evaluation implements both analytical and computational methodologies achieving consistent and robust results. (Author)

  9. Transmitted Ultrasound Pressure Variation in Micro Blood Vessel Phantoms

    OpenAIRE

    Qin, Shengping; Kruse, Dustin E; Ferrara, Katherine W.

    2008-01-01

    Silica, cellulose, and polymethylmethacrylate tubes with inner diameters of ten to a few hundred microns are commonly used as blood vessel phantoms in in vitro studies of microbubble or nanodroplet behavior during insonation. However, a detailed investigation of the ultrasonic fields within these micro-tubes has not yet been performed. This technical note provides a theoretical analysis of the ultrasonic fields within micro-tubes. Numerical results show that for the same tube material, the in...

  10. Ex vessel steam explosion loads in pressurized water reactors

    International Nuclear Information System (INIS)

    In light water reactor core melt accidents, the molten fuel can be brought into contact with coolant water in the course of the melt relocation in vessel and ex vessel as well as in an accident mitigation action of water addition. The potential risk of explosive molten fuel coolant interactions (FCI, steam explosion) has drawn substantial attention in the safety analysis of reactor severe accidents. The steam explosion intensity is largely dependent upon the degree of volumetric fractions of melt droplets and steam in the fuel coolant mixture. The rate of melt jet breakup and droplet sizes are, therefore, the key physical parameters in the analysis of FCIs. In a recent OECD/NEA international program SERENA, FCI has been studied, in particular, on the status of code capabilities to predict FCI induced dynamic loading of the reactor structures, and identifying area where additional research may be needed to reduce the level of uncertainties in the code predictions. The first phase of SERENA project showed that the codes still cannot calculate all attributes with equal degree of precision. The predicted void fractions in the mixture are generally much higher than the data and are up to the level at which an energetic explosion is not likely, but the codes predict energetic explosion under such highly voided mixture. Currently the SERENA project is in the second phase with experimental as well as analytical work. In this paper, ex vessel steam explosion loads in PWRs calculated by the TRACER II code, a four field numerical model of fuel coolant mixing and explosion propagation, are presented with an emphasis on the jet breakup modeling

  11. Detecting leaks in gas-filled pressure vessels using acoustic resonances

    Science.gov (United States)

    Gillis, K. A.; Moldover, M. R.; Mehl, J. B.

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f2 than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f2, we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10-5 h-1 = - 0.11 yr-1 from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10-2 h-1 using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.)

  12. Final report for the 1st ex-vessel neutron dosimetry installations and evaluations for Kori unit 2 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 2 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 20 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 20.

  13. Final report for the 2nd Ex-Vessel Neutron Dosimetry Installations and Evaluations for Yonggwang Unit 2 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Gong, Un Sik; Choi, Kwon Jae; Chung, Kyoung Ki; Kim, Kwan Hyun; Chang, Jong Hwa; Ha, Jea Ju

    2008-01-15

    This report describes a neutron fluence assessment performed for the Yonggwang Unit 2 pressure vessel beltline region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the beltline region of the pressure vessel. During Cycle 16 of reactor operation, an Ex-Vessel Neutron Dosimetry Program was instituted at Yonggwang Unit 2 to provide continuous monitoring of the beltline region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 16.

  14. Final Report of the 2nd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Kori Unit 1 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Kim, Kwan Hyun; Hong, Joon Wha

    2007-02-15

    This report describes a neutron fluence assessment performed for the Kori Unit 1 pressure vessel beltline region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the beltline region of the pressure vessel. After Cycle 22 of reactor operation, 2nd Ex-Vessel Neutron Dosimetry Program was instituted at Kori Unit 1 to provide continuous monitoring of the beltline region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 23.

  15. Final report for the 1st ex-vessel neutron dosimetry installation and evaluations for Kori unit 4 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 4 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 16 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 4 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 16.

  16. Final Report of the 2nd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Yonggwang Unit 1 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Gong, Un Sik; Choi, Kwon Jae; Chung, Kyoung Ki; Kim, Kwan Hyun; Chang, Jong Hwa; Ha, Jea Ju

    2008-01-15

    This report describes a neutron fluence assessment performed for the Kori Unit 2 pressure vessel belt line region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During Cycle 21 of reactor operation, an Ex-Vessel Neutron Dosimetry Program was instituted at Kori Unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 21.

  17. Final Report of the 2nd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Kori Unit 3 Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    This report describes a neutron fluence assessment performed for the Kori Unit 3 pressure vessel beltline region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the beltline region of the pressure vessel. After Cycle 16 of reactor operation, 2nd Ex-Vessel Neutron Dosimetry Program was instituted at Kori Unit 3 to provide continuous monitoring of the beltline region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 17

  18. Final Report of the 3rd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Kori Unit 3 Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    This report describes a neutron fluence assessment performed for the Kori Unit 3 pressure vessel belt line region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. After Cycle 17 of reactor operation, 3rd Ex-Vessel Neutron Dosimetry Program was instituted at Kori Unit 3 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 18

  19. Final Report of the 3rd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Kori Unit 4 Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    This report describes a neutron fluence assessment performed for the Kori Unit 4 pressure vessel beltline region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the beltline region of the pressure vessel. During Cycle 18 of reactor operation, an Ex-Vessel Neutron Dosimetry Program was instituted at Kori Unit 4 to provide continuous monitoring of the beltline region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 18

  20. Fatigue propagation through welded joints of pressure vessels

    International Nuclear Information System (INIS)

    An assessment was made of the behaviour under cyclic load (crack propagation rate and low cycle fatigue) of the metal deposited and of the area affected by the heat of the welded joints assembling the components of the primary circuit. In order to be sure that the results are as representative as possible, the tests were made on metal from joints carried out with the same parameters as actual joints. The studies described here concerned the deposited metal of the welded joints of vessels and the deposited metal in Ni-Cr-Fe alloy of INCONEL 600 type joining the plates at the bottom of steam generators

  1. Ultrasonic stress evaluation through thickness of a stainless steel pressure vessel

    International Nuclear Information System (INIS)

    This paper investigates ultrasonic method in stress measurement through thickness of a pressure vessel. Longitudinal critically refracted (LCR) waves are employed to measure the welding residual stresses in a vessel constructed from austenitic stainless steel 304L. The acoustoelastic constant is measured through a hydro test to keep the pressure vessel intact. Hoop and axial residual stresses are evaluated by using different frequency range of ultrasonic transducers. The welding processes of vessel shell and caps are simulated by a 3D finite element (FE) model which is validated by hole-drilling method. The residual stresses calculated by FE simulation are then compared with those obtained from the ultrasonic measurement while a good agreement is observed. It is demonstrated that the residual stresses through thickness of the stainless steel pressure vessel can be evaluated by combining FE and LCR method (known as FELCR method). - Highlights: • The main goal is ultrasonic evaluation of through thickness stresses. • Welding processes of a stainless steel pressure vessel are modelled by FE. • The hole-drilling method is used to validate the FE results. • Residual stresses are measured by four different series of ultrasonic transducers. • The comparison between ultrasonic and FE results show an acceptable agreement

  2. The inclusion of weld residual stress in fracture margin assessments of embrittled nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, T.L.; Bass, B.R.; McAfee, W.J.

    1998-01-01

    Analyses were performed to determine the impact of weld residual stresses in a reactor pressure vessel (RPV) on (1) the generation of pressure temperature (P-T) curves required for maintaining specified fracture prevention margins during nuclear plant startup and shutdown, and (2) the conditional probability of vessel failure due to pressurized thermal shock (PTS) loading. The through wall residual stress distribution in an axially oriented weld was derived using measurements taken from a shell segment of a canceled RPV and finite element thermal stress analyses. The P-T curve derived from the best estimate load analysis and a t / 8 deep flaw, based on K{sub Ic}, was less limiting than the one derived from the current methodology prescribed in the ASME Boiler and Pressure Vessel Code. The inclusion of the weld residual stresses increased the conditional probability of cleavage fracture due to PTS loading by a factor ranging from 2 to 4.

  3. Investigation of the safety testing of extraordinary thick steel material for pressure vessels

    International Nuclear Information System (INIS)

    With increasing size of nuclear reactors it was necessary to increase the wall thickness of the reactor pressure vessels. So, for example the wall thickness of the pressure vessel of the LWR pressurized water reactor type with 1.200.000 kW performance is 250 mm. The fabrication of these extraordinary thick steel plates is accurately carried out, nevertheless it is very important to control the characteristics of strength. For this reason extraordinarily thick steel plates of forged manganese-molybdenum-nickel steel produced in Japan and used for the production of reactor pressure vessels was utilized. The aim of this investigation is to know if and how the K sub(IR)- values correspond to the actual regulation for the prevention of brittle fracture and to determine the characteristics. (orig./RW)

  4. Neutron irradiation effects in reactor pressure vessel steels and weldments. Working document

    International Nuclear Information System (INIS)

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. A separate abstract was prepared for the introduction and for each of the eleven chapters, which are: 1. Reactor Pressure Vessel Design, 2. Reactor Pressure Materials, 3. WWER Pressure Vessels, 4. Determination of Mechanical Properties, 5. Neutron Exposure, 6. Methodology of Irradiation Experiments, 7. Effect of Irradiation on Mechanical Properties, 8. Mechanisms of Irradiation Embrittlement, 9. Modelling of Irradiation Damage, 10. Annealing of Irradiation Damage, 11. Safety Assessment using Surveillance Programmes and Data Bases

  5. Modelling the interaction between corium and pressure vessel steel in the context of melt retention scenarios

    International Nuclear Information System (INIS)

    In case of a reactor accident with core meltdown into the lower plenum, the reactor pressure vessel is the final safety barrier before the containment will be affected. For a detailed investigation of the processes and phenomena involved in this scenario, EU- and OECD-funded experiments were carried out on pressure vessel failure as a result of creep fracture. Models were developed at FZR that comprised both temperature field calculations and the viscoplastic mechanics of the reactor pressure vessel and were capable of identifying the failure mode and failure time of the pressure vessel. The models were validated by precalculations and recalculations of the experiments. A key aspect in the modelling of prototypical LWR scenarios was the consideration of the thermochemical interacation of the corium melt with the pressure vessel wall. In the METCOR experiments carried out by Alexandrov Research Institute (NITI) at Sosnovy Bor, the melt-metal interaction was investigated on a small scale. The results show that steel ablation well start significantly below steel melting temperature as a result of eutectics formation and depending on the composition of the melt. Meltdown models have therefore been integrated in FE models for simulation of melt retention scenarios. The application of these models resulted in significantly reduced residual wall thicknesses. (orig.)

  6. High-temperature strain measurements on the closure studs of reactor pressure vessels

    International Nuclear Information System (INIS)

    High-temperature strain measurements have been carried out in different operating phases on two closure studs each of several reactor pressure vessels. The strains and stresses during instationary states (e.g. start-up) were of special interest. On the basis of the strains measured, it was to be proved that the calculation methods and boundary conditions on which the analytical investigation of the vessel is based are sufficiently accurate. (orig./RW)

  7. The application of acoustic emission measurements on laboratory testpieces to large scale pressure vessel monitoring

    International Nuclear Information System (INIS)

    A test pressure vessel containing 4 artificial defects was monitored for emission whilst pressure cycling to failure. Testpieces cut from both the failed vessel and from as-rolled plate material were tested in the laboratory. A marked difference in emission characteristics was observed between plate and vessel testpieces. Activity from vessel material was virtually constant after general yield and emission amplitudes were low. Plate testpieces showed maximum activity at general yield and more frequent high amplitude emissions. An attempt has been made to compare the system sensitivities between the pressure vessel test and laboratory tests. In the absence of an absolute calibration device, system sensitivities were estimated using dummy signals generated by the excitation of an emission sensor. The measurements have shown an overall difference in sensitivity between vessel and laboratory tests of approximately 25db. The reduced sensitivity in the vessel test is attributed to a combination of differences in sensors, acoustic couplant, attenuation, and dispersion relative to laboratory tests and the relative significance of these factors is discussed. Signal amplitude analysis of the emissions monitored from laboratory testpieces showed that, whith losses of the order of 25 to 30db, few emissions would be detected from the pressure vessel test. It is concluded that no reliable prediction of acoustic behaviour of a structure may be made from laboratory test unless testpieces of the actual structural material are used. A considerable improvement in detection sensitivity, is also required for reliable detection of defects in low strength ductile materials and an absolute method of system calibration is required between tests

  8. BWR type reactor

    International Nuclear Information System (INIS)

    In a coolant circulation in BWR type reactors, since the mixed stream of steam fluid undergoes a great resistance, the pressure loss due to the flow rate distribution when the coolants flow from the upper plenum into the stand pipe is increased upon passing stand pipe. Also in the spontaneous recycling reactor, pressure loss is still left upon passing the swirling blade of a gas-liquid separator. In view of the above, a plurality of vertical members each having a lower end opened to a gas-liquid two phase boundary and an upper end directly suspended from a steam dryer to the gas-liquid separator. The liquid droplets from the 2-phase boundary heated in the reactor core and formed into a mixed gas-liquid 2-phase stream is directed in the vertical direction accompanied with the steam. The liquid droplets spontaneously fallen by gravity from greater ones successively and the droplets in the steam abutted against the vertical member are fallen as a liquid membrane. Thus, the gas-liquid separation is conducted, the dry steam is directly flown into the steam dryer, thereby capable of providing a gas-liquid separator having gas-liquid separation performance with lower loss than usual. (N.H.)

  9. Managing Pressure Vessel Equipment as a Capital Asset.

    Science.gov (United States)

    Robinson, Glenn; Trombley, Robert; Shultes, Kenneth

    1999-01-01

    Argues the importance of treating facility pressure equipment as capital assets and discusses three steps in their management process. The following steps are discussed: understanding the condition of all major equipment; altering maintenance practices and procedures; and developing a long-term equipment strategy such as increased monitoring,…

  10. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-2 Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall...

  11. 3D TRANSIENT COUPLED THERMO-ELASTIC-PLASTIC CONTACT SEALING ANALYSIS OF REACTOR PRESSURE VESSEL

    Institute of Scientific and Technical Information of China (English)

    Du Xuesong; Li Runfang; Lin Tengjiao

    2005-01-01

    Sealing analysis of sealing system in reactor pressure vessels is relevant with multiple nonlinear coupled-field effects, so even large-scale commercial finite element software cannot finish the complicated analysis. A fmite element method of 3D transient coupled thermo-elastic-plastic contact sealing analysis for reactor pressure vessels is presented, in which the surface nonlinearity,material nonlinearity, transient heat transfer nonlinearity and multiple coupled effect are taken into account and the sealing equation is coupling solved in iterative procedure. At the same time, a computational analysis program is developed, which is applied in the sealing analysis of experimental reactor pressure vessel, and the numerical results are in good coincidence with the experimental results. This program is also successful in analyzing the practical problem in engineering.

  12. Pressure vessel with improved impact resistance and method of making the same

    Science.gov (United States)

    DeLay, Thomas K. (Inventor); Patterson, James E. (Inventor); Olson, Michael A. (Inventor)

    2010-01-01

    A composite overwrapped pressure vessel is provided which includes a composite overwrapping material including fibers disposed in a resin matrix. At least first and second kinds of fibers are used. These fibers typically have characteristics of high strength and high toughness to provide impact resistance with increased pressure handling capability and low weight. The fibers are applied to form a pressure vessel using wrapping or winding techniques with winding angles varied for specific performance characteristics. The fibers of different kinds are dispersed in a single layer of winding or wound in distinct separate layers. Layers of fabric comprised of such fibers are interspersed between windings for added strength or impact resistance. The weight percentages of the high toughness and high strength materials are varied to provide specified impact resistance characteristics. The resin matrix is formed with prepregnated fibers or through wet winding. The vessels are formed with or without liners.

  13. Reactor pressure vessel head vents and methods of using the same

    Science.gov (United States)

    Gels, John L; Keck, David J; Deaver, Gerald A

    2014-10-28

    Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.

  14. Residual stress analysis of autofrettaged thick-walled spherical pressure vessel

    International Nuclear Information System (INIS)

    In this study, residual stress distributions in autofrettaged homogenous spherical pressure vessels subjected to different autofrettage pressures are evaluated. Results are obtained by developing an extension of variable material properties (VMP) method. The modification makes VMP method applicable for analyses of spherical vessels based on actual material behavior both in loading and unloading and considering variable Bauschinger effect. The residual stresses determined by employing finite element method are compared with VMP results and it is demonstrated that the using of simplified material models can cause significant error in estimation of hoop residual stress, especially near the inner surface of the vessel. By performing a parametric study, the optimum autofrettage pressure and corresponding autofrettage percent for creating desirable residual stress state are introduced and determined.

  15. Residual stress analysis of autofrettaged thick-walled spherical pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, M., E-mail: milad.maleki@epfl.c [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Farrahi, G.H. [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Haghpanah Jahromi, B. [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Mechanical and Industrial Engineering, Northeastern University, Boston (United States); Hosseinian, E. [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2010-07-15

    In this study, residual stress distributions in autofrettaged homogenous spherical pressure vessels subjected to different autofrettage pressures are evaluated. Results are obtained by developing an extension of variable material properties (VMP) method. The modification makes VMP method applicable for analyses of spherical vessels based on actual material behavior both in loading and unloading and considering variable Bauschinger effect. The residual stresses determined by employing finite element method are compared with VMP results and it is demonstrated that the using of simplified material models can cause significant error in estimation of hoop residual stress, especially near the inner surface of the vessel. By performing a parametric study, the optimum autofrettage pressure and corresponding autofrettage percent for creating desirable residual stress state are introduced and determined.

  16. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  17. Design of Semi-composite Pressure Vessel using Fuzzy and FEM

    Science.gov (United States)

    Sabour, Mohammad H.; Foghani, Mohammad F.

    2010-04-01

    The present study attempts to present a new method to design a semi-composite pressure vessel (known as hoop-wrapped composite cylinder) using fuzzy decision making and finite element method. A metal-composite vessel was designed based on ISO criteria and then the weight of the vessel was optimized for various fibers of carbon, glass and Kevlar in the cylindrical vessel. Failure criteria of von-Mises and Hoffman were respectively employed for the steel liner and the composite reinforcement to characterize the yielding/ buckling of the cylindrical pressure vessel. The fuzzy decision maker was used to estimate the thickness of the steel liner and the number of composite layers. The ratio of stresses on the composite fibers and the working pressure as well as the ratio of stresses on the composite fibers and the burst (failure) pressure were assessed. ANSYS nonlinear finite element solver was used to analyze the residual stress in the steel liner induced due to an auto-frettage process. Result of analysis verified that carbon fibers are the most suitable reinforcement to increase strength of cylinder while the weight stayed appreciably low.

  18. VISA: a computer code for predicting the probability of reactor pressure-vessel failure

    International Nuclear Information System (INIS)

    The VISA (Vessel Integrity Simulation Analysis) code was developed as part of the NRC staff evaluation of pressurized thermal shock. VISA uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics are used to model crack initiation and propagation. parameters for initial crack size, copper content, initial RT/sub NDT/, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents the version of VISA used in the NRC staff report (Policy Issue from J.W. Dircks to NRC Commissioners, Enclosure A: NRC Staff Evaluation of Pressurized Thermal Shock, November 1982, SECY-82-465) and includes a user's guide for the code

  19. TRAB - A transient analysis program for BWR. Part 2

    International Nuclear Information System (INIS)

    TRAB is a transient analysis code for BWRs developed at the Technical Research Centre of Finland. It models the phenomena in the interior of the BWR pressure vessel and in related subsystems. The core model of TRAB can be used separately for LWR modelling. For PWR modelling the core model of TRAB is connected to circuit model SMABRE to form the SMATRA code. This report is a user's manual and documents the structure, contents and preparation of input for TRAB. The structure of TRAB input is very flexible, featuring input groups and subgroups identified with keywords and given in any order as well as data items in free format, freely mixed with explanatory texts. Users interface of the code can be used for modelling within input: through normal input it is possible to create new submodels. These may be functional or tabulated dependencies of the code variables, different types of delays, or ordinary linear differential equations

  20. Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Russell, Rick; Skow, Miles

    2013-01-01

    This three-year project (FY12-14) will design and demonstrate the ability of new Magnetic Stress Gages for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap. The sensors are being tested at White Sands Testing Facility (WSTF) where the results will be correlated with a known nondestructive technique acoustic emission. The gages will be produced utilizing Meandering Winding Magnetometer (MWM) and/or MWM array eddy current technology. The ultimate goal is to utilize this technology for the health monitoring of Composite Overwrapped Pressure Vessels for all future flight programs. The first full-scale pressurization test was performed at WSTF in June 2012. The goals of this test were to determine adaptations of the magnetic stress gauge instrumentation that would be necessary to allow multiple sensors to monitor the vessel's condition simultaneously and to determine how the sensor response changes with sensor selection and orientation. The second full scale pressurization test was performed at WSTF in August 2012. The goals of this test were to monitor the vessel's condition with multiple sensors simultaneously, to determine the viability of the multiplexing units (MUX) for the application, and to determine if the sensor responses in different orientations are repeatable. For both sets of tests the vessel was pressured up to 6,000 psi to simulate maximum operating pressure. Acoustic events were observed during the first pressurization cycle. This suggested that the extended storage period prior to use of this bottle led to a relaxation of the residual stresses imparted during auto-frettage. The pressurization tests successfully demonstrated the use of multiplexers with multiple MWM arrays to monitor a vessel. It was discovered that depending upon the sensor orientation, the frequencies, and the sense element, the MWM arrays can provide a variety of complementary information about the composite overwrapped pressure

  1. Reactor pressure vessel strength calculations - comparing the AD/TRD and the ASME code. Pt. 1

    International Nuclear Information System (INIS)

    The dimensioning criteria applied in the various technical rules are illustrated by the example of a reactor pressure vessel nozzle, especially with a view to the characteristic data of the materials used. Using a detailed finite element analysis of the main coolant nozzle permits an evaluation of the different calculation methods. The second part of the report discusses safety problems, e.g. fatigue analysis, the necessity of carrying out 3D-elastoplastic FE calculations, or the assessment of transient loads on the reactor pressure vessel by means of a fracture-mechanical analysis. (orig./HP)

  2. Irradiation induced embrittlement of steels used as reactor pressure vessel and end shields

    International Nuclear Information System (INIS)

    A review of the various factors that influence the irradiation induced changes in mechanical properties of reactor pressure vessel and end shield steel materials have been brought out in this report followed by some typical results on 3 w/o nickel steels and A 302B type of pressure vessel steels. These are the type of steels used in operating reactors in India. In this report the irradiation induced mechanical property changes have been analysed from reported results on nil ductility transition temperature changes (NDTT) from impact tests. The report also brings out the importance of carrying out reactor surveillance programme. (author)

  3. Numerical simulation for the experiment on thermal shock to pressure vessel

    International Nuclear Information System (INIS)

    The severe thermal shock generates large tensile stresses in the skin of the pressure vessel. The evaluation of damage potential of thermo-mechanical stresses during thermal shock requires prediction of temperature history of pressure vessel accurately. The present work describes the approach to handle thermal shock problem. The paper deals with the finite element modelling of component for thermal shock problem, analysis procedure, the evaluation of temperature transient history and comparison of computed results with that of published experimental results. (author). 3 refs., 9 figs., 2 tabs

  4. Collaborative investigations of in-service irradiated material from the Japan Power Demonstration Reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, W.R.; Broadhead, B.L. [Oak Ridge National Lab., TN (United States); Suzuki, M.; Kohsaka, A. [Japan Atomic Energy Research Institute, Tokai (Japan)

    1997-02-01

    There is a need to validate the results of irradiation effects research by the examination of material taken directly from the wall of a pressure vessel that has been irradiated during normal service. Just such an evaluation is currently being conducted on material from the wall of the pressure vessel from the Japan Power Demonstration Reactor (JPDR). The research is being jointly performed at the Tokai Research Establishment of the Japan Atomic Energy Research Institute (JAERI) and by the Nuclear Regulatory Commission (NRC)-funded Heavy-Section Steel Irradiation Program at the Oak Ridge National Laboratory (ORNL).

  5. Pressure vessels and piping. V.1.: codes, standards, design and analysis

    International Nuclear Information System (INIS)

    This volume is an effort to share the recent advances in design approaches, current issues in the design of critical equipments. Codes and standards form the backbone of pressure vessels and piping design, which undergo periodic necessary changes based on the design and operating experiences gained in the recent past. Critical examination of design codes, standards and their impending improvements along with material issues have been highlighted in several reviews. Recent advances in theoretical finite elements modelling along with testing and evaluation of critical components have been presented through several original contributions. The papers cover both fundamental as well as application aspects towards safe and economical design of pressure vessels and piping

  6. 46 CFR 50.30-10 - Class I, I-L and II-L pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Class I, I-L and II-L pressure vessels. 50.30-10 Section... PROVISIONS Fabrication Inspection § 50.30-10 Class I, I-L and II-L pressure vessels. (a) Classes I, I-L and II-L pressure vessels shall be subject to shop inspection at the plant where they are...

  7. Modelling of the dynamics of the vessel and circuits of recirculation of a BWR type nucleo electric as part of the SUN-RAH university simulator; Modelado de la dinamica de la vasija y circuitos de recirculacion de una nucleoelectrica tipo BWR como parte del simulador universitario SUN-RAH

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, R.A. [DEPFI, Campus Morelos, en IMTA, Jiutepec, Morelos (Mexico)]. e-mail: rsanchez_15@yahoo.com.mx

    2003-07-01

    In the present project, the development of a model for the dynamics of the process of energy transport generated in the nuclear fuel until the main steam lines of a nucleo electric central with BWR type nuclear reactor, using mathematical models of reduced order is presented. These models present the main characteristics of the reactor vessel and of the recirculation system, defined by the main phenomena that intervene in those physical processes. Likewise, the objective of the general project of the one University student nucleo electric simulator with Boiling Water Reactor (SUN-RAH) for later on to establish the modeling equations for each part of the nuclear reactor as well as of the load pursuit system. Also, its were described the graphic interfaces implemented in an three layers architecture in which the different measuring variables are presented in the monitor. It fits signalize that the advantage presented by the University student nucleo electric simulator is the possibility to carry out changes in the magnitudes of those different variables that intervene in the physical processes made in the one reactor and in the recirculation system in execution time of the same one. Of same way, the creation of a graphic intuitive interface, friendly, and designed with the same technology with the one that the video games are programmed in the present time. Besides all the above mentioned, the pending goals inside of the project are exposed, as well as the developments in construction process or conceptualized to be included in future versions of the simulator. Finally its are thinking about possible scenarios of applications of SUN-RAH, as well as their reaches. (Author)

  8. Design and Analysis of Filament Wound Composite Pressure Vessel with Integrated-end Domes

    Directory of Open Access Journals (Sweden)

    M. Madhavi

    2009-01-01

    Full Text Available Filament-wound composite pressure vessels are an important type of high-pressure container that is widely used in the commercial and aerospace industries. The pressure vessels with integrated end domes develop hoop stresses that are twice longitudinal stresses and when isotropic materials like metals are used for realizing the hardware, the material is not fully utilized in the longitudinal/meridonial direction resulting in over weight components. On the other hand FRP composite materials with their higher specific strength and moduli and tailoribility characteristics will result in reduction of weight of the structure. The determination of a proper winding angle and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In this study, material characterization of FRP of carbon T300/Epoxy for various configurations as per ASTM standards is experimentally determined using filament winding and matched die mould technique. The mechanical and physical properties thus obtained are used in the design of the composite shell. The design of the composite shell is described in detail. Netting analysis is used for the calculation of hoop and helical thickness of the shell. A balanced symmetric ply sequence for carbon T300/epoxy is considered for the entire pressure vessel. Progressive failure analysis of composite pressure vessel with geodesic end domes is carried out. A software code SHELL Solver is developed using Classical Lamination-theory to determine matrix crack failure, burst pressure values at various positions of the shell. The results can be utilized to understand structural characteristics of filament wound pressure vessels with integrated end domes.Defence Science Journal, 2009, 59(1, pp.73-81, DOI:http://dx.doi.org/10.14429/dsj.59.1488

  9. The sensitivity of the burst performance of impact damaged pressure vessels to material strength properties

    Science.gov (United States)

    Lasn, K.; Vedvik, N. P.; Echtermeyer, A. T.

    2016-07-01

    This numerical study is carried out to improve the understanding of short-term residual strength of impacted composite pressure vessels. The relationship between the impact, created damage and residual strength is predicted by finite element (FE) analysis. The burst predictions depend largely on the strength properties used in the material models. However, it is typically not possible to measure all laminate properties on filament wound structures. Reasonable testing efforts are concentrated on critical properties, while obtaining other less sensitive parameters from e.g. literature. A parametric FE model is hereby employed to identify the critical strength properties, focusing on the cylindrical section of the pressure vessel. The model simulates an impactor strike on an empty vessel, which is subsequently pressurized until burst. Monte Carlo Simulations (MCS) are employed to investigate the correlations between strength related material parameters and the burst pressure. The simulations indicate the fracture toughness of the composite, hoop layer tensile strength and the yield stress of the PE liner as the most influential parameters for current vessel and impact configurations. In addition, the conservative variation in strength parameters is shown to have a rather moderate effect (COV ca. 7%) on residual burst pressures.

  10. Development of Improved Composite Pressure Vessels for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Newhouse, Norman L. [Hexagon Lincoln, Lincoln, NE (United States)

    2016-04-29

    Hexagon Lincoln started this DOE project as part of the Hydrogen Storage Engineering Center of Excellence (HSECoE) contract on 1 February 2009. The purpose of the HSECoE was the research and development of viable material based hydrogen storage systems for on-board vehicular applications to meet DOE performance and cost targets. A baseline design was established in Phase 1. Studies were then conducted to evaluate potential improvements, such as alternate fiber, resin, and boss materials. The most promising concepts were selected such that potential improvements, compared with the baseline Hexagon Lincoln tank, resulted in a projected weight reduction of 11 percent, volume increase of 4 percent, and cost reduction of 10 percent. The baseline design was updated in Phase 2 to reflect design improvements and changes in operating conditions specified by HSECoE Partners. Evaluation of potential improvements continued during Phase 2. Subscale prototype cylinders were designed and fabricated for HSECoE Partners’ use in demonstrating their components and systems. Risk mitigation studies were conducted in Phase 3 that focused on damage tolerance of the composite reinforcement. Updated subscale prototype cylinders were designed and manufactured to better address the HSECoE Partners’ requirements for system demonstration. Subscale Type 1, Type 3, and Type 4 tanks were designed, fabricated and tested. Laboratory tests were conducted to evaluate vacuum insulated systems for cooling the tanks during fill, and maintaining low temperatures during service. Full scale designs were prepared based on results from the studies of this program. The operating conditions that developed during the program addressed adsorbent systems operating at cold temperatures. A Type 4 tank would provide the lowest cost and lightest weight, particularly at higher pressures, as long as issues with liner compatibility and damage tolerance could be resolved. A Type 1 tank might be the choice if the

  11. HFIR Vessel Pressure/Temperature Limits Corresponding to the Upgrade Design

    Energy Technology Data Exchange (ETDEWEB)

    Cheverton, R.D.; Bryson, J.W.

    2000-03-01

    Pressure/temperature limits were calculated for the HFIR pressure vessel for a temperature range of 40 to 120 F. New values were necessary for the upgrade design of the reactor and were calculated using a probabilistic fracture mechanics approach that accounts for the success of periodic hydrostatic proof testing. The range of calculated pressure corresponding to the specific range of temperatures is 634 to 987 psi for ''pressure safety limit'' and 564 to 895 psi for the ''limiting conditions for operation.''

  12. Application of Closed Vessel Technique for the Evaluation of Burning Rates of Propellants at Low Pressures

    Directory of Open Access Journals (Sweden)

    D. Vittal

    1977-04-01

    Full Text Available Closed vessel technique has been well established for the evaluation of burning characteristics of gun, mortar and small arms propellants at high pressures of about 750 kg/cm/sup 2/ - 3000 kg/cm/sup 2/ propellants in the pressure range up to about 200 kg/cm/sup 2/ (19.6 MPa. One of the modern trends in armaments technology is development of short range, high efficiency rockets and rocket assisted projectiles where the chamber pressure are in the range of 100 kg/cm/sup 2/ - 800 kg/cm/sup 2/ (9.8 MPa-78.5 MPa. An extension of the closed vessel technique is now presented for the measurement of rates of burning of propellants in this pressure range and a few experimental results on some conventional propellants are given.

  13. Stresses in the thread base of several studs of a reactor pressure vessel

    International Nuclear Information System (INIS)

    In the present study the deformation behavior during the pressure test in the thread base of studs (dimensions M21x8) from a reactor pressure vessel was tried to find out experimentally with a minimum of effort of instrumentation. It was intended to check the mathematical assumptions for a detail problem of bolt stresses by means of an experiment. In general the results known from other investigations and from the author's preleminary experiments have been confirmed. (orig./RW)

  14. Joining dissimilar stainless steels for pressure vessel components

    Science.gov (United States)

    Sun, Zheng; Han, Huai-Yue

    1994-03-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCr13Ni4Mo) and AISI 347, respectively. Such joints are important parts in, e.g. the primary circuit of a pressurized water reactor (PWR). This kind of joint requires both good mechanical properties, corrosion resistance and a stable magnetic permeability besides good weldability. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. The results of various tests indicated that the quality of the tube/tube joints is satisfactory for meeting all the design requirements.

  15. Radiation embrittlement of Sizewell 'B' PWR pressure vessel during a 40 year lifetime

    International Nuclear Information System (INIS)

    Irradiation embrittlement data produced from PWR surveillance and materials test reactor accelerated experiments on low alloy Mn Mo Ni pressure vessel steels, which satisfy the Sizewell 'B' forging materials specification on copper (<= 0.09% wt.%) and nickel (<= 0.85 wt.%), have been examined. (author)

  16. Chemical methods for the use of niobium from pressure vessel cladding as a fast neutron dosimeter

    International Nuclear Information System (INIS)

    the steel samples from the cladding of a pressure vessel of an operating nuclear power reactor were obtained by scraping. The cladding material of the pressure vessel contained about 0.5 % niobium. It was desired to use the niobium as a dosimeter for estimating fast fluences at the pressure vessel. The weak radiation from the reaction product 93mNb cannot be measured in the presence of other elements and interfering activities. A method was developed to separate niobium from other metals present; the concentration and yield of niobium were determined spectrophotometrically. The irradiated niobium was electrodeposited from aqueous solutions on copper discs. The amount of the deposited niobium was determined by a radiochemical method which makes use of its own radioactivity - measured with a liquid scintillation counter - and the known starting mass of niobium. It was possible to determine the deposited niobium masses (5 to 200 microgram) with a desired degree of accuracy. The absolute emission rate of X-rays could then be measured without any self-absorption or interference from other activities. The mass of niobium on each preparate and its X-ray emission rate, later on, were used as basic experimental data for the estimation of last neutron doses at the pressure vessel

  17. Screwing and holding device for lock nuts, especially for screwed joints of reactor pressure vessels

    International Nuclear Information System (INIS)

    A screwing and holding device for lock nuts of reactor pressure vessels is described which can be remote-controlled and will apply the forces required to unscrew the nuts. In addition, it allows unscrewing, tranporting to and from the place and screwing on again of the nuts within shorter time then all similar devices known until now. (RW)

  18. Nuclear Technology. Course 30: Mechanical Inspection. Module 30-7, Pressure Vessel Inspection.

    Science.gov (United States)

    Kupiec, Chet; Espy, John

    This seventh in a series of eight modules for a course titled Mechanical Inspection is devoted to the design and fabrication of the reactor pressure vessel. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6)…

  19. Remote controlled ultrasonic pre-service and in-service inspections of reactor pressure vessels

    International Nuclear Information System (INIS)

    Remote-controlled ultrasonic pre-service and in-service inspections of reactor pressure vessels are part of a lot of security controls of nuclear power stations. The necessary equipment needed as manipulators, probe-systems, ultrasonic electronic and data recording and evaluating devices is explained in detail. (orig.)

  20. 10 CFR 50.66 - Requirements for thermal annealing of the reactor pressure vessel.

    Science.gov (United States)

    2010-01-01

    ... Requirements for thermal annealing of the reactor pressure vessel. (a) For those light water nuclear power... life of these components. (B) The effects of localized high temperatures on degradation of the concrete... thermal annealing or to operate the nuclear power reactor following the annealing must be identified....

  1. Issues of intergranular embrittlement of VVER-type nuclear reactors pressure vessel materials

    Science.gov (United States)

    Zabusov, O.

    2016-04-01

    In light of worldwide tendency to extension of service life of operating nuclear power plants - VVER-type in the first place - recently a special attention is concentrated on phenomena taking place in reactor pressure vessel materials that are able to lead to increased level of mechanical characteristics degradation (resistibility to brittle fracture) during long term of operation. Formerly the hardening mechanism of degradation (increase in the yield strength under influence of irradiation) mainly had been taken into consideration to assess pressure vessel service life limitations, but when extending the service life up to 60 years and more the non-hardening mechanism (intergranular embrittlement of the steels) must be taken into account as well. In this connection NRC “Kurchatov Institute” has initiated a number of works on investigations of this mechanism contribution to the total embrittlement of reactor pressure vessel steels. The main results of these investigations are described in this article. Results of grain boundary phosphorus concentration measurements in specimens made of first generation of VVER-type pressure vessels materials as well as VVER-1000 surveillance specimens are presented. An assessment of non-hardening mechanism contribution to the total ductile-to- brittle transition temperature shift is given.

  2. Stress corrosion of the pressure vessel steel A-533-B in high-temperature water

    International Nuclear Information System (INIS)

    Stress corrosion of the pressure vessel steel A-533-B can be induced by accelerated laboratory tests in oxygenous water at high temperature. Cracking has occurred in water with 8 ppm O2 but not in water with less than 10 ppb O2. High load during deformation also introduces cracks. (G.B.)

  3. An improved correlation of the pressure drop in stenotic vessels using Lorentz's reciprocal theorem

    Science.gov (United States)

    Ji, Chang-Jin; Sugiyama, Kazuyasu; Noda, Shigeho; He, Ying; Himeno, Ryutaro

    2015-02-01

    A mathematical model of the human cardiovascular system in conjunction with an accurate lumped model for a stenosis can provide better insights into the pressure wave propagation at pathological conditions. In this study, a theoretical relation between pressure drop and flow rate based on Lorentz's reciprocal theorem is derived, which offers an identity to describe the relevance of the geometry and the convective momentum transport to the drag force. A voxel-based simulator V-FLOW VOF3D, where the vessel geometry is expressed by using volume of fluid (VOF) functions, is employed to find the flow distribution in an idealized stenosis vessel and the identity was validated numerically. It is revealed from the correlation that the pressure drop of NS flow in a stenosis vessel can be decomposed into a linear term caused by Stokes flow with the same boundary conditions, and two nonlinear terms. Furthermore, the linear term for the pressure drop of Stokes flow can be summarized as a correlation by using a modified equation of lubrication theory, which gives favorable results compared to the numerical ones. The contribution of the nonlinear terms to the pressure drop was analyzed numerically, and it is found that geometric shape and momentum transport are the primary factors for the enhancement of drag force. This work paves a way to simulate the blood flow and pressure propagation under different stenosis conditions by using 1D mathematical model.

  4. Probe carrier for the inspection of welding seams on nozzles and pipe connections and of nozzle edges on pressure vessels, especially reactor pressure vessels of nuclear power plants, by means of ultrasonics

    International Nuclear Information System (INIS)

    Probe carrier for ultrasonic inspection of pressure vessels, especially reactor pressure vessels of nuclear power plants, permitting inspection of the welding seams on nozzles and pipe connections and of nozzle edges with a single telescopic arm and thus by centering this arm. (orig./RW)

  5. Full system decontamination experience in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Sugai, K.; Katayouse, N.; Fujimori, A.; Iida, K.; Hayashi, K. [Tokyo Electric Power Company, Tokyo (Japan); Kanasaki, T.; Inami, I. [Toshiba Corporation, Yokohama (Japan); Strohmer, F. [Framatome ANP Gmbh, Eelangen (Germany)

    2002-07-01

    At the Fukushima Daiichi Nuclear Power Station unit 3, unit 2, unit 5 and unit 1 of Tokyo Electric Power Company (TEPCO), the replacement of the core shroud and internals has been conducted since 1997 in this order. The welded core internals in operating BWR plants were replaced to improve stress corrosion cracking (SCC) resistance. At present these units are operating smoothly. The developed technology concept is to restore those internals in open air inside the reactor pressure vessel (RPV). To reduce the radiation dose rate inside the RPV, not only a shielding method was applied to cut the radiation from the irradiated structures but also a chemical decontamination method was applied to dissolve the radioactive crud deposited on the surface by using chemical agents. The calculated decontamination factor (DF) at the RPV bottom reached 35-117. As result, the dose rate decreased to approximately 0.1 mSv/h under water. Before and after the installation of the in-vessel shielding, a mechanical cleaning was extensively applied inside the RPV to remove the residual crud as well as the swarf, chips from cutting. As a result, the dose rate at the RPV bottom decreased to ranging from 0.2 to 0.4 mSv/h in air. A working environment for human access, which was better than expected, was established inside the RPV, resulting in 70, 140, 50 and 70 man-Sv (estimated) saving respectively at unit 3 (1F-3), unit 2(1F-2), unit 5(1F-5) and unit 1(1F-1). All four full system decontamination (FSDs) contributed to the successful realization of the core shroud replacement project under the dry condition in RPV.

  6. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The

  7. Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel

    Science.gov (United States)

    Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong

    2013-10-01

    The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.

  8. RNL NDT studies related to PWR pressure vessel inlet nozzle inspection

    International Nuclear Information System (INIS)

    Non-destructive examinations of the Reactor Pressure Vessel (RPV) of a Pressurized Water Reactor (PWR) play an important role in assuring vessel integrity throughout its operational life. Automated ultrasonic techniques for the detection and sizing of flaws in thick-section seam welds and near-surface regions in a PWR RPV have been under development at RNL for some time. Techniques for the inspection of complex geometry welds and other regions of the vessel are now being assessed and further developed as part of the UK NDT development programme in support of the Sizewell PWR. One objective of this programme is to demonstrate that the range of ultrasonic techniques already shown to be effective for the inspection of seam welds and inlet nozzle corner regions, through exercises such as the Defect Detection Trials, can also be effective for inspection of these other vessel regions. The nozzle-to-vessel welds and nozzle crotch corners associated with the RPV water inlet and outlet nozzles are two such regions being examined in this programme. In this paper, a review is given of the work performed at RNL in the development of a laboratory-based inspection system for inlet nozzle inspection. The main features of the system in its current stage of development are explained. (author)

  9. Evaluation of HFIR [High Flux Isotope Reactor] pressure-vessel integrity considering radiation embrittlement

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of ∼104 less), that is, a rate effect

  10. Evaluation of HFIR (High Flux Isotope Reactor) pressure-vessel integrity considering radiation embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Cheverton, R.D.; Merkle, J.G.; Nanstad, R.K. (eds.)

    1988-04-01

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of approx.10/sup 4/ less), that is, a rate effect.

  11. High-density automotive hydrogen storage with cryogenic capable pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Espinosa-Loza, Francisco; Ledesma-Orozco, Elias; Ross, Timothy O.; Weisberg, Andrew H. [Lawrence Livermore National Laboratory, P.O. Box 808, L-792, Livermore, CA 94551 (United States); Brunner, Tobias C.; Kircher, Oliver [BMW Group, Knorrstr. 147, 80788 Munich (Germany)

    2010-02-15

    LLNL is developing cryogenic capable pressure vessels with thermal endurance 5-10 times greater than conventional liquid hydrogen (LH{sub 2}) tanks that can eliminate evaporative losses in routine usage of (L)H{sub 2} automobiles. In a joint effort BMW is working on a proof of concept for a first automotive cryo-compressed hydrogen storage system that can fulfill automotive requirements on system performance, life cycle, safety and cost. Cryogenic pressure vessels can be fueled with ambient temperature compressed gaseous hydrogen (CGH{sub 2}), LH{sub 2} or cryogenic hydrogen at elevated supercritical pressure (cryo-compressed hydrogen, CcH{sub 2}). When filled with LH{sub 2} or CcH{sub 2}, these vessels contain 2-3 times more fuel than conventional ambient temperature compressed H{sub 2} vessels. LLNL has demonstrated fueling with LH{sub 2} onboard two vehicles. The generation 2 vessel, installed onboard an H{sub 2}-powered Toyota Prius and fueled with LH{sub 2} demonstrated the longest unrefueled driving distance and the longest cryogenic H{sub 2} hold time without evaporative losses. A third generation vessel will be installed, reducing weight and volume by minimizing insulation thickness while still providing acceptable thermal endurance. Based on its long experience with cryogenic hydrogen storage, BMW has developed its cryo-compressed hydrogen storage concept, which is now undergoing a thorough system and component validation to prove compliance with automotive requirements before it can be demonstrated in a BMW test vehicle. (author)

  12. Non-destructive Evaluation of Composite Pressure Vessel by Using FBG Sensors

    Institute of Scientific and Technical Information of China (English)

    HAO Jun-cai; LENG Jin-song; WEI Zhang

    2007-01-01

    In recent years, advanced composite structures are used extensively in many industries such as aerospace, aircraft, automobile,pipeline and civil engineering. Reliability and safety are crucial requirements posed by them to the advanced composite structures because of their harsh working conditions. Therefore, as a very important measure, structural health monitoring (SHM) in-service is definitely demanded for ensuring their safe working in-situ. In this paper, fiber Bragg grating (FBG) sensors are surface-mounted on the hoop and in the axial directions of a FRP pressure vessel to monitor the strain status during its pressurization. The experimental results show that the FBG sensors could be used to monitor the strain development and determine the ultimate failure strain of the composite pressure vessel.

  13. Consistency between analytical and finite element predictions for safety of cylindrical pressure vessels at higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, Otto Theodor [Fachhochschule Karlsruhe (Germany). Faculty of Mechanical Engineering and Mechatronics; Erhard, Anton; Otremba, Frank; Sklorz, Christian [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2014-03-01

    The prediction of the plastic collapse load of cylindrical pressure vessels is very often made by using expensive Finite Element computations. The calculation of the collapse load requires an elastic-plastic material model and the consideration of non-linear geometry effects. The plastic collapse load causes overall structural instability and cannot be determined directly from a Finite Element analysis. In the present paper the plastic collapse load for a cylindrical pressure vessel is determined by an analytical method based on a linear elastic perfectly plastic material model. When plasticity occurs the material is considered to be incompressible and the tensor of plastic strains to be parallel to the stress deviator tensor. In this case the finite stress-strain relationships of Henkel can be used for calculating the pressure for which plastic flow occurs. The analytical results are completely confirmed by Finite Element predictions. (orig.)

  14. Standard practice for examination of seamless, gas-filled, steel pressure vessels using angle beam ultrasonics

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice describes a contact angle-beam shear wave ultrasonic technique to detect and locate the circumferential position of longitudinally oriented discontinuities and to compare the amplitude of the indication from such discontinuities to that of a specified reference notch. This practice does not address examination of the vessel ends. The basic principles of contact angle-beam examination can be found in Practice E 587. Application to pipe and tubing, including the use of notches for standardization, is described in Practice E 213. 1.2 This practice is appropriate for the ultrasonic examination of cylindrical sections of gas-filled, seamless, steel pressure vessels such as those used for the storage and transportation of pressurized gasses. It is applicable to both isolated vessels and those in assemblies. 1.3 The practice is intended to be used following an Acoustic Emission (AE) examination of stacked seamless gaseous pressure vessels (with limited surface scanning area) described in Test Met...

  15. Numerical analysis of pressure load in a PWR cavity in an ex-vessel steam explosion

    International Nuclear Information System (INIS)

    Ex-vessel steam explosion may happen as a result of melting core falling into the reactor cavity after failure of the reactor vessel and interaction with the coolant in the cavity pool. It can cause the formation of' shock waves and production of missiles that may endanger surrounding structures. Ex-vessel steam explosion energetics is affected strongly by three dimensional (3D) structure geometry and initial conditions. Ex-vessel steam explosions in a typical pressurized water reactor cavity are analyzed with the code MC3D, which is developed for simulating fuel-coolant interactions. The reactor cavity with a venting tunnel is modeled based on 3D cylindrical coordinate. A study was performed with parameters of the location of molten drop release, break size, melting temperature, cavity water subcooling, triggering time and explosion position, so as to establish parameters' influence on the fuel-coolant interaction behavior, to determine the most challenging cases and to estimate the expected pressure loadings on the cavity walls. The most dangerous case shows the pressure loading is above the capacity of a typical reactor cavity wall. (authors)

  16. An evaluation of life extension of the HFIR pressure vessel. Supplement 1

    International Nuclear Information System (INIS)

    Preliminary analyses were performed in 1994 to determine the remaining useful life of the HFIR pressure vessel. The estimated total permissible life was ∼ 50 EFPY (100 MW). More recently, the analyses have been updated, including a more precise treatment of uncertainties in the calculation of the hydrostatic-proof-test conditions and also including the contribution of gammas to the radiation-induced reduction in fracture toughness. These and other refinements had essentially no effect on the predicted useful life of the vessel or on the specified hydrostatic proof-test conditions

  17. Sensitivity coefficients for the stochastic estimation of the radiation damage to the reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, C.M.; Hernandez Valle, S. [Centro de Investigaciones Tecnologicas, Nucleares y Ambientales, La Habana (Cuba). E-mail: calvarez@ctn.isctn.edu.cu; svalle@ctn.isctn.edu.cu

    2000-07-01

    The construction of the sensitivity matrix in the case of the vessel radiation damage estimation by Monte Carlo techniques poses new problems related to the uncertainties of the obtained responses. In the case of deterministic calculations, the sensitivity coefficient obtention is a straightforward procedure based on the perturbation formalism through the calculation of the adjoint fluxes. In the paper an alternative procedure implementation based on the differential operator method is described with the modifications needed to the used HEXANN-EVALU code for the response estimations in the VVER-440 pressure vessel. (author)

  18. Steam drum level dynamics in a multiple loop natural circulation system of a pressure-tube type BWR

    International Nuclear Information System (INIS)

    Advanced Heavy Water Reactor (AHWR) is a pressure tube type boiling water reactor employing natural circulation as the mode of heat removal under all the operating conditions. Main Heat Transport System (MHTS) of AHWR is essentially a multi-loop natural circulation system with all the loops connected to each other. Each loop of MHTS has a steam drum that provides for gravity based steam-water separation. Steam drum level is a very critical parameter especially in multi-loop natural circulation systems as large departures from the set point may lead to ineffective separation of steam-water or may affect the driving head. However, such a system is susceptible to steam drum level anomalies under postulated asymmetrical operating conditions among the different quadrants of the core like feedwater flow distribution anomaly among the steam drums or power anomaly among the core quadrants. Analyses were carried out to probe such scenarios and unravel the underlying dynamics of steam drum level using system code RELAP5/Mod3.2. In addition, a scheme to obviate such problem in a passive manner without dependence on level controller was examined. It was concluded that steam drums need to be connected in the liquid as well as steam space to make the system tolerant to asymmetrical operating conditions.

  19. Fracture assessment of the Oskarshamn 1 reactor pressure vessel under cold over-pressurization

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, I. [DNV Technical Consulting AB, Stockholm (Sweden)

    2001-03-01

    The major motivation of this study was to develop a methodology for fracture assessment of surface defects in the 01 reactor pressure vessel under cold loading scenarios, particularly the cold over-pressurization event. According to a previous study, the FENIX project, the cold over-pressurization of the O1 reactor is a limiting loading case, as the ductile/brittle transition temperature (RT{sub NDT}) of certain welds in the O1 beltline region may be over 100 deg C at the-end-of-life condition. The FENIX project gave values of the acceptable and critical crack depth to be equal to the thickness of the cladding layer (about 6 mm) under this load case using the ASME K{sub Ic} reference curve methodology. This study is aimed to develop a methodology to give a more precise fracture assessment of the O1 reactor under cold loading scenarios. Some of the main objectives of this study have been as below: To prepare a material which can simulate the mechanical properties and RT{sub NDT} of the O1 reactor at the end-of-life conditions. To conduct a fracture mechanics test program to cover the essential influencing factors, such as crack geometry (shallow and deep cracks) and loading condition (uniaxial and biaxial) on the cleavage fracture toughness. To perform fracture mechanics analyses to identify a suitable methodology for assessment of the experimental results. To study the responses of engineering fracture assessment methods to the experimental results from the clad specimens. To propose a fracture assessment procedure for determination of the acceptable and critical flaw sizes in the 01 reactor under the cold loading events. A test program consisted of experiments on standard SEN(B) specimens and clad beams, containing surface cracks was conducted during the course of this project. A total of nine clad beams and clad cruciform specimens were tested under uniaxial and biaxial loading. The test material is reactor steel of type A 508 Grade B, which is specially heat

  20. Derivation of general scaling criteria for BWR containment tests

    International Nuclear Information System (INIS)

    General top-down scaling criteria for facilities used to study Boiling Water Reactor (BWR) containments including a pressure suppression system are derived, with particular attention to the recent passive BWRS. The criteria are derived by considering the generic processes in classes of containment subsystems (e.g., containment volumes, pools, pipes, etc.). In reactor containments, the thermodynamic behavior of the system (essentially, its pressure history) is linked to its thermal-hydraulic behavior (the flows of mass and energy between volumes). The case of prototypical fluids under prototypical thermodynamic conditions is treated. The study confirms the validity of the (familiar) scaling of power, volumes, horizontal areas in volumes, mass flow rates, and heat transfer areas with a system scale. Important pressure drops and the corresponding flows are controlled by the submergence depth of vents or by hydrostatic pressure differences in connected vessels. The analysis of these processes justify the choice of 1:1 scaling for the pressure drops, vertical heights, submergence depths and level differences. The importance of certain distortions regarding inertial response and transit times is minor

  1. Develop Critical Profilometers to Meet Current and Future Composite Overwrapped Pressure Vessel (COPV) Interior Inspection Needs

    Science.gov (United States)

    Saulsberry, Regor L.

    2010-01-01

    The objective of this project is to develop laser profilometer technology that can efficiently inspect and map the inside of composite pressure vessels for flaws such as liner buckling, pitting, or other surface imperfections. The project will also provide profilometers that can directly support inspections of flight vessels during development and qualification programs and subsequently be implemented into manufacturing inspections to screen out vessels with "out of family" liner defects. An example interior scan of a carbon overwrapped bottle is shown in comparison to an external view of the same bottle (Fig. 1). The internal scan is primarily of the cylindrical portion, but extends about 0.15 in. into the end cap area.

  2. Pneumatic burst test under 'upper shelf conditions' of a pressure vessel containing an axial defect

    International Nuclear Information System (INIS)

    In a programme of burst tests carried out in the 1960's on model steel pressure vessels with through thickness axial cracks, pressurised with water, some vessels when tested at temperatures in the upper part of the Charpy transition range underwent intermittent crack propagation. Each jump in crack length was accompanied by a drop in pressure, followed by a further crack extension on again raising the pressure. This behavior became more pronounced at higher temperatures and crack lengths and was suspected to be due to the low compressibility of the pressurising water and bulging of the pressure vessel shell local to the crack. Consequently, Test V15T1 was carried out using gas as the pressurising medium in order to demonstrate unambiguously that unstable crack propagation can continue if the loading is such as to give constant or increasing stress conditions as the crack propagates, even at temperatures corresponding to ''upper shelf'' Charpy values. Analyses of the test are given using two fracture assessment methods. (author)

  3. In-vessel core debris retention through external flooding of the reactor pressure vessel. State-of-the-art report

    International Nuclear Information System (INIS)

    An overview of the state-of-the-art knowledge on the ex-vessel flooding accident management strategy for severe accidents in a NPP has been given. The feasibility has been discussed, as well as the in- and ex-vessel phenomena, which influence the structural integrity of the vessel. Finally, some computer codes with the ability to model the phenomena involved in ex-vessel flooding have been discussed. (orig./HP)

  4. Evaluation of Dynamic Pressures from Ex-Vessel Steam Explosion using TEXAS-V

    International Nuclear Information System (INIS)

    An Ex-vessel steam explosion might occur when hypothetical severe reactor accident causes reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the time scale for heat transfer is shorter than the time scale for pressure relief. A steam explosion is a complex, highly nonlinear, coupled multi-component, multi-phase phenomenon. For the last several decades several computational models have been developed to evaluate the steam explosion energetics. The models have been verified with a number of experiment data and recently successfully analyzed in-vessel and ex-vessel steam explosions in new and advanced reactor designs. The TEXAS-V code is one of the models that have a unique feature employing the jet breakup model for the mixing phase and explosion models for the explosion triggering and propagation in one-dimensional fashion. The one-dimensional approach to analyze the steam explosion in this model, however, has a limitation to simulate the reactor case that has multi-dimension in nature. Therefore, in this work, the limitation of the TEXA-V code is supplemented by employing a commercial CFD code that evaluates the dynamic steam explosion pressure propagation from the FCI mixing zone to the reactor cavity wall. In this paper, the initial effort of this attempt is reported and explained the results

  5. Evaluation of the performance of ultrasonic and eddy current testing of austenitic claddings of reactor pressure vessels; Bewertung der Aussagefaehigkeit von Ultraschall- und Wirbelstrompruefung austenitischer Plattierungen von Reaktordruckbehaeltern

    Energy Technology Data Exchange (ETDEWEB)

    Waidele, H.; Maier, H.J.; Just, T.; Seidenkranz, T.; Seydel, O.; Weiss, R.

    2000-12-01

    In the scope of this project, non-destructive testing methods were carried out on specimens with defects intentionally manufactured in the region of the cladding. The aim of these trials is an evaluation of the performance of ultrasonic and eddy current examinations of austenitic claddings of reactor pressure vessels. A review of the non-destructive testing of claddings showed that the majority of the investigations have been carried out on specimens with artificial defects (notches, holes). Therefore, for the realisation of this project MPA Stuttgart produced specimens with natural defects in the cladding. In detail these are specimens with intergranular stress-corrosion cracking, hot cracks and welding defects in the cladding as well as specimens with underclad cracks. The thickness of the specimens is about 150 mm (BWR-RPV), so that in addition to the testing from the ID (PWR, ultrasonic, eddy current) also the testing from the OD (BWR, ultrasonic) could be examined. The measurements show that most of the cladding defects can be detected with the standard ultrasonic test methods, however, in some cases generate only low echo amplitudes. Favourable results were obtained from the ID testing by means of a phased array probe, in particular in connection with the eddy current technique. Investigations on specimens containing defects not known to the inspection teams (blind tests), which will allow a further evaluation of the performance of non-destructive testing methods under realistic conditions, will be carried out in Phase II of the project. (orig.) [German] Im Rahmen dieses Vorhabens wurden an Testkoerpern mit im Plattierungsbereich gezielt eingebrachten Fehlerbildungen zerstoerungsfreie Pruefungen durchgefuehrt. Ziel der Untersuchungen ist eine Bewertung der Aussagefaehigkeit von Ultraschall- und Wirbelstrompruefungen an austenitischen Plattierungen von Reaktordruckbehaeltern. Bei einer Bestandsaufnahme zur zerstoerungsfreien Pruefung von Plattierungen zeigte

  6. Study on adequacy of stress intensity factor solutions for nozzle corner cracks in reactor pressure vessel

    International Nuclear Information System (INIS)

    Japan Electric Association Code, JEAC4206-2007, 'Method of Verification Tests of the Fracture Toughness for Nuclear Power Plant Components,' requires the prevention of the non-ductile fracture for supposed cracks in reactor pressure vessels. Structural integrity for the supposed cracks with the depth of a quarter of the thickness is required for nozzle corner as well as for cylindrical body. The quantitative estimation of the margin against fracture with a high degree of accuracy is essential as one of the countermeasures to plant life management of reactor pressure vessels. In this report, stress intensity factor solutions for nozzle corner cracks were investigated together with their technical basis. The applicability of the solutions was examined through the comparison with a finite element analysis result. It was ascertained that the present stress intensity factor solution in the JEAC code gave reasonable calculation, and the Fife's solution could be more promising for codification. (author)

  7. Feasibility study for CPR1000 incore measurement instrumentation educed from the reactor pressure vessel upper head

    International Nuclear Information System (INIS)

    The article discusses about the feasibility of in-core measurement instrumentation educed from the reactor pressure vessel (RPV) upper head. Incore instrumentation educed from the reactor pressure vessel upper head is one of advanced technology in the third generation nuclear power plant. This technology can reduce the manufacture problem of RPV; decrease the manufacture time effectively. Furthermore, this technology can get rid of the trouble for loss of water caused by many penetrations in the RPV bottom head, can increase security of nuclear power plant. By the description of structure analysis, comparison, maturity for four type incore instrumentation detectors, the incore instrumentation can be educed from RPV upper head, which can increase reactor's security, reduce the manufacture time, decrease group dose in refueling period. The core design ability can be enhanced through this study. (authors)

  8. INETEC new system for inspection of PWR reactor pressure vessel head

    International Nuclear Information System (INIS)

    INETEC Institute for Nuclear Technology developed new equipment for inspection of PWR and VVER reactor pressure vessel head. The new advances in inspection technology are presented in this article, as the following: New advance manipulator for inspection of RPVH with high speed of inspection possibilities and total automated work; New sophisticated software for manipulator driving which includes 3D virtual presentation of manipulator movement and collision detection possibilities; New multi axis controller MAC-8; New end effector system for inspection of penetration tube and G weld; New eddy current and ultrasonic probes for inspection of G weld and penetration tube; New Eddy One Raster scan software for analysis of eddy current data with mant advanced features which allows easy and quick data analysis. Also the results of laboratory testing and laboratory qualification are presented on reactor pressure vessel head mock, as well as obtained speed of inspection and quality of collected data.(author)

  9. IAEA international studies on irradiation embrittlement of reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Brumovsky, M. [Nuclear Research Institute Rez plc (Czech Republic); Steele, L.E. [Chief Scientific Investigator of the Programme, Springfield, VA (United States)

    1997-02-01

    In last 25 years, three phases a Co-operative Research Programme on Irradiation Embrittlement of Reactor Pressure Vessel Steels has been organized by the International Atomic Energy Agency. This programme started with eight countries in 1971 and finally 16 countries took part in phase III of the Programme in 1983. Several main efforts were put into preparation of the programme, but the principal task was concentrated on an international comparison of radiation damage characterization by different laboratories for steels of {open_quotes}old{close_quotes} (with high impurity contents) and {open_quotes}advanced{close_quotes} (with low impurity contents) types as well as on development of small scale fracture mechanics procedures applicable to reactor pressure vessel surveillance programmes. This year, a new programme has been opened, concentrated mostly on small scale fracture mechanics testing.

  10. IAEA international studies on irradiation embrittlement of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    In last 25 years, three phases a Co-operative Research Programme on Irradiation Embrittlement of Reactor Pressure Vessel Steels has been organized by the International Atomic Energy Agency. This programme started with eight countries in 1971 and finally 16 countries took part in phase III of the Programme in 1983. Several main efforts were put into preparation of the programme, but the principal task was concentrated on an international comparison of radiation damage characterization by different laboratories for steels of open-quotes oldclose quotes (with high impurity contents) and open-quotes advancedclose quotes (with low impurity contents) types as well as on development of small scale fracture mechanics procedures applicable to reactor pressure vessel surveillance programmes. This year, a new programme has been opened, concentrated mostly on small scale fracture mechanics testing

  11. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs). Corrected Copy, Aug. 25, 2014

    Science.gov (United States)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  12. Dosimetry assessments for the reactor pressure vessel and core barrel in UK PWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, D.A.; Allen, D.A.; Huggon, A.P.; Picton, D.J.; Robinson, A.T.; Steadman, R.J. [Serco, Rutherford House, Quedgeley, Gloucester, Gl2 4NF (United Kingdom); Seren, T.; Lipponen, M.; Kekki, T. [VTT, Technical Research Centre of Finland, Otakaari 3 K, P.O. BOX 1000, Espoo, FI-02044 (Finland)

    2011-07-01

    Specimens for the Sizewell B reactor pressure vessel (RPV) inservice steels surveillance program are irradiated inside eight capsules located within the reactor pressure vessel and loaded prior to commissioning. The periodic removal of these capsules and testing of their contents provides material properties data at intervals during the lifetime of the plant. Neutron activation measurements and radiation transport calculations play an essential role in assessing the neutron exposure of the specimens and RPV. Following the most recent withdrawal, seven capsules have now been removed covering nine cycles of reactor operation. This paper summarizes the dosimetry results of the Sizewell B surveillance program obtained to date. In addition to an overview of the calculational methodology it includes a review of the measurements. Finally, it describes an extension of the methodology to provide dosimetry recommendations for the core barrel and briefly discusses the results that were obtained. (authors)

  13. Analysis of deterministic and statistical approaches to fatigue crack growth in pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Alexandre S.; Melo, P.F. Frutuoso e [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear. E-mail: frutuoso@lmn.con.ufrj.br

    2000-07-01

    This work presents three approaches to the fatigue crack growth process in steel pressure vessels as applied to failure probability calculation. In the Thomson's methodology, the crack growth is the term that represents the mechanical behavior which along the time will take the pressure vessel to a structural failure. The first result of failure probability will be obtained considering a deterministic approach, since the crack growth laws are of a deterministic nature. This approach will provide a reference value. Next, two statistical approaches will be performed based on the fact that fatigue crack growth is a random phenomenon. One of them takes into account only the variability of experimental data, proposing a distribution function to represent the failure process. The other, the stochastic approach, considers the random nature of crack growth along time, by performing the randomization of a crack growth law. The solution of this stochastic equation is a transition distribution function fitted to experimental data. (author)

  14. Dosimetry experiment 'Dompac'. Neutronic simulation of the thickness of a PWR pressure vessel. Irradiation damage characterization

    International Nuclear Information System (INIS)

    For suitable extrapolation of irradiated PWR ferritic steel results, proper irradiation of the pressure vessel has been 'simulated' in test reactor. For this purpose, a huge steel block (20 cm in depth) was loaded with Saclay's graphite (GAMIN) and tungsten damage detectors. Core-block water gap was optimized through spectrum indexes method, by ANISN and SABINE codes so that spectrum in 1/4 thickness matches with ANISN computations for PWR Fessenheim 1. A good experimental agreement is found with calculated dpa damage gradient. 3D Monte Carlo computation (TRIPOLI) was performed on the DOMPAC device, and spectrum indexes evolution was found consistent with experimental results. Surveillance rigs behind a 'thermal shield' were also simulated, including damage and activation monitors. Dosimetry results give an order of magnitude of accuracies involved in projecting steel sample embrittlement to the pressure vessel

  15. Pressure vessel sliding support unit and system using the sliding support unit

    Science.gov (United States)

    Breach, Michael R.; Keck, David J.; Deaver, Gerald A.

    2013-01-15

    Provided is a sliding support and a system using the sliding support unit. The sliding support unit may include a fulcrum capture configured to attach to a support flange, a fulcrum support configured to attach to the fulcrum capture, and a baseplate block configured to support the fulcrum support. The system using the sliding support unit may include a pressure vessel, a pedestal bracket, and a plurality of sliding support units.

  16. Evaluation of Acoustic Emission NDE of Kevlar Composite Over Wrapped Pressure Vessels

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2008-01-01

    Pressurization and failure tests of small Kevlar/epoxy COPV bottles were conducted during 2006 and 2007 by Texas Research Institute Austin, Inc., at TRI facilities. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. Results of some of the tests indicate a possibility that AE can be used to track the stress-rupture degradation of COPV vessels.

  17. Solid-state logic equipment for ultrasound periodic inspections of reactor pressure vessels

    International Nuclear Information System (INIS)

    Solid-state logic equipment is described for periodic ultrasonic inspection of power reactor pressure vessels. The equipment block diagram is shown. The equipment can use different types of measuring heads comprising up to 12 probes and 46 steps in one measuring cycle. The duration of one step is 250 microseconds and one cycle lasts 12.5 milliseconds. Both direct and indirect echoes can be processed depending on a preset algorithm. (Ha)

  18. Radiation embrittlement of nuclear reactor pressure vessel steels: An international review (second volume)

    International Nuclear Information System (INIS)

    This book has sixteen (16) peer-reviewed papers divided into four (4) sections that reflect changes in the nuclear power industry occurring since 1981, including escalating capital requirements and a growing worldwide dependence on nuclear power for electricity production. The four (4) sections of this book are: Overview of National Programs; Surveillance and Other Radiation Embrittlement Studies; Pressure Vessel Integrity and Regulatory Considerations; and Mechanisms of Irradiation Embrittlement

  19. Some topical problems in the manufacture of steels for reactor pressure vessels

    International Nuclear Information System (INIS)

    The manufacture is described of pressure vessel steels with low contents of harmful and trace elements, gases and non-metallic inclusions. The steels are made of pure charge raw materials in electric arc furnaces and refined outside of furnaces or using vacuum and reheating furnaces of the ASEA-SFK or FINKL-MOHR type. The chemical compositions of the individual steels being manufactured are shown. (J.B.)

  20. Pre-study of dynamic loads on the internals caused by a large pipe break in a BWR; Foerstudie av stroemningsinducerade laster paa interndelar vid brott i huvudcirkulationskretsarna i BWR

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, Jerzy; Lindgren, Anders [Det Norske Veritas Nuclear Technology AB, Stockholm (Sweden)

    2002-12-01

    Det Norske Veritas Nuclear Technology has performed a literature study of dynamic load on a BWR (Boiling Water Reactor) internals caused by a large pipe break. The goal of the study was to improve the knowledge about the physics of phenomena occurring in the RPV (Reactor Pressure Vessel) after pipe break in the main circulation system and also to make a review of calculation methods, models and computer programs including their capabilities when calculating the dynamic loads. The report presents description of relevant parts of a BWR, initial and boundary conditions, and phenomena determining the loads - rapid depressurization and propagation of pressure wave (including none-equilibrium). Furthermore, the report generally describes possible methodologies for calculating the dynamic loads on internals after the pipe break and the experiences from calculations the dynamic loads with different methods (computer programs) including comparisons with experimental data. Fluid-Structure Interaction methodology and its importance for calculation of dynamic loads on reactor internals is discussed based on experimental data. A very intensive research program for studying and calculating the dynamic loads on internals after pipe breaks has been performed in USA and Germany during the seventies and the eighties. Several computer programs have been developed and a number of large-scale experiments have been performed to calibrate the calculation methods. In spite of the fact that all experiments were performed for PWR several experiences should be valid also for BWR. These experiences, connected mainly to capabilities of computer programs calculating dynamic loads, are discussed in the report.

  1. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient

    International Nuclear Information System (INIS)

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm2; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  2. Ultrasonic flaw detecting device and ultrasonic probe for nozzle of pressure vessel

    International Nuclear Information System (INIS)

    The present invention improves the accuracy for flaw detecting test at a curved portion on the inner surface of a nozzle of a pressure vessel. Namely, a running vehicle runs around the outer surface of a nozzle of a pressure vessel. A support arm is loaded on the running vehicle being rotatably and extensively in the longitudinal direction. An ultrasonic wave probe is held at the top end of the support arm and detects flaws at the curved portion on the inner surface of the nozzle. The ultrasonic probe is made rotatable in a plane in perpendicular to the longitudinal direction of the support arm by way of a bearing. Further, the surface of the probe to be in contact with the outer surface as a surface to be inspected is chamfered at the four corners. With such a constitution, tightness of the ultrasonic probe to the surface to be detected is improved. As a result, the ultrasonic flaw detection for the curved portion at the inner circumference of the nozzle of the pressure vessel can be conducted at a high efficiency. (I.S.)

  3. Reactor pressure vessel and internals become visible by means of remote moulding inspection, AVT

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, H.O. [Force Technology Sweden AB, Vaesteraas (Sweden)

    2006-07-01

    Reactor pressure vessels and internals are often inspected with remote controlled NDE techniques such as automated ultrasonic, automated eddy current and visual inspection techniques. Scratches, tool marks and other geometrical indications cause severe problems for traditional surface techniques and may even cause unnecessary repair work. FORCE Technology has developed new remote tools for application of the moulding inspection technology above water as well as under water. The specialized remote tools can be utilized for fast inspection of simple and complex geometries, which are impossible to inspect with other inspection techniques e.g. weld surfaces in restricted areas under water. The specialized remote inspection tools can make a copy or imprint of the surface, which lets you see surface structures, cracks or similar with a resolution of 1 {mu}m. The tools are typically designed and fabricated for special areas or components but once tested and approved they allow for fast mobilisation and insertion. As the resolution reference is build into the tools the lead-in time is kept low. Recently, the remote inspection tools have been utilized in a water-filled nuclear reactor pressure vessel. OKG Aktiebolag was in urgent need for an alternative non-destructive testing of level measuring nozzles, which are located under water in the reactor pressure vessel. (orig.)

  4. Slideline verification for multilayer pressure vessel and piping analysis including tangential motion

    International Nuclear Information System (INIS)

    Nonlinear finite element method (FEM) computer codes with slideline algorithm implementations should be useful for the analysis of prestressed multilayer pressure vessels and piping. This paper presents closed form solutions including the effects of tangential motion useful for verifying slideline implementations for this purpose. The solutions describe stresses and displacements of a long internally pressurized elastic-plastic cylinder initially separated from an elastic outer cylinder by a uniform gap. Comparison of closed form and FEM results evaluates the usefulness of the closed form solution and the validity of the sideline implementation used

  5. Robinson 2 reactor vessel: pressurized thermal shock analysis for a small-break LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Marston, T.; Griesbach, T.; Chao, J.; Chexal, B.; Norris, D.; Nickell, B.; Layman, B.

    1984-08-01

    A best-estimate Pressurized Thermal Shock (PTS) analysis was performed for a three-inch diameter hot-leg small-break loss-of-coolant accident for the Robinson 2 plant. This plant specific analysis was performed using EPRI's linked set of codes for PTS analysis. The analysis shows that with the H.B. Robinson 2 reactor pressure vessel, a hot-leg small-break loss-of-coolant accident does not pose a significant health or safety concern to the public for at least 40 years of operation.

  6. Integrity of the VVER-440/V230 reactor pressure vessel during PTS transients

    International Nuclear Information System (INIS)

    RELAP5, CATHARE 2 and NEWMIX or REMIX computer codes were used for thermal-hydraulic and structural analyses of reactor pressure vessel (RPV) integrity under pressurized thermal shock transients. Structural response of the RPV was investigated. Calculation of the temperature and stress fields in the RPV was done using finite element code PMD II. The BRIFRAV code was used for the evaluation of the resistance to brittle fracture by means of linear elastic fracture mechanics. An example of hot leg break LOCA is given. (J.B.) 5 figs., 6 refs

  7. Sealing behavior simulation technology research for CPR1000 reactor pressure vessel

    International Nuclear Information System (INIS)

    Background: Pressurized water Reactor Pressure Vessel (RPV) sealing capability is one of the key factors to ensure the safety operation of nuclear power plants. Purpose: In order to explore the numerical simulation technology of the RPV sealing behaviors. Methods: In this paper, the 3-D thermal elastoplastic finite model is established, which based on the CPR1000 project. Results: The load and its combination of equipment during operation are considered, then the separation of RPV upper and lower flanges, radial slip and bolt loads etc. are also obtained. Conclusions: The results show the 3-D thermal elastoplastic finite model can simulate the sealing performance of the structure. (authors)

  8. Elastic analysis of heterogeneous thick-walled spherical pressure vessels with parabolic varying properties

    Science.gov (United States)

    Karami, Keyhan; Abedi, Majid; Zamani Nejad, Mohammad; Lotfian, Mohammad Hassan

    2012-12-01

    On the basis of plane elasticity theory (PET), the displacement and stress components in a thick-walled spherical pressure vessels made of heterogeneous materials subjected to internal and external pressure is developed. The mechanical properties except the Poisson's ratio are assumed to obey the parabolic variations throughout the thickness. Effect of material inhomogeneity on the elastic deformations and stresses is investigated. The analytical solutions and the solutions carried out through the FEM have a good agreement. The values used in this study are arbitrary chosen to demonstrate the effect of inhomogeneity on displacements, and stresses distributions.

  9. Pre-study of dynamic loads on the internals caused by a large pipe break in a BWR

    International Nuclear Information System (INIS)

    Det Norske Veritas Nuclear Technology has performed a literature study of dynamic load on a BWR (Boiling Water Reactor) internals caused by a large pipe break. The goal of the study was to improve the knowledge about the physics of phenomena occurring in the RPV (Reactor Pressure Vessel) after pipe break in the main circulation system and also to make a review of calculation methods, models and computer programs including their capabilities when calculating the dynamic loads. The report presents description of relevant parts of a BWR, initial and boundary conditions, and phenomena determining the loads - rapid depressurization and propagation of pressure wave (including none-equilibrium). Furthermore, the report generally describes possible methodologies for calculating the dynamic loads on internals after the pipe break and the experiences from calculations the dynamic loads with different methods (computer programs) including comparisons with experimental data. Fluid-Structure Interaction methodology and its importance for calculation of dynamic loads on reactor internals is discussed based on experimental data. A very intensive research program for studying and calculating the dynamic loads on internals after pipe breaks has been performed in USA and Germany during the seventies and the eighties. Several computer programs have been developed and a number of large-scale experiments have been performed to calibrate the calculation methods. In spite of the fact that all experiments were performed for PWR several experiences should be valid also for BWR. These experiences, connected mainly to capabilities of computer programs calculating dynamic loads, are discussed in the report

  10. Uncertainties in risk assessment of hydrogen discharges from pressurized storage vessels at low temperatures

    DEFF Research Database (Denmark)

    Markert, Frank; Melideo, D.; Baraldi, D.

    2013-01-01

    20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel......Evaluations of the uncertainties resulting from risk assessment tools to predict releases from the various hydrogen storage types are important to support risk informed safety management. The tools have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (at...... dynamics are modeled to evaluate the performance of various EOS to predict exit pressures and temperatures. The results are compared to experimental data and results from CFD calculations....

  11. NUMERICAL PREDICTION OF HIGHER SELF-PRESSURIZATION RATES IN A TYPICAL STORAGE VESSEL

    Directory of Open Access Journals (Sweden)

    HARI KRISHNA RAJ

    2012-07-01

    Full Text Available Self-pressurization, as a result of vaporization can occur in many scientific and technical applications like cryogenic storage tanks, pressurized water reactors etc. Predictions of both the pressurization and vaporization rates are vital in defining design requirements conforming to the tank’s maximum working pressure andexpected liquid losses. Predicting precisely the highly transient interface phenomenon due to mass transfer coupled with phase change due to evaporation is the major challenge encountered in modeling selfpressurization. The recent improvements of the multiphase flow modeling in the ANSYS FLUENT code make it now possible to simulate these mechanisms in detail without the need of user defined functions. The volume-of-fluid (VOF method in conjunction with evaporation–condensation mass transfer model has been used here. In this paper we are extending the proven capability of VOF model for predicting higher selfpressurization rates due to phase change in storage vessels.

  12. Pressure vessels dossier restoration according to NR-13 requirements; Enquadramento de vasos de pressao a norma NR-13

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose L. [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Goncalves, Osorio C. [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Pressure vessels are static pressurized equipment typical in oil industry facilities. In TRANSPETRO terminals and stations as well as in the whole PETROBRAS, these equipment can be found in the form of condenser accumulators, separators, heat exchangers, storage spheres and others. Because they work sustaining pressure and, many times flammable fluids, pressure vessels have a reasonable potential for hazard. For this reason, the NR-13 regulation was created. It deals with the safety in maintenance, operation and inspection of pressure vessels and boilers. During the compliance to the NR- 13 rules, a problem usually found is the lack of documents for different reasons. In this case, the NR-13 obligates the owner to recreate the vessel documentation under the responsibility of a chartered professional. This paper presents a case study where NR-13 rules were conformed by tasks involving documentation reconstruction based on information collected by means of inspection and tests performed on the field. (author)

  13. Simplified methods applied to the complete thermal and mechanical behaviour of a pressure vessel during a severe accident

    International Nuclear Information System (INIS)

    EDF has developed a software package of simplified methods (proprietary ones from literature) in order to study the thermal and mechanical behaviour of a PWR pressure vessel during a severe accident involving a corium localization in the vessel lower head. Using a part of this package, we can evaluate for instance successively: the heat flux at the inner surface of the vessel (conductive or convective pool of corium); the thermal exchange coefficient between the vessel and the outside (dry pit or flooded pit, watertight thermal insulation or not); the complete thermal evolution of the vessel (temperature profile, melting); the possible global plastic failure of the vessel; the creep behaviour in the vessel. These simplified methods are low cost alternative to finite element calculations which are yet used to validate the previous methods, waiting for experimental results to come. (authors)

  14. 46 CFR 35.25-5 - Repairs of boilers and unfired pressure vessels and reports of repairs or accidents by chief...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Repairs of boilers and unfired pressure vessels and... unfired pressure vessels and reports of repairs or accidents by chief engineer—TB/ALL. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer shall submit a report...

  15. Evaluation of embedded FBGs in composite overwrapped pressure vessels for strain based structural health monitoring

    Science.gov (United States)

    Pena, Francisco; Strutner, Scott M.; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.

    2014-03-01

    The increased use of composite overwrapped pressure vessels (COPVs) in space and commercial applications, and the explosive nature of pressure vessel ruptures, make it crucial to develop techniques for early condition based damage detection. The need for a robust health monitoring system for COPVs is a high priority since the mechanisms of stress rupture are not fully understood. Embedded Fiber Bragg Grating (FBG) sensors have been proposed as a potential solution that may be utilized to anticipate and potentially avoid catastrophic failures. The small size and light weight of optical fibers enable manufactures to integrate FBGs directly into composite structures for the purpose of structural health monitoring. A challenging aspect of embedding FBGs within composite structures is the risk of potentially impinging the optical fiber while the structure is under load, thus distorting the optical information to be transferred. As the COPV is pressurized, an embedded optical sensor is compressed between the expansion of the inner bottle, and the outer overwrap layer of composite. In this study, FBGs are installed on the outer surface of a COPV bottle as well as embedded underneath a composite overwrap layer for comparison of strain measurements. Experimental data is collected from optical fibers containing multiple FBGs during incremental pressurization cycles, ranging from 0 to 10,000 psi. The graphical representations of high density strain maps provide a more efficient process of monitoring structural integrity. Preliminary results capture the complex distribution of strain, while furthering the understanding of the failure mechanisms of COPVs.

  16. Cleavage Fracture Modeling of Pressure Vessels under Transient Thermo-Mechanical Loading

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Xudong [National University of Singapore; Dodds, Robert [University of Illinois; Yin, Shengjun [ORNL; Bass, Bennett Richard [ORNL

    2008-02-01

    The next generation of fracture assessment procedures for nuclear reactor pressure vessels (RPVs) will combine nonlinear analyses of crack-front response with stochastic treatments of crack size, shape, orientation, location, material properties and thermal-pressure transients. The projected computational demands needed to support stochastic approaches with detailed 3-D, nonlinear stress analyses of vessels containing defects appear well beyond current and near-term capabilities. In the interim, 2-D models become appealing to approximate certain classes of critical flaws in RPVs, and have computational demands within reach for stochastic frameworks. The present work focuses on the capability of 2-D models to provide values for the Weibull stress fracture parameter with accuracy comparable to those from very detailed 3-D models. Weibull stress approaches provide one route to connect nonlinear vessel response with fracture toughness values measured using small laboratory specimens. The embedded axial flaw located in the RPV wall near the cladding-vessel interface emerges from current linear-elastic, stochastic investigations as a critical contributor to the conditional probability of initiation. Three different types of 2-D models reflecting this configuration are subjected to a thermal-pressure transient characteristic of a critical pressurized thermal shock event. The plane-strain, 2-D models include: the modified boundary layer (MBL) model, the middle tension (M(T)) model, and the 2-D RPV model. The 2-D MBL model provides a high quality estimate for the Weibull stress but only in crack-front regions with a positive T-stress. For crack-front locations with low constraint (T-stress < 0), the M(T) specimen provides very accurate Weibull stress values but only for pressure load acting alone on the RPV. For RPVs under a combined thermal-pressure transient, Weibull stresses computed from the 2-D RPV model demonstrate close agreement with those computed from the

  17. Development of automated ultrasonic device for in-service inspection of ABWR pressure vessel bottom head

    International Nuclear Information System (INIS)

    An automated device and its controller have been developed for the bottom head weld examination of pressure vessel of Advanced Boiling Water Reactor (ABWR). The internal pump casings and the housings of control rod prevent a conventional ultrasonic device from scanning the required inspection zone. With this reason, it is required to develop a new device to examine the bottom head area of ABWR. The developed device is characterized by the following features. (1) Composed of a mother vehicle and a compact inspection vehicle. They are connected only by an electric wire without using the conventional arm mechanism. (2) The mother vehicle travels on a track and lift up the inspection vehicle to the vessel. (3) The mother vehicle can automatically attach the inspection vehicle to the bottom head, and detach the inspection vehicle from it. (4) Collision avoidance control function with a touch sensor is installed at the front of the inspection vehicle. The device was successfully demonstrated using a mock-up of reactor pressure vessel

  18. Fabrication Flaw Density and Distribution In Repairs to Reactor Pressure Vessel and Piping Welds

    International Nuclear Information System (INIS)

    The Pacific Northwest National Laboratory is developing a generalized fabrication flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in U.S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This report describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs. These results show that repair flaws are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. The relevance of construction records is established for describing fabrication processes and product forms. An analysis of these records shows there was a significant change in repair frequency over the years when these components were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance. Fabrication flaws in repairs are characterized using optimized-access, high-sensitivity nondestructive ultrasonic testing. Flaw characterizations are then validated by other nondestructive evaluation techniques and complemented by destructive testing

  19. Fabrication Flaw Density and Distribution In Repairs to Reactor Pressure Vessel and Piping Welds

    Energy Technology Data Exchange (ETDEWEB)

    GJ Schuster, FA Simonen, SR Doctor

    2008-04-01

    The Pacific Northwest National Laboratory is developing a generalized fabrication flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in U.S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This report describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs. These results show that repair flaws are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. The relevance of construction records is established for describing fabrication processes and product forms. An analysis of these records shows there was a significant change in repair frequency over the years when these components were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance. Fabrication flaws in repairs are characterized using optimized-access, high-sensitivity nondestructive ultrasonic testing. Flaw characterizations are then validated by other nondestructive evaluation techniques and complemented by destructive testing.

  20. Monitoring Composite Material Pressure Vessels with a Fiber-Optic/Microelectronic Sensor System

    Science.gov (United States)

    Klimcak, C.; Jaduszliwer, B.

    1995-01-01

    We discuss the concept of an integrated, fiber-optic/microelectronic distributed sensor system that can monitor composite material pressure vessels for Air Force space systems to provide assessments of the overall health and integrity of the vessel throughout its entire operating history from birth to end of life. The fiber optic component would include either a semiconductor light emitting diode or diode laser and a multiplexed fiber optic sensing network incorporating Bragg grating sensors capable of detecting internal temperature and strain. The microelectronic components include a power source, a pulsed laser driver, time domain data acquisition hardware, a microprocessor, a data storage device, and a communication interface. The sensing system would be incorporated within the composite during its manufacture. The microelectronic data acquisition and logging system would record the environmental conditions to which the vessel has been subjected to during its storage and transit, e.g., the history of thermal excursions, pressure loading data, the occurrence of mechanical impacts, the presence of changing internal strain due to aging, delamination, material decomposition, etc. Data would be maintained din non-volatile memory for subsequent readout through a microcomputer interface.

  1. Comparative study of the hydrogen generation during short term station blackout (STSBO) in a BWR

    International Nuclear Information System (INIS)

    Highlights: • Comparative study of generation in a simulated STSBO severe accident. • MELCOR and SCDAP/RELAP5 codes were used to understanding the main phenomena. • Both codes present similar thermal-hydraulic behavior for pressure and boil off. • SCDAP/RELAP5 predicts 15.8% lower hydrogen production than MELCOR. - Abstract: The aim of this work is the comparative study of hydrogen generation and the associated parameters in a simulated severe accident of a short-term station blackout (STSBO) in a typical BWR-5 with Mark-II containment. MELCOR (v.1.8.6) and SCDAP/RELAP5 (Mod.3.4) codes were used to understand the main phenomena in the STSBO event through the results comparison obtained from simulations with these codes. Due that the simulation scope of SCDAP/RELAP5 is limited to failure of the vessel pressure boundary, the comparison was focused on in-vessel severe accident phenomena; with a special interest in the vessel pressure, boil of cooling, core temperature, and hydrogen generation. The results show that at the beginning of the scenario, both codes present similar thermal-hydraulic behavior for pressure and boil off of cooling, but during the relocation, the pressure and boil off, present differences in timing and order of magnitude. Both codes predict in similar time the beginning of melting material drop to the lower head. As far as the hydrogen production rate, SCDAP/RELAP5 predicts 15.8% lower production than MELCOR

  2. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  3. Proceedings of the 3rd international conference on heat exchangers, boilers and pressure vessels (HEB-97). Vol.1 (Research Papers)

    International Nuclear Information System (INIS)

    This conference was held on 5-6 Apr 1997 in Alexandria. the specialists discussed heat exchangers, boilers and pressure vessels. more than 200 papers were presented in the meetings. it contains of data, figures and tables

  4. General Description of the Mechanic Design of the Pressure Vessel and the Internal Mechanical Component of the CAREM Reactor

    International Nuclear Information System (INIS)

    This paper presents a brief description of the CAREM reactor pressure vessel and its main internal mechanical components and summarizes the functional requirements and approaches applied for their design, together with a review of the normative applicable in each case

  5. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Seitisleam, F.; Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  6. Weld Repair of a Stamped Pressure Vessel in a Radiologically Controlled Zone

    Energy Technology Data Exchange (ETDEWEB)

    Cannell, Gary L. [Fluor Enterprises, Inc.; Huth, Ralph J. [CH2MHill Plateau Remediation Company; Hallum, Randall T. [Fluor Government Group

    2013-08-26

    In September 2012 an ASME B&PVC Section VIII stamped pressure vessel located at the DOE Hanford Site Effluent Treatment Facility (ETF) developed a through-wall leak. The vessel, a steam/brine heat exchanger, operated in a radiologically controlled zone (by the CH2MHill PRC or CHPRC), had been in service for approximately 17 years. The heat exchanger is part of a single train evaporator process and its failure caused the entire system to be shut down, significantly impacting facility operations. This paper describes the activities associated with failure characterization, technical decision making/planning for repair by welding, logistical challenges associated with performing work in a radiologically controlled zone, performing the repair, and administrative considerations related to ASME code requirements.

  7. Guide to the periodic inspection of nuclear reactor steel pressure vessels

    International Nuclear Information System (INIS)

    This Guide is intended to provide general information and guidance to reactor owners or operators, inspection authorities, certifying authorities or regulatory bodies who are responsible for establishing inspection procedures for specific reactors or reactor types, and for the preparation of national codes or standards. The recommendations of the Guide apply primarily to water-cooled steel reactor vessels which are at a sufficiently early stage of design so that recommendations to provide accessibility for inspection can be incorporated into the early stages of design and inspection planning. However, much of the contents of the Guide are also applicable in part to vessels for other reactor types, such as gas-cooled, pressure-tube, or liquid-metal-cooled reactors, and also to some existing water-cooled reactors and reactors which are in advanced stage of design or construction. 46 refs, figs, 1 tab

  8. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex{trademark} polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup.

  9. Experimental analysis of a nuclear reactor prestressed concrete pressure vessels model

    International Nuclear Information System (INIS)

    A comprehensible analysis was made of the performance of each set of sensors used to measure the strain and displacement of a 1/20 scale Prestressed Concrete Pressure Vessel (PCPV) model tested at the Instituto de Pesquisas Energeticas e Nucleares (IPEN). Among the three Kinds of sensors used (strain gage, displacement transducers and load cells) the displacement transducers showed the best behavior. The displacemente transducers data was statistically analysed and a linear behavior of the model was observed during the first pressurizations tests. By means of a linear statistical correlation between experimental and expected theoretical data it was found that the model looses the linearity at a pressure between 110-125 atm. (Author)

  10. Thermal-hydraulics of the Loviisa reactor pressure vessel overcooling transients

    International Nuclear Information System (INIS)

    In the Loviisa reactor pressure vessel safety analyses, the thermal-hydraulics of various overcooling transients has been evaluated to give pertinent initial data for fracture-mechanics calculations. The thermal-hydraulic simulations of the developed overcooling scenarios have been performed using best-estimate thermal-hydraulic computer codes. Experimental programs have been carried out to study phenomena related to natural circulation interruptions in the reactor coolant system. These experiments include buoyancy-induced phenomena such as thermal mixing and stratification of cold high-pressure safety injection water in the cold legs and the downcomer, and oscillations of the single-phase natural circulation. In the probabilistic pressurized thermal shock study, the Loviisa training simulator and the advanced system code RELAP5/MOD2 were utilized to simulate selected sequences. Flow stagnation cases were separately calculated with the REMIX computer program. The methods employed were assessed for these calculations against the plant data and own experiments

  11. Test of 6-in.-thick pressure vessels. Series 4: intermediate test vessels V-5 and V-9 with inside nozzle corner cracks

    International Nuclear Information System (INIS)

    Failure testing is described for two 99-cm-diam (39-in.), 15.2-cm-thick (6-in.) steel pressure vessels, each containing one flawed nozzle. Vessel V-5 was tested at 880C (1900F) and failed by leaking without fracturing after extensive stable crack growth. Vessel V-9 was tested at 250C (750F) and failed by fracturing. Material properties measured before the tests were used for pretest and posttest fracture analyses. Test results supported by analysis indicate that inside nozzle corner cracks are not subject to plane strain under pressure loading. The preparation of inside nozzle corner cracks is described in detail. Extensive experimental data are tabulated and plotted

  12. UT digitized data processing for in service inspection of pressurized water reactor vessels

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, F.; Hernandez, L. [Intercontrole, Rungis (France); Paradis, L. [CEA/CEREM, 91191, Gifs/Yvette cedex (France)

    1998-03-01

    Pressurized reactor vessels in France have been examined from the inside with ultrasonic focused transducers since the very first inspection (Gagnor and Levy (1993)). The developments carried out in collaboration with the French Atomic Energy Commission (CEA) to improve the characterization of flaws detected in the body of the vessels or in the nozzles, in the vicinity of the inner or the outer surfaces now have application throughout the CIVAMIS software. The processing modules of CIVAMIS, which are implemented on site since 1994 and used by INTERCONTROLE during the in service inspections of the French PWR vessels, allow full characterization of these specific flaws. The first module is devoted to the characterization of defects located near the outer surface of the vessel or the bottom head welds (OSD module). It includes the modeling software MEPHISTOMIS which predicts the echoes coming from the interaction between the ultrasonic beam and the defects. The second module of CIVAMIS (inner surface defect module called ISD), applied to the analysis of flaws expected near the inner surface of the vessels, has been used during performance demonstration exercises on qualification mock-ups, and also on-site in five expert appraisals since its qualification in 1995. The third module available on the system has beendeveloped and qualified for the analysis of flaws likely to appear near the inner surface of the no zzles. This module, named `undercladding crack defect` (UCD) module, provides the operators with a set of pre-defined processing configurations well adapted to the characteristics of the transducers. (orig.) 11 refs.

  13. Deformation behavior in reactor pressure vessel steels as a clue to understanding irradiation hardening.

    Energy Technology Data Exchange (ETDEWEB)

    DiMelfi, R. J.; Alexander, D. E.; Rehn, L. E.

    1999-10-25

    In this paper, we examine the post-yield true stress vs true strain behavior of irradiated pressure vessel steels and iron-based alloys to reveal differences in strain-hardening behavior associated with different irradiating particles (neutrons and electrons) and different alloy chernky. It is important to understand the effects on mechanical properties caused by displacement producing radiation of nuclear reactor pressure steels. Critical embrittling effects, e.g. increases in the ductile-to-brittle-transition-temperature, are associated with irradiation-induced increases in yield strength. In addition, fatigue-life and loading-rate effects on fracture can be related to the post-irradiation strain-hardening behavior of the steels. All of these properties affect the expected service life of nuclear reactor pressure vessels. We address the characteristics of two general strengthening effects that we believe are relevant to the differing defect cluster characters produced by neutrons and electrons in four different alloys: two pressure vessel steels, A212B and A350, and two binary alloys, Fe-0.28 wt%Cu and Fe-0.74 wt%Ni. Our results show that there are differences in the post-irradiation mechanical behavior for the two kinds of irradiation and that the differences are related both to differences in damage produced and alloy chemistry. We find that while electron and neutron irradiations (at T {le} 60 C) of pressure vessel steels and binary iron-based model alloys produce similar increases in yield strength for the same dose level, they do not result in the same post-yield hardening behavior. For neutron irradiation, the true stress flow curves of the irradiated material can be made to superimpose on that of the unirradiated material, when the former are shifted appropriately along the strain axis. This behavior suggests that neutron irradiation hardening has the same effect as strain hardening for all of the materials analyzed. For electron irradiated steels, the

  14. Swedish Work on Brittle-Fracture Problems in Nuclear Reactor Pressure Vessels

    International Nuclear Information System (INIS)

    After a short review of the part of the Swedish nuclear energy program that is of interest in this context the Swedish reactor pressure vessels and the reasoning behind the choice of materials are surveyed. Problems and desirable aims for future reactors are discussed. Much work is now being done on new types of pressure vessel steels with high strength, low transition temperature and good corrosion resistance. These steels are of the martensitic austenitic type Bofors 2RMO (13 % Cr, 6 % Ni, 1. 5 % Mo) and of the ferritic martensitic austenitic type Avesta 248 SV (16 % Cr, 5 % Ni, 1 % Mo). An applied philosophy for estimating the brittle-fracture tendency of pressure vessels is described. As a criterion of this tendency we use the crack-propagation transition temperature, e. g. as measured by the Robertson isothermal crack-arrest test. An estimate of this transition temperature at the end of the reactor' s lifetime must take increases due to fabrication, welding, geometry, ageing and irradiation into account. The transition temperature vs. stress curve moves towards higher temperatures during the reactor' s lifetime. As long as this curve does not cross the reactor vessel stress vs. temperature curve the vessel is considered safe. The magnitude of the different factors influencing the final transition temperature are discussed and data for the Marviken reactor's pressure vessel are presented. At the end of the reactor's lifetime the estimated transition temperature is 115 deg C, which is below the maximum permissible value. A program for the study of strain ageing has been initiated owing to the uncertainty as to the extent of strain ageing at low strains. A study of a simple crack-arrest test, developed in Sweden, is in progress. An extensive irradiation-effects program on several steels is in progress. Results from tests on the Swedish carbon-manganese steels 2103/R3, SIS 142103 and SIS 142102, the low-alloy steels Degerfors DE-631A, Bofors NO 345 and Fortiweld

  15. Trends in BWR transient analysis

    International Nuclear Information System (INIS)

    While boiling water reactor (BWR) analysis methods for transient and loss of coolant accident analysis are well established, refinements and improvements continue to be made. This evolution of BWR analysis methods is driven by the new applications. This paper discusses some examples of these trends, specifically, time domain stability analysis and analysis of the simplified BWR (SBWR), General Electric's design approach involving a shift from active to passive safety systems and the elimination/simplification of systems for improved operation and maintenance

  16. Damage Control Plan for International Space Station Recharge Tank Assembly Composite Overwrapped Pressure Vessel

    Science.gov (United States)

    Cook, Anthony J.

    2011-01-01

    As NASA has retired the Space Shuttle Program, a new method of transporting compressed gaseous nitrogen and oxygen needed to be created for delivery of these crucial life support resources to the International Space Station (ISS). One of the methods selected by NASA includes the use of highly pressurized, unprotected Recharge Tank Assemblies (RTAs) utilizing Composite Overwrapped Pressure Vessels (COPVs). A COPV consists of a thin liner wrapped with a fiber composite and resin or epoxy. It is typically lighter weight than an all metal pressure vessel of similar volume and therefore provides a higher-efficiency means for gas storage. However COPVs are known to be susceptible to damage resulting from handling, tool drop impacts, or impacts from other objects. As a result, a comprehensive Damage Control Plan has been established to mitigate damage to the RTA COPV throughout its life cycle. The DCP is intended to evaluate and mitigate defined threats during manufacturing, shipping and handling, test, assembly level integration, shipment while pressurized, launch vehicle integration and mission operations by defining credible threats and methods for preventing potential damage while still maintaining the primary goal of resupplying ISS gas resources. A comprehensive threat assessment is performed to identify all threats posed to the COPV during the different phases of its lifecycle. The threat assessment is then used as the basis for creating a series of general inspection, surveillance and reporting requirements which apply across all phases of the COPV's life, targeted requirements only applicable to specific work phases and a series of training courses for both ground personnel and crew aboard the ISS. A particularly important area of emphasis deals with creating DCP requirements for a highly pressurized, large and unprotected RTA COPV for use during Inter Vehicular Activities (IVA) operations in the micro gravity environment while supplying pressurized gas to the

  17. Preliminary results of steel containment vessel model test

    Energy Technology Data Exchange (ETDEWEB)

    Luk, V.K.; Hessheimer, M.F. [Sandia National Labs., Albuquerque, NM (United States); Matsumoto, T.; Komine, K.; Arai, S. [Nuclear Power Engineering Corp., Tokyo (Japan); Costello, J.F. [Nuclear Regulatory Commission, Washington, DC (United States)

    1998-04-01

    A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11--12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented.

  18. The criteria of fracture in the case of the leak of pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Habil; Ziliukas, A.

    1997-04-01

    In order to forecast the break of the high pressure vessels and the network of pipes in a nuclear reactor, according to the concept of leak before break of pressure vessels, it is necessary to analyze the conditions of project, production, and mounting quality as well as of exploitation. It is also necessary to evaluate the process of break by the help of the fracture criteria. In the Ignalina Nuclear Power Plant of, in Lithuania, the most important objects of investigation are: the highest pressure pipes, made of Japanese steel 19MN5 and having an anticorrosive austenitic: coal inside, the pipes of distribution, which arc made of 08X1810T steel. The steel of the network of pipes has a quality of plasticity: therefore the only criteria of fragile is impossible to apply to. The process of break would be best described by the universal criteria of elastic - plastic fracture. For this purpose the author offers the criterion of the double parameter.

  19. Standard practice for examination of seamless, Gas-Filled, pressure vessels using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examinations of seamless pressure vessels (tubes) of the type used for distribution or storage of industrial gases. 1.2 This practice requires pressurization to a level greater than normal use. Pressurization medium may be gas or liquid. 1.3 This practice does not apply to vessels in cryogenic service. 1.4 The AE measurements are used to detect and locate emission sources. Other nondestructive test (NDT) methods must be used to evaluate the significance of AE sources. Procedures for other NDT techniques are beyond the scope of this practice. See Note 1. Note 1—Shear wave, angle beam ultrasonic examination is commonly used to establish circumferential position and dimensions of flaws that produce AE. Time of Flight Diffraction (TOFD), ultrasonic examination is also commonly used for flaw sizing. 1.5 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 This standa...

  20. Nondestructive inspection of nozzle inner corner at boiling water reactor pressure vessels with ultrasound-flaw detection and crack depth determination

    International Nuclear Information System (INIS)

    The demonstration of inservice inspection methods with ultrasound for the nozzle inner corner at BWR pressure vessels has shown that a detectability of cracks with a depth in the range of 5-10 mm is possible if optimal inspection parameters are chosen. The investigation concerning the choice of the optimal parameters have delivered the following results: (1) Probe parameters: The angle of refraction should be in the range of 700 and a probe frequency of 1 MHz should be used. The tilting angle can be chosen between 18 and 220. (2) Sensitivity: The calibration of the sensitivity can be carried out with the help of a 7 mm side-drilled hole in a distance corresponding to the maximum sound path for the inspection. (3) Scanning range of the probe: The probe shall be moved in a range of about 100 mm in order to cover the whole gap between minimal and maximal radial distance for an elliptical scanning. (4) The evaluation of indications can be done based on C-scan presentations. In doubtful cases the time-of-flight curves will deliver some useful information. The first hint on the defect size is delivered by the extension of the indication in a C-scan presentation. A dynamic extension can be evaluated and correlated to the real defect size if sufficient knowledge about the specific relationship is available. For critical findings a correct flaw sizing cannot be avoided. In those circumstances it seems to be necessary to apply techniques like the acoustic holography or others. (orig./HP)

  1. Preliminary investigation of an ultrasound method for estimating pressure changes in deep-positioned vessels

    Science.gov (United States)

    Olesen, Jacob Bjerring; Villagomez-Hoyos, Carlos Armando; Traberg, Marie Sand; Chee, Adrian J. Y.; Yiu, Billy Y. S.; Ho, Chung Kit; Yu, Alfred C. H.; Jensen, Jørgen Arendt

    2016-04-01

    This paper presents a method for measuring pressure changes in deep-tissue vessels using vector velocity ultrasound data. The large penetration depth is ensured by acquiring data using a low frequency phased array transducer. Vascular pressure changes are then calculated from 2-D angle-independent vector velocity fields using a model based on the Navier-Stokes equations. Experimental scans are performed on a fabricated flow phantom having a constriction of 36% at a depth of 100 mm. Scans are carried out using a phased array transducer connected to the experimental scanner, SARUS. 2-D fields of angle-independent vector velocities are acquired using directional synthetic aperture vector flow imaging. The obtained results are evaluated by comparison to a 3-D numerical simulation model with equivalent geometry as the designed phantom. The study showed pressure drops across the constricted phantom varying from -40 Pa to 15 Pa with a standard deviation of 32%, and a bias of 25% found relative to the peak simulated pressure drop. This preliminary study shows that pressure can be estimated non-invasively to a depth that enables cardiac scans, and thereby, the possibility of detecting the pressure drops across the mitral valve.

  2. Subcritical crack growth in the ligament between the instrumentation rods of the BBR pressure vessel bottom

    International Nuclear Information System (INIS)

    A fracture mechanics fatigue analysis is made for an assumed crack emanating from the bore of an instrumentation rod. This assumed crack has partially penetrated the Inconel buttering of the 22 Ni Mo Cr 37 on which the structural Inconel welds are laid. Our analysis shows that the assumed crack could only penetrate 26% of the remaining ligament of the Inconel structural weld as a result of the fatigue crack growth during the entire operating life of the pressure vessel. Therefore a leak caused by a flaw missed during pre-service and in-service non-destructive testing can be excluded. (author)

  3. Users manual data base MATSURV. Reactor pressure vessel material surveillance data management system

    International Nuclear Information System (INIS)

    This Users Guide to the data management system MATSURV has been prepared to assist the user in all facets of the task of processing data related to reactor pressure vessel materials surveillance; preparation of raw data for input, input of data, modification of existing data, retrieval and display of data, and the creation of data reports. MATSURV is structured upon the System 2000 data base management system which is maintained on the IBM 370/168 computer at National Institutes of Health. An overview of System 2000 is provided

  4. Special servicing equipment for reactor pressurized vessel stud hole and stud accessories

    International Nuclear Information System (INIS)

    The author briefly introduces the design and manufacture of nuclear island special servicing equipment of Nuclear Power Institute of China. Maintenance process of reactor pressurized vessel (RPV) stud hold and stud accessories the special servicing equipment include RPV flange dummy, closed-circuit television (CCTV) inspection equipment, RPV stud hole expandable comb, RPV stud hole polisher, RPV stud hold thread lubricating equipment, RPV stud hole thread miller and RPV stud hole camera. It is presented how eight kinds of special servicing equipment perform the maintenance process concerning their function, structure, and characteristics, their practical use on site is also introduced

  5. New methods of analysis of materials strength data for the ASME Boiler and Pressure Vessel Code

    International Nuclear Information System (INIS)

    Tensile and creep data of the type used to establish allowable stress levels for the ASME Boiler and Pressure Vessel Code have been examined for type 321H stainless steel. Both inhomogeneous, unbalanced data sets and well-planned homogeneous data sets have been examined. Data have been analyzed by implementing standard manual techniques on a modern digital computer. In addition, more sophisticated techniques, practical only through the use of the computer, have been applied. The result clearly demonstrates the efficacy of computerized techniques for these types of analyses

  6. Positron annihilation studies of neutron irradiated and thermally treated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Positron annihilation lifetime measurements using the pulsed low energy positron system (PLEPS) were applied for the first time for the investigation of defects of irradiated and thermally treated reactor pressure vessel (RPV) steels. PLEPS results showed that the changes in the microstructure of the RPV-steel properties caused by neutron irradiation and post-irradiation thermal treatment can be detected. The samples originated from the Russian 15Kh2MFA and Sv10KhMFT steels, commercially used at WWER-440 reactors, were irradiated near the core at NPP Bohunice (Slovakia) to neutron fluences in the range from 7.8x1023 to 2.5x1024 m-2

  7. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    International Nuclear Information System (INIS)

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (author)

  8. Evaluation of the risk of pressure vessel failure due to errors in the manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, D.L. (Illinois Univ., Urbana); Beyers, C.J.E.

    1983-01-01

    A pilot study based on the construction of a small pressure vessel is described together with a general safety assessment strategy. It is concluded that the application of safety assessment to a manufacturing process is feasible, and that useful information regarding the improvement of control of such processes can be so derived. The most important contribution is considered to be the development of a systematic strategy for the identification of potential material failure mechanisms in a given manufacturing process. An alternative probability measure is proposed for evaluating risk. This is a subjective measure of the uncertainty of the available information, and has implications for the possible quantification of quality assurance activities.

  9. Evaluation of defects induced by neutron radiation in reactor pressure vessels steels

    International Nuclear Information System (INIS)

    We have developed a method for calculating the production of neutron induced defects (depleted zone and crowdions) in ferritic pressure vessel steels for different neutron spectra. They have been analysed both the recoil primary atoms produced by elastic and inelastic collisions with fast neutrons and the ones produced by gamma-ray emission by thermal neutron absorption. Theoretical modelling of increasing in the ductile-brittle transition temperature of ferritic steels has been correlated with experimental data at irradiation temperature up to 400 degree centigree (Author) 15 refs

  10. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a {open_quotes}best estimate{close_quotes} of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards.

  11. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (autho0008.

  12. A review of simple formulae for elastic hoop stresses in cylindrical and spherical pressure vessels: What can be used when

    International Nuclear Information System (INIS)

    Classical simple formulae for elastic hoop stresses in cylindrical and spherical pressure vessels continue to be used in structural analysis today because they facilitate design procedures. Traditionally such formulae are only applied to thin-walled pressure vessels under internal pressure. There do exist, however, some variations of these formulae that remain simple yet permit wider use. Here, by reviewing various underlying rationales for simple hoop stress formulae, we make a determination of when and how well different formulae apply. For the formulae that do apply to thicker vessels than usually recognized, we give companion results for external pressure. - Highlights: • Consistent derivation of lower and upper bounds for hoop stresses. • Justifies ranges of application for hoop stress formulae. • Furnishes the cylindrical analogue of the improved formula for spheres in Roark. • Provides correct formulae for external pressure, with applicable upper limits

  13. Fatigue of non-welded pressure vessels made of high strength steel

    International Nuclear Information System (INIS)

    When using high strength steels for pressure vessels, cyclic fatigue requirements may become decisive for the design. Within a European research project, two typical non-welded types of vessels--gas cylinders as used for gas transportation and hydraulic accumulators with screwed in ends--were investigated. The results of the fatigue analyses and of the testing of these vessels are described here. Special attention is drawn to the evaluation of the stresses in the threads used for threaded in flat ends and rings, because the usual formulae for bolted connections cannot be used. In the case of sharp notches and of threads, the experiments showed that the fatigue calculation gave conservative results. The unexpected failure of the gas cylinders in the cylindrical part and at the onset of the end showed that the fatigue analyses according to prEN13445-3 clause 18 is non-conservative for these surfaces without mechanical preparation, and need special consideration. Based on the investigations, a stress concentration factor for small fabrication notches and a new surface finish factor is proposed

  14. The design of large natural circulation BWR's

    International Nuclear Information System (INIS)

    Boiling water reactors (BWR) with natural circulation are applied for capacities up to 60 MWe. Based on scale studies, however, it appears that larger production units are more efficient. It is recommended to investigate the bottlenecks in realizing larger reactors (>1000 MWe). The aim of the study on the title subject is to study to what extent the production capacity of BWRs with natural circulation can be increased. Based on data from the literature a simple analytic method has been chosen and existing BWR designs were compared. Capacities of 1300 MWe appear to be possible. These reactors will have a smaller pin diameter and a lower water supply temperature. Also steam separators with a minor pressure reduction must be available. The reliability of the stability measurement must be increased. Based on the results of this investigation the priorities for research on the design of future BWRs have been determined

  15. Series of bursting experiments on medium size pressure vessels in the context of the American HSST Programme

    International Nuclear Information System (INIS)

    The experiments on medium size pressure vessels with defined concentrated faults permit comparison of the experimentally determined bursting behaviour with the results of previously determined analytical calculations. Estimates of extension at fracture based on linear elastic fracture mechanism LEBM calculations were accurate in those cases where (1) faults were arranged in areas of high transverse restraint and (2) the fracture strength valves were so low that crack instability occurred before the whole wall region started to flow. LEBM calculations of the critical load started from fracture strength data, which were determined from small samples. When the whole wall region started to flow, the actual extensions were noticeably greater than the fracture extensions calculated using the LEBM. In these cases the strength of the vessel no longer depends on the strength in the even extension condition (elastic extension), but on the ability of the damaged area to carry the load on it stably up to the plastic flow condition. The ability of the faulty vessel to carry load up to flow of the whole wall region has important qualitative effects on the safety margin of pressure vessels. The whole flow condition occurs in LWR pressure vessels at about double the design pressure. This pressure vessel load condition is generally far above the normal and fault operation and emergency conditions which are usually supported and taken into account. (orig.)

  16. Inspection of dissimilar metal welds in reactor pressure vessels in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gadea, J.R.; Regidor, J.J.; Pelaez, J.A.; Serrano, P. [Tecnatom, S.A., San Sebastian de los Reyes, Madrid (Spain)

    2011-07-01

    MRP-139 recommendations for inspection of dissimilar metal (DM) welds in PWR vessels were launched in the last years in the USA. Basically, it increases the frequency of the examinations in these type of welds, with major emphasis in the hot loops, adding one intermediate inspection at the ten years interval in outlet nozzles. The spanish nuclear power plants (NPP's) have begun the implementation of this type of inspections on the vessel nozzles DM welds. As this type of inspections could have an impact in the critical path duration of the outage, it is necessary the use of a mechanical equipment able to examine the nozzles DM welds in a short vessel occupation time (VOT) with high quality, qualified techniques and minimum requirements of the refuelling platform. Tecnatom undertook the design and development of a new more advanced equipment, named TENIS-DM, for implementing the reactor pressure vessel (RPV) nozzles examination. This equipment was designed in order to accomplish the stringent requirements and the updated examination techniques; it was used for the inspection of the DM welds of Asco 1 NPP inlet and outlet nozzles in March 2011. Examination techniques and procedures were qualified through the GRUVAL validation program, based on ENIC methodology. Mechanical scanner was equipped with a large number of examination probes, and TV cameras -for visual inspection and also for monitoring the ultrasonic inspections. A remote operated submarine was also used to give support to the operational personnel during the manipulation of the equipment and its movements from one nozzle to the others. During two months before the inspection, tests of the complete inspection system were made on a nozzle mock-up installed in a 4 meters deep well at Tecnatom's facilities; this scenario was also used during the training sessions of the inspection crew. The defined technical and practical objectives were achieved: use of qualified techniques and minimal impact on the

  17. Hydrogen Cracking and Stress Corrosion of Pressure Vessel Steel ASTM A543

    Science.gov (United States)

    AlShawaf, Ali Hamad

    The purpose of conducting this research is to develop fundamental understanding of the weldability of the modern Quenched and Tempered High Strength Low Alloy (Q&T HSLA) steel, regarding the cracking behavior and susceptibility to environmental cracking in the base metal and in the heat affected zone (HAZ) when welded. A number of leaking cracks developed in the girth welds of the pressure vessel after a short time of upgrading the material from plain carbon steel to Q&T HSLA steel. The new vessels were constructed to increase the production of the plant and also to save weight for the larger pressure vessel. The results of this research study will be used to identify safe welding procedure and design more weldable material. A standardized weldability test known as implant test was constructed and used to study the susceptibility of the Q&T HSLA steel to hydrogen cracking. The charged hydrogen content for each weld was recorded against the applied load during weldability testing. The lack of understanding in detail of the interaction between hydrogen and each HAZ subzone in implant testing led to the need of developing the test to obtain more data about the weldability. The HAZ subzones were produced using two techniques: standard furnace and GleebleRTM machine. These produced subzones were pre-charged with hydrogen to different levels of concentration. The hydrogen charging on the samples simulates prior exposure of the material to high humidity environment during welding process. Fractographical and microstructural characterization of the HAZ subzones were conducted using techniques such as SEM (Scanning Electron Microscopy). A modified implant test using the mechanical tensile machine was also used to observe the effects of the hydrogen on the cracking behavior of each HAZ subzone. All the experimental weldability works were simulated and validated using a commercial computational software, SYSWELD. The computational simulation of implant testing of Q&T HSLA

  18. Advanced Approach of Reactor Pressure Vessel Head Inspection and Repair of CRDM J-Weld

    International Nuclear Information System (INIS)

    The reactor pressure vessel head (RPVH) of Pressurized Water Reactors (PWR's) is an integral part of the reactor coolant pressure boundary. Its integrity is important to the safe operation of the plant. RPVH has penetration nozzles for instrumentation systems and control rod drive mechanisms. The discovery of leaks and nozzle cracking at the US NPP and some other PWR plants has made clear the need for more effective inspections of RPV heads and associated penetration nozzles. Alloy 600 RVHP nozzles and corresponding J-welds cracking and leaking phenomena have been strictly regulated by NRC Order EA-03-009 since 2003. Some additional events on this component (Canopy Seal welds, Thermal sleeve, Control Rods Drive Mechanism...) in nuclear industry have raised concerns about the structural integrity of RPVH and consequently increased extent of Non Destructive Examination employing new state-of-the art NDE and repair methods. This article presents non destructive examination of Reactor Pressure Vessel Head (RPVH) Penetration by various methods. The scope of this examination and repair methods includes Eddy Current examination of RPVH J-weld surface, ultrasound examination of Penetration Tube from inner side and unique method of surface indications removal. These article present details of examination techniques with focus on eddy current and ultrasonic examination, as well as details and approach on AST (Automatic Surface Treatment) method of the RPVH J-weld surface. AST repair method represents new principal approach with combination of design basis justification and As-built measurements which provide to perform repair of J-weld indications without any welding.(author).

  19. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    International Nuclear Information System (INIS)

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically

  20. Effect of heterogeneities on the thermoelectric power of pressure vessel steel

    International Nuclear Information System (INIS)

    In service working conditions, the vessel of the Pressurized Water Reactors (PWR) undergoes an ageing due to irradiation. In order to follow the evolution of the mechanical characteristics of the steel in service, EDF launched a surveillance program which consists to carry out mechanical tests on samples aged in reactor. However, the results of these tests have the disadvantage to be affected by the presence of heterogeneities within the steel. Indeed, because of its manufacturing process, the steel contains segregated areas. Thus, EDF launched Thermoelectric Power Measurements (TEP) on the resilience samples of the surveillance program, to complete the mechanical tests and to help with their interpretation. However, these measurements are today difficult to analyse because they include at the same time the effect of the irradiation and the effect of the metallurgical heterogeneities. The aim of this work consisted in evaluating the effect of the heterogeneities on the TEP of the non-irradiated vessel steel. For that, a numerical model was developed which allows to calculate the TEP of a composite structure. We have shown that the model is pertinent to highlight the effect of the heterogeneities on the TEP of the vessel steel, which is considered like a 'matrix'/'segregation' composite. The model allowed us to put emphasis on the influence of different parameters on the TEP measurement. We have thus showed that the measurements conditions have an important effect on the obtained TEP value (influence of the applied pressure, the position of the sample on the device, the site of the metallurgical heterogeneities,...). (author)

  1. The vascular Ca2+-sensing receptor regulates blood vessel tone and blood pressure.

    Science.gov (United States)

    Schepelmann, M; Yarova, P L; Lopez-Fernandez, I; Davies, T S; Brennan, S C; Edwards, P J; Aggarwal, A; Graça, J; Rietdorf, K; Matchkov, V; Fenton, R A; Chang, W; Krssak, M; Stewart, A; Broadley, K J; Ward, D T; Price, S A; Edwards, D H; Kemp, P J; Riccardi, D

    2016-02-01

    The extracellular calcium-sensing receptor CaSR is expressed in blood vessels where its role is not completely understood. In this study, we tested the hypothesis that the CaSR expressed in vascular smooth muscle cells (VSMC) is directly involved in regulation of blood pressure and blood vessel tone. Mice with targeted CaSR gene ablation from vascular smooth muscle cells (VSMC) were generated by breeding exon 7 LoxP-CaSR mice with animals in which Cre recombinase is driven by a SM22α promoter (SM22α-Cre). Wire myography performed on Cre-negative [wild-type (WT)] and Cre-positive (SM22α)CaSR(Δflox/Δflox) [knockout (KO)] mice showed an endothelium-independent reduction in aorta and mesenteric artery contractility of KO compared with WT mice in response to KCl and to phenylephrine. Increasing extracellular calcium ion (Ca(2+)) concentrations (1-5 mM) evoked contraction in WT but only relaxation in KO aortas. Accordingly, diastolic and mean arterial blood pressures of KO animals were significantly reduced compared with WT, as measured by both tail cuff and radiotelemetry. This hypotension was mostly pronounced during the animals' active phase and was not rescued by either nitric oxide-synthase inhibition with nitro-l-arginine methyl ester or by a high-salt-supplemented diet. KO animals also exhibited cardiac remodeling, bradycardia, and reduced spontaneous activity in isolated hearts and cardiomyocyte-like cells. Our findings demonstrate a role for CaSR in the cardiovascular system and suggest that physiologically relevant changes in extracellular Ca(2+) concentrations could contribute to setting blood vessel tone levels and heart rate by directly acting on the cardiovascular CaSR.

  2. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hoffman, William [Univ. of Idaho, Moscow, ID (United States); Sen, Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dickson, Terry [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically

  3. Application of small specimens to fracture mechanics characterization of irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    In this study, precracked Charpy V-notch (PCVN) specimens were used to characterize the fracture toughness of unirradiated and irradiated reactor pressure vessel steels in the transition region by means of three-point static bending. Fracture toughness at cleavage instability was calculated in terms of elastic-plastic KJc values. A statistical size correction based upon weakest-link theory was performed. The concept of a master curve was applied to analyze fracture toughness properties. Initially, size-corrected PCVN data from A 533 grade B steel, designated HSST Plate O2, were used to position the master curve and a 5% tolerance bound for KJc data. By converting PCVN data to IT compact specimen equivalent KJc data, the same master curve and 5% tolerance bound curve were plotted against the Electric Power Research Institute valid linear-elastic KJc database and the ASME lower bound KIc curve. Comparison shows that the master curve positioned by testing several PCVN specimens describes very well the massive fracture toughness database of large specimens. These results give strong support to the validity of KJc with respect to KIc in general and to the applicability of PCVN specimens to measure fracture toughness of reactor vessel steels in particular. Finally, irradiated PCVN specimens of other materials were tested, and the results are compared to compact specimen data. The current results show that PCVNs demonstrate very good capacity for fracture toughness characterization of reactor pressure vessel steels. It provides an opportunity for direct measurement of fracture toughness of irradiated materials by means of precracking and testing Charpy specimens from surveillance capsules. However, size limits based on constraint theory restrict the operational test temperature range for KJc data from PCVN specimens. 13 refs., 8 figs., 1 tab

  4. The irradiation embrittlement of two pressure vessel steels -Contribution of local approach

    International Nuclear Information System (INIS)

    Within the IAEA Coordinated Research Programme on ''Optimizing the Reactor Pressure Vessel Surveillance Programmes and their Analyses'', the French participation has been focused on the contribution of the local approach to the determination of the sensitivity to radiation embrittlement of two different pressure vessel steels: a low sensitive French forging steel (FFA) and a high sensitive ''monitor'' Japanese plate steel (JRQ) were irradiated to a fluence of 3.1019 n/cm2 at 290 C. The irradiation embrittlement of the two steels measured by the shift of Charpy V transition curves is in good agreement with the estimated shifts given by theoretical prediction. The fracture toughness properties were examined at low temperature with brittle fracture, and at service temperature (290 C), with ductile tearing. The values of K1C or KJC for the brittle fracture and J1C for the ductile fracture are compared to predictions established using the local approach of cleavage fracture (Weibull analysis) and the critical rate of void growth respectively. 8 refs., 14 figs., 10 tabs

  5. Irradiation experiments on materials for core internals, pressure vessel and fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Materials degradation due to the aging phenomena is one of the key issues for the life assessment and extension of the light water reactors (LWRs). This presentation introduces JAERI`s activities in the field of LWR material researches which utilize the research and testing reactors for irradiation experiments. The activities are including the material studies for the core internals, pressure vessel and fuel cladding. These materials are exposed to the neutron/gamma radiation and high temperature water environments so that it is worth reviewing their degradation phenomena as the continuum. Three topics are presented; For the core internal materials, the irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels is the present major concern. At JAERI the effects of alloying elements on IASCC have been investigated through the post-irradiation stress corrosion cracking tests in high-temperature water. The radiation embrittlement of pressure vessel steels is still a significant issue for LWR safety, and at JAERI some factors affecting the embrittlement behavior such as a dose rate have been investigated. Waterside corrosion of Zircaloy fuel cladding is one of the limiting factors in fuel rod performance and an in-situ measurement of the corrosion rate in high-temperature water was performed in JMTR. To improve the reliability of experiments and to extent the applicability of experimental techniques, a mutual utilization of the technical achievements in those irradiation experiments is desired. (author)

  6. Current Status of Development of High Nickel Low Alloy Steels for Commercial Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S.; Park, S. G.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    SA508 Gr.3 Mn-Mo-Ni low alloy steels have been used for nuclear reactor pressure vessel steels up to now. Currently, the design goal of nuclear power plant is focusing at larger capacity and longer lifetime. Requirements of much bigger pressure vessels may cause critical problems in the manufacturing stage as well as for the welding stage. Application of higher strength steel may be required to overcome the technical problems. It is known that a higher strength and fracture toughness of low alloy steels such as SA508 Gr.4N low alloy steel could be achieved by increasing the Ni and Cr contents. Therefore, SA508 Gr.4N low alloy steel is very attractive as eligible RPV steel for the next generation PWR systems. In this report, we propose the possibility of SA508 Gr.4N low alloy steel for an application of next generation commercial RPV, based on the literature research result about development history of the RPV steels and SA508 specification. In addition, we have surveyed the research result of HSLA(High Strength Low Alloy steel), which has similar chemical compositions with SA508 Gr.4N, to understand the problems and the way of improvement of SA508 Gr.4N low alloy steel. And also, we have investigated eastern RPV steel(WWER-1000), which has higher Ni contents compared to western RPV steel.

  7. Experimental and numerical investigations of stable crack growth of axial surface flaws in a pressure vessel

    International Nuclear Information System (INIS)

    In connection with the problem of the transferability of parameters obtained experimentally with the help of fracture-mechanical test specimens and used for the initiation and the stable propagation of cracks in cases of pulsating stress and of the elasto-plastic behaviour of construction components, a pressure vessel with an inside diameter of 1500 mm, a cylindrical length of 3000 mm and a wall thickness of 40 mm was hydraulically loaded with the help of internal pressure in the first stage, to attain an average crack growth of 1 mm at Δ a ≅, the loading taking place at about 21deg C. This stress-free annealed vessel exhibited an axial semielliptical vibration-induced surface crack about 181 mm long and 20 mm deep, as a test defect, in a welded circular blank made of the steel 20MnMoNi 55. The fractographic analysis of the first stable crack revealed that its growth rate of Δa was highest in the area of transition from the weak to the strong bend of the crack front (55deg m/σv (average principal stress: σm, Mises' reference stress: σvv). A comparison of the experimental with the numerical results from the first stable crack shows that the local stable crack growth Δa cannot be calculated solely with reference to J, because Δa appears to depend essentially on the quotient σm/σv. (orig./MM)

  8. Neutron irradiation embrittlement of reactor pressure vessel steel 20 MnMoNi55 weld

    International Nuclear Information System (INIS)

    The effect of neutron irradiation on the mechanical and fracture properties of an 'improved' 20 MnMoNi 55 Pressure Vessel Steel (PVS) weld was investigated. In addition to very low residual element content, especially Cu (0.035 wt.%), and relatively higher Ni content (0.9 wt.%), this steel has higher strength (30% more) than the steels used currently in nuclear reactor pressure vessels. The material was irradiated to 3.5x1019 and 7x1019 n/cm2 (E > 1 Mev) at 2900C and 2.5x1019 n/cm2 (E > 1 MeV) at 1600C in FRJ-1 and FRJ-2 research reactors at KFA, Juelich, F.R.G. Test methods used in the evaluation included instrumented impact testing of standard and precracked Charpy specimens, tensile, and fracture toughness testing. Instrumented impact testing provided load and energy vs. time (deflection) data in addition to energy absorption data. The results indicated that the investigated high strength improved steel is more resistant to irradiation induced embrittlement than conventional PVSs. (orig./IHOE)

  9. Standard Master Matrix for Light-Water Reactor Pressure Vessel Surveillance Standards, E706(0)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel (PV) and support structure steels throughout a pressure vessel's service life (Fig. 1). Some of these are existing ASTM standards, some are ASTM standards that have been modified, and some are proposed ASTM standards. General requirements of content and consistency are discussed in Section 6 . More detailed writers' and users' information, justification, and specific requirements for the nine practices, ten guides, and three methods are provided in Sections 3-5. Referenced documents are discussed in Section 2. The summary-type information that is provided in Sections 3 and 4 is essential for establishing proper understanding and communications between the writers and users of this set of matrix standards. It was extracted from the referenced documents, Section 2 and references (1-106) for use by individual writers and users. 1...

  10. A stochastic-bayesian model for the fracture probability of PWR pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Alexandre S.; Duran, Jorge Alberto R., E-mail: afrancisco@metal.eeimvr.uff.br, E-mail: duran@metal.eeimvr.uff.br [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Dept. de Engenharia Mecanica

    2013-07-01

    Fracture probability of pressure vessels containing cracks can be obtained by methodologies of easy understanding, which require a deterministic treatment, complemented by statistical methods. However, more accurate results are required, methodologies need to be better formulated. This paper presents a new methodology to address this problem. First, a more rigorous methodology is obtained by means of the relationship of probability distributions that model crack incidence and nondestructive inspection efficiency using the Bayes' theorem. The result is an updated crack incidence distribution. Further, the accuracy of the methodology is improved by using a stochastic model for the crack growth. The stochastic model incorporates the statistical variability of the crack growth process, combining the stochastic theory with experimental data. Stochastic differential equations are derived by the randomization of empirical equations. From the solution of this equation, a distribution function related to the crack growth is derived. The fracture probability using both probability distribution functions is in agreement with theory, and presents realistic value for pressure vessels. (author)

  11. French nuclear power plants life management - reactor pressure vessel assessment and steam generators life management strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bezdikian, G. [Electricite de France - Nuclear Generation Div., SAINT-DENIS (France)

    2007-07-01

    The approach used by the French utility, concerning the Aging Management system of the Steam Generators (SG) and Reactor Pressure Vessel, applied on 58 PWR NPPs, involves the verification of the integrity of the component and the Life Management of each plant to guarantee in the first step the design life management and in the second step to prepare long term life time in operation, taking into account the degradation of Alloy 600 material and the replacement of these materials by components made with Alloy 690. The financial stakes associated with maintaining the lifetime of nuclear power stations are very high; thus, if their lifetime is shortened by about ten years, dismantling and renewal would be brought forward which would increase their costs by several tens of billions of Euros. The main objectives are: to maintain current operating performances (safety, availability, costs, security, environment) in the long term, and possibly improve on some aspects; wherever possible, to operate the units throughout their design lifetime, 40 years, and even more if possible. This paper shows the program to follow the aging evaluation with application on Steam Generators replacement and Reactor Pressure Vessel Integrity assessment. (orig.)

  12. Models for ductile crack initiation and tearing resistance under mode 1 loading in pressure vessel steels

    International Nuclear Information System (INIS)

    Micromechanistic models are presented which aim to predict plane strain ductile initiation toughness, tearing resistance and notched bar fracture strains in pressure vessel steels under monotonically increasing tensile (mode 1) loading. The models for initiation toughness and tearing resistance recognize that ductile fracture proceeds by the growth and linkage of voids with the crack-tip. The models are shown to predict the trend of initiation toughness with inclusion spacing/size ratio and can bound the available experimental data. The model for crack growth can reproduce the tearing resistance of a pressure vessel steel up to and just beyond crack growth initiation. The fracture strains of notched bars pulled in tension are shown to correspond to the achievement of a critical volume fraction of voids. This criterion is combined with the true stress - true strain history of a material point ahead of a blunting crack-tip to predict the initiation toughness. An attempt was made to predict the fracture strains of notched tensile bars by adopting a model which predicts the onset of a shear localization phenomenon. Fracture strains of the correct order are computed only if a ''secondary'' void nucleation event at carbide precipitates is taken into account. (author)

  13. A review on activities in France on irradiation embrittlement pressure vessel steels

    International Nuclear Information System (INIS)

    Research on irradiation embrittlement on modern pressure vessel steels was initiated at CEA 10 years ago. During this period many steels and welds were irradiated, in TRITON and SILOE reactors, including activities in the frame of I.A.E.A. coordinated research programmes. Using mainly tensile and impact Charpy properties, chemical composition effects were studied confirming the influence of Cu and P and pin pointing the surprisingly detrimental effect of Ni content. At the same time, new fracture mechanics testing procedures on irradiated materials were developped (Ksub(IC), Ksub(ID), Jsub(1C)). To day the major part of these programmes is completed and the future activities will be probably reduced on pressure vessel steels. The main topics for forthcoming studies are dealing with the effect of flux or irradiation rate on embrittlement and with elasto-plastic fracture mechanics. A review of the past activities and of the forthcoming research actions is given in a first part. During the period covered by these studies many pressurised reactors were built in France and are starting now, each reactor embarking irradiation surveillance capsules. This important programme which is described in the second part of the paper, will lead in the next 10 years to an increased knowledge of radiation embrittlement on a more statistical basis and taking into account results obtained on a reference plate

  14. IAEA co-ordinated research programme on 'assuring structural integrity of reactor pressure vessels'

    International Nuclear Information System (INIS)

    This co-ordinated research programme (CRP) is a logical continuation of previous three phases of the programme 'Irradiation Embrittlement of Reactor Pressure Vessel Steels'. This new programme started in 1996 and 25 organisations from 18 countries take part in it. While the previous phases were concentrated mostly on radiation embrittlement of reactor pressure vessel (RPV) steels and effects of different parameters, this new programme is concentrated, in principle, on application of fracture mechanics approach to evaluation of RPV steel damage. The main objective of the CRP is to develop and validate a procedure for fracture toughness testing small specimens applicable for surveillance programmes which could be used internationally. These fracture toughness data will support a more precise evaluation of the condition of nuclear power RPVs in the process of assessment of their structural integrity. For this purpose, a 'master curve' approach has been chosen and is now being validated for unirradiated as well as irradiated conditions. Principal investigation is carried out on the IAEA reference steel' JRQ (of ASTM A 533-B type), additionally, one steel of domestic production should be also included by each participant. Paper describes this programme as well as preliminary results obtained. (author)

  15. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    International Nuclear Information System (INIS)

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis

  16. Determination of Pressure Profile During Closed-Vessel Test Through CFD Simulation

    Institute of Scientific and Technical Information of China (English)

    Ahmed Bougamra∗; Huilin Lu

    2016-01-01

    Two⁃phase flow modeling of solid propellants has great potential for simulating and predicting the ballistic parameters in closed vessel tests as well as in guns. This paper presents a numerical model describing the combustion of a solid propellant in a closed chamber and takes into account what happens in such two⁃phase, unsteady, reactive⁃flow systems. The governing equations are derived in the form of coupled, non⁃linear axisymmetric partial differential equations. The governing equations with customized parameters are implemented into Ansys Fluent 14�5. The presented solutions predict the pressure profile inside the closed chamber. The results show that the present code adequately predicts the pressure⁃time history. The numerical results are in agreement with the experimental results. Some discussions are given regarding the effect of the grain shape and the sensitivity of these predictions to the initial pressure of the solid propellant bed. The study demonstrates the capability of using the present model implemented into Fluent, to simulate the combustion of solid propellants in a closed vessel and, eventually, the interior ballistic process in guns.

  17. Acoustoelastic evaluation of welding and heat treatment stress relieving of pressure vessel steel for Angra 3

    International Nuclear Information System (INIS)

    Currently the knowledge of non-destructive techniques allows to evaluate the stresses on components and mechanical structures, aiming at physical security, preservation of the environment and avoid financial losses associated with the construction and operation of industrial plants. The search for new techniques, especially applied in the nuclear industry to assess status more accurately, voltage safety and to ensure structural integrity, for example, core components of the primary circuit, such as the reactor pressure vessel and steam generator has become of great importance within the community of non-destructive testing .This paper aims to contribute to the non-destructive technique development in order to ensure the structural integrity of nuclear components. One acoustoelastic evaluation of steel 20 MnMoNi 55, used in pressure vessels of nuclear power plants were performed. The acoustic birefringence technique was use to evaluate the acoustoelastic behavior of the test material in the as received condition, after welding and after the stress relief heat treatment. The constant acoustoelastic material was obtained by an uniaxial loading test. It was found a slight anisotropy in the material as received. After welding, a marked variation of acoustic birefringence in the region near the weld bead was observed. The heat treatment indicated a new change of acoustic birefringence. Obtaining the acoustoelastic constant allowed the evaluation of stress in the different conditions of the weld and treated material. (author)

  18. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    Science.gov (United States)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  19. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-09-15

    Highlights: • We aimed to determine the thermomechanical behaviour of VVER reactor steels. • Material tests were developed and performed on GLEEBLE 3800 physical simulator. • Coffin–Manson curves and parameters were derived. • High accuracy of the strain energy based evaluation was found. • The observed dislocation evolution correlates with the mechanical behaviour. - Abstract: The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin–Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  20. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Highlights: • We aimed to determine the thermomechanical behaviour of VVER reactor steels. • Material tests were developed and performed on GLEEBLE 3800 physical simulator. • Coffin–Manson curves and parameters were derived. • High accuracy of the strain energy based evaluation was found. • The observed dislocation evolution correlates with the mechanical behaviour. - Abstract: The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin–Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis

  1. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in; Kumawat, Bhupendra K.; Chakravartty, J.K.

    2015-07-15

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  2. Transport of the reactor pressure vessels in the Greifswald nuclear power plant - 16012

    International Nuclear Information System (INIS)

    Five WWER-440 reactors are being dismantled on the Greifswald Nuclear Power Plant (KGR) site. The strategy for the dismantling of the reactor units 1 to 4 (operation time 12 - 17 years) was to cut and pack the components remotely. For this purpose dry and wet cutting areas were installed. The remote cutting and packing of the reactor pressure vessel and its internals was successfully tested with non-activated original reactor components of units 7 and 8 from October 1999 until July 2003. From August 2004 until July 2007 the internals from reactor units 1 and 2 were cut, packed and transported to the on-site Interim Store North (ISN). For the reactor 5 it was planned to transport the RPV in one piece and the reactor internals in shielding and transport containers to the interim store for decay storage. In December 2003 the RPV of unit 5 was lifted and transported to the interim store. From April 2006 up to July 2006 the reactor internals of unit 5 were packed and transported to the interim store. After the evaluation of the experience made during the transport and the radiological measurements and samplings taken from the RPV unit 1, the strategy for the dismantling of the reactors was changed. The reactor pressure vessels of the units 1 to 4 and the reactor internals of the units 3 and 4 should be removed as complete parts and stored as shielded large components in the ISN. In summer 2005 EWN applied for the new strategy at the responsible licensing authority and in August 2007 this license was granted. In November 2007 the reactor pressure vessels of the units 1 and 2 were transported into the ISN. The transport of the reactor pressure vessels and the internals from units 3 and 4 is planned in the period from March till September 2009. These transports of the reactor pressure vessels and internals show that the dismantling of the reactors with dismantling and interim storage of large components could not only be an alternative for cutting but could also be favored

  3. A continuum damage analysis of hydrogen attack in a 2.25Cr–1Mo pressure vessel

    NARCIS (Netherlands)

    Burg, M.W.D. van der; Giessen, E. van der; Tvergaard, V.

    1998-01-01

    A micromechanically based continuum damage model is presented to analyze the stress, temperature and hydrogen pressure dependent material degradation process termed hydrogen attack, inside a pressure vessel. Hydrogen attack (HA) is the damage process of grain boundary facets due to a chemical reacti

  4. Slug impact loading on the vessel head during a postulated in-vessel steam explosion in pressurized water reactors -- Assessments and discussion of the investigation strategy

    International Nuclear Information System (INIS)

    The most severe consequence of a pressurized water reactor in-vessel steam explosion is a molten fuel slug impact against the head of the reactor pressure vessel that could cause a failure of this head and lead to missiles endangering the reactor containment. An investigation is described that attempts to determine the maximum slug impact that a vessel head is capable of withstanding without failing and, consequently, without impairing the containment safety-related function. Preliminary theoretical assessments are presented that suggest that the head might be able to withstand rather strong impacts and that the shape of the fuel slug will have only a moderate influence on the results, provided the upper internal structures are taken into account. A low sensitivity against the slug shape is an essential prerequisite for a reliable safety proof. However, investigations primarily based on computational models are not sufficient; therefore, an investigation concept is proposed that relies on model experiments in which the geometry is scaled down by factors of 10 and 20, respectively. Theoretical and experimental investigations for liquid-structure impact problems in different scales are discussed to assess the degree of similarity that can be obtained. Finally, model experiments are described in some detail simulating the molten fuel slug impact on the vessel head

  5. Measurement of inner defects and out of plane deformation of pressure vessel in piping of circulation system using shearography

    International Nuclear Information System (INIS)

    Wall thinning defects can occur in the pressure vessels used in a variety of industries. Such defects are related to the flow velocity. Considering the fact that such vessels constitute up to 70 or 80% of the plant structures in a power plant, it is important to measure internal defects as part of a safety evaluation. In this study, optical measurement were applied in a non-destructive evaluation using shearography to ensure the safety and improve the reliability of a power plant through the non-contact, non-destructive evaluation of pressure vessels. In order to verify whether the pressure vessels contained faults, experimental and analytical investigation were conducted to measure any internal defects and out-of-plane deformation from inner temperature changes and pressure changes in the piping of the circulation system. The most important factors in this research were the thickness, width, and length of a defect. An increase in these could confirm an increase in the deformation. Thus, internal defects in a pressure vessel were measured using shearography, which made it possible to ensure the reliability and integrity of the pipe.

  6. Device for positioning ultrasonic probes and/or television cameras on the outer surface of reactor pressure vessels

    International Nuclear Information System (INIS)

    The device makes possible periodical in-service inspections of welding seams and material of a reactor pressure vessel without local human presence. A 'support ring' encloses the pressure vessel in a horizontal plane with free space. It is vertically moved up and down in the space between pressure vessel and thermal shield by means of tackles. At a control desk placed in a protected area its movement is controlled and its vertical position is indicated. A 'rotating track' with its own drive is rotating remote-controlled on the 'support ring'. By a combination of the vertical with the rotating movement, an ultrasonic probe placed removably on the 'rotating hack', or a television camera will be brought to any position on the cylindrical circumference of the pressure vessel. Special devices extend the radius of action, in upward direction for inspecting the welding seams of the coolant nozzles, and in downward direction for the inspection of welds on the hemispherical bottom of the pressure vessel or on the outlet pipe nozzle placed there. The device remains installed during reactor operation, but is moved down to the lower horizontal surface of the thermal shield. Parts which are sensible to radiation like probes or television cameras and special devices will then be removed respectively mounted before beginning an inspection compaign. This position may be reached by the lower access in the biological shield and through an opening in the horizontal surface of the thermal shield. (HP)

  7. Behaviour of the nozzle corner region during the first phase of the fatigue test on scaled models of pressure vessels (JRC Vessel A)

    International Nuclear Information System (INIS)

    The work presented here deals mainly with the stress and fracture mechanics aspects of the first phase of the structural reliability experimental program based on the scaled experimental vessel at Ispra. The overall research and experiments make also part of the structural reliability assessment extrapolation pattern for the full-scale structures. The work presented here deals with the problem of the nozzle corner cracks induced by the fatigue under the pressure cycling

  8. Closure of PWR pressure vessels analysis of repairs and anomalies in the threaded stud-flange assembly

    International Nuclear Information System (INIS)

    A computational approach to the mechanical behavior of PWR pressure vessel closure is particularly intricate: the vessel's threaded stud-flange assembly shows stress concentrations where the material has elastoplastic behavior and surface contact problems. Finite element modeling of the whole component is extremely difficult due to the amount of calculation involved. Electricite de France (EDF) has therefore developed a computation method for threaded assemblies, called the 'multiple scaling method'. This paper describes the method and details the results obtained via this method for the 1300-MWe reactor vessel flange stud hole (180mm diameter, 4 mm nominal thread). Also examined is the behavior of threads in relation to repairs or anomalies. (author)

  9. CFD-analysis of buoyancy-driven flow inside a cooling pipe system attached to a reactor pressure vessel

    OpenAIRE

    Petersson, Jens

    2014-01-01

    In this work a cooling system connected to a reactor pressure vessel has been studied using the CFD method for the purpose of investigating the strengths and shortcomings of using CFD as a tool in similar fluid flow problems within nuclear power plants. The cooling system is used to transport water of 288K (15°C) into a nuclear reactor vessel filled with water of about 555K (282°C) during certain operating scenarios. After the system has been used, the warm water inside the vessel will be car...

  10. Investigation on the temperature distribution and strength of flat steel ribbon wound cryogenic high-pressure vessel

    Institute of Scientific and Technical Information of China (English)

    CUI Xiao-long; CHEN Guang-ming

    2007-01-01

    By analyzing heat transfer on the wall of flat steel ribbon wound vessel (FSRWV), a numerical model of temperature distribution on the entire wall (including inner core wall, flat steel ribbons, outside cylinder of jacket and insulating layer) was established by the authors. With the model, the temperature distribution and the length change in the vessel walls and flat steel ribbons in low temperature are calculated and analyzed. The results show that the flat steel ribbon wound cryogenic high-pressure vessel is simpler in structure, safer and easier to manufacture than those of conventional ones.

  11. Dust explosions in spherical vessels: prediction of the pressure evolution and determination of the burning velocity and flame thickness

    OpenAIRE

    Dahoe, A.E.; Zevenbergen, J.F.; Verheijen, P.J.T.; Lemkowitz, S.M.; Scarlett, B.

    1996-01-01

    A well known limitation of the ’cube-root-law’ is that it becomes invalid when the flame thickness is significant with respect to the vessel radius. In the literature flame thicknesses in dust-air mixtures ranging from 15 to 80 centimeters have been reported [1], which exceed the radii of the 20-1itre sphere and the 1 m3 vessel. Therefore we have developed a model (the three zone model) for the pressure evolution of confined dust explosions in spherical vessels which takes the flame thickness...

  12. Ways to preservation and management of nuclear knowledge on WWER reactor pressure vessels

    International Nuclear Information System (INIS)

    Full text: Nuclear knowledge preservation activities are ongoing in the EC-JRC Institute of Energy with the intention to collect all available information about reactor pressure vessels of WWER type reactors as well as to analyze and summarize the most important items and issues. This activity is in line of the European Community FP6 projects PERFECT (Prediction of irradiation damage effects on reactor components) and mainly COVERS (Coordinated action on WWER safety) in which all WWER operating countries also take part. Actually, the electronic database was created and is accessible for young or expired researchers in this area. The access is recommended via ODIN (Online Data and Information Network) https://odin.jrc.nl/doma. After registration you can enter the WWER DoMa-db: 'Database of references for knowledge management and Preservation on WWER reactor pressure vessel'. For the access to confidential information you have to ask an indicated administrator. For the project, more than twenty precise selected specialists, mainly from WWER operating countries, have been asked to help with the collection of such mostly rare publications. It is clear that a large number of publications, since the very beginning of the research studies and from the first years of reactors operation, were published in Russian as well as in other national languages (Czech, Slovak, Hungarian, Finish etc.). This makes the situation complicated for most of foreign experts, and today, also for most of WWER reactor operators in individual countries. A large number of publications was prepared also in other languages and were sent not only to international, but also to some national journals as well as presented in many national conferences/workshops etc. proceedings which are now very complicated to find from abroad. Authors have been asked via national experts for their full lists of publications dealing with material properties of WWER reactor pressure vessels, and as a first step, it is

  13. 3D modeling of the primary circuit in the reactor pressure vessel of a PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramajo, Damian, E-mail: dramajo@santafe-conicet.gov.ar; Corzo, Santiago; Schiliuk, Nicolas; Nigro, Norberto

    2013-12-15

    A computational fluid dynamics (CFD) simulation of the reactor pressure vessel (RPV) of the pressurized heavy water reactor (PHWR) of 745 electrical MW Atucha II nuclear power plant was carried out. A three dimensional (3D) detailed model was employed to simulate coolant circuit considering the upper and lower plenums, the downcomer and the hot and cold legs. Control rods and coolant channel tubes at the upper plenum were included to quantify the mixing flow with more realism. The whole set of 451 coolant channels were modeled by means of a zero dimensional methodology. That is, the effect of each coolant channel was modeled through the introduction of a source point at the upper plenum and a sink point at the lower plenum. For each coupled sink/source points (SSP) the mass, momentum and energy balance were solved considering the local pressure difference and the temperature between the corresponding points where sinks and sources were placed. Based on this strategy, three models with increasingly level of approximation were implemented. For the first model the 451 coolant channels were reduced to only 57 pairs of SSP to represent all the coolant channels, concentrating the effect of several coolant channels in a unique pair of sink and source while taking into account geometric design details. For the second model, 225 pairs of SSP were introduced. Finally, for the third model each one of the 451 coolant channels were modeled by means of one pair of SSP. Depending on the coolant channel location, the radial power distribution and the pressure loss caused by the corresponding flow restrictor present by design were considered. Simulations carried out give insight in the complexity of the flow. As expected, the greater the details of the model the better the accuracy reached in the representation of the RPV behavior. In addition, the flow distributor located at the lower plenum showed to be very efficient since, the mass flow at each channel was found to be fairly

  14. Manufacturing Cost Analysis of Novel Steel/Concrete Composite Vessel for Stationary Storage of High-Pressure Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Zhang, Wei [ORNL; Wang, Jy-An John [ORNL; Ren, Fei [ORNL

    2012-09-01

    A novel, low-cost, high-pressure, steel/concrete composite vessel (SCCV) technology for stationary storage of compressed gaseous hydrogen (CGH2) is currently under development at Oak Ridge National Laboratory (ORNL) sponsored by DOE s Fuel Cell Technologies (FCT) Program. The SCCV technology uses commodity materials including structural steels and concretes for achieving cost, durability and safety requirements. In particular, the hydrogen embrittlement of high-strength low-alloy steels, a major safety and durability issue for current industry-standard pressure vessel technology, is mitigated through the use of a unique layered steel shell structure. This report presents the cost analysis results of the novel SCCV technology. A high-fidelity cost analysis tool is developed, based on a detailed, bottom-up approach which takes into account the material and labor costs involved in each of the vessel manufacturing steps. A thorough cost study is performed to understand the SCCV cost as a function of the key vessel design parameters, including hydrogen pressure, vessel dimensions, and load-carrying ratio. The major conclusions include: The SCCV technology can meet the technical/cost targets set forth by DOE s FCT Program for FY2015 and FY2020 for all three pressure levels (i.e., 160, 430 and 860 bar) relevant to the hydrogen production and delivery infrastructure. Further vessel cost reduction can benefit from the development of advanced vessel fabrication technologies such as the highly automated friction stir welding (FSW). The ORNL-patented multi-layer, multi-pass FSW can not only reduce the amount of labor needed for assembling and welding the layered steel vessel, but also make it possible to use even higher strength steels for further cost reductions and improvement of vessel structural integrity. It is noted the cost analysis results demonstrate the significant cost advantage attainable by the SCCV technology for different pressure levels when compared to the

  15. Consequence evaluation of radiation embrittlement of Trojan reactor pressure vessel supports

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S.C.; Sommer, S.C.; Johnson, G.L. (Lawrence Livermore National Lab., CA (USA)); Lambert, H.E. (FTA Associates, Oakland, CA (USA))

    1990-10-01

    This report describes a consequence evaluation to address safety concerns raised by the radiation embrittlement of the reactor pressure vessel (RPV) supports for the Trojan nuclear power plant. The study comprises a structural evaluation and an effects evaluation and assumes that all four reactor vessel supports have completely lost the load carrying capability. By demonstrating that the ASME code requirements governing Level D service limits are satisfied, the structural evaluation concludes that the Trojan reactor coolant loop (RCL) piping is capable of transferring loads to the steam generator (SG) supports and the reactor coolant pump (RCP) supports. A subsequent design margins to accommodate additional loads transferred to them through the RCL piping. The effects evaluation, employing a systems analysis approach, investigates initiating events and the reliability of the engineered safeguard systems as the RPV is subject to movements caused by the RPV support failure. The evaluation identifies a number of areas of additional safety concerns, but further investigation of the above safety concerns, however, concludes that a hypothetical failure of the Trojan RPV supports due to radiation embrittlement will not result in consequences of significant safety concerns.

  16. Corrosion monitoring on a large steel pressure vessel by thin-layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, G. (Inst. of Nuclear Sciences, Dept. of Scientific and Industrial Research, P.O. Box 31312, Lower Hutt (NZ)); Boulton, L.H. (Auckland Industrial Development Div., Dept. of Scientific and Industrial Research, P.O. Box 2225, Auckland (NZ)); Hodder, D. (NZFP Pulp and Paper Ltd., Private Bag, Tokoroa (NZ))

    1989-12-01

    Thin-layer activation (TLA) is a technique in which a surface is irradiated by a nuclear accelerator and thereby labeled with an accurate depth profile of low-level radioactivity. By monitoring this activity it is possible to calculate how much of that surface has been removed by corrosion. As the radioactivity is marked by the emission of penetrating gamma rays, it is possible to monitor this corrosion remotely through several centimeters of steel. This technique has been used to monitor erosion-corrosion occurring on the inner carbon steel wall of a continuous Kraft pulp digester at a paper mill. Representative coupons of the same steel as the digester wall were irradiated and fixed to the walls in the liquor extraction zone during a maintenance shutdown. The loss of metal over the six months was measured by external monitoring of gamma radiation through the vessel wall, and converted to a corrosion rate. Subsequent weight-loss measurements and comparison with ultrasonic thickness measurements established that the corrosion rate measured gave accurate results over a much shorter time scale. TLA thus enables current, rather than historical corrosion rates to be measured in a large steel pressure vessel.

  17. Consequence evaluation of radiation embrittlement of Trojan reactor pressure vessel supports

    International Nuclear Information System (INIS)

    This report describes a consequence evaluation to address safety concerns raised by the radiation embrittlement of the reactor pressure vessel (RPV) supports for the Trojan nuclear power plant. The study comprises a structural evaluation and an effects evaluation and assumes that all four reactor vessel supports have completely lost the load carrying capability. By demonstrating that the ASME code requirements governing Level D service limits are satisfied, the structural evaluation concludes that the Trojan reactor coolant loop (RCL) piping is capable of transferring loads to the steam generator (SG) supports and the reactor coolant pump (RCP) supports. A subsequent design margins to accommodate additional loads transferred to them through the RCL piping. The effects evaluation, employing a systems analysis approach, investigates initiating events and the reliability of the engineered safeguard systems as the RPV is subject to movements caused by the RPV support failure. The evaluation identifies a number of areas of additional safety concerns, but further investigation of the above safety concerns, however, concludes that a hypothetical failure of the Trojan RPV supports due to radiation embrittlement will not result in consequences of significant safety concerns

  18. Photofission Analysis for Fissile Dosimeters Dedicated to Reactor Pressure Vessel Surveillance

    Science.gov (United States)

    Bourganel, Stéphane; Faucher, Margaux; Thiollay, Nicolas

    2016-02-01

    Fissile dosimeters are commonly used in reactor pressure vessel surveillance programs. In this paper, the photofission contribution is analyzed for in-vessel 237Np and 238U fissile dosimeters in French PWR. The aim is to reassess this contribution using recent tools (the TRIPOLI-4 Monte Carlo code) and latest nuclear data (JEFF3.1.1 and ENDF/B-VII nuclear libraries). To be as exhaustive as possible, this study is carried out for different configurations of fissile dosimeters, irradiated inside different kinds of PWR: 900 MWe, 1300 MWe, and 1450 MWe. Calculation of photofission rate in dosimeters does not present a major problem using the TRIPOLI-4® Monte Carlo code and the coupled neutron-photon simulation mode. However, preliminary studies were necessary to identify the origin of photons responsible of photofissions in dosimeters in relation to the photofission threshold reaction (around 5 MeV). It appears that the main contribution of high enough energy photons generating photofissions is the neutron inelastic scattering in stainless steel reactor structures. By contrast, 137Cs activity calculation is not an easy task since photofission yield data are known with high uncertainty.

  19. Fracture toughness curves of Japanese reactor pressure vessel steels considering neutron irradiation embrittlement

    International Nuclear Information System (INIS)

    In Japanese nuclear power plants, surveillance tests are conducted according to the Japan Electric Association Code JEAC4201 in order to monitor the degree of embrittlement of reactor pressure vessel (RPV) material due to neutron irradiation. Through the surveillance tests for Pressurized Water Reactor (PWR) plants, a large number of fracture toughness data have been accumulated for Japanese RPV irradiated materials. New fracture toughness curves have been developed adopting the Master Curve (MC) concept and these curves have been correlated with the Charpy V-notch 30 ft-lb transition temperature, Tr30 for evaluation against Pressurized Thermal Shock (PTS) events. The developed curves are also intended to represent the 5% tolerance lower bound of fracture toughness trend incorporating fracture toughness variation depending on the product form, which consists of plates, forgings and weld metals. In this study, the reliability of the curves is evaluated for predicted Tr30 values in consideration of application to PTS evaluation for Japanese PWR plants and it was demonstrated that the developed lower bound curve has reliability comparable to that for the measured Tr30 by adding a margin of 3degC to the predicted Tr30. (author)

  20. Catalogue of questions concerning the documentation of quality assurance during the production and the operation of reactor pressure vessels

    International Nuclear Information System (INIS)

    This catalogue of questions concerning the documentation of quality assurance during the production and the operation of reactor pressure vessels was made by order of the BMI (Bundesministerium des Innern). It includes questions relating to the fields of design, planning, manufacturing, in-service inspection, and neutron irradiation surveillance. With varying degrees of particularization, the answers to these questions supply information for a presentation of this issue specifically modelled to the problems of reactor pressure vessels. The catalogue of questions may be applied in an integral manner or limited to special fields. In its present form, the catalogue of questions shall be presented to the subcommittee for reactor pressure vessels of the Reactor Safety Commission with the request to take notice and comment upon it. (orig./HP)

  1. Pressure Vessel Fluence Calculations for the Hungarian VVER-440 Units for the Power Uprate and the Llifetime Extension

    Directory of Open Access Journals (Sweden)

    Hordósy Gábor

    2016-01-01

    Full Text Available A major project was launched at Paks NPP, Hungary, to investigate the possibility of lifetime extension up to 60 years. At the same time, new fuel types with higher enrichment and containing pins with gadolinium have been introduced. Due to these plans, the radiation load of the pressure vessel was evaluated up to 60 years irradiation, taking into account the past and planned future cycles. The computational procedure, elaborated and validated earlier for the fast flux calculation in the pressure vessel was modified for the new fuel types. The neutron source at the core boundaries was taken from core design calculations and the neutron transport from the source to and through the pressure vessel was followed by Monte Carlo calculations. A number of calculations were performed to adequately follow the change of the neutron source. The paper details this procedure, the used Monte Carlo model, the influence of the different reloading schemes on the radiation load and the calculated results.

  2. Pressure Vessel Fluence Calculations for the Hungarian VVER-440 Units for the Power Uprate and the Llifetime Extension

    Science.gov (United States)

    Hordósy, Gábor; Hegyi, György; Keresztúri, András; Maráczy, Csaba; Temesvári, Emese; Zsolnay, Éva M.

    2016-02-01

    A major project was launched at Paks NPP, Hungary, to investigate the possibility of lifetime extension up to 60 years. At the same time, new fuel types with higher enrichment and containing pins with gadolinium have been introduced. Due to these plans, the radiation load of the pressure vessel was evaluated up to 60 years irradiation, taking into account the past and planned future cycles. The computational procedure, elaborated and validated earlier for the fast flux calculation in the pressure vessel was modified for the new fuel types. The neutron source at the core boundaries was taken from core design calculations and the neutron transport from the source to and through the pressure vessel was followed by Monte Carlo calculations. A number of calculations were performed to adequately follow the change of the neutron source. The paper details this procedure, the used Monte Carlo model, the influence of the different reloading schemes on the radiation load and the calculated results.

  3. Present status of mechanical properties of 2 1/4 Cr-1Mo steel as a pressure vessel for VHTR

    International Nuclear Information System (INIS)

    This report describes the present status and items on the application of the 2 1/4Cr-1Mo steel, normalized and tempered condition (NT) with low Silicon and high purity, to the pressure vessel of VHTR, which is the most important structural component within the pressure boundaries. The SCMV 4-2 steel in JIS, which corresponds to ASTM A387 Grade 22 Class 2, is selected as a candidate based on the design and operation conditions of the pressure vessel. In this report are also shown the specification of material fabrication, various results of mechanical and metallurgical tests and the evaluation of structural integrity of the vessel considering the material aging effects in this SCMV 4-2 steel. (author)

  4. OCA-P, a deterministic and probabilistic fracture-mechanics code for application to pressure vessels

    International Nuclear Information System (INIS)

    The OCA-P code is a probabilistic fracture-mechanics code that was prepared specifically for evaluating the integrity of pressurized-water reactor vessels when subjected to overcooling-accident loading conditions. The code has two-dimensional- and some three-dimensional-flaw capability; it is based on linear-elastic fracture mechanics; and it can treat cladding as a discrete region. Both deterministic and probabilistic analyses can be performed. For the former analysis, it is possible to conduct a search for critical values of the fluence and the nil-ductility reference temperature corresponding to incipient initiation of the initial flaw. The probabilistic portion of OCA-P is based on Monte Carlo techniques, and simulated parameters include fluence, flaw depth, fracture toughness, nil-ductility reference temperature, and concentrations of copper, nickel, and phosphorous. Plotting capabilities include the construction of critical-crack-depth diagrams (deterministic analysis) and various histograms (probabilistic analysis)

  5. Design of lubricating equipment of stud hole's threads of reactor pressure vessel

    International Nuclear Information System (INIS)

    It is determined that lubrication method of reactor pressure vessel (RPV) stud hole's thread is brushing lubrication by flow test of N5000 grease. The basic requirements of RPV stud hole's thread lubrication are all-surface and uniformity of greasing. The RPV stud hole lubricating machine is mainly composed of control panel, cable hanging device, automatic trolley and lubricating device. The lubricating device is the key part of RPV stud hole lubricating machine, therefore, the structure and principle of lubricating device are described. Besides, its operating principle, technical characteristics and design features are briefly described. During refuelling and repairing of No.1 unit of Daya Bay Nuclear Power Plant RPV, stud hole's lubricating machine are practically used. The practical using of RPV stud hole's lubricating machine proved that its all technical characteristics and functions have already met requirements of technical specification of the proprietor

  6. Repair weld induced residual stresses in thick-walled steel pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.C.; Holz, P.P.

    1978-06-01

    If a flaw requiring corrective action were to be found in an operating nuclear pressure vessel, there would be considerable safety and economic implications. Should such a flaw be found, one possible corrective action would be an in situ repair weld. A repair of this type would presumably involve grinding away material in a region encompassing the flaw and then filling the resulting cavity with weld metal. Thermal stress relieving under those conditions could lead to serious difficulties associated with thermal expansion and warpage and would therefore most likely be avoided. Such a departure from normal procedure raises questions relating to residual stresses and material toughness levels which would have to be assessed before a repair could be recommended or approved. The residual stress measurements reported are intended to provide baseline information to aid in an assessment should such a repair ever have to be seriously considered.

  7. Warm pre-stress experiments on highly irradiated reactor pressure vessel steel

    International Nuclear Information System (INIS)

    In the aim to justify in-service integrity of reactor pressure vessel beyond 40 years, experimental warm pre-stress (WPS) tests were performed on irradiated materials representative of RPV steels corresponding to 40 operating years. Different types of WPS loading path have been considered to cover typical postulated accidental transients. These results confirmed the beneficial effect of WPS on the cleavage fracture resistance of the irradiated materials. No fracture occurred during the cooling phase of the loading path and the fracture toughness values are higher than that measured with conventional isothermal tests. The analyses of the experiments, conducted using either simplified engineering models or more refined fracture models based on local approach to cleavage fracture, are in agreement with the experimental results. (authors)

  8. Notch position in the HAZ specimen of reactor pressure vessel steel

    Science.gov (United States)

    Kim, J. H.; Yoon, E. P.

    1998-12-01

    Variations in the notch toughness in the heat-affected zone (HAZ) were investigated by positioning the Charpy V-notches along the line normal to the weld fusion line of a SA 508 Cl.3 reactor pressure vessel (RPV) steel. In the notch position for common surveillance HAZ specimens, rather higher toughness values were acquired. The minimum properties were noted in the region of 4-5 mm apart from the fusion boundary, where the values of toughness and strength were both poorer than those of the other regions of the HAZ and the base metal. The causes for these variations were discussed with reference to the microstructures from the actual and the simulated welding processes.

  9. Stress Corrosion Cracking and Fatigue Crack Growth Studies Pertinent to Spacecraft and Booster Pressure Vessels

    Science.gov (United States)

    Hall, L. R.; Finger, R. W.

    1972-01-01

    This experimental program was divided into two parts. The first part evaluated stress corrosion cracking in 2219-T87 aluminum and 5Al-2.5Sn (ELI) titanium alloy plate and weld metal. Both uniform height double cantilever beam and surface flawed specimens were tested in environments normally encountered during the fabrication and operation of pressure vessels in spacecraft and booster systems. The second part studied compatibility of material-environment combinations suitable for high energy upper stage propulsion systems. Surface flawed specimens having thicknesses representative of minimum gage fuel and oxidizer tanks were tested. Titanium alloys 5Al-2.5Sn (ELI), 6Al-4V annealed, and 6Al-4V STA were tested in both liquid and gaseous methane. Aluminum alloy 2219 in the T87 and T6E46 condition was tested in fluorine, a fluorine-oxygen mixture, and methane. Results were evaluated using modified linear elastic fracture mechanics parameters.

  10. Research and Development Roadmaps for Nondestructive Evaluation of Cables, Concrete, Reactor Pressure Vessels, and Piping Fatique

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Bakhtiari, Sasan [Argonne National Laboratory (ANL); Smith, Cyrus M [ORNL; Simmons, Kevin [Pacific Northwest National Laboratory (PNNL); Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Coble, Jamie [Pacific Northwest National Laboratory (PNNL); Brenchley, David [Pacific Northwest National Laboratory (PNNL); Meyer, Ryan [Pacific Northwest National Laboratory (PNNL)

    2013-01-01

    To address these research needs, the MAaD Pathway supported a series of workshops in the summer of 2012 for the purpose of developing R&D roadmaps for enhancing the use of Nondestructive Evaluation (NDE) technologies and methodologies for detecting aging and degradation of materials and predicting the remaining useful life. The workshops were conducted to assess requirements and technical gaps related to applications of NDE for cables, concrete, reactor pressure vessels (RPV), and piping fatigue for extended reactor life. An overview of the outcomes of the workshops is presented here. Details of the workshop outcomes and proposed R&D also are available in the R&D roadmap documents cited in the bibliography and are available on the LWRS Program website (http://www.inl.gov/lwrs).

  11. Development of an ultrasonic imaging system for the inspection of nuclear reactor pressure vessels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.L.; Crow, V.L.; Davis, T.J.; Doctor, S.R.; Hildebrand, B.P.; Lemon, D.K.; Posakony, G.J.

    1979-10-01

    The development of an experimental model of an ultrasonic linear array system for the inspection of weldments in nuclear reactor pressure vessels is described. The imaging system is designed to operate in both pulse echo and holographic modes of operation. The system utilizes a sequentially pulsed, phase steered linear array to develop pulse echo images and a line focused illumination transducer in conjunction with a linear receiver array to develop holographic reconstructed images. The results recorded from the computer-based system demonstrate the capability of array technology. Excellent results from both the pulse echo and holographic modes of operation have been achieved. Pulse echo images of flaws in weldments are displayed in B-scan, C-scan, or isometric presentations. Reconstruction of the phase or holographic images are compared with pulse echo results and demonstrate the enhancement potential for the holographic procedure.

  12. Application of advanced master curve approaches on WWER-440 reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, Hans-Werner [Forschungszentrum Rossendorf e.V. (Germany)]. E-mail: h.w.viehrig@fz-rossendorf.de; Scibetta, Marc [SCK-CEN, Reactor Materials Research (Belgium); Wallin, Kim [VTT Industrial Systems, Materials and Structural Integrity (Finland)

    2006-08-15

    The master curve (MC) approach used to measure the transition temperature, T , was standarised in the ASTM Standard Test Method E 1921 in 1997. The basic MC approach for analysis of fracture test results is intended for macroscopically homogeneous steels with a body centred cubic (ferritic) structure only. In reality, due to the manufacturing process, the steels in question are seldom fully macroscopically homogeneous. The fracture toughness values measured on Charpy size SE(B) specimens of base metal from the Greifswald Unit 8 rector pressure vessel (RPV) show large scatter. The basic MC evaluation following ASTM E1921 supplies a MC with many fracture toughness values which lie below the 5% fracture probability line. It is therefore suspected that this material is macroscopically inhomogeneous. In this paper, two recent extensions of the MC for inhomogeneous materials are applied to these fracture toughness data.

  13. Microstructural parameters and yielding in a quenched and tempered Cr-Mo-V pressure vessel steel

    International Nuclear Information System (INIS)

    In this work the plastic deformation behaviour of a Cr-Mo-V pressure vessel steel is studied at ambient and low temperatures. To produce a wide range of microstructures, different austenitizing, quenching and tempering treatments are performed. The microstructures, including grain and dislocation structures as well as carbides, are evaluated. A qualitative model is proposed for the martensitic and bainitic transformations explaining the morphology and crystallography of the transformation products. Based on microstructural observations of undeformed and deformed materials, as well as the tensile test results, the role of various obstacles to dislocation motion in plastic deformation is evaluated. Finally the strength increment, its temperature dependence and the effect due to combinations of various obstacles are analyzed. The results are intended to serve as basis for further fracture behaviour analyses. (author)

  14. Reactor pressure vessel integrity research at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, W.R.; Pennell, W.E.; Pace, J.V.

    1995-12-31

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the integrity inherent in the RPV. For this reason, the U.S. Nuclear Regulatory Commission has established the related research programs at ORNL described herein to provide for the development and confirmation of the methods used for: (1) establishing the irradiation exposure conditions within the RPV in the Embrittlement Data Base and Dosimetry Evaluation Program, (2) assessing the effects of irradiation on the RPV materials in the Heavy-Section Steel Irradiation Program, and (3) developing overall structural and fracture analyses of RPVs in the Heavy-Section Steel Technology Program.

  15. Positron annihilation study of Fe-ion irradiated reactor pressure vessel model alloys

    Science.gov (United States)

    Chen, L.; Li, Z. C.; Schut, H.; Sekimura, N.

    2016-01-01

    The degradation of reactor pressure vessel steels under irradiation, which results from the hardening and embrittlement caused by a high number density of nanometer scale damage, is of increasingly crucial concern for safe nuclear power plant operation and possible reactor lifetime prolongation. In this paper, the radiation damage in model alloys with increasing chemical complexity (Fe, Fe-Cu, Fe-Cu-Si, Fe-Cu-Ni and Fe-Cu-Ni-Mn) has been studied by Positron Annihilation Doppler Broadening spectroscopy after 1.5 MeV Fe-ion implantation at room temperature or high temperature (290 oC). It is found that the room temperature irradiation generally leads to the formation of vacancy-type defects in the Fe matrix. The high temperature irradiation exhibits an additional annealing effect for the radiation damage. Besides the Cu-rich clusters observed by the positron probe, the results show formation of vacancy-Mn complexes for implantation at low temperatures.

  16. Characterization of atom clusters in irradiated pressure vessel steels and model alloys

    International Nuclear Information System (INIS)

    In order to characterize the microstructural evolution of the iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions and, for comparison, low copper model alloys irradiated with neutrons and electrons have been studied. The characterization has been carried out mainly thanks to small angle neutron scattering and atom probe experiments. Both techniques lead to the conclusion that clusters develop with irradiations. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex. Solute atoms like Ni, Mn and Si, sometimes associated with Cu, segregate as ''clouds'' more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs

  17. Qualification of non-destructive examination for belgian nuclear reactor pressure vessel inspection

    Energy Technology Data Exchange (ETDEWEB)

    Couplet, D. [TRACTEBEL, Brussels (Belgium); Francoise, T. [Intercontrole, 94 - Rungis (France)

    2001-07-01

    In Service Inspection (ISI) participates to the assessment of Nuclear Reactor Pressure Vessel Integrity. The performance of Non Destructive Examination (NDE) techniques must be demonstrated according to predefined objectives. The qualification process is essential to trust the reliability of the information provided by NDE. In Belgian Nuclear Power Plants, the qualification was conducted through a collaboration between the vendor and a technical group from the Electricity Utility. The important facts of this qualification will be presented: - the detailed definition of the inspection and qualifications objectives, based on a combination of the ASME code and the European Methodology for Qualification; - the systematic verification of the NDE performance and limitations, for each ISI objective, through an adequate combination of tests on blocks and technical justification; - the continuous improvement of the NDE procedure; - the feedback and the lessons learnt from site experience; - the necessary multi-disciplinary approach (NDE, degradation mechanisms, structural integrity)

  18. Nuclear power plant life management with particular reference to the reactor pressure vessel

    International Nuclear Information System (INIS)

    Aimed to differentiate between the definitions of plant life, operational life, design life and to show the significance in terms of plant life management (PLIM) the overall process of NPP life determining and the assurance of NPP accident proof operation is described. The important features in the process of PLIM are given as follows: 1) the selection of key plant components; 2) the determination of remaining life of each component using all data; 3) the comparison of estimated remaining life with the target extended life of the plant. The procedures and factors involved in the assessment of the reactor pressure vessel as a key component are described and the effect of degradation mechanisms on mechanical properties is discussed. The scope of data sets required for PLIM is presented

  19. Microscopic investigation of cleavage initiation in modified A508B pressure vessel steel

    International Nuclear Information System (INIS)

    A microscopic study on ductile-brittle crack growth in a modified version of the A508B pressure vessel steel has been performed. Small SEN(B)-specimens tested at different temperatures in and above the transition region have been thoroughly examined with a scanning electron microscope. Focus was directed towards: amount of ductile crack growth prior to cleavage, distance from the crack front to cleavage initiation sites, and type of defect that caused the cleavage initiation. The results show, among other things, that cleavage facets are present in specimens tested at all temperatures, even on the upper shelf where no global failure by cleavage was observed. These preliminary results give an indication that the ability of the matrix material to arrest and sustain small cleavage cracks can be crucial in explaining why ferritic steels show a transition behaviour. (orig.)

  20. Characterisation of creep cavitation damage in a stainless steel pressure vessel using small angle neutron scattering

    CERN Document Server

    Bouchard, P J; Treimer, W

    2002-01-01

    Grain-boundary cavitation is the dominant failure mode associated with initiation of reheat cracking, which has been widely observed in austenitic stainless steel pressure vessels operating at temperatures within the creep range (>450 C). Small angle neutron scattering (SANS) experiments at the LLB PAXE instrument (Saclay) and the V12 double-crystal diffractometer of the HMI-BENSC facility (Berlin) are used to characterise cavitation damage (in the size range R=10-2000 nm) in a variety of creep specimens extracted from ex-service plant. Factors that affect the evolution of cavities and the cavity-size distribution are discussed. The results demonstrate that SANS techniques have the potential to quantify the development of creep damage in type-316H stainless steel, and thereby link microstructural damage with ductility-exhaustion models of reheat cracking. (orig.)