WorldWideScience

Sample records for bwr fuel rods

  1. Detection of failed fuel rods in shrouded BWR fuel assemblies

    International Nuclear Information System (INIS)

    Baero, G.; Boehm, W.; Goor, B.; Donnelly, T.

    1988-01-01

    A manipulator and an ultrasonic testing (UT) technique were developed to identify defective fuel rods in shrouded BWR fuel assemblies. The manipulator drives a UT probe axially through the bottom tie plate into the water channels between the fuel rods. The rotating UT probe locates defective fuel rods by ingressed water which attenuates the UT-signal. (author)

  2. Study of behavior on bonding and failure mode of pressurized and doped BWR fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1992-03-01

    The study of transient behavior on the bonding and the failure mode was made using the pressurized/doped 8 x 8 BWR type fuel rod. The dopant was mullite minerals consisted mainly of silicon and aluminum up to 1.5 w/o. Pressurization of the fuel rod with pure helium was made to the magnitude about 0.6 MPa. As a reference, the non-pressurized/non-doped 8 x 8 BWR fuel rod and the pressurized/7 x 7 BWR fuel rod up to 0.6 MPa were prepared. Magnitude of energy deposition given to the tested fuel rods was 248, 253, and 269 cal/g·fuel, respectively. Obtained results from the pulse irradiation in NSRR are as follows. (1) It was found from the experiment that alternation of the fuel design by the adoption of pressurization up to 0.6 MPa and the use of wider gap up to 0.38 mm could avoid the dopant BWR fuel from the overall bonding. The failure mode of the present dopant fuel was revealed to be the melt combined with rupture. (2) The time of fuel failure of the pressurized/doped 8 x 8 BWR fuel defected by the melt/rupture mode is of order of two times shorter than that of the pressurized/ 7 x 7 BWR defected by the rupture mode. Failure threshold of the pressurized/doped 8 x 8 BWR BWR tended to be lower than that of non-pressurized/non-doped 8 x 8 BWR one. Cracked area of the pressurized/doped 8 x 8 BWR was more wider and magnitude of oxidation at the place is relatively larger than the other tested fuels. (3) Failure mode of the non-pressurized/ 8 x 8 BWR fuel rod was the melt/brittle accompanied with a significant bonding at failed location. While, failure mode of the pressurized/ 7 x 7 BWR fuel rod was the cladding rupture accompanied with a large ballooning. No bonding at failed location of the latter was observed. (author)

  3. IFPE/IFA-432, Fission Gas Release, Mechanical Interaction BWR Fuel Rods, Halden

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    1996-01-01

    Description: It contains data from experiments that have been performed at the IFE/OECD Halden Reactor Project, available for use in fuel performance studies. It covers experiments on thermal performance, fission product release, clad properties and pellet clad mechanical interaction. It includes also experimental data relevant to high burn-up behaviour. IFA-432: Measurements of fuel temperature response, fission gas release and mechanical interaction on BWR-type fuel rods up to high burn-ups. The assembly featured several variations in rod design parameters, including fuel type, fuel/cladding gap size, fill gas composition (He and Xe) and fuel stability. It contained 6 BWR-type fuel rods with fuel centre thermocouples at two horizontal planes, rods were also equipped with pressure transducers and cladding extensometers. Only data from 6 rods are compiled here

  4. Crud deposition modeling on BWR fuel rods

    International Nuclear Information System (INIS)

    Kucuk, Aylin; Cheng, Bo; Potts, Gerald A.; Shiralkar, Bharat; Morgan, Dave; Epperson, Kenny; Gose, Garry

    2014-01-01

    Deposition of boiling water reactor (BWR) system corrosion products (crud) on operating fuel rods has resulted in performance-limiting conditions in a number of plants. The operational impact of performance-limiting conditions involving crud deposition can be detrimental to a BWR operator, resulting in unplanned or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and/or undesirable core design restrictions. To facilitate improved management of crud-related fuel performance risks, EPRI has developed the CORAL (Crud DepOsition Risk Assessment ModeL) tool. This paper presents a summary of the CORAL elements and benchmarking results. Applications of CORAL as a tool for fuel performance risk assessment are also discussed. (author)

  5. Characteristics of axial splits in failed BWR fuel rods

    International Nuclear Information System (INIS)

    Lysell, G.; Grigoriev, V.

    2000-01-01

    Secondary cladding defects in BWR fuel sometimes have the shape of long axial cracks or ''splits''. Due to the large open UO 2 surfaces exposed to the water, fission product and UO 2 release to the coolant can reach excessive levels leading to forced shut downs to remove the failed fuel rods. A number of such fuel rods have been examined in Studsvik over the last 10 years. The paper describes observations from the PIE of long cracks and discusses the driving force of the cracks. Details such as starting cracks, macroscopic and microscopic fracture surface appearance, cross sections of cracks, hydride precipitates, location and degree of plastic deformation are given. (author)

  6. The BWR Hybrid 4 control rod

    International Nuclear Information System (INIS)

    Gross, H.; Fuchs, H.P.; Lippert, H.J.; Dambietz, W.

    1988-01-01

    The service life of BWR control rods designed in the past has been unsatisfactory. The main reason was irradiation assisted stress corrosion cracking of B 4 C rods caused by external swelling of the B 4 C powder. By this reason KWU developed an improved BWR control rod (Hybrid 4 control rod) with extended service life and increased control rod worth. It also allows the procedure for replacing and rearranging fuel assemblies to be considerably simplified. A complete set of Hydbrid 4 control rods is expected to last throughout the service life of a plant (assumption: ca. 40 years) if an appropriate control rod reshuffling management program is used. (orig.)

  7. Experimental data report for Test TS-2 reactivity initiated accident test in NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Sobajima, Makoto; Fujishiro, Toshio; Kobayashi, Shinsho; Yamahara, Takeshi; Sukegawa, Tomohide; Kikuchi, Teruo

    1993-02-01

    This report presents experimental data for Test TS-2 which was the second test in a series of Reactivity Initiated Accident (RIA) condition test using pre-irradiated BWR fuel rods, performed at the Nuclear Safety Research Reactor (NSRR) in February, 1990. Test fuel rod used in the Test TS-2 was a short sized BWR (7x7) type rod which was fabricated from a commercial rod irradiated at Tsuruga Unit 1 power reactor. The fuel had an initial enrichment of 2.79% and a burnup of 21.3Gwd/tU (bundle average). A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The energy deposition of the fuel rod in this test was evaluated to be 72±5cal/g·fuel (66±5cal/g·fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and, results of pre and post pulse irradiation examinations are described in this report. (author)

  8. Composition and Distribution of Tramp Uranium Contamination on BWR and PWR Fuel Rods

    International Nuclear Information System (INIS)

    Schienbein, Marcel; Zeh, Peter; Hurtado, Antonio; Rosskamp, Matthias; Mailand, Irene; Bolz, Michael

    2012-09-01

    In a joint research project of VGB and AREVA NP GmbH the behaviour of alpha nuclides in nuclear power plants with light water reactors has been investigated. Understanding the source and the behaviour of alpha nuclides is of big importance for planning radiation protection measures for outages and upcoming dismantling projects. Previous publications have shown the correlation between plant specific alpha contamination of the core and the so called 'tramp fuel' or 'tramp uranium' level which is linked to the defect history of fuel assemblies and accordingly the amount of previously washed out fuel from defective fuel rods. The methodology of tramp fuel estimation is based on fission product concentrations in reactor coolant but also needs a good knowledge of tramp fuel composition and in-core distribution on the outer surface of fuel rods itself. Sampling campaigns of CRUD deposits of irradiated fuel assemblies in different NPPs were performed. CRUD analyses including nuclide specific alpha analysis have shown systematic differences between BWR and PWR plants. Those data combined with literature results of fuel pellet investigations led to model improvements showing that a main part of fission products is caused by fission of Pu-239 an activation product of U-238. CRUD investigations also gave a better picture of the in-core composition and distribution of the tramp uranium contamination. It was shown that the tramp uranium distribution in PWR plants is time dependent. Even new fuel assemblies will be notably contaminated after only one cycle of operation. For PWR applies the following logic: the higher the local power the higher the contamination. With increasing burnup the local rod power usually decreases leading to decreasing tramp uranium contamination on the fuel rod surface. This is not applicable for tramp uranium contamination in BWR. CRUD contamination (including the tramp fuel deposits) is much more fixed and is constantly increasing

  9. Connection between end plates and rods in a BWR fuel element

    International Nuclear Information System (INIS)

    Cali', G.P.

    1975-01-01

    The problem of the connection between the end plates and the rods of a BWR fuel element is analytically formulated. The behaviour of the springs coupling the rods with the upper plate is analyzed with particular detail since the deformation of these springs affects the forces at the interface of the fuel element structure components. A tool is given to design the springs according to some considerations regarding the mechanical strength of the interacting components as well as the influence of the possible geometrical unevennes of the system that can arise during the fuel element lifetime. (Cali', G.P.)

  10. Design criteria for confidence in the manufacture of BWR fuel rods

    International Nuclear Information System (INIS)

    Anantharaman, K.; Basu, S.; Anand, A.K.; Mehta, S.K.

    Based on the experience of fuel manufacture for BWR type reactors in India, the parameters which need stringent quality control, are discussed. The design specifications of the fuel rods as well as the cladding material and tubes are reported. The defect mechanisms to be taken into account and the fuel failure in reference to the variation of mechanical properties of the cladding are also described. (K.B.)

  11. Experience using individually supplied heater rods in critical power testing of advanced BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Majed, M.; Morback, G.; Wiman, P. [ABB Atom AB, Vasteras (Sweden)] [and others

    1995-09-01

    The ABB Atom FRIGG loop located in Vasteras Sweden has during the last six years given a large experience of critical power measurements for BWR fuel designs using indirectly heated rods with individual power supply. The loop was built in the sixties and designed for maximum 100 bar pressure. Testing up to the mid eighties was performed with directly heated rods using a 9 MW, 80 kA power supply. Providing test data to develop critical power correlations for BWR fuel assemblies requires testing with many radial power distributions over the full range of hydraulic conditions. Indirectly heated rods give large advantages for the testing procedure, particularly convenient for variation of individual rod power. A test method being used at Stern Laboratories (formerly Westinghouse Canada) since the early sixties, allows one fuel assembly to simulate all required radial power distributions. This technique requires reliable indirectly heated rods with independently controlled power supplies and uses insulated electric fuel rod simulators with built-in instrumentation. The FRIGG loop was adapted to this system in 1987. A 4MW power supply with 10 individual units was then installed, and has since been used for testing 24 and 25 rod bundles simulating one subbundle of SVEA-96/100 type fuel assemblies. The experience with the system is very good, as being presented, and it is selected also for a planned upgrading of the facility to 15 MW.

  12. Experimental data report for test TS-3 Reactivity Initiated Accident test in the NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Fujishiro, Toshio; Kobayashi, Shinsho; Yamahara, Takeshi; Sukegawa, Tomohide; Kikuchi, Teruo; Sobajima, Makoto.

    1993-09-01

    This report presents experimental data for Test TS-3 which was the third test in a series of Reactivity Initiated Accident (RIA) tests using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in September, 1990. Test fuel rod used in the Test TS-3 was a short-sized BWR (7 x 7) type rod which was re-fabricated from a commercial rod irradiated in the Tsuruga Unit 1 power reactor of Japan Atomic Power Co. The fuel had an initial enrichment of 2.79 % and a burnup of 26 Gwd/tU. A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The energy deposition of the fuel rod in this test was evaluated to be 94 ± 4 cal/g · fuel (88 ± 4 cal/g · fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and results of pre-pulse and post-pulse irradiation examinations are described in this report. (author)

  13. Experimental data report for Test TS-1 Reactivity Initiated Accident Test in NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Sobajima, Makoto; Fujishiro, Toshio; Horiki, Ohichiro; Yamahara, Takeshi; Ichihashi, Yoshinori; Kikuchi, Teruo

    1992-01-01

    This report presents experimental data for Test TS-1 which was the first in a series of tests, simulating Reactivity Initiated Accident (RIA) conditions using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in October, 1989. Test fuel rod used in the Test TS-1 was a short-sized BWR (7 x 7) type rod which was fabricated from a commercial rod provided from Tsuruga Unit 1 power reactor. The fuel had an initial enrichment of 2.79 % and burnup of 21.3 GWd/t (bundle average). Pulse irradiation was performed at a condition of stagnant water cooling, atmospheric pressure and ambient temperature using a newly developed double container-type capsule. Energy deposition of the rod in this test was evaluated to be about 61 cal/g·fuel (55 cal/g·fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, fuel burnup measurements, transient behavior of the test rod during pulse irradiation and results of post pulse irradiation examinations are contained in this report. (author)

  14. Investigation of 3H and 14C inventory and distribution in spent BWR fuel rods

    International Nuclear Information System (INIS)

    Bleier, A.; Beuerle, M.; Neeb, K.H.

    1984-10-01

    In order to obtain reliable data for fuel reprocessing and waste disposal, the T and C-14 inventory, distribution and behaviour was investigated on a typical LWR fuel rod discharged from a BWR plant. The results showed that 50 ± 5% of the T generated in the fuel is present in the cladding after reactor operation. The remainder of the T stays with the fuel. Related to the reactor power the total T inventory corresponds to a T production rate of 19 000 Ci/GW e . a. The C-14 built up in the fuel represents approximately 60% of the C-14 inventory of the BWR fuel rod. The remaining part of C-14 (about 40%) experimentally determined by this analysis for the first time is generated in the cladding. From the total C-14 inventory a C-14 production rate of 17,5 Ci/GW e . a can be calculated. The fill gas contains only negligible fractions of both nuclides. The results obtained in this program are generally in good agreement with the data of theoretical estimates and with results of earlier investigations on PWR fuel rods. (orig.) [de

  15. Fuel rod response to BWR power oscillations during anticipated transient without scram

    International Nuclear Information System (INIS)

    Cunningham, M.; Scott, H.

    1998-01-01

    The US NRC is examining fuel behaviour during a postulated BWR anticipated transient without scram (ATWS) with power oscillations to determine if current regulatory criteria are adequate. Currently, the 280 cal/g limit for RIAs is used to show that coolable geometry is maintained and pressure pulses are avoided during ATWSs. Two specific questions have now been raised about the continued use of the 280 cal/g value. First, this value was derived from energy deposition values whereas the regulatory requirements are written in terms of fuel enthalpy. The second is that fuel rod rupture with fuel dispersal has been observed in RIA tests with high bum-up fuel rods having energy deposition values well below the current limit. However, the BWR ATWS power oscillation transient is slower than a RIA power pulse, thus reducing the likelihood of failure. Therefore questions about the adequacy of the 280 cal/g limit do not necessarily imply unacceptable fuel damage occurring during such power oscillations and there is no immediate safety concern. The reported analysis, using the FRAPTRAN transient fuel rod analysis code, was thus undertaken to determine if further investigation might be appropriate and with the intention of starting some discussions about the issue. There was a comment that a limit of 100 cal/g fuel enthalpy had been mentioned following the scoping calculations but that perhaps enthalpy was not the main concern in an ATWS. It was also observed that cladding stresses are lower than in all RIA. The question was what really is the main concern. It was replied that the main concern was a question of maintaining a coolable geometry i.e. not loosing fuel particles out of the rod. And it was agreed that enthalpy may not be the important issue, rather that it previously had been used as the parameter and so had been considered. Confirmation of this presently being an evaluation and not a regulatory concern was sought and provided, it being pointed out that the NRC

  16. Fuel loading and control rod patterns optimization in a BWR using tabu search

    International Nuclear Information System (INIS)

    Castillo, Alejandro; Ortiz, Juan Jose; Montes, Jose Luis; Perusquia, Raul

    2007-01-01

    This paper presents the QuinalliBT system, a new approach to solve fuel loading and control rod patterns optimization problem in a coupled way. This system involves three different optimization stages; in the first one, a seed fuel loading using the Haling principle is designed. In the second stage, the corresponding control rod pattern for the previous fuel loading is obtained. Finally, in the last stage, a new fuel loading is created, starting from the previous fuel loading and using the corresponding set of optimized control rod patterns. For each stage, a different objective function is considered. In order to obtain the decision parameters used in those functions, the CM-PRESTO 3D steady-state reactor core simulator was used. Second and third stages are repeated until an appropriate fuel loading and its control rod pattern are obtained, or a stop criterion is achieved. In all stages, the tabu search optimization technique was used. The QuinalliBT system was tested and applied to a real BWR operation cycle. It was found that the value for k eff obtained by QuinalliBT was 0.0024 Δk/k greater than that of the reference cycle

  17. Optimization of axial enrichment and gadolinia distributions for BWR fuel under control rod programming, (2)

    International Nuclear Information System (INIS)

    Hida, Kazuki; Yoshioka, Ritsuo

    1992-01-01

    A method has been developed for optimizing the axial enrichment and gadolinia distributions for the reload BWR fuel under control rod programming. The problem was to minimize the enrichment requirement subject to the criticality and axial power peaking constraints. The optimization technique was based on the successive linear programming method, each linear programming problem being solved by a goal programming algorithm. A rapid and practically accurate core neutronics model, named the modified one-dimensional core model, was developed to describe the batch-averaged burnup behavior of the reload fuel. A core burnup simulation algorithm, employing a burnup-power-void iteration, was also developed to calculate the rigorous equilibrium cycle performance. This method was applied to the optimization of axial two- and 24-region fuels for demonstrative purposes. The optimal solutions for both fuels have proved the optimality of what is called burnup shape optimization spectral shift. For the two-region fuel with a practical power peaking of 1.4, the enrichment distribution was nearly uniform, because a bottom-peaked burnup shape flattens the axial power shape. Optimization of the 24-region fuel has shown a potential improvement in BWR fuel cycle economics, which will guide future advancement in BWR fuel designs. (author)

  18. Investigation of control rod worth and nuclear end of life of BWR control rods

    International Nuclear Information System (INIS)

    Magnusson, Per

    2008-01-01

    This work has investigated the Control Rod Worth (CRW) and Nuclear End of Life (NEOL) values for BWR control rods. A study of how different parameters affect NEOL was performed with the transport code PHOENIX4. It was found that NEOL, expressed in terms of 10 B depletion, can be generalized beyond the conditions for which the rod is depleted, such as different power densities and void fractions, the corresponding variation in the NEOL will be about 0.2-0.4% 10 B. It was also found that NEOL results for different fuel types and different fuel enrichments have a variation of about 2-3% in 10 B depletion. A comparative study on NHOL and CRW was made between PHOENIX4 and the stochastic Monte Carlo code MCNP. It was found that there is a significant difference, both due to differences in the codes and to limitations in the geometrical modeling in PHOENIX4. Since MCNP is considered more physically correct, a methodology was developed to calculate the nuclear end of life of BWR control rods with MCNP. The advantages of the methodology are that it does not require other codes to perform the depletion of the absorber material, it can describe control rods of any design and it can deplete the control rod absorber material without burning the fuel. The disadvantage of the method is that is it time-consuming

  19. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  20. Boiling transition phenomenon in BWR fuel assemblies effect of fuel spacer shape on critical power

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shin-ichi; Mitsutake, Toru; Yokobori, Seiichi; Kimura, Jiro.

    1996-01-01

    A thorough understanding of the thermal-hydraulic phenomena near fuel spacer is necessary for the accurate prediction of the critical power of BWR fuel assemblies, and is thus essential for effective developments of a new BWR fuel assembly. The main purpose of this study is to develop an accurate method for predicting the effect of spacer shapes on critical power. Tests have been conducted under actual BWR operating conditions, using an annulus flow channel consisting of a heated rod and circular-tube channel, and BWR simulated 4x4 rod bundles with heater rods unheated just upsteam of spacer. The effect of spacer shapes on critical power was predicted analytically based on the droplet deposition rate estimation. The droplet deposition rate for different spacer shapes was calculated using a single-phase flow model. The prediction results were compared with the test results for the annulus flow channel using ring-type spacers. Analytical results of critical power agreed with measured critical power from point of the effects of changes in the rod-spacer clearance and the spacer thickness on critical power. (author)

  1. A probabilistic analysis of PWR and BWR fuel rod performance using the code CASINO-SLEUTH

    International Nuclear Information System (INIS)

    Bull, A.J.

    1987-01-01

    This paper presents a brief description of the Monte Carlo and response surface techniques used in the code, and a probabilistic analysis of fuel rod performance in PWR and BWR applications. The analysis shows that fission gas release predictions are very sensitive to changes in certain of the code's inputs, identifies the most dominant input parameters and compares their effects in the two cases. (orig./HP)

  2. Investigation of water-logged spent fuel rods under dry storage conditions

    International Nuclear Information System (INIS)

    Kohli, R.; Pasupathi, V.

    1986-09-01

    Tests were conducted to determine the amount of moisture contained in breached, water-logged spent fuel rods and the rate of release. Two well-characterized BWR fuel rods with reactor-induced breaches were tested in a hot cell. These rods contained approximately 6 to 10 g of moisture, most of which was released during heating tests simulating normal cask drying operations. Additional testing with two intentionally defected fuel rods (BWR and PWR) was performed to evaluate the effect of the cladding breach on migration of moisture along the length of the fuel rod. The results showed that the moisture released from reactor-breached spent fuel rods was insufficient to cause degradation of fuel or dry storage system components

  3. Power ramp tests of BWR-MOX fuels

    International Nuclear Information System (INIS)

    Asahi, K.; Oguma, M.; Higuchi, S.; Kamimua, K.; Shirai, Y.; Bodart, S.; Mertens, L.

    1996-01-01

    Power ramp test of BWR-MOX and UO 2 fuel rods base irradiated up to about 60 GWd/t in Dodewaard reactor have been conducted in BR2 reactor in the framework of the international DOMO programme. The MOX pellets were provided by BN (MIMAS process) and PNC (MH method). The MOX fuel rods with Zr-liner and non-liner cladding and the UO 2 fuel rods with Zr-liner cladding remained intact during the stepwise power ramp tests to about 600 W/cm, even at about 60 GWd/t

  4. ABB advanced BWR and PWR fuel

    International Nuclear Information System (INIS)

    Junkrans, S.; Helmersson, S.; Andersson, S.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both BWR and PWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter, proven to meet the -6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10x10 BWR fuel, where ABB is the only vendor to date with multi batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of BWR and PWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its customers. (orig.)

  5. BWR fuel performance

    International Nuclear Information System (INIS)

    Baily, W.E.; Armijo, J.S.; Jacobson, J.; Proebstle, R.A.

    1979-01-01

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  6. Evaluation of the thermal-mechanical performance of fuel rods of a BWR during a power ramp using the FUELSIM code

    International Nuclear Information System (INIS)

    Pantoja C, R.

    2010-01-01

    To avoid the risk to environment due to release of radioactive material, because of occurrence of an accident, it is the priority of the design and performance of the diverse systems of safety of a commercial nuclear power plant. The safety of nuclear power plants requires, therefore, monitoring those parameters having some direct or indirect effect on safety. The thermal limits are values set for those parameters considered having most impact on the safe operation of a nuclear power reactor. Some thermal limits monitoring requires the thermal-mechanical analysis of the rods containing the nuclear fuel. The fuel rod thermal-mechanical behavior under irradiation is a complex process in which there exists a great deal of interrelated physical and chemical phenomena, so that the fuel rod performance analysis in the core of a nuclear power reactor is generally accomplished by using computer codes, which integrate several of the phenomena that are expected to occur during the lifetime of the fuel rod in the core. The main application of the thermal-mechanical analysis codes is the prediction of occurrence of conditions and/or phenomena that could lead to the deterioration or even mechanical failure of the fuel rod cladding, as, for example, the pellet-cladding interaction. In the operation of a nuclear power reactor, fuel preconditioning operations refer to the operational procedures employed to reduce the fuel rod failure probability due to fuel-cladding interaction, specially during reactor startup. Preconditioning simulations are therefore necessary to determine in advance limit values for the power that can be generated in a fuel rod, and thus avoiding any rod damage. In this work, a first analysis of the thermal-mechanical performance of typical fuel rods used in nuclear reactors of the type BWR 5/6, as those two nuclear reactors in Laguna Verde, Veracruz, is performed. This study includes two types of fuel rods: one from a fuel assembly design with an array 8 x 8

  7. Phenomenology of BWR fuel assembly degradation

    Science.gov (United States)

    Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin

    2018-03-01

    Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.

  8. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    International Nuclear Information System (INIS)

    Chiang, Ren-Tai; Williams, John B.; Folk, Ken S.

    2008-01-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  9. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ren-Tai [University of Florida, Gainesville, Florida 32611 (United States); Williams, John B.; Folk, Ken S. [Southern Nuclear Company, Birmingham, Alabama 35242 (United States)

    2008-07-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  10. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part)

    International Nuclear Information System (INIS)

    Hernandez L, H.; Ortiz V, J.

    2003-01-01

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  11. Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Area de Ingenieria en Recursos Energeticos, Iztapalapa (Mexico)

    2014-07-01

    A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)

  12. Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod

    International Nuclear Information System (INIS)

    Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G.

    2014-01-01

    A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)

  13. Material operating behaviour of ABB BWR control rods

    International Nuclear Information System (INIS)

    Rebensdorff, B.; Bart, G.

    2000-01-01

    The BWR control rods made by ABB use boron carbide (B 4 C and hafnium as absorber material within a cladding of stainless steel. The general behaviour under operation has proven to be very good. ABB and many of their control rod customers have performed extensive inspection programs of control rod behaviour. However, due to changes in the material properties under fast and thermal neutron irradiation defects may occur in the control rods at high neutron fluences. Examinations of irradiated control rod materials have been performed in hot cell laboratories. The examinations have revealed the defect mechanism Irradiation Assisted Stress Corrosion Cracking (IASCC) to appear in the stainless steel cladding. For IASCC to occur three factors have to act simultaneously. Stress, material sensitization and an oxidising environment. Stress may be obtained from boron carbide swelling due to irradiation. Stainless steel may be sensitized to intergranular stress corrosion cracking under irradiation. Normally the reactor environment in a BWR is oxidising. The presentation focuses on findings from hot cell laboratory work on irradiated ABB BWR control rods and studies of irradiated control rod materials in the hot cells at PSI. Apart from physical, mechanical and microstructural examinations, isotope analyses were performed to describe the local isotopic burnup of boron. Consequences (such as possible B 4 C washout) of a under operation in a ABB BWR, after the occurrence of a crack is discussed based on neutron radiographic examinations of control rods operated with cracks. (author)

  14. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  15. The mechanical structure of the SVEA BWR fuel

    International Nuclear Information System (INIS)

    Nylund, O.; Johansson, A.; Junkrans, S.

    1985-01-01

    The SVEA BWR fuel assembly design is characterized by a double-wall cruciform internal structure forming an internal water gap and dividing the assembly into 4 subbundles. The effect is a favourable distribution of fuel and moderator, a minimum amount of structural material in active core, a combination of structural stability and flexibility for minimum control rod friction in reduced gaps and a reduced creep deformation of the fuel assembly. The results of a laboratory test program confirm the much lower friction force obtained with the SVEA fuel assemblies while withdrawing and inserting the control rod. (RF)

  16. Fuel assemblies for use in BWR type reactors

    International Nuclear Information System (INIS)

    Hirukawa, Koji.

    1987-01-01

    Purpose: To moderate the peak configuration of the burnup degree change curve for the infinite multiplication factor by applying an improvement to the arrangement of fuel rods. Constitution: In a fuel assembly for a BWR type reactor comprising a plurality of fuel rods and water rods arranged in a square lattice, fuel rods containing burnable poisons are arranged at four corners at the second and the third layers from the outside of the square lattice arrangement. Among them, the Cd poison effect in the burnable poison incorporated fuel rods disposed at the second layer is somewhat greater at the initial burning stage and then rapidly decreased along with burning. While on the other hand, the poison effect of the burnable poison-incorporated fuel rods at the third layer is smaller than that at the second layer at the initial burning stage and the reduction in the poison effect due to burning is somewhat more moderate. Since these fuel rods are in adjacent with each other, they interfere to each other and also provide an effect of moderating the burning of the burnable poisons. (Takahashi, M.)

  17. An optimized BWR fuel lattice for improved fuel utilization

    International Nuclear Information System (INIS)

    Bernander, O.; Helmersson, S.; Schoen, C.G.

    1984-01-01

    Optimization of the BWR fuel lattice has evolved into the water cross concept, termed ''SVEA'', whereby the improved moderation within bundles augments reactivity and thus improves fuel cycle economy. The novel design introduces into the assembly a cruciform and double-walled partition containing nonboiling water, thus forming four subchannels, each of which holds a 4x4 fuel rod bundle. In Scandinavian BWRs - for which commercial SVEA reloads are now scheduled - the reactivity gain is well exploited without adverse impact in other respects. In effect, the water cross design improves both mechanical and thermal-hydraulic performance. Increased average burnup is also promoted through achieving flatter local power distributions. The fuel utilization savings are in the order of 10%, depending on the basis of comparison, e.g. choice of discharge burnup and lattice type. This paper reviews the design considerations and the fuel utilization benefits of the water cross fuel for non-Scandinavian BWRs which have somewhat different core design parameters relative to ASEA-ATOM reactors. For one design proposal, comparisons are made with current standard 8x8 fuel rod bundles as well as with 9x9 type fuel in reactors with symmetric or asymmetric inter-assembly water gaps. The effect on reactivity coefficients and shutdown margin are estimated and an assessment is made of thermal-hydraulic properties. Consideration is also given to a novel and advantageous way of including mixed-oxide fuel in BWR reloads. (author)

  18. Fuel assemblies for BWR type reactors

    International Nuclear Information System (INIS)

    Ishizuka, Takao.

    1981-01-01

    Purpose: To enable effective failed fuel detection by the provision of water rod formed with a connecting section connected to a warmed water feed pipe of a sipping device at the lower portion and with a warmed water jetting port in the lower portion in a fuel assembly of a BWR type reactor to thereby carry out rapid sipping. Constitution: Fuel rods and water rods are contained in the channel box of a fuel assembly, and the water rod is provided at its upper portion with a connecting section connected to the warmed water feed pipe of the sipping device and formed at its lower portion with a warmed water jetting port for jetting warmed water fed from the warmed water feed pipe. Upon detection of failed fuels, the reactor operation is shut down and the reactor core is immersed in water. The cover for the reactor container is removed and the cap of the sipping device is inserted to connect the warmed water feed pipe to the connecting section of the water rod. Then, warmed water is fed to the water rod and jetted out from the warmed water jetting port to cause convection and unify the water of the channel box in a short time. Thereafter, specimen is sampled and analyzed for the detection of failed fuels. (Moriyama, K.)

  19. BWR fuel assembly having fuel rod spacers axially positioned by exterior springs

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1988-01-01

    In a fuel assembly having spaced fuel rods, an outer hollow tubular flow channel surrounding the fuel rods so as to direct flow of coolant/moderator fluid there-along, and at least one spacer being disposed along the channel and about the fuel rods so as to maintain them in side-by-side spaced relationship, an arrangement for disposing the spacer in a desired axial position along the fuel rods is described comprising: yieldably resilient springs disposed between an interior side of the outer channel and an exterior side of the spacer. The springs have an inherent spring bias directed away from the exterior sides of the spacers and toward the interior side of the channel such that by contact with the channel and spacer the springs assume states in which they are deflected away from the channel interior side so as to exert sufficient compressive contacting force thereon to maintain the spacer substantially stationary in the desired axial position along the fuel rods

  20. BWR fuel experience with zinc injection

    International Nuclear Information System (INIS)

    Levin, H.A.; Garcia, S.E.

    1995-01-01

    In 1982 a correlation between low primary recirculation system dose rates in BWR's and the presence of ionic zinc in reactor water was identified. The source of the zinc was primarily from Admiralty brass condensers. Plants with brass condensers are called ''natural zinc'' plants. Brass condensers were also a source of copper that was implicated in crude induced localized corrosion (CILC) fuel failures. In 1986 the first BWR intentionally injected zinc for the benefits of dose rate control. Although zinc alone was never implicated in fuel degradation of failures, a comprehensive fuel surveillance program was initiated to monitor fuel performance. Currently there are 14 plants that are injecting zinc. Six of these plants are also on hydrogen water chemistry. This paper describes the effect on both Zircaloy corrosion and the cruding characteristics as a result of these changes in water chemistry. Fuel rod corrosion was found to be independent of the specific water chemistry of the plants. The corrosion behavior was the same with the additions of zinc alone or zinc plus hydrogen and well within the operating experience for fuel without either of these additions. No change was observed in the amounts of crude deposited on the fuel rods, both for the adherent and loosely held deposits. One of the effects of the zinc addition was the trend to form more of the zinc rich iron spinel in the fuel deposits rather than the hematite deposits that are predominantly formed with non additive water chemistry

  1. Behavior of small-sized BWR fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio; Horiki, Oichiro; Chen Dianshan; Takeuchi, Kiyoshi.

    1992-01-01

    The present work was performed on this small-sized BWR fuel, where Zr liner and rod prepressurization were taken as experimental parameters. Experiment was done under simulated reactivity initiated accident (RIA) conditions at Nuclear Safety Research Reactor (NSRR) belonged to Japan Atomic Energy Research Institute (JAERI). Major remarks obtained are as follows: (1) Three different types of the fuel rods consisted of (a) Zr lined/pressurized (0.65MPa), (b) Zr lined/non-pressurized and (c) non-Zr lined/pressurized (o.65MPa) were used, respectively. Failure thresholds of these were not less than that (260 cal/g·fuel) described in Japanese RIA Licensing Guideline. Small-sized BWR and conventional 8 x 8 BWR fuels were considered to be in almost the same level in failure threshold. Failure modes of the three were (a) cladding melt/brittle, (b) cladding melt/brittle and (c) rupture by large ballooning, respectively. (2) The magnitude of pressure pulse at fuel fragmentation was also studied by lined/pressurized and non-lined/pressurized fuels. Above the energy deposition of 370 cal/g·fuel, mechanical energy (or pressure) was found to be released from these fragmented fuels. No measurable difference was, however, observed between the tested fuels and NSRR standard (and conventional 8 x 8 BWR) fuels. (3) It is worthy of mentioning that Zr liner tended to prevent the cladding from large ballooning. Non-lined/pressurized fuel tended to cause wrinkle deformation at cladding. Hence, cladding external was notched much by the wrinkles. (4) Time to fuel failure measured from the tested BWR fuels (pressurization < 0.6MPA) was longer than that measured from PWR fuels (pressurization < 3.2MPa). The magnitude of the former was of the order of 3 ∼ 6s, while that of the latter was < 1s. (J.P.N.)

  2. Fuel rod for use in BWR type reactor

    International Nuclear Information System (INIS)

    Takeuchi, Kiyoshi.

    1989-01-01

    A hollow intermediate end plug is disposed to a plenum portion of a fuel rod and a plenum spring is disposed between the end plug and the upper end of a fuel pellet. Then, a hollow portion is disposed between the intermediate end plug and an upper end plug. Thus, since a only a non exothermic portion is present from the intermediate end plug to the upper end plug, oxidation, corrosion, etc. to the fuel can are not caused so much as in the exothermic portion. Accordingly, the wall thickness of the fuel may be reduced to such a extent as only capable of withstanding the external pressure by coolants and the increasing inner pressure due to the release of FP gases and, accordingly, the wall thickness can be reduced as compared with that of the fuel portion in the fuel can. Further, since the power density per unit length of the fuel rod is reduced for fuels with increased number of fuel rods, it is possible to design so as to reduce the release amount of FP gases thereby decreasing the plenum volume. Further, since the surface area in the coolant phase stream portion is reduced, it can be expected for decreasing the pressure loss of fuels and accompanying effect for improving the channel stability. (T.M.)

  3. BWR type nuclear reactors

    International Nuclear Information System (INIS)

    Yamamoto, Toru.

    1987-01-01

    Purpose: To obtain reactor core characteristics with less changes in the excess reactivity due to fuel burnup even when the operation period varies. Constitution: In a BWR type reactor where fuel assemblies containing fuel rods incorporated with burnable poisons are arranged, the fuel assemblies are grouped into first fuel assemblies and second fuel assemblies. Then, the number of fuel rods incorporated with burnable poisons within the first fuel assemblies is made greater than that of the second fuel rods, while the concentration of the burnable poisons in the fuel rods incorporated with the burnable poisons in the first fuel assemblies is made lower than that of the fuel rods incorporated with the burnable poisons in the second fuel assemblies. In the BWR type reactor constituted in this way, the reactor core characteristics can be improved by changing the ratio between the first fuel assemblies and the second fuel assemblies charged to the reactor core, thereby decreasing the changes in the burnup of the excess reactivity. (Kamimura, M.)

  4. Control rod pattern exchange in a BWR/6 utilizing gang mode withdrawal

    International Nuclear Information System (INIS)

    Auvil, A.B. Jr.; Aldemir, T.; Hajek, B.K.

    1986-01-01

    The use of checkerboard pattern of alternating inserted and fully withdrawn control rods and the uneven void distribution in boiling water reactor (BWR) cores can cause large burnup gradients even after a short time of operation. To compensate for these effects, power has to be reshaped periodically (typically every two full-power months) by individually manipulating the control rods. During this manipulation process (called the control rod pattern exchange), the core power is reduced to 60% of nominal power by means of flow reduction to limit power swings to tolerable levels and to ensure that fuel thermal limits are not exceeded. A control rod pattern exchange by individual rod manipulation typically takes 4 to 8 h and represents a large cost burden to the utility in terms of reduced system output. The latest generation of BWRs, the BWR/6, possesses the capability to simultaneously move up to four symmetrically located control rods. The rods corresponding to a given gang may have rotational symmetry, mirror symmetry, or a combination of the two. This paper presents a pattern exchange procedure that exploits the capability of gang mode rod withdrawal to reduce the pattern exchange execution time and radial power distribution asymmetry associated with individual rod manipulation. The working model used in the study is the Perry Nuclear Power Plant Unit 1, located in Perry, Ohio, and owned by the Cleveland Electric Illuminating Company

  5. Prototypical spent nuclear fuel rod consolidation equipment: Phase 2, Final design report: Volume 4, Appendices: Part 3

    International Nuclear Information System (INIS)

    Ciez, A.P.

    1987-01-01

    The purpose of this manual is to provide assembly, installation, operation, maintenance, and off-normal recovery procedures for the Consolidation Equipment. The Consolidation System is a horizontal, dry system capable of processing one Pressurized Water Reactor (PWR) fuel assembly or one Boiling Water Reactor (BWR) fuel assembly at a time. The system will process all spent PWR and BWR fuels from the commercial US nuclear power reactor industry. Component changeouts for various fuel types have been minimized to reduce costs, required in-cell module storage space, and to increase efficiency by decreasing set-up time between fuel consolidation campaigns. The most important feature of the Westinghouse system is the ability to control the fuel rods at all times during the consolidation process from rod extraction, through canister loading. This features assures that the rods from two PWR fuel assemblies or four BWR fuel assemblies (minimum) can be loaded into one consolidated rods canister

  6. On-line, in-core measurement of the thermal conductivity of a BWR fuel rod with a tenacious crud deposit

    International Nuclear Information System (INIS)

    Bennett, Peter

    2012-09-01

    Several corrosion-related fuel failures in US BWRs have been reported where the failed rods had thick, tenacious crud deposits, including events at River Bend and Browns Ferry. Although investigations did not identify the root cause of these failures, it was noted that there was an industry perception that the level of crud on the fuel in a number of plants - including Browns Ferry - particularly those using NMCA, zinc and moderate to high Fe, was too high from a fuel performance perspective. The exact role of the crud was unknown, but there was a suspicion that some unknown water chemistry condition was responsible for the failures at Browns Ferry. Fuel failures have also occurred in Limerick-1, Cycle 2 and in Vermont Yankee, although the direct role of crud in these cases was not clear. While laboratory measurements have shown that the thermal conductivities of the species comprising the crud are not lower than that of ZrO 2 , the effect of the crud in impeding heat transfer has been implicated in the failure mechanisms. It is believed that steam blanketing (formation of a layer of steam between the rod surface and the crud) may be the cause of failure. Hence, to determine whether crud deposits impede heat transfer and thus cause or contribute to rod failure, it is necessary to measure their thermal conductivity during power operation under representative thermal-hydraulic and water chemistry conditions. The purpose of this test, conducted in the Halden Reactor, was to measure the heat transfer through BWR crud at power. Two test rods were manufactured from segments of a fuel rod irradiated in a commercial BWR to a burn-up of 41 GWd/MTU; one test rod had a thin crud layer (< 5 μm) while the other had a thick layer (> 25 μm). The rods were irradiated under representative thermal-hydraulic and water chemistry conditions (25 kW/m, 275 deg. C, outlet void fraction 4 per cent, 300 - 400 ppb H 2 ). Each rod was instrumented with a cladding elongation detector, and

  7. Radial power density distribution of MOX fuel rods in the HBWR

    International Nuclear Information System (INIS)

    Koo, Yang Hyun; Joo, Hyung Kook; Lee, Byung Ho; Sohn, Dong Seong

    1999-07-01

    Two MOX fuel rods, which ar being fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with the Korea Atomic Energy Research Institute (KAERI), are going to be irradiated in the HBWR (Halden Boiling Water Reactor) from the beginning of 2000 in the framework of OECD Halden Reactor Programme (HRP) together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is a basic property in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR H BWR that calculates radial power density distribution for three MOX fuel rods have been developed subroutine FACTOR H BWR gives good agreement with the physics calculation except slight underprediction in the central part and a little overprediction at the outer part of the pellet. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. (author). 5 refs., 3 tabs., 24 figs

  8. First interim examination of defected BWR and PWR rods tested in unlimited air at 2290C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Cook, J.A.

    1983-01-01

    A five-year whole rod test was initiated to investigate the long-term stability of spent fuel rods under a variety of possible dry storage conditions. Both PWR and BWR rods were included in the test. The first interim examination was conducted after three months of testing to determine if there was any degradation in those defected rods stored in an unlimited air atmosphere. Visual observations, diametral measurements and radiographic smears were used to assess the degree of cladding deformation and particulate dispersal. The PWR rod showed no measurable change from the pre-test condition. The two original artificial defects had not changed in appearance and there was no diametral growth of the cladding. One of the defects in BWR rod showed significant deformation. There was approximately 10% cladding strain at the defect site and a small axial crack had formed. The fuel in the defect did not appear to be friable. The second defect showed no visible change and no cladding strain. Following examination, the test was continued at 230 0 C. Another interim examination is planned during the summer of 1983. This paper discusses the details and meaning of the data from the first interim examination

  9. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, P.C. [BNFL International Transport, Spent Fuel Services (United Kingdom); Dallongeville, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme.

  10. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    International Nuclear Information System (INIS)

    Purcell, P.C.; Dallongeville, M.

    2004-01-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme

  11. AREVA 10x10 BWR fuel experience feedback and on going upgrading

    International Nuclear Information System (INIS)

    Lippert, Hans Joachim; Rentmeister, Thomas; Garner, Norman; Tandy, Jay; Mollard, Pierre

    2008-01-01

    Established with engineering and manufacturing operations in the US and Europe, AREVA NP has been and is supplying nuclear fuel assemblies and associated core components to boiling water reactors worldwide, representing today more than 63 000 fuel assemblies. The evolution of BWR fuel rod arrays from early 6x6 designs to the 10x10 designs first introduced in the mid 1990's yielded significant improvements in thermal mechanical operating limits, critical power level, cold shutdown margin, discharge burnup, as well as other key operational capabilities. Since first delivered in 1992, ATRIUM T M 1 0 fuel assemblies have now been supplied to a total of 32 BWR plants in the US, Europe, and Asia resulting in an operating experience over 20 000 fuel assemblies. This article presents in detail the operational experience consolidated by these more than 20 000 ATRIUM T M 1 0 BWR assemblies already supplied to utilities. Within the different 10x10 fuel assemblies available, the Fuel Assembly design is chosen and tailored to the operating strategies of each reactor. Among them, the latest versions of ATRIUM T M a re ATRIUM T M 1 0XP and ATRIUM T M 1 0XM fuel assemblies which have been delivered to several utilities worldwide. The article details key aspects of ATRIUM T M 1 0 fuel assemblies in terms of reliability and performance. Special attention is paid to key proven features, ULTRAFLOW T M s pacer grids, the use of part length fuel rods (PLFRs) and their geometrical optimization, water channel and load chain, upgraded features available for inclusion with most advanced designs. Regular upgrading of the product has been made possible thanks to a continuous improvement process with the aim of further upgrading BWR fuel assembly performance and reliability. Regarding thermal mechanical behavior of fuel rods, chromia (Cr2O3) doped fuel pellets, described in Reference 1, well illustrate this improvement strategy to reduce fission gas release, increase power thresholds for PCI

  12. Determination and microscopic study of incipient defects in irradiated power reactor fuel rods. Final report

    International Nuclear Information System (INIS)

    Pasupathi, V.; Perrin, J.S.; Roberts, E.

    1978-05-01

    This report presents the results of nondestructive and destructive examinations carried out on the Point Beach-1 (PWR) and Dresden-3 (BWR) candidate fuel rods selected for the study of pellet-clad interaction (PCI) induced incipient defects. In addition, the report includes results of examination of sections from Oskarshamn-1 (BWR) fuel rods. Eddy current examination of Point Beach-1 rods showed indications of possible incipient defects in the fuel rods. The profilometry and the gamma scan data also indicated that the source of the eddy current indications may be incipient defects. No failed rods or rods with incipient failure were found in the sample from Point Beach-1. Despite the lack of success in finding incipient defects and filed rods, the mechanism for fuel rod failures in Point Beach-1 is postulated to be PCI-related, with high startup rates and fuel handling being the key elements. Nine out of the 10 candidate fuel rods from Dresden-3 (BWR) were failed, and all the failed rods had leaked water so that the initial mechanism was observed. Examination of clad inner surfaces of the specimens from failed and unfailed rods showed fuel deposits of widely varying appearance. The deposits were found to contain uranium, cesium, and tellurium. Transmission electron microscopy of clad specimens showed evidence of microscopic strain. Metallographic examination of fuel pellets from the peak transient power location showed extensive grain boundary separation and axial movement of the fuel indicative of rapid release of fission products. Examination of Oskarshamn clad specimens did not show any stress corrosion crack (SCC) type defects. The defects found in the examinations appear to be related to secondary hydriding. The clad inner surface of the Oskarshamn specimens also showed uranium-rich deposits of varying features

  13. Radial power density distribution of MOX fuel rods in the IFA-651

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Ho; Koo, Yang Hyun; Joo, Hyung Kook; Cheon, Jin Sik; Oh, Je Yong; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    Two MOX fuel rods, which were fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with Korea Atomic Energy Research Institute, have been irradiated in the HBWR from June, 2000 in the framework of OECD-HRP together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is basic in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR{sub H}BWR that calculates radial power density distribution for three MOX fuel rods has been developed based on neutron physics results and DEPRESS program. The developed subroutine FACTOR{sub H}BWR gives good agreement with the physics calculation except slight under-prediction at the outer part of the pellet above the burnup of 20 MWd/kgHM. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. 24 figs., 4 tabs. (Author)

  14. BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test

    International Nuclear Information System (INIS)

    Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino

    2002-01-01

    Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)

  15. Sphere-pac versus pellet UO2 fuel in de Dodewaard BWR

    International Nuclear Information System (INIS)

    Linde, A. van der.

    1989-04-01

    Comparative testing of UO 2 sphere-pac and pellet fuel rods under LWR conditions has been jointly performed by the Netherlands Utilities Research Centre (KEMA) in Arnhem, the Netherlands Energy Research Foundation (ECN) at Petten and the Netherlands Joint Nuclear Power Utility (GKN) at Dodewaard. This final report summarizes the highlights of this 1968-1988 program with strong emphasis on the fuel rods irradiated in the Dodewaard BWR. The conclusion reached is that under normal LWR conditions sphere-pac UO 2 in LWR fuel rods offers better resistance against stress corrosion cracking of the cladding, but that under fast, single step, power ramping conditions pellet UO 2 in LWR fuel rods has a better resistance against hoop stress failure of the cladding. 128 figs., 36 refs., 19 tabs

  16. Subchannel analysis of a critical power test, using simulated BWR 8x8 fuel assembly

    International Nuclear Information System (INIS)

    Mitsutake, T.; Terasaka, H.; Yoshimura, K.; Oishi, M.; Inoue, A.; Akiyama, M.

    1990-01-01

    Critical power predictions have been compared with the critical power test data obtained in simulated BWR 8x8 fuel rod assemblies. Two analytical methods for the critical power prediction in rod assemblies are used in the prediction, which are the subchannel analysis using the COBRA/BWR subchannel computer code with empirical critical heat flux (CHF) correlations and the liquid film dryout estimation using the CRIPP-3F 'multi-fluid' computer code. Improvements in both the analytical methods were made for spacer effect modeling, though they were specific for application to the current BWR rod assembly type. In general a reasonable agreement was obtained, though comparisons, between the prediction and the obtained test data. (orig.)

  17. Improved point-kinetics model for the BWR control rod drop accident

    International Nuclear Information System (INIS)

    Neogy, P.; Wakabayashi, T.; Carew, J.F.

    1985-01-01

    A simple prescription to account for spatial feedback weighting effects in RDA (rod drop accident) point-kinetics analyses has been derived and tested. The point-kinetics feedback model is linear in the core peaking factor, F/sub Q/, and in the core average void fraction and fuel temperature. Comparison with detailed spatial kinetics analyses indicates that the improved point-kinetics model provides an accurate description of the BWR RDA

  18. High fidelity analysis of BWR fuel assembly with COBRA-TF/PARCS and trace codes

    International Nuclear Information System (INIS)

    Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G.; Soler, A.

    2013-01-01

    The growing importance of detailed reactor core and fuel assembly description for light water reactors (LWRs) as well as the sub-channel safety analysis requires high fidelity models and coupled neutronic/thermalhydraulic codes. Hand in hand with advances in the computer technology, the nuclear safety analysis is beginning to use a more detailed thermal hydraulics and neutronics. Previously, a PWR core and a 16 by 16 fuel assembly models were developed to test and validate our COBRA-TF/PARCS v2.7 (CTF/PARCS) coupled code. In this work, a comparison of the modeling and simulation advantages and disadvantages of modern 10 by 10 BWR fuel assembly with CTF/PARCS and TRACE codes has been done. The objective of the comparison is making known the main advantages of using the sub-channel codes to perform high resolution nuclear safety analysis. The sub-channel codes, like CTF, permits obtain accurate predictions, in two flow regime, of the thermalhydraulic parameters important to safety with high local resolution. The modeled BWR fuel assembly has 91 fuel rods (81 full length and 10 partial length fuel rods) and a big square central water rod. This assembly has been modeled with high level of detail with CTF code and using the BWR modeling parameters provided by TRACE. The same neutronic PARCS's model has been used for the simulation with both codes. To compare the codes a coupled steady state has be performed. (author)

  19. Status of work on the final repository concept concerning direct disposal of spent fuel rods in fuel rod casks (BSK)

    International Nuclear Information System (INIS)

    Filbert, W.; Wehrmann, J.; Bollingerfehr, W.; Graf, R.; Fopp, S.

    2008-01-01

    The reference concept in Germany on direct final storage of spent fuel rods is the burial of POLLUX containers in the final repository salt dome. The POLLUX container is self-shielded. The final storage concept also includes un-shielded borehole storage of high-level waste and packages of compacted waste. GNS has developed a spent fuel container (BSK-3) for unshielded borehole storage with a mass of 5.2 tons that can carry the fuel rods of three PWR reactors of 9 BWR reactors. The advantages of BSK storage include space saving, faster storage processes, less requirements concerning technical barriers, cost savings for self-shielded casks.

  20. Results of modeling advanced BWR fuel designs using CASMO-4

    International Nuclear Information System (INIS)

    Knott, D.; Edenius, M.

    1996-01-01

    Advanced BWR fuel designs from General Electric, Siemens and ABB-Atom have been analyzed using CASMO-4 and compared against fission rate distributions and control rod worths from MCNP. Included in the analysis were fuel storage rack configurations and proposed mixed oxide (MOX) designs. Results are also presented from several cycles of SIMULATE-3 core follow analysis, using nodal data generated by CASMO-4, for cycles in transition from 8x8 designs to advanced fuel designs. (author)

  1. 3D modeling of missing pellet surface defects in BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov; Williamson, R.L.; Stafford, D.S.; Novascone, S.R.; Hales, J.D.; Pastore, G.

    2016-10-15

    Highlights: • A global/local analysis procedure for missing pellet surface defects is proposed. • This is applied to defective BWR fuel under blade withdrawal and high power ramp conditions. • Sensitivity of the cladding response to key model parameters is studied. - Abstract: One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can be used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed here. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding

  2. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  3. LWR fuel rod testing facilities in high flux reactor (HFT) Petten for investigation of power cycling and ramping behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Markgraf, J; Perry, D; Oudaert, J [Commission of the European Communities, Joint Reserach Centre, Petten Establishment, Petten (Netherlands)

    1983-06-01

    LWR fuel rod irradiation experiments are being performed in HFR's Pool Side Facility (PSF) by means of pressurized boiling water capsules (BWFC). For more than 6 years the major application of these devices has been in performing irradiation programs to investigate the power ramp behaviour of PWR and BWR rods which have been pre-irradiated in power reactors. Irradiation devices with various types of monitoring instrumentation are available, e.g. for fuel rod length, fuel stack length, fuel rod internal pressure and fuel rod central temperature measurements. The application scope covers PWR and BWR fuel rods, with burn-up levels up to 45 MWd/kg(U), max. linear heat generation rates up to 700 W/cm and simulation of constant power change rates between 0.05 and 1000 W/cm.min. The paper describes the different designs of LWR fuel rod testing facilities and associated non-destructive testing devices in use at the HFR Petten. It also addresses the new test capabilities that will become available after exchange of the HFR vessel in 1983. Furthermore it shows some typical results. (author)

  4. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part); MCTP, un codigo para el analisis termo-mecanico de una barra combustible de reactores tipo BWR (Parte Neutronica)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H; Ortiz V, J [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  5. Analyzing the BWR rod drop accident in high-burnup cores

    International Nuclear Information System (INIS)

    Diamond, D.J.; Neymotin, L.; Kohut, P.

    1995-01-01

    This study was undertaken for the US Nuclear Regulatory Commission to determine the fuel enthalpy during a rod drop accident (RDA) for cores with high burnup fuel. The calculations were done with the RAMONA-4B code which models the core with 3-dimensional neutron kinetics and multiple parallel coolant channels. The calculations were done with a model for a BWR/4 with fuel bundles having burnups up to 30 GWd/t and also with a model with bundle burnups to 60 GWd/t. This paper also discusses potential sources of uncertainty in calculations with high burnup fuel. One source is the ''rim'' effect which is the extra large peaking of the power distribution at the surface of the pellet. This increases the uncertainty in reactor physics and heat conduction models that assume that the energy deposition has a less peaked spatial distribution. Two other sources of uncertainty are the result of the delayed neutron fraction decreasing with burnup and the positive moderator temperature feedback increasing with burnup. Since these effects tend to increase the severity of the event, an RDA calculation for high burnup fuel will underpredict the fuel enthalpy if the effects are not properly taken into account. Other sources of uncertainty that are important come from the initial conditions chosen for the RDA. This includes the initial control rod pattern as well as the initial thermal-hydraulic conditions

  6. On-line fuel and control rod integrity management in BWRs

    International Nuclear Information System (INIS)

    Larsson, Irina; Sihver, Lembit

    2011-01-01

    Surveillance of fuel and control rod integrity in a BWR core is essential to maintain a safe and reliable operation of a nuclear power plant. An accurate and prompt way to monitor fuel integrity in a reactor core during reactor operation is by using on-line measurements of the gamma emitting noble gas activities in the off-gas system. The integrity of control rods can be efficiently followed by on-line measurements of the helium (He) concentration in the off-gases. This method also gives information about fuel rod failures since He is used as a fill gas in the fuel rods. To survey fuel and control rod integrity during reactor operation, a system consisting of combined gamma and He on-line measurements in the off-gases should be used. Such a system can detect and follow the behavior of fuel and control rod failures. In addition, it can separate fuel failures from control rod failures since fuel rods contain both He and gamma emitting noble gases, while control rods only contain He. Moreover, the system is able to distinguish primary fuel failures from degradation of already existing ones. In this paper we present a combined system for on-line measurements of He and gamma emitting noble gases in the reactor off-gas system and measuring experiences from different BWRs. (author)

  7. Evaluation of LWR fuel rod behavior under operational transient conditions

    International Nuclear Information System (INIS)

    Nakamura, M.; Hiramoto, K.; Maru, A.

    1984-01-01

    To evaluate the effects of fission gas flow and diffusion in the fuel-cladding gap on fuel rod thermal and mechanical behaviors in light water reactor (LWR) fuel rods under operational transient conditions, computer sub-programs which can calculate the gas flow and diffusion have been developed and integrated into the LWR fuel rod performance code BEAF. This integrated code also calculates transient temperature distribution in the fuel-pellet and cladding. The integrated code was applied to an analysis of Inter Ramp Project data, which showed that by taking into account the gas flow and diffusion effects, the calculated cladding damage indices predicted for the failed rods in the ramp test were consistent with iodine-SCC (Stress Corrosion Cracking) failure conditions which were obtained from out-of-reactor pressurized tube experiments with irradiated Zircaloy claddings. This consistency was not seen if the gas flow and diffusion effects were neglected. Evaluation were also made for the BWR 8x8 RJ fuel rod temperatures under power ramp conditions. (orig.)

  8. Fuel rod pressure in nuclear power reactors: Statistical evaluation of the fuel rod internal pressure in LWRs with application to lift-off probability

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, Tomas

    2001-02-01

    In this thesis, a methodology for quantifying the risk of exceeding the Lift-off limit in nuclear light water power reactors is outlined. Due to fission gas release, the pressure in the gap between the fuel pellets and the cladding increases with burnup of the fuel. An increase in the fuel-clad gap due to clad creep would be expected to result in positive feedback, in the form of higher fuel temperatures, leading to more fission gas release, higher rod pressure, etc, until the cladding breaks. An increase in the fuel-clad gap that leads to this positive feedback is a phenomenon called Lift-off and is a limitation that must be considered in the fuel core management. Lift-off is a consequence of very high internal fuel rod pressure. The internal fuel rod pressure is therefore used as a Lift-off indicator. The internal fuel rod pressure is closely connected to the fission gas release into the fuel rod plenum and is thus used to increase the database. It is concluded that the dominating error source in the prediction of the pressure in Boiling Water Reactors (BWR), is the power history. There is a bias in the fuel pressure prediction that is dependent on the fuel rod position in the fuel assembly for BWRs. A methodology to quantify the risk of the fuel rod internal pressure exceeding a certain limit is developed; the risk is dependent of the pressure prediction and the fuel rod position. The methodology is based on statistical treatment of the discrepancies between predicted and measured fuel rod internal pressures. Finally, a methodology to estimate the Lift-off probability of the whole core is outlined.

  9. In-core failure of the instrumented BWR rod by locally induced high coolant temperature

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1985-12-01

    In the BWR type light water loop instrumented in HBWR, a current BWR type fuel rod pre-irradiated up to 5.6 MWd/kgU was power ramped to 50 kW/m. During the ramp, the diameter of the rod was expanded significantly at the bottom end. The behaviour was different from which caused by pellet-cladding interaction (PCI). In the post-irradiation examination, the rod was found to be failed. In this paper, the cause of the failure was studied and obtained the followings. (1) The significant expansion of the rod diameter was attributed to marked oxidation of cladding outer diameter, appeared in the direction of 0 0 -180 0 degree with a shape of nodular. (2) The cladding in the place was softened by high coolant temperature. Coolant pressure, 7MPa intruded the cladding into inside chamfer void at pellet interface. (3) At the place of the significant oxidation, an instrumented transformer was existed and the coolant flow area was very little. The reduction of the coolant flow was enhanced by the bending of the cladding which was caused in pre-irradiation stage. They are considered to be a principal cause of local closure of coolant flow and resultant high temperature in the place. (author)

  10. Fuel rod failure due to marked diametral expansion and fuel rod collapse occurred in the HBWR power ramp experiment

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1985-12-01

    In the power ramp experiment with the BWR type light water loop at the HBWR, the two pre-irradiated fuel rods caused an unexpected pellet-cladding interaction (PCI). One occurred in the fuel rod with small gap of 0.10 mm, which was pre-irradiated up to the burn-up of 14 MWd/kgU. At high power, the diameter of the rod was increased markedly without accompanying significant axial elongation. The other occurred in the rod with a large gap of 0.23 mm, which was pre-irradiated up to the burn-up of 8 MWd/kgU. The diameter of the rod collapsed during a diameter measurement at the maximum power level. The causes of those were investigated in the present study by evaluating in-core data obtained from equipped instruments in the experiment. It was revealed from the investigation that these behaviours were attributed to the local reduction of the coolant flow occurred in the region of a transformer in the ramp rig. The fuel cladding material is seemed to become softened due to temperature increase caused by the local reduction of the coolant flow, and collapsed by the coolant pressure, either locally or wholly depending on the rod diametral gap existed. (author)

  11. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Hernandez L, H.

    2003-01-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  12. Fuel cycle and waste management. 2. Design of a BWR Core with Over-moderated MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Francois, J.L.; Del Campo, C. Martin

    2001-01-01

    The use of uranium-plutonium mixed-oxide (MOX) fuel in light water reactors is a current practice in several countries. Generally one-third of the reactor core is loaded with MOX fuel assemblies, and the other two-thirds is loaded with uranium assemblies. Nevertheless, the plutonium utilization could be more effective if the full core could be loaded with MOX fuel. In this work, the design of a boiling water reactor (BWR) core fully loaded with over-moderated MOX fuel designs was investigated. In previous work, the design of over-moderated BWR MOX fuel assemblies based on a 10 x 10 lattice was presented; these designs improve the neutron spectrum and the plutonium consumption rate, compared with standard MOX assemblies. To increase the moderator-to-fuel ratio (MFR), two approaches were followed. In the first approach, 8 or 12 fuel rods were replaced by water rods in the 10x10 assembly, which increased the MFR from 1.9 to 2.2 and 2.4, respectively. These designs are called MOX-8WR and MOX-12WR, respectively, in this paper. In the second approach, an 11 x 11 lattice with 24 water rods (11 x 11-24WR) was designed, which is a design with a number of active fuel rods (88) very close to the standard MOX assembly (91). The fuel rod diameter is smaller to preserve the assembly dimensions, and in this last case, the MFR is 2.4. The calculations were performed with the CM-PRESTO three-dimensional steady-state simulator. The nuclear data banks were generated with the HELIOS system, and they were processed by TABGEN to produce tables of nuclear cross sections depending on burnup, void, and exposure weighted void (void history), which are used by CM-PRESTO. One base reload pattern was designed for a BWR/5 rated at 1931 MW(thermal), to be used with the different over-moderated assembly designs. The reload pattern has 112 fresh fuel assemblies (FFAs) out of a total of 444 fuel assemblies and was simulated during 20 cycles with the Haling strategy, until an equilibrium cycle of

  13. Large bundle BWR test CORA-18: Test results

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1998-04-01

    The CORA out-of-pile experiments are part of the international Severe Fuel Damage (SFD) Program. They were performed to provide information on the damage progression of Light Water Reactor (LWR) fuel elements in Loss-of-coolant Accidents in the temperature range 1200 C to 2400 C. CORA-18 was the large BWR bundle test corresponding to the PWR test CORA-7. It should investigate if there exists an influence of the BWR bundle size on the fuel damage behaviour. Therefore, the standard-type BWR CORA bundle with 18 fuel rod simulators was replaced by a large bundle with two additional surrounding rows of 30 rods (48 rods total). Power input and steam flow were increased proportionally to the number of fuel rod simulators to give the same initial heat-up rate of about 1 K/s as in the smaller bundles. Emphasis was put on the initial phase of the damage progression. More information on the chemical composition of initial and intermediate interaction products and their relocation behaviour should be obtained. Therefore, power and steam input were terminated after the onset of the temperature escalation. (orig.) [de

  14. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-09-01

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt % gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 μm in thickness after burnups of 11 to 30 MWd/kgU. For one of the BWRs, which was operated at 307 degree C rather than the normal 288 degree C, a relatively thick (50 to 70 μm) uniform oxide, rather than nodular oxides, was observed after a burnup of 27 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conductive to nodular oxidation. 23 refs., 9 figs

  15. Studies on the fission products behavior during dissolution process of BWR spent fuel

    International Nuclear Information System (INIS)

    Sato, K.; Nakai, E.; Kobayashi, Y.

    1987-01-01

    In order to obtain basic data on fission products behavior in connection with the head end process of fuel reprocessing, especially to obtain better understanding on undissolved residues, small scale dissolution studies were performed by using BWR spent fuel rods which were irradiated as monitoring fuel rods under the monitoring program for LWR fuel assembly performance entitled PROVING TEST ON RELIABILITY OF FUEL ASSEMBLY . The Zircaloy-2 claddings and the fuel pellets were subjected individually to the following studies on 1) release of fission products during dissolution process, 2) characterization of undissolved residues, and 3) analysis of the claddings. This paper presents comprehensive descriptions of the fission products behavior during dissolution process, based on detailed and through PIE conducted by JNFS under the sponsorship of MITI (Ministry of International Trade and Industry)

  16. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    International Nuclear Information System (INIS)

    Cole, Steven E.; Garner, Norman L.; Lippert, Hans-Joachim; Graebert, Rüdiger; Mollard, Pierre; Hahn, Gregory C.

    2014-01-01

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  17. Impact of newly-measured gadolinium cross sections on BWR fuel rod reaction rate distributions

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.; Perret, G.; Murphy, M.; Grimm, P.; Seiler, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne (Switzerland)

    2008-07-01

    Recent measurements of capture and total cross sections performed at the Rensselaer Polytechnic Institute in the USA confirmed many of the gadolinium thermal and resonant neutron cross section parameters within uncertainties, but they also showed up important discrepancies well out of uncertainties, such as an approx11% overestimation of the {sup 157}Gd thermal capture cross section in ENDF/B-VI and -VII with respect to the newly measured data. In this work, the impact of the newly measured gadolinium cross sections on BWR reactor physics parameters has been preliminarily evaluated. The comparisons of rod-by-rod fission rate and modified conversion ratio predictions with selected cold critical experiments at the PROTEUS reactor in Switzerland show the potential to resolve long-term unexplained discrepancies. (authors)

  18. Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up

    DEFF Research Database (Denmark)

    Carlsen, H.

    1980-01-01

    Two UO2Zr BWR type test fuel rods were irradiated to a burn-up of about 38000 MWd/tUO2. After non-destructive characterization, the fission gas released to the internal free volume was extracted and analysed. The irradiation was simulated by means of the Danish fuel performance code WAFER-2, which...

  19. BWROPT: A multi-cycle BWR fuel cycle optimization code

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Keith E.; Maldonado, G. Ivan, E-mail: Ivan.Maldonado@utk.edu

    2015-09-15

    Highlights: • A multi-cycle BWR fuel cycle optimization algorithm is presented. • New fuel inventory and core loading pattern determination. • The parallel simulated annealing algorithm was used for the optimization. • Variable sampling probabilities were compared to constant sampling probabilities. - Abstract: A new computer code for performing BWR in-core and out-of-core fuel cycle optimization for multiple cycles simultaneously has been developed. Parallel simulated annealing (PSA) is used to optimize the new fuel inventory and placement of new and reload fuel for each cycle considered. Several algorithm improvements were implemented and evaluated. The most significant of these are variable sampling probabilities and sampling new fuel types from an ordered array. A heuristic control rod pattern (CRP) search algorithm was also implemented, which is useful for single CRP determinations, however, this feature requires significant computational resources and is currently not practical for use in a full multi-cycle optimization. The PSA algorithm was demonstrated to be capable of significant objective function reduction and finding candidate loading patterns without constraint violations. The use of variable sampling probabilities was shown to reduce runtime while producing better results compared to using constant sampling probabilities. Sampling new fuel types from an ordered array was shown to have a mixed effect compared to random new fuel type sampling, whereby using both random and ordered sampling produced better results but required longer runtimes.

  20. Prediction of droplet deposition around BWR fuel spacer by FEM flow analysis

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shinichi

    1997-01-01

    The critical power of the BWR fuel assembly has been remarkably increased. That increase mainly depends on the improvement of the spacer which keeps fixed gaps between fuel rods. So far, these improvements have been carried out on the basis of what developers consider to be appropriate and the results of mockup tests of the BWR fuel assembly. However, continued reliance on these approaches for the development of a higher performance fuel assembly will prove time-consuming and costly. Therefore, it is hoped that the spacer effects for the critical power can be investigated by computer simulation, and it is significantly important to develop the critical power prediction method. Direct calculation of the two-phase flow in a BWR fuel channel s still difficult. Accordingly, a new method for predicting the critical power was proposed. Our method consists of CFD (computer fluid dynamics) code based on the single-phase flow analysis method and the subchannel analysis code. To verify our method, the critical power predictions for various spacer geometries were performed. The predicted results of the critical power were compared with the experimental data. The result of the comparison showed a good agreement and the applicability of our method for various spacer geometries. (author)

  1. Parametric study of the behaviour of a pre irradiated BWR fuel rod under conditions of LOCA simulated in the halden in pile test system with the FALCON code

    Energy Technology Data Exchange (ETDEWEB)

    Khvostov, G.; Zimmermann, M. A. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institut, Villigen (Switzerland); Ledergerber, G. [Kernkraftwerk Leibstadt AG, Leibstadt (Switzerland); Kolstad, E. [Institute for Energy Technology - OECD Halden Reactor Project, Halden (Norway); Montgomery, R. O. [Anatech Corporation, San Diego (United States)

    2008-10-15

    A new LOCA test at Halden was planned as the first experiment within the Halden LOCA program addressing the behaviour of commercially irradiated BWR fuel of medium burn up with burst of the cladding expected to occur at a temperature of about 1050.deg.C, which is essentially higher than in the preceding experiments. The specific measures to be adopted have been suggested based upon a parametric study using the FALCON fuel behaviour code and aimed at an optimized design of the test fuel rod for the given high target cladding temperature of 1150 .deg. C (peak local). The analysis has shown a reasonable agreement with the fundamental experimental findings, such as correlations of NUREG 0630, as well as consistency with the data from Halden LOCA testing available so far. Thus, a general conclusion is drawn about the applicability of the methodology developed at PSI to the analysis of LWR fuel rod behaviour during LOCA, in consideration of the effects of fuel burn up.

  2. Three dimensional considerations in thermal-hydraulics of helical cruciform fuel rods for LWR power uprates

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush, E-mail: kshirvan@mit.edu; Kazimi, Mujid S.

    2014-04-01

    Highlights: • We benchmarked the 4 × 4 helical cruciform fuel (HCF) bundle pressure drop experimental data with CFD. • We also benchmarked the 4 × 4 HCF mixing experimental data with CFD. • We derived new friction factors for PWR and BWR designs at PWR and BWR operating conditions from CFD. • We showed the importance of modeling the 3D conduction in HCF in steady state and transient conditions. - Abstract: In order to increase the power density of current and new light water reactor designs, the helical cruciform fuel (HCF) rods have been proposed. The HCF rod is equivalent to a thin cylindrical rod, with 4 fuel containing vanes, wrapped around it. The HCF rods increase the surface area to volume ratio of the fuel and enhance the inter-subchannel mixing due to their helical shape. The rods do not need supporting grids, as they are packed to periodically contact their neighbors along the flow direction, enabling a higher power density in the core. The HCF rods were reported to have the potential to uprate existing PWRs by 45% and BWRs by 20%. In order to quantify the mixing behavior of the HCF rods based on their twist pitch, experiments were previously performed at atmospheric pressures with single phase water in a 4 by 4 HCF and cylindrical rod bundles. In this paper, the experimental results on pressure drop and mixing are benchmarked with computational fluid dynamic (CFD) using steady state the Reynolds average Navier–Stokes (RANS) turbulence model. The sensitivity of the CFD approach to computational domain, mesh size, mesh shape and RANS turbulence models are examined against the experimental conditions. Due to the refined radial velocity profile from the HCF rods twist, the turbulence models showed little sensitivity to the domain. Based on the CFD simulations, the total pressure drops under the PWR and BWR conditions are expected to be about 10% higher than the values previously reported solely from an empirical correlation based on the

  3. Estimation of dose rate around the spent control rods of a BWR

    International Nuclear Information System (INIS)

    Cancino P, G.

    2016-01-01

    The energy can come from fossil renewable sources (solar (natural gas, oil), wind, hydro, tidal, geothermal, biomass, bio energy and nuclear. Nuclear power can be obtained by fission reactions and fusion (still under investigation) atomic nuclei. Fission, is a partition of a very heavy nucleus (Uranium 235, for example) into two lighter nuclei. Much of the world's electric power is generated from the energy released by fission processes. In a nuclear power reactor, light water as the BWR, there are many important elements that allow safe driving operation, one of them are the elements or control systems, the burnable poison or neutron absorber inherently allow control power reactor. The control rods, which consist mostly of stainless steel and absorbing elements (such as boron carbide, hafnium, cadmium, among others) of thermal neutrons is able to initiate, regulate or stop the reactor power. These, due to the use of depleted burned or absorbing material and therefore reach their lifespan, which can be 15 years or have other values depending on the manufacturer. Control rods worn should be removed, stored or confined in expressly places. Precisely at this stage arises the importance of knowing their radiological condition to manipulate safely and without incident to the people health responsible for conducting these proceedings state arises. This thesis consists in the estimation of the dose rate in spent control rod made of boron carbide, from a typical BWR reactor. It will be estimated by direct radiation measurements with measurement equipment for radiotherapy ionization chamber, in six spent control rods, which were taken at different reactor operating cycles and are in a spent fuel pool. Using bracket electromechanical and electronic equipment for positioning and lifting equipment for radiation measurement around the control rod in the axial and radial arrangement for proper scanning. Finally will be presented a graphic corresponding to the dose

  4. Feasibility studies of computed tomography in partial defect detection of spent BWR fuel

    International Nuclear Information System (INIS)

    Levai, F.; Tikkinen, J.; Tarvainen, M.; Arlt, R.

    1990-10-01

    Feasibility studies were made for tomographic reconstruction of a cross-sectional activity distribution of a spent nuclear fuel assembly. The purpose was to determine the number of fuel rods (pins) and localize the positisons where pins are missing. The activity distribution map showing the locations of fuel rods in the assembly was reconstructed. The theoretical part of this work consists of simulation of image reconstruction based on theoretically calculated data from a reference assembly model. Evaluation of different image reconstruction techniques was made. Measurements were made in real facility conditions. Gamma radiation from an irradiated 8 x 8 - 1 BWR fuel assembly was measured through a narrow custom made collimator from different angles and positions. The measured data set was used as projections for reconstructing the activity profile of the assembly in cross-sectional plane

  5. Siemens Nuclear Power Corporation experience with BWR and PWR fuels

    International Nuclear Information System (INIS)

    Reparaz, A.; Smith, M.H.; Stephens, L.G.

    1992-01-01

    The large data base of fuel performance parameters available to Siemens Nuclear Power Corporation (SNP), and the excellent track record of innovation and fuel reliability accumulated over the last twenty-three years, allows SNP to have a clear insight on the characteristics of future developments in the area of fuel design. Following is a description of some of SNP's recent design innovations to prevent failures and to extend burnup capabilities. A goal paramount to the design and manufacture of BWR and PWR fuel is that of zero defects from any case during its operation in the reactor. Progress has already been made in achieving this goal. This paper summarized the cumulative failure rate of SNP fuel rod through January 1992

  6. Cladding tube of fuel rod for a BWR type reactor

    International Nuclear Information System (INIS)

    Nakayama, Hitoshi; Fujie, Kunio; Kuwahara, Heikichi; Hirai, Tadamasa; Kakizaki, Kimio.

    1976-01-01

    Object: To form a cladding tube wall with tunnels in communication with the exterior through a number of small-diameter openings to rapidly disperse a large quantity of heat thereby providing high density of the fuel rod. Structure: Tunnels adjacent to each other are provided under the skin in contact with cooling liquid of a cladding tube, and a number of openings through which said tunnels and the periphery of the cladding tube are placed in communication are formed, said openings each having its section smaller than that of said tunnel. With this arrangement, the cooling water entered the tunnel through some of small diameter openings absorbs heat of the fuel rod to be vaporized, which is flown out into the cooling water through the other small diameter openings and formed into vapor bubbles which move up for release of heat. (Taniai, N.)

  7. Analysis of effects of pellet-cladding bonding on trapping of the released fission gases in high burnup KKL BWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Brankov, Vladimir [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Khvostov, Grigori; Mikityuk, Konstantin [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Pautz, Andreas [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Restani, Renato; Abolhassani, Sousan [Laboratory for Nuclear Materials at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Ledergerber, Guido [Kernkraftwerk Leibstadt, 5325 Leibstadt (Switzerland); Wiesenack, Wolfgang [Institutt for Energiteknikk - OECD Halden Reactor Project, Os Allé 5, 1777 Halden (Norway)

    2016-08-15

    Highlights: • Explanation for the scatter in measured fission gas release in high-BU BWR fuel rods. • Partial fuel-clad bond layer formation in high-BU BWR fuel. • Hypothesis for fission gas trapping facilitated by the pellet-cladding bond layer. • Correlation between burnup asymmetry and the quantity of trapped fission gas. • Implications of the trapped FG in LOCA transient. - Abstract: The first part of the paper presents results of a numerical analysis of the fuel behavior during base irradiation in the Kernkraftwerk Leibstadt Boiling Water Reactor (KKL BWR) using EPRI’s FALCON code coupled to GRSW-A – an advanced model for fuel swelling and fission gas release. Post-irradiation examinations conducted at the Paul Scherrer Institute’s (PSI) hot laboratory gave evidence of a distinct circumferential non-uniformity of local burnup at pellet surfaces. For several fuel samples, intact pellet-cladding bonding areas on the high burnup sides of the pellets at high burnup above ∼70 MWd/kgU were observed. It is hypothesized that a part of the fission gases, which are expected to be released by those areas, can be trapped and do not reach the rod plenum. In this paper, a simple approach to modeling of fission gas trapping is employed which reveals a potential correlation between the position of the rod within the fuel assembly (and therefore the degree of circumferential burnup non-uniformity) and the degree of fission gas trapping. A model is suggested to correlate the amount of locally trapped gas with the integral of the local contact pressure and the degree of circumferential burnup non-uniformity. The model is calibrated with available measurements of FGR from rod puncturing at the level of the plenums. In future work, the hypothesis about the axial distribution of trapped fission gas will be extrapolated to the Loss-Of-Coolant Accident (LOCA) analysis as an attempt to explain the fission gas release observed in some samples fabricated from

  8. Mechanical interaction between fuel pins and assemblies during LOCA in BWR

    International Nuclear Information System (INIS)

    Jonsson, T.

    1978-10-01

    The size of the rod elongation by oxidation is so large that deformation of a standard BWR fuel element with tie rods in the outer row will surely occur during a LOCA transient typical for BWRs with external pumps. Available data does not however show whether this deformation will occur early in the transient or during the cooling. Combined effects of thermal expansion of zircaloy and expansion due to oxidation and dissolution of oxygen can be expected to be large enough to cause rod bowing early in a LOCA transient. It is however not impossible that observed residual expansion of zircaloy tubes to a dominating extent are caused through expansion of zirconium oxide during cool-down. Length measurements of zircaloy tubes during a transient are desirable. (author)

  9. BWR ATWS mitigation by Fine Motion Control Rod

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.; Mallen, A.; Diamond, D.

    1994-01-01

    Two main methods of ATWS mitigation in a SBWR are: fine Motion control Rods (FMCRD) and Boron injection via the Standby Liquid control System (SLCS). This study has demonstrated that the use of FMCRD along with feedwater runback mitigated the conditions due to reactivity insertion and possible ATWS in a BWR which is similar to SBWR

  10. Thermal hydraulic test of advanced fuel bundle with spectral shift rod (SSR) for BWR. Effect of thermal hydraulic parameters on steady state characteristics

    International Nuclear Information System (INIS)

    Kondo, Takao; Kitou, Kazuaki; Chaki, Masao; Ohga, Yukiharu; Makigami, Takeshi

    2011-01-01

    Japanese national project of next generation light water reactor (LWR) development started in 2008. Under this project, spectral shift rod (SSR) is being developed. SSR, which replaces conventional water rod (WR) of boiling water reactor (BWR) fuel bundle, was invented to enhance the BWR's merit, spectral shift effect for uranium saving. In SSR, water boils by neutron and gamma-ray direct heating and water level is formed as a boundary of the upper steam region and the lower water region. This SSR water level can be controlled by core flow rate, which amplifies the change of average core void fraction, resulting in the amplified spectral shift effect. This paper presents the steady state test results of the base geometry case in SSR thermal hydraulic test, which was conducted under the national project of next generation LWR. In the test, thermal hydraulic parameters, such as flow rate, pressure, inlet subcooling and heater rod power are changed to evaluate these effects on SSR water level and other SSR characteristics. In the test results, SSR water level rose as flow rate rose, which showed controllability of SSR water level by flow rate. The sensitivities of other thermal hydraulic parameters on SSR water level were also evaluated. The obtained data of parameter's sensitivities is various enough for the further analytical evaluation. The fluctuation of SSR water level was also measured to be small enough. As a result, it was confirmed that SSR's steady state performance was as planned and that SSR design concept is feasible. (author)

  11. Advanced BWR core component designs and the implications for SFD analysis

    International Nuclear Information System (INIS)

    Ott, L.J.

    1997-01-01

    Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B 4 C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities

  12. Fundamentals of boiling water reactor (BWR)

    International Nuclear Information System (INIS)

    Bozzola, S.

    1982-01-01

    These lectures on fundamentals of BWR reactor physics are a synthesis of known and established concepts. These lectures are intended to be a comprehensive (even though descriptive in nature) presentation, which would give the basis for a fair understanding of power operation, fuel cycle and safety aspects of the boiling water reactor. The fundamentals of BWR reactor physics are oriented to design and operation. In the first lecture general description of BWR is presented, with emphasis on the reactor physics aspects. A survey of methods applied in fuel and core design and operation is presented in the second lecture in order to indicate the main features of the calculational tools. The third and fourth lectures are devoted to review of BWR design bases, reactivity requirements, reactivity and power control, fuel loading patterns. Moreover, operating limits are reviewed, as the actual limits during power operation and constraints for reactor physics analyses (design and operation). The basic elements of core management are also presented. The constraints on control rod movements during the achieving of criticality and low power operation are illustrated in the fifth lecture. Some considerations on plant transient analyses are also presented in the fifth lecture, in order to show the impact between core and fuel performance and plant/system performance. The last (sixth) lecture is devoted to the open vessel testing during the startup of a commercial BWR. A control rod calibration is also illustrated. (author)

  13. Prediction of interfacial area transport in a scaled 8×8 BWR rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Schlegel, J.P.; Liu, Y.; Paranjape, S.; Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Bajorek, S.; Ireland, A. [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

    2016-12-15

    In the two-fluid model, it is important to give an accurate prediction for the interfacial area concentration. In order to achieve this goal, the interfacial area transport equation has been developed. This study focuses on the benchmark of IATE performance in a rod bundle geometry. A set of interfacial area concentration source and sink term models are proposed for a rod bundle geometry based on the confined channel IATE model. This model was selected as a basis because of the relative similarity of the two geometries. Benchmarking of the new model with interfacial area concentration data in an 8×8 rod bundle test section which has been scaled from an actual BWR fuel bundle is performed. The model shows good agreement in bubbly and cap-bubbly flows, which are similar in many types of geometries, while it shows some discrepancy in churn-turbulent flow regime. This discrepancy may be due to the geometrical differences between the actual rod bundle test facility and the facility used to collect the data which benchmarked the original source and sink models.

  14. Valuation of power oscillations in a BWR after control rod banks withdrawal events

    International Nuclear Information System (INIS)

    Costa, A. L.; Pereira, C.; Da Silva, C. A. M.; Veloso, M. A. F.

    2009-01-01

    The out-of-phase mode of oscillation is a very challenging type of instability occurring in BWR (Boiling Water Reactor) and its study is relevant because of the safety implications related to the capability to promptly detect any such inadvertent occurrence by in-core neutron detectors, thus triggering the necessary countermeasures in terms of selected rod insertion or even reactor shutdown. In this work, control rod banks (CRB) withdrawal transient was considered to study the power instability occurring in a BWR. To simulate this transient, the control rod banks were continuously removed from the BWR core in different cases. The simulation resulted in a very large increase of power. To perform the instability simulations, the RELAP5/MOD3.3 thermal hydraulic system code was coupled with the PARCS/2.4 3D neutron kinetic code. Data from a real BWR, the Peach Bottom, have been used as reference conditions and reactor parameters. The trend of the mass flow rate, pressure, coolant temperature and the void fraction to four thermal hydraulic channels symmetrically located in the core with respect to the core centre, were taken. It appears that the velocity of the rod bank withdrawal is a very important aspect for reactor stability. The slowest CRB withdrawal (180 s) did not cause power perturbation while the fast removal (20 s) triggered a slow power oscillation that little by little amplified to reach levels of more 100% of the initial power after about 210 s. The investigation of the related thermo hydraulic parameters showed that the mass flow rate, the void fraction and also the coolant temperature began to oscillate at approximately the same time interval

  15. Maintenance of BWR control rod drive mechanisms

    International Nuclear Information System (INIS)

    Greene, R.H.

    1991-01-01

    Control rod drive mechanism (CRDM) replacement and rebuilding is one of the highest dose, most physically demanding, and complicated maintenance activities routinely accomplished by BWR utilities. A recent industry workshop sponsored by the Oak Ridge National Laboratory, which dealt with the effects of CRDM aging, revealed enhancements in maintenance techniques and tooling which have reduced ALARA, improved worker comfort and productivity, and have provided revised guidelines for CRDM changeout selection. Highlights of this workshop and ongoing research on CRDM aging are presented in this paper

  16. Performance of artificially defected LWR fuel rods in an unlimited air dry storage atmosphere

    International Nuclear Information System (INIS)

    Einziger, R.E.; Knecht, R.L.; Cantley, D.A.; Cook, J.A.

    1983-09-01

    Thus far the tests are inconclusive as to whether breached LWR fuel can be stored at 230 0 C for long periods of time in air without fuel oxidation and dispersion. There is every indication, as expected, that there is no oxidation problem in an inert atmosphere. Only one of four defects exposed to unlimited air gave any indication of fuel oxidation. It has been suggested that this might be an incubation effect and continued operation would result in oxidation occurring at all four defects. As yet the destructive examination of the BWR rod has not been completed, so it is not possible to determine if cladding splitting was due to an anomoly in this test rod or something that can be expected in LWR rods in general. Thus far there is no indication of respirable particle dispersal even if fuel oxidation does occur

  17. Analysis of Core Physics Experiments on Irradiated BWR MOX Fuel in REBUS Program

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Ando, Yoshihira; Hayashi, Yamato

    2008-01-01

    As part of analyses of experimental data of a critical core containing a irradiated BWR MOX test bundle in the REBUS program, depletion calculations was performed for the BWR MOX fuel assemblies from that the MOX test rods were selected by using a general purpose neutronics code system SRAC. The core analyses were carried out using SRAC and a continuous energy Monte Carlo code MVP. The calculated k eff s were compared with those of the core containing a fresh MOX fuel bundle in the program. The SRAC-diffusion calculation underestimates k eff s of the both cores by 1.0 to 1.3 %dk and the k eff s of MVP are 1.001. The difference in k eff between the irradiated BWR MOX test bundle core and the fresh MOX one is 0.4 %dk in the SRAC-diffusion calculation and 0.0 %dk in the MVP calculation. The calculated fission rate distributions are in good agreement with the measurement in the SRAC-diffusion and MVP calculations. The calculated neutron flux distributions are also in good agreement with the measurement. The calculated burnup reactivity in the both calculations well reproduce the measurements. (authors)

  18. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  19. Calculation device for fuel power history in BWR type reactors

    International Nuclear Information System (INIS)

    Sakagami, Masaharu.

    1980-01-01

    Purpose: To enable calculations for power history and various variants of power change in the power history of fuels in a BWR type reactor or the like. Constitution: The outputs of the process computation for the nuclear reactor by a process computer are stored and the reactor core power distribution is judged from the calculated values for the reactor core power distribution based on the stored data. Data such as for thermal power, core flow rate, control rod position and power distribution are recorded where the changes in the power distribution exceed a predetermined amount, and data such as for thermal power and core flow rate are recorded where the changes are within the level of the predetermined amount, as effective data excluding unnecessary data. Accordingly, the recorded data are taken out as required and the fuel power history and the various variants in the fuel power are calculated and determined in a calculation device for fuel power history and variants for fuel power fluctuation. (Furukawa, Y.)

  20. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  1. Fuel rod D07/B15 from Ringhals 2 PWR: Source material for corrosion/leach tests in groundwater. Fuel rod/pellet characterization program. Pt. 1

    International Nuclear Information System (INIS)

    Forsyth, R.

    1987-03-01

    A joint SKB/STUDSVIK experimental program to determine the corrosion rates and to establish the corrosion mechanisms of spent UO 2 fuel in groundwater under both oxidizing and reducing conditions is in progress in the Hot Cell Laboratory of Studsvik Energiteknik AB. High burnup fuel of both BWR and PWR type are studied. Characterization of the spent fuel at both rod and pellet level is an important part of the experimental program. Experiments on PWR fuel have been concentrated so far on specimens from one rod, manufacturer's number 03688, which had occupied position B15 in assembly D07. This assembly had been irradiated for 5 cycles in the Ringhals 2 reactor between 1977 and 1983. The calculated assembly burnup was 41.3 MWd/kg U. The present report is a collection of separate reports describing those items in the characterization program which have been performed so far. No overall summary of the experimental results is given here, and the report should be viewed as a collection of reference data. (orig.)

  2. Method of inserting fuel rod

    International Nuclear Information System (INIS)

    Kamimoto, Shuji; Imoo, Makoto; Tsuchida, Kenji.

    1991-01-01

    The present invention concerns a method of inserting a fuel rod upon automatic assembling, automatic dismantling and reassembling of a fuel assembly in a light water moderated reactor, as well as a device and components used therefor. That is, a fuel rod is inserted reliably to an aimed point of insertion by surrounding the periphery of the fuel rod to be inserted with guide rods, and thereby suppressing the movement of the fuel rod during insertion. Alternatively, a fuel rod is inserted reliably to a point of insertion by inserting guide rods at the periphery of the point of insertion for the fuel rod to be inserted thereby surrounding the point of insertion with the guide rods or fuel rods. By utilizing fuel rods already present in the fuel assembly as the guide rods described above, the fuel rod can be inserted reliably to the point of insertion with no additional devices. Dummy fuel rods are previously inserted in a fuel assembly which are then utilized as the above-mentioned guide rods to accurately insert the fuel rod to the point of insertion. (I.S.)

  3. Finite element analysis of BWR fuel channel buckling during a seismic event

    International Nuclear Information System (INIS)

    Kinoshita, Mika; Iwamoto, Yuji; Ledford, Kevin; Cantonwine, Paul

    2014-01-01

    This paper documents the predicted response of three BWR fuel channel designs in bending using a typical moment profile for GNF fuel designs. The bending performance of the fuel channel is predicted using ANSYS, a finite element modeling tool. Specifically, linear and non-linear buckling analyses were performed to determine the onset of elastic buckling, which causes a wavy structure on the compression face in bending that might also increase channel – control blade friction, and to determine to onset of channel collapse, which causes permanent deformation and would inhibit control rod insertion. The three channel designs considered in this paper are the 0.080 inch uniform channel, the 0.100 inch uniform channel and the 0.120 inch uniform channel at the beginning of fuel life (BOL) and at the end of fuel life (EOL). (author)

  4. Automatic refueling platform and CRD remote handling device for BWR plant

    International Nuclear Information System (INIS)

    Kato, Hiroaki; Takagi, Kaoru

    1978-01-01

    In BWR plants, machines for replacing fuel assemblies and control rod drives are usually operated directly by personnel. An automatic refueling platform and a CRD remote handling device aiming at radiation exposure reduction and handling perfectness are described, which are already used in BWR plants. Automation of the former is achieved in transporting fuel assemblies between a reactor pressure vessel and a fuel storage pool, shuffling fuel assemblies in a reactor core and moving fuel assemblies in a fuel storage pool. In the latter, replacement of CRDs is nearly all performed remotely. (Mori, K.)

  5. Managing the aging of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.; Farmer, W.S.

    1992-01-01

    This Phase I Nuclear Plant Aging Research (NPAR) study examines the aging phenomena associated with BWR control and rod drive mechanisms (CRDMs) and assesses the merits of various methods of ''imaging'' this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of the Nuclear Plant Reliability Data System (NPRDS) failure cases attributed to the control rod drive (CRD) system, and (4) personal information exchange with nuclear industry CRDM maintenance experts. The report documenting the findings of this research, NUREG-5699, will be published this year. Nearly 23% of the NPRDS CRD system component failure reports were attributed to the CRDM. The CRDM components most often requiring replacement due to aging are the Graphitar seals. The predominant causes of aging for these seals are mechanical wear and thermal embrittlement. More than 59% of the NPRDS CRD system failure reports were attributed to components that comprise the hydraulic control unit (HCU). The predominant HCU components experiencing the effects of service wear and aging are value seals, discs, seats, stems, packing, and diaphragms

  6. Safety analysis of thorium-based fuels in the General Electric Standard BWR

    International Nuclear Information System (INIS)

    Colby, M.J.; Townsend, D.B.; Kunz, C.L.

    1980-06-01

    A denatured (U-233/Th)O 2 fuel assembly has been designed which is energy equivalent to and hardware interchangeable with a modern boiling water reactor (BWR) reference reload assembly. Relative to the reference UO 2 fuel, the thorium fuel design shows better performance during normal and transient reactor operation for the BWR/6 product line and will meet or exceed current safety and licensing criteria. Power distributions are flattened and thermal operating margins are increased by reduced steam void reactivity coefficients caused by U-233. However, a (U-233/Th)O 2 -fueled BWR will likely have reduced operating flexibility. A (U-235/Th)O 2 -fueled BWR should perform similar to a UO 2 -fueled BWR under all operating conditions. A (Pu/Th)O 2 -fueled BWR may have reduced thermal margins and similar accident response and be less stable than a UO 2 -fueled BWR. The assessment is based on comparisions of point model and infinite lattice predictions of various nuclear reactivity parameters, including void reactivity coefficients, Doppler reactivity coefficients, and control blade worths

  7. Cross-sections for homogenized BWR fuel elements in 2d-diffusion theory by 1d-transport calculations

    International Nuclear Information System (INIS)

    Ambrosius, G.

    1980-01-01

    Leakage has a large influence on the thermal spectrum in a fuel rod cell of a BWR and originates: a) from rods with different absorptions and; b) from the different distances to the water gaps. Due to reason a) Gd-rods are treated together with a ring of the homogenized eight nearest neighbours. The often used definition of homogenized cross-sections as the ratio of the integrated reaction rate to the integrated flux proved to be inadequate. This homogenization method is exact as far as the flux is constant over the boundary and as the leakag e during calculating the homogenized cross-sections is similar to that during application. With respect to the condition b) a 1d-transport calculation for the whole fuel element with rings or slabs of homogenized fuel rod cells is performed. With the definition above the flux distribution is that of the fluxes in the moderator regions. The spectrum within each fuel rod cell which includes the leakage is calculated by superimposing at each energy on the flux distribution in the cell the flux at the cell position from the bundle calculation. Changes in the flux ratio between fuel and moderator due to the leakage are taken into account in a final few group 2d-diffusion calculation with fuel and (moderator + cladding) taken separately

  8. PWR and BWR spent fuel assembly gamma spectra measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, S. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Tobin, S.J.; Favalli, A. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hu, J. [Oak Ridge National Laboratory, Oak Ridge (United States); Schwalbach, P. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company (SKB) (Sweden); Trellue, H.; Vo, D. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-10-11

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of {sup 137}Cs, {sup 154}Eu, and {sup 134}Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  9. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    Kato, Shigeru.

    1993-01-01

    In the fuel assembly of the present invention, a means for mounting and securing short fuel rods is improved. Not only long fuel rods but also short fuel rods are disposed in channel of the fuel assembly to improve reactor safety. The short fuel rods are supported by a screw means only at the lower end plug. The present invention prevents the support for the short fuel rod from being unreliable due to the slack of the screw by the pressure of inflowing coolants. That is, coolant abutting portions such as protrusions or concave grooves are disposed at a portion in the channel box where coolants flowing from the lower tie plate, as an uprising stream, cause collision. With such a constitution, a component caused by the pressure of the flowing coolants is formed. The component acts as a rotational moment in the direction of screwing the male threads of the short fuel rod into the end plug screw hole. Accordingly, the screw is not slackened, and the short fuel rods are mounted and secured certainly. (I.S.)

  10. Development of CFD analysis method based on droplet tracking model for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Onishi, Yoichi; Minato, Akihiko; Ichikawa, Ryoko; Mashara, Yasuhiro

    2011-01-01

    It is well known that the minimum critical power ratio (MCPR) of the boiling water reactor (BWR) fuel assembly depends on the spacer grid type. Recently, improvement of the critical power is being studied by using a spacer grid with mixing devices attaching various types of flow deflectors. In order to predict the critical power of the improved BWR fuel assembly, we have developed an analysis method based on the consideration of detailed thermal-hydraulic mechanism of annular mist flow regime in the subchannels for an arbitrary spacer type. The proposed method is based on a computational fluid dynamics (CFD) model with a droplet tracking model for analyzing the vapor-phase turbulent flow in which droplets are transported in the subchannels of the BWR fuel assembly. We adopted the general-purpose CFD software Advance/FrontFlow/red (AFFr) as the base code, which is a commercial software package created as a part of Japanese national project. AFFr employs a three-dimensional (3D) unstructured grid system for application to complex geometries. First, AFFr was applied to single-phase flows of gas in the present paper. The calculated results were compared with experiments using a round cellular spacer in one subchannel to investigate the influence of the choice of turbulence model. The analyses using the large eddy simulation (LES) and re-normalisation group (RNG) k-ε models were carried out. The results of both the LES and RNG k-ε models show that calculations of velocity distribution and velocity fluctuation distribution in the spacer downstream reproduce the experimental results qualitatively. However, the velocity distribution analyzed by the LES model is better than that by the RNG k-ε model. The velocity fluctuation near the fuel rod, which is important for droplet deposition to the rod, is also simulated well by the LES model. Then, to examine the effect of the spacer shape on the analytical result, the gas flow analyses with the RNG k-ε model were performed

  11. Gas pressure and gas purity analyzing device in nuclear fuel rod

    International Nuclear Information System (INIS)

    Mizutani, Chihiro; Hasegawa, Toru.

    1996-01-01

    The present invention provides a device for measuring and analyzing a pressure and a purity of a helium gas sealed in a BWR type nuclear fuel rod. Namely, a portion between a rotational shaft of an electromotive drill for perforating the fuel rod and a vacuum chamber is sealed with a magnetic fluid sealing material so that error factors can be recognized before and after the destruction detection (perforation) of a fuel rod. With such procedures, involving of an atmospheric air from the drill rotational shaft upon perforation can be eliminated. As a result, accuracy for the measurement can be improved. In addition, a filter is disposed to a pipeline connecting the vacuum chamber and the measuring system. With such a constitution, scattering of cutting dusts to the measuring system, troubles due to damages of a stop valve can be reduced. As a result, the efficiency of the measurement is improved. Further, a plurality kinds of gas collecting vessel having different capacities are connected in parallel to the pipeline of the measuring system. Then, the gas collecting vessels can be used selectively. As a result, the device can cope with a gas pressure over a wide range. (I.S.)

  12. Fuel rods

    International Nuclear Information System (INIS)

    Hattori, Shinji; Kajiwara, Koichi.

    1980-01-01

    Purpose: To ensure the safety for the fuel rod failures by adapting plenum springs to function when small forces such as during transportation of fuel rods is exerted and not to function the resilient force when a relatively great force is exerted. Constitution: Between an upper end plug and a plenum spring in a fuel rod, is disposed an insertion member to the lower portion of which is mounted a pin. This pin is kept upright and causes the plenum spring to function resiliently to the pellets against the loads due to accelerations and mechanical vibrations exerted during transportation of the fuel rods. While on the other hand, if a compression force of a relatively high level is exerted to the plenum spring during reactor operation, the pin of the insertion member is buckled and the insertion member is inserted to the inside of the plenum spring, whereby the pellets are allowed to expand freely and the failures in the fuel elements can be prevented. (Moriyama, K.)

  13. Nuclear fuel activity with minor actinides after their useful life in a BWR

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2016-09-01

    Nuclear fuel used in nuclear power reactors has a life cycle, in which it provides energy, at the end of this cycle is withdrawn from the reactor core. This used fuel is known as spent nuclear fuel, a strong problem with this fuel is that when the fuel was irradiated in a nuclear reactor it leaves with an activity of approximately 1.229 x 10 15 Bq. The aim of the transmutation of actinides from spent nuclear fuel is to reduce the activity of high level waste that must be stored in geological repositories and the lifetime of high level waste; these two achievements would reduce the number of necessary repositories, as well as the duration of storage. The present work is aimed at evaluating the activity of a nuclear fuel in which radioactive actinides could be recycled to remove most of the radioactive material, first establishing a reference of actinides production in the standard nuclear fuel of uranium at end of its burning in a BWR, and a fuel rod design containing 6% of actinides in an uranium matrix from the enrichment tails is proposed, then 4 standard uranium fuel rods are replaced by 4 actinide bars to evaluate the production and transmutation of the same, finally the reduction of actinide activity in the fuel is evaluated. (Author)

  14. Assessment of the prediction capability of the TRANSURANUS fuel performance code on the basis of power ramp tested LWR fuel rods

    International Nuclear Information System (INIS)

    Pastore, G.; Botazzoli, P.; Di Marcello, V.; Luzzi, L.

    2009-01-01

    The present work is aimed at assessing the prediction capability of the TRANSURANUS code for the performance analysis of LWR fuel rods under power ramp conditions. The analysis refers to all the power ramp tested fuel rods belonging to the Studsvik PWR Super-Ramp and BWR Inter-Ramp Irradiation Projects, and is focused on some integral quantities (i.e., burn-up, fission gas release, cladding creep-down and failure due to pellet cladding interaction) through a systematic comparison between the code predictions and the experimental data. To this end, a suitable setup of the code is established on the basis of previous works. Besides, with reference to literature indications, a sensitivity study is carried out, which considers the 'ITU model' for fission gas burst release and modifications in the treatment of the fuel solid swelling and the cladding stress corrosion cracking. The performed analyses allow to individuate some issues, which could be useful for the future development of the code. Keywords: Light Water Reactors, Fuel Rod Performance, Power Ramps, Fission Gas Burst Release, Fuel Swelling, Pellet Cladding Interaction, Stress Corrosion Cracking

  15. BWR type reactors

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1986-01-01

    Purpose: To enable to remove water not by way of mechanical operation in a reactor core and improve the fuel economy in BWR type reactors. Constitution: A hollow water removing rod of a cross-like profile made of material having a smaller neutron absorption cross section than the moderator is disposed to the water gap for each of unit structures composed of four fuel assemblies, and water is charged and discharged to and from the water removing rod. Water is removed from the water removing rod to decrease the moderators in the water gap to carry out neutron spectrum shift operation from the initial to the medium stage of reactor core cycles. At the final stage of the cycle, airs in the water removing rod are extracted and the moderator is introduced. The moderator is filled and the criticality is maintained with the accumulated nuclear fission materials. The neutron spectrum shift operation can be attained by eliminating hydrothermodynamic instability and using a water removing rod of a simple structure. (Horiuchi, T.)

  16. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type; Calculo de las razones de generacion de calor lineal que violen el limite termomecanico de deformacion plastica de la camisa en funcion del quemado de una barra combustible tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M.A.; Hernandez L, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mal@nuclear.inin.mx

    2003-07-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  17. Failed fuel rod detector

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Katsuya; Matsuda, Yasuhiko

    1984-05-02

    The purpose of the project is to enable failed fuel rod detection simply with no requirement for dismantling the fuel assembly. A gamma-ray detection section is arranged so as to attend on the optional fuel rods in the fuel assembly. The fuel assembly is adapted such that a gamma-ray shielding plate is detachably inserted into optional gaps of the fuel rods or, alternatively, the fuel assembly can detachably be inserted to the gamma-ray shielding plate. In this way, amount of gaseous fission products accumulated in all of the plenum portions in the fuel rods as the object of the measurement can be determined without dismantling the fuel assembly. Accordingly, by comparing the amounts of the gaseous fission products, the failed fuel rod can be detected.

  18. BWR fuel performance under advanced water chemistry conditions – a delicate journey towards zero fuel failures – a review

    International Nuclear Information System (INIS)

    Hettiarachchi, S.

    2015-01-01

    Boiling Water Reactors (BWRs) have undergone a variety of chemistry evolutions over the past few decades as a result of the need to control stress corrosion cracking of reactor internals, radiation fields and personnel exposure. Some of the advanced chemistry changes include hydrogen addition, zinc addition, iron reduction using better filtration technologies, and more recently noble metal chemical addition to many of the modern day operating BWRs. These water chemistry evolutions have resulted in changes in the crud distribution on fuel cladding material, Co-60 levels and the Rod oxide thickness (ROXI) measurements using the conventional eddy current techniques. A limited number of Post-Irradiation Examinations (PIE) of fuel rods that exhibited elevated oxide thickness using eddy current techniques showed that the actual oxide thickness by metallography is much lower. The difference in these observations is attributed to the changing magnetic properties of the crud affecting the rod oxide thickness measurement by the eddy current technique. This paper will review and summarize the BWR fuel cladding performance under these advanced and improved water chemistry conditions and how these changes have affected the goal to reach zero fuel failures. The paper will also provide a brief summary of some of the results of hot cell PIE, results of crud composition evaluation, crud spallation, oxide thickness measurements, hydrogen content in the cladding and some fuel failure observations. (author) Key Words: Boiling Water Reactor, Fuel Performance, Hydrogen Addition, Zinc Addition, Noble Metal Chemical Addition, Zero Leakers

  19. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.; Macivergan, R.; Mckenzie, G.W.

    1980-01-01

    An apparatus incorporating a microprocessor control is provided for automatically loading nuclear fuel pellets into fuel rods commonly used in nuclear reactor cores. The apparatus comprises a split ''v'' trough for assembling segments of fuel pellets in rows and a shuttle to receive the fuel pellets from the split ''v'' trough when the two sides of the split ''v'' trough are opened. The pellets are weighed while in the shuttle, and the shuttle then moves the pellets into alignment with a fuel rod. A guide bushing is provided to assist the transfer of the pellets into the fuel rod. A rod carousel which holds a plurality of fuel rods presents the proper rod to the guide bushing at the appropriate stage in the loading sequence. The bushing advances to engage the fuel rod, and the shuttle advances to engage the guide bushing. The pellets are then loaded into the fuel rod by a motor operated push rod. The guide bushing includes a photocell utilized in conjunction with the push rod to measure the length of the row of fuel pellets inserted in the fuel rod

  20. BWR control rod drive scram pilot valve monitoring system

    International Nuclear Information System (INIS)

    Soden, R.A.; Kelly, V.

    1984-01-01

    The control rod drive system in a Boiling Water Reactor is the most important safety system in the power plant. All components of the system can be verified except the solenoid operated, scram pilot valves without scramming a rod. The pilot valve mechancial works is the weak link to the control rod drive system. These pilot valves control the hydraulic system which applies pressure to the ''insert'' side of the control rod piston and vents the ''withdraw'' side of the piston causing the rods to insert during a scam. The only verification that the valve is operating properly is to scram the rod. The concern for this portion of the system is demonstrated by the high number of redundant components and complete periodic testing of the electrical circuits. The pilot valve can become hung-up through wear, fracture of internal components, mechanical binding, foreign material or chemicals left in the valve during maintenance, etc. If the valve becomes hung-up the electrical tests performed will not indicate this condition and scramming the rod is in jeopardy. Only an attempt to scram a rod will indicate the hung-up valve. While this condition exists the rod is considered inoperative. This paper describes a system developed at a nuclear power plant that monitors the pilot valves on the control rod drive system. This system utilizes pattern recognition to assure proper internal workings of the scram pilot valves to plant operators. The system is totally automatic such that each time the valve is operated on a ''half scram'', a printout is available to the operator along with light indication that each of the 370 valves (on one unit of a BWR) is operating properly. With this monitoring system installed, all components of the control rod drive system including the solenoid pilot valves can be verified as operational without scramming any rods

  1. BWR control rod drive scram pilot valve monitoring program

    International Nuclear Information System (INIS)

    Soden, R.A.; Kelly, V.

    1986-01-01

    The control rod drive system in a Boiling Water Reactor is the most important safety system in the power plant. All components of the system can be verified except the solenoid operated, scram pilot valves without scramming a rod. The pilot valve mechanical works is the weak link to the control rod drive system. These pilot valves control the hydraulic system which applies pressure to the insert side of the control rod piston and vents the withdraw side of the piston causing the rods to insert during a scram. The only verification that the valve is operating properly is to scram the rod. The concern for this portion of the system is demonstrated by the high number of redundant components and complete periodic testing of the electrical circuits. The pilot valve can become hung-up through wear, fracture of internal components, mechanical binding, foreign material or chemicals left in the valve during maintenance, etc. If the valve becomes hung-up the electrical tests performed will not indicate this condition and scramming the rod is in jeopardy. Only an attempt to scram a rod will indicate the hung-up valve. While this condition exists the rod is considered inoperative. This paper describes a system developed at a nuclear power plant that monitors the pilot valves on the control rod drive system. This system utilizes pattern recognition to assure proper internal workings of the scram pilot valves to plant operators. The system is totally automatic such that each time the valve is operated on a half scram, a printout is available to the operator along with light indication that each of the 370 valves (on one unit of a BWR) is operating properly. With this monitoring system installed, all components of the control rod drive system including the solenoid pilot valves can be verified as operational without scramming any rods

  2. High Fidelity BWR Fuel Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fraction and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.

  3. Recent BWR fuel management reactor physics advances

    International Nuclear Information System (INIS)

    Crowther, R.L.; Congdon, S.P.; Crawford, B.W.; Kang, C.M.; Martin, C.L.; Reese, A.P.; Savoia, P.J.; Specker, S.R.; Welchly, R.

    1982-01-01

    Improvements in BWR fuel management have been under development to reduce uranium and separative work (SWU) requirements and reduce fuel cycle costs, while also maintaining maximal capacity factors and high fuel reliability. Improved reactor physics methods are playing an increasingly important role in making such advances feasible. The improved design, process computer and analysis methods both increase knowledge of the thermal margins which are available to implement fuel management advance, and improve the capability to reliably and efficiently analyze and design for fuel management advances. Gamma scan measurements of the power distributions of advanced fuel assembly and advanced reactor core designs, and improved in-core instruments also are important contributors to improving 3-d predictive methods and to increasing thermal margins. This paper is an overview of the recent advances in BWR reactor physics fuel management methods, coupled with fuel management and core design advances. The reactor physics measurements which are required to confirm the predictions of performance fo fuel management advances also are summarized

  4. Field test and evaluation of the IAEA coincidence collar for the measurement of unirradiated BWR fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Keddar, A.

    1982-12-01

    The neutron coincidence counter has been field tested and evaluated for the measurement of boiling-water-reactor (BWR) fuel assemblies at the ASEA-ATOM Fuel Fabrication Facility. The system measures the 235 U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The 238 U content is measured in the passive mode without the AmLi neutron interrogatioin source. The field tests included both standard production movable fuel rods to investigate enrichment and absorber variations. Results gave a response standard deviation of 0.9% for the active case and 2.1% for the passive case in 1000-s measurement times. 10 figures, 2 tables

  5. Estimation of dose rate around the spent control rods of a BWR; Estimacion de la rapidez de dosis alrededor de las barras de control gastadas de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cancino P, G.

    2016-10-01

    The energy can come from fossil renewable sources (solar (natural gas, oil), wind, hydro, tidal, geothermal, biomass, bio energy and nuclear. Nuclear power can be obtained by fission reactions and fusion (still under investigation) atomic nuclei. Fission, is a partition of a very heavy nucleus (Uranium 235, for example) into two lighter nuclei. Much of the world's electric power is generated from the energy released by fission processes. In a nuclear power reactor, light water as the BWR, there are many important elements that allow safe driving operation, one of them are the elements or control systems, the burnable poison or neutron absorber inherently allow control power reactor. The control rods, which consist mostly of stainless steel and absorbing elements (such as boron carbide, hafnium, cadmium, among others) of thermal neutrons is able to initiate, regulate or stop the reactor power. These, due to the use of depleted burned or absorbing material and therefore reach their lifespan, which can be 15 years or have other values depending on the manufacturer. Control rods worn should be removed, stored or confined in expressly places. Precisely at this stage arises the importance of knowing their radiological condition to manipulate safely and without incident to the people health responsible for conducting these proceedings state arises. This thesis consists in the estimation of the dose rate in spent control rod made of boron carbide, from a typical BWR reactor. It will be estimated by direct radiation measurements with measurement equipment for radiotherapy ionization chamber, in six spent control rods, which were taken at different reactor operating cycles and are in a spent fuel pool. Using bracket electromechanical and electronic equipment for positioning and lifting equipment for radiation measurement around the control rod in the axial and radial arrangement for proper scanning. Finally will be presented a graphic corresponding to the dose

  6. Economic analysis of hydride fueled BWR

    International Nuclear Information System (INIS)

    Ganda, F.; Shuffler, C.; Greenspan, E.; Todreas, N.

    2009-01-01

    The economic implications of designing BWR cores with hydride fuels instead of conventional oxide fuels are analyzed. The economic analysis methodology adopted is based on the lifetime levelized cost of electricity (COE). Bracketing values (1970 and 3010 $/kWe) are used for the overnight construction costs and for the power scaling factors (0.4 and 0.8) that correlate between a change in the capital cost to a change in the power level. It is concluded that a newly constructed BWR reactor could substantially benefit from the use of 10 x 10 hydride fuel bundles instead of 10 x 10 oxide fuel bundles design presently in use. The cost saving would depend on the core pressure drop constraint that can be implemented in newly constructed BWRs - it is between 2% and 3% for a core pressure drop constraint as of the reference BWR, between 9% and 15% for a 50% higher core pressure drop, and between 12% and 21% higher for close to 100% core pressure. The attainable cost reduction was found insensitive to the specific construction cost but strongly dependent on the power scaling factor. The cost advantage of hydride fuelled cores as compared to that of the oxide reference core depends only weakly on the uranium and SWU prices, on the 'per volume base' fabrication cost of hydride fuels, and on the discount rate used. To be economically competitive, the uranium enrichment required for the hydride fuelled core needs to be around 10%.

  7. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  8. Maximum thermal loading test of BWR fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Yoshitaka; Yoshimura, Kunihiro; Nakamura, Satoshi; Ishizuka, Takao.

    1987-01-01

    Various proving tests on the reliability of nuclear power plants have been conducted at the Nuclear Power Engineering Test Center and at the Japan Power Plant Engineering and Inspection Corporation. The tests were initiated at the request of the Ministry of International Trade and Industry (MITI). Toshiba undertook one of the proving tests on the reliability of nuclear fuel assembly; the maximum thermal loading test of BWR fuel assembly from the Nuclear Power Engineering Test Center. These tests are part of the proving tests mentioned above, and their purpose is to confirm the reliability of the thermal hydraulic engineering techniques. Toshiba has been engaged for the past nine years in the design, fabrication and testing of the equipment. For the project, a test model fuel assembly was used to measure the critical power of the BWR fuel assembly and the void and fluidity of the coolant. From the test results, it has been confirmed that the heat is transferred safely from the fuel assembly to the coolant in the BWR nuclear power plant. In addition, the propriety and reliability of the thermal hydraulic engineering techniques for the fuel assembly have been proved. (author)

  9. Behaviour of the reactivity for BWR fuel cells; Comportamiento de la reactividad para celdas de combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Alonso, G.; Delfin, A.; Vargas, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: galonso@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2011-11-15

    In this work the behaviour of the reactivity of a fuel assembly type BWR was studied, the objective is to obtain some expressions that consider the average enrichment of U-235 and the gadolinium concentration like a function of the fuel cells burnt. Also, the applicability of the lineal reactivity model was analyzed for fuel cells type BWR. The analysis was carried out with the CASMO-4 code. (Author)

  10. BWR Spent Nuclear Fuel Interfacial Bonding Efficiency Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    The objective of this project is to perform a systematic study of spent nuclear fuel (SNF, also known as “used nuclear fuel” [UNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. Additional CIRFT testing was conducted on three HBR rods; two specimens failed, and one specimen was tested to over 2.23 × 107 cycles without failing. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of the SNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, eleven SNF rod segments from the Limerick BWR were tested using the ORNL CIRFT equipment; one test under static conditions and ten tests under dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at a maximum curvature of 4.0 m-1. The specimen did not show any sign of failure during three repeated loading cycles to a similar maximum curvature. Ten cyclic tests were conducted with amplitudes varying from 15.2 to 7.1 N·m. Failure was observed in nine of

  11. Apparatus for loading fuel pellets in fuel rods

    International Nuclear Information System (INIS)

    Tedesco, R.J.

    1976-01-01

    An apparatus is disclosed for loading fuel pellets into fuel rods for a nuclear reactor including a base supporting a table having grooves therein for holding a multiplicity of pellets. Multiple fuel rods are placed in alignment with grooves in the pellet table and a guide member channels pellets from the table into the corresponding fuel rods. To effect movement of pellets inside the fuel rods without jamming, a number of electromechanical devices mounted on the base have arms connected to the lower surface of the fuel rod table which cyclically imparts a reciprocating arc motion to the table for moving the fuel pellets longitudinally of and inside the fuel rods. These electromechanical devices include a solenoid having a plunger therein connected to a leaf type spring, the arrangement being such that upon energization of the solenoid coil, the leaf spring moves the fuel rod table rearwardly and downwardly, and upon deenergization of the coil, the spring imparts an upward-forward movement to the table which results in physical displacement of fuel pellets in the fuel rods clamped to the table surface. 8 claims, 6 drawing figures

  12. BWR stability: analysis of cladding temperature for high amplitude oscillations - 146

    International Nuclear Information System (INIS)

    Pohl, P.; Wehle, F.

    2010-01-01

    Power oscillations associated with density waves in boiling water reactors (BWRs) have been studied widely. Industrial research in this area is active since the invention of the first BWR. Stability measurements have been performed in various plants during commissioning phase but especially the magnitude and divergent nature of the oscillations during the LaSalle Unit 2 nuclear power plant event on March 9, 1988, renewed concern about the state of knowledge on BWR instabilities and possible consequences to fuel rod integrity. The objective of this paper is to present a simplified stability tool, applicable for stability analysis in the non-linear regime, which extends to high amplitude oscillations where inlet reverse flow occurs. In case of high amplitude oscillations a cyclical dryout and rewetting process at the fuel rod may take place, which leads in turn to rapid changes of the heat transfer from the fuel rod to the coolant. The application of this stability tool allows for a conservative determination of the fuel rod cladding temperature in case of high amplitude oscillations during the dryout / re-wet phase. Moreover, it reveals in good agreement to experimental findings the stabilizing effect of the reverse bundle inlet flow, which might be obtained for large oscillation amplitudes. (authors)

  13. A BWR 24-month cycle analysis using multicycle techniques

    International Nuclear Information System (INIS)

    Hartley, K.D.

    1993-01-01

    Boiling water reactor (BWR) fuel cycle design analyses have become increasingly challenging in the past several years. As utilities continue to seek improved capacity factors, reduced power generation costs, and reduced outage costs, longer cycle lengths and fuel design optimization become important considerations. Accurate multicycle analysis techniques are necessary to determine the viability of fuel designs and cycle operating strategies to meet reactor operating requirements, e.g., meet thermal and reactivity margin constraints, while minimizing overall fuel cycle costs. Siemens Power Corporation (SPC), Nuclear Division, has successfully employed multi-cycle analysis techniques with realistic rodded cycle depletions to demonstrate equilibrium fuel cycle performance in 24-month cycles. Analyses have been performed by a BWR/5 reactor, at both rated and uprated power conditions

  14. Liquid films and droplet deposition in a BWR fuel element

    International Nuclear Information System (INIS)

    Damsohn, M.

    2011-01-01

    In the upper part of boiling water reactors (BWR) the flow regime is dominated by a steam-water droplet flow with liquid films on the nuclear fuel rod, the so called (wispy) annular flow regime. The film thickness and liquid flow rate distribution around the fuel rod play an important role especially in regard to so called dryout, which is the main phenomenon limiting the thermal power of a fuel assembly. The deposition of droplets in the liquid film is important, because this process sustains the liquid film and delays dryout. Functional spacers with different vane shapes have been used in recent decades to enhance droplet deposition and thus create more favorable conditions for heat removal. In this thesis the behavior of liquid films and droplet deposition in the annular flow regime in BWR bundles is addressed by experiments in an adiabatic flow at nearly ambient pressure. The experimental setup consists of a vertical channel with the cross-section resembling a pair of neighboring subchannels of a fuel rod bundle. Within this double subchannel an annular flow is established with a gas-water mixture. The impact of functional spacers on the annular flow behavior is studied closely. Parameter variations comprise gas and liquid flow rates, gas density and spacer shape. The setup is instrumented with a newly developed liquid film sensor that measures the electrical conductance between electrodes flush to the wall with high temporal and spatial resolution. Advanced post-processing methods are used to investigate the dynamic behavior of liquid films and droplet deposition. The topic is also assessed numerically by means of single-phase Reynolds-Averaged-Navier-Stokes CFD simulations of the flow in the gas core. For this the commercial code STAR-CCM+ is used coupled with additional models for the liquid film distribution and droplet motion. The results of the experiments show that the liquid film is quite evenly distributed around the circumference of the fuel rods. The

  15. Fuel assembly for use in BWR type reactor

    International Nuclear Information System (INIS)

    Inaba, Yuzo.

    1988-01-01

    Purpose: To attain the reduction of neutron irradiation amount to control rods by the improvement in the reactor shutdown margin and the improvement of the control rod worth, by enhancing the arrangement of burnable poisons. Constitution: The number of burnable poison-incorporated fuel rods present in the outer two rows along the sides in adjacent with a control rod among the square lattice arrangement in a fuel assembly is decreased to less than 1/4 for that of total burnable poison-incorporated fuel rods, while the remaining burnable posion-incorporated fuel rods are arranged in the region other than above (that is, those regions not nearer to the control rod). Thus, even if a sufficient number of burnable poison to prolong the controlling effect for the reactivity with the burnable contents as the fuel assembly are disposed, only the burnable poison -incorporated fuel rods by the number less than 1/4 for that of the total burnable poison-incorporated fuel rods are present near the control rod of the fuel assembly. Accordingly, the control rod worth at the initial stage of the burning is increased at both high and normal temperatures. (Kawakami, Y.)

  16. Investigation of axial power gradients near a control rod tip

    Energy Technology Data Exchange (ETDEWEB)

    Loberg, John, E-mail: John.Loberg@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Division of Applied Nuclear Physics, Box 525, SE-75120 Uppsala (Sweden); Osterlund, Michael, E-mail: Michael.Osterlund@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Division of Applied Nuclear Physics, Box 525, SE-75120 Uppsala (Sweden); Bejmer, Klaes-Hakan, E-mail: Klaes-Hakan.Bejmer@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden); Blomgren, Jan, E-mail: Jan.Blomgren@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden); Kierkegaard, Jesper, E-mail: Jesper.Kierkegaar@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden)

    2011-07-15

    Highlights: > Pin power gradients near BWR control rod tips have been investigated. > A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. > Small nodes increases pin power gradients; standard nodes underestimates gradients. > The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, {approx}15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.

  17. Investigation of axial power gradients near a control rod tip

    International Nuclear Information System (INIS)

    Loberg, John; Osterlund, Michael; Bejmer, Klaes-Hakan; Blomgren, Jan; Kierkegaard, Jesper

    2011-01-01

    Highlights: → Pin power gradients near BWR control rod tips have been investigated. → A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. → Small nodes increases pin power gradients; standard nodes underestimates gradients. → The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, ∼15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.

  18. Fuel rod technology

    International Nuclear Information System (INIS)

    Bezold, H.; Romeiser, H.J.

    1979-07-01

    By extensive mechanization and automation of the fuel rod production, also at increasing production numbers, an efficient production shall be secured, simultaneously corresponding to the high quality standard of the fuel rods. The works done up to now concentrated on the lay out of a rough concept for a mechanized production course. Detail-studies were made for the problems of fuel rod humidity, filling and resistance welding. Further promotion of this project and thus further report will be stopped, since the main point of these works is the production technique. (orig.) [de

  19. Operational experience gained with the failed fuel rod detection system in nuclear power plants

    International Nuclear Information System (INIS)

    Boehm, H.H.; Forch, H.

    1985-01-01

    Brown Boveri Reaktor GmbH together with Krautkramer Company developed such a FAILED FUEL ROD DETECTION SYSTEM (FFRDS) which allows to located defective fuel rods without dismantling the fuel assembly or pulling of individual rods. Since 1979 the FFRDS is employed successfully in various nuclear power plants in Europe, USA, Japan, and Korea. The short inspection time and the high reliability of the method make the FFRDS a true competitor to the sipping method. In this paper the authors discuss the method and the design of the system, the equipment set-up, its features and the experience gained so far. The system has been performed and automated to such an extent that within a short installation period series of fuel assemblies can be tested with relatively short intervals of time (5 minutes for BWR and 7 minutes for PWR fuel assemblies per side). The ability of the system for deployment under various conditions and the experience gained during the past six years have made this system universally applicable and highly sensitive to the requirements of NDT during outages and for transport of FAs to intermediate storage facilities. Comparison of FFRDS to conventional sipping has indicated in several instances that the FFRDS is superior to the latter technique

  20. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    International Nuclear Information System (INIS)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland; Helmut Kuhl

    2015-01-01

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs

  1. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland [GNS, Essen (Germany); Helmut Kuhl [WTI, Julich (Germany)

    2015-05-15

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs.

  2. Verification of a BWR code package by gamma scan measurements

    International Nuclear Information System (INIS)

    Nakajima, Tsuyoshi; Iwamoto, Tatsuya; Kumanomido, Hironori

    1996-01-01

    High-burnup 8 x 8 fuel with a large central water rod (called step 2 fuel) has been recently introduced to the latest Japanese boiling water reactor (BWR) plants. Lanthanum-140 gamma intensity is almost directly related to nodal powers. By gamma scan measurement, the axial distribution of 140 La in the exposed fuel was measured at the end of cycle (EOC) 1 and was compared with the calculation by a BWR code package TGBLA/LOGOS. The multienrichment fuel-type core (MEC) design was adopted for the initial cycle core of the plants. The MEC design contains three different enrichment types of fuels to simulate the equilibrium cycles, achieve much higher discharge exposure, and save fuel cycle cost, and the low-enrichment fuels are loaded in periphery and in control cells. Such MEC design could be a challenge to the BWR design methods because of the large spectrum mismatch among the fuel assemblies of the different enrichments. The aforementioned comparison has shown that the accuracy of the TGBLA/LOGOS code package is satisfactory

  3. Inspecting method for fuel rods

    International Nuclear Information System (INIS)

    Watanabe, Masaaki; Kogure, Sumio.

    1976-01-01

    Purpose: To precisely detect the response of flaw in clad tube and submerged fuel pellets from a relationship between the surface of fuel rod and internal signal. Constitution: Ultrasonic reflected waves from the surface of fuel rods and the interior are detected and either one of fuel rod or ultrasonic flaw detecting contact is rotated to thereby precisely detect the response of the flaw of clad tube and submerged fuel pellets from a relationship between said surface and the interior. It will be noted that the ultrasonic flaw detecting contact used is of the line-focus type, the incident angle of ultrasonic wave from the ultrasonic flaw detecting contact relative to the fuel rod is the angle of skew, that is, the ultrasonic flaw detecting contact is not perpendicular to a center axis of the fuel rod but is slightly displace. That is, the use of the aforesaid contact may facilitate discrimination between the surface flaw of the fuel rod and the response of submergence, and in addition, the employment of the aforesaid incident angle makes it hard to receive reflected waves from the surface of the fuel rod which is great in terms of energy to facilitate discrimination of waves responsive to submergence. (Kawakami, Y.)

  4. Aging assessment of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.

    1992-01-01

    This Phase 1 Nuclear Plant Aging Research (NPAR) study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assesses the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of NPRDS failure cases attributed to the CRD system, and (4) personal information exchange. As part of this study, nearly 3,500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation has been conducted that summarizes the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented regarding specific actions that utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities

  5. Aging assessment of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.

    1991-01-01

    This study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assess the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of Nuclear Plant Reliability Data System (NPRDS) failure cases attributed to the CRD system, and (4) personal information exchange with industry experts. As part of this study, nearly 3500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation was conducted to summarize the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented that identify specific actions utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain maintenance practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities. 5 refs., 8 figs., 2 tabs

  6. Aging assessment of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.

    1991-01-01

    This Phase 1 Nuclear Plant Aging Research (NPAR) study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assesses the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of NPRDS failure cases attributed to the CRD system, and (4) personal information exchange. As part of this study, nearly 3,500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation has been conducted that summarizes the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented regarding specific actions that utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities

  7. Delivering high performance BWR fuel reliably

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1998-01-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  8. Parallel channel effects under BWR LOCA conditions

    International Nuclear Information System (INIS)

    Suzuki, H.; Hatamiya, S.; Murase, M.

    1988-01-01

    Due to parallel channel effects, different flow patterns such as liquid down-flow and gas up-flow appear simultaneously in fuel bundles of a BWR core during postulated LOCAs. Applying the parallel channel effects to the fuel bundle, water drain tubes with a restricted bottom end have been developed in order to mitigate counter-current flow limiting and to increase the falling water flow rate at the upper tie plate. The upper tie plate with water drain tubes is an especially effective means of increasing the safety margin of a reactor with narrow gaps between fuel rods and high steam velocity at the upper tie plate. The characteristics of the water drain tubes have been experimentally investigated using a small-scaled steam-water system simulating a BWR core. Then, their effect on the fuel cladding temperature was evaluated using the LOCA analysis program SAFER. (orig.)

  9. Thermohydraulic analysis of BWR and PWR spent fuel assemblies contained within square canisters

    International Nuclear Information System (INIS)

    Wiles, L.E.; McCann, R.A.

    1981-09-01

    This report presents the results of several thermohydraulic simulations of spent fuel assembly/canister configurations performed in support of a program investigating the feasibility of storing spent nuclear fuel assemblies in canisters that would be stored in an air environment. Eleven thermohydraulic simulations were performed. Five simulations were performed using a single BWR fuel assembly/canister design. The various cases were defined by changing the canister spacing and the heat generation rate of the fuel assembly. For each simulation a steady-state thermohydraulic solution was achieved for the region inside the canister. Similarly, six simulations were performed for a single PWR fuel assembly/canister design. The square fuel rod arrays were contained in square canisters which would permit closer packing of the canisters in a storage facility. However, closer packing of the canisters would result in higher fuel temperatures which would possibly have an adverse impact on fuel integrity. Thus, the most important aspect of the analysis was to define the peak fuel assembly temperatures for each case. These results are presented along with various temperature profiles, heat flux distributions, and air velocity profiles within the canister. 48 figures, 4 tables

  10. Automated nuclear fuel rod pattern loading system

    International Nuclear Information System (INIS)

    Lambert, D.V.; Nylund, T.W.; Byers, J.W.; Haley, D.E. Jr.; Cioffi, J.V.

    1991-01-01

    This patent describes a method for loading fuel rods in a desired pattern. It comprises providing a supply of fuel rods of known enrichments; providing a magazine defining a matrix of elongated slots open at their forward ends for receiving fuel rods; defining a fuel rod feed path; receiving successively one at a time along the feed path fuel rods selected from the supply thereof; verifying successively one at a time along the feed path the identity of the selected fuel rods, the verifying including blocking passage of each selected fuel rod along the feed path until the identity of each selected fuel rod is confirmed as correct; feeding to the magazine successively one at a time along the feed path the selective and verified fuel rods; and supporting and moving the magazine along X-Y axes to successively align one at a time selected ones of the slots with the feed path for loading in the magazine the successive fuel rods in a desired enrichment pattern

  11. Method for compacting spent nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    In a nuclear reactor system which requires periodic physical manipulation of spent fuel rods, the method of compacting fuel rods from a fuel rod assembly is described. The method consists of: (1) removing the top end from the fuel rod assembly; (2) passing each of multiple fuel rod pulling elements in sequence through a fuel rod container and thence through respective consolidating passages in a fuel rod directing chamber; (3) engaging one of the pulling elements to the top end of each of the fuel rods; (4) drawing each of the pulling elements axially to draw the respective engaged fuel rods in one axial direction through the respective the passages in the chamber to thereby consolidate the fuel rods into a compacted configuration of a cross-sectional area smaller than the cross-sectional area occupied thereby within the fuel rod assembly; and (5) drawing all of the engaged fuel rods concurrently and substantially parallel to one another in the one axial direction into the fuel rod container while maintaining the compacted configuration whereby the fuel rods are aligned within the container in a fuel rod density of the the fuel rod assembly

  12. Fuel assembly

    International Nuclear Information System (INIS)

    Chaki, Masao; Nishida, Koji; Karasawa, Hidetoshi; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Kashiwai, Shin-ichi; Masuhara, Yasuhiro

    1998-01-01

    The present invention concerns a fuel assembly, for a BWR type nuclear reactor, comprising fuel rods in 9 x 9 matrix. The inner width of the channel box is about 132mm and the length of the fuel rods which are not short fuel rods is about 4m. Two water rods having a circular cross section are arranged on a diagonal line in a portion of 3 x 3 matrix at the center of the fuel assembly, and two fuel rods are disposed at vacant spaces, and the number of fuel rods is 74. Eight fuel rods are determined as short fuel rods among 74 fuel rods. Assuming the fuel inventory in the short fuel rod as X(kg), and the fuel inventory in the fuel rods other than the short fuel rods as Y(kg), X and Y satisfy the relation: X + Y ≥ 173m, Y ≤ - 9.7X + 292, Y ≤ - 0.3X + 203 and X > 0. Then, even when the short fuel rods are used, the fuel inventory is increased and fuel economy can be improved. (I.N.)

  13. Method of operating control rods for BWR type reactors

    International Nuclear Information System (INIS)

    Shirakawa, Toshihisa.

    1979-01-01

    Purpose: To eliminate the danger such as fuel element failures due to rapid power increase and form a control rod pattern for obtaining a required power level in a relatively short time. Method: Control rods are disposed so as to vertically enter into and retract from the central region of each four fuel assemblies adjacent to each other respectively. Upon operation of the control rods, every other control rods in the lateral and longitudinal directions among the entire control rods that are inserted completely are extracted completely at the lower flow limit of coolants. Then, the control rods completely inserted are divided into groups inserted deeply and groups inserted less deeply. The less deeply inserted groups are extracted just before the excess of thermal limit value successively in the lower flow limit of the coolants and then the deeply inserted groups are extracted successively till a predetermined power level in the same manner. Therefore, the coolant flow to the reactor core is increased and the power level is raised. (Furukawa, Y.)

  14. Developing and modeling of the 'Laguna Verde' BWR CRDA benchmark

    International Nuclear Information System (INIS)

    Solis-Rodarte, J.; Fu, H.; Ivanov, K.N.; Matsui, Y.; Hotta, A.

    2002-01-01

    Reactivity initiated accidents (RIA) and design basis transients are one of the most important aspects related to nuclear power reactor safety. These events are re-evaluated whenever core alterations (modifications) are made as part of the nuclear safety analysis performed to a new design. These modifications usually include, but are not limited to, power upgrades, longer cycles, new fuel assembly and control rod designs, etc. The results obtained are compared with pre-established bounding analysis values to see if the new core design fulfills the requirements of safety constraints imposed on the design. The control rod drop accident (CRDA) is the design basis transient for the reactivity events of BWR technology. The CRDA is a very localized event depending on the control rod insertion position and the fuel assemblies surrounding the control rod falling from the core. A numerical benchmark was developed based on the CRDA RIA design basis accident to further asses the performance of coupled 3D neutron kinetics/thermal-hydraulics codes. The CRDA in a BWR is a mostly neutronic driven event. This benchmark is based on a real operating nuclear power plant - unit 1 of the Laguna Verde (LV1) nuclear power plant (NPP). The definition of the benchmark is presented briefly together with the benchmark specifications. Some of the cross-sections were modified in order to make the maximum control rod worth greater than one dollar. The transient is initiated at steady-state by dropping the control rod with maximum worth at full speed. The 'Laguna Verde' (LV1) BWR CRDA transient benchmark is calculated using two coupled codes: TRAC-BF1/NEM and TRAC-BF1/ENTREE. Neutron kinetics and thermal hydraulics models were developed for both codes. Comparison of the obtained results is presented along with some discussion of the sensitivity of results to some modeling assumptions

  15. Huitzoctli: A system to design Control Rod Pattern for BWR's using a hybrid method

    International Nuclear Information System (INIS)

    Castillo, Alejandro; Ortiz-Servin, Juan Jose; Perusquia, Raul; Morales, Luis B.

    2011-01-01

    Highlights: → The system was developed to design Control Rod Patterns for Boiling Water Reactors. → The critical reactor core and the thermal limits were fulfilled in all tested cases. → The Fuel Loading Pattern remains without changes during the iterative process. → The system uses the heuristics techniques: Scatter Search and Tabu Search. → The effective multiplication factor k eff at the EOC was improved in all tested cases. - Abstract: Huitzoctli system was developed to design Control Rod Patterns for Boiling Water Reactors (BWR). The main idea is to obtain a Control Rod Pattern under the following considerations: (a) the critical reactor core state is satisfied, (b) the axial power distribution must be adjusted to a target axial power distribution proposal, and (c) the maximum Fraction of Critical Power Ratio (MFLCPR), the maximum Fraction of Linear Power Density (FLPD) and the maximum Fraction of Average Planar Power Density (MPGR) must be fulfilled. Those parameters were obtained using the 3D CM-PRESTO code. In order to decrease the problem complexity, Control Cell Core load strategy was implemented; in the same way, intermediate axial positions and core eighth symmetry were took into account. In this work, the cycle length was divided in 12 burnup steps. The Fuel Loading Pattern is an input data and it remains without changes during the iterative process. The Huitzoctli system was developed to use the combinatorial heuristics techniques Scatter Search and Tabu Search. The first one was used as a global search method and the second one as a local search method. The Control Rod Patterns obtained with the Huitzoctli system were compared to other Control Rod Patterns designs obtained with other optimization techniques, under the same operating conditions. The results show a good performance of the system. In all cases the thermal limits were satisfied, and the axial power distribution was adjusted to the target axial power distribution almost

  16. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Aoyama, Motoo; Koyama, Jun-ichi; Uchikawa, Sadao; Bessho, Yasunori; Nakajima, Akiyoshi; Maruyama, Hiromi; Ozawa, Michihiro; Nakamura, Mitsuya.

    1990-01-01

    The present invention concerns fuel assemblies charged in a BWR type reactor and the reactor core. The fuel assembly comprises fuel rods containing burnable poisons and fuel rods not containing burnable poisons. Both of the highest and the lowest gadolinia concentrations of the fuel rods containing gadolinia as burnable poisons are present in the lower region of the fuel assembly. This can increase the spectral shift effect without increasing the maximum linear power density. (I.N.)

  17. Delivering high performance BWR fuel reliably

    Energy Technology Data Exchange (ETDEWEB)

    Schardt, J.F. [GE Nuclear Energy, Wilmington, NC (United States)

    1998-07-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  18. Inspection system for Zircaloy clad fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.; Porter, E.H.; Hansen, H.R.

    1975-10-01

    A description is presented of the design, development, and performance of a remote scanning system for nondestructive examination of fuel rods. Characteristics that are examined include microcracking of fuel rod cladding, fuel-cladding interaction, cladding thickness, fuel rod diameter variation, and fuel rod bowing. Microcracking of both the inner and outer fuel rod surfaces and variations in wall thickness are detected by using a pulsed eddy current technique developed by Argonne National Laboratory (ANL). Fuel rod diameter variation and fuel rod bowing are detected by using two linear variable differential transformers (LVDTs) and a signal conditioning system. The system's mechanical features include variable scanning speeds, a precision indexing system, and a servomechanism to maintain proper probe alignment. Initial results indicate that the system is a very useful mechanism for characterizing irradiated fuel rods

  19. Nuclear fuel activity with minor actinides after their useful life in a BWR; Actividad del combustible nuclear con actinidos menores despues de su vida util en un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    Nuclear fuel used in nuclear power reactors has a life cycle, in which it provides energy, at the end of this cycle is withdrawn from the reactor core. This used fuel is known as spent nuclear fuel, a strong problem with this fuel is that when the fuel was irradiated in a nuclear reactor it leaves with an activity of approximately 1.229 x 10{sup 15} Bq. The aim of the transmutation of actinides from spent nuclear fuel is to reduce the activity of high level waste that must be stored in geological repositories and the lifetime of high level waste; these two achievements would reduce the number of necessary repositories, as well as the duration of storage. The present work is aimed at evaluating the activity of a nuclear fuel in which radioactive actinides could be recycled to remove most of the radioactive material, first establishing a reference of actinides production in the standard nuclear fuel of uranium at end of its burning in a BWR, and a fuel rod design containing 6% of actinides in an uranium matrix from the enrichment tails is proposed, then 4 standard uranium fuel rods are replaced by 4 actinide bars to evaluate the production and transmutation of the same, finally the reduction of actinide activity in the fuel is evaluated. (Author)

  20. Development of advanced BWR fuel bundle with spectral shift rod (3) -transient analysis of ABWR core with SSR

    International Nuclear Information System (INIS)

    Ikegawa, T.; Chaki, M.; Ohga, Y.; Abe, M.

    2010-01-01

    The spectral shift rod (SSR) is a new type of water rod, utilized instead of the conventional water rod, in which a water level develops during core operation. The water level can be changed according to the fuel channel flow rate. In this study, ABWR plant performance with SSR fuel bundles under transient conditions has been evaluated using the TRACG code. The TRACG code, which can treat three-dimensional hydrodynamic calculations in a reactor pressure vessel, is well suited for evaluating the reactor transient performance with the SSR fuel bundles because it can calculate the water levels in the SSR at each channel grouping and therefore evaluate the core reactivity according to the water level changes in the SSR. 'Generator load rejection with total turbine bypass failure' and 'Recirculation flow control failure with increasing flow' were selected as cases which may increase the reactivity with the increasing water level in the SSR. It was found that the absolute value of the void reactivity coefficient in the SSR core was larger than that in the conventional water rod core because the core averaged void fraction in the SSR core, which has the vapor region above the water level in the SSR, was larger than that in the conventional water rod core. Therefore, AMCPR for the SSR core was a little larger than that for the conventional water rod core; however, the difference was smaller than 0.02 because the inlet of the SSR ascending path was designed to be small enough to prevent the rapid water level increase in the SSR. (authors)

  1. The risk of PCI damage to 8x8 fuel rods during limit cycle instability

    Energy Technology Data Exchange (ETDEWEB)

    Schrire, D.; Oguma, R.; Malen, K.

    1994-12-31

    A BWR reactor core may experience thermal-hydraulic instability under certain operating conditions. Generally, the instability results in neutron flux (i e generated neutronic power) and coolant flow and pressure oscillations, which reach a maximum `limit cycle` amplitude. The cladding response to power transients has been studied using noise analysis. These results have been compared to results from code calculations using the fuel code TOODEE 2. From these results the risk for fuel rod failure due to pellet-clad mechanical interaction and possible failure due to stress corrosion cracking (PCI) has been estimated. It turns out that for the oscillation frequencies of interest (0,3-0,5 Hz) the fuel response amplitude reduction makes PCI-failure improbable. 17 refs.

  2. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  3. Vibrational characteristics and wear of fuel rods

    International Nuclear Information System (INIS)

    Schmugar, K.L.

    1977-01-01

    Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude

  4. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.

  5. Preliminary nuclear design for test MOX Fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Jeong, Hyung Guk; Noh, Jae Man; Cho, Jin Young; Kim, Young Il; Kim, Young Jin; Sohn, Dong Seong

    1997-10-01

    As a part of activity for future fuel development project, test MOX fuel rods are going to be loaded and irradiated in Halden reactor core as a KAERI`s joint international program with Paul Scherrer Institute (PSI). PSI will fabricate test MOX rods with attrition mill device which was developed by KAERI. The test fuel assembly rig contains three MOX rods and three inert matrix rods. One of three MOX rods will be fabricated by BNFL, the other two MOX fuel rods will be manufacturing jointly by KAERI and PSI. Three inert matrix fuel rods will be fabricated with Zr-Y-Er-Pu oxide. Neutronic evaluation was preliminarily performed for test fuel assembly suggested by PSI. The power distribution of test fuel rod in test fuel assembly was analyzed for various fuel rods position in assembly and the depletion characteristic curve for test fuel was also determined. The fuel rods position in test fuel assembly does not effect the rod power distribution, and the proposal for test fuel rods suggested by PSI is proved to be feasible. (author). 2 refs., 13 tabs., 16 figs.

  6. Simulation of leaking fuel rods

    International Nuclear Information System (INIS)

    Hozer, Z.

    2006-01-01

    The behaviour of failed fuel rods includes several complex phenomena. The cladding failure initiates the release of fission product from the fuel and in case of large defect even urania grains can be released into the coolant. In steady state conditions an equilibrium - diffusion type - release is expected. During transients the release is driven by a convective type leaching mechanism. There are very few experimental data on leaking WWER fuel rods. For this reason the activity measurements at the nuclear power plants provide very important information. The evaluation of measured data can help in the estimation of failed fuel rod characteristics and the prediction of transient release dynamics in power plant transients. The paper deals with the simulation of leaking fuel rods under steady state and transient conditions and describes the following new results: 1) A new algorithm has been developed for the simulation of leaking fuel rods under steady state conditions and the specific parameters of the model for the Paks NPP has been determined; 2) The steady state model has been applied to calculation of leaking fuel characteristics using iodine and noble gas activity measurement data; 3) A new computational method has been developed for the simulation of leaking fuel rods under transient conditions and the specific parameters for the Paks NPP has been determined; 4) The transient model has been applied to the simulation of shutdown process at the Paks NPP and for the prediction of the time and magnitude of 123 I activity peak; 5) Using Paks NPP data a conservative value has been determined for the upper limit of the 123 I release from failed fuel rods during transients

  7. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    Medvedev, A.; Bogatyr, S.; Kouznetsov, V.; Khvostov, G.; Lagovsky; Korystin, L.; Poudov, V.

    2003-01-01

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  8. Development of neural network simulating power distribution of a BWR fuel bundle

    International Nuclear Information System (INIS)

    Tanabe, A.; Yamamoto, T.; Shinfuku, K.; Nakamae, T.

    1992-01-01

    A neural network model is developed to simulate the precise nuclear physics analysis program code for quick scoping survey calculations. The relation between enrichment and local power distribution of BWR fuel bundles was learned using two layers neural network (ENET). A new model is to introduce burnable neutron absorber (Gadolinia), added to several fuel rods to decrease initial reactivity of fresh bundle. The 2nd stages three layers neural network (GNET) is added on the 1st stage network ENET. GNET studies the local distribution difference caused by Gadolinia. Using this method, it becomes possible to survey of the gradients of sigmoid functions and back propagation constants with reasonable time. Using 99 learning patterns of zero burnup, good error convergence curve is obtained after many trials. This neural network model is able to simulate no learned cases fairly as well as the learned cases. Computer time of this neural network model is about 100 times faster than a precise analysis model. (author)

  9. Design and optimization of a fuel reload of BWR with plutonium and minor actinides

    International Nuclear Information System (INIS)

    Guzman A, J. R.; Francois L, J. L.; Martin del Campo M, C.; Palomera P, M. A.

    2008-01-01

    In this work is designed and optimized a pattern of fuel reload of a boiling water reactor (BWR), whose fuel is compound of uranium coming from the enrichment lines, plutonium and minor actinides (neptunium, americium, curium); obtained of the spent fuel recycling of reactors type BWR. This work is divided in two stages: in the first stage a reload pattern designs with and equilibrium cycle is reached, where the reload lot is invariant cycle to cycle. This reload pattern is gotten adjusting the plutonium content of the assembly for to reach the length of the wished cycle. Furthermore, it is necessary to increase the concentration of boron-10 in the control rods and to introduce gadolinium in some fuel rods of the assembly, in order to satisfy the margin approach of out. Some reactor parameters are presented: the axial profile of power average of the reactor core, and the axial and radial distribution of the fraction of holes, for the one reload pattern in balance. For the design of reload pattern codes HELIOS and CM-PRESTO are used. In the second stage an optimization technique based on genetic algorithms is used, along with certain obtained heuristic rules of the engineer experience, with the intention of optimizing the reload pattern obtained in the first stage. The objective function looks for to maximize the length of the reactor cycle, at the same time as that they are satisfied their limits related to the power and the reactor reactivity. Certain heuristic rules are applied in order to satisfy the recommendations of the fuel management: the strategy of the control cells core, the strategy of reload pattern of low leakage, and the symmetry of a quarter of nucleus. For the evaluation of the parameters that take part in the objective function it simulates the reactor using code CM-PRESTO. Using the technique of optimization of the genetic algorithms an energy of the cycle of 10834.5 MW d/tHM is obtained, which represents 5.5% of extra energy with respect to the

  10. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1988-09-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97/degree/C and whether the cladding of the stored spent fuel ever exceeds 350/degree/C. Limiting the borehole to temperatures of 97/degree/C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350/degree/C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97/degree/C for the full 1000-yr analysis period

  11. The BG18, a B(U)F type package used for the transport of irradiated fuel rods - return of experience

    Energy Technology Data Exchange (ETDEWEB)

    Juergen, S.; Herman, S. [Transnubel, Dessel (Belgium)

    2004-07-01

    The purpose of this presentation is to share the return of experience of Transnubel after a period of nearly 3 years operation of the BG18 package in several nuclear power plants and hot cell facilities. This package has been used mainly for the shipment of full scale as well as samples of irradiated fuel rods - UOX or MOX, PWR or BWR.

  12. The BG18, a B(U)F type package used for the transport of irradiated fuel rods - return of experience

    International Nuclear Information System (INIS)

    Juergen, S.; Herman, S.

    2004-01-01

    The purpose of this presentation is to share the return of experience of Transnubel after a period of nearly 3 years operation of the BG18 package in several nuclear power plants and hot cell facilities. This package has been used mainly for the shipment of full scale as well as samples of irradiated fuel rods - UOX or MOX, PWR or BWR

  13. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Ogiya, Shunsuke.

    1989-01-01

    For improving the economy of a BWR type reactor by making the operation cycle longer, the fuel enrichment degree has to be increased further. However, this makes the subcriticality shallower in the upper portion of the reactor core, to bring about a possibility that the reactor shutdown becomes impossible. In the present invention, a portion of fuel rod is constituted as partial length fuel rods (P-fuel rods) in which the entire stack length in the effective portion is made shorter by reducing the concentration of fissionable materials in the axial portion. A plurality of moderator rods are disposed at least on one diagonal line of a fuel assembly and P-fuel rods are arranged at a position put between the moderator rods. This makes it possible to reactor shutdown and makes the axial power distribution satisfactory even if the fuel enrichment degree is increased. (T.M.)

  14. BWR fuel assembly with improved spacer and fuel bundle design for enhanced thermal-hydraulic performance

    International Nuclear Information System (INIS)

    Mildrum, C.M.; Taleyarkhan, R.P.

    1987-01-01

    In a fuel assembly having a bundle of elongated fuel rods disposed in side-by-side relationship so as to form an array of spaced fuel rods, an outer tubular flow channel surrounding the fuel rods so as to direct flow of coolant/moderator fluid along the fuel rods, a hollow water cross extending centrally through and interconnected with the outer flow channel so as to divide the channel into separate compartments and the bundle of fuelrods into a plurality of mini-bundles thereof being disposed in the compartments, and spacers axially displaced along the fuel rods in each of the mini-bundles thereof. Each spacer is composed of inner and outer means which together define spacer cells at corner, side and interior locations of the spacer and have respective protrusions formed thereon which extend into cells so as to maintain the fuel rods received through the spacer cells in laterally spaced relationships. The improvement is described which comprises: (a) a generally uniform poison coating within at least a majority of the fuel rods; (b) a predetermined pattern of fuel enrichment with respect to the fuel rods of each mini-bundle thereof which together with the uniform poison coating within the fuel rods ensures that the packing powers of the fuel rods in the corner and side cells of the spacers are less than the peaking power of a leading one of the fuel rods in the interior cells of the spacers; and (c) each of the fuel rods being received through the cells of each spacer having a diametric size smaller than that of each of the fuel rods received through the side and interior cells of each spacer, the diametric sizes of each of the fuel rods received through the side and interior cells of each spacer being generally equal

  15. Fuel behavior modeling using the MARS computer code

    International Nuclear Information System (INIS)

    Faya, S.C.S.; Faya, A.J.G.

    1983-01-01

    The fuel behaviour modeling code MARS against experimental data, was evaluated. Two cases were selected: an early comercial PWR rod (Maine Yankee rod) and an experimental rod from the Canadian BWR program (Canadian rod). The MARS predictions are compared with experimental data and predictions made by other fuel modeling codes. Improvements are suggested for some fuel behaviour models. Mars results are satisfactory based on the data available. (Author) [pt

  16. Fuel rods

    International Nuclear Information System (INIS)

    Adachi, Hajime; Ueda, Makoto

    1985-01-01

    Purpose: To provide a structure capable of measuring, in a non-destructive manner, the releasing amount of nuclear gaseous fission products from spent fuels easily and at a high accuracy. Constitution: In order to confirm the integrity and the design feasibility of a nuclear fuel rod, it is important to accurately determine the amount of gaseous nuclear fission products released from nuclear pellets. In a structure where a plurality of fuel pellets are charged in a fuel cladding tube and retained by an inconel spring, a hollow and no-sealed type spacer tube made of zirconium or the alloy thereof, for example, not containing iron, cobalt, nickel or manganese is formed between the spring and the upper end plug. In the fuel rod of such a structure, by disposing a gamma ray collimator and a gamma ray detector on the extension of the spacer pipe, the gamma rays from the gaseous nuclear fission products accumulated in the spacer pipe can be detected while avoiding the interference with the induction radioactivity from inconel. (Kamimura, M.)

  17. Spacers for fuel rod clusters

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    The proposition deals with the fixing of nuclear fuel element rods in a grid which consists of a number of crossed Zy-plates which form cells. The rectangular cells have projections which serve as spacers for the fuel rods. According to the invention there are additional butt straps which can be moved in such a way that insertion and extraction of the fuel rods can be done without obstruction and they can be spring-loaded hold in their final position. (UWI) [de

  18. Transmutation of minor actinide using BWR fueled mixed oxide

    International Nuclear Information System (INIS)

    Susilo, Jati

    2000-01-01

    Nuclear spent fuel recycle has a strategic importance in the aspect of nuclear fuel economy and prevention of its spread-out. One among other application of recycle is to produce mixed oxide fuel (Mo) namely mixed Plutonium and uranium oxide. As for decreasing the burden of nuclear high level waste (HLW) treatment, transmutation of minor actinide (MA) that has very long half life will be carried out by conversion technique in nuclear reactor. The purpose of this study was to know influence of transition fuel cell regarding the percent weight of transmutation MA in the BWR fueled MOX. Calculation of cell BWR was used SRAC computer code, with assume that the reactor in equilibrium. The percent weight of transmutation MA to be optimum by increasing the discharge burn-up of nuclear fuel, raising ratio of moderator to fuel volume (Vm/Vf), and loading MA with percent weight about 3%-6% and also reducing amount of percent weight Pu in MOX fuel. For mixed fuel standard reactor, reactivity value were obtained between about -50pcm ∼ -230pcm for void coefficient and -1.8pcm ∼ -2.6pcm for fuel temperature coefficient

  19. Fabrication of internally instrumented reactor fuel rods

    International Nuclear Information System (INIS)

    Schmutz, J.D.; Meservey, R.H.

    1975-01-01

    Procedures are outlined for fabricating internally instrumented reactor fuel rods while maintaining the original quality assurance level of the rods. Instrumented fuel rods described contain fuel centerline thermocouples, ultrasonic thermometers, and pressure tubes for internal rod gas pressure measurements. Descriptions of the thermocouples and ultrasonic thermometers are also contained

  20. Segmented fuel and moderator rod

    International Nuclear Information System (INIS)

    Doshi, P.K.

    1987-01-01

    This patent describes a continuous segmented fuel and moderator rod for use with a water cooled and moderated nuclear fuel assembly. The rod comprises: a lower fuel region containing a column of nuclear fuel; a moderator region, disposed axially above the fuel region. The moderator region has means for admitting and passing the water moderator therethrough for moderating an upper portion of the nuclear fuel assembly. The moderator region is separated from the fuel region by a water tight separator

  1. Development of neural network for analysis of local power distributions in BWR fuel bundles

    International Nuclear Information System (INIS)

    Tanabe, Akira; Yamamoto, Toru; Shinfuku, Kimihiro; Nakamae, Takuji.

    1993-01-01

    A neural network model has been developed to learn the local power distributions in a BWR fuel bundle. A two layers neural network with total 128 elements is used for this model. The neural network learns 33 cases of local power peaking factors of fuel rods with given enrichment distribution as the teacher signals, which were calculated by a fuel bundle nuclear analysis code based on precise physical models. This neural network model studied well the teacher signals within 1 % error. It is also able to calculate the local power distributions within several % error for the different enrichment distributions from the teacher signals when the average enrichment is close to 2 %. This neural network is simple and the computing speed of this model is 300 times faster than that of the precise nuclear analysis code. This model was applied to survey the enrichment distribution to meet a target local power distribution in a fuel bundle, and the enrichment distribution with flat power shape are obtained within short computing time. (author)

  2. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant

    International Nuclear Information System (INIS)

    Rodenas, J.; Abarca, A.; Gallardo, S.

    2011-01-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool.

  3. Development of cutting device for irradiated fuel rod

    International Nuclear Information System (INIS)

    Lee, E. P.; Jun, Y. B.; Hong, K. P.; Min, D. K.; Lee, H. K.; Su, H. S.; Kim, K. S.; Kwon, H. M.; Joo, Y. S.; Yoo, K. S.; Joo, J. S.; Kim, E. K.

    2004-01-01

    Post Irradiation Examination(PIE) on irradiated fuel rods is essential for the evaluation of integrity and irradiation performance of fuel rods of commercial reactor fuel. For PIE, fuel rods should be cut very precisely. The cutting positions selected from NDT data are very important for further destructive examination and analysis. A fuel rod cutting device was developed witch can cut fuel rods longitudinal very precisely and can also cut the fuels into the same length rod cuts repeatedly. It is also easy to remove the fuel cutting powder after cutting works and it can extend the life time of cutting device and lower the contamination level of hot cell

  4. FEMAXI-7 analysis on behavior of medium and high burnup BWR fuels during base-irradiation and power ramp

    Energy Technology Data Exchange (ETDEWEB)

    Ogiyanagi, Jin, E-mail: ohgiyanagi.jin@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hanawa, Satoshi; Suzuki, Motoe; Nagase, Fumihisa [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Two power ramp experiments of BWR fuels were analyzed by FEMAXI-7 code. Black-Right-Pointing-Pointer Calculated FGR and cladding deformation showed reasonable agreement with PIE data. Black-Right-Pointing-Pointer High temperature FGR could be predicted by the enhanced Turnbull FG diffusion constant. Black-Right-Pointing-Pointer Local PCMI model in the code could reasonably predict cladding ridging deformation. - Abstract: Irradiation behavior of medium and high burnup BWR fuels during base-irradiation and subsequent power ramp test is analyzed by a fuel performance code FEMAXI-7. The code has a 1.5-D cylindrical geometry (4 axial segments) to have a coupled solution of thermal analysis and FEM mechanical analysis. Two kinds of target fuels are selected; one was subjected to a power ramp test in the DR3 reactor at RISO after the base-irradiation in a commercial BWR, and the other was subjected to the power ramp test in the DR3 reactor after the base-irradiation in the Halden boiling water reactor. The calculated values such as fission gas release after the base-irradiation and a cladding diameter profile before and after the ramp test show a reasonable agreement with measured data. In addition, the calculated ridging deformation of the cladding before and after the ramp test, which is obtained by using a local pellet-cladding mechanical interaction (PCMI) analysis geometry in FEMAXI-7, is compared with the measured data, and it is found that the FEMAXI-7 code is applicable to the local PCMI analysis of medium and high burnup rods under normal operation and power ramp conditions.

  5. Dynamic insertion analysis of control rods of BWR under seismic excitation

    International Nuclear Information System (INIS)

    Nakagawa, Masaki; Koide, Yuichi; Fukushi, Naoki; Ishigaki, Hirokuni; Okumura, Kazue

    2007-01-01

    The dynamic insertion characteristics of the control rods for the boiling water reactors under the seismic excitation are investigated using non-linear analytical models. The control rod insertion capability is one of the most important items for the safety of nuclear power plants under the seismic events. Predicting the control rod insertion behavior during the earthquake is important in the course of the control rod seismic design. We developed the analytical models using the finite element method (FEM). The effect of the interaction force between the control rod and the fuel assemblies is considered in the non-linear analysis. This interaction force courses the resistance force to the control rod during its insertion behavior. The validity of analytical methods was confirmed by comparing the analytical results with the experimental ones. Using the analytical models, the effects of input seismic motion and structural parameters of the control rods and the fuel assemblies, such as the thickness of the channel box, on the insertion time are investigated. These analytical methods can predict insertion time of the control rod, and are useful for the seismic design of the control rod assemblies. (author)

  6. Fuel rod simulator effects in flooding experiments single rod tests

    International Nuclear Information System (INIS)

    Nishida, M.

    1984-09-01

    The influence of a gas filled gap between cladding and pellet on the quenching behavior of a PWR fuel rod during the reflood phase of a LOCA has been investigated. Flooding experiments were conducted with a short length electrically heated single fuel rod simulator surrounded by glass housing. The gap of 0.05 mm width between the Zircaloy cladding and the internal Al 2 O 3 pellets of the rod was filled either wit helium or with argon to vary the radial heat resistance across the gap. This report presents some typical data and an evaluation of the reflood behavior of the fuel rod simulator used. The results show that the quench front propagates faster for increasing heat resistance in the gap between cladding and heat source of the rod. (orig.) [de

  7. Design of active-neutron fuel rod scanner

    International Nuclear Information System (INIS)

    Griffith, G.W.; Menlove, H.O.

    1996-01-01

    An active-neutron fuel rod scanner has been designed for the assay of fissile materials in mixed oxide fuel rods. A 252 Cf source is located at the center of the scanner very near the through hole for the fuel rods. Spontaneous fission neutrons from the californium are moderated and induce fissions within the passing fuel rod. The rod continues past a combined gamma-ray and neutron shield where delayed gamma rays above 1 MeV are detected. We used the Monte Carlo code MCNP to design the scanner and review optimum materials and geometries. An inhomogeneous beryllium, graphite, and polyethylene moderator has been designed that uses source neutrons much more efficiently than assay systems using polyethylene moderators. Layers of borated polyethylene and tungsten are used to shield the detectors. Large NaI(Tl) detectors were selected to measure the delayed gamma rays. The enrichment zones of a thermal reactor fuel pin could be measured to within 1% counting statistics for practical rod speeds. Applications of the rod scanner include accountability of fissile material for safeguards applications, quality control of the fissile content in a fuel rod, and the verification of reactivity potential for mixed oxide fuels. (orig.)

  8. Fuel rod pellet loading head

    International Nuclear Information System (INIS)

    Howell, T.E.

    1975-01-01

    An assembly for loading nuclear fuel pellets into a fuel rod comprising a loading head for feeding pellets into the open end of the rod is described. The pellets rest in a perforated substantially V-shaped seat through which air may be drawn for removal of chips and dust. The rod is held in place in an adjustable notched locator which permits alignment with the pellets

  9. Experimental validation of 3D reconstructed pin-power distributions in full-scale BWR fuel assemblies with partial length rods

    Energy Technology Data Exchange (ETDEWEB)

    Giust, F. D. [Axpo Kernenergie, Parkstrasse 23, CH-5401 Baden (Switzerland); Swiss Federal Inst. of Technology EPFL, CH-1015 Lausanne (Switzerland); Grimm, P. [Paul Scherrer Inst., CH-5232 Villigen (Switzerland); Chawla, R. [Paul Scherrer Inst., CH-5232 Villigen (Switzerland); Swiss Federal Inst. of Technology (EPFL), CH-1015 Lausanne (Switzerland)

    2012-07-01

    Total fission rate measurements have been performed on full-size BWR fuel assemblies of type SVEA-96 Optima2 in the framework of Phase III of the LWR-PROTEUS experimental program at the Paul Scherrer Inst.. This paper presents comparisons of calculated, nodal reconstructed, pin-wise total-fission rate distributions with experimental results. Radial comparisons have been performed for the three sections of the assembly (96, 92 and 84 fuel pins), while three-dimensional effects have been investigated at pellet-level for the two transition regions, i.e. the tips of the short (1/3) and long (2/3) partial length rods. The test zone has been modeled using two different code systems: HELIOS/PRESTO-2 and CASMO-5/SIMULATE-5. The first is presently used for core monitoring and design at the Leibstadt Nuclear Power Plant (KKL). The second represents the most recent generation of the widely applied CASMO/SIMULATE system. For representing the PROTEUS test-zone boundaries, Partial Current Ratios (PCRs) - derived from a 3D MCNPX model of the entire reactor - have been applied to the PRESTO-2 and SIMULATE-5 models in the form of 2- and 5-group diagonal albedo matrices, respectively. The MCNPX results have also served as a reference, high-order transport solution in the calculation/experiment comparisons. It is shown that the performance of the nodal methodologies in predicting the global distribution of the total-fission rate is very satisfactory. Considering the various radial comparisons, the standard deviations of the calculated/experimental (C/E) distributions do not exceed 1.9% for any of the three methodologies - PRESTO-2, SIMULATE-5 and MCNPX. For the three-dimensional comparisons at pellet-level, the corresponding standard deviations are 2.7%, 2.0% and 2.1%, respectively. (authors)

  10. Automated nuclear fuel rod pattern loading system

    International Nuclear Information System (INIS)

    Lambert, D.V.; Nyland, T.W.; Byers, J.W.; Haley, D.E. Jr.; Cioffi, J.V.

    1990-01-01

    This patent describes an apparatus for loading fuel rods in a desired pattern. It comprises: a carousel having a plurality of movable gondolas for stocking thereon fuel rods of known enrichments; an elongated magazine defining a matrix of elongated slots being open at their forward ends for receiving fuel rods; a workstation defining a fuel rod feed path; and a holder and indexing mechanism for movably supporting the magazine and being actuatable for moving the magazine along X-Y axes to successively align one at a time selected ones of the slots with the feed path for loading in the magazine the successive fuel rods in a desired enrichment pattern

  11. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor

    International Nuclear Information System (INIS)

    Gonzalez C, J.; Martin del Campo M, C.

    2003-01-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  12. International comparison calculations for a BWR lattice with adjacent gadolinium pins

    International Nuclear Information System (INIS)

    Maeder, C.; Wydler, P.

    1984-09-01

    The results of burnup calculations for a simplified BWR fuel element with two adjacent gadolinium rods are presented and discussed. Ten complete solutions were contributed by Denmark, France, Italy (3), Japan (3), Switzerland and the UK. Partial results obtained from Poland and the USA are included in an Appendix. (Auth.)

  13. Nuclear reactor fuel rod attachment system

    International Nuclear Information System (INIS)

    Christiansen, D.W.

    1983-01-01

    The invention involves a technique to quickly, inexpensively and rigidly attach a nuclear reactor fuel rod to a support member. The invention also allows for the repeated non-destructive removal and replacement of the fuel rod. The proposed fuel rod and support member attachment and removal system consists of a locking cap fastened to the fuel rod and a locking strip fastened to the support member or vice versa. The locking cap has two or more opposing fingers shaped to form a socket. The fingers spring back when moved apart and released. The locking strip has an extension shaped to rigidly attach to the socket's body portion

  14. Control in fabrication of PWR and BWR type reactor fuel elements

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1981-01-01

    Both destructive and non-destructive testing methods now in use in fabrication of BWR and PWR type reactor fuel elements at foreign plants are reviewed. Technological procedures applied in fabrication of fuel elements and fuel assemblies are described. Major attention is paid to radiographic, ultrasonic, metallographic, visual and autoclavic testings. A correspondence of the methods applied to the ASTM standards is discussed. The most part of the countries are concluded the apply similar testing methods enabling one to reliably evaluate the quality of primary materials and fabricated fuel elements and thus meeting the demands to contemporary PWR and BWR type reactor fuel elements. Practically all fuel element and pipe fabrication plants in Western Europe, Asia and America use the ASTM standards as the basis for the quality contr [ru

  15. Benefits of barrier fuel on fuel cycle economics

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kunz, C.L.

    1988-01-01

    Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect of fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs

  16. BWR fuel cycle optimization using neural networks

    International Nuclear Information System (INIS)

    Ortiz-Servin, Juan Jose; Castillo, Jose Alejandro; Pelta, David Alejandro

    2011-01-01

    Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.

  17. Control rod drives

    International Nuclear Information System (INIS)

    Hayakawa, Hiroyasu; Kawamura, Atsuo.

    1979-01-01

    Purpose: To reduce pellet-clad mechanical interactions, as well as improve the fuel safety. Constitution: In the rod drive of a bwr type reactor, an electric motor operated upon intermittent input such as of pulse signals is connected to a control rod. A resolver for converting the rotational angle of the motor to electric signals is connected to the rotational shaft of the motor and the phase difference between the output signal from the resolver and a reference signal is adapted to detect by a comparator. Based on the detection result, the controller is actuated to control a motor for control rod drive so that fine control for the movement of the control rod is made possible. This can reduce the moving distance of the control rod, decrease the thermal stress applied to the control rod and decrease the pellet clad mechanical interaction failures due to thermal expansion between the cladding tube and the pellets caused by abrupt changes in the generated power. (Furukawa, Y.)

  18. VIM Monte Carlo versus CASMO comparisons for BWR advanced fuel designs

    International Nuclear Information System (INIS)

    Pallotta, A.S.; Blomquist, R.N.

    1994-01-01

    Eigenvalues and two-dimensional fission rate distributions computed with the CASMO-3G lattice physics code and the VIM Monte Carlo Code are compared. The cases assessed are two advanced commercial BWR pin bundle designs. Generally, the two codes show good agreement in K inf , fission rate distributions, and control rod worths

  19. System for manipulating radioactive fuel rods within a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Tolino, R.W.; King, W.E.; Blickenderfer, J.L.; Roth, C.H. Jr.

    1987-01-01

    A tool is described for manipulating the peripherally located fuel rods of a fuel assembly so that the rods can be visually inspected. The fuel assembly includes top and bottom nozzles, each of which is connected to a support skeleton, as well as grids, and wherein the rods are retained within the grids and confined between the top and bottom nozzles thereof. It consists of: (a) a fixture that is detachably connectable to one of the nozzles of the fuel assembly. The fixture having holes therein, (b) rotating means pivotally mountable within the holes of the fixture for selectively gripping and rotating the rod, and (c) a displacing means mounted on the fixture for reciprocably displacing the rods within the fuel assembly, including a lifting assembly and a push-down assembly for lifting and pushing down a selected one of the rods, respectively, whereby the rods can be selectively rotated, lifted, and pushed down in order to expose portions of the rods which are normally hidden to visual inspection while the nozzles stay connected to the support skeleton and the rods stay confined between the top and bottom nozzles of the fuel assembly

  20. Refabricated and instrumented fuel rods

    International Nuclear Information System (INIS)

    Silberstein, K.

    2005-01-01

    Nuclear Fuel for power reactors capabilities evaluation is strongly based on the intimate knowledge of its behaviour under irradiation. This knowledge can be acquired from refabricated and instrumented fuel rods irradiated at different levels in commercial reactors. This paper presents the development and qualification of a new technique called RECTO related to a double-instrumented rod re-fabrication process developed by CEA/LECA hot laboratory facility at CADARACHE. The technique development includes manufacturing of the properly dimensioned cavity in the fuel pellet stack to house the thermocouple and the use of a newly designed pressure transducer. An analytic irradiation of such a double-instrumented fuel rod will be performed in OSIRIS test reactor starting October 2004. (Author)

  1. Analysis of irradiation temperature in fuel rods of OGL-1 fuel assembly

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kobayashi, Fumiaki; Minato, Kazuo; Ikawa, Katsuichi; Iwamoto, Kazumi

    1984-10-01

    Irradiation temperature in the fuel rods of 5th OGL-1 fuel assembly was analysed by the system composed by STPDSP2 and TRUMP codes. As the measured input-data, following parameters were allowed for; circumferential heating distribution around the fuel rod, which was measured in the JMTR critical assembly, axial heating distribution through the fuel rod, ratio of peak heatings of three fuel rods, and pre- and post-irradiation outer radii of the fuel compacts and inner radii of the graphite sleeves, which had been measured in PIE of the 5th OGL-1 fuel assembly. In computation the axial distributions of helium coolant temperature through the fuel rod and the heating value of each fuel rod were, firstly, calculated as input data for TRUMP. The TRUMP calculation yielded the temperatures which were fitted in those measured by all of the thermo-couples installed in the fuel rods, by adjusting only the value of the surface heat transfer coefficient, and consequently, the temperatures in all portions of the fuel rod were obtained. The apparent heat transfer coefficient changed to 60% of the initial values in the middle period of irradiation. For this reduction it was deduced that shoot had covered the surface of the fuel rod during irradiation, which was confirmed in PIE. Beside it, several things were found in this analysis. (author)

  2. Microcomputer system for controlling fuel rod length

    International Nuclear Information System (INIS)

    Meyer, E.R.; Bouldin, D.W.; Bolfing, B.J.

    1979-01-01

    A system is being developed at the Oak Ridge National Laboratory (ORNL) to automatically measure and control the length of fuel rods for use in a high temperature gas-cooled reactor (HTGR). The system utilizes an LSI-11 microcomputer for monitoring fuel rod length and for adjusting the primary factor affecting length. Preliminary results indicate that the automated system can maintain fuel rod length within the specified limits of 1.940 +- 0.040 in. This system provides quality control documentation and eliminates the dependence of the current fuel rod molding process on manual length control. In addition, the microcomputer system is compatible with planned efforts to extend control to fuel rod fissile and fertile material contents

  3. Development of a new bench for puncturing of irradiated fuel rods in STAR hot laboratory

    Science.gov (United States)

    Petitprez, B.; Silvestre, P.; Valenza, P.; Boulore, A.; David, T.

    2018-01-01

    A new device for puncturing of irradiated fuel rods in commercial power plants has been designed by Fuel Research Department of CEA Cadarache in order to provide experimental data of high precision on fuel pins with various designs. It will replace the current set-up that has been used since 1998 in hot cell 2 of STAR facility with more than 200 rod puncturing experiments. Based on this consistent experimental feedback, the heavy-duty technique of rod perforation by clad punching has been preserved for the new bench. The method of double expansion of rod gases is also retained since it allows upgrading the confidence interval of volumetric results obtained from rod puncturing. Furthermore, many evolutions have been introduced in the new design in order to improve its reliability, to make the maintenance easier by remote handling and to reduce experimental uncertainties. Tightness components have been studied with Sealing Laboratory Maestral at Pierrelatte so as to make them able to work under mixed pressure conditions (from vacuum at 10-5 mbar up to pressure at 50 bars) and to lengthen their lifetime under permanent gamma irradiation in hot cell. Bench ergonomics has been optimized to make its operating by remote handling easier and to secure the critical phases of a puncturing experiment. A high pressure gas line equipped with high precision pressure sensors out of cell can be connected to the bench in cell for calibration purposes. Uncertainty analyses using Monte Carlo calculations have been performed in order to optimize capacity of the different volumes of the apparatus according to volumetric characteristics of the rod to be punctured. At last this device is composed of independent modules which allow puncturing fuel pins out of different geometries (PWR, BWR, VVER). After leak tests of the device and remote handling simulation in a mock-up cell, several punctures of calibrated specimens have been performed in 2016. The bench will be implemented soon in hot

  4. Core concept for long operating cycle simplified BWR (LSBWR)

    International Nuclear Information System (INIS)

    Kouji, Hiraiwa; Noriyuki, Yoshida; Mikihide, Nakamaru; Hideaki, Heki; Masanori, Aritomi

    2002-01-01

    An innovative core concept for a long operating cycle simplified BWR (LSBWR) is currently being developed under a Toshiba Corporation and Tokyo Institute of Technology joint study. In this core concept, the combination of enriched uranium oxide fuels and loose-pitched lattice is adopted for an easy application of natural circulation. A combination of enriched gadolinium and 0.7-times sized small bundle with peripheral-positioned gadolinium rod is also adopted as a key design concept for 15-year cycle operation. Based on three-dimensional nuclear and thermal hydraulic calculation, a nuclear design for fuel bundle has been determined. Core performance has been evaluated based on this bundle design and shows that thermal performance and reactivity characteristics meet core design criteria. Additionally, a control rod operation plan for an extension of control rod life has been successfully determined. (author)

  5. Failure position detection device for nuclear fuel rod

    International Nuclear Information System (INIS)

    Ishida, Takeshi; Higuchi, Shin-ichi; Ito, Masaru; Matsuda, Yasuhiko

    1987-01-01

    Purpose: To easily detect failure position of a nuclear fuel rod by relatively moving an air-tightly shielded detection portion to a fuel rod. Constitution: For detecting the failure position of a leaked fuel assembly, the fuel assembly is dismantled and a portion of withdrawn fuel rod is air-tightly sealed with an inspection portion. The inside of the inspection portion is maintained at a pressure-reduced state. Then, in a case if failed openings are formed at a portion sealed by the inspection portion in the fuel rod, FP gases in the fuel rod are released based on the reduced pressure and the FP gases are detected in the detection portion. Accordingly, by relatively moving the detection portion to the fuel rod, the failure position can be detected. (Yoshino, Y.)

  6. Failure position detection device for nuclear fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Takeshi; Higuchi, Shin-ichi; Ito, Masaru; Matsuda, Yasuhiko

    1987-03-24

    Purpose: To easily detect failure position of a nuclear fuel rod by relatively moving an air-tightly shielded detection portion to a fuel rod. Constitution: For detecting the failure position of a leaked fuel assembly, the fuel assembly is dismantled and a portion of withdrawn fuel rod is air-tightly sealed with an inspection portion. The inside of the inspection portion is maintained at a pressure-reduced state. Then, in a case if failed openings are formed at a portion sealed by the inspection portion in the fuel rod, FP gases in the fuel rod are released based on the reduced pressure and the FP gases are detected in the detection portion. Accordingly, by relatively moving the detection portion to the fuel rod, the failure position can be detected. (Yoshino, Y.).

  7. Fuel rod design by statistical methods for MOX fuel

    International Nuclear Information System (INIS)

    Heins, L.; Landskron, H.

    2000-01-01

    Statistical methods in fuel rod design have received more and more attention during the last years. One of different possible ways to use statistical methods in fuel rod design can be described as follows: Monte Carlo calculations are performed using the fuel rod code CARO. For each run with CARO, the set of input data is modified: parameters describing the design of the fuel rod (geometrical data, density etc.) and modeling parameters are randomly selected according to their individual distributions. Power histories are varied systematically in a way that each power history of the relevant core management calculation is represented in the Monte Carlo calculations with equal frequency. The frequency distributions of the results as rod internal pressure and cladding strain which are generated by the Monte Carlo calculation are evaluated and compared with the design criteria. Up to now, this methodology has been applied to licensing calculations for PWRs and BWRs, UO 2 and MOX fuel, in 3 countries. Especially for the insertion of MOX fuel resulting in power histories with relatively high linear heat generation rates at higher burnup, the statistical methodology is an appropriate approach to demonstrate the compliance of licensing requirements. (author)

  8. Expandable device for a nuclear fuel rod

    International Nuclear Information System (INIS)

    Gesinski, L.T.

    1978-01-01

    A nuclear fuel rod and a device for use within the rod cladding to maintain the axial position of the fuel pellets stacked one atop another within the cladding are described. The device is initially of a smaller external cross-section than the fuel rod cladding internal cross-section so as to accommodate loading into the rod at preselected locations. During power operation the device responds to a rise in temperature, so as to permanently maintain its position and restrain any axial motion of the fuel pellets

  9. Method and apparatus for compacting spent nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    In a nuclear reactor system requiring periodic physical manipulation of spent fuel rods, the method of compacting fuel rods from a fuel rod assembly is described comprising the steps of: (1) removing the top end from pulling members having electrodes of weld elements in leading ends thereof in sequence through a fuel rod container and thence through respective consolidating passages in a fuel-rod directing chamber; (3) welding the weld elements of the pulling members to the top end of respective fuel rods corresponding to the respective pulling members; (4) drawing each of the pulling members axially to draw the respective engaged fuel rods in one axial direction through the respective passages in the chamber to thereby consolidate the fuel rods into a compacted configuration of a cross-sectional area smaller than the cross-sectional area occupied thereby within the fuel rod assembly; and (5) drawing all of the engaged fuel rods concurrently and substantially parallel to one another to the one axial direction into the fuel rod container while maintaining the compacting configuration in a fuel rod density which is greater than that of the fuel rod density of the fuel rod assembly

  10. Modeling and validation of a mechanistic tool (MEFISTO) for the prediction of critical power in BWR fuel assemblies

    International Nuclear Information System (INIS)

    Adamsson, Carl; Le Corre, Jean-Marie

    2011-01-01

    Highlights: → The MEFISTO code efficiently and accurately predicts the dryout event in a BWR fuel bundle, using a mechanistic model. → A hybrid approach between a fast and robust sub-channel analysis and a three-field two-phase analysis is adopted. → MEFISTO modeling approach, calibration, CPU usage, sensitivity, trend analysis and performance evaluation are presented. → The calibration parameters and process were carefully selected to preserve the mechanistic nature of the code. → The code dryout prediction performance is near the level of fuel-specific empirical dryout correlations. - Abstract: Westinghouse is currently developing the MEFISTO code with the main goal to achieve fast, robust, practical and reliable prediction of steady-state dryout Critical Power in Boiling Water Reactor (BWR) fuel bundle based on a mechanistic approach. A computationally efficient simulation scheme was used to achieve this goal, where the code resolves all relevant field (drop, steam and multi-film) mass balance equations, within the annular flow region, at the sub-channel level while relying on a fast and robust two-phase (liquid/steam) sub-channel solution to provide the cross-flow information. The MEFISTO code can hence provide highly detailed solution of the multi-film flow in BWR fuel bundle while enhancing flexibility and reducing the computer time by an order of magnitude as compared to a standard three-field sub-channel analysis approach. Models for the numerical computation of the one-dimensional field flowrate distributions in an open channel (e.g. a sub-channel), including the numerical treatment of field cross-flows, part-length rods, spacers grids and post-dryout conditions are presented in this paper. The MEFISTO code is then applied to dryout prediction in BWR fuel bundle using VIPRE-W as a fast and robust two-phase sub-channel driver code. The dryout power is numerically predicted by iterating on the bundle power so that the minimum film flowrate in the

  11. BWR SFAT, gross-defect verification of spent BWR fuel. Final report on Task FIN A563 on the Finnish Support Programme to IAEA Safeguards including BWR SFAT User Manual

    International Nuclear Information System (INIS)

    Tarvainen, M.; Paakkunainen, M.; Tiitta, A.; Sarparanta, K.

    1994-04-01

    A measurement instrument called Spent Fuel Attribute Tester, SFAT, has been designed, fabricated and taken into use by the IAEA in gross defect verification of spent BWR fuel assemblies. The equipment consists of an underwater measurement head connected with cables to a control unit on the bridge of the fuel handling machine as well as to a PMCA for measurement of the gamma spectra. The BWR SFAT is optimized for the AFR interim storage, TVO KPA-STORE, of the TVO Power Company in Olkiluoto, Finland. It has a shape and it is moved like a fuel assembly using the fuel handling machine. No fuel movements are needed. Spent fuel specific radiation from the fission product 137 Cs at the gamma-ray energy of 662 keV is detected above the assemblies in the storage rack using a NaI(Tl) detector. In the design and in licensing the requirements of the IAEA, operator and the safety authority have been taken into account. The BWR SFAT allows modifications for other LWR fuel types with minor changes. The work has been carried out under the task FIN A 563 of the Finnish Support Programme to IAEA Safeguards. (orig.) (9 refs., 22 figs.)

  12. Impact loading of a BWR control rod during braking

    International Nuclear Information System (INIS)

    Heeschen, U.

    1977-01-01

    In an emergency case the control rods of a boiling water reactor are shot into the RPV from below against the weight of the rods with drive motors. According to the position of the control rods between the fuel elements the rods can reach in that case velocities up to 4 m/s. The moved masses of the control rods and of the pistons (both of them are connected by a coupling) are braked through a cup spring which transfers its forces to the RPV-bottom sphere. The spring has to be designed that in this case tthe complete kinetic energy of he control rods of about 1000Nm can be taken up. The spring power and the inertia of the moved masses cause extremely high loadings during and shortly after the impact onto the spring. The shock-like loading propagates along the whole rod at the speed of sound, and this is also the reason why the weaker cross-sections have to endure considerable short-term stress peaks. (Auth.)

  13. Development of alternative materials for BWR fuel springs

    International Nuclear Information System (INIS)

    Uruma, Y.; Osato, T.; Yamazaki, K.

    2002-01-01

    Major sources of radioactivity introduced into reactor water of BWR were estimated fuel crud and in-core materials (especially, fuel springs). Fuel springs are used for fixation of fuel cladding tubes with spacer grid. Those are small parts (total length is only within 25 mm) and so many numbers are loaded simultaneously and then total surfaces area are calculated up to about 200 m 2 . Fuel springs are located under high radiation field and high oxidative environment. Conventional fuel spring is made of alloy-X750 which is one of nickel-based alloy and is reported to show relatively higher corrosion release rate. 58 Co and 60 Co will be released directly into reactor water from intensely radio-activated fuel springs surface and increase radioactivity concentrations in primary coolant. Corrosion release control from fuel springs is an important technical item and a development of alternative material instead of alloy-X750 for fuel spring is a key subject to achieve ultra low man-rem exposure BWR plant. In present work, alloy-X718 which started usage for PWR fuel springs and stainless steel type 316L which has many mechanical property data are picked up for alternative materials and compared their corrosion behaviors with conventional material. Corrosion experiment was conducted under vapor-water two phases flow which is simulated fuel cladding surface boiling condition. After exposure, corrosion film formed under corrosion test was analyzed in detail and corrosion film amount and corrosion release amount are estimated among three materials. (authors)

  14. Nondestructive assay of HTGR fuel rods

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1974-01-01

    Performance characteristics of three different radioactive source NDA systems are compared for the assay of HTGR fuel rods and stacks of rods. These systems include the fast neutron Sb-Be assay system, the 252 Cf ''Shuffler,'' and the thermal neutron PAPAS assay system. Studies have been made to determinethe perturbation on the measurements from particle size, kernel Th/U ratio, thorium content, and hydrogen content. In addition to the total 235 U determination, the pellet-to-pellet or rod-to-rod uniformity of HTGR fuel rod stacks has been measured by counting the delayed gamma rays with a NaI through-hole in the PAPAS system. These measurements showed that rod substitutions can be detected easily in a fuel stack, and that detailed information is available on the loading variations in a uniform stack. Using a 1.0 mg 252 Cf source, assay rates of 2 to 4 rods/s are possible, thus facilitating measurement of 100 percent of a plant's throughput. (U.S.)

  15. An economic analysis of BWR control rod blade management strategies. Final report

    International Nuclear Information System (INIS)

    Welsh, J.

    1995-12-01

    Nuclear power plants have available a number of alternative courses of action that can contribute to the reduction of personnel exposure to radiation. Possible actions at boiling water reactor (BWR) plants include accelerating the replacement of high-cobalt control rod blades (CRB) or the blades' high-cobalt pins and rollers with low or non-cobalt substitutes. To help utilities understand the exposure reduction and the economic costs and benefits associated with management alternatives, such as accelerated replacement of blades, pins and rollers, EPRI has initiated a project called Cost/Benefit Software for Analyses of Radiation Control Measures (RP1935-32). Through this project EPRI will incorporate engineering-economic techniques into a series of analytical tools that will provide useful insights about alternative exposure reduction options. Prototype software has been developed in an Excel worksheet to analyze issues associated with BWR control rod blade management options. The CRB replacement problem framework and analysis methodology incorporated into the software tool will help plant managers consider explicitly key engineering and economic issues that are relevant to exposure reduction decisions. This tool generates results that can help plant managers make decisions that are fiscally wise by showing all the cost and benefit implications associated with a management action under consideration. This report describes the general analytical approach for evaluating exposure reduction alternatives. The methodology used to analyze blade and pin and roller replacement alternatives, and the results of a case study application of the methodology and the software prototype at Commonwealth Edison

  16. Nuclear fuel rods

    International Nuclear Information System (INIS)

    Wada, Toyoji.

    1979-01-01

    Purpose: To remove failures caused from combination of fuel-cladding interactions, hydrogen absorptions, stress corrosions or the likes by setting the quantity ratio of uranium or uranium and plutonium relative to oxygen to a specific range in fuel pellets and forming a specific size of a through hole at the center of the pellets. Constitution: In a fuel rods of a structure wherein fuel pellets prepared by compacting and sintering uranium dioxide, or oxide mixture consisting of oxides of plutonium and uranium are sealed with a zirconium metal can, the ratio of uranium or uranium and plutonium to oxygen is specified as 1 : 2.01 - 1 : 2.05 in the can and a passing hole of a size in the range of 15 - 30% of the outer diameter of the fuel pellet is formed at the center of the pellet. This increases the oxygen partial pressure in the fuel rod, oxidizes and forms a protection layer on the inner surface of the can to control the hydrogen absorption and stress corrosion. Locallized stress due to fuel cladding interaction (PCMI) can also be moderated. (Horiuchi, T.)

  17. Conceptual design report of the SMART fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Chan Bock; Bang, Je Gun; Jung, Yeon Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The SMART fuel rod is based on 17 x 17 KOFA(Korea Fuel Assembly) fuel rod of the 950MWe pressurize water reactor. The fuel stack length of the KOFA is 3658mm, otherwise SMART fuel rod stack length is 2000mm. The fuel rod contains UO{sub 2} pellets with the enrichment of 4.95%. All the fuel in core will be replaced every 35 months. The average LHGR of the fuel rod is 120 W/cm, commercial PWR is 178 W/cm, SMART LHGR is lower about 31% than commercial PWR. The core inlet and outlet temperature of coolant are respectively 270 deg C and 310 deg C, commercial PWR are respectively 291.6 deg C and 326.8 deg C, SMART inlet and outlet temperature is lower averaged 19.2 deg C than commercial PWR. The coolant use mixed soluble ammonia in high purity water and boron is not in. The general performance of the fuel rod UO{sub 2} pellet has been already verified through the sufficient burnup (60,000 MWd/MTU-rod avg.) experience as the rods of same design in commercial PWR's. But cladding corrosion is required the further verification. (author). 13 refs., 3 figs., 8 tabs.

  18. Study on thermal performance and margins of BWR fuel elements

    International Nuclear Information System (INIS)

    Stosic, Zoran

    1999-01-01

    This paper contributes to developing a methodology of predicting and analyzing thermal performance and margins of Boiling Water Reactor (BWR) fuel assemblies under conditions of reaching high quality Boiling Crisis and subsequent post-dryout thermal hydraulics causing temperature excursion of fuel cladding. Operational margins against dryout and potential for increasing fuel performance with appropriate benefits are discussed. The philosophy of modeling with its special topics are demonstrated on the HECHAN (HEated CHannel ANalyzer) model as the state-of-art for thermal-hydraulics analysis of BWR fuel assemblies in pre- and post-dryout two-phase flow regimes. The scope of further work either being or has to be performed concerning implementation of new physical aspects, including domain extension of HECHAN model applications to the Pressurized Water Reactors (PWRs), is discussed. Finally, a comprehensive overview of the literature dealing with development of the model is given. (author)

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Sei; Ando, Ryohei; Mitsutake, Toru.

    1995-01-01

    The present invention concerns a fuel assembly suitable to a BWR-type reactor and improved especially with the nuclear characteristic, heat performance, hydraulic performance, dismantling or assembling performance and economical property. A part of poison rods are formed as a large-diameter/multi-region poison rods having a larger diameter than a fuel rod. A large number of fuel rods are disposed surrounding a large diameter water rod and a group of the large-diameter/multi-region poison rods in adjacent with the water rod. The large-diameter water rod has a burnable poison at the tube wall portion. At least a portion of the large-diameter poison rods has a coolant circulation portion allowing coolants to circulate therethrough. Since the large-diameter poison rods are disposed at a position of high neutron fluxes, a large neutron multiplication factor suppression effect can be provided, thereby enabling to reduce the number of burnable poison rods relative to fuels. As a result, power peaking in the fuel assembly is moderated and a greater amount of plutonium can be loaded. In addition the flow of cooling water which tends to gather around the large diameter water rod can be controlled to improve cooling performance of fuels. (N.H.)

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Akiyoshi; Bessho, Yasunori; Aoyama, Motoo; Koyama, Jun-ichi; Hirakawa, Hiromasa; Yamashita, Jun-ichi; Hayashi, Tatsuo

    1998-01-01

    In a fuel assembly of a BWR type reactor in which a water rod of a large diameter is disposed at the central portion, the cross sectional area perpendicular to the axial direction comprises a region a of a fuel rod group facing to a wide gap water region to which a control rod is inserted, a region b of a fuel rod group disposed on the side of the wide gap water region other than the region a, a region d of a fuel rod group facing to a narrow gap water region and a region c of a fuel rod group disposed on the side of the narrow gap water region other than the region d. When comparing an amount of fission products contained in the four regions relative to that in the entire regions and average enrichment degrees of fuel rods for the four regions, the relative amount and the average enrichment degree of the fuel rod group of the region a is minimized, and the relative amount and the average enrichment degree of the fuel rod group in the region b is maximized. Then, reactor shut down margin during cold operation can be improved while flattening the power in the cross section perpendicular to the axial direction. (N.H.)

  1. Fuel spacer

    International Nuclear Information System (INIS)

    Nishida, Koji; Yokomizo, Osamu; Kanazawa, Toru; Kashiwai, Shin-ichi; Orii, Akihito.

    1992-01-01

    The present invention concerns a fuel spacer for a fuel assembly of a BWR type reactor and a PTR type reactor. Springs each having a vane are disposed on the side surface of a circular cell which supports a fuel rods. A vortex streams having a vertical component are formed by the vanes in the flowing direction of a flowing channel between adjacent cylindrical cells. Liquid droplets carried by streams are deposited on liquid membrane streams flowing along the fuel rod at the downstream of the spacer by the vortex streams. In view of the above, the liquid droplets can be deposited to the fuel rod without increasing the amount of metal of the spacer. Accordingly, the thermal margin of the fuel assembly can be improved without losing neutron economy. (I.N.)

  2. High burnup (41 - 61 GWd/tU) BWR fuel behavior under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Kusagaya, Kazuyuki; Yoshinaga, Makio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    High burnup boiling water reactor (BWR) fuel was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity initiated accident (RIA) conditions. Temperature, deformation, failure, and fission gas release behavior under the simulated RIA condition was studied in the tests. Fuel failure due to pellet-cladding mechanical interaction (PCMI) did not occur in the tests with typical domestic BWR fuel at burnups up to 56 GWd/tU, because they had limited cladding embrittlement due to hydrogen absorption of about 100 ppm or less. However, the cladding failure occurred in tests with fuel at a burnup of 61 GWd/tU, in which the peak hydrogen content in the cladding was above 150 ppm. This type of failure was observed for the first time in BWR fuels. The cladding failure occurred at fuel enthalpies of 260 to 360 J/g (62 to 86 cal/g), which were higher than the PCMI failure thresholds decided by the Japanese Nuclear Safety Commission. From post-test examinations of the failed fuel, it was found that the crack in the BWR cladding progressed in a manner different from the one in PWR cladding failed in earlier tests, owing to its more randomly oriented hydride distribution. Because of these differences, the BWR fuel was judged to have failed at hydrogen contents lower than those of the PWR fuel. Comparison of the test results with code calculations revealed that the PCMI failure was caused by thermal expansion of pellets, rather than by the fission gas expansion in the pellets. The gas expansion, however, was found to cause large cladding hoop deformation later after the cladding temperature escalated. (author)

  3. Relation of fuel rod service parameters and design requirements to produced fuel rod and their components

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.

    1999-01-01

    Based on the presented material it is possible to state that there is a very close link between the fuel operational parameters and the requirements for its design and production process. The required performance and life-time of a fuel rod can be only assured by the correctly selected design and process solutions. The economical aspect of this problem is significantly depend on the commercial feasibility of a particular selected solution with the provision of an automated and comparative by inexpensive production of a fuel rod and its components. The operational conditions are also important for the life time of the fuel rods. If there are no special measures for the mitigation of the certain operation conditions the leakage of fuel elements can take place before the planned time. (authors)

  4. Apparatus for inspecting a irradiated nuclear fuel rod

    International Nuclear Information System (INIS)

    Saura, Hideaki; Yonemura, Eizo.

    1975-01-01

    Object: To increase safety and inspection efficiency by operating irradiated fuel rods, which are accommodated in a water-filled pool after being taken out from the reactor. Structure: When making inspection of irradiated fuel rods, particularly the cladding tube thereof, a fuel box which stores irradiated fuel rods in a water pool is secured to a securement mechanism with slime removal apparatus and inspection apparatus on either side capable of being vertically moved, and it is then stopped at a water depth of about 2 meters. When the lid of the box is opened, irradiated fuel rods are taken out with gripping means and then secured together with the gripping means to an operation base provided on the outside of the pool. Thereafter, the box is lowered by operating pedals on the operation base to completely pull out the irradiated fuel rods from the box, and the irradiated fuel rods are then horizontally moved and then held in a suspended state. Next a slime removal apparatus in raised by operating pedals and an inspection element assembly are progressively raised for inspection of the state of the cladding tube of each fuel rod after removal of slime therefrom. (Nakamura, S.)

  5. Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly

    International Nuclear Information System (INIS)

    Andrey Ioilev; Maskhud Samigulin; Vasily Ustinenko; Simon Lo; Adrian Tentner

    2005-01-01

    Full text of publication follows: The goal of this project is to develop an advanced Computational Fluid Dynamics (CFD) computer code (CFD-BWR) that allows the detailed analysis of the two-phase flow and heat transfer phenomena in a Boiling Water Reactor (BWR) fuel bundle under various operating conditions. This code will include more fundamental physical models than the current generation of sub-channel codes and advanced numerical algorithms for improved computational accuracy, robustness, and speed. It is highly desirable to understand the detailed two-phase flow phenomena inside a BWR fuel bundle. These phenomena include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for the analysis of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is still too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Recent progress in Computational Fluid Dynamics (CFD), coupled with the rapidly increasing computational power of massively parallel computers, shows promising potential for the fine-mesh, detailed simulation of fuel assembly two-phase flow phenomena. However, the phenomenological models available in the commercial CFD programs are not as advanced as those currently being used in the sub-channel codes used in the nuclear industry. In particular, there are no models currently available which are able to reliably predict the nature of the flow regimes, and use the appropriate sub-models for those flow regimes. The CFD-BWR code is being developed as a customized module built on the foundation of the commercial CFD Code STAR-CD which provides general two-phase flow modeling capabilities. The paper describes the model development strategy which has been adopted by the development team for the

  6. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1991-11-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. On such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97 degrees C and whether the cladding of the stored spent fuel ever exceeds 350 degrees C. Limiting the borehole to temperatures of 97 degrees C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350 degrees C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97 degrees C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350 degrees C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft x 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40 degrees C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation

  7. LWR fuel performance during anticipated transients with scram

    International Nuclear Information System (INIS)

    Martinson, Z.R.; McCardell, R.K.; MacDonanl, P.E.; Rowland, T.C.; Tokar, M.

    1983-01-01

    Operational transients occur occasionally in light water reactors when minor malfunctions of certain system components affect the reactor core. Potential effects of such malfunctions include a loss of the secondary heat sink, an increase in system pressure, and, in boiling water reactors, void collapse and a brief increase in reactor power. The most severe postulated Boiling Water Reactor (BWR) anticipated transient is characterized by a power peak of up to 495% rated power for about 1 second (according to a recent General Electric Co., generic analysis). The results of a series of fuel behaviour tests in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory are presented in this paper. Four progressively higher and broader power transients at a constant coolant flow rate were performed. The first transient simulated a BWR-5 turbine trip without steam bypass with fuel rods operating at BWR-6 core average rod powers. The second transient simulated a generator load rejection without steam bypass with fuel rods operating at above core average powers. The last two transients were performed at higher powers than safety analysis predicts to be possible in commercial reactors to be defined failure threshold margins. The test rods did not fail and were not damaged during any of the four transients. (author)

  8. International symposium on fuel rod simulators: development and application

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W. (comp.)

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  9. Apparatus for loading fuel rods into grids of nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1989-01-01

    For use with a nuclear fuel assembly including support grids having cells for receiving fuel rods and with detents disposed within the respective cells for resiliently engaging and laterally supporting the fuel rods received therein, an apparatus is described for facilitating scratchless insertion of each fuel rod into cells of the support rids. The apparatus consists of: a thin-walled metallic tubular member which is long enough to extend through at least a majority of support grids, and is positionable so as to have its thin wall interposed, during insertion of each fuel rod, between the latter and the detents within the cells receiving it, the thin-walled tubular member having a substantially uniform wall thickness of not more than about 0.008 inch, an as-formed inner diameter substantially equal to the outer diameter of the fuel rod, and a longitudinal slit formed in the wall of the tubular member so as to render the wall resiliently deflectable in a diameter-reducing sense, the longitudinal slit having a width sufficient to preclude overlapping of the edges of the wall along the slit, and insufficient for any of the detents to enter the slit when the wall of the tubular member is in position between the detents and the fuel rod

  10. Pressurized water reactor fuel rod design methodology

    International Nuclear Information System (INIS)

    Silva, A.T.; Esteves, A.M.

    1988-08-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  11. Process development and fabrication for sphere-pac fuel rods

    International Nuclear Information System (INIS)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted

  12. Fabrication of preliminary fuel rods for SFR

    International Nuclear Information System (INIS)

    Kim, Sun Ki; Oh, Seok Jin; Ko, Young Mo; Woo, Youn Myung; Kim, Ki Hwan

    2012-01-01

    Metal fuels was selected for fueling many of the first reactors in the US, including the Experimental Breeder Reactor-I (EBR-I) and the Experimental Breeder Reactor-II (EBR-II) in Idaho, the FERMI-I reactor, and the Dounreay Fast Reactor (DFR) in the UK. Metallic U.Pu.Zr alloys were the reference fuel for the US Integral Fast Reactor (IFR) program. Metallic fuel has advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant and inherent passive safety. U-Zr-Pu alloy fuels have been used for SFR (sodium-cooled fast reactor) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. Fabrication technology of metallic fuel for SFR has been in development in Korea as a national nuclear R and D program since 2007. For the final goal of SFR fuel rod fabrication with good performance, recently, three preliminary fuel rods were fabricated. In this paper, the preliminary fuel rods were fabricated, and then the inspection for QC(quality control) of the fuel rods was performed

  13. Assessment of boiling transition analysis code against data from NUPEC BWR full-size fine-mesh bundle tests

    International Nuclear Information System (INIS)

    Utsuno, Hideaki; Ishida, Naoyuki; Masuhara, Yasuhiro; Kasahara, Fumio

    2004-01-01

    Transient BT analysis code TCAPE based on mechanistic methods coupled with subchannel analysis has been developed for the evaluation on fuel integrity under abnormal operations in BWR. TCAPE consisted mainly of the drift-flux model, the cross-flow model, the film model and the heat transfer model. Assessment of TCAPE has been performed against data from BWR full-size fine-mesh bundle tests (BFBT), which consisted of two major parts: the void distribution measurement and the critical power measurement. Code and data comparison was made for void distributions with varying number of unheated rods in simulated actual fuel assembly. Prediction of steady-state critical power was compared with the measurement on full-scale bundle under a range of BWR operational conditions. Although the cross-sectional averaged void fraction was underestimated when it became lower, the accuracy was obtained that the averaged ratio 0.910 and its standard deviation 0.076. The prediction of steady-state critical power agreed well with the data in the range of BWR operations, where the prediction accuracy was obtained that the averaged ratio 0.997 and its standard deviation 0.043. These results demonstrated that TCAPE is well capable to predict two-phase flow distribution and liquid film dryout phenomena occurring in BWR rod bundles. Part of NUPEC BFBT database will be made available for an international benchmark exercise. The code assessment shall be continued against the OECD/NRC benchmark based on BFBT database. (author)

  14. Validation of Westinghouse integrated code POLCA-T against OECD NEACRP-L-335 rod ejection benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir [Westinghouse Electric Sweden AB, Vaesteraas, SE-721 63 (Sweden)

    2008-07-01

    This paper describes the work performed and results obtained in the validation of the POLCA-T code against NEACRP PWR Rod Ejection Transients Benchmark. Presented work is a part of the POLCA-T licensing Assessment Data Base for BWR Control Rod Drop Accident (CRDA) Application. The validation against a PWR Rod Ejection Accidents (REA) Benchmark is relevant for the validation of the code for BWR CRDA, as the analyses of both transients require identical phenomena to be modelled. All six benchmark cases have been analyzed in the presented work. Initial state steady-state calculations including boron search, control rod worth, and final state power search have been performed by POLCA7 code. Initial state boron adjustment and steady-state CR worth as well as the transient analyses were performed by POLCA-T code. Benchmark results including 3D transient power distributions are compared with reference PANTHER solutions and published results of other codes. Given the similarity of the kinetics modelling for a BWR CRDA and a PWR REA and the fact that POLCA-T accurately predicts the local transient power and thus, the resulting fuel enthalpy, it is concluded that POLCA-T is a state-of-art tool also for BWR CRDA analysis. (author)

  15. Validation of Westinghouse integrated code POLCA-T against OECD NEACRP-L-335 rod ejection benchmark

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2008-01-01

    This paper describes the work performed and results obtained in the validation of the POLCA-T code against NEACRP PWR Rod Ejection Transients Benchmark. Presented work is a part of the POLCA-T licensing Assessment Data Base for BWR Control Rod Drop Accident (CRDA) Application. The validation against a PWR Rod Ejection Accidents (REA) Benchmark is relevant for the validation of the code for BWR CRDA, as the analyses of both transients require identical phenomena to be modelled. All six benchmark cases have been analyzed in the presented work. Initial state steady-state calculations including boron search, control rod worth, and final state power search have been performed by POLCA7 code. Initial state boron adjustment and steady-state CR worth as well as the transient analyses were performed by POLCA-T code. Benchmark results including 3D transient power distributions are compared with reference PANTHER solutions and published results of other codes. Given the similarity of the kinetics modelling for a BWR CRDA and a PWR REA and the fact that POLCA-T accurately predicts the local transient power and thus, the resulting fuel enthalpy, it is concluded that POLCA-T is a state-of-art tool also for BWR CRDA analysis. (author)

  16. Analysis of Double-encapsulated Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Hales, Jason Dean [Idaho National Laboratory; Medvedev, Pavel G [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Perez, Danielle Marie [Idaho National Laboratory; Williamson, Richard L [Idaho National Laboratory

    2014-09-01

    In an LWR fuel rod, the cladding encapsulates the fuel, contains fission products, and transfers heat directly to the water coolant. In some situations, it may be advantageous to separate the cladding from the coolant through use of a secondary cladding or capsule. This may be done to increase confidence that the fuel or fission products will not mix with the coolant, to provide a mechanism for controlling the rod temperature, or to place multiple experimental rodlets within a single housing. With an axisymmetric assumption, it is possible to derive closed-form expressions for the temperature profile in a fuel rod using radially-constant thermal conductivity in the fuel. This is true for both a traditional fuel-cladding rod and a double-encapsulated fuel (fuel, cladding, capsule) configuration. Likewise, it is possible to employ a fuel performance code to analyse both a traditional and a double-encapsulated fuel. In the case of the latter, two sets of gap heat transfer conditions must be imposed. In this work, we review the equations associated with radial heat transfer in a cylindrical system, present analytic and computational results for a postulated power and gas mixture history for IFA-744, and describe the analysis of the AFC-2A, 2B metallic fuel alloy experiments at the Advanced Test Reactor, including the effect of a release of fission products into the cladding-capsule gap. The computational results for these two cases were obtained using BISON, a fuel performance code under development at Idaho National Laboratory.

  17. LOFT advanced fuel rod instrumentation development

    International Nuclear Information System (INIS)

    Billeter, T.R.; Brown, R.L.; Chan, A.I.Y.; Day, C.K.; Meyers, S.C.; Sheen, E.M.; Stringer, J.L.

    1978-01-01

    Advanced fuel rod instrumentation for the Loss of Fluid Test (LOFT) reactor is being developed by the Hanford Engineering Development Laboratory for the Nuclear Regulatory Commission. This effort calls for development of sensors to measure fuel rod axial motion, fuel centerline temperature (to 2200 0 C), fuel rod plenum gas pressure (to 2500 psig), and plenum gas temperature (to 1500 0 F). A parallel test and evaluation of several modified commercial sensors was undertaken and will result in commercial availability of the final qualified sensors. Necessary test facilities were prepared for the development and evaluation effort. Tests to date indicate a three coil Linear Variable Differential Transformer (LVDT), operated from temperature compensating signal source and processing electronics, will meet the desired requirements

  18. Fuel followed control rod installation at AFRRI

    International Nuclear Information System (INIS)

    Moore, Mark; Owens, Chris; Forsbacka, Matt

    1992-01-01

    Fuel Followed Control Rods (FFCRs) were installed at the Armed Forces Radiobiology Research Institute's 1 MW TRIGA Reactor. The procedures for obtaining, shipping, and installing the FFCRs is described. As part of the FFCR installation, the transient rod drive was relocated. Core performance due to the addition of the fuel followed control rods is discussed. (author)

  19. Fuel cladding tube and fuel rod for BWR type reactor

    International Nuclear Information System (INIS)

    Urata, Megumu; Mitani, Shinji.

    1995-01-01

    A fuel cladding tube has grooves fabricated, on the surface thereof, with a predetermined difference between crest and bottom (depth of the groove) in the circumferential direction. The cross sectional shape thereof is sinusoidal. The distribution of the grain size of iron crud particles in coolants is within a range about from 2μm to 12μm. If the surface roughness of the fuel cladding tube (depth of the groove) is determined greater than 1.6μm and less than 12.5, iron cruds in coolants can be positively deposited on the surface of the fuel cladding tube. In addition, once deposited iron cruds can be prevented from peeling from the surface of the fuel cladding tube. With such procedures, iron cruds deposited and radioactivated on the fuel cladding tube can be prevented from peeling, to prevent and reduce the increase of radiation dose on the surface of the pipelines without providing any additional device. (I.N.)

  20. Inlet for fuel assembly having finger control rods

    International Nuclear Information System (INIS)

    Berglund, A.; Suvanto, A.; Tornblom, L.

    1975-01-01

    A nuclear reactor with vertically arranged fuel assemblies positioned on supporting members and with control rods displaceably arranged in guide tubes between the fuel rods inside the fuel assemblies is described. The supporting plate is provided with a transverse end piece with throttling means for the liquid flow which passes from below up through the supporting member and past the fuel rods in the fuel assembly. The inlets for the guide tubes for the control rods are located below the end piece and the throttling means. In this way a higher pressure prevails at the inlet to the guide tubes than above the end piece, so that a stronger flow of coolant is produced through guide tubes than through the fuel assembly. (U.S.)

  1. Method of changing the control rod pattern in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to change the control rod pattern in a short time with ease, as well as improve the availability factor of the reactor. Method: Control rods other than those being inserted into the reactor core are inserted into the reactor core to reduce the power by the reduction in the reactor core flow rate. Then, the control rod to be operated is operated partially for the change of the control rod pattern to restrict the linear heat rating of the fuels to less than 0.1 kW/ft per one hour to change the control pattern to the aimed control rod pattern. Then, the reactor core flow rate is increased after the pattern exchange for the control rod to increase the power. Since only the control rod operation is performed without adjusting the reactor core flow rate upon change of the control rod pattern, procedures can be made simply in a short time to thereby improve the availability factor of the reactor. (Moriyama, K.)

  2. MOX fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Shimada, Hidemitsu; Koyama, Jun-ichi; Aoyama, Motoo

    1998-01-01

    The MOX fuel assembly of the present invention is of a c-lattice type loaded to a BWR type reactor. 74 MOX fuel rods filled with mixed oxides of uranium and plutonium and two water rods disposed to a space equal to that for 7 MOX fuel rods are arranged in 9 x 9 matrix. MOX fuel rods having the lowest enrichment degree are disposed to four corners of the 9 x 9 matrix. The enrichment degree means a ratio of the weight of fission products based on the total weight of fuels. Two MOX fuel rods having the same enrichment degree are arranged in each direction so as to be continuous from the MOX fuel rods at four corners in the direction of the same row and different column and same column and the different row. In addition, among the outermost circumferential portion of the 9 x 9 matrix, MOX fuel rods having a lower enrichment degree next to the MOX fuel rods having the lowest enrichment degree are arranged, each by three to a portion where MOX fuel rods having the lowest enrichment degree are not disposed. (I.N.)

  3. Drilling Experiments of Dummy Fuel Rods Using a Mock-up Drilling Device and Detail Design of Device for Drilling of Irradiated Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Yong; Lee, H. K.; Chun, Y. B.; Park, S. J.; Kim, B. G

    2007-07-15

    KAERI are developing the safety evaluation method and the analysis technology for high burn-up nuclear fuel rod that is the project, re-irradiation for re-instrumented fuel rod. That project includes insertion of a thermocouple in the center hole of PWR nuclear fuel rod with standard burn-up, 3,500{approx}4,000MWD/tU and then inspection of the nuclear fuel rod's heat performance during re-irradiation. To re-fabricate fuel rod, two devices are needed such as a drilling machine and a welding machine. The drilling machine performs grinding a center hole, 2.5 mm in diameter and 50 mm in depth, for inserting a thermocouple. And the welding machine is used to fasten a end plug on a fuel rod. Because these two equipment handle irradiated fuel rods, they are operated in hot cell blocked radioactive rays. Before inserting any device into hot cell, many tests with that machine have to be conducted. This report shows preliminary experiments for drilling a center hole on dummy of fuel rods and optimized drilling parameters to lessen operation time and damage of diamond dills. And the design method of a drilling machine for irradiated nuclear fuel rods and detail design drawings are attached.

  4. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor; Evaluacion del diseno radial de celdas de combustible en un ciclo de operacion de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, J.; Martin del Campo M, C. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jgco@ver.megared.net.mx

    2003-07-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  5. Experiment studies of fuel rod vibration in coolant flow for substantiation of vibration stability of fuel rods with no fretting-wear

    International Nuclear Information System (INIS)

    Egorov, Yu. V.; Afanasiev, A. V.; Makarov, V. V.; Matvienko, I. V.

    2013-01-01

    For substantiation of vibration stability it is necessary to determine the ultimate permissible vibration levels which do not cause fretting, to compare them with the level of fuel rod vibration caused by coolant flow. Another approach is feasible if there is experience of successful operation of FA-prototypes. In this case in order to justify vibration stability it may be sufficient to demonstrate that the new element does not cause increased vibration of the fuel rod. It can be done by comparing the levels of hydro-dynamic fuel rod vibration and FA new designs. Program of vibration tests of TVS-2M model included studies of forced oscillations of 12 fuel rods in the coolant flow in the spans containing intensifiers, in the reference span without intensifiers, in the lower spans with assembled ADF and after its disassembly. The experimental results for TVS-2M show that in the spans with intensifier «Sector run» the level of movements is 6% higher on the average than in the span without intensifiers, in the spans with intensifier «Eddy» it is 2% higher. The level of fuel rod vibration movements in the spans with set ADF is 2 % higher on the average than without ADF. During the studies of TVS-KVADRAT fuel rod vibration, the following tasks were solved: determination of acceleration of the middle of fuel rod spans at vibration excited due to hydrodynamics; determination of influence of coolant thermal- hydraulic parameters (temperature, flowrate, dynamic pressure) on fuel rod vibration response; determination of influence of span lengths on the vibration level. Conclusions: 1) The vibration tests of the full-scale model of TVS-2M in the coolant flow showed that the new elements of TVS-2M design (intensifiers of heat exchange and ADF) are not the source of fuel rod increased vibration. Considering successful operation of similar fuel rod spans in the existing TVS-2M design, vibration stability of TVS-2M fuel rods with new elements is ensured on the mechanism of

  6. BWR fuel clad behaviour following LOCA

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Vyas, K.N.; Dinesh Babu, R.

    1996-01-01

    Flow and pressure through the fuel coolant channel reduce rapidly following a loss of coolant accident. Due to stored energy and decay heat, fuel and cladding temperatures rise rapidly. Increase in clad temperature causes deterioration of mechanical properties of clad material. This coupled with increase of pressure inside the cladding due to accumulation of fission gases and de-pressurization of coolant causes the cladding to balloon. This phenomenon is important as it can reduce or completely block the flow passages in a fuel assembly causing reduction of emergency coolant flow. Behaviour of a BWR clad is analyzed in a design basis LOCA. Fuel and clad temperatures following a LOCA are calculated. Fission gas release and pressure is estimated using well established models. An elasto-plastic analysis of clad tube is carried out to determine plastic strains and corresponding deformations using finite-element technique. Analysis of neighbouring pins gives an estimate of flow areas available for emergency coolant flow. (author). 7 refs, 6 figs, 3 tabs

  7. Process and equipment for locating defective fuel rods of a reactor fuel element

    International Nuclear Information System (INIS)

    Jester, A.; Honig, H.

    1977-01-01

    By this equipment, well-known processes for determining defective fuel rods of a reactor fuel element are improved in such a fashion that defective fuel rods can be located individually, so that it is possible to replace them. The equipment consists of a cylindrical test vessel open above, which accommodates the element to be tested, so that an annular space is left between the latter's external circumference and the wall of the vessel, and so that the fuel rods project above the vessel. A bell in the shape of a frustrum of a cone is inverted over the test vessel, which has an infra-red measuring equipment at a certain distance above the tops of the fuel rods. The fuel element to be tested together with the test vessel and hood are immersed in a basin full of water, which displaces water by means of gas from the hood. The post-shutdown heat increases the temperature in the water space of the test vessel, which is stabilised at 100 0 C. In each defective fuel rod the water which has penetrated the defective fuel rod previously, or does so now, starts to boil. The steam rising in the fuel rod raises the temperature of the defective fuel rod compared to all the sound ones. The subsequent measurement easily determines this. Where one can expect interference with the measurement by appreciable amounts of gamma rays, the measuring equipment is removed from the path of radiation by mirror deflection in a suitably shaped measuring hood. (FW) [de

  8. Concept of the core for a small-to-medium-sized BWR that does not use control rods during normal operation

    Energy Technology Data Exchange (ETDEWEB)

    Nakadozono, N.; Ikegawa, T., E-mail: naoyuki.nakadozono.st@hitachi.com [Hitachi Ltd., Hitachi Research Lab., Ibaraki (Japan); Nishida, K. [Hitachi Works, Hitachi-GE Nuclear Energy Ltd., Hitachi-shi, Ibaraki (Japan)

    2013-07-01

    A small-to-medium-sized boiling water reactor (BWR) with a natural circulation system is being developed for countries where initial investment funds for construction are limited and electricity transmission networks have not been fully constructed. To lighten operators' work load, a core that does not use control rods during normal operation (control rod-free core) was developed by using a neutronics calculation system coupled with core flow evaluation. The control rod-free core had large core power fluctuation with conventional burnable poison design. The target of core power fluctuation was set to less than 10% and was achieved by optimization of burnable poison arrangement. (author)

  9. Concept of the core for a small-to-medium-sized BWR that does not use control rods during normal operation

    International Nuclear Information System (INIS)

    Nakadozono, N.; Ikegawa, T.; Nishida, K.

    2013-01-01

    A small-to-medium-sized boiling water reactor (BWR) with a natural circulation system is being developed for countries where initial investment funds for construction are limited and electricity transmission networks have not been fully constructed. To lighten operators' work load, a core that does not use control rods during normal operation (control rod-free core) was developed by using a neutronics calculation system coupled with core flow evaluation. The control rod-free core had large core power fluctuation with conventional burnable poison design. The target of core power fluctuation was set to less than 10% and was achieved by optimization of burnable poison arrangement. (author)

  10. Modelling of pellet-cladding interaction for PWRs reactors fuel rods

    International Nuclear Information System (INIS)

    Esteves, A.M.

    1991-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyzes the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. Linear and non-linear material behaviors are allowed. Elastic, plastic and creep behaviors are considered for the cladding materials. The modelling is applied to Angra-II fuel rod design. The results are analyzed and compared. (author)

  11. Technical description of the NRC long-term whole-rod and crud performance test

    International Nuclear Information System (INIS)

    Einziger, R.E.; Fish, R.L.; Knecht, R.L.

    1982-09-01

    Westinghouse Hanford Company (WHC) and EG and G-Idaho are jointly conducting a long-term, low-temperature, spent-fuel, whole rod and crud behavior test to provide the Nuclear Regulatory Commission (NRC) with information to assist in the licensing of light water reactor (LWR) spent-fuel, dry storage facilities. Readily available fuel rods from an H.B. Robinson Unit 2 (PWR) fuel assembly and a Peach Bottom-II (BWR) fuel assembly were selected for use in the 50-month test. Both intact and defected rods will be tested in inert and oxidizing atmospheres. A 230 0 C test temperature was selected for the first 10-month run. Both nondestructive and destructive examinations are planned to characterize the fuel rod behavior during the 5-y test. Four interim examinations and a final examination will be conducted. Crud spallation behavior will be investigated by sampling the crud particulate from the test capsules at each of the four interim examinations and at the end of the test. The background to whole rod testing, description of rod breach mechanisms, and a detailed description of the test are presented in this document

  12. Fabrication of the instrumented fuel rods for the 3-Pin Fuel Test Loop at HANARO

    International Nuclear Information System (INIS)

    Sohn, Jae Min; Park, Sung Jae; Shin, Yoon Tag; Lee, Jong Min; Ahn, Sung Ho; Kim, Soo Sung; Kim, Bong Goo; Kim, Young Ki; Lee, Ki Hong; Kim, Kwan Hyun

    2008-09-01

    The 3-Pin Fuel Test Loop(hereinafter referred to as the '3-Pin FTL') facility has been installed at HANARO(High-flux Advanced Neutron Application Reactor) and the 3-Pin FTL is under a test operation. The purpose of this report is to fabricate the instrumented fuel rods for the 3-Pin FTL. The fabrication of these fuel rods was based on experiences and technologies of the instrumented fuel rods for an irradiation fuel capsule. The three instrumented fuel rods of the 3-Pin FTL have been designed. The one fuel rod(180 .deg. ) was designed to measure the centerline temperature of the nuclear fuels and the internal pressure of the fuel rod, and others(60 .deg. and 300 .deg. ) were designed to measure the centerline temperature of the fuel pellets. The claddings were made of the reference material 1 and 2 and new material 1 and 2. And nuclear fuel was used UO 2 (2.0w/o) pellet type with large grain and standard grain. The major procedures of fabrication are followings: (1) the assembling and weld of fuel rods with the pellet mockups and the sensor mockups for the qualification tests, (2) the qualification tests(dimension measurements, tensile tests, metallography examinations and helium leak tests) of weld, (3) the assembling and weld of instrumented fuel rods with the nuclear pellets and the sensors for the irradiation test, and (4) the qualification tests(the helium leak test, the dimensional measurement, electric resistance measurements of sensors) of test fuel rods. Satisfactory results were obtained for all the qualification tests of the instrumented fuel rods for the 3-Pin FTL. Therefore the three instrumented fuel rods for the 3-Pin FTL have been fabricated successfully. These will be installed in the In-Pile Section of 3-Pin FTL. And the irradiation test of these fuel rods is planned from the early next year for about 3 years at HANARO

  13. Device for detecting defective nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Steven, J.

    1976-01-01

    A moisture sensor is provided for a nuclear fuel rod for water-cooled nuclear reactors wherein moisture can be present. The fuel rod has an end cap and a charge of nuclear fuel. The moisture sensor is disposed between the end cap and the charge and serves to detect a leak in the fuel rod. The moisture sensor includes a capsule-like housing having an inner space and having openings through which moisture can pass into the inner space in the event of a leak in the fuel rod. Ferromagnetic material is disposed in the inner space of the housing together with a moisture detector responsive to moisture for altering the diposition of the ferromagnetic material in the inner space. 5 claims, 6 drawing figures

  14. Apparatus and method for loading fuel rods into grids of a fuel assembly

    International Nuclear Information System (INIS)

    De Mario, E.E.; Burman, D.L.; Olson, C.A.; Secker, J.R.

    1987-01-01

    This patent describes a fuel assembly having fuel rods and at least one grid formed of interleaved straps and yieldable springs, the interleaved straps defining hollow cells aligned in rows and columns thereof for receiving the respective fuel rods. A pair of the springs are disposed within each of the cells for engaging and supporting one of the fuel rods when received in the cell. An apparatus is described for facilitating the loading of the fuel rods into the grid of the fuel assembly, comprising: (a) first mean insertable concurrently into the cells of the grid for engaging and moving the springs from respective first positions in which each pair of springs will engage a respective fuel rod when disposed within the grid cell to respective second positions in which each pair of springs is disengaged from the respective fuel rod when disposed within the grid cell; (b) a pair of second means, one of the pair of the second means being insertable concurrently into the rows of the cells of the grid and the other of the pair of second means being insertable concurrently into the column of the cells

  15. Method and apparatus for inspection of nuclear fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1977-01-01

    A method and apparatus are provided for the inspection of nuclear fuel rods to detect defects or failures in such rods. Assemblies of fuel rods are immersed in water and means are provided for causing a change in the relative pressures in the water and within the fuel rod such that fluid is expelled from the rod through any defects that may exist. Means are also provided for thereafter vibrating the rods to cause additional internal fluid or other material that may be trapped in the rod to be expelled. Sensors are provided for detecting the emission of bubbles of fluid or other material from the rod and for locating the position of the defective rod in the assembly. 5 figures

  16. The effect of the fuel rod friction force to the fuel assembly lateral mechanical characteristics

    International Nuclear Information System (INIS)

    Ha, Dong Geun; Jeon, Sang Youn; Suh, Jung Min

    2012-01-01

    The Fuel Assembly (FA) for light water reactor consists of hundreds of fuel rods, guide tubes, spacer grids, top/bottom nozzles. The guide tubes transmit vertical loads between the top and bottom nozzles, position the fuel rod support grids vertically, react the loads from the fuel rods that are applied to the grids, and provide some of the lateral load capability for the overall fuel assembly. The guide tubes are the structural members of the skeleton assembly. And the spacer grids maintain the fuel rod array by providing positive lateral restraint to the fuel rod but only frictional restraint in the axial direction. Figure 1 shows the outline of skeleton, FA and the location of guide tubes in the view of cross section. 17x17 FA has 24 guide tubes and one instrumentation tube. When the FA is in reactor, the lateral stiffness is one of very important factors from the view point of in reactor integrity of fuel assembly such as guarantee of the cool able geometry, the control rod insertion etc. The lateral stiffness of FA is mainly determined by skeleton lateral stiffness. And the fuel rods loaded in the spacer grids reinforce the FA lateral stiffness. Generally, fuel rods and spacer grids create the nonlinear friction force between fuel rod tube and grid spring/dimple against external lateral force of FA. Thus, it is necessary to study the contribution of the fuel rods friction force to the FA lateral stiffness. So, this paper is to show how much amount of the fuel rod grid interaction contributes to the FA lateral stiffness based on the test results

  17. Study of transient rod extraction failure without RBM in a BWR

    International Nuclear Information System (INIS)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L.

    2015-09-01

    The study and analysis of the operational transients are important for predicting the behavior of a system to short-term events and the impact that would cause this transient. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could cause an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis results of the transient rod extraction failure in which not taken into operation the RBM is presented. The study was conducted for a BWR of 2027 MWt, in an intermediate cycle of its useful life and using the computer code Simulate-3K a scenario of anomalies was created in the core reactivity which gave a coherent prediction to the type of presented event. (Author)

  18. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.

    1981-01-01

    A nuclear fuel loading apparatus, incorporating a microprocessor control unit, is described which automatically loads nuclear fuel pellets into dual fuel rods with a minimum of manual involvement and in a manner and sequence to ensure quality control and accuracy. (U.K.)

  19. Experimental studies of resistance fretting-wear of fuel rods for VVER-1000 and TVS-KVADRAT fuel assemblies

    International Nuclear Information System (INIS)

    Makarov, V.; Afanasiev, A.; Egorov, Yu.; Matvienko, I.

    2015-01-01

    The paper covers the results of the studies performed to justify the wear resistance of fuel rods in contact with the spacer grids of TVS VVER-1000 fuel assembly and TVS-KVADRAT square fuel assembly of Russian design for PWR-900 reactor. The presented results of three testing stages comprise: Testing of mockup fuel rods of VVER TVS fuel assembly for fretting wear under the conditions of the water chemistry of VVER reactor; Testing models of different design embodiments of the fuel rods for VVER TVS fuel assembly for fretting wear in still cold water; Testing mockup fuel rods of TVS-KVADRAT square fuel assembly for PWR reactor for frettingwear under the conditions of PWR water chemistry. The effect of structural and operational factors was determined (amplitudes, fuel rod vibration frequencies, values of cladding-to-spacer grid cell gap for the depth of fuel rod cladding wear etc.), an assessment was made of the threshold values of fuel rod vibration parameters, which, if not exceeded, provide the absence of the fuel rod cladding fretting wear in the fuel rod-to spacer grid contact area. Key words: fretting wear, fuel rod, spacer grid, VVER, PWR (author)

  20. Common Cause Failure Analysis of Control Rods and Drives in the Swedish and Finnish BWR Plants. Operating Experiences in 1983 - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Mankamo, Tuomas [Avaplan Oy, Espoo (Finland)

    2006-11-15

    The control rod and drives in a Boiling Water Reactor (BWR) constitute a highly redundant system. The reliability of the system is determined by how well the design withstands dependencies, as Common Cause Failures (CCFs). This report upgrades an earlier data collection on CCFs of control rod and drives (SKI Report 1996:77) to more recent years, with the objective to report the data to ICDE project (International Common Cause Failure Data Exchange) and to the safety analysts in the Nordic countries. The operating experiences were analyzed at the BWRs of former Asea-Atom design, comprising 9 units in Sweden and Olkiluoto 1 and 2 in Finland, covering years 1983 - 2003. A new logical scheme was developed to classify interconnected failure modes of the two redundant functions for reactivity shutdown, fast hydraulic insertion and slower screw insertion of control rods. The scheme makes an explicit distinction between the different attributes of the failure event: - affected function - affected movement direction - detectability - criticality, i.e. inoperable control rod function versus only degraded functionality Another novel idea emerged for grouping the events according to generic failure mechanism. The generic classes will help to organize and structure the information efficiently, because in most cases within a class, the failure modes prove to be same, or there are only a few alternatives to chose from. From the set of 72 candidate cases, altogether 27 actual or more significant potential CCFs were screened out. Special emphasis was placed to identify any multiple failure or degradation indicating that adjacent rods would be more vulnerable to failure, because such phenomena are far more critical for reactivity shutdown as compared to failure of randomly placed rods. Only slight tendency of position dependence could be determined. Another positive insight is that the events, where foreign objects caused the jamming of rod insertion, were separated by both

  1. Fuel rod puncturing and fission gas monitoring system examination techniques

    International Nuclear Information System (INIS)

    Song, Woong Sup

    1999-02-01

    Fission gas products accumulated in irradiated fuel rod is 1-2 cm 3 in CANDU and 40-50 cm 3 in PWR fuel rod. Fuel rod puncturing and fission gas monitoring system can be used for both CANDU and PWR fuel rod. This system comprises puncturing device located at in cell part and monitoring device located at out cell part. The system has computerized 9 modes and can calculate both void volume and mass volume only single puncturing. This report describes techniques and procedure for operating fuel rod puncturing and gas monitoring system which can be play an important role in successful operation of the devices. Results obtained from the analysis can give more influence over design for fuel rods. (Author). 6 refs., 9 figs

  2. Modeling of the thermo-mechanical behaviour of the PWR fuel

    International Nuclear Information System (INIS)

    Mailhe, P.

    2014-01-01

    This article reviews the various physical phenomena that take place in an irradiated fuel rod and presents the development of the thermo-mechanical codes able to simulate them. Though technically simple the fuel rod is the place where appear 4 types of process: thermal, gas behaviour, mechanical and corrosion that combine involving 5 elements: the fuel pellet, the fuel clad, the fuel-clad gap, the inside volume and the coolant. For instance the pellet is the place where the following mechanical processes took place: thermal dilatation, elastic deformation, creep deformation, densification, solid swelling, gaseous swelling and cracking. The first industrial code simulating the behaviour of the fuel rod was COCCINEL, it was developed by AREVA teams from the American PAD code that was included in the Westinghouse license. Today the GALILEO code has replaced the COPERNIC code that was developed in the beginning of the 2000 years. GALILEO is a synthesis of the state of the art of the different models used in the codes validated for PWR and BWR. GALILEO has been validated on more than 1500 fuel rods concerning PWR, BWR and specific reactors like Siloe, Osiris, HFR, Halden, Studsvik, BR2/3,...) and also for extended burn-ups. (A.C.)

  3. SFAK, Unscattered Gamma Self-Absorption from Regular Fuel Rod Assemblies

    International Nuclear Information System (INIS)

    Wand, H.

    1982-01-01

    1 - Description of problem or function: Calculation of the self- absorption of unscattered (gamma-) radiation from fuel assemblies which contain a regular arrangement of identical fuel rods. 2 - Method of solution: The point-kernel is integrated over the radiation sources, i.e. the fuel rods. A uniform mesh of integration points is used for each of the fuel rods. 3 - Restrictions on the complexity of the problem: Number of fuel rods is dynamically allocated

  4. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto

    1990-01-01

    Various considerations are applied to fuel rods for improving the fuel burnup degree. If a gap between the fuel rods is changed, this varies the easiness for the flow of coolants depending on places, to reduce the thermal margin. Then, it is noted for the distribution of stresses generated due to the difference of water pressure caused by the difference of water streams between the inside and the outside of a channel box, and composite value, of stresses upon occurrence of earthquakes, neutron irradiation and a channel creep phenomenon caused by the stresses of due to the water pressure difference described above, the thickness of the channel box is increased in the upstream and decreased toward the downstream. Further, fuel spacers at the position where the thickness of the channel box is changed are spaced apart from the channel box so as not to brought into contact with the channel box. This can contribute to the reduction of coolants pressure loss, improvement of critical power and improvement of reactivity, as well as remarkably moderate local stresses applied from the fuel spacers to the channel box due to horizontal vibrations upon occurrence of earthquakes to improve the integrity of fuel assembly. (N.H.)

  5. Sensitivity of BWR shutdown margin tests to local reactivity anomalies

    International Nuclear Information System (INIS)

    Cokinos, D.M.; Carew, J.F.

    1987-01-01

    Successful shutdown margin (SDM) demonstration is a required procedure in the startup of a newly configured boiling water reactor (BWR) core. In its most reactive condition throughout a cycle, a BWR core must be capable of being made subcritical by a specified margin with the highest worth control rod fully withdrawn and all other rods at their fully inserted positions. Two different methods are used to demonstrate SDM: (a) the adjacent-rod test and (b) the in-sequence test. In the adjacent-rod test, the strongest rod is fully withdrawn and an adjacent rod is withdrawn to reach criticality. In the in-sequence test, control rods spread throughout the core are withdrawn in a predetermined sequence of withdrawals. Larger than expected core k/sub eff/ values have been observed during the performance of BWR SDM tests. The purpose of the work summarized in this paper has been to investigated and quantify the sensitivity of both the adjacent-rod and in-sequence SDM tests to local reactivity anomalies. This was accomplished by introducing reactivity perturbations at selected four-bundle cell locations and by evaluating their effect on core reactivity in each of the two tests

  6. Lumped-parameter fuel rod model for rapid thermal transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Ramshaw, J.D.

    1975-07-01

    The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company

  7. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  8. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2014-01-01

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  9. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  10. Evolution of fuel rod support under irradiation impact on the mechanical behaviour of fuel assemblies

    International Nuclear Information System (INIS)

    Billerey, Antoine; Waeckel, Nicolas

    2005-01-01

    New fuel management targets imply to increase fuel assembly discharge burnup. Therefore, the prediction of the mechanical behaviour of the irradiated fuel assembly is essential such as excessive fuel assembly distortion induce incomplete Rod Cluster Control Assembly insertion problems (safety issue) or fuel rod vibration induced wear leading to leaking rods (plant operation problems). Within this framework, one of the most important parameter is the knowledge of the fuel rod support in the grid cell because it directly governs the mechanical behaviour of the fuel assembly and consequently allows to predict the behaviour of irradiated structures in terms of (1) axial and lateral deformation (global behaviour of the assembly) and (2) rod vibration induced wear (local behaviour of the rod). Generally, fuel rod support is provided by a spring-dimple system fixed to the grid. During irradiation, the spring force decreases and a gap between the rod and the spring may occur. This phenomenon is due to (1) stress relieving in the spring and in the dimples, (2) grid growth and (3) reduction of the rod diameter. Two models have been developed to predict the behaviour of the rod in the cell. The first model is dedicated to the evaluation of the spring force relaxation during irradiation. The second one can assess the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (1) the creep laws of the grid materials, (2) the growth law of the grid, (3) the evolution of rod diameter and (4) the design of the fuel rod support. The aim of this paper is to: (1) evaluate the consequences of grid support design modifications on the rod vibration sensitivity in terms of predicted rod to grid maximum gap during irradiation and time in operation with an open rod to grid gap, (2) evaluate, using a linear or non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the overall mechanical

  11. Stress Analysis of Fuel Rod under Axial Coolant Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)

    2010-05-15

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  12. Stress Analysis of Fuel Rod under Axial Coolant Flow

    International Nuclear Information System (INIS)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok

    2010-01-01

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  13. Review of international solutions to NEACRP benchmark BWR lattice cell problems

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1977-12-01

    This paper summarises international solutions to a set of BWR benchmark problems. The problems, posed as an activity sponsored by the Nuclear Energy Agency Committee on Reactor Physics, were as follows: 9-pin supercell with central burnable poison pin, mini-BWR with 4 pin-cells and water gaps and control rod cruciform, full 7 x 7 pin BWR lattice cell with differential U 235 enrichment, and full 8 x 8 pin BWR lattice cell with water-hole, Pu-loading, burnable poison, and homogenised cruciform control rod. Solutions have been contributed by Denmark, Japan, Sweden, Switzerland and the UK. (author)

  14. BWR fuel assembly bottom nozzle with one-way coolant flow valve

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1987-01-01

    In a nuclear reactor having a flow of coolant/moderator fluid therein, at least one fuel assembly installed in the fluid flow, the fuel assembly is described comprising in combination: a bundle of elongated fuel rods disposed in side-by-side relationship so as to form an array of spaced fuel rods; an outer tubular flow channel surrounding the fuel rods so as to direct the flow of coolant/moderator fluid along the fuel rods; bottom and top nozzles mounted at opposite ends of the flow channel and having an inlet and outlet respectively for allowing entry and exit of the flow of coolant/moderator fluid into and from the flow channel and along the fuel rods therein; and a coolant flow direction control device operatively disposed in the bottom nozzle so as to open the inlet thereof to the flow of coolant/moderator fluid in an inflow direction into the flow channel through the bottom nozzle inlet but close the inlet to the flow of coolant/moderator fluid from the flow channel through the bottom nozzle inlet upon reversal of coolant/moderator fluid flow from the inflow direction

  15. Study on flow-induced vibration of the fuel rod in HTTR

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    1988-03-01

    This study was performed in order to investigate flow-induced vibration characteristics of a fuel rod in HTTR (High Temperature engineering Test Reactor) from both an experiment and a numerical simulation. Two kinds of fuel rods were used in this experiment: one was a graphite rod which simulated a specification of the HTTR's fuel rod and the other was an aluminum rod whose weight was a half of the graphite one. The experiment was carried out up to Re = 31000 using air at room temperature and pressure. Air flowed downstream in an annular passage which consisted of the fuel rod and the graphite channel. Numerical simulations by fluid and frequency equations were also carried out. Numerical and experimental results were then compared. The following conclusions were drived: (1) The fuel rod amplitudes increase with the flow rate and with a decrease of the fuel rod weight. (2) The fuel rod amplitudes are obtained by δ/De = 2.22 x 10 -10 Re 1.43 , 9000 ≤ Re ≤ 31000, where δ is a vibration amplitude, De is a hydraulic diameter and Reis Reynolds number. (3) The fuel rod frequencies shift from lower natural frequency to higher as the flow rate increases. (4) The flow-induced vibration behavior of the fuel rod can simulate well by simultaneous equations which used the turbulence model for fluid and the mass model for vibration of the fuel rod. (author)

  16. Method for verifying the pressure in a nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Jones, W.J.

    1979-01-01

    Disclosed is a method of accurately verifying the pressure contained in a sealed pressurized fuel rod by utilizing a pressure balance measurement technique wherein an end of the fuel rod extends through and is sealed in a wall of a small chamber. The chamber is pressurized to the nominal (desired) fuel rod pressure and the fuel rod is then pierced to interconnect the chamber and fuel rod. The deviation of chamber pressure is noted. The final combined pressure of the fuel rod and drill chamber is substantially equal to the nominal rod pressure; departure of the combined pressure from nominal is in direct proportion to departure of rod pressure from nominal. The maximum error in computing the rod pressure from the deviation of the combined pressure from nominal is estimated at plus or minus 3.0 psig for rod pressures within the specified production limits. If the rod pressure is corrected for rod void volume using a digital printer data record, the accuracy improves to about plus or minus 2.0 psig

  17. Simulation of nuclear fuel rods by using process computer-controlled power for indirect electrically heated rods

    International Nuclear Information System (INIS)

    Malang, S.

    1975-11-01

    An investigation was carried out to determine how the simulation of nuclear fuel rods with indirect electrically heated rods could be improved by use of a computer to control the electrical power during a loss-of-coolant accident (LOCA). To aid in the experiment, a new version of the HETRAP code was developed which simulates a LOCA with heater rod power controlled by a computer that adjusts rod power during a blowdown to minimize the difference in heat flux of the fuel and heater rods. Results show that without computer control of heater rod power, only the part of a blowdown up to the time when the heat transfer mode changes from nucleate boiling to transition or film boiling can be simulated well and then only for short times. With computer control, the surface heat flux and temperature of an electrically heated rod can be made nearly identical to that of a reactor fuel rod with the same cooling conditions during much of the LOCA. A small process control computer can be used to achieve close simulation of a nuclear fuel rod with an indirect electrically heated rod

  18. LOCA scenario tests of irradiated fuel rod specimens

    International Nuclear Information System (INIS)

    Scott, Harold

    2004-01-01

    Full text: The NRC's cladding performance program at Argonne National Laboratory (ANL) is testing fueled high-burnup segments subjected to LOCA integral phenomena. The data are provided to NRC and the nuclear industry for their independent assessment of the adequacy of licensing criteria for LOCA events. The tests are being conducted with high-burnup 30 cm segments from Limerick (9x9 Zry-2) and H.B. Robinson (15x15 Zry-4) reactors. Prior to testing, sibling samples are characterized with respect to fuel morphology, fuel-cladding bond, cladding oxide layer thickness, hydrogen content and high-temperature steam oxidation kinetics. Specimens that survive quench are subjected to four-point bend tests, followed by local diametral compression tests. The retention of post-quench ductility is a more limiting requirement than surviving thermal stresses during quench. Companion tests are conducted with unirradiated cladding to generate baseline data for comparison with the high-burnup fuel results. LOCA integral tests have the following sequential steps: stabilization of temperature, internal pressure and steam flow at 300 C, ramping of temperature (∼5C/s) through ballooning and burst to 1204 C, hold at 1204 C for 1-5 minutes, slow-cooling (∼3C/s) to 800 C, and water quenching at ∼800C. Two high-burnup tests were completed in 2002 with Limerick BWR rod segments: ramp to burst in argon followed by slow cooling; and the LOCA test with 5-minute hold time at 1204 C, followed by slow cooling. With the exception of burst-opening shape, results for burst temperature, burst pressure, burst length, and ballooning strain profile are more similar to, than different from, results for unirradiated Zry-2 cladding exposed to the same time-temperature history. The 3rd Limerick test with quench was performed in December 2003, and a 4th Limerick test was performed in March 2004. Tests on high-burnup Robinson PWR fuel segments are scheduled to begin in June 2004. The presentation points

  19. Development of boiling transition analysis code TCAPE-INS/B based on mechanistic methods for BWR fuel bundles. Models and validations with boiling transition experimental data

    International Nuclear Information System (INIS)

    Ishida, Naoyuki; Utsuno, Hideaki; Kasahara, Fumio

    2003-01-01

    The Boiling Transition (BT) analysis code TCAPE-INS/B based on the mechanistic methods coupled with subchannel analysis has been developed for the evaluation of the integrity of Boiling Water Reactor (BWR) fuel rod bundles under abnormal operations. Objective of the development is the evaluation of the BT without using empirical BT and rewetting correlations needed for different bundle designs in the current analysis methods. TCAPE-INS/B consisted mainly of the drift-flux model, the film flow model, the cross-flow model, the thermal conductivity model and the heat transfer correlations. These models were validated systematically with the experimental data. The accuracy of the prediction for the steady-state Critical Heat Flux (CHF) and the transient temperature of the fuel rod surface after the occurrence of BT were evaluated on the validations. The calculations for the experiments with the single tube and bundles were carried out for the validations of the models incorporated in the code. The results showed that the steady-state CHF was predicted within about 6% average error. In the transient calculations, BT timing and temperature of the fuel rod surface gradient agreed well with experimental results, but rewetting was predicted lately. So, modeling of heat transfer phenomena during post-BT is under modification. (author)

  20. A comparison of thermal algorithms of fuel rod performance code systems

    International Nuclear Information System (INIS)

    Park, C. J.; Park, J. H.; Kang, K. H.; Ryu, H. J.; Moon, J. S.; Jeong, I. H.; Lee, C. Y.; Song, K. C.

    2003-11-01

    The goal of the fuel rod performance is to identify the robustness of a fuel rod with cladding material. Computer simulation of the fuel rod performance becomes one of important parts to designed and evaluate new nuclear fuels and claddings. To construct a computing code system for the fuel rod performance, several algorithms of the existing fuel rod performance code systems are compared and are summarized as a preliminary work. Among several code systems, FRAPCON, and FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. Thermal algorithms of the above codes are investigated including methodologies and subroutines. This work will be utilized to construct a computing code system for dry process fuel rod performance

  1. A comparison of thermal algorithms of fuel rod performance code systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. J.; Park, J. H.; Kang, K. H.; Ryu, H. J.; Moon, J. S.; Jeong, I. H.; Lee, C. Y.; Song, K. C

    2003-11-01

    The goal of the fuel rod performance is to identify the robustness of a fuel rod with cladding material. Computer simulation of the fuel rod performance becomes one of important parts to designed and evaluate new nuclear fuels and claddings. To construct a computing code system for the fuel rod performance, several algorithms of the existing fuel rod performance code systems are compared and are summarized as a preliminary work. Among several code systems, FRAPCON, and FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. Thermal algorithms of the above codes are investigated including methodologies and subroutines. This work will be utilized to construct a computing code system for dry process fuel rod performance.

  2. Method for wrapping a wire round a nuclear fuel rod

    International Nuclear Information System (INIS)

    Nakayasu, Fumio.

    1974-01-01

    Object: To provide a method for winding a wire round a nuclear fuel rod with accurate pitches without imparting any local strain or torsion to the wire. Structure: A wire is fixed on one end of the fuel rod, and the other end of the wire is secured to a universal joint leaving a winding allowance to the fuel rod. The wire is linearly stretched by a predetermined tension through the universal joint so as to provide an angle of development theta corresponding to the desired winding pitch, and then, the fuel rod may be rotated so that the end of the wire on the side of the universal joint is moved towards the fuel rod so as to render the angle of development theta constant in proportion to said rotation of the fuel rod. (Kamimura, M.)

  3. Ultrasonics aids the identification of failed fuel rods

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Over a number of years Brown Boveri Reaktor of West Germany has developed and commercialized an ultrasonic failed fuel rod detection system. Sipping has up to now been the standard technique for failed fuel detection, but sipping can only indicate whether or not an assembly contains defective rods; the BBR system can tell which rod is defective. (author)

  4. Potential impacts of crud deposits on fuel rod behaviour on high powered PWR fuel rods

    International Nuclear Information System (INIS)

    Wilson, W.; Comstock, R.J.

    1999-01-01

    Fuel assemblies operating with significant sub-cooled boiling are subject to deposition of surface deposits commonly referred to as crud. This crud can potentially cause concentration of chemical species within the deposits which can be detrimental to cladding performance in PWRs. In addition, these deposits on the surface of the cladding can result in power anomalies and erroneous reporting of fuel rod oxide thickness which can substantially hamper corrosion and core performance modeling efforts. Data is presented which illustrates the importance of accounting for the presence of crud on fuel cladding surfaces. Several methods used to correct for this phenomenon when collecting and analyzing zirconium alloy field oxide thickness measurements are described. Various observations related to crud characteristics and its impact on fuel rod performance are also addressed. (author)

  5. Certification test for safety of new fuel transportation package

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Sugawa, Osami; Suga, Masao.

    1993-01-01

    The objective of this certification test is to prove the safety of new fuel transportation package against a fire of actual size caused by traffic accidents. After the fire test, the fuel assemblies were covered with coal-tar like material vaporized from anti-shock material used in the container. Surface color of BWR-type fuel assembly was dark grey that is supposed to be the color of oxide of Zircaloy. As for PWR-type fuel assembly, the condition encountered during fire test caused no change to the outlook of the rod element. Both the BWR and PWR type fuel rod elements showed no deformation and were completely sound. Therefore it may be concluded that the container protected the mimic fuel assemblies against fire of 30 minutes duration and caused no damage. This report is the result of the above experiments and examinations, and we appreciate the cooperation of those who are concerned. (J.P.N.)

  6. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  7. Nuclear fuel assembly with improved spectral shift-producing rods

    International Nuclear Information System (INIS)

    Ferrari, H.M.

    1987-01-01

    This patent describes a nuclear reactor having fuel assemblies and a moderator-coolant liquid flowing through the fuel assemblies, each fuel assembly including an organized array of nuclear fuel rods wherein the moderator-coolant liquid flows along the fuel rods, at least one improved spectral shift-producing rod disposed among the fuel rods. The spectra shift-producing rod consists of: (a) an elongated hollow hermetically-sealed tubular member; (b) a weakened region formed in a portion of the member, the portion being subject to rupture at a given level of internal pressure; and (c) burnable poison material contained in the member which generates gas in the member as operation of the reactor proceeds normally, the material being soluble in the moderator-coolant liquid when brought into contact therewith; (d) the given level of internal pressure being less than the maximum level of internal pressure normally expected to be generated within the member by the poison material by normal operation of the reactor

  8. 3D simulation of a core operation cycle of a BWR using Serpent; Simulacion 3D de un ciclo de operacion del nucleo de un BWR usando SERPENT

    Energy Technology Data Exchange (ETDEWEB)

    Barrera Ch, M. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, 07738 Ciudad de Mexico (Mexico); Gomez T, A. M., E-mail: rionchez@icloud.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    This work had the main goal to develop a methodology to obtain the length of an operating cycle of the core of a BWR under different operating states using the Serpent code. The reactor core modeled in Serpent is composed of 444 fuel assemblies (120 with fresh fuels and 324 fuels from previous cycles), 109 cruciform control rods and light water as moderator and coolant. Once the core of the reactor was modeled in Serpent (Three-dimensional) without considering the cruciform control rods, a simulation was carried out with different steps of burning in the operational state with the average values of the fuel temperature (900 K), moderator temperature (600 K) and voids fraction equal to 0.4. In addition, the thermal power considered was 2017 MWt. This operational state was chosen because a previous analysis (not shown in this work) was carried out in 4 types of control cells. The first and second control cell has all of its natural uranium fuel pellets, with control rod and without control rod respectively. The third and fourth control cell types have various types of enrichment, both natural uranium and gadolinium in their fuel pellets, with control rod and without control rod. The conclusion of this previous analysis was that the behavior of the effective multiplication factor along the fuel burnout within the four control cell types was almost unaffected by the fuel temperature but was affected by the voids fraction. Thus, for this operating cycle in the operating state defined above, its length was 14,63052 GW t/Tm. In addition, at the end of this cycle, the decay heat obtained was equal to 116.71 MWt and the inventory of the most important isotopes to be considered was obtained, such as some isotopes of uranium, neptune, plutonium, americium and curio. (Author)

  9. Simulation of vibration modes of the fuel rod damaged due to the grid-to-rod fretting wear

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Kyeong Koo; Jang, Young Ki; Lee, Kyou Seok

    1997-01-01

    The flow-induced fuel fretting wear observed in some PWRs mainly proceeds in the grid-to-rod contact positions. The grid-to-rod fretting wear in the PWR fuel assembly depends on grid-to-rod gap size, its axial profile and flow-induced vibration. This paper describes the GRIDFORCE program which generates the axially dependent grid-to-rod gap size as a function of burnup. The axially dependent grid-to-rod gap profiles are employed to predict the fuel rod vibration mode shapes by the ANSYS code. With the help of the Paidousis empirical formula, this paper also calculates the fuel rod vibration amplitudes under various supporting conditions, which indicates that the increase of the number of unsupported mid-grids will increase the fuel rod vibration amplitude. On the other hand, the comparison of the predicted vibration mode shapes and the observed mid-grid fretting wear pattern indicates that the 1st and 6th vibration mode shapes under the supporting inactive condition at the mid-grids can simulate the observed mid-grid fretting wear profile. This paper also proposes design guidelines against the grid-to-rod fretting wear. (author). 3 refs., 8 figs

  10. Individual nuclear fuel rod weighing system

    International Nuclear Information System (INIS)

    Fogg, J. L.; Howell, C. A.; Smith, J. H.; Vining, G. E.

    1985-01-01

    An individual nuclear fuel rod weighing system for rods carried on a tray which moves along a materials handling conveyor. At a first tray position on the conveyor, a lifting device raises the rods off the tray and places them on an overhead ramp. A loading mechanism conveys the rods singly from the overhead ramp onto an overhead scale for individual weighing. When the tray is at a second position on the conveyor, a transfer apparatus transports each weighed rod from the scale back onto the tray

  11. The irradiation performance of austenitic stainless steel clade PWR fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The steady state irradiation performance of austenitic stainless steel clad pressurized water reactor fuel rods is modeled with fuel performance codes of the FRAP series. These codes, originally developed to model the thermal-mechanical behavior of zircaloy clad fuel rods, are modified to model stainless steel clad fuel rods. The irradiation thermal-mechanical behavior of type 348 stainless steel and zircaloy fuel rods is compared. (author) [pt

  12. Analysis of natural circulation BWR dynamics with stochastic and deterministic methods

    International Nuclear Information System (INIS)

    VanderHagen, T.H.; Van Dam, H.; Hoogenboom, J.E.; Kleiss, E.B.J.; Nissen, W.H.M.; Oosterkamp, W.J.

    1986-01-01

    Reactor kinetic, thermal hydraulic and total plant stability of a natural convection cooled BWR was studied using noise analysis and by evaluation of process responses to control rod steps and to steamflow control valve steps. An estimate of the fuel thermal time constant and an impression of the recirculation flow response to power variations was obtained. A sophisticated noise analysis method resulted in more insight into the fluctuations of the coolant velocity

  13. Nuclear fuel rod end plug weld inspection

    International Nuclear Information System (INIS)

    Parker, M. A.; Patrick, S. S.; Rice, G. F.

    1985-01-01

    Apparatus and method for testing TIG (tungsten inert gas) welds of end plugs on a sealed nuclear reactor fuel rod. An X-ray fluorescent spectrograph testing unit detects tungsten inclusion weld defects in the top end plug's seal weld. Separate ultrasonic weld inspection system testing units test the top end plug's seal and girth welds and test the bottom end plug's girth weld for penetration, porosity and wall thinning defects. The nuclear fuel rod is automatically moved into and out from each testing unit and is automatically transported between the testing units by rod handling devices. A controller supervises the operation of the testing units and the rod handling devices

  14. Fuel rod attachment system

    International Nuclear Information System (INIS)

    Christiansen, D.W.

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member or vice versa. The locking cap has two opposing fingers and shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed. In an alternative embodiment, the cap is rigid and the strip is transversely resiliently compressible. (author)

  15. BWR type reactor core

    International Nuclear Information System (INIS)

    Tatemichi, Shin-ichiro.

    1981-01-01

    Purpose: To eliminate the variation in the power distribution of a BWR type reactor core in the axial direction even if the flow rate is increased or decreased by providing a difference in the void coefficient between the upper part and the lower parts of the reactor core, and increasing the void coefficient at the lower part of the reactor core. Constitution: The void coefficient of the lower region from the center to the lower part along the axial direction of a nuclear fuel assembly is increased to decrease the dependence on the flow rate of the axial power distribution of the nuclear fuel assembly. That is, a water/fuel ratio is varied, the water in non-boiled region is increased or the neutron spectrum is varied so as to vary the void coefficient. In order to exemplify it, the rate of the internal pellets of the fuel rod of the nuclear fuel assembly or the shape of the channel box is varied. Accordingly, the power does not considerably vary even if the flow rate is altered since the power is varied in the power operation. (Yoshihara, H.)

  16. Individual nuclear fuel rod weighing system

    International Nuclear Information System (INIS)

    Fogg, J.L.; Smith, J.H.; Vining, G.E.; Howell, C.A.

    1985-01-01

    An individual nuclear fuel rod weighing system for rods carried on a tray which moves along a materials handling conveyor is discussed. At a first tray position on the conveyor, a lifting device raises the rods off the tray and places them on an overhead ramp. A loading mechanism conveys the rods singly from the overhead ramp onto an overhead scale for individual weighing. When the tray is at a second position on the conveyor, a transfer apparatus transports each weighed rod from the scale back onto the tray

  17. Failed fuel rod detection method by ultrasonic wave

    International Nuclear Information System (INIS)

    Takamatsu, Masatoshi; Muraoka, Shoichi; Ono, Yukio; Yasojima, Yujiro.

    1990-01-01

    Ultrasonic wave signals sent from an ultrasonic receiving element are supplied to an evaluation circuit by way of a gate. A table for gate opening and closing timings at the detecting position in each of the fuel rods in a fuel assembly is stored in a memory. A fuel rod is placed between an ultrasonic transmitting element and the receiving element to determine the positions of the transmitting element and the receiving element by positional sensors. The opening and closing timings at the positions corresponding to the result of the detection are read out from the table, and the gates are opened and closed by the timing. This can introduce the ultrasonic wave signals transmitted through a control rod always to the evaluation circuit passing through the gate. Accordingly, the state of failure of the fuel rod can be detected accurately. (I.N.)

  18. Fuel element thermo-mechanical analysis during transient events using the FMS and FETMA codes

    International Nuclear Information System (INIS)

    Hernandez Lopez Hector; Hernandez Martinez Jose Luis; Ortiz Villafuerte Javier

    2005-01-01

    In the Instituto Nacional de Investigaciones Nucleares of Mexico, the Fuel Management System (FMS) software package has been used for long time to simulate the operation of a BWR nuclear power plant in steady state, as well as in transient events. To evaluate the fuel element thermo-mechanical performance during transient events, an interface between the FMS codes and our own Fuel Element Thermo Mechanical Analysis (FETMA) code is currently being developed and implemented. In this work, the results of the thermo-mechanical behavior of fuel rods in the hot channel during the simulation of transient events of a BWR nuclear power plant are shown. The transient events considered for this work are a load rejection and a feedwater control failure, which among the most important events that can occur in a BWR. The results showed that conditions leading to fuel rod failure at no time appeared for both events. Also, it is shown that a transient due load rejection is more demanding on terms of safety that the failure of a controller of the feedwater. (authors)

  19. Power ramp testing method for PWR fuel rod at research reactor

    International Nuclear Information System (INIS)

    Zhou Yidong; Zhang Peisheng; Zhang Aimin; Gao Yongguang; Wang Huarong

    2003-01-01

    A tentative power ramp test for short PWR fuel rod has been conducted at the Heavy Water Research Reactor (HWRR) in China Institute of Atomic Energy (CIAE). The test fuel rod was cooled by the circulating water in the test loop. The power ramp was realized by moving solid neutron-absorbing screen around the fuel rod. The linear power of the fuel rod increased from 220 W/cm to 340 W/cm with a power ramp rate of 20 W/cm/min. The power of the fuel rod was monitored by both in-core thermal and nuclear measurement sensors in the test rig. This test provides experiences for further developing the power ramp test methods for PWR fuel rods at research reactor. (author)

  20. Development of nuclear fuel rod inspection technique using ultrasonic resonance phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung Sun; Lee, Jong Po; Ju, Young Sang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-11-01

    Acoustic resonance scattering from a nuclear fuel rod in water is analyzed. A new model for the background which is attributed to the interference of reflected wave and diffracted wave is found and here named {sup t}he inherent background{sup .} The resonance spectrum of a fuel rod is obtained by subtracting the inherent background from the scattered pressure. And also analyzed are the effect of material damping of cladding tube and pellet on the resonance spectrum of a fuel rod. The propagation characteristics of circumferential waves which cause the resonances of cladding tube is produced and the appropriate resonance modes for the application to the inspection of assembled fuel rods are selected. The resonance modes are experimentally measured for pre- and post-irradiated fuel rods and the validation of the fuel rod inspection using ultrasonic resonance phenomenon is examined. And thin ultrasonic sensors accessible into the narrow interval (about 2-3mm) between assembled fuel rods are designed and manufactured. 14 refs. (Author).

  1. Evaluation of fuel rods behavior - under irradiation test

    International Nuclear Information System (INIS)

    Lameiras, F.S.; Terra, J.L.; Pinto, L.C.M.; Dias, M.S.; Pinheiro, R.B.

    1981-04-01

    By the accompanying of the irradiation of instrumented test fuel rods simulating the operational conditions in reactors, plus the results of post - irradiation exams, tests, evaluation and calibration of analitic modelling of such fuel rods is done. (E.G.) [pt

  2. IFPE/IFA-508 and 515, PCMI Behaviour of Thin Cladding Rods, JAERI and HRP

    International Nuclear Information System (INIS)

    2007-01-01

    Description: To measure the integrated response of UO 2 and its cladding to conditions associated with PCI, the Japan Atomic Energy Research Institute carried out a series of experiments in the Halden BWR. The experiment involved two major objectives. The first was to study the influence of rod design parameters on PCI. Diametral gap, wall cladding thickness, SiO 2 additive, and pellet grain size were used as design parameters. The second objective was to study the influence of pre-irradiation (i.e. burnup) on PCI. The maximum burnup attained in the experiment was 23 MWd/kgU. These research results can be applied to current BWR-type fuel rods. The tests were performed between April 1977 and March 1981

  3. Fuel rods

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1984-01-01

    Purpose: To reduce the size of the reactor core upper mechanisms and the reactor container, as well as decrease the nuclear power plant construction costs in reactors using liquid metals as the coolants. Constitution: Isotope capturing devices comprising a plurality of pipes are disposed to the gas plenum portion of a nuclear fuel rod main body at the most downstream end in the flowing direction of the coolants. Each of the capturing devices is made of nickel, nickel alloys, stainless steel applied with nickel plating on the surface, nickel alloys applied with nickel plating on the surface or the like. Thus, radioactive nuclides incorporated in the coolants are surely captured by the capturing devices disposed at the most downstream end of the nuclear fuel main body as the coolants flow along the nuclear fuel main body. Accordingly, since discharging of radioactive nuclides to the intermediate fuel exchange system can be prevented, the maintenance or reparing work for the system can be facilitated. (Moriyama, K.)

  4. Development of a detailed BWR core thermal-hydraulic analysis method based on the Japanese post-BT standard using a best-estimate code

    International Nuclear Information System (INIS)

    Ono, H.; Mototani, A.; Kawamura, S.; Abe, N.; Takeuchi, Y.

    2004-01-01

    The post-BT standard is a new fuel integrity standard or the Atomic Energy Society of Japan that allows temporary boiling transition condition in the evaluation for BWR anticipated operational occurrences. For application of the post-BT standard to BWR anticipated operational occurrences evaluation, it is important to identify which fuel assemblies and which axial, radial positions of fuel rods have temporarily experienced the post-BT condition and to evaluates how high the fuel cladding temperature rise was and how long the dryout duration continued. Therefore, whole bundle simulation, in which each fuel assembly is simulated independently by one thermal-hydraulic component, is considered to be an effective analytical method. In the present study, a best-estimate thermal-hydraulic code, TRACG02, has been modified to extend it predictive capability by implementing the post-BT evaluation model such as the post-BT heat transfer correlation and rewetting correlation and enlarging the number of components used for BWR plant simulation. Based on new evaluation methods, BWR core thermal-hydraulic behavior has been analyzed for typical anticipated operational occurrence conditions. The location where boiling transition occurs and the severity of fuel assembly in the case of boiling transition conditions such as fuel cladding temperature, which are important factors in determining whether the reuse of the fuel assembly can be permitted, were well predicted by the proposed evaluation method. In summary, a new evaluation method for a detailed BWR core thermal-hydraulic analysis based on the post-BT standard of the Atomic Energy Society of Japan has been developed and applied to the evaluation of the post-BT standard during the actual BWR plant anticipated operational occurrences. (author)

  5. Axial transport of fission gas in LWR fuel rods

    International Nuclear Information System (INIS)

    Kinoshita, M.

    1983-01-01

    With regard to fission gas transportation inside the fuel rod, the following three mechanisms are important: (1) a localized and time dependent fission gas release from UO 2 fuel to pellet/clad gap, (2) the consequent gas pressure difference between the gap and the plenum, and (3) the inter-diffusion of initially filled Helium and released fission gas such as Xenon. Among these three mechanisms, the 2nd mechanism would result in the one dimensional flow through P/C gap in the axial direction, while the 3rd would average the local fission gas concentration difference. In this paper, an attempt was made to develop a computerized model, LINUS (LINear flow and diffusion under Un-Steady condition) describing the above two mechanisms, items (2) and (3). The item (1) is treated as an input. The code was applied to analyse short length experimental fuel rods and long length commercial fuel rods. The calculated time evolution of Xe concentration along the fuel column shows that the dilution rate of Xe in commercial fuel rods is much slower than that in short experimental fuel rods. Some other sensitivity studies, such as the effect of pre-pressurization, are also presented. (author)

  6. Extended burnup demonstration: reactor fuel program. Pre-irradiation characterization and summary of pre-program poolside examinations. Big Rock Point extended burnup fuel

    International Nuclear Information System (INIS)

    Exarhos, C.A.; Van Swam, L.F.; Wahlquist, F.P.

    1981-12-01

    This report is a resource document characterizing the 64 fuel rods being irradiated at the Big Rock Point reactor as part of the Extended Burnup Demonstration being sponsored jointly by the US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities. The program entails extending the exposure of standard BWR fuel to a discharge average of 38,000 MWD/MTU to demonstrate the feasibility of operating fuel of standard design to levels significantly above current limits. The fabrication characteristics of the Big Rock Point EBD fuel are presented along with measurement of rod length, rod diameter, pellet stack height, and fuel rod withdrawal force taken at poolside at burnups up to 26,200 MWD/MTU. A review of the fuel examination data indicates no performance characteristics which might restrict the continued irradiation of the fuel

  7. Technology developments for Japanese BWR MOX fuel utilization

    International Nuclear Information System (INIS)

    Oguma, M.; Mochida, T.; Nomata, T.; Asahi, K.

    1997-01-01

    The Long-Term Program for Research, Development and Utilization of Nuclear Energy established by the Atomic Energy Commission of Japan asserts that Japan will promote systematic utilization of MOX fuel in LWRs. Based on this Japanese nuclear energy policy, we have been pushing development of MOX fuel technology aimed at future full scale utilization of this fuel in BWRs. In this paper, the main R and D topics are described from three subject areas, MOX core and fuel design, MOX fuel irradiation behaviour, and MOX fuel fabrication technology. For the first area, we explain the compatibility of MOX fuel with UO 2 core, the feasibility of the full MOX core, and the adaptability of MOX design methods based on a mock-up criticality experiment. In the second, we outline the Tsuruga MOX irradiation program and the DOMO program, and suggest that MOX fuel behaviour is comparable to ordinary BWR UO 2 fuel behaviour. In the third, we examine the development of a fully automated MOX bundle assembling apparatus and its features. (author). 14 refs, 11 figs, 3 tabs

  8. Effect analysis of air introduced by pressurization on fuel rod performances

    International Nuclear Information System (INIS)

    Ren Qisen; Liu Tong; Sheng Guofu

    2012-01-01

    In the process of pressurization and seal welding, it is common practice to vacuumize before gas filling for the sake of preventing introducing air and other impurities, which would affect the gas composition inside of the fuel rod. However, vacuumization during pressurization is likely not being required sometimes in order to simplify the fabrication procedure. In the present work, based on the AFA3G fuel rod design with 2 MPa of filling gas, analyses on fuel rod performances were carried out under the condition of pressurization with and without vacuumization, respectively. Furthermore, the effect on hydrogen content in fuel rod was preliminarily discussed. Results indicate that the impacts of air composition introduced by pressurization on fuel rod thermal-mechanical performances, such as internal pressure and fuel center temperature, were extremely slight. The gap conductance varies to some extent as a result of the change of gas composition due to air introduced in fuel rod. The impact of humidity on water content in fuel rod is negligible at a low temperature of around 25℃. However, at higher temperature, it is essential to pay attention on the control of fabrication process, and prevent much moisture entering into the fuel rod and increasing the probability of hydriding failure. (authors)

  9. Model of cooling nuclear fuel rod in the nuclear reactor

    International Nuclear Information System (INIS)

    Lavicka, David; Polansky, Jiri

    2010-01-01

    The following topics are described: Some basic requirements for nuclear fuel rods; The VVER 1000 fuel rod; Classification of the two-phase flow in the vertical tube; Type of heat transfer crisis in the vertical tube; Experimental apparatus; Model of the nuclear fuel rod and spacers; Potential of the experimental apparatus (velocity profile measurement via PIV; thermal flow field measurement by the PLIF method; cooling graph in dependence on the fuel rod temperature; comparison of the hydrodynamic properties with respect to the design features of the spacers). (P.A.)

  10. Fuel rod fixing system

    International Nuclear Information System (INIS)

    Christiansen, D.W.

    1982-01-01

    This is a reusable system for fixing a nuclear reactor fuel rod to a support. An interlock cap is fixed to the fuel rod and an interlock strip is fixed to the support. The interlock cap has two opposed fingers, which are shaped so that a base is formed with a body part. The interlock strip has an extension, which is shaped so that this is rigidly fixed to the body part of the base. The fingers of the interlock cap are elastic in bending. To fix it, the interlock cap is pushed longitudinally on to the interlock strip, which causes the extension to bend the fingers open in order to engage with the body part of the base. To remove it, the procedure is reversed. (orig.) [de

  11. The thermo-mechanics of the PWR fuel rod

    International Nuclear Information System (INIS)

    Barral, J.C.; Gautier, B.; Chaigne, G.

    1999-01-01

    The fuel rod mechanics is of a great importance in the safety and performance of the reactors. In this domain a meeting has been organized by the SFEN the 18 march 1998 at Paris. With the participation of scientists from CEA, EDF and Framatome, the physics of the fuel rods was presented based on four main aspects. Two first papers dealt with the solicitations of the fuel rod in normal and accidental conditions. The physical phenomena under irradiation were then detailed in the four following talks. Three papers presented the simulation and the codes of the fuel-cladding interactions with the diabolo effect. The last paper was devoted to the experiment feedback and the research programs. (A.L.B.)

  12. PCI/SCC failure behavior of KWU/CE fuel rods

    International Nuclear Information System (INIS)

    Kikuchi, Akira

    1983-10-01

    The Over Ramp (Studsvik Over Ramp-STOR) project is an international power ramping irradiation program for studying PCI/SCC failure behavior of PWR-fuel rods. The project had its activities for about three years (Apr., 1977 - Dec., 1980) as the cooperation works of twelve participants composing nine countries. The present report introduces the irradiation data on the KWU/CE fuel rods in the project and discusses the failure behavior of PWR-fuel rods. (author)

  13. Fuel Rod Vibration Measurement Method using a Flap and its Verification

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Joo Young; Park, Nam Gyu; Suh, Jung Min; Jeon, Kyeong Lak [KEPCO NF Co., Daejeon (Korea, Republic of)

    2011-10-15

    Flow-induced vibration is a critical factor for the mechanical integrity of a fuel rod. This vibration can cause leaked fuel through the mechanism, such as grid to rod fretting. To minimize the failures caused by flow-induced vibration, a robust design is needed which takes into account vibrational characteristics. That is, the spacer grid design should be developed to avoid any excessive vibration. On the one hand, if fuel rod vibration can be measured, an estimation of the excitation forces, which are a critical cause of rod failure, should be possible. Therefore, by applying an external force, flow-induced vibration can be roughly estimated when the fuel rod vibration model is used. KEPCO Nuclear Fuel developed the test loop to research flow-induced vibration as shown in Fig.1. The investigation flow-induced vibration (INFINIT) - the test facility - can measure the grid strap vibration and pressure drop of a 5x5 small scale fuel bundle. Basically, using a Laser Doppler Vibrometer (LDV), the vibration of a structure immersed in high speed fluid can be measured. Grid strap vibration is easily measured using an LDV. However, it is quite difficult to measure fuel rod vibration because of the round surface shape of the rods. In addition, measuring current method using the LDV, it was only possible to directly measure fuel rod vibration at the first row of the bundle as the rods behind the first row are obscured. To solve this problem, a thin flap, as shown in Fig. 2(a) can be used as a reflecting target, gaining access to rods within the bundle. The flap is attached to the fuel rod, as in Fig. 2(b). As a result, most of the inner rod vibration can be measured. Before using a flap to measure fuel rod vibration, a verification process was needed to show whether the LDV signal from the flap vibration provided equivalent and reliable signals. Therefore, impact testing was carried out on the fuel rod using a flap. The LDV signals were then compared with accelerometer

  14. Theoretical investigations of the gas flow in ballooning LWR-fuel rods

    International Nuclear Information System (INIS)

    Gaballah, I.

    1978-09-01

    A theory is developed for the calculation of gas flow in a fuel rod simulator or in a fuel rod with round- or cracked pellets. The fundamental equations are formulated, simplified, reformed, and then numerically solved. The numerical investigations show, that a quasi steady incompressible flow model can be used without great error. The effect of the deformation form is studied. A uniform deformation along the whole length causes small pressure difference. A power profile and rod spacers cause non-uniform clad deformation of the fuel rod simulator or the fuel rod. This deformation leads to greater pressure differences. Finally the effect of the cracked pellets is studied. The cracked pellets cause great pressure differences along the fuel rod. (orig.) 891 HP [de

  15. Cost targets for at-reactor spent fuel rod consolidation

    International Nuclear Information System (INIS)

    Macnabb, W.V.

    1985-01-01

    The high-level nuclear waste management system in the US currently envisions the disposal of spent fuel rods that have been removed from their assemblies and reconfigured into closely packed arrays. The process of fuel rod removal and packaging, referred to as rod consolidation, can occur either at reactors or at an integrated packaging facility, monitored retrievable storage (MRS). Rod consolidation at reactors results in cost savings down stream of reactors by reducing needs for additional storage, reducing the number of shipments, and reducing (eliminating, in the extreme) the amount of fuel handling and consolidation at the MRS. These savings accrue to the nuclear waste fund. Although private industry is expected to pay for at-reactor activities, including rod consolidation, it is of interest to estimate cost savings to the waste system if all fuel were consolidated at reactors. If there are savings, the US Department of Energy (DOE) may find it advantageous to pay for at-reactor rod consolidation from the nuclear waste fund. This paper assesses and compares the costs of rod consolidation at reactors and at the MRS in order to determine at what levels the former could be cost competitive with the latter

  16. FY15 Status Report: CIRFT Testing of Spent Nuclear Fuel Rods from Boiler Water Reactor Limerick

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    The objective of this project is to perform a systematic study of used nuclear fuel (UNF, also known as spent nuclear fuel [SNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. The additional CIRFT was conducted on three HBR rods (R3, R4, and R5) in which two specimens failed and one specimen was tested to over 2.23 10⁷ cycles without failing. The data analysis on all the HBR UNF rods demonstrated that it is necessary to characterize the fatigue life of the UNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum of tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, ten SNF rod segments from BWR Limerick were tested using ORNL CIRFT, with one under static and nine dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at maximum curvature 4.0 m⁻¹. The specimen did not show any sign of failure in three repeated loading cycles to almost same maximum curvature. Ten cyclic tests were conducted with amplitude varying from 15.2 to 7.1 N·m. Failure was observed in nine of the tested rod specimens. The cycles to failure were

  17. 3D simulation of a core operation cycle of a BWR using Serpent

    International Nuclear Information System (INIS)

    Barrera Ch, M. A.; Del Valle G, E.; Gomez T, A. M.

    2016-09-01

    This work had the main goal to develop a methodology to obtain the length of an operating cycle of the core of a BWR under different operating states using the Serpent code. The reactor core modeled in Serpent is composed of 444 fuel assemblies (120 with fresh fuels and 324 fuels from previous cycles), 109 cruciform control rods and light water as moderator and coolant. Once the core of the reactor was modeled in Serpent (Three-dimensional) without considering the cruciform control rods, a simulation was carried out with different steps of burning in the operational state with the average values of the fuel temperature (900 K), moderator temperature (600 K) and voids fraction equal to 0.4. In addition, the thermal power considered was 2017 MWt. This operational state was chosen because a previous analysis (not shown in this work) was carried out in 4 types of control cells. The first and second control cell has all of its natural uranium fuel pellets, with control rod and without control rod respectively. The third and fourth control cell types have various types of enrichment, both natural uranium and gadolinium in their fuel pellets, with control rod and without control rod. The conclusion of this previous analysis was that the behavior of the effective multiplication factor along the fuel burnout within the four control cell types was almost unaffected by the fuel temperature but was affected by the voids fraction. Thus, for this operating cycle in the operating state defined above, its length was 14,63052 GW t/Tm. In addition, at the end of this cycle, the decay heat obtained was equal to 116.71 MWt and the inventory of the most important isotopes to be considered was obtained, such as some isotopes of uranium, neptune, plutonium, americium and curio. (Author)

  18. Physics calculations for the RIA 1-3 irradiated rod test

    International Nuclear Information System (INIS)

    Young, T.E.

    1981-06-01

    The RIA 1-3 test would employ a square array of four pre-irradiated BWR rods to provide information on fuel failure modes and consequences of postulated Reactivity Initiated Accidents in power reactors. Calculations were done to: (1) predict R-O power distributions in the test rods for thermal-hydraulic and fuel-failure analysis; and (2) predict the steady-state and transient ratios of test fuel energy deposition to core energy deposition (Figures of Merit). Fission distributions for the test were computed with the RAFFL Monte Carlo code using an external neutron current source from a complete-reactor radial calculation with the SCAMP S/sub n/ code. Energies per fission for the rods were computed using the SINBAD buildup and depletion code, the GAMSOR gamma ray source code, and the QAD-BSA point-kernel shielding code. The calculated rod average-to-test average energy deposition ratios are 0.99, 0.99, and 0.97 for the rods irradiated to approximately 12 CWd/tu, and 1.04 for the rod irradiated to 4.8 GWd/tu. The maximum deviation of the power density of 1/12-rod azimuthal segments from the rod average is 4%. For an estimated control rod position of 0.591 m withdrawn the predicted radial average energy deposition at the axial peak in an average test rod is 1.71 (kW/m)/MW during preconditioning, and 1.84 (kJ/kg UO 2 ) MW.S during the burst. 16 figures, 7 tables

  19. BWR - Spent Fuel Transport and Storage with the TNTM9/4 and TNTM24BH Casks

    International Nuclear Information System (INIS)

    Wattez, L.; Marguerat, Y.; Hoesli, C.

    2006-01-01

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., the Muehleberg Nuclear Power Plant owner, is involved in this process and has elected to store its BWR spent fuel in a new high capacity dual-purpose cask, the TNeTeM24BH from the COGEMA Logistics/TRANSNUCLEAR TN TM 24 family. The Muehleberg BWR spent fuels are transported by road in a medium size shuttle transport cask and then transferred to a heavy transport/storage cask (dry transfer) in the hot cell of ZWILAG site. For that purpose, COGEMA Logistics designed and supplied: - Two shuttle casks, TN TM 9/4, mainly devoted to transport of spent fuel from Muehleberg NPP to ZWILAG. Licensed according to IAEA 1996, the TN TM 9/4 is a 40 ton transport cask, for 7 BWR high bum-up spent fuel assemblies. - A series of new high capacity dual-purpose casks, TN TM 24BH, holding 69 BWR spent fuels. Two transport campaigns took place in 2003 and 2004. For each campaign, ten TN TM 9/4 round trips are performed, and one TN TM 24BH is loaded. 5 additional TN TM 24BH are being manufactured for BKW, and the next transport campaigns are scheduled from 2006. The TN TM 24BH high capacity dual purpose cask and the TN TM 9/4 transport cask characteristics and capabilities will then be detailed. (authors)

  20. Nuclear fuel rod helium leak inspection apparatus and method

    International Nuclear Information System (INIS)

    Ahmed, H.J.

    1991-01-01

    This patent describes an inspection apparatus for testing nuclear fuel rods for helium leaks. It comprises a test chamber being openable and closable for receiving at least one nuclear fuel rod; means separate from the fuel rod for supplying helium and constantly leaking helium at a predetermined known positive value into the test chamber to constantly provide an atmosphere of helium at the predetermined known positive value in the test chamber; and means for sampling the atmosphere within the chamber and measuring the helium in the atmosphere such that a measured helium value below a preset minimum helium value substantially equal to the predetermined known positive value of the atmosphere of helium being constantly provided in the test chamber indicates a malfunction in the inspection apparatus, above a preset maximum helium value greater than the predetermined known positive in the test chamber indicates the existence of a helium leak from the fuel rod, or between the preset minimum and maximum helium values indicates the absence of a helium leak from the fuel rod

  1. Researches of WWER fuel rods behaviour under RIA accident conditions

    International Nuclear Information System (INIS)

    Nechaeva, O.; Medvedev, A.; Novikov, V.; Salatov, A.

    2003-01-01

    Unirradiated fuel rod and refabricated fuel rod tests in the BIGR as well as acceptance criteria proving absence of fragmentation and the settlement modeling of refabricated fuel rods thermomechanical behavior in the BIGR-tests using RAPTA-5 code are discussed in this paper. The behaviour of WWER type simulators with E110 and E635 cladding was researched at the BIGR reactor under power pulse conditions simulating reactivity initiated accident. The results of the tests in four variants of experimental conditions are submitted. The behaviour of 12 WWER type refabricated fuel rods was researched in the BIGR reactor under power pulse conditions simulating reactivity initiated accident: burnup 48 and 60 MWd/kgU, pulse width 3 ms, peak fuel enthalpy 115-190 cal/g. The program of future tests in the research reactor MIR with high burnup fuel rod (up to 70 MWd/kgU) under conditions simulating design RIA in WWER-1000 is presented

  2. Measuring element for determining the internal pressure in fuel rods

    International Nuclear Information System (INIS)

    Deckers, H.; Drexler, H.; Reiser, H.

    1983-01-01

    A pressure cell is situated inside the fuel rod, which contains a magnetic core or a core influenced by magnetism, whose position relative to an outer front surface of an end stopper of the fuel rod can vary. The fuel rod contains a pressure cell directly above the lower end stopper or connected to it. This can consist of closed bellows, where if the internal pressure in the fuel rod rises, a ferrite core moves axially. When the pressure drops, this returns to the initial position, which is precisely defined by a stop. To detect a rod defect, the position of the soft iron core relative to the lower edge of the end stopper is scanned by a special measuring device. (orig./HP) [de

  3. Parametric tests of the effects of water chemistry impurities on corrosion of Zr-alloys under simulated BWR condition

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, S; Ito, K [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan); Lin, C C [GE Nucklear Energy (United States); Cheng, B [Electric Power Research Inst. (United States); Ikeda, T [Toshiba Corp. (Japan); Oguma, M [Hitachi, Ltd (Japan); Takei, T [Tokyo Electric Power Co., Inc. (Japan); Vitanza, C; Karlsen, T M [Institutt for Energiteknikk, Halden (Norway). OECD Halden Reaktor Projekt

    1997-02-01

    The Halden BWR corrosion test loop was constructed to evaluate the impact of water chemistry variables, heat flux and boiling condition on corrosion performance of Zr-alloys in a simulated BWR environment. The loop consists of two in-core rigs, one for testing fuel rod segments and the other for evaluating water chemistry variables utilizing four miniautoclaves. Ten coupon specimens are enclosed in each miniautoclave. The Zr-alloys for the test include Zircaloy-2 having different nodular corrosion resistance and five new alloys. The first and second of the six irradiation tests planned in this program were completed. Post-irradiation examination of those test specimens have shown that the test loop is capable of producing nodular corrosion on the fuel rod cladding tested under the reference chemistry condition. The miniautoclave tests showed that nodular corrosion could be formed without flux and boiling under some water chemistry conditions and the new alloys, generally, had higher corrosion resistance than the Zircaloy in high oxygen environments. (author). 5 refs, 4 figs, 5 tabs.

  4. Evolution of fuel rod support under irradiation consequences on the mechanical behavior of fuel assembly

    International Nuclear Information System (INIS)

    Billerey, A.; Bouffioux, P.

    2002-01-01

    The complete paper follows. According to the fuel management policy in French PWR with respect to high burn-up, the prediction of the mechanical behavior of the irradiated fuel assembly is required as far as excessive deformations of fuel assembly might lead to incomplete Rod Cluster Control Assembly insertion (safety problems) and fretting wear lead to leaking rods (plant operation problems). One of the most important parameter is the evolution of the fuel rod support in the grid cell as it directly governs the mechanical behavior of the fuel assembly and consequently allows to predict the behavior of irradiated structure in terms of (i) axial and lateral deformation (global behavior of the assembly) and (ii) fretting wear (local behavior of the rod). Fuel rod support is provided by a spring-dimple system fixed on the grid. During irradiation, the spring force decreases and a gap between the rod and the spring might open. This phenomenon is due to (i) irradiation-induced stress relaxation for the spring and for the dimples, (ii) grid growth and (iii) reduction of rod diameter. Two models have been developed to predict the behavior of the rod in the grid cell. The first model is able to evaluate the spring force relaxation during irradiation. The second one is able to evaluate the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (i) the creep laws of the grid materials, (ii) the growth law of the grid, (iii) the evolution of rod diameter and (iv) the design of the fuel rod support. The objectives of this paper are to: (i) evaluate the consequences of grid support design modifications on the fretting sensitivity in terms of predicted maximum gap during irradiation and operational time to gap appearance; (ii) evaluate, using a non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the mechanical behavior of the full assembly in terms of axial and

  5. Fuel-clad heat transfer coefficient of a defected fuel rod

    International Nuclear Information System (INIS)

    Bruet, M.; Stora, J.P.

    1976-01-01

    A special rod has been built with a stack of UO 2 pellets inside a thick zircaloy clad. The atmosphere inside the fuel rod can be changed and particularly the introduction of water is possible. The capsule was inserted in the Siloe pool reactor in a special device equipped with a neutron flux monitor. The fuel centerline temperature and the temperature at a certain radius of the clad were recorded by two thermocouples. The temperature profiles in the fuel and in the cladding have been calculated and then the heat transfer coefficient. In order to check the proper functioning of the device, two runs were successively achieved with a helium atmosphere. Then the helium atmosphere inside the fuel rod was removed and replaced by water. The heat transfer coefficients derived from the measurements at low power level are in agreement with the values given by the model based on thermal conductivity. However, for higher power levels, the heat transfer coefficients become higher than those based on the calculated gap

  6. MELCOR 1.8.2 assessment: The DF-4 BWR Damaged Fuel experiment

    International Nuclear Information System (INIS)

    Tautges, T.J.

    1993-10-01

    MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data

  7. Fission gas release and pellet microstructure change of high burnup BWR fuel

    International Nuclear Information System (INIS)

    Itagaki, N.; Ohira, K.; Tsuda, K.; Fischer, G.; Ota, T.

    1998-01-01

    UO 2 fuel, with and without Gadolinium, irradiated for three, five, and six irradiation cycles up to about 60 GWd/t pellet burnup in a commercial BWR were studied. The fission gas release and the rim effect were investigated by the puncture test and gas analysis method, OM (optical microscope), SEM (scanning electron microscope), and EPMA (electron probe microanalyzer). The fission gas release rate of the fuel rods irradiated up to six cycles was below a few percent; there was no tendency for the fission gas release to increase abruptly with burnup. On the other hand, microstructure changes were revealed by OM and SEM examination at the rim position with burnup increase. Fission gas was found depleted at both the rim position and the pellet center region using EPMA. There was no correlation between the fission gas release measured by the puncture test and the fission gas depletion at the rim position using EPMA. However, the depletion of fission gas in the center region had good correlation with the fission gas release rate determined by the puncture test. In addition, because the burnup is very large at the rim position of high burnup fuel and also due to the fission rate of the produced Pu, the Xe/Kr ratio at the rim position of high burnup fuel is close to the value of the fission yield of Pu. The Xe/Kr ratio determined by the gas analysis after the puncture test was equivalent to the fuel average but not to the pellet rim position. From the results, it was concluded that fission gas at the rim position was released from the UO 2 matrix in high burnup, however, most of this released fission gas was held in the porous structure and not released from the pellet to the free volume. (author)

  8. Development of examination technique for oxide layer thickness measurement of irradiated fuel rods

    International Nuclear Information System (INIS)

    Koo, D. S.; Park, S. W.; Kim, J. H.; Seo, H. S.; Min, D. K.; Kim, E. K.; Chun, Y. B.; Bang, K. S.

    1999-06-01

    Technique for oxide layer thickness measurement of irradiated fuel rods was developed to measure oxide layer thickness and study characteristic of fuel rods. Oxide layer thickness of irradiated fuels were measured, analyzed. Outer oxide layer thickness of 3 cycle-irradiated fuel rods were 20 - 30 μm, inner oxide layer thickness 0 - 10 μm and inner oxide layer thickness on cracked cladding about 30 μm. Oxide layer thickness of 4 cycle-irradiated fuel rods were about 2 times as thick as those of 1 cycle-irradiated fuel rods. Oxide layer on lower region of irradiated fuel rods was thin and oxide layer from lower region to upper region indicated gradual increase in thickness. Oxide layer thickness from 2500 to 3000 mm showed maximum and oxide layer thickness from 3000 to top region of irradiated fuel rods showed decreasing trend. Inner oxide layer thicknesses of 4 cycle-irradiated fuel rod were about 8 μm at 750 - 3500 mm from the bottom end of fuel rod. Outer oxide layer thickness were about 8 μm at 750 - 1000 mm from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel. Oxide layer thickness technique will apply safety evaluation and study of reactor fuels. (author). 6 refs., 14 figs

  9. The possibility and the effects of a steam explosion in the BWR lower head on recriticality of a BWR core

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Dinh, T.N.

    2002-12-01

    The report describes an analysis considering a BWR postulated severe accident scenario during which the late vessel automatic depressurization brings the water below the level of the bottom core plate. The subsequent lack of ECCS leads to core heat up during which the control rods melt and the melt deposits on the core plate. At that point of time in the scenario, the core fuel bundles are still intact and the Zircaloy clad oxidation is about to start. The objective of the study is to provide the conditions of reflood into the hot core due to the level swell or a slug delivered from the lower head as the control rod melt drops into the water. These conditions are employed in the neutronic analysis with the RECRIT code to determine if the core recriticality may be achieved. (au)

  10. ABB high burnup fuel

    International Nuclear Information System (INIS)

    Andersson, S.; Helmersson, S.; Nilsson, S.; Jourdain, P.; Karlsson, L.; Limback, M.; Garde, A.M.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both PWR and BWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter proven to meet the 6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10 x 10 fuel, where ABB is the only vendor to date with batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of PWR and BWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its utility customers. This paper provides an overview of recent fuel performance and reliability experience at ABB. Selected development and validation activities for PWR and BWR fuel are presented, for which the ABB test facilities in Windsor (TF-2 loop, mechanical test laboratory) and Vaesteras (FRIGG, BURE) are essential. (authors)

  11. Infinite fuel element simulation of pin power distributions and control blade history in a BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Nuenighoff, K.; Allelein, H.J. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energie- und Klimaforschung (IEK), Sicherheitsforschung und Reaktortechnik (IEK-6)

    2011-07-01

    Pellet-Cladding Interaction (PCI) is a well known effect in fuel pins. One possible reason for PCI-effects could be local power excursions in the fuel pins, which can led to a rupture of the fuel cladding tube. From a reactor safety point of view this has to be considered as a violence of the barrier principal in order to retain fission products in the fuel pins. This paper focuses on the pin power distributions in a 2D infinite lattice of a BWR fuel element. Lots of studies related PCI effect can be found in the literature. In this compact, coupled neutronic depletion calculations taking the control history effect into account are described. Depletion calculations of an infinite fuel element of a BWR were carried out with controlled, uncontrolled and temporarily controlled scenarios. Later ones are needed to describe the control blade history (CBH) effect. A Monte-Carlo approach is mandatory to simulate the neutron physics. The VESTA code was applied to couple the Monte-Carlo-Code MCNP(X) with the burnup code ORIGEN. Additionally, CASMO-4 is also employed to verify the method of simulation results from VESTA. The cross sections for Monte Carlo and burn-up calculations are derived from ENDF/B-VII.0. (orig.)

  12. Development of the down-ender and the spent fuel rod cutting device

    International Nuclear Information System (INIS)

    Kim, S. H.; Yoon, Ji Sup; Kim, Young Hwan; Hoo, Jung Jae; Hong, Dong Hee; Kim, Do Woo

    2000-07-01

    It is necessary to disassemble the spent fuel assembly for the recycling of the PWR spent fuels. The spent fuel disassembling process includes transportation and handling of the spent fuel assembly, extraction and cutting of the spent fuel rods, and extraction of the spent fuel pellets(decladding). In this study, the downender of the spent fuel assembly and the spent fuel rod cutting device have been developed. The downender is used to change the posture of the spent fuel assembly from the vertical to the horizontal directions, prior to extracting the fuel rods. The concepts of the remote operation and maintenance has been introduced in the design of the downender. Also, the several design consideration has been given such as the reliable adaptation of the vertically accessing the assembly to the device, the minimization of the shock force when settling down the assembly, and the interface with the rod extraction device without intermittent operation. The spent fuel rod cutting device using a tube cutter is developed for cutting the fuel rods to the suitable size. In designing this device, the mechanical property of the spent fuel rod is examined such as the strength of the clad material and the optimal size of the rod for the extracting process. Also, several cutting methods, which are commercially available, are investigated and tested in terms of the durability, the deformation on the cutting surface of the rods, and the amount of the generated debris, and the fire risk. As like the downender, the design of this device accommodates the concepts of the remote operation and maintenance

  13. Experimental validation of CASMO-4E and CASMO-5M for radial fission rate distributions in a westinghouse SVEA-96 Optima2 BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, P.; Perret, G. [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland)

    2012-07-01

    Measured and calculated radial total fission rate distributions are compared for the three axial sections of a Westinghouse SVEA-96 Optima2 BWR fuel assembly, comprising 96, 92 and 84 fuel rods, respectively. The measurements were performed on a full-size fuel assembly in the PROTEUS zero-power experimental facility. The measured fission rates are compared to the results of the CASMO-4E and CASMO-5M fuel assembly codes. Detailed measured geometrical data were used in the models, and effects of the surrounding zones of the reactor were taken into account by correction factors derived from MCNPX calculations. The results of the calculations agree well with those of the experiments, with root-mean-square deviations between 1.2% and 1.5% and maximum deviations of 3-4%. The quality of the predictions by CASMO-4E and CASMO-5M is comparable. (authors)

  14. System and method for consolidating spent fuel rods

    International Nuclear Information System (INIS)

    Baudro, T.O.

    1987-01-01

    A system is described for consolidating spent fuel rods from spent fuel assemblies, comprising: a consolidation container in which the fuel rods may be packed; a frame capable of holding a fuel assembly and the container during consolidation, the frame permitting each of the fuel assembly and the container to be removed; tool means with gripper means for gripping and releasing a rod, the tool means including means for moving the gripper means upwardly and downwardly; a first indexing head having first guide means for guiding the gripper means while the gripper means moves downwardly; a first rail, the first indexing head being slidably mounted on the first rail; a second indexing head having second guide means for guiding the gripper means while the gripper means moves downwardly; a second rail, the second indexing head being slidably mounted on the second rail; and a third rail, the first rail and the second rail being slidably mounted on the third rail; wherein the first indexing head is slidable on the first and third rails to a first position that is above a preselected rod in the fuel assembly; and wherein the second indexing head is slidable on the second and third rails to a second position that is above a preselected location in the container

  15. In-pile experiments on fuel rod behavior during a LOCA

    International Nuclear Information System (INIS)

    Karb, E.; Pruessmann, M.; Sepold, L.

    1980-05-01

    This report describes the results of the Test Series F, Tests F 1 through F 5, in the in-pile experimental program with single rods in the DK loop of the FR2 reactor at the Kernforschungszentrum Karlsruhe (KfK). The research is part of the Nuclear Safety Project's (PNS) fuel behavior program. The main objective of the FR2-LOCA tests is to provide information about the effects of a nuclear environment on the mechanisms of fuel rod failure in the second heatup phase of a LOCA. The test rods have a heated length of 50 cm, and their radial dimensions are identical with those of a commercial German PWR. The main parameter of the FR2-LOCA test program is the burnup. The F tests were perfomed from Oct. 25, 1977 to Nov. 22, 1977. They were the first tests in this program to use pre-irradiated fuel rods. The nominal burnup of the test rods was 20 000 MWd/t. During the transient test, the test rods were subjected to rod powers between 36 and 41 W/cm and were pressurized with He to hot internal pressures between 46 and 83 bar. The test rods during the heatup phase at pressures of 56, 53, 42, 72 and 60 bar, respectively. The burst temperatures were determined to be 890, 893, 932, 835 and 880 0 C for test F 1 through F 5. The maximum total circumferential elongations amount to 59, 38, 27, 34 and 41%, respectively. The F tests revealed a fragmentation of the fuel after the irradiation (prior to the tests) and a disintegration of the fuel pellet column after the transient tests due to cladding ballooning. The post-test results indicated a significant reduction of the pellet stack length for all five test rods. The burst data of the F tests did not reveal any difference between tests with unirradiated fuel rods and the irradiated fuel rods of this test series. (orig./HP) [de

  16. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  17. Experimental study of defect power reactor fuel. Final report

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Jonsson, T.

    1982-01-01

    Two BWR fuel rods, one intact and one defect, with the same manufacturing and irradiation data have been examined in a comparative study. The defect rod has been irradiated in a defect condition during approximately one reactor cycle and has consequently some secondary defects. The defect rod has two penetrating defects at a distance of about 1.5 meters from each other. Comparison with the intact rod shows a large Cs loss from the defect rod, especially between the cladding defects, where the loss is measured to about 30 %. The leachibility in deionized water is higher for Cs, U and Cm for fuel from the defect rod. The leaching results are more complex for Sr-90, Pu and Am. The fuel in the defect rod has undergone a change of structure with gain growth and formation of oriented fuel structure. The cladding of the defect rod is hydrided locally in some parts of the lower part of the rod and furthermore over a more extended region near the end of the rod. (Authors)

  18. Method of monitoring fuel-rod vibrations in a nuclear fuel reactor

    International Nuclear Information System (INIS)

    Kawamura, Makoto; Takai, Katsuaki.

    1985-01-01

    Purpose: To monitor the vibration modes of fuel rods continuously and on real time during operation of a PWR type nuclear reactor. Method: Vibrations of fuel rods during reactor operation are mainly caused by the lateral flow of coolants flowing through the gaps at the joints of reactor core buffle plates into a reactor core and fretting damages may possibly be caused to the fuel rod support portions due to the vibrations. In view of the above, self-powered detectors are disposed at a plurality of axial positions for the respective peripheral fuel assemblies in adjacent with the buffle plates and the detection signals from neutron detectors, that is, the fluctuations in neutrons are subjected to a frequency analysis during the operation period. The neutron detectors are disposed at the periphery of the reactor core, because the fuel assemblies disposed at the peripheral portion directly undergo the lateral flow from the joints of the buffle plates and vibrates most violently. Thus, the vibration situations can be monitored continuously, in a three demensional manner and on real time. (Moriyama, K.)

  19. Failed fuel rod detection system and computerized manipulator during outages

    International Nuclear Information System (INIS)

    Boehm, H.H.; Foerch, H.

    1984-01-01

    During regular outages spent fuel assemblies need to be replaced and relocated within the core. Defective fuel rods in particular fuel assemblies have to be removed from further service and before delivery of such faulty fuel assemblies to a reprocessing plant. The system which Brown Boveri Reaktor GmbH and Krautkraemer have developed in the Federal Republic of Germany is capable of directly locating the defective rods in a proper fuel assembly. Inspection times are comparable to those of standard sipping methods, with the advantages of immediately available results and direct identification of the defective fuel rods. During the repair of fuel assemblies this system allows withdrawal of individual defective rods. With the sipping method all the fuel rods of a defective fuel assembly need to be removed and inspected by eddy current testing. During steam generator inspection and repair personnel are exposed to ample radiation. A remotely controlled, computerized manipulator was used to significantly reduce the radiation dose by automating steps in the procedures; at the same time inspection and repair times were reduced. The main features of the manipulator are a rigid component construction of the leg and two arms, and a resolver control for horizontal and vertical motion that enables rapid and accurate access to a desired tube (author)

  20. A system automatic study for the spent fuel rod cutting and simulated fuel pellet extraction device

    International Nuclear Information System (INIS)

    Jeong, J. H.; Yun, J. S.; Hong, D. H.; Kim, Y. H.; Park, K. Y.

    2001-01-01

    A fuel pellet extraction device of the spent fuel rods is described. The device consists of a cutting device of the spent fuel rods and the decladding device of the fuel pellets. The cutting device is to cut a spent fuel rod to n optimal size for fast decladding operation. To design the device, the fuel rod properties are investigated including the dimension and material of fuel rod tubes and pellets. Also, various methods of existing cutting method are investigated. The design concepts accommodate remote operability for the Hot-Cell(radioactive ) area operation. Also, the modularization of the device structure is considered for the easy maintenance. The decladding device is to extract the fuel pellet from the rod cut. To design this device, the existing method is investigated including the chemical and mechanical decladding methods. From the view point of fuel recovery and feasibility of implementation. it is concluded that the chemical decladding method is not appropriate due to the mass production of radioactive liquid wastes, in spite of its high fuel recovery characteristics. Hence, in this paper, the mechanical decladding method is adopted and the device is designed so as to be applicable to various lengths of rod-cuts. As like the cutting device,the concepts of remote operability and maintainability is considered. Both devices are fabricated and the performance is investigated through a series of experiments. From the experimental result, the optimal operational condition of the devices is established

  1. Thermal behavior simulation of a nuclear fuel rod through an eletrically heated rod

    International Nuclear Information System (INIS)

    Lima, R. de C.F. de.

    1984-01-01

    In thermalhydraulic loops the nuclear industry often uses electrically heated rods to simulate power transients, which occur in nuclear fuel rods. The development and design of a electrically heated rod, by supplying the dimensions and materials which should be used in order to yeld the same temperature and heat flux at the surfaces of the nuclear rod and the electrically heated rod are presented. To a given nuclear transient this equality was obtained by fitting the linear power through the lumped parameters technique. (Author) [pt

  2. Fuel Rod Flow-Induced Vibration Overview

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    To ensure fuel design safety and structural integrity requires the response prediction of fuel rod to reactor coolant flow excitation. However, there are many obstacles in predicting the response as described. Even if the response can be predicted, the design criteria on wear failure, including correlation with the vibration, may be difficult to establish because of a variety of related parameters, such as material, surface condition and environmental factors. Thus, a prototype test for each new fuel assembly design, i.e. a long-term endurance test, is performed for design validation with respect to flow-induced vibration (FIV) and wear. There are still needs of theoretical prediction methods for the response and anticipated failure. This paper revisits the general aspect on the response prediction, mathematical description, analysis procedure and wear correlation aspect of fuel rod's FIV

  3. Remote helium leak test of the DUPIC fuel rod

    International Nuclear Information System (INIS)

    Kim, W. K; Kim, S. S.; Lim, S. P.; Lee, J. W.; Yang, M. S.

    1998-01-01

    DUPIC(Direct Use of spent PWR fuel In CANDU reactor) is one of dry reprocessing fuel cycles to reuse irradiated PWR fuel in CANDU power plant. DUPIC fuel is so radioactive that DUPIC fuel is remotely fabricated at hot cell such as IMEF hot cell in which radiation is shielded and remote operation is possible. In this study, Helium leakage has been tested for the simulated DUPIC fuel rod manufactured by Nd:YAG laser end-cap welding at simulated hot cell. The remote inspection technique has been developed to evaluate the soundness of DUPIC fuel fabricated through new processes. Vacuum chamber has been developed to be remotely operated by manipulators at hot cell. As the result of remote test, Helium leakage of DUPIC fuel rod is around background level, CANDU specification has been satisfied. In the result of the study, remote test has been successfully performed at the simulated hot cell, and the soundness of DUPIC fuel rod welded by Nd:YAG laser has been confirmed

  4. Nuclear reactor internals construction and failed fuel rod detection system

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A system is provided for determining during operation of a nuclear reactor having fluid pressure operated control rod mechanisms the exact location of a fuel assembly with a defective fuel rod. The construction of the reactor internals is simplified in a manner to facilitate the testing for defective fuel rods and the reduce the cost of producing the upper internals of the reactor. 13 claims, 10 drawing figures

  5. Knowledge based system for control rod programming of BWRs

    International Nuclear Information System (INIS)

    Fukuzaki, Takaharu; Yoshida, Ken-ichi; Kobayashi, Yasuhiro

    1988-01-01

    A knowledge based system has been developed to support designers in control rod programming of BWRs. The programming searches through optimal control rod patterns to realize safe and effective burning of nuclear fuel. Knowledge of experienced designers plays the main role in minimizing the number of calculations by the core performance evaluation code. This code predicts power distibution and thermal margins of the nuclear fuel. This knowledge is transformed into 'if-then' type rules and subroutines, and is stored in a knowledge base of the knowledge based system. The system consists of working area, an inference engine and the knowledge base. The inference engine can detect those data which have to be regenerated, call those subroutine which control the user's interface and numerical computations, and store competitive sets of data in different parts of the working area. Using this system, control rod programming of a BWR plant was traced with about 500 rules and 150 subroutines. Both the generation of control rod patterns for the first calculation of the code and the modification of a control rod pattern to reflect the calculation were completed more effectively than in a conventional method. (author)

  6. Critical experiments supporting underwater storage of tightly packed configurations of spent fuel rods

    International Nuclear Information System (INIS)

    Hoovler, G.S.; Baldwin, M.N.

    1981-04-01

    Criticla arrays of 2.5%-enriched UO 2 fuel rods that simulate underwater rod storage of spent power reactor fuel are being constructed. Rod storage is a term used to describe a spent fuel storage concept in which the fuel bundles are disassembled and the rods are packed into specially designed cannisters. Rod storage would substantially increase the amount of fuel that could be stored in available space. These experiments are providing criticality data against which to benchmark nuclear codes used to design tightly packed rod storage racks

  7. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1975-01-01

    Power distribution in a high-temperature gas-cooled reactor is optimized. Especially the axial as well as the radial power distribution is kept constant, the core consisting of several consecutive rod-shaped fuel cells. To this end, the dwell times of the fuel cells are fitted to the given power distribution. Fuel cells with equal dwell times, seen in flow direction, are arranged side by side, and those with the shortest dwell times are placed in areas with the greatest power release. These areas ly on the coolant inlet side. To keep the power distribution constant, fuel cells with neutron poison or absorber rods with absorbing rates decreasing in flow direction can also be inserted. (RW/PB) [de

  8. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye

    2013-01-01

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses

  9. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses.

  10. Storage device for fuel rods of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Kempf, B.

    1983-01-01

    The storage device, which can be flexibly matched to the number of fuel rods to be stored and is not tied to a space, has a vertical support post situated on the floor and a stiff upright also situated vertically on the floor, which is used to accommodate at least one fuel rod. The stiff upright is connected directly to the support post by connections which can be undone, or form locking via another vertical stiff upright situation on the floor. (orig./HP) [de

  11. Spectral shift rod for the boiling water reactor

    International Nuclear Information System (INIS)

    Yokomizo, O.; Kashiwai, S.; Nishida, K.; Orii, A.; Yamashita, J.; Mochida, T.

    1993-01-01

    A Boiling Water Reactor core concept has been proposed using a new fuel component called spectral shift rod (SSR). The SSR is a new type of water rod in which a water level is formed during core operation. The water level can be controlled by the core recirculation flow rate. By using SSRs, the reactor can be operated with all control rods withdrawn through the operation cycle as well as that a much larger natural uranium saving is possible due to spectral shift operation than in current BWRs. The steady state and transient characteristics of the SSRs have been examined by experiments and analyses to certify the feasibility. In a reference design, a four times larger spectral shift width as for the current BWR has been obtained. (orig.)

  12. Methodology of fuel rod design for pressurized light water reactors

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  13. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    Nagano, M.; Sakurai, S.; Yamaguchi, H.

    1997-01-01

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO 2 fuel in Japan. The design concept should be compatible with UO 2 fuel design. High burnup UO 2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO 2 8 x 8 array fuel developed for a second step of UO 2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  14. Model investigation of fuel rod behaviour

    International Nuclear Information System (INIS)

    Girgis, M.M.; Wiesenack, W.; Stegemann, D.

    1985-06-01

    Thermal and mechanical behaviour of fuel rods can be explained but unsatisfactorily by models based of an axial symmetry concept. Recently developed models include, with respect to their thermal components, a simple method for the computation of the temperature distribution within the fuel, and they also take into account the influence of excentrically placed pellets for the computation of heat transfer in the cold gap. Additionally, a finite-element model is used to evaluate the effects of cracking and fragmentation on the thermal behaviour of pellets. The reaction of fuel and fuel cladding to external and internal loadings and the axial interaction between fuel and cladding are described in the mechanical portion of the model. A special case of axial coupling is the so-called random stacking interaction caused by fuel pellets placed excentrically at the cladding and sliding radially and axially. In the comparison of measurement results, both thermal and mechanical behaviour of different rods from the OECD Halden Reactor Project are subject to investigations. (RF) [de

  15. Modelling of Rod No 8 in IFA-597:3

    International Nuclear Information System (INIS)

    Malen, K.

    2002-06-01

    A Westinghouse Atom 8x8 fuel rod irradiated in the Ringhals 1 BWR for 12 years to a local burnup of about 67 MWd/kgU was refabricated, instrumented with centreline thermocouple and pressure transducer, and irradiated in IFA-597.2 for about 20 days and in IFA-597.3 for about four months. The rod was then sent to Kjeller for puncturing and then to the Studsvik hot cells for detailed post-irradiation examinations. The peak centreline, temperature was close to 1350 deg C. The total fission gas release (FGR) determined from the puncturing was approximately 20 %. Electron probe microanalysis on a fuel section from the central part of the rod showed that virtually 100 % Xe release had occurred in the central part of the pellet out to about half the pellet radius, and this thermal release from the central part of the fuel accounted for the measured total FGR. Optical and scanning electron microscopy of the fuel cross-section showed complete pellet-clad bonding as well as an extensive high burnup 'rim' structure extending at least 0,15 mm in from the fuel surface. The fuel microstructure was characterised at different radial positions in the pellet. This report describes modelling of the rod behaviour using the code SKIROD, in particular fuel temperature and fission gas release. The transient response of the fuel centre line temperature after a scram is also modelled using the code TOODEE2. The modelling results are compared to the experimental results

  16. A new coupled system for BWR nuclear fuel management

    International Nuclear Information System (INIS)

    Castillo, A.; Ortiz-Servin, J.J.; Montes-Tadeo, J.L.; Perusquia, R.; Rizos, R.L.M.

    2015-01-01

    In this work, a system to solve four stages of the fuel management problem is showed.The system uses different heuristic techniques to solve each stage of that area, and this problem is solved in a coupled way. Considered problems correspond to the following designs: fuel lattice, fuel assembly, fuel reload and control rod patterns. Even though, each stage of the problem can have its own objective function, the complete problem was solved using a multi-objective function. The solution strategy is to solve each stage of design in an iterative process, taking into account previous results for the next stage, until to achieve a complete solution. The solution strategy to solve the coupled problem is the following: the first solved stage is the fuel lattice design, the second one is fuel assembly design, finally an internal loop between both fuel reload design and control rod pattern design is carried out.For this internal loop, a seed reload using Haling principle is generated. The obtained results showed the advantage to solve the whole problem in a coupled way. (author)

  17. On Cherenkov light production by irradiated nuclear fuel rods

    International Nuclear Information System (INIS)

    Branger, E.; Grape, S.; Svärd, S. Jacobsson; Jansson, P.; Sundén, E. Andersson

    2017-01-01

    Safeguards verification of irradiated nuclear fuel assemblies in wet storage is frequently done by measuring the Cherenkov light in the surrounding water produced due to radioactive decays of fission products in the fuel. This paper accounts for the physical processes behind the Cherenkov light production caused by a single fuel rod in wet storage, and simulations are presented that investigate to what extent various properties of the rod affect the Cherenkov light production. The results show that the fuel properties have a noticeable effect on the Cherenkov light production, and thus that the prediction models for Cherenkov light production which are used in the safeguards verifications could potentially be improved by considering these properties. It is concluded that the dominating source of the Cherenkov light is gamma-ray interactions with electrons in the surrounding water. Electrons created from beta decay may also exit the fuel and produce Cherenkov light, and e.g. Y-90 was identified as a possible contributor to significant levels of the measurable Cherenkov light in long-cooled fuel. The results also show that the cylindrical, elongated fuel rod geometry results in a non-isotropic Cherenkov light production, and the light component parallel to the rod's axis exhibits a dependence on gamma-ray energy that differs from the total intensity, which is of importance since the typical safeguards measurement situation observes the vertical light component. It is also concluded that the radial distributions of the radiation sources in a fuel rod will affect the Cherenkov light production.

  18. DANCOFF-3, Dancoff Correction for Cylindrical Fuel Rod at H2O Gaps and for Fuel Clusters

    International Nuclear Information System (INIS)

    Sauer, A.

    1989-01-01

    1 - Nature of physical problem solved: Calculation of the Dancoff correction for cylindrical fuel rods in square and hexagonal infinite lattices, for fuel element rods near water gaps, and for fuel rod clusters. 2 - Method of solution: Evaluation by direct numerical integration over the moderator region. 3 - Restrictions on the complexity of the problem: For every rod arrangement at most 100 cases with different materials cross- sections

  19. Nuclear reactor fuel rod behavior modelling and current trends

    International Nuclear Information System (INIS)

    Colak, Ue.

    2001-01-01

    Safety assessment of nuclear reactors is carried out by simulating the events to taking place in nuclear reactors by realistic computer codes. Such codes are developed in a way that each event is represented by differential equations derived based on physical laws. Nuclear fuel is an important barrier against radioactive fission gas release. The release of radioactivity to environment is the main concern and this can be avoided by preserving the integrity of fuel rod. Therefore, safety analyses should cover an assessment of fuel rod behavior with certain extent. In this study, common approaches for fuel behavior modeling are discussed. Methods utilized by widely accepted computer codes are reviewed. Shortcomings of these methods are explained. Current research topics to improve code reliability and problems encountered in fuel rod behavior modeling are presented

  20. Moderator temperature coefficient in BWR core

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    1977-01-01

    Temperature dependences of infinite multiplication factor k sub(infinity) and neutron leakage from the core must be examined for estimation of moderator temperature coefficient. Temperature dependence on k sub(infinity) has been investigated by many researchers, however, the dependence on neutron leakage of a BWR with cruciformed control rods has hardly been done. Because there are difficulties and necessity on calculations of three space dimensional and multi-energy groups neutron distribution in a BWR core. In this study, moderator temperature coefficients of JPDR-II (BWR) core were obtained by calculation with DIFFUSION-ACE, which is newly developed three-dimensional multi-group computer code. The results were compared with experimental data measured from 20 to 275 0 C of the moderator temperature and the good agreement was obtained between calculation and measurement. In order to evaluate neutron leakage from the core, the other two calculations were carried out, adjusting criticality by uniform absorption rate and by material buckling. The former underestimated neutron leakage and the latter overestimated it. Discussion on the results shows that in order to estimate the temperature coefficient of BWR, neutron leakage must be evaluated precisely, therefore the calculation at actual pattern of control rods is necessary. (auth.)

  1. COMETHE III-M for transient fuel rod behaviour prediction

    International Nuclear Information System (INIS)

    Billaux, M.; Vliet, J. van

    1983-01-01

    The COMETHE III-M version is being developed in order to provide fuel rod behaviour prediction capability both in steady-state and in transient situations. It also allows to estimate the fuel rod enthalpy evolution versus time or burnup which may be important in core-related safety studies. This paper describes the transient heat transfer models, including transient heat conduction inside the fuel rod, and a subchannel model providing transient flow as well as enthalpy calculation capability. Transient fission gas release is also modelled on basis of the change rate of oxide temperature. The models are illustrated by a few calculation examples. (author)

  2. Evaluation of the reduction of boron-10 in the control rods in the BWR of the Laguna Verde Central, through steady state calculations

    International Nuclear Information System (INIS)

    Montes T, J.L.; Perusquia, R.; Hernandez, J.L.; Ramirez S, J.R.

    2003-01-01

    One of the more important aspects related with the safety and economy in the operation of a nuclear power reactor, it is without a doubt the control of the reactivity. During the normal operation of a reactor of boiling water (BWR-Boiling Water Reactor), the control of the reactivity in the nucleus it is strongly determined by the efficiency of the control rods. In the case of the Laguna Verde Nuclear power station (CNLV) the nucleus of the reactors has 109 control rods grouped in 4 sets. The CNLV at the moment uses the CCC method (Control Cell Core) in the design of the cycle. With this method only the A2 group is used for the control of the reactivity at full power. With the purpose of quantifying the effect of the decrease of the burnable poison (B 4 C) of the control rods and in particular to the effect due to the postulated lost of 10% of Boron 10, it was carried out a series of calculations of the nucleus in stationary state by means of the system of HELIOS/CM-PRESTO codes. In this work the main derived results of these 3D simulations(three dimensions) of the reactors of the CNLV are presented. It was analyzed the one behavior of the infinite neutron multiplication factor (K infinite ), at fuel assemble cell level used in an equilibrium cycle for the CNLV. It was also analyzed the effect in the shutdown margin (ShutDown Margin- SDM) in cold condition CZP (Cold Zero Power). Its are also included those results of the ARI cases (All Rods In) and SRO (Strong Rod Out). From the cases in condition HFP (Hot Full Power) the behavior of the effective multiplication factor (K eff ) is presented. (Author)

  3. The buckling of fuel rods in transportation casks under hypothetical accident conditions

    International Nuclear Information System (INIS)

    Bjorkman, G.S.

    2004-01-01

    The buckling analysis of fuel rods during an end drop impact of a spent fuel transportation cask has traditionally been performed to demonstrate the structural integrity of the fuel rod cladding or the integrity of the fuel geometry in criticality evaluations following a cask drop event. The actual calculation of the fuel rod buckling load, however, has been the subject of some controversy, with estimates of the critical buckling load differing by as much as a factor of 5. Typically, in the buckling analysis of a fuel rod, assumptions are made regarding the percentage of fuel mass that is bonded to or participates with the cladding during the buckling process, with estimates ranging from 0 to 100%. The greater the percentage of fuel mass that is assumed to be bonded to the cladding the higher the inertia loads on the cladding, and, therefore, the lower the ''g'' value at which buckling occurs. Current published solutions do not consider displacement compatibility between the fuel and the cladding. By invoking displacement compatibility between the fuel column and the cladding column, this paper presents an exact solution for the buckling of fuel rods under inertia loading. The results show that the critical inertia load magnitude for the buckling of a fuel rod depends on the weight of the cladding and the total weight of the fuel, regardless of the percentage of fuel mass that is assumed to be attached to or participate with the cladding in the buckling process. Therefore, 100% of the fuel always participates in the buckling of a fuel rod under inertia loading

  4. The nuclear fuel rod character recognition system based on neural network technique

    International Nuclear Information System (INIS)

    Kim, Woong-Ki; Park, Soon-Yong; Lee, Yong-Bum; Kim, Seung-Ho; Lee, Jong-Min; Chien, Sung-Il.

    1994-01-01

    The nuclear fuel rods should be discriminated and managed systematically by numeric characters which are printed at the end part of each rod in the process of producing fuel assembly. The characters are used to examine manufacturing process of the fuel rods in the inspection process of irradiated fuel rod. Therefore automatic character recognition is one of the most important technologies to establish automatic manufacturing process of fuel assembly. In the developed character recognition system, mesh feature set extracted from each character written in the fuel rod is employed to train a neural network based on back-propagation algorithm as a classifier for character recognition system. Performance evaluation has been achieved on a test set which is not included in a training character set. (author)

  5. Current status of the post boiling transition research in Japan. Integrity evaluation of nuclear fuel assemblies after boiling transition and development of rewetting correlations

    International Nuclear Information System (INIS)

    Hara, Takashi; Mizokami, Shinya; Kudo, Yoshiro; Komura, Seiichi; Nagata, Yoshifumi; Morooka, Shinichi

    2003-01-01

    Development of rewetting correlation formula was the key to predict fuel-cladding temperature after Boiling Transition (BT). Japanese BWR utilities and vendors performed some tests of rewetting and made two rewetting correlation formulas. The effect on fuel integrity after BT depends on temperature of fuel rod and time of dryout. Main cause of losing fuel integrity during BWR's Anticipated Operational Occurrences (AOO) after BT is embrittlement of the claddings due to oxidation. Ballooning of fuel rod is excepted because its pressure boundary isn't broken. In Japan, the Standards Committee of Atomic Energy Society of Japan (AESJ) is making post BT standard. This standard provides guidelines based on the latest knowledge to judge fuel integrity in case of BT and the validity of reusing the fuel assembly that experienced BT in BWRs. (author)

  6. Fuel performance-experience to date and future potential

    International Nuclear Information System (INIS)

    Proebstle, R.A.; Klepfer, H.H.

    1987-01-01

    The experience in the USA to date, as reported in the Federal Energy Regulatory Commission data, conforms a very favorable cost trend for nuclear fuel costs relative to fossil fuel costs. The nuclear fuel cost promose relative to other fuels looks even better in future. Uranium supply surplus and advances in enrichment technology suggest that this trend should continue. Threats to the economic potential for nuclear fuel costs include unexpected problems in actural versus projected core and fuel technical performance. The New designs for BWR's nuclear fuel are extended to 38,000 MWd/MTU and the fuel rod reliabilities of 0.999994 are achievable. This reliability is equivalent to less than 3 fuel rod failures over the 40 year life of a reactor. (Liu)

  7. Optimization of BWR fuel lattice enrichment and gadolinia distribution using genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Carmona, Roberto; Oropeza, Ivonne P.

    2007-01-01

    An optimization methodology based on the Genetic Algorithms (GA) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The optimization algorithm was linked to the HELIOS code to evaluate the neutronic parameters included in the objective function. The goal is to search for a fuel lattice with the lowest average enrichment, which satisfy a reactivity target, a local power peaking factor (PPF), lower than a limit value, and an average gadolinia concentration target. The methodology was applied to the design of a 10 x 10 fuel lattice, which can be used in fuel assemblies currently used in the two BWRs operating at Mexico. The optimization process showed an excellent performance because it found forty lattice designs in which the worst one has a better neutronic performance than the reference lattice design. The main contribution of this study is the development of an efficient procedure for BWR fuel lattice design, using GA with an objective function (OF) which saves computing time because it does not require lattice burnup calculations

  8. Fuel assembly

    International Nuclear Information System (INIS)

    Hirukawa, Koji; Sakurada, Koichi.

    1992-01-01

    In a fuel assembly for a BWR type reactor, water rods or water crosses are disposed between fuel rods, and a value with a spring is disposed at the top of the coolant flow channel thereof, which opens a discharge port when pressure is increased to greater than a predetermined value. Further, a control element for the amount of coolant flow rate is inserted retractable to a control element guide tube formed at the lower portion of the water rod or the water cross. When the amount of control elements inserted to the control element guide tube is small and the inflown coolant flow rate is great, the void coefficient at the inside of the water rod is less than 5%. On the other hand, when the control elements are inserted, the flow resistance is increased, so that the void coefficient in the water rod is greater than 80%. When the pressure in the water rod is increased, the valve with the spring is raised to escape water or steams. Then, since the variation range of the change of the void coefficient can be controlled reliably by the amount of the control elements inserted, and nuclear fuel materials can be utilized effectively. (N.H.)

  9. Gap conductance in Zircaloy-clad LWR fuel rods

    International Nuclear Information System (INIS)

    Ainscough, J.B.

    1982-04-01

    This report describes the procedures currently used to calculate fuel-cladding gap conductance in light water reactor fuel rods containing pelleted UO 2 in Zircaloy cladding, under both steady-state and transient conditions. The relevant theory is discussed together with some of the approximations usually made in performance modelling codes. The state of the physical property data which are needed for heat transfer calculations is examined and some of the relevant in- and out-of-reactor experimental work on fuel rod conductance is reviewed

  10. Detailed pressure drop measurements in single-and two-phase adiabatic air-water turbulent flows in realistic BWR fuel assembly geometry with spacer grids

    International Nuclear Information System (INIS)

    Caraghiaur, Diana; Frid, Wiktor; Tillmark, Nils

    2004-01-01

    In recent years, advance numerical simulation tools based on CFD methods have been increasingly used in various multi-phase flow applications. One of these is two-phase flow in fuel assemblies of Boiling Water Reactors. The important and often missing aspect of this development is validation of CFD codes against proper experimental data. The purpose of the current paper is to present detailed pressure measurements over a spacer grid in low pressure adiabatic single- and bubbly two-phase flow, which will be used to further develop a CFD code for BWR fuel bundle analysis. The experiments have been carried out in a n asymmetric 24-rod sub-bundle, representing one quarter of a Westinghouse SVEA-96 nuclear reactor fuel assembly. Single-phase flow measurements have been performed at superficial velocities between 0.90-4.50 m/s and in the two-phase flow, which was simulated by air-water mixture, measurements have been performed at void fractions ranging from 4 to 12% and liquid superficial velocity of 4.50 m/s. In order to increase the number of measuring points, five pressure taps were drilled in one of the rods, which was easily moved vertically by a traversing system, covering most of the points in axial direction. Any of the rods in the bundle could be substitute by the pressure sensing rod and the measurements were made for five pressure taps facing-angles. A detailed pressure distribution comparison between single- and two-phase flows for different sub-channel positions and different flow conditions was performed over one of the spacers. In addition, single-phase pressure drop measurements in the upper part of the test section comprising two spacer grids have been carried out. (author)

  11. A tomographic method for verification of the integrity of spent nuclear fuel

    International Nuclear Information System (INIS)

    Jacobsson, Staffan; Haakansson, Ane; Andersson, Camilla; Jansson, Peter; Baecklin, Anders

    1998-03-01

    A tomographic method for experimental investigation of the integrity of used LWR fuel has been developed. It is based on measurements of the gamma radiation from the fission products in the fuel rods. A reconstruction code of the algebraic type has been written. The potential of the technique has been examined in extensive simulations assuming a gamma-ray energy of either 0.66 MeV ( 137 Cs) or 1.27 MeV ( 154 Eu). The results of the simulations for BWR fuel indicate that single fuel rods or groups of rods replaced with water or fresh fuel can be reliably detected independent of their position in the fuel assembly using 137 Cs radiation. For PWR fuel the same result is obtained with the exception of the most central positions. Here the more penetrable radiation from 154 Eu must be used in order to allow a water channel to be distinguished from a fuel rod. The results of the simulations have been verified experimentally for a 8x8 BWR fuel assembly. Special equipment has been constructed and installed at the interim storage CLAB. The equipment allows the mapping of the radiation field around a fuel assembly with the aid of a germanium detector fitted with a collimator with a vertical slit. The intensities measured in 2520 detector positions were used as input for the reconstruction code used in the simulations. The results agreed very well with the simulations and revealed significantly a position containing a water channel in the central part of the assembly

  12. Fuel assembly for nuclear reactor

    International Nuclear Information System (INIS)

    Yamanaka, Akihiro; Haikawa, Katsumasa; Haraguchi, Yuko; Nakamura, Mitsuya; Aoyama, Motoo; Koyama, Jun-ichi.

    1996-01-01

    In a BWR type fuel assembly comprising first fuel rods filled with nuclear fission products and second fuel rods filled with burnable poisons and nuclear fission products, the concentration of the burnable poisons mixed to a portion of the second fuel rods is controlled so that it is reduced at the upper portion and increased at the lower portion in the axial direction. In addition, a product of the difference of an average concentration of burnable poisons between the upper portion and the lower portion and the number of fuel rods is determined to higher than a first set value determined corresponding to the limit value of a maximum linear power density. The sum of the difference of the average concentration of the burnable poisons between the upper portion and the lower portion of the second fuel rod and the number of the second fuel rods is determined to lower than a second set value determined corresponding to a required value of a surplus reactivity. If the number of the fuel rods mixed with the burnable poisons is increased, the infinite multiplication factor at an initial stage of the burning is lowered and, if the concentration of the mixed burnable poisons is increased, the time of exhaustion of the burnable poisons is delayed. As a result, the maximum value of the infinite multiplication factor is suppressed thereby enabling to control surplus reactivity. (N.H.)

  13. BWR 90 and BWR 90+: Two advanced BWR design generations from ABB

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced light water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and total power generation costs have been low. When developing the BWR 90 specific changes were introduced to a reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher than that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Hence, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The review work was completed in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with an 'evolutionary' design called BWR 90+, which aims at developing the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is performed by ABB Atom

  14. Radiography inspection of weld for nuclear fuel rod

    International Nuclear Information System (INIS)

    Zhang Kai; Zhang Xichang

    1995-05-01

    The survey of radiography inspection, advantages, disadvantages and applications of main kinds of radiography inspection methods are presented. Emphasis is put upon the structure and functions of X-ray flaw detecting device for nuclear fuel rod welds, the actuating program of the device, as well as the structure of some key mechanism and the functions of them. The analysis is made upon the actuating principles. Finally, the test of long-term operation proves the device to be stable in operation, reliable in action, to possess high level of automation and high sensitivity and it can simultaneously perform on-line X-ray inspection of 25 nuclear fuel rods with a diameter less than 10 mm, and meet the requirements of large-scale production of nuclear fuel rods (5 figs.)

  15. Fuel assembly, channel box of fuel assembly, fuel spacer of fuel assembly and method of manufacturing channel box

    International Nuclear Information System (INIS)

    Chaki, Masao; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Nishida, Koji; Kawasaki, Terufumi.

    1997-01-01

    In a fuel assembly of a BWR type reactor, fuel rods disposed at corners of side walls of a channel box or in the periphery of the side walls are partially removed, and recessed portions are formed on the side walls of the channel box from which the fuel rods are removed. Spaces closed at the sides are formed in the inner side of the corner portions. Openings are formed for communicating the closed space with the outside of the channel box. Then, the channel area of the outer side of the channel box is increased, through which much water flows to increase the amount of water in the reactor core thereby promoting the moderation of neutrons and providing thermal neutrons suitable to nuclear fission. The degree of freedom for distribution of the spaces in the reactor core is increased to improve neutron economy thereby enabling to utilize reactor fuels effectively. (N.H.)

  16. Mechanical behaviour of PWR fuel rods during intermediate storage

    International Nuclear Information System (INIS)

    Bouffioux, P.; Dalmas, R.; Bernaudat, C.

    2000-01-01

    EDF, which owns the irradiated fuel coming from its NPPs, has initiated studies regarding the mechanical behaviour of a fuel rod and the integrity of its cladding, in the case where the spent fuel is stored for a significant duration. During the phases following in-reactor irradiation (ageing in a water-pool, transport and intermediate storage), many phenomena, which are strongly coupled, may influence the cladding integrity: - residual power and temperature decay; - helium production and release in the free volume of the rod (especially for MOX fuel); - fuel column swelling; - cladding creep-out under the inner gas pressure of the fuel rod; - metallurgical changes due to high temperatures during transportation. In parallel, the quantification of the radiological risk is based on the definition of a cladding integrity criterion. Up to now, this criterion requires that the clad hoop strain due to creep-out does not exceed 1%. A more accurate criterion is being investigated. The study and modelling of all the phenomena mentioned above are included in a R and D programme. This programme also aims at redefining the cladding integrity criterion, which is assumed to be too conservative. The R and D programme will be presented. In order to predict the overall behaviour of the rod during the intermediate storage phases, the AVACYC code has been developed. It includes the models developed in the R and D programme. The input data of the AVACYC code are provided by the results of in-reactor rod behaviour simulations, using the thermal-mechanical CYRANO3 code. Its main results are the evolution vs. time of hoop stresses in the cladding, rod internal pressure and cladding hoop strains. Chained CYRANO-AVACYC calculations have been used to simulate the behaviour of MOX fuel rods irradiated up to 40 GWd/t and stored under air during 100 years, or under water during 50 years. For such fuels, where the residual power remains high, we show that a large part of the cladding strain

  17. Solution of a benchmark set problems for BWR and PWR reactors with UO2 and MOX fuels using CASMO-4

    International Nuclear Information System (INIS)

    Martinez F, M.A.; Valle G, E. del; Alonso V, G.

    2007-01-01

    In this work some of the results for a group of benchmark problems of light water reactors that allow to study the physics of the fuels of these reactors are presented. These benchmark problems were proposed by Akio Yamamoto and collaborators in 2002 and they include two fuel types; uranium dioxide (UO 2 ) and mixed oxides (MOX). The range of problems that its cover embraces three different configurations: unitary cell for a fuel bar, fuel assemble of PWR and fuel assemble of BWR what allows to carry out an understanding analysis of the problems related with the fuel performance of new generation in light water reactors with high burnt. Also these benchmark problems help to understand the fuel administration in core of a BWR like of a PWR. The calculations were carried out with CMS (of their initials in English Core Management Software), particularly with CASMO-4 that is a code designed to carry out analysis of fuels burnt of fuel bars cells as well as fuel assemblies as much for PWR as for BWR and that it is part in turn of the CMS code. (Author)

  18. Express diagnostics of WWER fuel rods at nuclear power plants

    International Nuclear Information System (INIS)

    Pavlov, S.; Amosov, S.; Sagalov, S.; Kostyuchenko, A.

    2009-01-01

    Higher safety and economical efficiency of nuclear power plants (NPP) call for a continuous design modification and technological development of fuel assemblies and fuel rods as well as optimization of their operating conditions. In doing so the efficiency of new fuel introduction depends on the completeness of irradiated fuel data in many respects as well as on the rapidity and cost of such data obtaining. Standard examination techniques of fuel assemblies (FA) and fuel rods (FR) intended for their use in hot cell conditions do not satisfy these requirements in full extent because fuel assemblies require preliminary cooling at NPP to provide their shipment to the research center. Expenditures for FA transportation, capacity of hot cells and expenditures for the examined fuel handling do not make it possible to obtain important information about the condition of fuel assemblies and fuel rods after their operation. In order to increase the comprehensiveness of primary data on fuel assemblies and fuel rods immediately after their removal from the reactor, inspection test facilities are widely used for these purposes. The inspection test facilities make it possible to perform nondestructive inspection of fuel in the NPP cooling pools. Moreover these test facilities can be used to repair failed fuel assemblies. The ultrasonic testing of failed fuel rods inside the fuel assembly was developed for stands of inspection and repair of TVSA WWER-1000 for the Kalinin NPP and Temelin NPP. This method was tested for eight leaking fuel assemblies WWER-440 and WWER-1000 with a burnup of ∼14 up to 38 MW·day/kgU. The ultrasonic testing proved its high degree of reliability and efficiency. The defectoscopy by means of the pulsed eddy-current method was adapted for the stand of inspection and repair of TVSA WWER-1000 for the Kalinin NPP. This method has been used at RIAR as an express testing method of FR claddings during the post-irradiation examinations of fuel assemblies WWER

  19. Fuel rod failure detection method and system

    International Nuclear Information System (INIS)

    Assmann, H.; Janson, W.; Stehle, H.; Wahode, P.

    1975-01-01

    The inventor claims a method for the detection of a defective fuel rod cladding tube or of inleaked water in the cladding tube of a fuel rod in the fuel assembly of a pressurized-water reactor. The fuel assembly is not disassembled but examined as a whole. In the examination, the cladding tube is heated near one of its two end plugs, e.g. with an attached high-frequency inductor. The water contained in the cladding tube evaporates, and steam bubbles or a condensate are detected by the ultrasonic impulse-echo method. It is also possible to measure the delay of the temperature rise at the end plug or to determine the cooling energy required to keep the end plug temperature stable and thus to detect water ingression. (DG/AK) [de

  20. Fuel element cellular grid structure and procedure to insert and withdraw fuel rods from that structure

    International Nuclear Information System (INIS)

    1975-01-01

    A typical embodiment of the invention provides a means for selectively inserting and withdrawing one or more fuel rods from a fuel element cellular grid structure. The transverse stubs on one side of a long, thin bar are turned through 90deg to extend across the gap between mutually perpendicular grid structure plates. The extreme ends of these stubs engage the adhacent portions of the associated plates that form part of the grid cells. Pressing the stubs against the plate portions through the application of appropriate force in a longitudinal direction relative to the bar deflects the engaged plates through a sufficient distance to enable fuel rods to be inserted into or withdrawn from respective cells. After rod insertion, the force applied to the bar is released to enable the plates to relax and engage the fuel rods. The bars are rotated once more through 90deg and withdrawn from the grid structure. A similar procedure is employed to withdraw fuel rods from the grid structure

  1. Status and development of RBMK fuel rods and reactor materials

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Reshetnikov, F.G.; Ioltukhovsky, A.G.

    1998-01-01

    The paper presents current status and development of RBMK fuel rods and reactor materials. With regard to fuel rod cladding the following issues have been discussed: corrosion, tensile properties, welding technology and testing of an alternative cladding alloy with a composition of Zr-Nb-Sn-Fe. Erbium doped fuel has been suggested for safety improvement. Also analysis of fuel reliability is presented in the paper. (author)

  2. Transition of Natural Frequencies of a Fuel Rod during Its Lifetime

    International Nuclear Information System (INIS)

    Kim, Hyeong Koo; Lee, Kyou Seok; Kim, Jeong Ha; Jeon, Sang Yoon

    2009-01-01

    The natural frequencies of a Pressurized Water Reactor (PWR) fuel rod are dependent on the geometrical and mechanical properties of fuel rod itself and its supporting conditions provided by spacer grids. By the way, these environmental parameters suffer remarkable change due to the plant operating conditions such as burnup, temperature, system pressure, and so on. It is inevitable, therefore, to be changed the natural frequencies of the fuel rod during its lifetime. In this paper, the transition of natural frequencies of the fuel rod for OPR1000 plants has been investigated considering fuel conditions associated with fuel life time. Basically for this investigation, three analysis models have been proposed representing beginning-of life (BOL) condition, middle-of-life (MOL) condition and end-of-life (EOL) condition including spacer grid supporting conditions. With these models, several modal analyses have been performed and the results have been compared with those of the test which has been carried out for verification of the analysis model. With these analyses and test, the changing vibration behavior of the PLUS7 fuel rod for OPR1000 during its life time has been discussed

  3. Generalized Thermohydraulics Module GENFLO for Combining With the PWR Core Melting Model, BWR Recriticality Neutronics Model and Fuel Performance Model

    International Nuclear Information System (INIS)

    Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko

    2002-01-01

    Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and

  4. Optimization of in-core fuel management and control rod strategy in equilibrium fuel cycle

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1975-01-01

    An in-core fuel management problem is formulated for the equilibrium fuel cycle in an N-region nuclear reactor model. The formulation shows that the infinite multiplication factor k infinity requisite for newly charged fuel can be separated into two terms - one corresponding to the average k infinity at the end of the cycle and the other representing the direct contribution of the shuffling scheme and control rod programming. This formulation is applied to a three-region cylindrical reactor to obtain simultaneous optimization of shuffling and control rod programming. It is demonstrated that this formulation aids greatly in gaining a better understanding of the effects of changes in the shuffling scheme and control rod programming on equilibrium fuel cycle performance. (auth.)

  5. Design and evaluation of an on-line fuel rod assay device for an HTGR fuel refabrication plant

    International Nuclear Information System (INIS)

    Rushton, J.E.; Allen, E.J.; Chiles, M.M.; Jenkins, J.D.

    1979-11-01

    Refabricated HTGR fuel rods will contain from approx. 0.15 to 0.5 g 233 U and/or 235 U. The fuel rods are approx. 16 mm in diameter and 62 mm long. A typical commercial fuel refabrication facility will have six fuel rod production lines, each producing approximately one fuel rod every 4 seconds at design capacity. One on-line assay device will be present for each two production lines. The relative standard deviation in an individual fuel rod fissile material measurement must be less than 3% to satisfy process and quality control requirements. Systematic errors must be kept less than approx. 0.3% for fissile material measured in fuel rods produced over two months to satisfy material accountability requirements. Several nondestructive assay (NDA) methods were investigated. Because the gamma-ray activity of the refabricated fuel is relatively high due to the presence of 232 U in the fuel and because the gamma-ray activity is not directly related to total or fissile uranium content, NDA methods employing gamma-ray detection did not appear practicable. A method using thermal neutron irradiation and fast-fission neutron detection was selected. An experimental assay device was fabricated based on this NDA method. Experiments were performed to determine the precision and accuracy of the measurements and to investigate potential interferences and systematic errors. Operating procedures were evaluated, and analysis procedures were identified

  6. Mechanical stress analysis for a fuel rod under normal operating conditions

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Giovedi, Claudia; Serra, Andre da Silva; Abe, Alfredo Y.

    2013-01-01

    Nuclear reactor fuel elements consist mainly in a system of a nuclear fuel encapsulated by a cladding material subject to high fluxes of energetic neutrons, high operating temperatures, pressure systems, thermal gradients, heat fluxes and with chemical compatibility with the reactor coolant. The design of a nuclear reactor requires, among a set of activities, the evaluation of the structural integrity of the fuel rod submitted to different loads acting on the fuel rod and the specific properties (dimensions and mechanical and thermal properties) of the cladding material and coolant, including thermal and pressure gradients produced inside the rod due to the fuel burnup. In this work were evaluated the structural mechanical stresses of a fuel rod using stainless steel as cladding material and UO 2 with a low degree of enrichment as fuel pellet on a PWR (pressurized water reactor) under normal operating conditions. In this sense, tangential, radial and axial stress on internal and external cladding surfaces considering the orientations of 0 deg, 90 deg and 180 deg were considered. The obtained values were compared with the limit values for stress to the studied material. From the obtained results, it was possible to conclude that, under the expected normal reactor operation conditions, the integrity of the fuel rod can be maintained. (author)

  7. BWR 90: The ABB advanced BWR design

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced fight water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and the total power generation costs have been low. In the development of BWR 90 specific changes were introduced to the reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher dim that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Thus, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The work is scheduled for completion in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with the 'evolutionary' design BWR 90+. The primary design goal is to develop the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is

  8. Pulsed eddy current inspection system for nondestructive examination of irradiated fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.

    1979-01-01

    An inspection system has been developed for nondestructive examination of irradiated fuel rods utilizing pulsed eddy current techniques. The system employs an encircling type pulsed eddy current transducer capable of sensing small defects located on both the inner and outer diameter fuel rod surfaces during a single scan. Pulsed eddy current point probes are used to provide fuel rod wall thikness data and an indication of radial defect location. Two linear variable differential transformers are used to provide information on fuel rod diameter variation. A microprocessor based control system is used to automatically scan fuel rods up to 4.06 meters in length at predetermined radial locations. Defects as small as 0.005 cm deep by 0.254 cm long by 0.005 cm wide have been detected on outside diameter surfaces of a 1.43 cm outside diameter fuel rod cladding with a 0.094 cm wall thickness and 0.010 cm deep by 0.254 cm long by 0.005 cm wide on the inside diameter surface

  9. Pressure equalization systems in pressurized water reactor fuel rods

    International Nuclear Information System (INIS)

    Steven, J.; Wunderlich, F.

    1979-01-01

    For the development of a pressure reduction system in PWR fuel rods the capability of charcoal to adsorb Helium, Xenon and Krypton at temperatures of about 300 0 C was investigated. The influence of the adsorption on fuel rod internal pressure and in creep strain on the tube was evaluated in a design study. (orig.) [de

  10. Design study of Thorium-232 and Protactinium-231 based fuel for long life BWR

    Energy Technology Data Exchange (ETDEWEB)

    Trianti, N.; Su' ud, Z.; Riyana, E. S. [Nuclear Physics and Biophysics Research Division Department of Physics - Institut Teknologi Bandung (ITB) Jalan Ganeca 10 Bandung 40132 (Indonesia)

    2012-06-06

    A preliminary design study for the utilization of thorium added with {sup 231}Pa based fuel on BWR type reactor has been performed. In the previous research utilization of fuel based Thorium-232 and Uranium-233 show 10 years operation time with maximum excess-reactivity about 4.075% dk/k. To increase reactor operation time and reduce excess-reactivity below 1% dk/k, Protactinium (Pa-231) is used as Burnable Poison. Protactinium-231 has very interesting neutronic properties, which enable the core to reduce initial excess-reactivity and simultaneously increase production of {sup 233}U to {sup 231}Pa in burn-up process. Optimizations of the content of {sup 231}Pa in the core enables the BWR core to sustain long period of operation time with reasonable burn-up reactivity swing. Based on the optimization of fuel element composition (Th and Pa) in various moderation ratio we can get reactor core with longer operation time, 20 {approx} 30 years operation without fuel shuffling or refuelling, with average power densities maximum of about 35 watt/cc, and maximum excess-reactivity 0.56% dk/k.

  11. Study of pellet clad interaction defects in Dresden-3 fuel rods

    International Nuclear Information System (INIS)

    Pasupathi, V.; Perrin, J.S.

    1979-01-01

    During Cycle-3 operation of Dresden-3, fuel rod failures occurred following a transient power increase. Ten fuel rods from five of the leaking fuel assemblies were examined at Battelle's Columbus Laboratory and General Electric-Vallecitos Nuclear Center. Examinations consisted of nondestructive and destructive methods including metallography and scanning electron microscopy (SEM). Results showed the cause of fuel rod failure to be pellet clad interaction involving stress corrosion cracking. Results of SEM studies of the cladding crack surfaces and deposits on clad inner surfaces were in agreement with those reported by other investigators

  12. Experiments with preirradiated fuel rods in the Nuclear Safety Research Reactor

    International Nuclear Information System (INIS)

    Horiki, O.; Kobayashi, S.; Takariko, I.; Ishijima, K.

    1992-01-01

    In the Nuclear Safety Research Reactor (NSRR) owned and operated by Japan Atomic Energy Research Institute (JAERI), extensive experimental studies on the fuel behavior under reactivity initiated accident (RIA) conditions have been continued since the start of the test program in 1975. Accumulated experimental data were used as the fundamental data base of the Japanese safety evaluation guideline for reactivity initiated events in light water cooled nuclear power plants established by the nuclear safety commission in 1984. All of the data used to establish the guideline were, however, limited to those derived from the tests with fresh fuel rods as test samples because of the lack of experimental facility to handle highly radioactive materials.The guideline, therefore, introduces the peak fuel enthalpy of 85 cal/g which was adopted from the SPERT-CDC data as a provisional failure threshold of preirradiated fuel rod and, says that this value should be revised based on the NSRR experiments in the future. According to the above requirement, new NSRR experimental program with the preirradiated fuel rods as test samples was started in 1989. Test fuel rods are prepared by refabrication of the long-sized fuel rods preirradiated in commercial PWRs and BWRs into short segments and by preirradiation of short-sized test fuel rods in the Japan Material Testing Reactor(JMTR). For the tests with preirradiated fuel rods as test samples, the special experimental capsules, the automatic instrumentation fitting device, the automatic capsule assembling device and the capsule loading device were newly developed. In addition, the existing hot cave was modified to mount the capsule assembling device and the other inspection tools and, a new small iron cell was established adjacent to the cave to store the instrumentation fitting device. (author)

  13. A neutronic assessment of the new Spherical Cermets Fuel concept for the BWR-PB reactor

    International Nuclear Information System (INIS)

    Benchrif, A.; Chetaine, A.; Amsil, H.; Bounakhla, M.

    2010-01-01

    The tri-structural-isotopic (TRISO) fuel directly cooled by boiling light water is used in the boiling water reactor with pebble-bed coated particles (BWR-PB). At the lower coolant temperature, the TRISO fuel particles demonstrate an unacceptable irradiation swelling in the silicon carbide coating layer during a fuel cycle. So, the objectives of this paper, on the one hand is to evaluate some neutronic parameters of a new fuel concept, Spherical Cermets Fuel (SCF), for a BWR-PB reactor. On the other hand, to assess the fact of SCF fuel concept on the fuel assembly lifetime and the burn-up characteristic. All the parameters as well as Infinite Multiplication Factor, Spectrum Index, Instantaneous Conversion Ratio and Neutron Energy Spectrum was calculated then compared for the TRISO and the SCF fuel concept. It can be seen from the assessment of fuel assembly burn-up characteristics that the normalised neutron spectra of all the assembly's parts pointed out a thermal spectrum for the SCF fuel assembly's parts than the TRISO one. The SCF fuel element increase the assembly life time about 6.1 EFPY corresponding 8000 MWd/t. So, the fuel assembly can be operated for a reasonably long period without outside refuelling. The difference in the assembly lifetime might leads to SCF fuel concept adopted, because the geometry and concept of TRISO fuel particles are wholly different to SCF ones. (author)

  14. 3D pin-by-pin power density profiles with high spatial resolution in the vicinity of a BWR control blade tip simulated with coupled neutronics/burn-up calculations

    International Nuclear Information System (INIS)

    Li, J.; Nünighoff, K.; Allelein, H.-J.

    2011-01-01

    Highlights: ► High spatial resolution neutronic and burn-up calculations of quarter BWR fuel element section. ► Coupled MCNP(X)–ORIGEN2.2 simulation using VESTA. ► Control blade history effect was taken into account. ► Determining local power excursion after instantaneous control rod movement. ► Correlation between control blade geometry and occurrence of local power excursions. - Abstract: Pellet cladding interaction (PCI) as well as pellet cladding mechanical interaction (PCMI) are well-known fuel failures in light water reactors, especially in boiling water reactors (BWR). Whereas the thermo-mechanical processes of PCI effects have been intensively investigated in the last decades, only rare information is available on the role of neutron physics. However, each power transient is primary due to neutron physics effects and thus knowledge of the neutron physical background is mandatory to better understand the occurrence of PCI effects in BWRs. This paper will focus on a study of local power excursions in a typical BWR fuel assembly during control rod movements. Burn-up and energy deposition were simulated with high spatial granularity, especially in the vicinity of the control blade tip. It could be shown, that the design of the control blade plays a dominant role for the occurrence of local power peaks while instantaneously moving down the control rod. The main result is, that the largest power peak occurs at the interface between steel handle and absorber rods. A full width half maximum (FWHM) of ±2.5 cm was observed. This means, the local power excursion due to neutron physics phenomena involve approximately five pellets. With the VESTA code coupled MCNP(X)/ORIGEN2.2 calculations were performed with more than 3400 burn-up zones in order to take history effects into account.

  15. BWR type reactor

    International Nuclear Information System (INIS)

    Okano, Shigeru.

    1992-01-01

    In a BWR type reactor, control rod drives are disposed in the upper portion of a reactor pressure vessel, and a control rod guide tube is disposed in adjacent with a gas/liquid separator at a same height, as well as a steam separator is disposed in the control rod guide tube. The length of a connection rod can be shortened by so much as the control rod guide tube and the gas/liquid separator overlapping with each other. Since the control rod guide tube and the gas/liquid separator are at the same height, the number of the gas/liquid separators to be disposed is decreased and, accordingly, even if the steam separation performance by the gas/liquid separator is lowered, it can be compensated by the steam separator of the control rod guide tube. In view of the above, since the direction of emergent insertion of the control rod is not against gravitational force but it is downward direction utilizing the gravitational force, reliability for the emergent insertion of the control rod can be further improved. Further, the length of the connection rod can be minimized, thereby enabling to lower the height of the reactor pressure vessel. The construction cost for the nuclear power plant can be reduced. (N.H.)

  16. Critical power experiment with a tight-lattice 37-rod bundle

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Tamai, Hidesada; Ohnuki, Akira; Sato, Takashi; Liu, Wei; Akimoto, Hajime

    2006-01-01

    Since most of critical power or CHF data have been collected in tube, annulus, or BWR geometries under BWR flow conditions, critical power data for highly tight and triangular lattice bundles under low mass velocity are indispensable for thermal-hydraulic design of Reduced-Moderation Water Reactor. Large-scale thermal-hydraulic experiments which use a basic 37-rod bundle test section (rod diameter: 13.0 mm, gap width between rods: 1.3 mm) were therefore carried out in this study within range of 2-9 MPa in pressure and 150-1,000 kg/(m 2 ·s) in mass velocity. Fundamental characteristics of boiling transition were investigated through effects of flow parameter on critical power and those of rod number. It was confirmed that the fundamental characteristics in 37-rod bundle are similar to those in 7-rod bundle and in case of the BWR geometry. The results of the transverse non-uniform power distribution test and subchannel analysis suggest that the critical power becomes higher when the transverse local quality distribution closes to uniform. (author)

  17. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  18. WWER-440 fuel rod performance analysis with PIN-Micro and TRANSURANUS codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Manolova, M.; Stefanova, S.; Simeonova, V.; Passage, G.; Lassmann, K.

    1994-01-01

    PIN-micro and TRANSURANUS codes were used to analyse the WWER-440 fuel rod behaviour at normal operation conditions. Two highest loaded fuel rods of the fuel assemblies irradiated in WWER-440 with different power histories were selected. A set of the most probable average values of all geometrical and technological parameters were used. A comparison between PIN-micro and TRANSURANUS codes was performed using identical input data. The results for inner gas pressure, gap size, local linear heat rate, fuel central temperature and fission gas release as a function of time calculated for the selected fuel rods are presented. The following conclusions were drawn: 1) The PIN-micro code predicts adequately the thermal and mechanical behaviour of the two fuel rods; 2) The comparison of the results obtained by PIN-micro and TRANSURANUS shows a reasonable agreement and the discrepancies could be explained by the lack of thoroughly WWER oriented verification of TRANSURANUS; 3) The advanced TRANSURANUS code could be successfully applied for WWER fuel rod thermal and mechanical analysis after incorporation of all necessary WWER specific material properties and models for the Zr+1%Nb cladding, for the fuel rod as a whole and after validation against WWER experimental and operational data. 1 tab., 10 figs., 10 refs

  19. WWER-440 fuel rod performance analysis with PIN-Micro and TRANSURANUS codes

    Energy Technology Data Exchange (ETDEWEB)

    Vitkova, M; Manolova, M; Stefanova, S; Simeonova, V; Passage, G [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika; Kharalampieva, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria); Lassmann, K [European Atomic Energy Community, Karlsruhe (Germany). European Inst. for Transuranium Elements

    1994-12-31

    PIN-micro and TRANSURANUS codes were used to analyse the WWER-440 fuel rod behaviour at normal operation conditions. Two highest loaded fuel rods of the fuel assemblies irradiated in WWER-440 with different power histories were selected. A set of the most probable average values of all geometrical and technological parameters were used. A comparison between PIN-micro and TRANSURANUS codes was performed using identical input data. The results for inner gas pressure, gap size, local linear heat rate, fuel central temperature and fission gas release as a function of time calculated for the selected fuel rods are presented. The following conclusions were drawn: (1) The PIN-micro code predicts adequately the thermal and mechanical behaviour of the two fuel rods; (2) The comparison of the results obtained by PIN-micro and TRANSURANUS shows a reasonable agreement and the discrepancies could be explained by the lack of thoroughly WWER oriented verification of TRANSURANUS; (3) The advanced TRANSURANUS code could be successfully applied for WWER fuel rod thermal and mechanical analysis after incorporation of all necessary WWER specific material properties and models for the Zr+1%Nb cladding, for the fuel rod as a whole and after validation against WWER experimental and operational data. 1 tab., 10 figs., 10 refs.

  20. Modelling of pellet cladding interaction during power ramps in PWR rods by means of Transuranus fuel rod analysis code

    International Nuclear Information System (INIS)

    Di Marcello, V.; Luzzi, L.

    2008-01-01

    Pellet-cladding interaction (PCI) in PWR type rods subjected to power ramps was analysed by means of TRANSURANUS (TU) fuel rod performance code. PCI phenomena depend on the fuel power history - i.e. by several irradiation and thermal induced phenomena occurring in the fuel rod and mutually interacting during its life in reactor - and may become critical for cladding integrity under accidental conditions. Ten test fuel rods, whose power histories and post irradiation experiment (PIE) data were available from the OECD/NEA-IAEA International Fuel Performance Experiment (UTE) database through the Studsvik SUPER-RAMP Project, were simulated by TRANSURANUS. During a power ramp pellet gaseous swelling can be inhibited by cladding pressure and can be over-predicted by a normal operation swelling model. This phenomenon was simulated by a new formulation of a fuel swelling model already available in the code, in order to consider hot pressing of inter-granular -fuel porosity due to the high hydrostatic stress resulting from PCI: it was found that TRANSURANUS, as a result of the proposed swelling formulation as well as of the accurate modelling of the other phenomena occurring during irradiation, gives correct predictions on PCI induced fuel rod failures. In addition, PCI failure threshold identified by TRANSURANUS was compared with the technological limits known in literature: the possibility of relaxing these limits for low burn-up values and the preponderance of the European fuel rod design in front of PCI emerged from TU analyses. Finally, a good agreement was found between TU evaluations and PIE data, with regard to fission gas release, fuel grain growth, and creep, corrosion and elongation of the cladding. (authors)

  1. Fuel assembly and burnable poison rod

    International Nuclear Information System (INIS)

    Hirukawa, Koji.

    1993-01-01

    In a fuel assembly having burnable poison rods arranged therein, the burnable poison comprises an elongate small outer tube and an inner tube coaxially disposed within the outer tube. Upper and lower end tubes each sealed at one end are connected to both of the upper and lower ends in the inner and the outer tubes respectively. A coolant inlet hole is disposed to the lower end tube, while a coolant leakage hole is disposed to the upper end tube. Burnable poison members are filled in an annular space. Further, the burnable poison-filling region is disposed excepting portions for 1/20 - 1/12 of the effective fuel length at each of the upper and the lower ends of the fuel rod. Then, the concentration of the burnable poisons in a region above a boundary defined at a position 1/3 - 1/2, from beneath, of the effective fuel length is made smaller than that in the lower region. This enables to suppress excess reactions of fuels to reduce the mass of the burnable neutron. Excellent reactivity control performance at the initial stage of the burning can be attained. (T.M.)

  2. Inspection device for fuel rod restraint by support lattice of fuel assembly

    International Nuclear Information System (INIS)

    Hasegawa, Isao; Senga, Masatoshi; Kada, Mitoshi.

    1991-01-01

    An inspection operation section for disposing fuel assembly vertically at predetermined positions, a control section wired therewith, a moving operation section movable in the direction of X, Y and Z axes by a driving signal sent from the control section are disposed to an inspection section main body. A downward bore scope and a upward bore scope, each of such a size as can be inserted to the gaps between the fuel rods, are disposed while opposing to each other for observing the inside of each of cells from above and below in support lattices of fuel assemblies. High performance television cameras are disposed to each of bore scopes to supply images to monitoring televisions in the control section. Thus, a displacing operation section of the inspection operation section is automatically controlled three-dimensionally, the downward bore scope and the upward bore scope are integrally intruded to the inside of the gaps between the predetermined fuel rods from a required height and stopped at a predetermined position, mounted automatically to a required cell of the support lattice to efficiently observe and inspect the fuel rod restraint. (N.H.)

  3. Experimental studies of the effect of functional spacers to annular flow in subchannels of a BWR fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Damsohn, M., E-mail: damsohn@lke.mavt.ethz.c [ETH Zurich, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zuerich (Switzerland); Prasser, H.-M. [ETH Zurich, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zuerich (Switzerland)

    2010-10-15

    For the prediction of dryout in fuel elements of boiling water reactors, the dynamic behavior of the water film covering the fuel rod has to be understood. This paper provides high resolved experimental data of the liquid film and gives insight into the dynamic film behavior. The experiments of this work were conducted in a vertical channel representing a pair of neighboring subchannels of a BWR fuel rod bundle. Air and water at ambient pressure and temperature are used as model fluids, creating an annular flow in the test section. The influence of different functional spacer shapes on the liquid film has been studied. The heart of the instrumentation is a liquid film sensor (LFS), which measures the film thickness distribution around a half cylinder with a matrix of 64 x 16 measuring points with a time resolution of 10,000 frames per second and a spatial resolution of 2 mm x 2 mm. The high resolution allows for a visualization of the dynamic liquid film as a movie animation. Principals of the dynamic behavior of the liquid film are observed. The time-averaged film thickness distributions show that the spacers structure the liquid film significantly. The gaseous phase is accelerated due to the cross-section blockage caused by the spacer. This leads to a local thinning of the liquid film downstream of the spacer. Two statistical evaluation methods are presented to determine different dynamic wave properties: The wave velocity as function of the wave height, the traveling path of the waves and the location of wave separation and merge events. The first evaluation method shows that big waves move generally faster than small waves. The analysis further shows wave acceleration in close proximity of the spacer with subsequent deceleration further downstream. Analyzing the wave as a two-dimensional entity it can be seen that the wave paths are clearly structured by the spacer and hence do not travel circumferentially around the fuel rod. Wave separation and merge has a

  4. Experimental studies of the effect of functional spacers to annular flow in subchannels of a BWR fuel element

    International Nuclear Information System (INIS)

    Damsohn, M.; Prasser, H.-M.

    2010-01-01

    For the prediction of dryout in fuel elements of boiling water reactors, the dynamic behavior of the water film covering the fuel rod has to be understood. This paper provides high resolved experimental data of the liquid film and gives insight into the dynamic film behavior. The experiments of this work were conducted in a vertical channel representing a pair of neighboring subchannels of a BWR fuel rod bundle. Air and water at ambient pressure and temperature are used as model fluids, creating an annular flow in the test section. The influence of different functional spacer shapes on the liquid film has been studied. The heart of the instrumentation is a liquid film sensor (LFS), which measures the film thickness distribution around a half cylinder with a matrix of 64 x 16 measuring points with a time resolution of 10,000 frames per second and a spatial resolution of 2 mm x 2 mm. The high resolution allows for a visualization of the dynamic liquid film as a movie animation. Principals of the dynamic behavior of the liquid film are observed. The time-averaged film thickness distributions show that the spacers structure the liquid film significantly. The gaseous phase is accelerated due to the cross-section blockage caused by the spacer. This leads to a local thinning of the liquid film downstream of the spacer. Two statistical evaluation methods are presented to determine different dynamic wave properties: The wave velocity as function of the wave height, the traveling path of the waves and the location of wave separation and merge events. The first evaluation method shows that big waves move generally faster than small waves. The analysis further shows wave acceleration in close proximity of the spacer with subsequent deceleration further downstream. Analyzing the wave as a two-dimensional entity it can be seen that the wave paths are clearly structured by the spacer and hence do not travel circumferentially around the fuel rod. Wave separation and merge has a

  5. Effects of fuel relocation on reflood in a partially-blocked rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Jae [School of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Kim, Jongrok; Kim, Kihwan; Bae, Sung Won [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Moon, Sang-Ki, E-mail: skmoon@kaeri.re.kr [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-02-15

    Ballooning of the fuel rods has been an important issue, since it can influence the coolability of the rod bundle in a large-break loss-of-coolant accident (LBLOCA). Numerous past studies have investigated the effect of blockage geometry on the heat transfer in a partially blocked rod bundle. However, they did not consider the occurrence of fuel relocation and the corresponding effect on two-phase heat transfer. Some fragmented fuel particles located above the ballooned region may drop into the enlarged volume of the balloon. Accordingly, the fuel relocation brings in a local power increase in the ballooned region. The present study’s objective is to investigate the effect of the fuel relocation on the reflood under a LBLOCA condition. Toward this end, experiments were performed in a 5 × 5 partially-blocked rod bundle. Two power profiles were tested: one is a typical cosine shape and the other is the modified shape considering the effect of the fuel relocation. For a typical power shape, the peak temperature in the ballooned rods was lower than that in the intact rods. On the other hand, for the modified power shape, the peak temperature in the ballooned rods was higher than that in the intact rods. Numerical simulations were also performed using the MARS code. The tendencies of the peak clad temperatures were well predicted.

  6. The Defect Inspection on the Irradiated Fuel Rod by Eddy Current Test

    International Nuclear Information System (INIS)

    Koo, D. S.; Park, Y. K.; Kim, E. K.

    1996-01-01

    The eddy current test(ECT) probe of differential encircling coil type was designed and fabricated, and the optimum condition of ECT was derived for the examination of the irradiated fuel rod. The correlation between ECT test frequency and phase and amplitude was derived by performing the test of the standard rig that includes inner notches, outer notches and through-holes. The defect of through-hole was predicted by ECT at the G33-N2 fuel rod irradiated in the Kori-1 nuclear power reactor. The metallographic examination on the G33-N2 fuel rod was Performed at the defect location predicted by ECT. The result of metallographic examination for the G33-N2 fuel rod was in good agreement with that of ECT. This proves that the evaluation for integrity of irradiated fuel rod by ECT is reliable

  7. Fuel Rod Consolidation Project: Phase 2, Final report: Volume 1

    International Nuclear Information System (INIS)

    1987-01-01

    This design report describes the NUS final design of the Prototype Spent Nuclear Fuel Rod Consolidation System. This summary presents the approach and the subsequent sections describe, in detail, the final design. Detailed data, drawings, and the design Basis Accident Report are provided in Volumes II thru V. The design as presented, represents one cell of a multicell facility for the dry consolidation of any type of PWR and BWR fuel used in the United States LWR industry that will exceed 1% of the fuel inventory at the year 2000. The system contains the automatically-controlled equipment required to consolidate 750MT (heavy metal)/year, at 75% availability. The equipment is designed as replaceable components using state-of-the-art tchnology. The control system utilizes the most advanced commercially available equipment on the market today. Two state-of-the-art advanced servo manipulators are provided for system maintenance. In general the equipment is designed utilizing fabricated and commercial components. For example, the main drive systems use commercially available roller screws. These rollers screws have 60,000 hours of operation in nuclear power plants and have been used extensively in other applications. The motors selected represent the most advanced designed servo motors on the market today for the precision control of machinery. In areas where precise positioning was not required, less expensive TRW Globe motors were selected. These are small compact motors with a long history of operations in radiation environments. The Robotic Bridge Transporters are modified versions of existing bridge cranes for remote automatic operations. Other equipment such as the welder for fuel canister closure operations is a commercially available product with an operating history applicable to this process. In general, this approach was followed throughout the design of all the equipment and will enable the system to be developed without costly development programs

  8. Parametric Evaluation of SiC/SiC Composite Cladding with UO2 Fuel for LWR Applications: Fuel Rod Interactions and Impact of Nonuniform Power Profile in Fuel Rod

    Science.gov (United States)

    Singh, G.; Sweet, R.; Brown, N. R.; Wirth, B. D.; Katoh, Y.; Terrani, K.

    2018-02-01

    SiC/SiC composites are candidates for accident tolerant fuel cladding in light water reactors. In the extreme nuclear reactor environment, SiC-based fuel cladding will be exposed to neutron damage, significant heat flux, and a corrosive environment. To ensure reliable and safe operation of accident tolerant fuel cladding concepts such as SiC-based materials, it is important to assess thermo-mechanical performance under in-reactor conditions including irradiation and realistic temperature distributions. The effect of non-uniform dimensional changes caused by neutron irradiation with spatially varying temperatures, along with the closing of the fuel-cladding gap, on the stress development in the cladding over the course of irradiation were evaluated. The effect of non-uniform circumferential power profile in the fuel rod on the mechanical performance of the cladding is also evaluated. These analyses have been performed using the BISON fuel performance modeling code and the commercial finite element analysis code Abaqus. A constitutive model is constructed and solved numerically to predict the stress distribution in the cladding under normal operating conditions. The dependence of dimensions and thermophysical properties on irradiation dose and temperature has been incorporated into the models. Initial scoping results from parametric analyses provide time varying stress distributions in the cladding as well as the interaction of fuel rod with the cladding under different conditions of initial fuel rod-cladding gap and linear heat rate. It is found that a non-uniform circumferential power profile in the fuel rod may cause significant lateral bowing in the cladding, and motivates further analysis and evaluation.

  9. SEFLEX - fuel rod simulator effects in flooding experiments. Pt. 2

    International Nuclear Information System (INIS)

    Ihle, P.; Rust, K.

    1986-03-01

    This report presents typical data and a limited heat transfer analysis from unblocked bundle reflood tests of an experimental thermal-hydraulic program. Full-length bundles of 5 x 5 fuel rod simulators having a gas-filled gap between the Zy cladding and the alumina pellets were tested in the test rig designed for the earlier Flooding Experiments with Blocked Arrays (FEBA-program). The 5 x 5 FEBA rod bundle tests were performed with gapless heater rods. These rods have a close thermal contact between the stainless steel cladding and the electric insulation material. A comparison of the SEFLEX data with the reference data of FEBA obtained under identical initial and reflood conditions shows the influence of different fuel rod simulators on the thermal-hydraulic behavior during forced feed bottom reflooding of unblocked and blocked arrays. Compared to bundles of gapless rods, bundles of rods with Zy claddings and a gas filled gap between claddings and pellets, which more closely represent the features that exist in an actual fuel rod geometry, produced higher quench front velocities, enhanced removal of stored heat in the rods, reduced peak cladding temperatures, increased grid spacer effects and absolutely unproblematic coolability of 90 percent blockages with bypass. The data offer the opportunity for further validation of computer codes to make realistic predictions of safety margins during a LOCA in a PWR. (orig./HP) [de

  10. SEFLEX fuel rod simulator effects in flooding experiments. Pt. 3

    International Nuclear Information System (INIS)

    Ihle, P.; Rust, K.

    1986-03-01

    This report presents typical data and a limited heat transfer analysis from blocked bundle reflood tests of an experimental thermal-hydraulic program. Full-length bundles of 5x5 fuel rod simulators having a gas-filled gap between the Zy cladding and the alumina pellets were tested in the test rig designed for the earlier Flooding Experiments with Blocked Arrays (FEBA-program). The 5x5 FEBA rod bundle tests were performed with gapless heater rods. These rods have a close thermal contact between the stainless steel cladding and the electric insulation material. A comparison of the SEFLEX data with the reference data of FEBA obtained under identical initial and reflood conditions shows the influence of different fuel rod simulators on the thermal-hydraulic behavior during forced feed bottom reflooding of unblocked and blocked arrays. Compared to bundles of gapless rods, bundles of rods with Zy claddings and a gas filled gap between claddings and pellets, which more closely represent the features that exist in an actual fuel rod geometry, produced higher quench front velocities, enhanced removal of stored heat in the rods, reduced peak cladding temperatures, increased grid spacer effects and absolutely unproblematic coolability of 90 percent blockages with bypass. The data offer the opportunity for further validation of computer codes to make realistic predictions of safety margins during a LOCA in a PWR. (orig./HP) [de

  11. Neural signal processing for identifying failed fuel rods in nuclear reactors

    International Nuclear Information System (INIS)

    Seixas, Jose M. de; Soares Filho, William; Pereira, Wagner C.A.; Teles, Claudio C.B.

    2002-01-01

    Ultrasonic pulses were used for automatic detection of failed nuclear fuel rods. For experimental tests of the proposed method, an assembly prototype of 16 x 16 rods was built by using genuine rods but without fuel inside (just air). Some rods were partially filled with water to simulate cracked rods. Using neural signal processing on the received echoes of the emitted ultrasonic pulses, a detection efficiency of 97% was obtained. Neural detection is shown to outperform other classical discriminating methods and can also reveal important features of the signal structure of the received echoes. (author)

  12. Analysis of the Behavior of CAREM-25 Fuel Rods Using Computer Code BACO

    International Nuclear Information System (INIS)

    Estevez, Esteban; Markiewicz, Mario; Marino, Armando

    2000-01-01

    The thermo-mechanical behavior of a fuel rod subjected to irradiation is a complex process, on which a great quantity of interrelated physical-chemical phenomena are coupled.The code BACO simulates the thermo-mechanical behavior and the evolution of fission gases of a cylindrical rod in operation.The power history of fuel rods, arising from neutronic calculations, is the program input.The code calculates, among others, the temperature distribution and the principal stresses in the pellet and cladding, changes in the porosity and restructuring of pellet, the fission gases release, evolution of the internal gas pressure.In this work some of design limits of CAREM-25's fuel rods are analyzed by means of the computer code BACO.The main variables directly related with the integrity of the fuel rod are: Maximum temperature of pellet; Cladding hoop stresses; Gases pressure in the fuel rod; Cladding axial and radial strains, etc.The analysis of results indicates that, under normal operation conditions, the maximum fuel pellet temperature, cladding stresses, pressure of gases at end of life, etc, are below the design limits considered for the fuel rod of CAREM-25 reactor

  13. A statistical analysis of pellet-clad interaction failures in water reactor fuel

    International Nuclear Information System (INIS)

    McDonald, S.G.; Fardo, R.D.; Sipush, P.J.; Kaiser, R.S.

    1981-01-01

    The primary objective of the statistical analysis was to develop a mathematical function that would predict PCI fuel rod failures as a function of the imposed operating conditions. Linear discriminant analysis of data from both test and commercial reactors was performed. The initial data base used encompassed 713 data points (117 failures and 596 non-failures) representing a wide variety of water cooled reactor fuel (PWR, BWR, CANDU, and SGHWR). When applied on a best-estimate basis, the resulting function simultaneously predicts approximately 80 percent of both the failure and non-failure data correctly. One of the most significant predictions of the analysis is that relatively large changes in power can be tolerated when the pre-ramp irradiation power is low, but that only small changes in power can be tolerated when the pre-ramp irradiation power is high. However, it is also predicted that fuel rods irradiated at low power will fail at lower final powers than those irradiated at high powers. Other results of the analysis are that fuel rods with high clad operating temperatures can withstand larger power increases that fuel rods with low clad operating temperatures, and that burnup has only a minimal effect on PCI performance after levels of approximately 10000 MWD/MTU have been exceeded. These trends in PCI performance and the operating parameters selected are believed to be consistent with mechanistic considerations. Published PCI data indicate that BWR fuel usually operates at higher local powers and changes in power, lower clad temperatures, and higher local ramp rates than PWR fuel

  14. Process and equipment for pressure build-up in nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Heer, W.F.; Carli, E.V. de.

    1976-01-01

    The equipment makes possible the build-up of inert gas pressure in a filled and closed fuel can, i.e. in a complete fuel rod. Handling is simple, it is suitable for mass production and only causes low processing costs. The quality, e.g. the degree of purity of the contents of the rod, remains unchangedin processing. The equipment consists of a vacuum-tight space, into which the equally vacuum tight fuel rod is introduced, and can be fixed so that its position can be reproduced unmistakeably. The vacuum space contains a connection for the inert gases and a laser arrangement. After inserting a fuel rod into the facility, this is evacuated and the fuel can has a hole bored in it by a laser beam. After fast equalisation of pressure, an inert gas at the required pressure is introduced into the chamber and the fuel rod. After the filling process is completed, the fuel can is closed again with the same laser beam. The quality of the seal obtained, i.e the leak-tightness of the fuel can, can be checked after reduction of the inert gas pressure and before taking out the fuel rod, by repeated evacuation of the chamber. Laser light energies between 13,000 and 110,000 Joule/sq cm are sufficient. Optimum results were obtained for a Zircaloy fuel can with about 52,000 Joule/sq cm. (TK) [de

  15. Integration of post-irradiation examination results of failed WWER fuel rods

    International Nuclear Information System (INIS)

    Smirnov, A.; Markov, D.; Smirnov, V.; Polenok, V.; Perepelkin, S.

    2003-01-01

    The aim of the work is to investigate the causes of WWER fuel rod failures and to reveal the dependence of the failed fuel rod behaviour and state on the damage characteristics and duration of their operation in the core. The post-irradiation examination of 12 leaky fuel assemblies (5 for WWER-440 and 7 for WWER-1000) has been done at SSC RF RIAR. The results show that the main mechanism responsible for the majority of cases of the WWER fuel rod perforation is debris-damage of the claddings. Debris fretting of the claddings spread randomly over the fuel assembly cross-section and they are registered in the area of the bundle supporting grid or under the lower spacer grids along the fuel assembly height. In the WWER fuel rods, the areas of secondary hydrogenating of cladding are spaced from the primary defects by ∼2500-3000 mm, as a rule, and are often adjacent closely to the upper welded joints. There is no pronounced dependence of the distance between the primary and secondary cladding defects neither on the linear power, at which the fuel rods were operated, nor on the period of their operation in the leaky state. The time period of the significant secondary damage formation is about 250 ± 50 calendar days for the WWER fuel rods with slight through primary defects (∼0.1 - 0.5 mm 2 ) operated in the linear power range 170-215 W/cm. Cladding degradation, taking place due to the secondary hydrogenating, does not occur in case of large through debris-defects during operation up to 600 calendar days

  16. Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods

    International Nuclear Information System (INIS)

    Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.

    1979-01-01

    Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)

  17. Strategy for Fuel Rod Receipt, Characterization, Sample Allocation for the Demonstration Sister Rods

    Energy Technology Data Exchange (ETDEWEB)

    Marschman, Steven C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Warmann, Stephan A. [Portage, Inc., Idaho Falls, ID (United States); Rusch, Chris [NAC International, Inc., Norcross, GA (United States)

    2014-03-01

    , inert gas backfilling, and transfer to an Independent Spent Fuel Storage Installation (ISFSI) for multi-year storage. To document the initial condition of the used fuel prior to emplacement in a storage system, “sister ” fuel rods will be harvested and sent to a national laboratory for characterization and archival purposes. This report supports the demonstration by describing how sister rods will be shipped and received at a national laboratory, and recommending basic nondestructive and destructive analyses to assure the fuel rods are adequately characterized for UFDC work. For this report, a hub-and-spoke model is proposed, with one location serving as the hub for fuel rod receipt and characterization. In this model, fuel and/or clad would be sent to other locations when capabilities at the hub were inadequate or nonexistent. This model has been proposed to reduce DOE-NE’s obligation for waste cleanup and decontamination of equipment.

  18. Influence of pellet-clad-gap-size on LWR fuel rod performance

    International Nuclear Information System (INIS)

    Brzoska, B.; Fuchs, H.P.; Garzarolli, F.; Manzel, R.

    1979-01-01

    The as-fabricated pellet-clad-gap size varies due to fabricational tolerances of the cladding inner diameter and the pellet outer diameter. The consequences of these variations on the fuel rod behaviour are analyzed using the KWU fuel rod code CARO. The code predictions are compared with experimental results of special pathfinder test fuel rods irradiated in the OBRIGHEIM nuclear power plant. These test fuel rods include gap sizer in the range of 140 μm to 270 μm, prepressurization between 13 bar to 36 bar and Helium and Argon fill gases irradiated up to a local burnup of 35 MWd/kg(U). Post irradiation examination were performed at different burnups. CARC calculations have been performed with special emphasis in cladding creep down, fission gas release and pellet clad gap closure. (orig.)

  19. Fuel rod-grid interaction wear: in-reactor tests (LWBR development program)

    International Nuclear Information System (INIS)

    Stackhouse, R.M.

    1979-11-01

    Wear of the Zircaloy cladding of LWBR irradiation test fuel rods, resulting from relative motion between rod and rod support contacts, is reported. Measured wear depths were small, 0.0 to 2.7 mils, but are important in fuel element behavior assessment because of the local loss of cladding thickness, as well as the effect on grid spring forces that laterally restrain the rods. An empirical wear analysis model, based on out-of-pile tests, is presented. The model was used to calculate the wear on the irradiation test fuel rods attributed to a combination of up-and-down motions resulting from power and pressure/temperature cycling of the test reactor, flow-induced vibrations, and assembly handling scratches. The calculated depths are generally deeper than the measured depths

  20. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  1. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    International Nuclear Information System (INIS)

    Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.; Gauld, Ian C.; Ilas, Germina; Marshall, William BJ J.

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10x10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  2. Spring retainer apparatus and method for facilitating loading of fuel rods into a fuel assembly grid

    International Nuclear Information System (INIS)

    De Mario, E.E.

    1988-01-01

    For use with a fuel assembly having at least one grid formed of interleaved straps defining hollow cells for respectively receiving fuel rods, at least some of the straps being disposed in pairs thereof so as to form springs in pairs therof being positioned in back-to-back relationships between adjacent ones of the cells, the springs in each pair thereof being configured to normally assume expanded positions in which they are displaced away from one another to engage fuel rods received in the respective cells and being deflectible to retracted positions in which they are displaced toward one another to allow loading of the fuel rods in the respective cells without engaging the springs, a spring retainer apparatus for facilitating the loading of the fuel rods into the cells of the fuel assembly grid is described comprising: (a) elongated holder bars, each holder bar being alignable with one of the pairs of the straps of the grid which defines the pairs of springs and extendible along, and in spaced relation from, the one strap pair and between and spaced from positions occupied by fuel rods when received in the cells of the grid; and (b) supported by each of the holder bars corresponding to the pairs of springs defined by the pair of straps aligned with the holder bar

  3. An Evaluation on the Fluid Elastic Instability of the Fuel Rod for OPR1000 Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Koo; Jeon, Sang Yoon; Lee, Kyu Seok; Kim, Jeong Ha; Lee, Sang Jong [Reactor Core Technology Department, Korea Nuclear Fuel, 493, Deogjin, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2009-06-15

    The fuel assembly for a typical PWR (Pressurized Water Reactor) plant suffers severe operating conditions during its lifetime such as high temperature, high pressure and massive coolant passing through the fuel assembly with high speed. Moreover, recently nuclear fuel is requested not only to operate under more severe operation conditions for example high burnup, longer cycle and power up-rate, but also to maintain its integrity in spite of the operation severity. Lots of vendors, therefore, have poured their endeavor to develop an advanced fuel in order to meet these requirements. However, the fuel failures are still reported from time to time. In general, fuel failure mechanisms known as significant causes of PWR fuel failure are grid to rod fretting, corrosion of the cladding, pellet cladding interaction and debris induced fretting. Especially, since the fuel assembly is very tall and flexible structure and the flow velocity of reactor coolant is pretty high, flow induced vibration (FIV) of fuel rod is an inevitable phenomenon in PWR fuel and the energy vibrating fuel rod continually provided by coolant flow can become a root cause of the fuel failure like grid to rod fretting. Moreover, the cross flow of the coolant is highly susceptible to cause the fluid elastic instability (FEI) which produces extraordinarily big amplitudes of the fuel rod suddenly and is eventually ended up fuel failure within very short-term. The FIV problem, therefore, has to be evaluated carefully to avoid unexpected fuel failure. At present, the susceptibility to vibration damage of the fuel rod for OPR1000 plants has been estimated by the comparison of natural frequencies of every fuel rod span with recognized external excitation frequencies like coolant pump blade passing frequencies, vortex shedding frequencies and lower support structure vibration frequencies. That is, in order to prevent fuel failure due to the external excitation, the natural frequencies of unsupported lengths of

  4. Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)

    International Nuclear Information System (INIS)

    Clayton, J.C.

    1987-10-01

    Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated

  5. Methods for acquiring data in power ramping experiments with WWER fuel rods at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, S N; Grachev, A F; Ovchinnikov, V A; Poliakov, I S; Matveev, N P [Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Novikov, V V [Institute of Inorganic Materials, Moscow (Russian Federation)

    1997-08-01

    A programme on in-pile test which involve fuel burnup up to 60 MWd/kg and up to 12 fuel rods in the experimental rig is considered. Testing methods with reference to the MIR-M1 reactor are reported. Power ramping regime can be realized either by an increase of the total reactor capacity or by displacement of the nearest to the experimental cell control rods or by combination of these two ways. A total thermal capacity of the fuel rod cluster is determined by means of the thermal balance technique. The thermal capacity of each separate fuel rod can be estimated from the distribution of their relative activity within the accuracy range 5-10%. The important condition for this procedure is to keep the initial distribution of the fuel rod heating during power ramping. Means of instrumentation are described. They are standard detectors of loop facilities and transducers installed both in the irradiation rigs and fuel rods. Different ways of processing data on the fuel rod loss of integrity are reported. When the time of fuel rod loss of tightness is placed in correspondence with its capacity, processing can be made either on the maximum fuel rod heat load or on that at crack location. The information acquired in the experiments on the burnup values, heat rating distribution, kinetics of fission product gas emission, fuel rod elongation, fuel rod diameter changes, crack availability and fission products migration is used for the development and verification of calculation codes. (author). 1 ref., 4 figs, 1 tab.

  6. Comparison of thorium-based fuels with different fissile components in existing BWRs

    International Nuclear Information System (INIS)

    Bjoerk, Klara Insulander; Fhager, Valentin; Demaziere, Christophe

    2009-01-01

    Three different types of thorium based BWR fuel have been developed, in each of which thorium was combined with a different fissile component, the three components being reactor grade plutonium, uranium enriched to 20% in uranium 235 and pure uranium 233. A BWR nuclear bundle design, based on the geometrical fuel assembly design GE14, was developed for each of these fissile components. The properties and performance of the corresponding fuel assemblies were investigated via full core calculations carried out for an existing BWR and compared with the ones of an ordinary Low Enriched Uranium (LEU) fuel, which was developed for reference. The fuel assemblies and cores were designed to meet existing fuel design criteria, and were then analyzed with regards to reactivity coefficients, delayed neutron fractions, control rod worths and shutdown margins. The results show that all three alternatives seem to be feasible, although some difficulties remain with complying with the thermal limits, and with the moderator temperature and coolant void coefficients of the U-233 containing fuel being positive under some circumstances. (author)

  7. Preliminary design report: Prototypical Spent Fuel Consolidation Equipment Demonstration Project: Phase 1

    International Nuclear Information System (INIS)

    Blissell, W.H.; Ciez, A.P.; Mitchell, J.L.; Winkler, C.J.

    1986-12-01

    This document describes the Westinghouse Preliminary Design for the Prototypical Consolidation Demonstration Project per Department of Energy (DOE) Contract No. DE-AC07-86ID12649 and under direction of the DOE Idaho Operations Office. The preliminary design is the first step to providing the Department of Energy with a fully qualified, licensable, cost-effective spent fuel rod consolidation system. The design was developed using proven technologies and equipment to create an innovative approach to previous rod consolidation concepts. These innovations will better enable the Westinghouse system to: consolidate fuel rods in a precise, fully-controlled, accountable manner; package all rods from two PWR fuel assemblies or from four BWR fuel assemblies in one 8.5 inch square consolidated rods canister; meet all functional requirements; operate with all fuel types common to the US commercial nuclear industry with minimal tooling changeouts; and meet consolidation production process rates, while maintaining operator and public health and safety. This Preliminary Design Report provides both detailed descriptions of the equipment required to perform the rod consolidation process and the supporting analyses to validate the design

  8. Air-water two-phase flow in a four by four rod bundle with partial length rods

    International Nuclear Information System (INIS)

    Ohta, Motoki; Kamei, Akihiro; Mizutani, Yoshitaka; Hosokawa, Shigeo; Tomiyama, Akio

    2009-01-01

    Partial length rods (PLR) are used in fuel bundles of BWR to reduce pressure drops in two-phase regions and to optimize the power distribution. Since little is known about effects of PLR on two-phase flows, air-water two-phase flow around PLRs in a four by four rod bundle is visualized by using a high-speed video camera. The experimental apparatus consists of acrylic channel box and transparent rods. Air and water at atmospheric pressure and room temperature are used for the gas and liquid phases, respectively. The ranges of the gas and liquid volume fluxes, J G and J L , are 0.4 L G L , the flow pattern in the downstream of PLR transits to slug flow, and the flow patterns in the surrounding subchannels transit to bubbly flow due to the redistribution of gas flow. (2) In annular flow, the liquid film on the PLR forms a liquid column above the end cap of PLR. Droplets are generated by column breakup and deposit on liquid films on the neighboring rods. (3) The liquid film thickness on the surface of neighbor rods facing the PLR increases and it reduces that on their opposite surface in the downstream of PLR. (author)

  9. Study of transient rod extraction failure without RBM in a BWR; Estudio del transitorio error de extraccion de barra sin RBM en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L., E-mail: amhed_jvq@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-09-15

    The study and analysis of the operational transients are important for predicting the behavior of a system to short-term events and the impact that would cause this transient. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could cause an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis results of the transient rod extraction failure in which not taken into operation the RBM is presented. The study was conducted for a BWR of 2027 MWt, in an intermediate cycle of its useful life and using the computer code Simulate-3K a scenario of anomalies was created in the core reactivity which gave a coherent prediction to the type of presented event. (Author)

  10. Leaking Fuel Impacts and Practices

    International Nuclear Information System (INIS)

    Hozer, Zoltan; Szabo, Peter; Somfai, Barbara; Cherubini, Marco; Aldworth, Robin; Waeckel, Nicolas; Delorme, Tim; Dickson, Raymond; Fujii, Hajime; Rey Gayo, Jose Maria; Grant, Wade; Gorzel, Andreas; Hellwig, Christian; Kamimura, Katsuichiro; Sugiyama, Tomoyuki; Klouzal, Jan; Miklos, Marek; Nagase, Fumihisa; Nilsson, Marcus; Petit, Marc; Richards, Stuart; Lundqvist Saleh, Tobias; Stepniewski, Marek; Sim, Ki Seob; ); Rehacek, Radomir; Kissane, Martin; )

    2014-01-01

    The impact of leaking fuel rods on the operation of nuclear power plants and the practices of handling leaking fuel has been reviewed by the CSNI Working Group on Fuel Safety in order to promote a better understanding on the handling of leaking fuel in power reactors, as well as to discuss and review the current practices in member countries to help in decisions on the specification of reactor operation conditions with leaking fuel rods and on the handling of leaking fuel after removal from reactor. Experts from 15 countries provided data on the handling of leaking fuel in PWR, BWR, VVER and PHWR reactor types. The review covered the operation of NPP reactors with leaking fuel, wet and dry storage and transport of leaking assemblies. The methods and applied instruments to identify leaking fuel assemblies and the repair of them were addressed in the review. Special attention was paid to the activity release from leaking rods in the reactor and under storage conditions. The consideration of leaking fuel in safety analyses on core behaviour during postulated accidents was also discussed in the review. The main conclusions of the review pointed out that the activity release from leaking fuel rods in the reactor can be handled by technological systems, or in case of failure of too many rods the reactor can be shutdown to minimize activity release. Under accident conditions and operational transients the leaking rods may produce coolant activity concentration peaks. The storage of spent leaking fuel is normally characterised by moderate release of radionuclides from the fuel. The power plants apply limits for activity concentration to limit the amount of leaking rods in the core. In different countries, the accident analyses take into consideration the potential release from leaking fuel rods in design basis accidents in different ways. Some power plants apply special tools for handling and repair of leaking assemblies and rods. The leaking rods are stored together with

  11. Fuel-rod response during the large-break LOCA Test LOC-6

    International Nuclear Information System (INIS)

    Vinjamuri, K.; Cook, B.A.; Hobbins, R.R.

    1981-01-01

    The large break Loss of Coolant Accident (LOCA) Test LOC-6 was conducted in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory by EG and G Idaho, Inc. The objectives of the PBF LOCA tests are to obtain in-pile cladding ballooning data under blowdown and reflood conditions and assess how well out-of-pile ballooning data represent in-pile fuel rod behavior. The primary objective of the LOC-6 test was to determine the effects of internal rod pressures and prior irradiation on the deformation behavior of fuel rods that reached cladding temperatures high in the alpha phase of zircaloy. Test LOC-6 was conducted with four rods of PWR 15 x 15 design with the exception of fuel stack length (89 cm) and enrichment (12.5 W% 235 U). Each rod was surrounded by an individual flow shroud

  12. Containment venting as a mitigation technique for BWR MARK I plant ATWS

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1987-01-01

    Containment venting is studied as a mitigation strategy for preventing or delaying severe fuel damage following hypothetical BWR Anticipated Transient Without Scram (ATWS) accidents initiated by MSIV-closure, and compounded by failure of the Standby Liquid Control (SLC) system injection of sodium pentaborate solution and by the failure of manually initiated control rod insertion. The venting of primary containment after reaching 75 psia (0.52 MPa) is found to result in the release of the vented steam inside the reactor building, and to result in inadequate Net Positive Suction Head (NPSH) for any system pumping from the pressure suppression pool. CONTAIN code calculations show that personnel access to large portions of the reactor building would be lost soon after the initiation of venting and that the temperatures reached would be likely to result in independent equipment failures. It is concluded that containment venting would be more likely to cause or to hasten the onset of severe fuel damage than to prevent or to delay it. Two alternative strategies that do not require containment venting, but that could delay or prevent severe fuel damage, are analyzed. BWR-LTAS code results are presented for a successful mitigation strategy in which the reactor vessel is depressurized, and for one in which the reactor vessel remains at pressure

  13. Characterisation of high-burnup LWR fuel rods through gamma tomography

    International Nuclear Information System (INIS)

    Caruso, S.

    2007-01-01

    Current fuel management strategies for light water reactors (LWRs), in countries with high back-end costs, progressively extend the discharge burnup at the expense of increasing the 235 U enrichment of the fresh UO 2 fuel loaded. In this perspective, standard non-destructive assay techniques, which are very attractive because they are fast, cheap, and preserve the fuel integrity, in contrast to destructive approaches, require further validation when burnup values become higher than 50 GWd/t. This doctoral work has been devoted to the development and optimisation of non-destructive assay techniques based on gamma-ray emissions from irradiated fuel. It represents an important extension of the unique, high-burnup related database, generated in the framework of the LWR PROTEUS Phase II experiments. A novel tomographic measurement station has been designed and developed for the investigation of irradiated fuel rod segments. A unique feature of the station is that it allows both gamma-ray transmission and emission computerised tomography to be performed on single fuel rods. Four burnt UO 2 fuel rod segments of 400 mm length have been investigated, two with very high (52 GWd/t and 71 GWd/t) and two with ultra-high (91 GWd/t and 126 GWd/t) burnup. Several research areas have been addressed, as described below. The application of transmission tomography to spent fuel rods has been a major task, because of difficulties of implementation and the uniqueness of the experiments. The main achievements, in this context, have been the determination of fuel rod average material density (a linear relationship between density and burnup was established), fuel rod linear attenuation coefficient distribution (for use in emission tomography), and fuel rod material density distribution. The non-destructive technique of emission computerised tomography (CT) has been applied to the very high and ultra-high burnup fuel rod samples for determining their within-rod distributions of caesium and

  14. Apparatus for injection casting metallic nuclear energy fuel rods

    Science.gov (United States)

    Seidel, Bobby R.; Tracy, Donald B.; Griffiths, Vernon

    1991-01-01

    Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.

  15. Characterization of spent fuel disassembly hardware and nonfuel bearing components and their relationship to 10 CFR 61

    International Nuclear Information System (INIS)

    Luksic, A.T.

    1987-02-01

    There are a variety of wastes that will be disposed of by the federal waste management system under the Nuclear Waste Policy Act of 1982. The primary waste form is spent nuclear fuel. Currently, this is in the form of fuel assemblies. If the fuel pins are removed from the fuel assembly, as in consolidation, then the fuel pins and the structural portion of the fuel assembly must be considered as separate waste streams. The structural hardware consists of end fittings, grid spacers, water rods (BWR 8 x 8 only), control rod guide tubes (PWR only) and various nuts, washers, springs, etc. These are referred to as spent fuel disassembly (SFD) hardware. There will also be a number of other components which are defined in Appendix E of 10 CFR 961, the standard utility contract. These are referred to as nonfuel-bearing (NFB) components, and include fuel channels (BWR), control rods, fission chambers, neutron sources, thimble plugs, and other components. This paper characterizes spent fuel disassembly (SFD) hardware, and nonfuel-bearing (NFB) components for the most abundant fuel types. The descriptions and figures given are representative for the items described. Many subvariants exist due to design evaluation, which are not covered. This paper also discusses the relationship of these wastes to 10 CFR 61 waste classification

  16. Fuel rod-to-support contact pressure and stress measurement for CHASNUPP-1(PWR) fuel

    International Nuclear Information System (INIS)

    Waseem; Elahi, N.; Siddiqui, A.; Murtaza, G.

    2011-01-01

    Research highlights: → A detailed finite element model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. → The spring hold-down force is calculated using the contact pressure obtained from the FE model. → Experiment has also been conducted in the same environment for the measurement of this force. → The spring hold-down force values obtained from both studies confirm the validation of this analysis. → The stress obtained through this analysis is less than the yield strength of spacer grid material, thus fulfils the structural integrity criteria of grid. - Abstract: This analysis has been made in an attempt to measure the contact pressure of the PWR fuel assembly spacer grid spring and to verify its structural integrity at room temperature in air. A detailed finite element (FE) model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The FE model of a fuel rod-to-support system is produced with shell and contact elements. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies are compared, which show good agreement, and in turn confirm the validation of this analysis. The Stress obtained through this analysis is less than the yield strength of spacer grid material (Inconel-718), thus fulfils the structural integrity criteria of grid.

  17. Fuel rod-to-support contact pressure and stress measurement for CHASNUPP-1(PWR) fuel

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, E-mail: wazim_me@hotmail.co [Directorate General Nuclear Power Fuel, Pakistan Atomic Energy Commission, P.O. Box No. 1847, Islamabad 44000 (Pakistan); Elahi, N.; Siddiqui, A.; Murtaza, G. [Directorate General Nuclear Power Fuel, Pakistan Atomic Energy Commission, P.O. Box No. 1847, Islamabad 44000 (Pakistan)

    2011-01-15

    Research highlights: A detailed finite element model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies confirm the validation of this analysis. The stress obtained through this analysis is less than the yield strength of spacer grid material, thus fulfils the structural integrity criteria of grid. - Abstract: This analysis has been made in an attempt to measure the contact pressure of the PWR fuel assembly spacer grid spring and to verify its structural integrity at room temperature in air. A detailed finite element (FE) model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The FE model of a fuel rod-to-support system is produced with shell and contact elements. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies are compared, which show good agreement, and in turn confirm the validation of this analysis. The Stress obtained through this analysis is less than the yield strength of spacer grid material (Inconel-718), thus fulfils the structural integrity criteria of grid.

  18. Out-pile Test of Double Cladding Fuel Rod Mockups for a Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jaemin; Park, Sungjae; Kang, Younghwan; Kim, Harkrho; Kim, Bonggoo; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    An instrumented capsule for a nuclear fuel irradiation test has been developed to measure fuel characteristics, such as a fuel temperature, internal pressure of a fuel rod, a fuel pellet elongation and a neutron flux during an irradiation test at HANARO. In the future, nuclear fuel irradiation tests under a high temperature condition are expected from users. To prepare for this request, we have continued developing the technology for a high temperature nuclear fuel irradiation test at HANARO. The purpose of this paper is to verify the possibility that the temperature of a nuclear fuel can be controlled at a high temperature during an irradiation test. Therefore we designed and fabricated double cladding fuel rod mockups. And we performed out-pile tests using these mockups. The purposes of a out-pile test is to analyze an effect of a gap size, which is between an outer cladding and an inner cladding, on the temperature and the effect of a mixture ratio of helium gas and neon gas on the temperature. This paper presents the design and fabrication of double cladding fuel rod mockups and the results of the out-pile test.

  19. Power ramp tests of high burnup BWR segment rods

    International Nuclear Information System (INIS)

    Hayashi, H.; Etoh, Y.; Tsukuda, Y.; Shimada, S.; Sakurai, H.

    2002-01-01

    Lead use assemblies (LUAs) of high burnup 8x8 fuel design for Japanese BWRs were irradiated up to 5 cycles in Fukushima Daini Nuclear Power Station No. 2 Unit. Segment rods were installed in LUAs and used for power ramp tests in Japanese Material Test Reactor (JMTR). Post irradiation examinations (PIEs) of segment rods were carried out at Nippon Nuclear Fuel Development Co., Ltd. before and after ramp tests. Maximum linear heat rates of LUAs were kept above 300 W/cm in the first cycle, above 250 W/cm in the second and third cycles and decreased to 200 W/cm in the fourth cycle and 80 W/cm in the fifth cycle. The integrity of high burnup 8x8 fuel was confirmed up to the bundle burnup of 48 GWd/t after 5 cycles of irradiation. Systematic and high quality data were collected through detailed PIEs. The main results are as follows. The oxide on the outer surface of cladding tubes was uniform and its thickness was less than 20 micro-meter after 5 cycles of irradiation and was almost independent of burnup. Hydrogen contents in cladding tubes were less than 150 ppm after 5 cycles of irradiation, although hydrogen contents increased during the fourth and fifth irradiation cycles. Mechanical properties of cladding tubes were on the extrapolated line of previous data up to 5 cycles of irradiation. Fission gas release rates were in the low level (mainly less than 6%) up to 5 cycles of irradiation due to the design to decrease pellet temperature. Pellet-cladding bonding layers were observed after the third cycle and almost full bonding was observed after the fifth cycle. Pellet volume increased with burnup in proportion to solid swelling rate up to the forth cycle. After the fifth cycle, slightly higher pellet swelling was confirmed. Power ramp tests were carried out and satisfactory performance of Zr-lined cladding tube was confirmed up to 60 GWd/t (segment average burnup). One segment rod irradiated for 3 cycles failed by a single step ramp test at terminal ramp power of 614 W

  20. BWR AXIAL PROFILE

    International Nuclear Information System (INIS)

    Huffer, J.

    2004-01-01

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I

  1. Nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Busch, H.; Mindnich, F.R.

    1973-01-01

    The fuel rod consists of a can with at least one end cap and a plenum spring between this cap and the fuel. To prevent the hazard that a eutectic mixture is formed during welding of the end cap, a thermal insulation is added between the end cap and plenum spring. It consists of a comical extension of the end cap with a terminal disc against which the spring is supported. The end cap, the extension, and the disc may be formed by one or several pieces. If the disc is separated from the other parts it may be manufactured from chrome steel or VA steel. (DG) [de

  2. Development of advanced BWR

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1982-01-01

    The Japanese technology and domestic production of BWR type nuclear power plants have been established through the experiences in the construction and operation of BWRs in addition to the technical agreement with the General Electric Co. In early days, the plants experienced some trouble such as stress corrosion cracking and some inconvenience in the operation and maintenance. The government, electric power companies and BWR manufacturers have endeavored to standardize and improve the design of LWRs for the purpose of improving the safety, reliability and the rate of operation and reducing the radiation exposure dose of plant workers. The first and second stages of the standardization and improvement of LWRs have been completed. Five manufacturers of BWRs in the world have continued the conceptual design of a new version of BWR power plants. It was concluded that this is the most desirable version of BWR nuclear power stations, but the technical and economic evaluation must be made before the commercial application. Six electric power companies and three manufacturers of BWRs in Japan set up the organization to develop the technology in cooperation. The internal pump system, the new control rod drive mechanism and others are the main features. (Kako, I.)

  3. Device for replacing the rods of a fuel element of a nuclear reactor

    International Nuclear Information System (INIS)

    Nissel, B.; Kybranz, R.; Will, R.

    1977-01-01

    In order to be able to replace several separate rods (fuel rods or absorber rods), in a fuel element, a special grab is introduced, which consists of several individual gripping devices and is operated by spring loading. (TK) [de

  4. Design characteristics of metallic fuel rod on its in-LMR performance

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Fuel design is a key feature to assure LMR safety goals. To date, a large effort had been devoted to develop metallic fuels at ANL's experimental breeder reactor (EBR-II). The major design and performance parameters investigated include; thermal conductivity and temperature profile; smear density; axial plenum; FCMI and cladding deformation including creep, and fission gas release. In order to evaluate the sensitivity of each parameter, in-LMR performances of metallic fuels are not only reviewed by the experiment results in literatures, but also key design characteristics according to the variation of metallic fuel rod design parameters are analyzed by using the MACSIS code which simulates in-reactor behaviors of metal fuel rod. In this study, key design characteristics and the criteria which must be considered to design fuel rod in LMR, are proposed and discussed. (author). 14 refs., 4 figs

  5. CFD analysis of blockage length on a partially blocked fuel rod

    International Nuclear Information System (INIS)

    Scuro, Nikolas Lymberis; Andrade, Delvonei Alves de; Angelo, Gabriel; Angelo, Edvaldo

    2017-01-01

    In LOCA accidents, fuel rods may balloon by the increasing of pressure difference between fuel rod and core vessel. With the balloon effect, the swelling can partially block the flow channel, affecting the coolability during reflood phase. In order to analyze the influence of blockage length after LOCA events, many numerical simulations using Ansys-CFX code have been done in steady state condition, characterizing the final phase of reflood. Peaks of temperature are observed in the middle of the fuel rod, followed by a temperature drop. This effect is justified by the increasing of heat transfer coefficient, originated from the high turbulence effects. Therefore, this paper considers a radial blockage of 90%, varying just the blockage length. This study observed that, for the same boundary conditions, the longer the blockage length originated after LOCA events, the higher are the central temperatures in the fuel rod. (author)

  6. CFD analysis of blockage length on a partially blocked fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Scuro, Nikolas Lymberis; Andrade, Delvonei Alves de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Angelo, Gabriel [Centro Universitário FEI (UNIFEI), São Paulo, SP (Brazil). Dept. de Engenharia Mecânica; Angelo, Edvaldo, E-mail: nikolas.scuro@gmail.com, E-mail: delvonei@ipen.br, E-mail: gangelo@fei.edu.br, E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, São Paulo, SP (Brazil). Escola da Engenharia. Grupo de Simulação Numérica

    2017-07-01

    In LOCA accidents, fuel rods may balloon by the increasing of pressure difference between fuel rod and core vessel. With the balloon effect, the swelling can partially block the flow channel, affecting the coolability during reflood phase. In order to analyze the influence of blockage length after LOCA events, many numerical simulations using Ansys-CFX code have been done in steady state condition, characterizing the final phase of reflood. Peaks of temperature are observed in the middle of the fuel rod, followed by a temperature drop. This effect is justified by the increasing of heat transfer coefficient, originated from the high turbulence effects. Therefore, this paper considers a radial blockage of 90%, varying just the blockage length. This study observed that, for the same boundary conditions, the longer the blockage length originated after LOCA events, the higher are the central temperatures in the fuel rod. (author)

  7. Flow rate control systems for coolants for BWR type reactors

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.

    1981-01-01

    Purpose: To increase spontaneous recycling flow rate of coolants in BWR type reactors when the water level in the reactor decreases, by communicating a downcomer with a lower plenum. Constitution: An opening is provided to the back plate disposed at the lower end of a reactor core shroud for communicating a downcomer with a lower plenum, and an ON-OFF valve actuated by an operation rod is provided to the opening. When abnormal water level or pressure in the reactor is detected by a level metal or pressure meter, the operation rod is driven to open the ON-OFF valve, whereby coolants fed from a jet pump partially flows through the opening to increase the spontaneous recycling flow rate of the coolants. This can increase the spontaneous recycling flow rate of the coolants upon spontaneous recycling operation, thereby maintaining the reactor safety and the fuel soundness. (Moriyama, K.)

  8. AFA 2G and AFA 3G fuel rod performance analysis

    International Nuclear Information System (INIS)

    Lu Huaquan; Liu Tong; Jiao Yongjun; Pang Hua

    2002-01-01

    For 18-months fuel cycle strategy in GNPJVC DAYA BAY unit 1/2, by means of COCCINEL, the fuel rod performance for AFA 3G and AFA 2G in transition cycle is analyzed. The design criteria which should be respected in fuel rod design are included and the design methodology is introduced. All the criteria mentioned are verified and met

  9. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.

    2014-01-01

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  10. Damage and failure of unirradiated and irradiated fuel rods tested under film boiling conditions

    International Nuclear Information System (INIS)

    Mehner, A.S.; Hobbins, R.R.; Seiffert, S.L.; MacDonald, P.E.; McCardell, R.K.

    1979-01-01

    Power-cooling-mismatch experiments are being conducted as part of the Thermal Fuels Behavior Program in the Power Burst Facility at the Idaho National Engineering Laboratory to evaluate the behavior of unirradiated and previously irradiated light water reactor fuel rods tested under stable film boiling conditions. The observed damage that occurs to the fuel rod cladding and the fuel as a result of film boiling operation is reported. Analyses performed as a part of the study on the effects of operating failed fuel rods in film boiling, and rod failure mechanisms due to cladding embrittlement and cladding melting upon being contacted by molten fuel are summarized

  11. The development of the fuel rod transient performance analysis code FTPAC

    International Nuclear Information System (INIS)

    Han Zhijie; Ji Songtao

    2014-01-01

    Fuel rod behavior, especially the integrity of cladding, played an important role in fuel safety research during reactor transient and hypothetical accidents conditions. In order to study fuel rod performance under transient accidents, FTPAC (Fuel Transient Performance Analysis Code) has been developed for simulating light water reactor fuel rod transient behavior when power or coolant boundary conditions are rapidly changing. It is composed of temperature, mechanical deformation, cladding oxidation and gas pressure model. The assessment was performed by comparing FTPAC code analysis result to experiments data and FRAPTRAN code calculations. Comparison shows that, the FTPAC gives reasonable agreement in temperature, deformation and gas pressure prediction. And the application of slip coefficient is more suitable for simulating the sliding between pellet and cladding when the gap is closed. (authors)

  12. Neutron physical aspects of the storage of BWR fuel elements

    International Nuclear Information System (INIS)

    Woloch, F.; Sdouz, G.; Suda, M.

    1980-01-01

    For the storage of BWR fuel elements in a high density fuel rack using boronated steel absorbers and in a fuel rack with a larger pitch without absorber, criticality calculations are performed. The cooling water density is varied for the storage without absorbers. For the selected pitches of 16.5 cm for the high density fuel rack and 25 cm for the fuel rack without absorber respectively the ksub(infinitely) values of 0.933 and 0.748 are obtained. The dependence of the results on different calculational methods and on the influence of the variation of three important design parameters, i.e. of the concentration of boron, of the thickness of the boronated steel and of the watergap is investigated for the high density fuel rack. The average isothermal temperature coefficient is obtained for the high density fuel rack as -4.5 x 10 -40 sup(0)C -1 and as approx. 2.0 x 10 -40 sup(0)C -1 for the fuel rack without absorbers. For both ways of storage the aspects of safety of the results are discussed thoroughly. (orig.) 891 RW/orig. 892 CKA [de

  13. K-infinite trends with burnup, enrichment, and cooling time for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1998-08-01

    This report documents the work performed by ORNL for the Yucca Mountain project (YMP) M and O contractor, Framatome Cogema Fuels. The goal of this work was to obtain k inf values for infinite arrays of flooded boiling-water-reactor (BWR) fuel assemblies as a function of various burnup/enrichment and cooling-time combinations. These scenarios simulate expected limiting criticality loading conditions (for a given assembly type) for drift emplacements in a repository. Upon consultation with the YMP staff, a Quad Cities BWR fuel assembly was selected as a baseline assembly. This design consists of seven axial enrichment zones, three of which contain natural uranium oxide. No attempt was made to find a bounding or even typical assembly design due to the wide variety in fuel assembly designs necessary for consideration. The current work concentrates on establishing a baseline analysis, along with a small number of sensitivity studies which can be expected later if desired. As a result of similar studies of this nature, several effects are known to be important in the determination of the final k inf for spent fuel in a cask-like geometry. For a given enrichment there is an optimal burnup: for lower burnups, excess energy (and corresponding excess reactivity) is present in the fuel assembly; for larger burnups, the assembly is overburned and essentially driven by neighboring fuel assemblies. The majority of the burnup/enrichment scenarios included in this study were for some near-optimum burnup/enrichment combinations as determined from Energy Information Administration (EIA) data. Several calculations were performed for under- and over-burned fuel to show these effects

  14. Transient fuel rod behavior prediction with RODEX-3/SIERRA

    Energy Technology Data Exchange (ETDEWEB)

    Billaux, M R; Shann, S H; Swam, L.F. Van [Siemens Power Corp., Richland, WA (United States)

    1997-08-01

    This paper discusses some aspects of the fuel performance code SIERRA (SIEmens Rod Response Analysis). SIERRA, the latest version of the code RODEX-3, has been developed to improve the fuel performance prediction capabilities of the code, both at high burnup and during transient reactor conditions. The paper emphasizes the importance of the mechanical models of the cracked pellet and of the cladding, in the prediction of the transient response of the fuel rod to power changes. These models are discussed in detail. Other aspects of the modelling of high burnup effects are also presented, in particular the modelling of the rim effect and the way it affects the fuel temperature. (author). 12 refs, 5 figs.

  15. Transient fuel rod behavior prediction with RODEX-3/SIERRA

    International Nuclear Information System (INIS)

    Billaux, M.R.; Shann, S.H.; Swam, L.F. Van

    1997-01-01

    This paper discusses some aspects of the fuel performance code SIERRA (SIEmens Rod Response Analysis). SIERRA, the latest version of the code RODEX-3, has been developed to improve the fuel performance prediction capabilities of the code, both at high burnup and during transient reactor conditions. The paper emphasizes the importance of the mechanical models of the cracked pellet and of the cladding, in the prediction of the transient response of the fuel rod to power changes. These models are discussed in detail. Other aspects of the modelling of high burnup effects are also presented, in particular the modelling of the rim effect and the way it affects the fuel temperature. (author). 12 refs, 5 figs

  16. BWR Full Integral Simulation Test (FIST) Phase II test results and TRAC-BWR model qualification

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.; Findlay, J.A.; Hwang, W.S.

    1985-10-01

    Eight matrix tests were conducted in the FIST Phase I. These tests investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. There are nine tests in Phase II of the FIST program. They include the following LOCA tests: BWR/6 LPCI line break, BWR/6 intermediate size recirculation break, and a BWR/4 large break. Steady state natural circulation tests with feedwater makeup performed at high and low pressure, and at high pressure with HPCS makeup, are included. Simulation of a transient without rod insertion, and with controlled depressurization, was performed. Also included is a simulation of the Peach Bottom turbine trip test. The final two tests simulated a failure to maintain water level during a postulated accident. A FIST program objective is to assess the TRAC code by comparisons with test data. Two post-test predictions made with TRACB04 are compared with Phase II test data in this report. These are for the BWR/6 LPCI line break LOCA, and the Peach Bottom turbine trip test simulation

  17. Simplification of neural network model for predicting local power distributions of BWR fuel bundle using learning algorithm with forgetting

    International Nuclear Information System (INIS)

    Tanabe, Akira; Yamamoto, Toru; Shinfuku, Kimihiro; Nakamae, Takuji; Nishide, Fusayo.

    1995-01-01

    Previously a two-layered neural network model was developed to predict the relation between fissile enrichment of each fuel rod and local power distribution in a BWR fuel bundle. This model was obtained intuitively based on 33 patterns of training signals after an intensive survey of the models. Recently, a learning algorithm with forgetting was reported to simplify neural network models. It is an interesting subject what kind of model will be obtained if this algorithm is applied to the complex three-layered model which learns the same training signals. A three-layered model which is expanded to have direct connections between the 1st and the 3rd layer elements has been constructed and the learning method of normal back propagation was applied first to this model. The forgetting algorithm was then added to this learning process. The connections concerned with the 2nd layer elements disappeared and the 2nd layer has become unnecessary. It took a longer computing time by an order to learn the same training signals than the simple back propagation, but the two-layered model was obtained autonomously from the expanded three-layered model. (author)

  18. Stress Analysis of Single Spacer Grid Support considering Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. G.; Jung, D. H.; Kim, J. H. [Chungnam National University, Daejeon (Korea, Republic of); Park, J. K.; Jeon, K. L. [Korea Nuclear Fuel, Daejeon (Korea, Republic of)

    2010-10-15

    Pressurized water reactor (PWR) nuclear fuel assembly is mainly composed of a top-end piece, a bottom-end piece, lots of fuel rods, and several spacer grids. Among them, the main function of spacer grid is protecting fuel rods from Fluid Induced Vibration (FIV). The cross section of spacer grid assembled by laser welding in upper and lower point. When the fuel rod inserted in spacer gird, spring and dimple and around of welded area got a stresses. The main hypothesis of this analysis is the boundary area of HAZ and base metal can get a lot of damage than other area by FIV. So, design factors of spacer grid mainly considered to preventing the fatigue failure in HAZ and spring and dimple of spacer grid. From previous researching, the environment in reactor verified. Pressure and temperature of light water observed 15MPa and 320 .deg. C, and vibration of the fuel rod observed within 0 {approx} 50Hz. In this study, mechanical properties of zirconium alloy that extracted from the test and the spacer grid model which used in the PWR were applied in stress analyzing. General-purpose finite element analysis program was used ANSYS Workbench 12.0.1 version. 3-D CAD program CATIA was used to create spacer grid model

  19. In-pile post-DNB behavior of a nine-rod PWR-type fuel bundle

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; MacDonald, P.E.

    1980-01-01

    The results of an in-pile power-cooling-mismatch (PCM) test designed to investigate the behavior of a nine-rod, PWR-type fuel bundle under intermittent and sustained periods of high temperature film boiling operation are presented. Primary emphasis is placed on the DNB and post-DNB events including rod-to-rod interactions, return to nucleate boiling (RNB), and fuel rod failure. A comparison of the DNB behavior of the individual bundle rods with single-rod data obtained from previous PCM tests is also made

  20. Apparatus for inspecting the quality of nuclear fuel rod ends

    International Nuclear Information System (INIS)

    Brashier, R.W.; Pfau, E.D.

    1990-01-01

    This patent describes an apparatus for inspecting the quality of both ends of nuclear fuel rods. It comprises: a housing including a pair of longitudinally separated slots for receiving X-ray downwardly therethrough from an external source and so as to define first and second longitudinally spaced apart operating positions, means for serially guiding nuclear fuel rods longitudinally through the housing and to a first rod position wherein the forward ends of the rods are aligned below the first operating position and to a second rod position wherein the rear ends of the rods are aligned below the second operating position, belt conveyor assembly means for serially advancing X-ray film cartridges longitudinally through the housing and below the rods, and so that each cartridge may be selectively aligned below the first and second operating positions; and table means supported by the conveyor frame for selectively lifting the film cartridges supported by the belts and so that the conveyor belts may be advanced while the film cartridges are held stationary

  1. Fuel rod behavior of a PWR during load following

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Andrade, G.G. de

    1982-01-01

    The behavior of a PWR fuel rod when operating in normal power cycles, excluding in case of accidents, is analysed. A computer code, that makes the mechanical analysis of the cladding using the finite element method was developed. The ramps and power cycles were simulated suposing the existence of cracks in pellets when the cladding-pellet interaction are done. As a result, an operation procedure of the fuel rod in power cycle is recommended. (E.G.) [pt

  2. PWR and BWR light water reactor systems in the USA and their fuel cycle

    International Nuclear Information System (INIS)

    Crawford, W.D.

    1977-01-01

    Light water reactor operating experience in the USA can be considered to date from the choice of the pressurized water reactor (PWR) for use in the naval reactor program and the subsequent construction and operation of the nuclear power plant at Shippingport, Pennsylvania in 1957. The development of the boiling water reactor (BWR) in 1954 and its selection for the plant at Dresden, Illinois in 1959 established this concept as the other major reactor type in the US nuclear power program. The subsequent growth profile is presented, leading to 31 PWR's and 23 BWR's currently in operation as well as to plants in the planning and construction phase. A significant operating record has been accumulated concerning the availability of each of these reactor types as determined by: (1) outage for refueling, (2) component reliability, (3) maintenance requirements, and (4) retrofitting required by government regulation. In addition, the use and performance of BWR's and PWR's in meeting system load requirements is discussed. The growing concern regarding possible terrorist activities and other potential threats has resulted in systems and procedures designed to assure effective safeguards at nuclear power installations. Safeguards measures currently in place are described. Environmental effects of operating plants are subject to both radiological and non-radiological monitoring to verify that results are within the limits established in the licensing process. The operating results achieved and the types of modifications that have been required of operating plants by the Nuclear Regulatory Commission are reviewed. The PWR and BWR Fuel Cycle is examined in terms of: (1) fuel burnup experience and prospects for improvement, (2) the status and outlook for natural uranium resources, (3) enrichment capacity, (4) reprocessing and recycle, and the interrelationships among the latter three factors. High level waste management currently involving on-site storage of spent fuel is discussed

  3. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    Yoshioka, Ken-ichi; Ando, Y.; Kumanomido, H.; Sasaki, T.; Mitsuhashi, I.; Ueda, M.

    2001-01-01

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  4. Thorium utilisation in a small long-life HTR. Part III: Composite-rod fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Verrue, Jacques, E-mail: jacques.verrue@polytechnique.org [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands); École Polytechnique (Member of ParisTech), 91128 Palaiseau Cedex (France); Ding, Ming, E-mail: dingm2005@gmail.com [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Harbin Engineering University, Nantong Street 145, 150001 Harbin (China); Kloosterman, Jan Leen, E-mail: j.l.kloosterman@tudelft.nl [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-02-15

    Highlights: • Composite-rod fuel blocks are proposed for a small block-type HTR. • An axial separation of fuel compacts is the most important feature. • Three patterns are presented to analyse the effects of the spatial distribution. • The spatial distribution has a large influence on the neutron spectrum. • Composite-rod fuel blocks reach a reactivity swing less than 4%. - Abstract: The U-Battery is a small long-life high temperature gas-cooled reactor (HTR) with power of 20 MWth. In order to increase its lifetime and diminish its reactivity swing, the concept of composite-rod fuel blocks with uranium and thorium was investigated. Composite-rod fuel blocks feature a specific axial separation between UO{sub 2} and ThO{sub 2} compacts in fuel rods. The design parameters, investigated by SCALE 6, include the number and spatial distribution of fuel compacts within the rods, the enrichment of uranium, the radii of fuel kernels and fuel compacts, and the packing fractions of uranium and thorium TRISO particles. The analysis shows that a lower moderation ratio and a larger inventory of heavy metals results in a lower reactivity swing. The optimal atomic carbon-to-heavy metal ratio depends on the mass fraction of U-235 and is commonly in the 160–200 range. The spatial distribution of the fuel compacts within the fuel rods has a large influence on the energy spectrum in each fuel compact and thus on the beginning-of-life reactivity and the reactivity swing. At end-of-life, the differences caused by the spatial distribution of the fuel compacts are smaller due to the fissions of U-233 in the ThO{sub 2} fuel compacts. This phenomenon enables to design fuel blocks with a very low reactivity swing, down to less than 4% in a 10-year lifetime. Among three types of thorium fuelled U-Battery blocks, the composite-rod fuel block achieves the highest end-of-life reactivity and the lowest reactivity swing.

  5. Analysis of Radial Plutonium Isotope Distribution in Irradiated Test MOX Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Yong; Lee, Byung Ho; Koo, Yang Hyun; Kim, Han Soo

    2009-01-15

    After Rod 3 and 6 (KAERI MOX) were irradiated in the Halden reactor, their post-irradiation examinations are being carried out now. In this report, PLUTON code was implemented to analyze Rod 3 and 6 (KAERI MOX). In the both rods, the ratio of a maximum burnup to an average burnup in the radial distribution was 1.3 and the contents of {sup 239}Pu tended to increase as the radial position approached the periphery of the fuel pellet. The detailed radial distribution of {sup 239}Pu and {sup 240}Pu, however, were somewhat different. To find the reason for this difference, the contents of Pu isotopes were investigated as the burnup increased. The content of {sup 239}Pu decreased with the burnup. The content of {sup 240}Pu increased with the burnup by the 20 GWd/tM but decreased over the 20 GWd/tM. The local burnup of Rod 3 is higher than that of Rod 6 due to the hole penetrated through the fuel rod. The content of {sup 239}Pu decreased more rapidly than that of {sup 240}Pu in the Rod 6 with the increased burnup. It resulted in a radial distribution of {sup 239}Pu and {sup 240}Pu similar to Rod 3. The ratio of Xe to Kr is a parameter to find where the fissions occur in the nuclear fuel. In both Rod 3 and 6, it was 18.3 in the whole fuel rod cross section, which showed that the fissions occurred in the plutonium.

  6. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  7. Behaviour of high O/U fuel

    International Nuclear Information System (INIS)

    Davies, J.H.; Hoshi, E.V.; Zimmerman, D.L.

    2000-01-01

    Full text: The effect of increased fuel oxygen potential on fuel behaviour has been studied by fabricating and irradiating urania fuel with an average O/U ratio of 2.05. The fuel was fabricated by re-sintering standard urania pellets in a controlled oxygen potential environment and irradiated in a segmented rod bundle in a U.S. BWR. Preirradiation ceramographic characterization of the pellets revealed the well-known Widmanstaetten precipitation of U-409 platelets in the UO 2 matrix. The high O/U fuel pellets were clad in Zircaloy-2 and irradiated to over 20 GWd/MT. Ramp tests were performed in a test reactor and detailed postirradiation examinations of both ramped and nonramped rods have been performed. The cladding inner surface condition, fission gas release and swelling behavior of high O/U fuel have been characterized and compared with standard UO 2 pellets. Although fuel microstructural features in ramp-tested high O/U fuel showed evidence of higher fuel temperatures and/or enhanced transport processes, fission gas release to the fuel rod free space was less than for similarly tested standard UO 2 fuel. However, fuel swelling and cladding strains were significantly greater. In spite of high cladding strains, PCI crack propagation was inhibited in the high O/U fuel I rods. Evidence is presented that the crystallographically oriented etch features often noted in peripheral regions of high burnup fuels are not an indication of higher oxides of uranium. (author)

  8. The results of postirradiation examinations of VVER-1000 and VVER-440 fuel rods

    Science.gov (United States)

    Dubrovin, K. P.; Ivanov, E. G.; Strijov, P. N.; Yakovlev, V. V.

    1991-02-01

    The paper presents the results of postirradiation examination of the fuel rods having different fuel-cladding gaps, pellet densities, pellet inner diameters and so on. The fuel rods were irradiated in the material science reactor (MR) of the Kurchatov Institute of Atomic Energy and at 4 unit of the Novo-Voronezh nuclear powerplant. Some data on fission gas release and rod geometry and compared with computer code predictions.

  9. Development of the spent fuel rod cutting device using the blade cutters

    International Nuclear Information System (INIS)

    Jung, Jae Hoo; Yoon, Ji Sup; Hong, Dong Hee; Kim, Young Hwan; Park, Gee Yong; Kim, Do Woo

    2000-11-01

    A spent fuel rod cutting device is to cut a spent nuclear fuel rod to optimal size for consequent decladding operation. In this paper, various properties of fuel rod, such as a dimension and material of zircaloy tubes and fuel pellets, are investigated. Also, commercially available cutting method and tools is investigated in terms of its performance. As a result, the blade cutter is selected for the design. In order to fabricate the durable blade cutter, various materials are analyzed in terms of material properties, cutter shape, and heat treatment method, etc. Also, the durability of this tool is tested by cutting the SUS tubes and zircaloy tubes. In the device design, the remote maintainability is considered so that the modularized design is accomplished. Also, the other factors considered in the design are the round shape sustainability at the cut surface, the amount of debris generation, and the fire risk, etc. Considering these design consideration, the spent fuel rod cutting device is fabricated and tested

  10. A user input manual for single fuel rod behaviour analysis code FEMAXI-III

    International Nuclear Information System (INIS)

    Saito, Hiroaki; Yanagisawa, Kazuaki; Fujita, Misao.

    1983-03-01

    Principal objectives of Safety related research in connection with lighr water reactor fuel rods under normal operating condition are mainly addressed 1) to assess fuel integrity under steady state condition and 2) to generate initial condition under hypothetical accident. These assessments have to be relied principally upon steady state fuel behaviour computing code that is able to calculate fuel conditions to tbe occurred in a various manner. To achieve these objectives, efforts have been made to develope analytical computer code that calculates in-reactor fuel rod behaviour in best estimate manner. The computer code developed for the prediction of the long-term burnup response of single fuel rod under light water reactor condition is the third in a series of code versions:FEMAMI-III. The code calculates temperature, rod internal gas pressure, fission gas release and pellet-cladding interaction related rod deformation as a function of time-dependent fuel rod power and coolant boundary conditions. This document serves as a user input manual for the code FEMAMI-III which has opened to the public in year of 1982. A general description of the code input and output are included together with typical examples of input data. A detailed description of structures, analytical submodels and solution schemes in the code shall be given in the separate document to be published. (author)

  11. Multidimensional simulations of hydrides during fuel rod lifecycle

    International Nuclear Information System (INIS)

    Stafford, D.S.

    2015-01-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim. - Highlights: • We extend BISON fuel performance code to simulate lifecycle of fuel rods. • We model hydrogen evolution in cladding from reactor through dry storage. • We validate 1D simulations of hydrogen evolution against experiments. • We show results of 2D axisymmetric simulations predicting hydride formation. • We show how our model predicts formation of a hydride rim in the cladding.

  12. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  13. Thermal-stress analysis of HTGR fuel and control rod fuel blocks in in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    The equivalent solid plate method, in conjunction with two-dimensional plane stress and plane strain analyses, was used in assessing the thermal stress behavior of HTGR fuel and control rod fuel blocks. For the control rod fuel blocks, particular attention was given to ascertaining the effects of the reserve shutdown hole and the control rod channel holes. The assumed safety factor of 2 on the failure criteria was considered adequate to account for neglecting the axial temperature gradient in the plane analyses of the ends of the blocks. The analyses indicated that the maximum calculated tensile stress values were smaller than the criteria values except for the plane strain analysis of the control rod fuel block end surfaces and the axisymmetric analysis of the fuel block as a circular cylinder. However, most of the maximum calculated strain values were greater than the criteria values

  14. Irradiation of pressurized water reactor fuel rods in the Forschungsreaktor Juelich 2

    International Nuclear Information System (INIS)

    Gaertner, M.

    1978-10-01

    Test fuel rods have been irradiated in FRJ-2 to study the interaction between fuel and cladding as well as hydride orientation stability in the prehydrided cladding. The fuel rods achieved burn-ups of 3.500 to 10.000 MWd/tU at surface temperatures of 333 0 C and power levels up to 620 W/cm. (orig.) [de

  15. HTGR fuel rods: carbon-carbon composites designed for high weight and low strength

    International Nuclear Information System (INIS)

    Bullock, R.E.

    1977-01-01

    The evolution of the process for fabricating fuel rods for the high-temperature gas-cooled reactor (HTGR) by injection and carbonization of a thermoplastic matrix that bonds close-packed beds of pyrocarbon-coated fuel particles together is reviewed for the fresh-fuel cycle, and a variant process involving a thermosetting matrix that would allow free-standing carbonization of refabricated fuel is discussed. Previous attempts to fabricate such injection-bonded fuel rods from undiluted thermosetting binders filled with powdered graphite were unsuccessful, because of damage to coatings on fuel particles that resulted from strong particle-to-matrix bonding in conjunction with large matrix shrinkage on carbonization and subsequent irradiation. These problems have now been overcome through the use of a diluted thermosetting matrix with a low-char-yield additive (fugitive), which produces a more porous char similar to that from the pitch-based thermoplastic used in fabrication of fresh fuel. A 1-to-1 dilution of resin with fugitive produced the optimum binder for injection and carbonization, where the fired matrix in such rods contained about 20 wt% binder char and 80 wt% powdered graphite. Thermosetting fuel rods diluted with various amounts of fugitive to give binder chars that range from 12 to 48 wt% of the fired matrix have been subjected to irradiation screening tests, and rods with no more than 32 wt% binder char appear to perform about as well under irradiation as do pitch-based rods. However, particle damage does begin to occur in those lightly diluted rods in which the less-stable binder char constitutes more than 32 wt% of the fired matrix. (author)

  16. Critical heat flux tests for self-spaced square finned 7 fuel rod bundle

    International Nuclear Information System (INIS)

    Moon, Sang Ki; Chun, Se Young; Choi, Ki Young; Park, Jong Kuk; Hwang, Dae Hyun; Zee, Sung Quun; Kim, Keung Koo

    2001-09-01

    Now, KAERI is developing a new advanced reactor aimed at achieving highly enhanced safety and reliability, and improved economics. SSF (Self-Spaced Square Finned) fuel rod bundle is considered as a suitable one for the new advanced reactor. The SSF fuel rods have rectangular shapes and four fins at the corners, and are arranged in triangular geometry. While the SSF fuel rod bundle is considered to have enhanced cooling efficiency, the correlations used for commercial PWR might be able to be applied. The application results of some conventional correlations show that the SSF fuel rod bundle show an enhanced CHF performance about 10 to 40 %. When some conventional CHF correlations are applied to CHF data with a similar geometry to the SSF fuel rod bundle, conventional CHF correlations including a correlation developed in Russia are judged not to be suitable for the development of SSF fuel rod bundle and for the use in a safety analysis code. From CHF experiments for SSF 7 fuel rod bundle performed in KAERI, the following results are obtained: the CHF increases with increasing mass flux, and the CHF increasing rate decreases at high mass flux conditions. The exit quality decreases with increasing mass flux. The overall effect of the mass flux on the CHF and exit quality coincides with previous understanding. Compared to the CHF data of IPPE with the same system pressure and inlet temperature, the CHF data of KAERI show the similar values. Thus, the reliability of IPPE CHF data can be confirmed indirectly

  17. Corrosion behaviour of zircaloy 4 fuel rod cladding in EDF power plants

    Energy Technology Data Exchange (ETDEWEB)

    Romary, H; Deydier, D [EDF, Direction de l` Equipment SEPTEN, Villeurbanne (France)

    1997-02-01

    Since the beginning of the French nuclear program, a surveillance of fuel has been carried out in order to evaluate the fuel behaviour under irradiation. Until now, nuclear fuels provided by suppliers have met EDF requirements concerning fuel behaviour and reliability. But, the need to minimize the costs and to increase the flexibility of the power plants led EDF to the definition of new targets: optimization of the core management and fuel cycle economy. The fuel behaviour experience shows that some of these new requirements cannot be fully fulfilled by the present standard fuel due to some technological limits. Particularly, burnup enhancement is limited by the oxidation and the hydriding of the Zircaloy 4 fuel rod cladding. Also, fuel suppliers and EDF need to have a better knowledge of the Zy-4 cladding behaviour in order to define the existing margins and the limiting factors. For this reason, in-reactor fuel characterization programs have been set up by fuel suppliers and EDF for a few years. This paper presents the main results and conclusions of EDF experience on Zy-4 in-reactor corrosion behaviour. Data obtained from oxide layer or zirconia thickness measurements show that corrosion performance of Zy-4 fuel rod cladding, as irradiated until now in EDF reactors, is satisfactory but not sufficient to meet the future needs. The fuel suppliers propose in order to improve the corrosion resistance of fuel rod cladding, low tin Zy-4 cladding and then optimized Zy-4 cladding. Irradiation of these claddings are ongoing. The available corrosion data show the better in-reactor corrosion resistance of optimized Zy-4 fuel rod cladding compared to the standard Zy-4 cladding. The scheduled fuel surveillance program will confirm if the optimized Zy-4 fuel rod cladding will meet the requirements for the future high burnup and high flexibility fuel. (author). 10 refs, 19 figs, 4 tabs.

  18. IAMBUS, a computer code for the design and performance prediction of fast breeder fuel rods

    International Nuclear Information System (INIS)

    Toebbe, H.

    1990-05-01

    IAMBUS is a computer code for the thermal and mechanical design, in-pile performance prediction and post-irradiation analysis of fast breeder fuel rods. The code deals with steady, non-steady and transient operating conditions and enables to predict in-pile behavior of fuel rods in power reactors as well as in experimental rigs. Great effort went into the development of a realistic account of non-steady fuel rod operating conditions. The main emphasis is placed on characterizing the mechanical interaction taking place between the cladding tube and the fuel as a result of contact pressure and friction forces, with due consideration of axial and radial crack configuration within the fuel as well as the gradual transition at the elastic/plastic interface in respect to fuel behavior. IAMBUS can be readily adapted to various fuel and cladding materials. The specific models and material correlations of the reference version deal with the actual in-pile behavior and physical properties of the KNK II and SNR 300 related fuel rod design, confirmed by comparison of the fuel performance model with post-irradiation data. The comparison comprises steady, non-steady and transient irradiation experiments within the German/Belgian fuel rod irradiation program. The code is further validated by comparison of model predictions with post-irradiation data of standard fuel and breeder rods of Phenix and PFR as well as selected LWR fuel rods in non-steady operating conditions

  19. Lateral Flow Field Behavior Downstream of Mixing Vanes In a Simulated Nuclear Fuel Rod Bundle

    International Nuclear Information System (INIS)

    Conner, Michael E.; Smith, L. David III; Holloway, Mary V.; Beasley, Donald E.

    2004-01-01

    To assess the fuel assembly performance of PWR nuclear fuel assemblies, average subchannel flow values are used in design analyses. However, for this highly complex flow, it is known that local conditions around fuel rods vary dependent upon the location of the fuel rod in the fuel assembly and upon the support grid design that maintains the fuel rod pitch. To investigate the local flow in a simulated nuclear fuel rod bundle, a testing technique has been employed to measure the lateral flow field in a 5 x 5 rod bundle. Particle Image Velocimetry was used to measure the lateral flow field downstream of a support grid with mixing vanes for four unique subchannels in the 5 x 5 bundle. The dominant lateral flow structures for each subchannel are compared in this paper including the decay of these flow structures. (authors)

  20. Thermal phenomenae in nuclear fuel rods

    International Nuclear Information System (INIS)

    Baigorria, Carlos.

    1983-12-01

    Thermal phenomenae occurring in a nuclear fuel rod under irradiation are studied. The most important parameters of either steady or transient thermal states are determined. The validity of applying the Fourier's approximation equations to these problems is also studied. A computer program TRANS is developed in order to study the transient cases. This program solves a system of coupled, non-linear partial differential equations, of parabolic type, in cylindrical coordinates with various boundary conditions. The benchmarking of the TRANS program is done by comparing its predictions with the analytical solution of some simplified transient cases. Complex transient cases such as those corresponding to characteristic reactor accidents are studied, in particular for typical pressurized heavy water reactor (PHWR) fuel rods, such as those of Atucha I. The Stefan problem emerging in the case of melting of the fuel element is solved. Qualitative differences between the classical Stefan problem, without inner sources, and that one, which includes sources are discussed. The MSA program, for solving the Stefan problem with inner sources is presented; and furthermore, it serves to predict thermal evolution, when the fuel element melts. Finally a model for fuel phase change under irradiation is developed. The model is based on the dimensional invariants of the percolation theory when applied to the connectivity of liquid spires nucleated around each fission fragment track. Suggestions for future research into the subject are also presented. (autor) [es

  1. Development of thermocouple re-instrumentation technique for irradiated fuel rod. Techniques for making center hole into UO2 pellets and thermocouple re-instrumentation to fuel rod

    International Nuclear Information System (INIS)

    Shimizu, Michio; Saito, Junichi; Oshima, Kunio

    1995-07-01

    The information on FP gas pressure and centerline temperature of fuel pellets during power transient is important to study the pellet clad interaction (PCI) mechanism of high burnup LWR fuel rods. At the Department of JMTR, a re-instrumentation technique of FP gas pressure gage for an irradiated fuel rod was developed in 1990. Furthermore, a thermocouple re-instrumentation technique was successfully developed in 1994. Two steps were taken to carry out the development program of the thermocouple re-instrumentation technique. In the first step, a drilling technique was developed for making a center hole of the irradiated fuel pellets. Various drilling tests were carried out using dummy of fuel rods consisted of Ba 2 FeO 3 pellets and Zry-2 cladding. On this work it is important to keep the pellets just the state cracked at a power reactor. In these tests, the technique to fix the pellets by frozen CO 2 was used during the drilling work. Also, diamond drills were used to make the center hole. These tests were completed successfully. A center hole, 54mm depth and 2.5mm diameter, was realized by these methods. The second step of this program is the in-pile demonstration test on an irradiated fuel rod instrumented dually a thermocouple and FP gas pressure gage. The demonstration test was carried out at the JMTR in 1995. (author)

  2. Vibration mechanism of fuel rod in axial flow

    International Nuclear Information System (INIS)

    Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu; Song, Kee Nam

    1998-08-01

    This is a review on the previous researches for the vibration of fuel rod induced by axial flow. The analysis methods are classified into three categories accordingly as the researchers postulate the vibration to be self-excited, forced and parametric; the self-excited mechanism by Burgreen and Quinn, the forced one by Reavis, Gorman, kanazawa, and S. Chen, and the parametric one by Y. Chen. Quinn supposed that the centrifugal force by flow exaggerated the natural bow in the cylinder, and the flexural force by it diminished the bow by turns; this interactive motion leaded cylinder to vibration. The supporters to the forced mechanism considered the forces arising from pressure perturbation within the boundary layers as vibrating sources. Y. Chen insisted that the cylinder could only be excited to vibration in resonance by the small oscillation of mean flow velocity. The previous studies were based on the simple boundary conditions such as hinged-hinged or fixed-fixed single span. Therefore, for the more accurate prediction of the fuel rod vibration in reactor, the further studies need to reflect the actual boundary conditions of the fuel rod like axial force and continuous supports by grids. (author). 25 refs

  3. State of fuel rods spent in the VVER-1000 reactor up to a fuel burnup of 75 MW·Day/KgU

    International Nuclear Information System (INIS)

    Markov, D.; Zvir, E.; Polenok, V.; Zhitelev, V.; Strozhuk, A.; Volkova, I.

    2011-01-01

    The presented material contains the data on change in form, corrosion state and mechanical properties of fuel rod claddings, change in fuel structure and release of gaseous fission products (GFP) under the cladding. The results of PIEs of the VVER-1000 fuel rods with the high burnup of fuel (average value is 72.3 MW·day/kgU and maximum is 75 MW·day/kgU) carried out in JSC 'SSC RIAR' show that by the basic operational characteristics the lifetime of fuel rods with such burnup of fuel is not exhausted. The state of fuel rods is characterized by following key parameters. The fuel-to-cladding gap on the most part of the fuel meat is absent. With the burnup growth, diameter of the fuel rod increases due to fuel meat swelling. In so doing, the reverse strain achieves the values of 0.40-0.47 %. Ridges on the cladding are formed practically along the entire length of the fuel meat, average height of ridges makes up 25 μm, maximum - 40 μm. At burnups exceeding 55 MW·day/kgU, the rate of the fuel rod elongation is less than at low and average burnups. So if within a burnup range of 20-55 MW·day/kgU, the rate of the fuel rod elongation makes up about 0.330mm per 1 MW·day/kgU, at burnups exceeding 55 MW·day/kgU it is only 0.085mm per 1 MW·day/kgU. Corrosion state of the claddings of fuel rods with high burnup of fuel is satisfactory. The oxide film, as a rule, is uniform, dense, without cracks and exfoliation, its thickness on the external surface does not exceed 13 μm, while on the internal surface - 15 μm. Hydrogenation is insignificant, mass fraction of hydrogen does not exceed 0.01 %. Interaction of fuel rods with spacer grids does not result in significant fretting-corrosion. Based of the results of tests, short-term mechanical properties of the claddings of fuel rods with high burnup of fuel remain at high level. The state of fuel is characterized by absence of the fuel-to-cladding gap on the most part of the fuel meat, fuel is tightly fixed to the cladding

  4. Advantages of Westinghouse BWR control rod drop accidents methodology utilizing integrated POLCA-T code

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2008-01-01

    The paper focuses on the activities pursued by Westinghouse in the development and licensing of POLCA-T code Control Rod Drop Accident (CRDA) Methodology. The comprehensive CRDA methodology that utilizes PHOENIX4/POLCA7/POLCA-T calculation chain foresees complete cycle-specific analysis. The methodology consists of determination of candidates of control rods (CR) that could cause a significant reactivity excursion if dropped throughout the entire fuel cycle, selection of limiting initial conditions for CRDA transient simulation and transient simulation itself. The Westinghouse methodology utilizes state-of-the-art methods. Unnecessary conservatisms in the methodology have been avoided to allow the accurate prediction of margin to design bases. This is mainly achieved by using the POLCA-T code for dynamic CRDA evaluations. The code belongs to the same calculation chain that is used for core design. Thus the very same reactor, core, cycle and fuel data base is used. This allows also reducing the uncertainties of input data and parameters that determine the energy deposition in the fuel. Uncertainty treatment, very selective use of conservatisms, selection of the initial conditions for limiting case analyses, incorporation into POLCA-T code models of the licensed fuel performance code are also among the means of performing realistic CRDA transient analyses. (author)

  5. Nondestructive examination of irradiated fuel rods by pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Francis, W.C.; Quapp, W.J.; Martin, M.R.; Gibson, G.W.

    1976-02-01

    A number of fuel rods and unfueled zircaloy cladding tubes which had been irradiated in the Saxton reactor have undergone extensive nondestructive and corroborative destructive examinations by Aerojet Nuclear Company as part of the Water Reactor Safety Research Program, Irradiation Effects Test Series. This report discusses the pulsed eddy current (PEC) nondestructive examinations on the fuel rods and tubing and the metallography results on two fuel rods and one irradiated zircaloy tube. The PEC equipment, designed jointly by Argonne National Laboratory and Aerojet, performed very satisfactorily the functions of diameter, profile, and wall thickness measurements and OD and ID surface defect detection. The destructive examination provided reasonably good confirmation of ''defects'' detected in the nondestructive examination

  6. Generation of heat on fuel rod in cosine pattern by using induction heating

    International Nuclear Information System (INIS)

    Keettikkal, Felix; Sajeesh, Divya; Rao, Poornima; Hande, Shashank; Dakave, Ganesh; Kute, Tushar; Mahajan, Akshay; Kulkarni, R.D.

    2017-01-01

    Fuel rods are used in a nuclear reactor for fission process. When these rods are cooled by water during the heat transfer, the temperature stress causes undesirable defects in the fuel rod. Studying these defects occurring in the fuel rod in the nuclear cluster during nuclear reaction is a difficult task because fission reaction makes it difficult to analyse the changes in the rod. Hence there is a need to use a replica of the rod with similar thermal stress to study and analyse the rod for the defects. Normally the heat generated on the fuel rod follows a cosine pattern which is an inherent characteristic inside a nuclear reactor. In view of this, in this paper induction heating method is used on a rod to create an exact replica of the cosine pattern of heat by varying the pitch of the coil. First, a MATLAB simulation is done using simulink. Then a prototype of the model has been developed comprising of carbon steel pipe, with length and outside diameter of 1 meter and 48.2 mm, respectively. Instead of using water as coolant, rod is simulated in air. Therefore, the heat generated is lost by normal convection and radiation. Non-nuclear testing can be a valuable tool in the development or in some kind of experiment using nuclear reactor. Induction heating becomes an alternative to classical heating technologies because of its advantages such as efficiency, quickness, safety, clean heating and accurate power control. (author)

  7. Assessment of US NRC fuel rod behavior codes to extended burnup

    International Nuclear Information System (INIS)

    Laats, E.T.; Croucher, D.W.; Haggag, F.M.

    1982-01-01

    The purpose of this paper is to report the status of assessing the capabilities of the NRC fuel rod performance codes for calculating extended burnup rod behavior. As part of this effort, a large spectrum of fuel rod behavior phenomena was examined, and the phenomena deemed as being influential during extended burnup operation were identified. Then, the experiment data base addressing these identified phenomena was examined for availability and completeness at extended burnups. Calculational capabilities of the NRC's steady state FRAPCON-2 and transient FRAP-T6 fuel rod behavior codes were examined for each of the identified phenomenon. Parameters calculated by the codes were compared with the available data base, and judgments were made regarding model performance. Overall, the FRAPCON-2 code was found to be moderately well assessed to extended burnups, but the FRAP-T6 code cannot be adequately assessed until more transient high burnup data are available

  8. Change in geometrical parameters of WWER high burnup fuel rods under operational conditions and transient testing

    International Nuclear Information System (INIS)

    Kanashov, B.; Amosov, S.; Lyadov, G.; Markov, D.; Ovchinnikov, V; Polenok, V.; Smirnov, A.; Sukhikh, A.; Bek, E.; Yenin, A.; Novikov, V.

    2001-01-01

    The paper discusses changes in fuel rods geometric parameters as result of operation conditions and burnups. The degree of geometry variability of fuel rods, cladding and column is one of the most important characteristics affecting fuel serviceability. On the other hand, changes in fuel rod geometric parameters influence fuel temperature, fission gas release, fuel-to-cladding stress strained state as well as the degree of interaction with FA skeleton elements and skeleton rigidity. Change in fuel-to-cladding gap is measured using compression technique. The axial distribution of fuel-to-cladding gap demonstrates the largest decrease of the gap in the region 500 to 2000 mm from the bottom of the fuel rod (WWER-440) and in the region of 500 to 3000 mm for WWER-1000. The cladding material creep in WWER fuel rods together with the radiation growth results in fuel rod cladding elongation. A set of transient tests for spent WWER-440 and WWER-1000 fuel rods carried out in SSC RIAR during a period 1995-1999, with the aim to estimate the changes in geometric parameters of FRs. The estimation of changes in outer diameter of cladding and fuel column and fuel-to-cladding gap are performed in transient conditions (changes in linear power range of 180 to 400 W/cm) for both WWER-440 and WWER-1000. WWER-440 fuel rods having the same burnup and close fuel-cladding contact before testing are subjected to considerable hoop cladding strain in testing up to 300 W/cm. But the hoop strain does not grow due to the structural changes in fuel column and decrease in central hole diameter occurred when the power is higher

  9. BWR simulation in a stationary state for the evaluation of fuel cell design

    International Nuclear Information System (INIS)

    Montes T, J. L.; Ortiz S, J. J.; Perusquia del C, R.; Castillo M, A.

    2014-10-01

    In this paper the simulation of a BWR in order to evaluate the performance of a set of fuel assemblies under stationary state in three dimensions (3-D) is presented. 15 cases selected from a database containing a total of 18225 cases are evaluated. The main selection criteria were based on the results of the design phase of the power cells in two dimensions (2-D) and 3-D initial study. In 2-D studies the parameters that were used to qualify and select the designs were basically the local power peaking factor and neutron multiplication factor of each fuel cell. In the initial 3-D study variables that defined the quality of results, and from which the selection was realized, are the margins to thermal limits of reactor operation and the value of the effective multiplication factor at the end of cycle operation. From the 2-D and 3-D results of the studies described a second 3-D study was realized, where the optimizations of the fuel reload pattern was carried out. The results presented in this paper correspond to this second 3-D study. It was found that the designs of the fuel cell they had a similar behavior to those provided by the fuel supplier of reference BWR. Particularly it noted the impact of reload pattern on the cold shut down margin. An estimate of the operation costs of reference cycle analyzed with each one designed reload batch was also performed. As a result a positive difference (gain) up to 10,347 M/US D was found. (Author)

  10. Production and release of the fission gas in (Th U)O2 fuel rods

    International Nuclear Information System (INIS)

    Dias, Marcio S.

    1982-06-01

    The volume, composition and release of the fission gas products were caculated for (Th, U)O 2 fuel rods. The theorectical calculations were compared with experimental results available on the literature. In ThO 2 + 5% UO 2 fuel rods it will be produced approximated 5% more fission gas as compared to UO 2 fuel rods. The fission gas composition or Xe to Kr ratio has showed a decreasing fuel brunup dependence, in opposition to that of UO 2 . Under the same fuel rod operational conditions, the (Th, U)O 2 fission gas release will be smaller as compared to UO 2 . This behaviour of (Th, U)O 2 fuel comes from smallest gas atom difusivity and higher activation energies of the processes that increase the fission gas release. (Author) [pt

  11. End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)

    International Nuclear Information System (INIS)

    Richardson, K.D.

    1987-10-01

    Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 2580 0 F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs

  12. Fuel and control rod failure behavior during degraded core accidents

    International Nuclear Information System (INIS)

    Chung, K.S.

    1984-01-01

    As a part of the pretest and posttest analyses of Light Water Reactor Source Term Experiments (STEP) which are conducted in the Transient Reactor Test (TREAT) facility, this paper investigates the thermodynamic and material behaviors of nuclear fuel pins and control rods during severe core degradation accidents. A series of four STEP tests are being performed to simulate the characteristics of the power reactor accidents and investigate the behavior of fission product release during these accidents. To determine the release rate of the fission products from the fuel pins and the control rod materials, information concerning the timing of the clad failure and the thermodynamic conditions of the fuel pins and control rods are needed to be evaluated. Because the phase change involves a large latent heat and volume expansion, and the phase change is a direct cause of the clad failure, the understanding of the phase change phenomena, particularly information regarding how much of the fuel pin and control rod materials are melted are very important. A simple energy balance model is developed to calculate the temperature profile and melt front in various heat transfer media considering the effects of natural convection phenomena on the melting and freezing front behavior

  13. Steady State and Transient Fuel Rod Performance Analyses by Pad and Transuranus Codes

    International Nuclear Information System (INIS)

    Slyeptsov, O.; Slyeptsov, S.; Kulish, G.; Ostapov, A.; Chernov, I.

    2013-01-01

    The report performed under IAEA research contract No.15370/L2 describes the analysis results of WWER and PWR fuel rod performance at steady state operation and transients by means of PAD and TRANSURANUS codes. The code TRANSURANUS v1m1j09 developed by Institute for of Transuranium Elements (ITU) was used based on the Licensing Agreement N31302. The code PAD 4.0 developed by Westinghouse Electric Company was utilized in the frame of the Ukraine Nuclear Fuel Qualification Project for safety substantiation for the use of Westinghouse fuel assemblies in the mixed core of WWER-1000 reactor. The experimental data for the Russian fuel rod behavior obtained during the steady-state operation in the WWER-440 core of reactor Kola-3 and during the power transients in the core of MIR research reactor were taken from the IFPE database of the OECD/NEA and utilized for assessing the codes themselves during simulation of such properties as fuel burnup, fuel centerline temperature (FCT), fuel swelling, cladding strain, fission gas release (FGR) and rod internal pressure (RIP) in the rod burnup range of (41 - 60) GWD/MTU. The experimental data of fuel behavior at steady-state operation during seven reactor cycles presented by AREVA for the standard PWR fuel rod design were used to examine the code FGR model in the fuel burnup range of (37 - 81) GWD/MTU. (author)

  14. Use of a commercial heat transfer code to predict horizontally oriented spent fuel rod temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1992-01-01

    Radioactive spent fuel assemblies are a source of hazardous waste that will have to be dealt with in the near future. It is anticipated that the spent fuel assemblies will be transported to disposal sites in spent fuel transportation casks. In order to design a reliable and safe transportation cask, the maximum cladding temperature of the spent fuel rod arrays must be calculated. The maximum rod temperature is a limiting factor in the amount of spent fuel that can be loaded in a transportation cask. The scope of this work is to demonstrate that reasonable and conservative spent fuel rod temperature predictions can be made using commercially available thermal analysis codes. The demonstration is accomplished by a comparison between numerical temperature predictions, with a commercially available thermal analysis code, and experimental temperature data for electrical rod heaters simulating a horizontally oriented spent fuel rod bundle

  15. Test requirement for PIE of HANARO irradiated fuel rod

    International Nuclear Information System (INIS)

    Lim, I. C.; Cho, Y. G.

    2000-06-01

    Since the first criticality of HANARO reached in Feb. of 1995, the rod type U 3 Si-A1 fuel imported from AECL has been used. From the under-water fuel inspection which has been conducted since 1997, a ballooning-rupture type abnormality was observed in several fuel rods. In order to find the root cause of this abnormality and to find the resolution, the post irradiation examination(PIE) was proposed as the best way. In this document, the information from the under-water inspection as well as the PIE requirements are described. Based on the information in this document, a detail test plan will be developed by the project team who shall conduct the PIE

  16. Non-parametric order statistics method applied to uncertainty propagation in fuel rod calculations

    International Nuclear Information System (INIS)

    Arimescu, V.E.; Heins, L.

    2001-01-01

    Advances in modeling fuel rod behavior and accumulations of adequate experimental data have made possible the introduction of quantitative methods to estimate the uncertainty of predictions made with best-estimate fuel rod codes. The uncertainty range of the input variables is characterized by a truncated distribution which is typically a normal, lognormal, or uniform distribution. While the distribution for fabrication parameters is defined to cover the design or fabrication tolerances, the distribution of modeling parameters is inferred from the experimental database consisting of separate effects tests and global tests. The final step of the methodology uses a Monte Carlo type of random sampling of all relevant input variables and performs best-estimate code calculations to propagate these uncertainties in order to evaluate the uncertainty range of outputs of interest for design analysis, such as internal rod pressure and fuel centerline temperature. The statistical method underlying this Monte Carlo sampling is non-parametric order statistics, which is perfectly suited to evaluate quantiles of populations with unknown distribution. The application of this method is straightforward in the case of one single fuel rod, when a 95/95 statement is applicable: 'with a probability of 95% and confidence level of 95% the values of output of interest are below a certain value'. Therefore, the 0.95-quantile is estimated for the distribution of all possible values of one fuel rod with a statistical confidence of 95%. On the other hand, a more elaborate procedure is required if all the fuel rods in the core are being analyzed. In this case, the aim is to evaluate the following global statement: with 95% confidence level, the expected number of fuel rods which are not exceeding a certain value is all the fuel rods in the core except only a few fuel rods. In both cases, the thresholds determined by the analysis should be below the safety acceptable design limit. An indirect

  17. Intermediate flow mixing nonsupport grid for BWR fuel assembly

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1987-01-01

    An intermediate flow mixing nonsupport grid is described for use in a nuclear reactor fuel assembly containing an array of elongated fuel rods. The grid comprises: (a) interleaved inner straps arranged in an egg-crate configuration to define inner cell openings for receiving respective ones of the fuel rods. The inner straps have outer terminal end portions; (b) an outer peripheral strap attached to the respective terminal end portions of the inner straps to define perimeter cell openings for receiving other ones of the fuel rods. The inner straps and outer strap together have opposite upstream and downstream sides; (c) a first group of mixing vanes disposed at the downstream side and being attached on portions of the outer strap and on respective portions of the inner straps. Together with the outer strap portions, they define the perimeter cell openings. Each of the mixing vanes of the first group extend generally in a downstream direction and inwardly toward the perimeter cell openings for deflecting coolant flowing; and (d) a second group of mixing vanes disposed at the downstream side and being attached on other portions of the inner straps. Together with the respective portions, they define the inner cell openings. Each of the mixing vanes of the second group extend generally in a downstream direction and inwardly toward the inner cell openings for deflecting coolant flowing therethrough; (e) the mixing vanes of the second group are substantially smaller in size than the mixing vanes of the first group so as to generate substantially less turbulence in the portions of the coolant flowing through the inner cell openings than in the portions of the coolant flowing through the perimeter cell openings

  18. Method and apparatus for the production of a nuclear fuel rod

    International Nuclear Information System (INIS)

    Ballard, A.S.; Cooper, R.G.; Davis, D.E.

    1975-01-01

    The method designs the manufacture of e.g. rod-shaped fuel element fillings in which fuel particles are suspended within a liquid and solidifiable binder such as graphite powder in pitch. The fuel particles are filled into cavities whose cross-sections correspond to those of the fuel rods. After closing with a covering plate, a piston exerts a force from below on it until its solidification. To follow, the liquid binder is injected through lower openings in the cavities. Due to the lubricity of the binder, the cavities are heated to 150 to 175 0 C, the packing of particles are homogenized. This procedure is further supported by the constant pressure of the pistons. Excess binder and air can flow out through openings in the covering plate. After cooling and solidification of the binder as well as after removal of the covering plate, the piston thrusts out the formed bodies or fuel rods from the cavities by an upwards movement. (DG/LH) [de

  19. Preliminary Study on the Fretting Wear Behaviors of a Duel Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.H.; Lee, K.H.; Kim, H.K. [KAERI, 150 Dukjin-dong Yuseon-gu Daejeon, 305-353 (Korea, Republic of)

    2009-06-15

    Based on MIT's concept, an innovative fuel development project was launched by KAERI that a substantial power up-rating could be realized by introducing an internally and externally double cooled annular fuel for current PWR reactors. In order to apply this duel cooled fuel to an OPR 1000 reactor system, geometrical features of structural parts in a fuel assembly should be changed except an overall dimension of a fuel assembly. Typical changes are summarized as fuel rod diameter and weight, shape and position of a spacer grid spring, etc. When considering a duel cooled fuel rod, its vibration characteristic and fretting behavior should be verified because the modified shape and dimension of spacer grid spring, fuel rod diameter and weight, number of spacer grid assembly are closely related to a flow-induced vibration in a duel cooled fuel assembly. In this study, based on FIV test results of 4x4 fuel assembly, fretting wear tests of an outer duel cooled fuel rod were performed by using an embossing type spacer grid spring that could adjust its spring stiffness. The discussion was focused on the evaluation of the optimized spring stiffness and spring position in 1x1 cell by analyzing the fretting wear results. (authors)

  20. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior