WorldWideScience

Sample records for bwr fuel rods

  1. Crud deposition modeling on BWR fuel rods

    International Nuclear Information System (INIS)

    Deposition of boiling water reactor (BWR) system corrosion products (crud) on operating fuel rods has resulted in performance-limiting conditions in a number of plants. The operational impact of performance-limiting conditions involving crud deposition can be detrimental to a BWR operator, resulting in unplanned or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and/or undesirable core design restrictions. To facilitate improved management of crud-related fuel performance risks, EPRI has developed the CORAL (Crud DepOsition Risk Assessment ModeL) tool. This paper presents a summary of the CORAL elements and benchmarking results. Applications of CORAL as a tool for fuel performance risk assessment are also discussed. (author)

  2. Investigation of the load change behaviour of PWR- and BWR fuel rods at positive power ramps

    International Nuclear Information System (INIS)

    The following irradiation experiments have been performed to determine the operational behaviour of fuel rods in LWR during power ramps: a) power ramp experiment in the nuclear power plant of Obrigheim (KWO) with 6 PWR test fuel rods at a burnup of about 14 MWd/kgU. No fuel rod defects have been found. b) preirradiation of 45 segmented fuel rods in KWO and of 8 segmented fuel rods in the reactor of Wuergassen; the preirradiated segments will be ramped at HFR Petten. c) power ramp experiments at HBWR with 8 BWR test fuel rods at burnups of 4-14 MWd/kgU; ramping caused no defects. (orig.)

  3. Study of behavior on bonding and failure mode of pressurized and doped BWR fuel rod

    International Nuclear Information System (INIS)

    The study of transient behavior on the bonding and the failure mode was made using the pressurized/doped 8 x 8 BWR type fuel rod. The dopant was mullite minerals consisted mainly of silicon and aluminum up to 1.5 w/o. Pressurization of the fuel rod with pure helium was made to the magnitude about 0.6 MPa. As a reference, the non-pressurized/non-doped 8 x 8 BWR fuel rod and the pressurized/7 x 7 BWR fuel rod up to 0.6 MPa were prepared. Magnitude of energy deposition given to the tested fuel rods was 248, 253, and 269 cal/g·fuel, respectively. Obtained results from the pulse irradiation in NSRR are as follows. (1) It was found from the experiment that alternation of the fuel design by the adoption of pressurization up to 0.6 MPa and the use of wider gap up to 0.38 mm could avoid the dopant BWR fuel from the overall bonding. The failure mode of the present dopant fuel was revealed to be the melt combined with rupture. (2) The time of fuel failure of the pressurized/doped 8 x 8 BWR fuel defected by the melt/rupture mode is of order of two times shorter than that of the pressurized/ 7 x 7 BWR defected by the rupture mode. Failure threshold of the pressurized/doped 8 x 8 BWR BWR tended to be lower than that of non-pressurized/non-doped 8 x 8 BWR one. Cracked area of the pressurized/doped 8 x 8 BWR was more wider and magnitude of oxidation at the place is relatively larger than the other tested fuels. (3) Failure mode of the non-pressurized/ 8 x 8 BWR fuel rod was the melt/brittle accompanied with a significant bonding at failed location. While, failure mode of the pressurized/ 7 x 7 BWR fuel rod was the cladding rupture accompanied with a large ballooning. No bonding at failed location of the latter was observed. (author)

  4. Critical experiments for BWR fuel assemblies with cluster of gadolinia rods

    International Nuclear Information System (INIS)

    Gadolinia-bearing fuel rods are needed for high-burnup fuels. Strong neutron absorption of gadolinia makes an assembly heterogeneous from the viewpoint of reactor physics. The cluster of gadolinia-bearing fuel rods is useful for higher-burnup fuels than current fuels. Few critical experiments have been reported for fuel assemblies with the cluster of gadolinia-bearing fuel rods. We conducted critical experiments for BWR fuel assemblies with the cluster of gadolinia-bearing fuel rods in the Toshiba Nuclear Critical Assembly (NCA). Critical water level and power distribution were measured. Measurements were compared with analyses by a continuous-energy Monte Carlo code, MCNP, with the JENDL3.3 nuclear data library. (author)

  5. Connection between end plates and rods in a BWR fuel element

    International Nuclear Information System (INIS)

    The problem of the connection between the end plates and the rods of a BWR fuel element is analytically formulated. The behaviour of the springs coupling the rods with the upper plate is analyzed with particular detail since the deformation of these springs affects the forces at the interface of the fuel element structure components. A tool is given to design the springs according to some considerations regarding the mechanical strength of the interacting components as well as the influence of the possible geometrical unevennes of the system that can arise during the fuel element lifetime. (Cali', G.P.)

  6. Detection of missing rods in a spent BWR fuel assembly by computed gamma emission tomography

    International Nuclear Information System (INIS)

    This paper reports on a computed gamma emission tomography system that has been constructed which allows detection of the cross sectional rod pattern of BWR fuel assemblies. The under water detection head constructed is remote controlled by a laptop computer and it is housing two SiLi detectors. By scanning 32 to 48 views, the position of the water filled inner rod could be clearly detected in each of the three assemblies with cooling times of 2, 4 and 8 years using gamma rays of Pr-144 or Eu-154

  7. Composition and Distribution of Tramp Uranium Contamination on BWR and PWR Fuel Rods

    International Nuclear Information System (INIS)

    In a joint research project of VGB and AREVA NP GmbH the behaviour of alpha nuclides in nuclear power plants with light water reactors has been investigated. Understanding the source and the behaviour of alpha nuclides is of big importance for planning radiation protection measures for outages and upcoming dismantling projects. Previous publications have shown the correlation between plant specific alpha contamination of the core and the so called 'tramp fuel' or 'tramp uranium' level which is linked to the defect history of fuel assemblies and accordingly the amount of previously washed out fuel from defective fuel rods. The methodology of tramp fuel estimation is based on fission product concentrations in reactor coolant but also needs a good knowledge of tramp fuel composition and in-core distribution on the outer surface of fuel rods itself. Sampling campaigns of CRUD deposits of irradiated fuel assemblies in different NPPs were performed. CRUD analyses including nuclide specific alpha analysis have shown systematic differences between BWR and PWR plants. Those data combined with literature results of fuel pellet investigations led to model improvements showing that a main part of fission products is caused by fission of Pu-239 an activation product of U-238. CRUD investigations also gave a better picture of the in-core composition and distribution of the tramp uranium contamination. It was shown that the tramp uranium distribution in PWR plants is time dependent. Even new fuel assemblies will be notably contaminated after only one cycle of operation. For PWR applies the following logic: the higher the local power the higher the contamination. With increasing burnup the local rod power usually decreases leading to decreasing tramp uranium contamination on the fuel rod surface. This is not applicable for tramp uranium contamination in BWR. CRUD contamination (including the tramp fuel deposits) is much more fixed and is constantly increasing

  8. Fuel loading and control rod patterns optimization in a BWR using tabu search

    International Nuclear Information System (INIS)

    This paper presents the QuinalliBT system, a new approach to solve fuel loading and control rod patterns optimization problem in a coupled way. This system involves three different optimization stages; in the first one, a seed fuel loading using the Haling principle is designed. In the second stage, the corresponding control rod pattern for the previous fuel loading is obtained. Finally, in the last stage, a new fuel loading is created, starting from the previous fuel loading and using the corresponding set of optimized control rod patterns. For each stage, a different objective function is considered. In order to obtain the decision parameters used in those functions, the CM-PRESTO 3D steady-state reactor core simulator was used. Second and third stages are repeated until an appropriate fuel loading and its control rod pattern are obtained, or a stop criterion is achieved. In all stages, the tabu search optimization technique was used. The QuinalliBT system was tested and applied to a real BWR operation cycle. It was found that the value for k eff obtained by QuinalliBT was 0.0024 Δk/k greater than that of the reference cycle

  9. Thermal hydraulic test apparatus to develop advanced BWR fuel bundles with spectral shift rods (SSR)

    International Nuclear Information System (INIS)

    An advanced water rod (WR) called the spectral shift rod (SSR), which replaces a conventional WR in a BWR fuel bundle, enhances the BWR's merit of uranium saving through the spectral shift operation. The SSR consists of an inlet hole, a wide ascending path, a narrow descending path and an outlet hole. The inlet hole locates below a lower tie plate (LTP) and the outlet hole is set above it. In the SSR, water boils by neutron and gamma-ray heating and water level is formed in the ascending path. This SSR water level can be controlled by core flow rate, which amplifies core void fraction change, resulting in the amplified spectral shift effect. Steady state and transient tests were conducted to evaluate SSR thermal-hydraulic characteristics under BWR operation condition. The several types of SSR configuration were tested, which covers SSR design in both next generation and conventional BWRs. In this paper, the test apparatus overview and measurement systems especially two phase water level measures in the SSR are presented. (author)

  10. Thermal-hydraulic stability tests for newly designed BWR rod bundle (step-III fuel type A)

    International Nuclear Information System (INIS)

    Thermal-hydraulic stability tests have been performed on electrically heated bundles to simulate the newly designed Boiling Water Reactor (BWR) fuels in a parallel channel test loop. The objective of the current experimental program is to investigate how the newly designed bundle could improve the thermal-hydraulic stability. Measurements of the thermal-hydraulic instability thresholds in two vertical rod bundles have been conducted in steam-water two-phase flow conditions at the TOSHIBA test loop. Fluid conditions were BWR operating conditions of 7 MPa system pressure, 1.0-2.0x106 kg/m2/h inlet mass flux and 28-108 kJ/kg inlet subcooling. The parallel channel test loop consists of a main bundle of 3x3 indirectly heated rods of 1/9 symmetry of 9x9 full lattice and a bypass bundle of 8x8. These are both simulated BWR rod bundles in respect of rod diameter, heated length, rod configuration, fuel rod spacer, core inlet hydraulic resistance and upper tie plate. There are three types of the 3x3 test bundles with different configurations of a part length rod of two-thirds the length of the other rods and an axial power shape. The design innovation of the part length rod for a 9x9 lattice development, though addition of more fuel rods increases bundle pressure drop, reduces pressure drop in the two-phase portion of the bundle, and enhances the thermal hydraulic stability. Through the experiments, the parameter dependency on the channel stability threshold is obtained for inlet subcooling, inlet mass flux, inlet flow resistance, axial power shape and part length rod. The main conclusion is that the stability threshold is about 10% greater with the part length rod than without the part length rod. The new BWR bundle consisting of the part length rod has been verified in respect of thermal hydraulic stability performance. (author)

  11. Simulation of Irradiated BWR fuel rod (TS) test in NSRR using FRAP-T6 and NSR-77

    International Nuclear Information System (INIS)

    Series of pulse irradiation tests have been performed in the Nuclear Safety Research Reactor (NSRR) to investigate irradiated fuel rod performance under the Reactivity Initiated Accident (RIA) conditions. Five tests, called Tests TS-1 through TS-5, were conducted in a period from 1989 to 1993 with irradiated 7x7 type BWR fuel rods provided from a commercial power plant. Simulation calculations of the TS tests were carried out with the FRAP-T6 code, which is widely used in the world to estimate fuel performance under various accident conditions, and with the NSR77 code, which describes fresh fuel rod performance well in the NSRR tests. Results of the calculation are compiled in this report and applicability of the codes to the irradiated BWR fuel rod tests is discussed. (author)

  12. Failure thresholds of high burnup BWR fuel rods under RIA conditions

    International Nuclear Information System (INIS)

    Transient deformation of high burnup boiling water reactor (BWR) fuel rods was measured and failure limit was examined under simulated reactivity-initiated accident (RIA) conditions. Brittle cladding failure occurred at a small hoop strain of about 0.4% during an early phase of the pulse irradiation tests at the Nuclear Safety Research Reactor (NSRR). Strain rates were in an order of tens %/s at the time of the failure. Comparison of the results with thermal expansion of pellets suggested that the cladding deformation was caused by thermal expansion of the pellets. In other words, the influence of fission gases in the pellets was small in the early phase deformation. Separate effect tests were conducted to examine influence of the cladding temperature on the cladding failure behavior. Influence of the pulse width on the failure threshold was discussed in terms of the strain rate, magnitude of the deformation and temperature of the cladding for high burnup BWR fuel rods under the RIA conditions. (author)

  13. Evaluation of thermal, mechanical and fission gas release behavior for BWR fuel rods with Teto

    International Nuclear Information System (INIS)

    A computer code (TETO) was developed to carry out thermal-mechanical analysis and fission gas release in fuel rod elements of the BWR type. This program was especially designed for use in the simulations made with the Fuel Management System (FMS) from Scandpower. Using experimental correlations this code models the phenomena of swelling, fission gas release and fracture for fuel pellets and cladding that can occur during irradiation cycles. This code differs from other programs in that it uses a simplified model to obtain the temperature profile along the cooling channel with the supposition that there exists a two-phase flow. This profile is used to determine the radial temperature distribution. The code calculates the axial and radial temperature distributions along the fuel rod at half the distance of the pellet's length; in other words there are as many axial points as pellets. Also, the program models the experimental correlation for swelling and fission gas releases and performs a thermal-elastic analysis for fuel pellets and cladding. (author)

  14. Experimental data report for Test TS-1 Reactivity Initiated Accident Test in NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    This report presents experimental data for Test TS-1 which was the first in a series of tests, simulating Reactivity Initiated Accident (RIA) conditions using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in October, 1989. Test fuel rod used in the Test TS-1 was a short-sized BWR (7 x 7) type rod which was fabricated from a commercial rod provided from Tsuruga Unit 1 power reactor. The fuel had an initial enrichment of 2.79 % and burnup of 21.3 GWd/t (bundle average). Pulse irradiation was performed at a condition of stagnant water cooling, atmospheric pressure and ambient temperature using a newly developed double container-type capsule. Energy deposition of the rod in this test was evaluated to be about 61 cal/g·fuel (55 cal/g·fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, fuel burnup measurements, transient behavior of the test rod during pulse irradiation and results of post pulse irradiation examinations are contained in this report. (author)

  15. Hydrogen uptake of BWR fuel rods. Power history effects at long irradiation times

    International Nuclear Information System (INIS)

    AREVA LTP (Low Temperature Process) Zircaloy-2 cladding for Boiling Water Reactors (BWR) in both RXA (Recrystallized Annealed) and CWSR (Cold Worked Stress Relieved) metallurgical states, has an optimized microstructure with an optimum size of SPP (Secondary Phase Particles) that has reduced the nodular corrosion to a minimum while maintaining a good uniform corrosion performance with acceptable hydrogen pickup. Classically hydrogen uptake is described by the Hydrogen Pick-Up Fraction (HPUF), which is the ratio of the hydrogen generated by uniform oxidation that is eventually picked up by the metal to the total hydrogen generated by oxidation. In the past, the hydrogen uptake database showed a low HPUF with hydrogen concentration close to the saturation value of the metal at operating temperature and correspondingly little hydride formation. The hydrogen concentration was correlated with irradiation time via the HPUF (at an almost constant corrosion and hydrogen production rate). Recently, some significantly higher hydrogen concentration values (300 wppm and more) have been measured for medium and high burnup rods. This effect was also observed on four AREVA fuel rods from BWR (Boiling Water Reactors). This prompted a thorough analysis of the hydrogen pickup database as well as material and environmental factors influencing corrosion and hydrogen uptake. The most important outcome of the investigation was that a low power – low steam condition is associated with increased hydrogen pickup. The linear power is a proxy variable for low heat flux and low steam quality in the coolant, which were identified as important parameters for physical processes that could explain the enhanced hydrogen uptake in some cases. The paper will present the database of the enhanced hydrogen uptake measured in European power reactors and demonstrate the effect of power history on the uptake process. Power histories with high hydrogen uptake included extended low power periods later in

  16. Process development and fabrication for sphere-pac fuel rods. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted.

  17. Thermal-hydraulic stability tests for newly designed BWR rod bundle (step-III fuel type B)

    International Nuclear Information System (INIS)

    The Step-III Fuel Type B is a new fuel design for high burn-up operation in BWRs in Japan. The fuel design uses a 9x9 - 9 rod bundle to accommodate the high fuel duty of high burn-up operation and a square water-channel to provide enhanced neutron moderation. The objective of this study is to confirm the thermal-hydraulic stability performance of the new fuel design by tests which simulate the parallel channel configuration of the BWR core. The stability testing was performed at the NFI test loop. The test bundle geometry used for the stability test is a 3x3 heater rod bundle which has about 1/8 of the cross section area of the full size 9x9 - 9 rod bundle. Full size heater rods were used to simulate the fuel rods. For parallel channel simulation, a bypass channel with a 6x6 - 8 heater rod bundle was connected in parallel with the 3x3 rod bundle test channel. The stability test results showed typical flow oscillation features which have been described as density wave oscillations. The stationary limit cycle oscillation extended flow amplitudes to several tens of a percent of the nominal value, during which periodic dry-out and re-wetting were observed. The test results were used for verification of a stability analysis code, which demonstrated that the stability performance of the new fuel design has been conservatively predicted. (author)

  18. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part)

    International Nuclear Information System (INIS)

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  19. BWR fuel performance

    International Nuclear Information System (INIS)

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  20. Experimental data report for test TS-5 Reactivity Initiated Accident test in the NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    This report presents experimental data for Test TS-5 which was the fifth test in a series of Reactivity Initiated Accident (RIA) tests using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in January, 1993. Test fuel rod used in the Test TS-5 was a short-sized BWR (7x7) type rod which was re-fabricated from a commercial rod irradiated in the Tsuruga Unit 1 power reactor of Japan Atomic Power Co. The fuel had an initial enrichment of 2.79% and a burnup of 26GWd/tU. A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The nominal energy deposition of 117±5cal/g·fuel (98±4cal/g·fuel in peak fuel enthalpy) was subjected to the test fuel rod and no fuel failure was observed in the test. The test fuel was pulse irradiated in a flow shroud which simulates fuel/water ratio in the commercial assembly. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and results of pre-pulse and post-pulse irradiation examinations are described in this report. (author)

  1. Experimental data report for test TS-3 Reactivity Initiated Accident test in the NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    This report presents experimental data for Test TS-3 which was the third test in a series of Reactivity Initiated Accident (RIA) tests using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in September, 1990. Test fuel rod used in the Test TS-3 was a short-sized BWR (7 x 7) type rod which was re-fabricated from a commercial rod irradiated in the Tsuruga Unit 1 power reactor of Japan Atomic Power Co. The fuel had an initial enrichment of 2.79 % and a burnup of 26 Gwd/tU. A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The energy deposition of the fuel rod in this test was evaluated to be 94 ± 4 cal/g · fuel (88 ± 4 cal/g · fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and results of pre-pulse and post-pulse irradiation examinations are described in this report. (author)

  2. BWR control rod patterns and fuel loading optimization using heuristic methods

    International Nuclear Information System (INIS)

    We show the results obtained with the OCOTH system to optimize the Fuel Reloads Design and Control Rod Patterns Design in a Boiling Water Reactor. Our system solves both problems in a coupled way. We used the 3-dimensional CM-PRESTO code to evaluate the solutions quality. The process has three stages. In the first step we obtain a Fuel Reload Design 'seed' using the Haling's principle. The followings steps are an iterative process between the Control Rod Patterns Designs and Fuel Reloads Design. Control Rod Patterns Design is proposed for the Fuel Reload Design 'seed' and then Control Rod Patterns Design is used to find a new Fuel Reload Design. Both processes are coupled in an iterative loop until a criterion stop is fulfilled. In the whole process, the genetic algorithms, neural networks and ant colony system optimization techniques were used. (authors)

  3. Fuel rod

    International Nuclear Information System (INIS)

    The present invention provide a fuel rod used in a BWR type reactor, preventing the occurrence of defects of weld portions and improving the operationability of test and assembling operation to improve the quality of weld portions. Namely, the fuel rod is formed by loading a plurality of fuel pellets in a cladding tube. The outer diameter of a groove portion of a tightly sealing end plug to be inserted and welded to the open end of the cladding tube is made substantially identical with the inner diameter of the cladding tube. A neck portion having a diameter smaller than the outer diameter of the groove portion is disposed between an end plug main body and the groove portion. As a result, since the outer diameter of the groove portion is substantially identical with the inner diameter of the cladding tube, the positioning is facilitated. Since the neck portion having a smaller diameter than the outer diameter of the groove portion is disposed in the groove portion, a gap is formed in the welded portion thereby enabling to facilitate the confirmation of weld sag for confirming integrity of the weld by a non-destructive test. (I.S.)

  4. Comparison study of the thermal mechanical performance of fuel rods during BWR fuel preconditioning operations using the computer codes FUELSIM and FEMAXI-V

    Energy Technology Data Exchange (ETDEWEB)

    Pantoja C, R. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Ingenieria Nuclear, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Ortiz V, J.; Castillo D, R., E-mail: rafael.pantoja10@yahoo.com.m [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-10-15

    The safety of nuclear power plants requires monitoring those parameters having some direct or indirect effect on safety. The thermal limits are values set for those parameters considered having most impact on the safe operation of a nuclear power reactor. Some thermal limits monitoring requires the thermal-mechanical analysis of the rods containing the nuclear fuel. The fuel rod thermal-mechanical behaviour under irradiation is a complex process in which there exists a great deal of interrelated physical and chemical phenomena, so that the fuel rod performance analysis in the core of a nuclear power reactor is generally accomplished by using computer codes, which integrate several of the phenomena that are expected to occur during the lifetime of the fuel rod in the core. In the operation of a nuclear power reactor, pre-conditioning simulations are necessary to determine in advance limit values for the power that can be generated in a fuel rod during any power ramp, and mainly during reactor startup, and thus avoiding any rod damage. In this work, a first analysis of the thermal-mechanical performance of typical fuel rods used in nuclear reactors of the type BWR is performed. This study includes two types of fuel rods: one from a fuel assembly design with array 8 x 8, and the other one from a 10 x 10 fuel assembly design, and a comparison of the thermal-mechanical performance between the two different rod designs is performed. The performance simulations were performed by the code FUELSIM, and compared against results previously obtained from similar simulation with the code FEMAXI-V. (Author)

  5. Evaluation of the thermal-mechanical performance of fuel rods of a BWR during a power ramp using the FUELSIM code

    International Nuclear Information System (INIS)

    To avoid the risk to environment due to release of radioactive material, because of occurrence of an accident, it is the priority of the design and performance of the diverse systems of safety of a commercial nuclear power plant. The safety of nuclear power plants requires, therefore, monitoring those parameters having some direct or indirect effect on safety. The thermal limits are values set for those parameters considered having most impact on the safe operation of a nuclear power reactor. Some thermal limits monitoring requires the thermal-mechanical analysis of the rods containing the nuclear fuel. The fuel rod thermal-mechanical behavior under irradiation is a complex process in which there exists a great deal of interrelated physical and chemical phenomena, so that the fuel rod performance analysis in the core of a nuclear power reactor is generally accomplished by using computer codes, which integrate several of the phenomena that are expected to occur during the lifetime of the fuel rod in the core. The main application of the thermal-mechanical analysis codes is the prediction of occurrence of conditions and/or phenomena that could lead to the deterioration or even mechanical failure of the fuel rod cladding, as, for example, the pellet-cladding interaction. In the operation of a nuclear power reactor, fuel preconditioning operations refer to the operational procedures employed to reduce the fuel rod failure probability due to fuel-cladding interaction, specially during reactor startup. Preconditioning simulations are therefore necessary to determine in advance limit values for the power that can be generated in a fuel rod, and thus avoiding any rod damage. In this work, a first analysis of the thermal-mechanical performance of typical fuel rods used in nuclear reactors of the type BWR 5/6, as those two nuclear reactors in Laguna Verde, Veracruz, is performed. This study includes two types of fuel rods: one from a fuel assembly design with an array 8 x 8

  6. Microscopic examinations of a sphere-pac and a pellet UO2 fuel rod, irradiated during 1530 days in the Dodewaard BWR

    International Nuclear Information System (INIS)

    Seventy sphere-pac and seventy standard pellet UO2 fuel rods operated simultaneously without failures in the Dodewaard BWR at axial average powers of 16-20 kW/m up to axial average burnups of 16-30 MWd/kg UO2. Peak powers were about 43 kW/m and occurred early in life at about 2 MWd/kg UO2. Peak burnups were 36 MWd/kg UO2. The non-destructive post-irradiation examinations, reported earlier, resulted in the conclusion that the measured differences between sphere-pac and pellet UO2 rods were in effect insignificant. The destructive post-irradiation examinations, in particular optical microscopy, SEM and EPMA on rod cross sections, exhibited some significant differences between sphere-pac and standard pellet UO2 rod behaviour during normal operation in the Dodewaard BWR. The extent of UO2 sintering and of outward movement of cesium in the central region of the fuel column were substantially smaller in the sphere-pac rod. The absence of an as-fabricated fuel-cladding gap in sphere-pac rods results in lower central fuel temperatures than in pellet rods, at least during the early in life period when the amount of released fission gas is still small. The presence of radial cracks in the outer, not sintered, regions of the pellet fuel column constitute direct paths for outward transport of volatile fission products from the hot sintered central region towards the inner cladding surface. This makes pellet rods sensitive for stress corrosion cracking of the zircaloy cladding wall. 20 figs.; 13 refs.; 13 tabs

  7. Thermomechanical analysis of a fuel rod in a BWR reactor using the FUELSIM code; Analisis termomecanico de una barra de combustible de un reactor BWR utilizando el codigo FUELSIM

    Energy Technology Data Exchange (ETDEWEB)

    Pantoja C, R. [Escuela Superior de Fisica y Matematicas, Departamento de Ingenieria Nuclear, IPN, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico, D. F. (Mexico); Ortiz V, J.; Araiza M, E. [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: rapaca78@yahoo.com.mx

    2009-10-15

    The thermomechanical behaviour of a fuel rod exposed to irradiation is a complex process in which are coupled great quantity of interrelated physical-chemical phenomena, for that analysis of rod performance in the core of a nuclear power reactor is realized generally with computation codes that integrate several phenomena expected during the time life of fuel rod in the core. An application of this type of thermomechanical codes is to predict, inside certain reliability margin, the design parameters that would be required to adjust, in order to get a better economy or rod performance, for a systematic approach to the fuel design optimization. FUELSIM is a thermomechanical code based on the models of FRAPCON code, which was developed under auspice of Nuclear Regulatory Commission of USA. FUELSIM allows iterative calculations like part of its programming structure, allowing search of extreme cases of behaviour, probabilistic analysis (or statistical), parametric analysis (or sensibility) and also can include as entrance data to the uncertainties associated with production data, code parameters and associated models. In this work is reported a first analysis of thermomechanical performance of a typical fuel rod used in a BWR 5/6. Results of maximum temperatures are presented in the fuel center and of axial deformation, for the 10 axial nodes in that the active longitude of fuel rod was divided. (Author)

  8. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part); MCTP, un codigo para el analisis termo-mecanico de una barra combustible de reactores tipo BWR (Parte Neutronica)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Ortiz V, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: hhl@nuclear.inin.mx

    2003-07-01

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  9. A BWR fuel channel tracking system

    International Nuclear Information System (INIS)

    A relational database management system with a query language, Reference 1, has been used to develop a Boiling Water Reactor (BWR) fuel channel tracking system on a microcomputer. The software system developed implements channel vendor and Nuclear Regulatory Commission recommendations for in-core channel movements between reactor operating cycles. A BWR Fuel channel encloses the fuel bundle and is typically fabricated using Ziracoly-4. The channel serves three functions: (1) it provides a barrier to separate two parallel flow paths, one inside the fuel assembly and the other in the bypass region outside the fuel assembly and between channels; (2) it guides the control rod as it moves between fuel assemblies and provides a bearing surface for the blades; and (3) it provides rigidity for the fuel bundle. All of these functions are necessary in typical BWR core designs. Fuel channels are not part of typical Pressurized Water Reactor (PWR) core designs

  10. A comparison of crud phases appearing on some Swedish BWR fuel rods using Laser Raman Spectroscopy

    International Nuclear Information System (INIS)

    Previous investigations showed that laser Raman spectroscopy (LRS) can be used as a phase specific analytical tool for radioactive fuel crud samples and also for details in the underlying layer of zirconium dioxide. It is relatively easy to record Raman spectra that discriminate between chemical phases for all crud oxides of interest. The method has therefore been recommended for crud investigations within the Swedish program. At ideal conditions the resolution is about 1 μm, permitting detailed position determination of crud phases in the sample. Therefore LRS is a very good complement to X-ray diffraction (XRD). The methods for sample preparation and handling of radioactive crud samples for LRS turn out to be relatively simple. A detailed LRS study on fuel crud samples from Barsebaeck 2, Forsmark 2, Forsmark 3 and Ringhals 1 was performed in this work. All of those Swedish BWRs were operated at different conditions at the time of sampling. The chemistry regimes covered NWC, HWC and other variable conditions. Also different types of fuel, exposure times and sampling positions were selected. (authors)

  11. BWR control rod design using tabu search

    International Nuclear Information System (INIS)

    An optimization system to get control rod patterns (CRP) has been generated. This system is based on the tabu search technique (TS) and the control cell core heuristic rules. The system uses the 3-D simulator code CM-PRESTO and it has as objective function to get a specific axial power profile while satisfying the operational and safety thermal limits. The CRP design system is tested on a fixed fuel loading pattern (LP) to yield a feasible CRP that removes the thermal margin and satisfies the power constraints. Its performance in facilitating a power operation for two different axial power profiles is also demonstrated. Our CRP system is combined with a previous LP optimization system also based on the TS to solve the combined LP-CRP optimization problem. Effectiveness of the combined system is shown, by analyzing an actual BWR operating cycle. The results presented clearly indicate the successful implementation of the combined LP-CRP system and it demonstrates its optimization features

  12. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    A fuel assembly has a 9 x 9 square lattice arrangement having a water channel which occupies an area of 3 x 3 lattice pattern corresponding to 9 fuel rods. Fuel pellets comprise those of not more 7 kinds which have fission products at enrichment degrees different by a spun of not less than 10%. Fuel rods comprise from 4 to 12 first type fuel rods and remaining second type fuel rods. The first type fuel rod is loaded with fuel pellets of fissionable products having an enrichment degree axially different at the upper and the lower portions. The second type fuel rod is loaded with fuel pellets of fissionable products having the same enrichment degree in the vertical direction. With such a constitution, the enrichment degree of fissionable products of fuel pellets in the fuel assembly for a BWR type reactor having different reactor constitution and operation conditions can be used in common. Accordingly, the degree of freedom for the design of the distribution of the enrichment degree is increased. (I.N.)

  13. Transportation activities for BWR fuels at NFI

    International Nuclear Information System (INIS)

    Nuclear Fuel Industries, LTD. (NFI) supplies fuel assemblies for both PWR and BWR in Japan. We can also manage transportation of the fuel assemblies from our fabrication facilities to the nuclear power plants of Japanese utilities. For the transportation of fuel assembly, we designed and fabricated the transportation containers to meet the requirements of the IAEA regulations, and licensed in Japan. This paper introduced the recent activity and R and D of NFI concerning transportation of BWR fuel assembly. NT-XII transportation container was developed for fresh BWR fuel assemblies. NT-XII container consists of inner container and outer container. Two BWR fuel assemblies with up to 5 wt.-% 235-U enriched are enclosed in an inner container. In the concept of NT-XII container design, we made the best priority to transportation efficiency, as well as ensuring fuel integrity during transportation. NT-XII has been used since 2002 in Japan. Thanks to the lightening weight of containers, the number of containers to be loaded to one transportation truck was increased up to 9 containers (equivalent to 18 fuel assemblies) compared with former type container (NT-IV transportation container) which can be loaded up to 6 containers (equivalent to 12 fuel assemblies). In addition to the design of brand-new container, we promote the improvement of the packaging methods. In Japan, in order to reduce the damage to the fuel rod and fuel spacer while transporting, polyethylene sleeves which are called 'packing separators' are inserted in the rod-to-rod gap of fuel assembly. However, packing separators requires time and cost for the installation at fuel fabrication facility. In the same way, huge time and cost are needed for removal of packing separators at nuclear power plant. For the improvement of preparation efficiency before and after transportation, we investigated the influence of vibration to fuel integrity in case of transportation without packing separators. Based on the above

  14. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. On such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97 degrees C and whether the cladding of the stored spent fuel ever exceeds 350 degrees C. Limiting the borehole to temperatures of 97 degrees C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350 degrees C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97 degrees C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350 degrees C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft x 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40 degrees C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation

  15. TRU transmutation type BWR fuel assembly

    International Nuclear Information System (INIS)

    The BWR fuel assembly is formed by bundling a plurality of fuel rods and a water channel disposed at the center of the assembly by a plurality of spacers. An upper tie plate and a lower tie plate are disposed to upper and lower portions of the fuel rods and the water channel respectively. An upper end plug of the water channel is attached detachably to a cylindrical main body of the water channel. A zircaloy tube incorporating TRU nuclides is contained and secured in the water channel. The zircaloy tube has such a structure as capable of incorporating and sealing oxides or metal materials containing TRU nuclides. Since the zircaloy tube containing TRU nuclides is contained not in fuel region but in the water rod, the loaded uranium amount of fuels is not reduced but the reactivity can be ensured. (I.N.)

  16. Investigation of control rod worth and nuclear end of life of BWR control rods

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Per

    2008-01-15

    This work has investigated the Control Rod Worth (CRW) and Nuclear End of Life (NEOL) values for BWR control rods. A study of how different parameters affect NEOL was performed with the transport code PHOENIX4. It was found that NEOL, expressed in terms of {sup 10}B depletion, can be generalized beyond the conditions for which the rod is depleted, such as different power densities and void fractions, the corresponding variation in the NEOL will be about 0.2-0.4% {sup 10}B. It was also found that NEOL results for different fuel types and different fuel enrichments have a variation of about 2-3% in {sup 10}B depletion. A comparative study on NHOL and CRW was made between PHOENIX4 and the stochastic Monte Carlo code MCNP. It was found that there is a significant difference, both due to differences in the codes and to limitations in the geometrical modeling in PHOENIX4. Since MCNP is considered more physically correct, a methodology was developed to calculate the nuclear end of life of BWR control rods with MCNP. The advantages of the methodology are that it does not require other codes to perform the depletion of the absorber material, it can describe control rods of any design and it can deplete the control rod absorber material without burning the fuel. The disadvantage of the method is that is it time-consuming.

  17. Investigation of control rod worth and nuclear end of life of BWR control rods

    International Nuclear Information System (INIS)

    This work has investigated the Control Rod Worth (CRW) and Nuclear End of Life (NEOL) values for BWR control rods. A study of how different parameters affect NEOL was performed with the transport code PHOENIX4. It was found that NEOL, expressed in terms of 10B depletion, can be generalized beyond the conditions for which the rod is depleted, such as different power densities and void fractions, the corresponding variation in the NEOL will be about 0.2-0.4% 10B. It was also found that NEOL results for different fuel types and different fuel enrichments have a variation of about 2-3% in 10B depletion. A comparative study on NHOL and CRW was made between PHOENIX4 and the stochastic Monte Carlo code MCNP. It was found that there is a significant difference, both due to differences in the codes and to limitations in the geometrical modeling in PHOENIX4. Since MCNP is considered more physically correct, a methodology was developed to calculate the nuclear end of life of BWR control rods with MCNP. The advantages of the methodology are that it does not require other codes to perform the depletion of the absorber material, it can describe control rods of any design and it can deplete the control rod absorber material without burning the fuel. The disadvantage of the method is that is it time-consuming

  18. Evaluation of the RIA simulation tests FK-1 , FK-2 and FK-3 on high-burnup rods BWR fuel rods

    International Nuclear Information System (INIS)

    This report deals with an evaluation of three pulse irradiation tests, which were carried out in 1996-1998 in the Japanese Nuclear Safety Research Reactor (NSRR) to study the behaviour of high-burnup boiling water reactor fuel under reactivity initiated accidents. The tests, FK-1, FK-2 and FK-3, are evaluated by use of computer simulations. The base irradiation of the test rods to a fuel burnup of 41-45 MWd/kg U is first simulated with the FRAPCON-3.2 program, in order to establish the pre-test fuel rod conditions. The pulse irradiation tests are then analysed by use of the SCANAIR-3.2 code, which is specifically designed to model the thermo-mechanical behaviour of light water reactor fuel rods under reactivity initiated accidents. The work presented here is primarily intended to examine the correctness and applicability of models used in these computer programs. The validation is done by comparing the calculated fuel rod conditions with measurements made in the tests. The considered tests are well suited for computer code validation, since the test rods were carefully characterized both before and after the pulse irradiation tests. Moreover, the test rods were extensively instrumented, and in-pile measurements of temperatures and deformations as functions of time were made under the pulse tests. In general, the calculated results agree fairly well with measured data from both the base irradiation of the test rods and from the actual pulse tests. The most striking exception is the transient fission gas release, which is underestimated by SCANAIR for FK-1 and FK-2, while it is overestimated for FK-3. Calculated deformations of both the fuel pellet stack and the clad tube under the pulse tests are well in line with measurements, except for the axial deformations in FK-3. This exception is, however, due to unsuccessful measurements, and not a result of model deficiencies. Satisfactory agreement between calculated and measured coolant and clad surface temperatures

  19. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type

    International Nuclear Information System (INIS)

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  20. Experience and reliability of Framatome ANP's PWR and BWR fuel

    International Nuclear Information System (INIS)

    Based on three decades of fuel supply to 169 PWR and BWR plants on four continents, Framatome ANP has a very large database from operating experience feedback. The performance of Framatome PWR and BWR fuel is discussed for the period 1992-2001 with special emphasis on fuel failures, countermeasures and their effectiveness. While PWR fuel performance in most reactors has been good, the performance in some years did suffer from special circumstances that caused grid-to-rod fretting failures in few PWRs. After solving this problem, fuel of all types showed high reliability again. Especially the current PWR fuel products AFA 3G, HTP, Mark B and Mark BW showed a very good operating performance. Fuel reliability of Framatome ANP BWR fuel has been excellent over the last decade with average annual fuel rod failure rates under 1x10-5 since 1991. More than 40% of all BWR fuel failures in the 1992-2001 decade were caused by debris fretting. The debris problem has been remedied with the FUELGUARDTM lower tie plate, and by reactor operators' efforts to control the sources of debris. PCI, the main failure mechanism in former periods, affected only 10 rods. All of these rods had non-liner cladding. (author)

  1. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    A fuel assembly of an BWR type reactor of present invention, in which a plurality of fuel rods are arranged in a regular square lattice like configuration include vibration-filled fuel rods in which granular nuclear fuel materials and granular non-nuclear fuel materials having a smaller neutron absorbing cross sectional area are mixed and filled. With such a constitution, the content of the mixed and filled non-nuclear fuel materials in the vibration filled fuel rods is at least 20% by a volume ratio in average in fuel assemblies. In addition, a burnable poison is optionally added and mixed to the granular mixture of the nuclear fuel material and the diluting granules. With such a constitution, the manufacturing cost can be reduced, and the combustion rate of the nuclear fission materials is increased to improve reactor core characteristics, thereby enabling to obtain sufficient Pu loading amount per assembly, and fuel assemblies excellent in flexibility in design and economic property can be obtained. (T.M.)

  2. Evaluation of the thermal-mechanical performance of fuel rods of a BWR during a power ramp using the FUELSIM code; Evaluacion del desempeno termomecanico de barras de combustible de un reactor BWR durante una rampa de potencia utilizando el codigo FUELSIM

    Energy Technology Data Exchange (ETDEWEB)

    Pantoja C, R.

    2010-07-01

    To avoid the risk to environment due to release of radioactive material, because of occurrence of an accident, it is the priority of the design and performance of the diverse systems of safety of a commercial nuclear power plant. The safety of nuclear power plants requires, therefore, monitoring those parameters having some direct or indirect effect on safety. The thermal limits are values set for those parameters considered having most impact on the safe operation of a nuclear power reactor. Some thermal limits monitoring requires the thermal-mechanical analysis of the rods containing the nuclear fuel. The fuel rod thermal-mechanical behavior under irradiation is a complex process in which there exists a great deal of interrelated physical and chemical phenomena, so that the fuel rod performance analysis in the core of a nuclear power reactor is generally accomplished by using computer codes, which integrate several of the phenomena that are expected to occur during the lifetime of the fuel rod in the core. The main application of the thermal-mechanical analysis codes is the prediction of occurrence of conditions and/or phenomena that could lead to the deterioration or even mechanical failure of the fuel rod cladding, as, for example, the pellet-cladding interaction. In the operation of a nuclear power reactor, fuel preconditioning operations refer to the operational procedures employed to reduce the fuel rod failure probability due to fuel-cladding interaction, specially during reactor startup. Preconditioning simulations are therefore necessary to determine in advance limit values for the power that can be generated in a fuel rod, and thus avoiding any rod damage. In this work, a first analysis of the thermal-mechanical performance of typical fuel rods used in nuclear reactors of the type BWR 5/6, as those two nuclear reactors in Laguna Verde, Veracruz, is performed. This study includes two types of fuel rods: one from a fuel assembly design with an array 8 x 8

  3. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  4. Reactor fueling of BWR type reactors

    International Nuclear Information System (INIS)

    Purpose: To enable the pattern exchange for control rods during burning in Control Cell Core type BWR reactors. Constitution: A plurality of control cells are divided into a plurality of groups such that the control cells is aparted from each other by way of at least two fuel assemblies other than the control cells with respect to the vertical and lateral directions of the reactor core cross section, as well as they are in adjacent with control cells of other groups with respect to the orthogonal direction. This enables to perform the pattern exchange for the control rods during burning in the control cell core with ease, and the control blade and the story effect harmful to the mechanical soundness of fuels can thus be suppressed. (Moriyama, K.)

  5. Material operating behaviour of ABB BWR control rods

    International Nuclear Information System (INIS)

    The BWR control rods made by ABB use boron carbide (B4C and hafnium as absorber material within a cladding of stainless steel. The general behaviour under operation has proven to be very good. ABB and many of their control rod customers have performed extensive inspection programs of control rod behaviour. However, due to changes in the material properties under fast and thermal neutron irradiation defects may occur in the control rods at high neutron fluences. Examinations of irradiated control rod materials have been performed in hot cell laboratories. The examinations have revealed the defect mechanism Irradiation Assisted Stress Corrosion Cracking (IASCC) to appear in the stainless steel cladding. For IASCC to occur three factors have to act simultaneously. Stress, material sensitization and an oxidising environment. Stress may be obtained from boron carbide swelling due to irradiation. Stainless steel may be sensitized to intergranular stress corrosion cracking under irradiation. Normally the reactor environment in a BWR is oxidising. The presentation focuses on findings from hot cell laboratory work on irradiated ABB BWR control rods and studies of irradiated control rod materials in the hot cells at PSI. Apart from physical, mechanical and microstructural examinations, isotope analyses were performed to describe the local isotopic burnup of boron. Consequences (such as possible B4C washout) of a under operation in a ABB BWR, after the occurrence of a crack is discussed based on neutron radiographic examinations of control rods operated with cracks. (author)

  6. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type; Calculo de las razones de generacion de calor lineal que violen el limite termomecanico de deformacion plastica de la camisa en funcion del quemado de una barra combustible tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M.A.; Hernandez L, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mal@nuclear.inin.mx

    2003-07-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  7. Age-related degradation of BWR control rod drives

    International Nuclear Information System (INIS)

    This paper reviews the major age-related degradation mechanisms for U. S. boiling water reactor (BWR) control rod drives (CRDs). Component aging caused by various types of stress corrosion cracking, fatigue, general corrosion, wear, and rubber degradation are discussed. (author)

  8. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.

  9. Fuel rod bowing

    International Nuclear Information System (INIS)

    The purpose of this investigation was to quantify the extent of fuel rod bowing in Westinghouse pressurized water reactors and to assess the effects of fuel rod bowing on plant safety and reliability. An empirical bow correlation was developed based on data from irradiated assemblies. Analyses conducted with these conservative empirical predictions show that: (1) generically identified DNBR margins are adequate to offset DNBR reductions due to rod bow, (2) the present design practice of increasing the highest calculated core peaking factor is sufficient to account for all deviations, including the effects of rod bow, and (3) fretting and corrosion of bowed rods are negligible. These conclusions indicate that fuel rod bowing results in no impact on plant safety or reliability

  10. Effect of thermal-hydraulic feedback on the BWR rod drop accident

    International Nuclear Information System (INIS)

    An important design-basis accident for boiling water reactors (BWR's) is the rod drop accident (RDA). This accident is defined to be a rapid reactor transient caused by an accidental drop (out of the core) of the highest-worth control rod at various conditions ranging from cold start-up to about 10% of rated power. For most BWR designs the highest worth rod is normally situated at the center of the core. Despite the fact that the chance of a RDA in extremely unlikely, the consequence of the RDA is of concern because of the potential for damage to fuel rods. Neglecting moderator feedback during the RDA is a poor assumption because energy is deposited in the fuel over a 3 to 4 second time period and hence there is time for heat to be conducted to the coolant. This may tend to ameliorate the accident considerably. Evaluation of the thermal-hydraulic feedback effect on the RDS in a BWR has been scarce in the literature. The object of this paper is to demonstrate the beneficial effect of thermal-hydraulic feedback in the RDA

  11. Development of models and programs for LWR-fuel rod design

    International Nuclear Information System (INIS)

    A computer program for BWR fuel has been developed on the basis of the fast breeder reactor fuel rod code SATURN. The LWR fuel rod code CARO has been further developed, in particular it has been extended for BWR fuel rod application. The computer program TAVAS has been set up for detailed thermal analyzes. It allows studying the influence of non-concentric position of pellet and clad. The behaviour of different fuel rod types during mechanical fuel clad interaction has been studied on the basis of a simplified stress-strain analysis and a so called interference model has been developed for the interpretation of the fuel rod ramp behaviour. (orig.)

  12. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6th of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  13. Fuel assembly for BWR-type reactor

    International Nuclear Information System (INIS)

    74 fuel rods and 2 large diameter water rods are disposed in 9 x 9 square lattice. Both upper and lower ends thereof are bundled by tie plates to constitute a fuel bundle, and the fuel bundle is surrounded by a channel box. Among eight short fuel rods, four short fuel rods are disposed to four corners on the second layer from the outermost circumference of the fuel bundle, and four short fuel rods are disposed to the center of each of the sides at the outermost circumference of the fuel bundle. Eight long fuel rods are disposed in adjacent with the short fuel rods at the outermost circumference of the fuel bundle. Eight long fuel rods are disposed to the second layer from the outermost circumference of the fuel bundle and in adjacent with the former eight long fuel rods. The long fuel rods contain burnable poisons in the fuel pellets filled in the most of upper portion than the upper end of the effective length of the short fuel rod disposed to the outermost circumference of the fuel bundle. (I.N.)

  14. A model for fuel rod and tie rod elongations in boiling water reactor fuel bundles

    International Nuclear Information System (INIS)

    A structural model is developed to determine the relative axial displacements of the spring held fuel rods to the tie rods in Boiling Water Reactor fuel bundles. An irradiation dependent relaxation model, which considers a two stage relaxation process dependent upon the fast fluence is used for the compression springs. The changes in spring compression resulting from the change in the length of the zircaloy fuel cladding due to irradiation enhanced anisotropic creep and growth is also considered in determining the time dependent variation of the spring forces. The time dependence of the average linear heat generation rates and their axial distributions is taken into account in determining the fuel cladding temperatures and fast fluxes for the various fuel rod locations within each of the BWR fuel bundles whose relative displacements were measured and used in this verification study. (orig.)

  15. Reliability innovations for AREVA NP BWR fuel

    International Nuclear Information System (INIS)

    AREVA NP is a supplier of nuclear fuel assemblies and associated core components to light water reactors worldwide, representing today more than 185,000 fuel assemblies on the world market including more than 63,000 fuel assemblies for boiling water reactors (BWRs). ATRIUM trademark 10 fuel assemblies have been supplied to a total of 32 BWR plants worldwide resulting in an operating experience over 20,250 fuel assemblies. ATRIUM trademark 10XP and ATRIUM trademark 10XM are AREVA NP's most recent fuel assembly designs featuring improved fuel utilization and achieving high margins to operating limits while maintaining very good reliability. Nevertheless, fuel failures are still encountered in all modern and advanced fuel assembly designs leading to significant operating limitations or unplanned shutdowns of nuclear power plants. The majority of fuel failures in BWR plants are caused by debris fretting, with PCI induced failures being a second leading cause. AREVA NP runs programs to study these root causes and to develop product solutions as part of the continuous improvement process within the Zero Tolerance for Failure (ZTF) initiative. The focus of the ZTF initiative is to further upgrade BWR fuel assembly reliability to achieve the goal of failure free fuel. In the following, two major product improvements are described that will significantly contribute to this goal: - Improved FUELGUARD trademark Lower Tie Plate - Chamfered Fuel Pellet Design (orig.)

  16. Managing the aging of BWR control rod drive systems

    International Nuclear Information System (INIS)

    This Phase I Nuclear Plant Aging Research (NPAR) study examines the aging phenomena associated with BWR control and rod drive mechanisms (CRDMs) and assesses the merits of various methods of ''imaging'' this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of the Nuclear Plant Reliability Data System (NPRDS) failure cases attributed to the control rod drive (CRD) system, and (4) personal information exchange with nuclear industry CRDM maintenance experts. The report documenting the findings of this research, NUREG-5699, will be published this year. Nearly 23% of the NPRDS CRD system component failure reports were attributed to the CRDM. The CRDM components most often requiring replacement due to aging are the Graphitar seals. The predominant causes of aging for these seals are mechanical wear and thermal embrittlement. More than 59% of the NPRDS CRD system failure reports were attributed to components that comprise the hydraulic control unit (HCU). The predominant HCU components experiencing the effects of service wear and aging are value seals, discs, seats, stems, packing, and diaphragms

  17. Segment fuel rods

    International Nuclear Information System (INIS)

    Purpose: To maintain the integrity of segment fuel rods without causing power spikes in adjacent fuel rods. Constitution: Power spikes are generated in the portions in adjacent with end plugs of segment fuel elements shielded welding zircaloy end plugs, because water/uranium ratio is locally increased due to the absence of pellets at the bonding end plugs to increase the neutron moderating effect thereby increasing the thermal neutron fluxes to rise the reactivity. This can be prevented most effectively by absorbing excess neutron absorbers. In view of the above, the purpose can be attained either by incorporating high neutron absorbing material at the bonding end plug, or constituting the bonding end plug itself with neutron absorbing material. (Kamimura, M.)

  18. Steam vent tube for BWR fuel assembly

    International Nuclear Information System (INIS)

    This patent describes an improvement in a fuel bundle for a boiling water reactor having: vertically aligned spaced apart fuel rods for forming a fuel rod group within the fuel bundle for generation of a fission reaction in the presence of water moderator, a lower tie plate for admitting water moderator through the lower tie plate to the interstitial volume between the fuel rods and supporting the vertically aligned and spaced apart fuel rods, an upper tie plate for permitting water and steam to be discharged from the top of the fuel bundle and maintaining the vertically aligned and spaced apart fuel rods in upstanding spaced apart side-by-side relation, a surrounding fuel channel for confining moderator flow along a path over the fuel rods and from the lower tie plate to the upper tie plate. The improvement comprises: a least one steam vent tube overlying at least one of the part length rods; means supporting the stem vent tube in the volume overlying the part length rod, the steam vent tube being supported in the volume of the fuel bundle between the end of the part length rod and the upper tie plate; the steam vent tube defining an opening disposed to the end of the part length rod for the receipt of steam moderator within the void overlying the part length rod; the steam vent tube further defining an opening disposed to the upper tie plant and away from the end of the part length rod for the discharge of steam moderator from the fuel bundle

  19. Nuclear fuel rods

    International Nuclear Information System (INIS)

    Purpose: To enable a tight seal in fuel rods while keeping the sealing gas pressure at an exact predetermined pressure in fuel rods. Constitution: A vent aperture and a valve are provided to the upper end plug of a cladding tube. At first, the valve is opened to fill gas at a predetermined pressure in the fuel can. Then, a conical valve body is closely fitted to a valve seat by the rotation of a needle valve to eliminate the gap in the engaging thread portion and close the vent aperture. After conducting the reduced pressure test for the fuel rod in a water tank, welding joints are formed between the valve and the end plug through welding to completely seal the cladding tube. Since the welding is conducted after the can has been closed by the valve, the predetermined gas pressure can be maintained at an exact level with no efforts from welding heat and with effective gas leak prevention by the double sealing. (Kawakami, Y.)

  20. Fuel rod plugs

    International Nuclear Information System (INIS)

    Purpose: To prevent the formation of voids to the inside of welded portion in fuel rod plugs. Constitution: A fuel rod is tightly sealed by welding end plugs at both ends of a fuel can charged with nuclear fuel material. For the welding of the end plug, laser welding has now been employed with the reason of increasing the welding efficiency and reducing the welding heat distortion. However, if the end plug is laser-welded to the end of the fuel can in the conventional form, there is a problem that voids are liable to be formed near the deepest penetration in the welding portion. That is, gases evolved near the deepest penetration remains in a key-hole like welded metal portion to result in voids there. Accordingly, grooves capable of passing the laser beam key hole therethrough are disposed along the circumferential direction of the pipe at the end plug welded portion in the fuel can. In this way, since gases generating near the deepest penetration are discharged into the grooves, the key hole-like welded metal is completely filled and voids are not formed. (Kamimura, M.)

  1. Fuel rod attachment system

    International Nuclear Information System (INIS)

    A reusable system for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member or vice versa. The locking cap has two opposing fingers and shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed. In an alternative embodiment, the cap is rigid and the strip is transversely resiliently compressible. (author)

  2. Fuel rod fixing system

    International Nuclear Information System (INIS)

    This is a reusable system for fixing a nuclear reactor fuel rod to a support. An interlock cap is fixed to the fuel rod and an interlock strip is fixed to the support. The interlock cap has two opposed fingers, which are shaped so that a base is formed with a body part. The interlock strip has an extension, which is shaped so that this is rigidly fixed to the body part of the base. The fingers of the interlock cap are elastic in bending. To fix it, the interlock cap is pushed longitudinally on to the interlock strip, which causes the extension to bend the fingers open in order to engage with the body part of the base. To remove it, the procedure is reversed. (orig.)

  3. BWROPT: A multi-cycle BWR fuel cycle optimization code

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Keith E.; Maldonado, G. Ivan, E-mail: Ivan.Maldonado@utk.edu

    2015-09-15

    Highlights: • A multi-cycle BWR fuel cycle optimization algorithm is presented. • New fuel inventory and core loading pattern determination. • The parallel simulated annealing algorithm was used for the optimization. • Variable sampling probabilities were compared to constant sampling probabilities. - Abstract: A new computer code for performing BWR in-core and out-of-core fuel cycle optimization for multiple cycles simultaneously has been developed. Parallel simulated annealing (PSA) is used to optimize the new fuel inventory and placement of new and reload fuel for each cycle considered. Several algorithm improvements were implemented and evaluated. The most significant of these are variable sampling probabilities and sampling new fuel types from an ordered array. A heuristic control rod pattern (CRP) search algorithm was also implemented, which is useful for single CRP determinations, however, this feature requires significant computational resources and is currently not practical for use in a full multi-cycle optimization. The PSA algorithm was demonstrated to be capable of significant objective function reduction and finding candidate loading patterns without constraint violations. The use of variable sampling probabilities was shown to reduce runtime while producing better results compared to using constant sampling probabilities. Sampling new fuel types from an ordered array was shown to have a mixed effect compared to random new fuel type sampling, whereby using both random and ordered sampling produced better results but required longer runtimes.

  4. BWROPT: A multi-cycle BWR fuel cycle optimization code

    International Nuclear Information System (INIS)

    Highlights: • A multi-cycle BWR fuel cycle optimization algorithm is presented. • New fuel inventory and core loading pattern determination. • The parallel simulated annealing algorithm was used for the optimization. • Variable sampling probabilities were compared to constant sampling probabilities. - Abstract: A new computer code for performing BWR in-core and out-of-core fuel cycle optimization for multiple cycles simultaneously has been developed. Parallel simulated annealing (PSA) is used to optimize the new fuel inventory and placement of new and reload fuel for each cycle considered. Several algorithm improvements were implemented and evaluated. The most significant of these are variable sampling probabilities and sampling new fuel types from an ordered array. A heuristic control rod pattern (CRP) search algorithm was also implemented, which is useful for single CRP determinations, however, this feature requires significant computational resources and is currently not practical for use in a full multi-cycle optimization. The PSA algorithm was demonstrated to be capable of significant objective function reduction and finding candidate loading patterns without constraint violations. The use of variable sampling probabilities was shown to reduce runtime while producing better results compared to using constant sampling probabilities. Sampling new fuel types from an ordered array was shown to have a mixed effect compared to random new fuel type sampling, whereby using both random and ordered sampling produced better results but required longer runtimes

  5. Determination of BWR Spent Nuclear Fuel Assembly Effective Thermal Conductivity

    International Nuclear Information System (INIS)

    The purpose of this calculation is to provide an effective thermal conductivity for use in predicting peak cladding temperatures in boiling water reactor (BWR) fuel assemblies with 7x7,8x8, and 9x9 rod arrays. The first objective of this calculation is to describe the development and application of a finite element representation that predicts peak spent nuclear fuel temperatures for BWR assemblies. The second objective is to use the discrete representation to develop a basis for determining an effective thermal conductivity (described later) for a BWR assembly with srneared/homogeneous properties and to investigate the thermal behavior of a spent fuel assembly. The scope of this calculation is limited to a steady-state two-dimensional representation of the waste package interior region. This calculation is subject to procedure AP-3.124, Calculations (Ref. 27) and guided by the applicable technical work plan (Ref. 14). While these evaluations were originally developed for the thermal analysis of conceptual waste package designs emplaced in the potential repository at Yucca Mountain, the methodology applies to storage and transportation thermal analyses as well. Note that the waste package sketch in Attachment V depicts a preliminary design, and should not be interpreted otherwise

  6. Determination of BWR Spent Nuclear Fuel Assembly Effective Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew D. Hinds

    2001-10-17

    The purpose of this calculation is to provide an effective thermal conductivity for use in predicting peak cladding temperatures in boiling water reactor (BWR) fuel assemblies with 7x7,8x8, and 9x9 rod arrays. The first objective of this calculation is to describe the development and application of a finite element representation that predicts peak spent nuclear fuel temperatures for BWR assemblies. The second objective is to use the discrete representation to develop a basis for determining an effective thermal conductivity (described later) for a BWR assembly with srneared/homogeneous properties and to investigate the thermal behavior of a spent fuel assembly. The scope of this calculation is limited to a steady-state two-dimensional representation of the waste package interior region. This calculation is subject to procedure AP-3.124, Calculations (Ref. 27) and guided by the applicable technical work plan (Ref. 14). While these evaluations were originally developed for the thermal analysis of conceptual waste package designs emplaced in the potential repository at Yucca Mountain, the methodology applies to storage and transportation thermal analyses as well. Note that the waste package sketch in Attachment V depicts a preliminary design, and should not be interpreted otherwise.

  7. Siemens Nuclear Power Corporation experience with BWR and PWR fuels

    International Nuclear Information System (INIS)

    The large data base of fuel performance parameters available to Siemens Nuclear Power Corporation (SNP), and the excellent track record of innovation and fuel reliability accumulated over the last twenty-three years, allows SNP to have a clear insight on the characteristics of future developments in the area of fuel design. Following is a description of some of SNP's recent design innovations to prevent failures and to extend burnup capabilities. A goal paramount to the design and manufacture of BWR and PWR fuel is that of zero defects from any case during its operation in the reactor. Progress has already been made in achieving this goal. This paper summarized the cumulative failure rate of SNP fuel rod through January 1992

  8. Aging assessment of BWR control rod drive systems

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.

    1991-01-01

    This study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assess the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of Nuclear Plant Reliability Data System (NPRDS) failure cases attributed to the CRD system, and (4) personal information exchange with industry experts. As part of this study, nearly 3500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation was conducted to summarize the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented that identify specific actions utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain maintenance practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities. 5 refs., 8 figs., 2 tabs.

  9. Aging assessment of BWR control rod drive systems

    International Nuclear Information System (INIS)

    This study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assess the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of Nuclear Plant Reliability Data System (NPRDS) failure cases attributed to the CRD system, and (4) personal information exchange with industry experts. As part of this study, nearly 3500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation was conducted to summarize the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented that identify specific actions utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain maintenance practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities. 5 refs., 8 figs., 2 tabs

  10. Fuel assembly for BWR type nuclear reactor

    International Nuclear Information System (INIS)

    In the fuel assembly of the present invention, fuel rods and one or a plurality of water rods or water channels are bundled by upper and lower tie plates and one or more of spacers, and the outer circumference of the bundle is covered with a channel box. In the present invention, a groove capable of flowing coolants is disposed on the surface of the water rod or the water channel. Specifically, the groove is disposed, continuously or intermittently, at portions corresponding to the first spacer and from the second to the fourth spacers. With such a constitution, coolants stagnating at the upper portion of the spacer due to gas/liquid counter flow limit (CCFL) are caused to flow down passing through the groove easily upon occurrence of LOCA. Accordingly, cooling of fuel rods at the center of the fuel assembly can be promoted, thereby suppressing the temperature elevation on the surface of the fuel rods. (I.S.)

  11. Improved fuel rod support means

    International Nuclear Information System (INIS)

    A fuel bundle for a nuclear reactor having a plurality of fuel rods supported between spaced tie plates, wherein coolant flows through said tie plates and past said fuel rods, characterized by: an end plug disposed between an end of each fuel rod and the adjacent tie plate, and means defining a passage for the flow of coolant through the interface between said end plug and said tie plates to minimize crud buildup at said interface

  12. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    When fuel rods are suddenly oscillated by earthquakes, and a void ratio is abruptly reduced, it is forecast that feed back of negative reactivity due to generation of voids is delayed to cause power increase in a short period of time. Then, in a fuel assembly comprising a large number of fuel rods bundled by an upper tie plate, a lower tie plate and a plurality of spacers and contained in a channel box, stirring means for coolants flowing the periphery of fuel rods are disposed in a lower sub-cool boiling region. Coolants flown into the fuel assembly are directed to fuel rods by the coolant stirring means to mix the coolants, whereby the temperature difference between the periphery of the surface of the fuel rods and bulk coolants is reduced, to decrease a sub-cool void amount. Then, even if the fuel rods are oscillated, the reduction of a sub-cool void ratio is small, which scarcely gives influences of fuel rod oscillation on the power of the reactor core. (N.H.)

  13. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    In the fuel assembly of the present invention, a means for mounting and securing short fuel rods is improved. Not only long fuel rods but also short fuel rods are disposed in channel of the fuel assembly to improve reactor safety. The short fuel rods are supported by a screw means only at the lower end plug. The present invention prevents the support for the short fuel rod from being unreliable due to the slack of the screw by the pressure of inflowing coolants. That is, coolant abutting portions such as protrusions or concave grooves are disposed at a portion in the channel box where coolants flowing from the lower tie plate, as an uprising stream, cause collision. With such a constitution, a component caused by the pressure of the flowing coolants is formed. The component acts as a rotational moment in the direction of screwing the male threads of the short fuel rod into the end plug screw hole. Accordingly, the screw is not slackened, and the short fuel rods are mounted and secured certainly. (I.S.)

  14. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    International Nuclear Information System (INIS)

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  15. Asymmetric fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    A coolant turning introduction member is properly extended at coolant flow channels on the side of control rod of an inner frame for supporting the insertion of a water channel. With such a constitution, the thermal margin of the fuel rods can be made uniform over the entire region of the channel box by supplying coolants uniformly for an asymmetrical fuel assembly which can effectively suppress local peaking coefficient thereby enabling to improve performances at limit power. In addition, in the asymmetrical fuel assembly, a flow vane disposed to the outer frame plate of a spacer is increased in the size at coolant flow channels on the side of the control rod. Then, sufficient amount of coolants can surely be supplied to fuel rods at coolant flow channels on the side of the control rod. (N.H.)

  16. Nuclear fuel rod

    International Nuclear Information System (INIS)

    Purpose: To prevent eutectic reaction between coil spring material and end plug material at the welding work of fuel fabrication. Constitution: Close-contact windings are formed at the end of a coil spring, and base end of a stainless steel supporting member is screwed to the close-contact winding portion of the coil spring. The other end of the supporting member is formed in a conical shape whose apex is in contact with the center of the bottom surface of a zirconium alloy end plug of a cladding tube. In the fuel rod thus constructed, the heating temperature of the end contact portion of the supporting member, at the time of welding the end plug to the cladding tube, can be somewhat lower than the eutectic temperatures of iron, chromium, nickel (the main ingredients of the stainless steel) and zirconium (the main ingredient of the end plug), and accourdingly no eutectic reaction occurs. (Yoshihara, H.)

  17. Application of Ultrasonic inspection Technique on Fuel Rod Seam Weld

    International Nuclear Information System (INIS)

    As of the end of March, 1996, 26 BWR power plants of which station capacity has reached up to 23,000 GW in total are in commercial operation in Japan, Japan Nuclear Fuel (JNF), a BWR fuel fabricator in Japan, has supplied fuels to those power plants for 25 years. This paper presents refinement of inspection technology applied to enhance completeness of fuel rod welding at JNF, which has cumulatively produced approximately 50,000 fuel bundles to the date in Japan. In this operation, TIG method has been employed for plug to tube welding of fuel rod, and X-ray radiography was formerly applied as nondestructive testing (NDT) means in order to verify weld integrity of every fuel rod. As there was limited capabilities of X-ray radiography such as shooting time and direction, and also inspection of fuel rod weld integrity is one of key characteristics of regulatory inspection according to the law, JNF has developed and applied more reliable and effective probe rotation type ultrasonic method. This paper presents refinement of inspection technology applied to enhance completeness of fuel rod welding at JNF

  18. In-pile behaviour analyses of the monitoring fuel rods

    International Nuclear Information System (INIS)

    As test objects for the Proving Test on the Reliability of BWR 8x8 Fuel Assemblies, 10 monitoring fuel assemblies were irradiated under normal conditions in a typical commercial BWR. Seven were subjected to detailed post-irradiation examination and a large amount of data was obtained on in-pile fuel rod behaviour. On the basis of these data, fuel rod behaviour is discussed. A new computer code for thermal-mechanical analysis of the fuel rods was used to analyse the behaviour of the punctured rods, which had exposures ranging from 4 to 32 GW·d/t. These monitoring fuel rods showed a very small decrease due to cladding creep-down. Pellet-cladding mechanical interaction (PCMI) was first considered to have caused this increase, but no evidence was found of a PCMI large enough to have resulted in permanent strain on the cladding. From the data on diameter change, most of the increase was then attributed to cladding surface corrosion and crud deposition. The fission gas release (FGR) rate showed a distinctive exposure dependency. At exposures lower than 10 GW·d/t all FGR data were less than 1%; however, above 10 GW·d/t they showed large scatter, from 0.1 to 20%. Data from microgamma scanning indicated the existence of a threshold temperature for FGR. This temperature depended on exposure and the local FGR rate increased rapidly with a temperature above the threshold. This rapid increase of the local FGR rate may be the reason for the distinctive data scattering. Pellet density changes were also compared with out-of-pile test results. Through evaluation work, a better understanding of the in-pile behaviour of commercial fuel rods has been achieved and the reliability of the BWR fuel rods has been verified; the prediction capability of the new code was also confirmed. (author)

  19. Fuel rod reprocessing plant

    International Nuclear Information System (INIS)

    A plant for the reprocessing of fuel rods for a nuclear reactor comprises a plurality of rectangular compartments desirably arranged on a rectangular grid. Signal lines, power lines, pipes, conduits for instrumentation, and other communication lines leave a compartment just below its top edges. A vehicle access zone permits overhead and/or mobile cranes to remove covers from compartments. The number of compartments is at least 25% greater than the number of compartments used in the initial design and operation of the plant. Vacant compartments are available in which replacement apparatus can be constructed. At the time of the replacement of a unit, the piping and conduits are altered to utilize the substitute equipment in the formerly vacant compartment, and it is put on stream prior to dismantling old equipment from the previous compartment. Thus the downtime for the reprocessing plant for such a changeover is less than in a traditional reprocessing plant

  20. Effect of bundle size on BWR fuel bundle critical power performance

    International Nuclear Information System (INIS)

    Effect of the bundle size on the BWR fuel bundle critical power performance was studied. For this purpose, critical power tests were conducted with both 6 x 6 (36 heater rods) and 12 x 12 (144 heater rods) size bundles in the GE ATLAS heat transfer test facility located in San Jose, California. All the bundle geometries such as rod diameter, rod pitch and rod space design are the same except size of flow channel. Two types of critical power tests were performed. One is the critical power test with uniform local peaking pattern for direct comparison of the small and large bundle critical power. Other is the critical power test for lattice positions in the bundle. In this test, power of a group of four rods (2 x 2 array) in a lattice region was peaked higher to probe the critical power of that lattice position in the bundle. In addition, the test data were compared to the COBRAG calculations. COBRAG is a detailed subchannel analysis code for BWR fuel bundle developed by GE Nuclear Energy. Based on these comparisons the subchannel model was refined to accurately predict the data obtained in this test program, thus validating the code capability of handling the effects of bundle size on bundle critical power for use in the study of the thermal hydraulic performance of the future advance BWR fuel bundle design. The author describes the experimental portion of the study program

  1. Behavior of small-sized BWR fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    The present work was performed on this small-sized BWR fuel, where Zr liner and rod prepressurization were taken as experimental parameters. Experiment was done under simulated reactivity initiated accident (RIA) conditions at Nuclear Safety Research Reactor (NSRR) belonged to Japan Atomic Energy Research Institute (JAERI). Major remarks obtained are as follows: (1) Three different types of the fuel rods consisted of (a) Zr lined/pressurized (0.65MPa), (b) Zr lined/non-pressurized and (c) non-Zr lined/pressurized (o.65MPa) were used, respectively. Failure thresholds of these were not less than that (260 cal/g·fuel) described in Japanese RIA Licensing Guideline. Small-sized BWR and conventional 8 x 8 BWR fuels were considered to be in almost the same level in failure threshold. Failure modes of the three were (a) cladding melt/brittle, (b) cladding melt/brittle and (c) rupture by large ballooning, respectively. (2) The magnitude of pressure pulse at fuel fragmentation was also studied by lined/pressurized and non-lined/pressurized fuels. Above the energy deposition of 370 cal/g·fuel, mechanical energy (or pressure) was found to be released from these fragmented fuels. No measurable difference was, however, observed between the tested fuels and NSRR standard (and conventional 8 x 8 BWR) fuels. (3) It is worthy of mentioning that Zr liner tended to prevent the cladding from large ballooning. Non-lined/pressurized fuel tended to cause wrinkle deformation at cladding. Hence, cladding external was notched much by the wrinkles. (4) Time to fuel failure measured from the tested BWR fuels (pressurization < 0.6MPA) was longer than that measured from PWR fuels (pressurization < 3.2MPa). The magnitude of the former was of the order of 3 ∼ 6s, while that of the latter was < 1s. (J.P.N.)

  2. Detection of fuel rod leakage

    International Nuclear Information System (INIS)

    Nuclear reactor fuel rod leakage is determined by measurement of vibrational characteristics of a resilient, flexible means sealed within the upper end caps of the fuel elements. The flexible means, which is preferably a metallic diaphragm, is set into motion by the impact of an internal metal rod which is operated by an external magnetic field, thereby permitting an indication of the pressure inside a fuel element without disturbing the welded assembly. The metal rod is activated and the vibration measurements are made through the use of a special tool which fits near the end cap of the fuel element to be tested

  3. Detection of fuel rod leakage

    International Nuclear Information System (INIS)

    Nuclear reactor fuel rod leakage is determined by measurement of vibrational characteristics of a resilient, flexible means sealed within the upper end caps of the fuel elements. The flexible means, which is preferably a metallic diaphragm, is set into motion by the impact of an internal metal rod which is operated by an external magnetic field, thereby permitting an indication of the pressure inside a fuel element without disturbing the welded assembly. The metal rod is activated and the vibration measurements are made through the use of a special tool which fits near the end cap of the fuel element to be tested. 5 claims, 8 figures

  4. A method for performing zero-power BWR rod worth analyses in 2-D

    International Nuclear Information System (INIS)

    A method is presented by which BWR control rod worth analyses are performed in 2-D, using as input collapsed cross-section data from reference all-rods-in (ARI) and all-rods-out (ARO) 3-D calculations. This model was developed as an alternative to the more conventional analytic control rod worth estimator models offered with the Scandpower PRESTO-B nodal simulator code. The major premise behind this model is that the reduction to two dimensions can be performed based on only two reference 3-D calculations, and that rodded and unrodded cross-section data can be combined to accurately model any number of control rod configurations

  5. Investigation of burnup credit implementation for BWR fuel

    International Nuclear Information System (INIS)

    Burnup Credit allows considering the reactivity decrease due to fuel irradiation in criticality studies for the nuclear fuel cycle. Its implementation requires to carefully analyze the validity of the assumptions made to define the axial profile of the burnup and void fraction (for BWR), to determine the composition of the irradiated fuel and to compute the criticality simulation. In the framework of Burnup Credit implementation for BWR fuel, this paper proposes to investigate part of these items. The studies presented in this paper concern: the influence of the burnup and of the void fraction on BWR spent fuel content and on the effective multiplication factor of an infinite array of BWR assemblies. A code-to-code comparison for BWR fuel depletion calculations relevant to Burnup Credit is also performed. (authors)

  6. BWR fuel cycle optimization using neural networks

    International Nuclear Information System (INIS)

    Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.

  7. ATRIUMTM Fuel - Continuous Upgrading for High Duty BWR Plants

    International Nuclear Information System (INIS)

    AREVA NP is a supplier of nuclear fuel assemblies and associated core components to Boiling Water Reactors worldwide, representing today more than 60 000 fuel assemblies. Since first delivered in 1992, ATRIUMTM10 fuel assemblies have now been supplied to a total of 32 BWR plants in the US, Europe, and Asia resulting in an operating experience over 20 000 fuel assemblies. Among them, the latest versions are ATRIUMTM 10XP and ATRIUMTM 10XM fuel assemblies which have been delivered to several utilities worldwide. During six years of operation experience reaching a maximum fuel assembly burnup of 66 MWd/kgU, no fuel failure of ATRIUMTM 10XP/XM occurred. Regular upgrading of the fuel assemblies' reliability and performance has been made possible thanks to AREVA NP's continuous improvement process and the 'Zero tolerance for failure' program. In this frame, the in-core behavior follow-up, manufacturing experience feedback and customer expectations are the bases for setting improvement management objectives. As an example, most fuel rod failures observed in the past years resulted from debris fretting and Pellet Cladding Interaction (PCI) generally caused by Missing Pellet Surface. To address these issues, the development of the Improved FUELGUARDTM debris filter was initiated and completed while implementation of chamfered pellets and Cr doped fuel will address PCI aspects. In the case of fuel channel bow issue, efforts to ensure dimensional stability at high burnup levels and under challenging corrosion environments have been done resulting in material recommendations and process developments. All the described solutions will strongly support the INPO goal of 'Zero fuel failures by 2010'. In a longer perspective, the significant trend in nuclear fuel operation is to increase further the discharge burnup and/or to increase the reactor power output. In the majority of nuclear power plants worldwide, strong efforts in power up-rating were made and are still ongoing. Most

  8. Nuclear fuel rod

    International Nuclear Information System (INIS)

    Purpose: To enable a wider range of output fluctuation by reducing the stress in the way of the connection between the lower end plug and the cladding tubes and thus increase the stress corrosion life. Constitution: Plurality of uranium dioxide pellets are filled in the zirconium alloy cladding tubes and the upper and lower ends are closed by zirconium alloy plugs to form nuclear fuel rods. The lower plug is provided with a hole from the inner side and in the axial direction of the plug. A structure of thermally conductive material, the conductivity of which is higher than that of the zirconium used for forming the plug, is provided in such a way that it has some clearance with the side of the said hole. By providing a hole on the lower plug and by installing a highly thermally conductive structure in it, the average temperature differential between the lower plug and the cladding tube is reduced thus reducing the thermal stress on the lower plug. (Yoshihara, Y.)

  9. LOFT nuclear fuel rod behavior

    International Nuclear Information System (INIS)

    An overview of the calculational models used to predict fuel rod response for Loss-of-Fluid Test (LOFT) data from the first LOFT nuclear test is presented and discussed and a comparison of predictions with experimental data is made

  10. Metrology of irradiated fuel rods

    International Nuclear Information System (INIS)

    A nuclear fuel rod has its diameter measured by back illumination from a lamp which casts a silhouette image of the rod on to a photo diode array. A radiation shielding wall exists between the rod and array with optical transmission through the wall. The output of the array is threshold voltage level sensed to generate a data pulse which envelops clock pulses digitally representing the rod diameter. The resolution is improved by interpolating between diode position in the array by means of an integrator. (author)

  11. Nuclear fuel rod supporting arrangement

    International Nuclear Information System (INIS)

    A grid structure for holding a number of nuclear fuel rods is described. The grid structure is of the type having walls including rigidly interconnected generally rectangular metal strips, forming passageways and adapted to support nuclear fuel rods within some of the passageways. The improvement provides elongated slots intermediate and normal to the longitudinal edges of each of the strips at each intersection of the strips. The slots form openings in each corner of each passageway

  12. High fidelity analysis of BWR fuel assembly with COBRA-TF/PARCS and trace codes

    International Nuclear Information System (INIS)

    The growing importance of detailed reactor core and fuel assembly description for light water reactors (LWRs) as well as the sub-channel safety analysis requires high fidelity models and coupled neutronic/thermalhydraulic codes. Hand in hand with advances in the computer technology, the nuclear safety analysis is beginning to use a more detailed thermal hydraulics and neutronics. Previously, a PWR core and a 16 by 16 fuel assembly models were developed to test and validate our COBRA-TF/PARCS v2.7 (CTF/PARCS) coupled code. In this work, a comparison of the modeling and simulation advantages and disadvantages of modern 10 by 10 BWR fuel assembly with CTF/PARCS and TRACE codes has been done. The objective of the comparison is making known the main advantages of using the sub-channel codes to perform high resolution nuclear safety analysis. The sub-channel codes, like CTF, permits obtain accurate predictions, in two flow regime, of the thermalhydraulic parameters important to safety with high local resolution. The modeled BWR fuel assembly has 91 fuel rods (81 full length and 10 partial length fuel rods) and a big square central water rod. This assembly has been modeled with high level of detail with CTF code and using the BWR modeling parameters provided by TRACE. The same neutronic PARCS's model has been used for the simulation with both codes. To compare the codes a coupled steady state has be performed. (author)

  13. Sphere-pac versus pellet UO2 fuel in de Dodewaard BWR

    International Nuclear Information System (INIS)

    Comparative testing of UO2 sphere-pac and pellet fuel rods under LWR conditions has been jointly performed by the Netherlands Utilities Research Centre (KEMA) in Arnhem, the Netherlands Energy Research Foundation (ECN) at Petten and the Netherlands Joint Nuclear Power Utility (GKN) at Dodewaard. This final report summarizes the highlights of this 1968-1988 program with strong emphasis on the fuel rods irradiated in the Dodewaard BWR. The conclusion reached is that under normal LWR conditions sphere-pac UO2 in LWR fuel rods offers better resistance against stress corrosion cracking of the cladding, but that under fast, single step, power ramping conditions pellet UO2 in LWR fuel rods has a better resistance against hoop stress failure of the cladding. 128 figs., 36 refs., 19 tabs

  14. Simulation of leaking fuel rods

    International Nuclear Information System (INIS)

    The behaviour of failed fuel rods includes several complex phenomena. The cladding failure initiates the release of fission product from the fuel and in case of large defect even urania grains can be released into the coolant. In steady state conditions an equilibrium - diffusion type - release is expected. During transients the release is driven by a convective type leaching mechanism. There are very few experimental data on leaking WWER fuel rods. For this reason the activity measurements at the nuclear power plants provide very important information. The evaluation of measured data can help in the estimation of failed fuel rod characteristics and the prediction of transient release dynamics in power plant transients. The paper deals with the simulation of leaking fuel rods under steady state and transient conditions and describes the following new results: 1) A new algorithm has been developed for the simulation of leaking fuel rods under steady state conditions and the specific parameters of the model for the Paks NPP has been determined; 2) The steady state model has been applied to calculation of leaking fuel characteristics using iodine and noble gas activity measurement data; 3) A new computational method has been developed for the simulation of leaking fuel rods under transient conditions and the specific parameters for the Paks NPP has been determined; 4) The transient model has been applied to the simulation of shutdown process at the Paks NPP and for the prediction of the time and magnitude of 123I activity peak; 5) Using Paks NPP data a conservative value has been determined for the upper limit of the 123I release from failed fuel rods during transients

  15. BWR Fuel Lattice Design Using an Ant Colony Model

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Jose L.; Ortiz, Juan J. [Instituto Nacional de Investigaciones Nucleares, Depto. de Sistemas Nucleares, Carretera Mexico Toluca S/N. La Marquesa Ocoyoacac. 52750, Estado de Mexico (Mexico); Francois, Juan L.; Martin-del-Campo, Cecilia [Depto. de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico Paseo Cuauhnahuac 8532. Jiutepec, Mor. 62550 (Mexico)

    2008-07-01

    This paper deals with one of the steps of the nuclear fuel design: the radial fuel lattice design. It can be seen as a combinatorial optimization problem for determining the optimal 2D fuel rods enrichment and gadolinia distribution. In order to solve this optimization problem, the ant colony system technique is proposed. The main idea of the ant colony approach consists of emulating the real ant colony behaviour in their searching for minimum paths between two given points, usually between the nest and a food source. In this case, the environment where the artificial ants move is the space defined by the discrete possible values of Gd{sub 2}O{sub 3} contents, the U{sup 235} enrichment, and the valid locations inside the 10x10 BWR fuel lattice array. In order to assess any candidate fuel lattice in the optimization process, the HELIOS neutronic transport code is used. The results obtained in the application of the implemented model show that the proposed technique is a powerful tool to tackle this step of the fuel design. (authors)

  16. BWR Fuel Lattice Design Using an Ant Colony Model

    International Nuclear Information System (INIS)

    This paper deals with one of the steps of the nuclear fuel design: the radial fuel lattice design. It can be seen as a combinatorial optimization problem for determining the optimal 2D fuel rods enrichment and gadolinia distribution. In order to solve this optimization problem, the ant colony system technique is proposed. The main idea of the ant colony approach consists of emulating the real ant colony behaviour in their searching for minimum paths between two given points, usually between the nest and a food source. In this case, the environment where the artificial ants move is the space defined by the discrete possible values of Gd2O3 contents, the U235 enrichment, and the valid locations inside the 10x10 BWR fuel lattice array. In order to assess any candidate fuel lattice in the optimization process, the HELIOS neutronic transport code is used. The results obtained in the application of the implemented model show that the proposed technique is a powerful tool to tackle this step of the fuel design. (authors)

  17. Proving test on thermal-hydraulic performance of BWR fuel assemblies

    International Nuclear Information System (INIS)

    Nuclear Power Engineering Corporation (NUPEC) has conducted a proving test for thermal-hydraulic performance of BWR fuel (high-burnup 8 x 8, 9 x 9) assemblies entrusted by the Ministry of Economy, Trade and Industry (NUPEC-TH-B Project). The high-burnup 8 x 8 fuel (average fuel assembly discharge burnup: about 39.5 GWd/t), has been utilized from 1991. And the 9 x 9 fuel (average fuel assembly discharge burnup: about 45 GWd/t), has started to be used since 1999. There are two types (A-type and B-type) of fuel design in 9 x 9 fuel assembly. Using an electrically heated test assembly which simulated a BWR fuel bundle on full scale, flow induced vibration, pressure drop, critical power under steady state condition and post-boiling transition (post-BT) tests were carried out in an out-of pile test facility that can simulate the high pressure and high temperature conditions of BWRs. This paper completed the results of 9 x 9 fuel combined with the previously reported results of high-burnup 8 x 8 fuel. As a result of NUPEC-TH-B Project, the validity of the current BWR thermal-hydraulic design method was confirmed and the reliability of BWR thermo-hydraulic fuel performance was demonstrated. Based on the test data, a new correlation of the estimation of fuel rod vibration amplitude, new post-BT heat transfer and rewet correlations for the estimation of fuel rod surface temperature were developed. (author)

  18. Control Rod Pattern Planning of a BWR using Enhanced Nelder-Mead Method

    International Nuclear Information System (INIS)

    We propose a new optimization algorithm for the short-term planning of control rod patterns in an operating BWR. This algorithm is based on the enhanced Nelder-Mead simplex method in which convergence ability is improved for constrained problems in several ways. The main characteristic of this approach is it uses continuous values for the axial positions of control rods. Through calculations in an actual BWR plant, we showed that the new algorithm is effective for automation of short-term planning and reduction of the engineer's workload. (authors)

  19. Refabricated and instrumented fuel rods

    International Nuclear Information System (INIS)

    Nuclear Fuel for power reactors capabilities evaluation is strongly based on the intimate knowledge of its behaviour under irradiation. This knowledge can be acquired from refabricated and instrumented fuel rods irradiated at different levels in commercial reactors. This paper presents the development and qualification of a new technique called RECTO related to a double-instrumented rod re-fabrication process developed by CEA/LECA hot laboratory facility at CADARACHE. The technique development includes manufacturing of the properly dimensioned cavity in the fuel pellet stack to house the thermocouple and the use of a newly designed pressure transducer. An analytic irradiation of such a double-instrumented fuel rod will be performed in OSIRIS test reactor starting October 2004. (Author)

  20. Study on bubble drag coefficient for bubble flows in 2x1 rods channel simplifying BWR

    International Nuclear Information System (INIS)

    In order to get an accurate constitutive equation of the interfacial friction force in two-phase bubble flows, experimental data on drag coefficient and interfacial area concentration have been obtained for air-water flows in 2x1 rods channel simplifying a BWR fuel rod bundle. To know the effects of liquid properties on the data, temperature of the test water was changed from 18 to 50degC. The data are compared with the existing correlations reported in literatures. As a result for an interfacial area concentration, Hibiki and Ishii (2001) semi-theoretical correlation is found to give the best prediction against the present data. As for the drag coefficient, no correlations exist which can predict well the present data. Therefore, we developed a new correlation including three dimensionless numbers, i.e., bubble Capillary number, Morton number and Eoetvoes number. The correlation could predict well Liu et al.'s data (2008) as well as the present data. (author)

  1. Huitzoctli: A system to design Control Rod Pattern for BWR's using a hybrid method

    International Nuclear Information System (INIS)

    Highlights: → The system was developed to design Control Rod Patterns for Boiling Water Reactors. → The critical reactor core and the thermal limits were fulfilled in all tested cases. → The Fuel Loading Pattern remains without changes during the iterative process. → The system uses the heuristics techniques: Scatter Search and Tabu Search. → The effective multiplication factor keff at the EOC was improved in all tested cases. - Abstract: Huitzoctli system was developed to design Control Rod Patterns for Boiling Water Reactors (BWR). The main idea is to obtain a Control Rod Pattern under the following considerations: (a) the critical reactor core state is satisfied, (b) the axial power distribution must be adjusted to a target axial power distribution proposal, and (c) the maximum Fraction of Critical Power Ratio (MFLCPR), the maximum Fraction of Linear Power Density (FLPD) and the maximum Fraction of Average Planar Power Density (MPGR) must be fulfilled. Those parameters were obtained using the 3D CM-PRESTO code. In order to decrease the problem complexity, Control Cell Core load strategy was implemented; in the same way, intermediate axial positions and core eighth symmetry were took into account. In this work, the cycle length was divided in 12 burnup steps. The Fuel Loading Pattern is an input data and it remains without changes during the iterative process. The Huitzoctli system was developed to use the combinatorial heuristics techniques Scatter Search and Tabu Search. The first one was used as a global search method and the second one as a local search method. The Control Rod Patterns obtained with the Huitzoctli system were compared to other Control Rod Patterns designs obtained with other optimization techniques, under the same operating conditions. The results show a good performance of the system. In all cases the thermal limits were satisfied, and the axial power distribution was adjusted to the target axial power distribution almost

  2. On the domestic fuel channel for BWR

    International Nuclear Information System (INIS)

    Kobe Steel Ltd. started the domestic manufacture of fuel channel boxes for BWRs in 1967, and entered the actual production stage four years after that. Since 1976, the mass production system was adopted with the increase of the demand. The requirements about the surface contamination and the dimensional accuracy over whole length are very strict in the fuel channel boxes, moreover, special consideration must be given so as to prevent the deformation in use. The unique working methods such as electron beam welding, high temperature press forming and so on are employed in Kobe Steel Ltd. to satisfy such strict requirements, therefore the quality of the produced fuel channel boxes is superior to imported ones. At present, the fuel channel boxes domestically made by Kobe Steel Ltd. are used for almost all BWRs in Japan. The functions of fuel channel boxes are to flow boiling coolant uniformly upward, to guide control rods, and to increase the rigidity of fuel assembly. The fuel channel boxes are the square tubes of zircaloy 4 of 134.06 mm inside width, 2.03 mm thickness, and 4118 or 4239 mm length. The progress of the development and the features of the fuel channel boxes and the manufacturing processes are described. Zircaloy plates are formed into channels, and two channels are electron beam-welded after the edge preparation, to make a box. Ultrasonic examination and stress relief treatment are applied, and clips and spacers are welded. (Kako, I.)

  3. Method of withdrawing fuel rods

    International Nuclear Information System (INIS)

    Purpose: To facilitate the withdrawal of fuel rods from a fuel bundle by heating a lower tie plate. Constitution: A lower tie plate for a fuel bundle is disposed within a heating coil. Magnetic fluxes and eddy currents passing through the lower tie plate are induced by applying an alternating current to the heating coil to generate eddy current loss and hysteresis loss in the lower tie plate thereby generating heat to the inside of the lower tie plate per se with no external heating. The lower tie plate is heated in this way. Since the lower tie plate has a greater linear expansion coefficient than that of the lower end plug, a gap is resulted at the engaging portion between the lower tie plate and the lower end plug, by which the fastening of the lower end plug is released to facilitate the withdrawal of the fuel rod. (Yoshino, Y.)

  4. Increased fuel column height for boiling water reactor fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, B.

    1993-06-15

    Rods to maintain said fuel rods upstanding and permitting the exit of water and generated steam is described; a fuel bundle channel extending from said lower tie plate to the vicinity of said upper tie plate, and surrounding said fuel rods therebetween for producing an isolated flow region through said matrix of upstanding fuel rods for the generation of steam by nuclear reaction within said fuel rods; a first plurality of said fuel rods being full length fuel rods for extending fully between said upper and lower tie plates; and, a second plurality of said fuel rods being part length fuel rods for extending part way from a supported disposition on said lower tie plate to a point of fuel rod termination below said upper tie plate whereby a vacated vertical interval is defined between the upper end of said part length fuel rod and said upper tie plate; the improvement to said first plurality of full length fuel rods comprising in combination: said full length fuel rods including a first lower region having a first and smaller diameter containing said pellets of fissionable material; and, at least some of said full length fuel rods including an upper region containing said plenum which is devoid of fuel pellets having a second and larger diameter for providing to said plenum an expanded volume whereby the flow area overlying said part length fuel rods defines additional outflow area adjacent said plenums and the active length of fissionable pellets within said full length fuel rods can be increased.

  5. Increased fuel column height for boiling water reactor fuel rods

    International Nuclear Information System (INIS)

    Rods to maintain said fuel rods upstanding and permitting the exit of water and generated steam is described; a fuel bundle channel extending from said lower tie plate to the vicinity of said upper tie plate, and surrounding said fuel rods therebetween for producing an isolated flow region through said matrix of upstanding fuel rods for the generation of steam by nuclear reaction within said fuel rods; a first plurality of said fuel rods being full length fuel rods for extending fully between said upper and lower tie plates; and, a second plurality of said fuel rods being part length fuel rods for extending part way from a supported disposition on said lower tie plate to a point of fuel rod termination below said upper tie plate whereby a vacated vertical interval is defined between the upper end of said part length fuel rod and said upper tie plate; the improvement to said first plurality of full length fuel rods comprising in combination: said full length fuel rods including a first lower region having a first and smaller diameter containing said pellets of fissionable material; and, at least some of said full length fuel rods including an upper region containing said plenum which is devoid of fuel pellets having a second and larger diameter for providing to said plenum an expanded volume whereby the flow area overlying said part length fuel rods defines additional outflow area adjacent said plenums and the active length of fissionable pellets within said full length fuel rods can be increased

  6. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    International Nuclear Information System (INIS)

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme

  7. On-line critical control rod pattern prediction algorithm for BWR plant startup

    International Nuclear Information System (INIS)

    This paper describes an on-line algorithm for predicting the critical control rod pattern, which has been developed to reduce the mental strain on operators while withdrawing control rods in the BWR plant startup operation. The proposed algorithm estimates a target eigenvalue (eigenvalue bias) for a three-dimensional neutron kinetics model with a neutron source incorporating actual neutron detector readings. The critical control rod pattern is then predicted based on the estimated eigenvalue bias. The algorithm has been verified using data obtained from an actual startup operation on a BWR model-5 plant, and the estimated eigenvalue bias agreed well with the effective multiplication factor at the criticality actually determined from the operator's judgement. (author)

  8. BWR Spent Nuclear Fuel Interfacial Bonding Efficiency Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    The objective of this project is to perform a systematic study of spent nuclear fuel (SNF, also known as “used nuclear fuel” [UNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. Additional CIRFT testing was conducted on three HBR rods; two specimens failed, and one specimen was tested to over 2.23 × 107 cycles without failing. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of the SNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, eleven SNF rod segments from the Limerick BWR were tested using the ORNL CIRFT equipment; one test under static conditions and ten tests under dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at a maximum curvature of 4.0 m-1. The specimen did not show any sign of failure during three repeated loading cycles to a similar maximum curvature. Ten cyclic tests were conducted with amplitudes varying from 15.2 to 7.1 N·m. Failure was observed in nine of

  9. Leaf spring puller for nuclear fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, J.L.

    1981-11-03

    A fuel rod puller in the form of a collet for pulling fuel rods from a storage area into grids of a nuclear reactor fuel assembly. The rod puller moves longitudinally through the grids to a storage area where projections on the end of leaf springs grasp onto an end plug in a fuel rod. Drive apparatus then pulls the rod puller and connected fuel rod from the storage area into the fuel assembly grids. The rod puller includes an outer tube having leaf springs on one end thereof in one modification, mounted within the outer tube is a movable plunger which acts to urge the leaf springs outwardly to a position to permit passing or with the end of a end plug. Upon withdrawal of the plunger, the leaf springs move into a groove formed in the end of a fuel rod end plug, and the fuel rod subsequently is pulled into the fuel assembly grids. In another modification, the leaf springs on the outer rod are biased in an outward direction and a longitudinally movable tube on the outer rod is moved in a direction to contract the leaf springs into a position where the projections thereof engage the groove formed in a fuel rod end plug.

  10. Nuclear reactor fuel rod spacer

    International Nuclear Information System (INIS)

    A spacer for positioning at least the four corner fuel rods in a tubular flow channel of a nuclear reactor is disclosed. The spacer comprises a support member having four side bands interconnected by four corner bands to form a unitary structure. Each of the side bands has a L-shaped lobe adjacent to each of its ends with one leg of each lobe extending to the adjacent end of its side band. Each of the corner bands is narrower than the side bands and is offset so as to be spaced from the lobe. One leg of each lobe is positioned to engage the tubular flow channel to maintain proper spacing between the flow channel and the adjacent corner fuel rod and to improve the thermal-hydraulic performance of the spacer

  11. Fuel rod failure due to marked diametral expansion and fuel rod collapse occurred in the HBWR power ramp experiment

    International Nuclear Information System (INIS)

    In the power ramp experiment with the BWR type light water loop at the HBWR, the two pre-irradiated fuel rods caused an unexpected pellet-cladding interaction (PCI). One occurred in the fuel rod with small gap of 0.10 mm, which was pre-irradiated up to the burn-up of 14 MWd/kgU. At high power, the diameter of the rod was increased markedly without accompanying significant axial elongation. The other occurred in the rod with a large gap of 0.23 mm, which was pre-irradiated up to the burn-up of 8 MWd/kgU. The diameter of the rod collapsed during a diameter measurement at the maximum power level. The causes of those were investigated in the present study by evaluating in-core data obtained from equipped instruments in the experiment. It was revealed from the investigation that these behaviours were attributed to the local reduction of the coolant flow occurred in the region of a transformer in the ramp rig. The fuel cladding material is seemed to become softened due to temperature increase caused by the local reduction of the coolant flow, and collapsed by the coolant pressure, either locally or wholly depending on the rod diametral gap existed. (author)

  12. Tribe kills fuel rod proposal

    International Nuclear Information System (INIS)

    This article is a review of nuclear utilities' efforts to find a repository of spent fuel rods. The rejection by the Mescalero Apaches of plans to build a waste repository on tribal lands has left a number of utilities scrambling to find interim solutions. Prairie Island will have to close before the end of the year unless a solution is found, and the Hope Creek/Salem units, exhausting there storage capacity within ten years, are considering dry-cask storage

  13. Operation and fuel design strategies to minimise degradation of failed BWR fuel

    International Nuclear Information System (INIS)

    Degradation of failed fuel may result in forced shutdown of the reactor to extract the failed fuel. If this occurs during a time when the price of electricity is high, the cost for this forced shutdown may be very costly. The objective of this paper is to point out the impact of fuel design and also operation strategy on the tendency of failed fuel degradation. The following number of items are discussed in the paper: Failure causes: The dominating causes are debris fretting, PCI and crud/water chemistry related defects. It is recommended to adopt the goal, maximum one defect per year per million rods in the core and to achieve the zero-failure goal for PCI. Models for secondary failure development: Two different secondary degradation scenarios can develop, circumferential cracks or breaks and axial cracks. Models for describing the propagation of secondary defects are given and discussed. The secondary degradation tendency can be delayed and minimized by using fuel cladding with improved corrosion resistance such as cladding with large secondary phase particles and high iron content in the liner layer. Also, the spacer design has a large impact on the tendency for transversal break formation. A spacer that catches the debris at the lower part of the fuel assembly will reduce the risk of getting transversal breaks. On the other hand a spacer that catches the debris in the upper part of the fuel assembly will result in a significant risk of developing transversal breaks in low and intermediate burnup fuel. A new model for data analyses - BwrFuelRelease: A new model, BwrFuelRelease, is presented. This model is an efficient tool for analyses of measured off-gas and reactor water data. The model can replace all currently used methods for analyses of fuel failures. By this model it is possible to detect very small defects, to quantify with high precision the amount of Fissile materials on the core surfaces during operation both with non-defected core and during

  14. Feasibility studies of computed tomography in partial defect detection of spent BWR fuel

    International Nuclear Information System (INIS)

    Feasibility studies were made for tomographic reconstruction of a cross-sectional activity distribution of a spent nuclear fuel assembly. The purpose was to determine the number of fuel rods (pins) and localize the positisons where pins are missing. The activity distribution map showing the locations of fuel rods in the assembly was reconstructed. The theoretical part of this work consists of simulation of image reconstruction based on theoretically calculated data from a reference assembly model. Evaluation of different image reconstruction techniques was made. Measurements were made in real facility conditions. Gamma radiation from an irradiated 8 x 8 - 1 BWR fuel assembly was measured through a narrow custom made collimator from different angles and positions. The measured data set was used as projections for reconstructing the activity profile of the assembly in cross-sectional plane

  15. Evaluation of fuel centerline temperature of LWR fuel rods during first rise to operating power

    International Nuclear Information System (INIS)

    In order to reveal principal mechanism which is dominating LWR fuel rod failure due to pellet-cladding interaction, in-reactor irradiation experiments at Halden Boiling Water Reactor (HBWR), Norway have been undertaken by Japan Atomic Energy Research Institute. The test titled as ''Halden Power Ramp Test'' has been initiated since 1979. In the test, fifteen Japanese fuel rods which have equivalent specification of 17 x 17 PWR rods and 8 x 8 BWR rods of current commercial power plants are involved. The fuel rods for future power ramping are now in base irradiation stage under the simulated condition such as typical light water reactor. In spite of their base irradiation stage, it is possible to get in-reactor and on-power data by means of instrumented equipments to measure fuel centerline temperature as well as to measure rod plenum pressure as a function of linear heat generating rate. Analytical evaluation of these data at the beginning-of-irradiation was performed here concentrating on fuel thermal behavior under the operation. Experimental variables in the analysis were addressed to two fabricating parameters such as diametral gap and pure helium fill gas pressurization. The results of evaluation are described in detail. It is the specific feature of this study to include experimental facts and related analyses that enable us to understand thermal behavior of fuel rods under the operating condition of commercial power plants. (author)

  16. Vibrational characteristics and wear of fuel rods

    International Nuclear Information System (INIS)

    Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude

  17. Droplet entrainment and deposition rate models for determination of boiling transition in BWR fuel assembly

    International Nuclear Information System (INIS)

    Droplet entrainment and deposition rates are of vital importance for mechanistic determination of critical power and location of boiling transition in a BWR fuel assembly. Data from high-pressure, high-temperature steam-water adiabatic experiments conducted in very tall test sections are used to develop a combination of equilibrium entrainment-deposition rate. Application of this combination to the heated tests conducted in a shorter test section of typical height of a BWR fuel assembly shows that correct split of total liquid in form of the film and droplets at the onset of annular-mist flow regime is also important to obtain good prediction of film flow rates/entrainment fraction. The improved model is then applied to simulate critical power tests in annulus and rod bundles. (author)

  18. Fuel followed control rod installation at AFRRI

    International Nuclear Information System (INIS)

    Fuel Followed Control Rods (FFCRs) were installed at the Armed Forces Radiobiology Research Institute's 1 MW TRIGA Reactor. The procedures for obtaining, shipping, and installing the FFCRs is described. As part of the FFCR installation, the transient rod drive was relocated. Core performance due to the addition of the fuel followed control rods is discussed. (author)

  19. Fuel rod pressure in nuclear power reactors: Statistical evaluation of the fuel rod internal pressure in LWRs with application to lift-off probability

    International Nuclear Information System (INIS)

    In this thesis, a methodology for quantifying the risk of exceeding the Lift-off limit in nuclear light water power reactors is outlined. Due to fission gas release, the pressure in the gap between the fuel pellets and the cladding increases with burnup of the fuel. An increase in the fuel-clad gap due to clad creep would be expected to result in positive feedback, in the form of higher fuel temperatures, leading to more fission gas release, higher rod pressure, etc, until the cladding breaks. An increase in the fuel-clad gap that leads to this positive feedback is a phenomenon called Lift-off and is a limitation that must be considered in the fuel core management. Lift-off is a consequence of very high internal fuel rod pressure. The internal fuel rod pressure is therefore used as a Lift-off indicator. The internal fuel rod pressure is closely connected to the fission gas release into the fuel rod plenum and is thus used to increase the database. It is concluded that the dominating error source in the prediction of the pressure in Boiling Water Reactors (BWR), is the power history. There is a bias in the fuel pressure prediction that is dependent on the fuel rod position in the fuel assembly for BWRs. A methodology to quantify the risk of the fuel rod internal pressure exceeding a certain limit is developed; the risk is dependent of the pressure prediction and the fuel rod position. The methodology is based on statistical treatment of the discrepancies between predicted and measured fuel rod internal pressures. Finally, a methodology to estimate the Lift-off probability of the whole core is outlined

  20. Fuel rod pressure in nuclear power reactors: Statistical evaluation of the fuel rod internal pressure in LWRs with application to lift-off probability

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, Tomas

    2001-02-01

    In this thesis, a methodology for quantifying the risk of exceeding the Lift-off limit in nuclear light water power reactors is outlined. Due to fission gas release, the pressure in the gap between the fuel pellets and the cladding increases with burnup of the fuel. An increase in the fuel-clad gap due to clad creep would be expected to result in positive feedback, in the form of higher fuel temperatures, leading to more fission gas release, higher rod pressure, etc, until the cladding breaks. An increase in the fuel-clad gap that leads to this positive feedback is a phenomenon called Lift-off and is a limitation that must be considered in the fuel core management. Lift-off is a consequence of very high internal fuel rod pressure. The internal fuel rod pressure is therefore used as a Lift-off indicator. The internal fuel rod pressure is closely connected to the fission gas release into the fuel rod plenum and is thus used to increase the database. It is concluded that the dominating error source in the prediction of the pressure in Boiling Water Reactors (BWR), is the power history. There is a bias in the fuel pressure prediction that is dependent on the fuel rod position in the fuel assembly for BWRs. A methodology to quantify the risk of the fuel rod internal pressure exceeding a certain limit is developed; the risk is dependent of the pressure prediction and the fuel rod position. The methodology is based on statistical treatment of the discrepancies between predicted and measured fuel rod internal pressures. Finally, a methodology to estimate the Lift-off probability of the whole core is outlined.

  1. Liquid films and droplet deposition in a BWR fuel element

    International Nuclear Information System (INIS)

    In the upper part of boiling water reactors (BWR) the flow regime is dominated by a steam-water droplet flow with liquid films on the nuclear fuel rod, the so called (wispy) annular flow regime. The film thickness and liquid flow rate distribution around the fuel rod play an important role especially in regard to so called dryout, which is the main phenomenon limiting the thermal power of a fuel assembly. The deposition of droplets in the liquid film is important, because this process sustains the liquid film and delays dryout. Functional spacers with different vane shapes have been used in recent decades to enhance droplet deposition and thus create more favorable conditions for heat removal. In this thesis the behavior of liquid films and droplet deposition in the annular flow regime in BWR bundles is addressed by experiments in an adiabatic flow at nearly ambient pressure. The experimental setup consists of a vertical channel with the cross-section resembling a pair of neighboring subchannels of a fuel rod bundle. Within this double subchannel an annular flow is established with a gas-water mixture. The impact of functional spacers on the annular flow behavior is studied closely. Parameter variations comprise gas and liquid flow rates, gas density and spacer shape. The setup is instrumented with a newly developed liquid film sensor that measures the electrical conductance between electrodes flush to the wall with high temporal and spatial resolution. Advanced post-processing methods are used to investigate the dynamic behavior of liquid films and droplet deposition. The topic is also assessed numerically by means of single-phase Reynolds-Averaged-Navier-Stokes CFD simulations of the flow in the gas core. For this the commercial code STAR-CCM+ is used coupled with additional models for the liquid film distribution and droplet motion. The results of the experiments show that the liquid film is quite evenly distributed around the circumference of the fuel rods. The

  2. Aging and service wear of control rod drive mechanisms for BWR nuclear plants

    International Nuclear Information System (INIS)

    This Phase I Nuclear Plant Aging Research (NPAR) study examines the aging phenomena associated with BWR control rod drive mechanisms (CRDMs) and assesses the merits of various methods of ''managing'' this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of the Nuclear Plant Reliability Data System (NPRDS) failure cases attributed to the control rod drive (CRD) system, and (4) personal information exchange with nuclear industry CRDM maintenance experts. Nearly 23% of the NPRDS CRD system component failure reports were attributed to the CRDM. The CRDM components most often requiring replacement due to normal wear and aging are the Graphiter seals. The predominant causes of aging for these seals are mechanical wear and thermally induced embrittlement More than 59% of the NPRDS CRD system failure reports were attributed to components that comprise the hydraulic control unit (HCU). The predominant HCU components experiencing the effects of service wear and aging are valve seals, discs, seats, stems, packing, and diaphragms. Since CRDM changeout and rebuilding is one of the highest dose, most physically challenging, and complicated maintenance activities routinely accomplished by BWR utilities, this report also highlights recent innovations in CRDM handling equipment and rebuilding tools that have resulted in significant dose reductions to the maintenance crews using them

  3. Nuclear reactor fuel rod attachment system

    International Nuclear Information System (INIS)

    The invention involves a technique to quickly, inexpensively and rigidly attach a nuclear reactor fuel rod to a support member. The invention also allows for the repeated non-destructive removal and replacement of the fuel rod. The proposed fuel rod and support member attachment and removal system consists of a locking cap fastened to the fuel rod and a locking strip fastened to the support member or vice versa. The locking cap has two or more opposing fingers shaped to form a socket. The fingers spring back when moved apart and released. The locking strip has an extension shaped to rigidly attach to the socket's body portion

  4. Operation tests of parameters and new methods of the fuel rod production

    International Nuclear Information System (INIS)

    From 1974 to 1977 510 pathfinder fuel rods were inserted into the pressurized water reactor of Obrigheim (KWO) as part of several fuel reloads. They were irradiated for one to three reactor periods without indications of defects. The maximum burnup reached is about 36000 MWd/tU. In addition 80 fuel rods of the first core of the BWR power plant Isar (KKI, new fuel assembly type 8x8) were exactly precharacterized in 1977, to provide a good basis for post-irradiation examinations. (orig.) 891 HP/orig. 892 MKO

  5. Axial diagnostic system of finished rods BWR type

    International Nuclear Information System (INIS)

    This system is employed as a final non destructive diagnostic system to verify the adequate distribution of the different enrichment through the can of nuclear fuel. The system is framed of traction mechanisms, a personal computer, a counting card and another card for the pass motor control, the nuclear electronics and the control program. The performance is based on the gamma radiation counting of the natural decay of uranium 235, this radiation is processed by the nuclear instrumentation for delivering a pulse by each gamma detected. (Author)

  6. Status of thermal-hydraulic performance evaluation of BWR fuels based on three-field subchannel code NASCA

    International Nuclear Information System (INIS)

    This paper summarizes basic requirements for improvements of a subchannel code from the view point of a BWR fuel design. Considering recent trends of design modifications of BWR fuels, it is desirable that influences of lattice sizes, spacer geometries, a number and location of partial length rods and other coolant mixing structures to the boiling transition will be evaluated numerically. In addition, experimental databases of the boiling transition can be expanded based on the subchannel analyses so that reliability of the critical power evaluation will be enhanced. A status of NASCA's component models and high temperature/high pressure tests of the boiling transition was reviewed. From the practical point of views, it was noted that more efforts are necessary for improving predictability of spacer geometries and partial length rods. (author)

  7. Orificing of water cross inlet in BWR fuel assembly

    International Nuclear Information System (INIS)

    A nuclear reactor fuel assembly is described comprising a bundle of elongated fuel rods disposed in side-by-side relationship so as to form an array of spaced fuel rods, a tubular flow channel member surrounding the fuel rods so as to direct flow of coolant/moderator fluid along the fuel rods, respective upper and lower tie plates at opposite ends of the fuel rods, and a hollow water cross having confronting side walls and a closed lower end wall at an inlet end. The water cross extends centrally through and disposed within the flow channel member so as to provide within the flow channel member separate compartments and to divide the bundle of fuel rods into mini-bundles being disposed in the respective compartments, the water cross including inlet cross flow means formed in the side walls near a lower end of the water cross above the closed end wall and near lower end portions of each of the mini-bundles of fuel rods, which inlet cross flow means provides both selected flow communication into the interior of the water cross and flow communication between the respective mini-bundles for minimizing maldistribution and equalizing flow

  8. Release of fission products from a fuel rod with an artificial hole through cladding irradiated in an in-pile water loop

    International Nuclear Information System (INIS)

    Iodine spiking from a defective fuel rod into the primary coolant was measured, concerning main steam pipe breakage of a BWR plant. The fuel rod with an artificial pin hole was irradiated in the in-pile test section of water loop JMTR.OWL-1. Experimental conditions are depressurization and temperature drop of the primary loop coolant and diameter and position of the pin hole. The effect of coolant water flow through the pin hole on the fission products release was examined. The extrapolation of the results to BWR is made by way of the amount of fission products in free space of the fuel rod. (auth.)

  9. TVO'S Experiences with Fuel and Control Rods

    International Nuclear Information System (INIS)

    The Finnish regulatory guides require that the nuclear power plants must maintain a supervision programme for the fuel and the control rods. The aim of the supervision is to evaluate whether the performance is in accordance with the design bases and the expectation. At each unit at least 8 fuel assemblies and fuel channels are annually inspected visually. Many dimensional measurements and oxide thickness measurements have also been performed. During the 1980's TVO reused fuel channels. The dimensions of the channels were measured before reuse, which means that TVO has measured the dimension of more than 1000 fuel channels. The rate of fission gas release from the fuel pellets to the free volume of the rods has been determined, based on the Kr-85 activity of the plenum gas, on 22 fuel assemblies. Eddy current inspection has been applied to find leakers. During shutdowns the high exposure control rods of control cells are rather exchanged than inspected and reinserted, the inspection of these control rods is made later. Some medium exposure control rods are selected for inspection during the shut down. Normally only visual inspection is performed. However, some rods exhibiting cracks in the visual inspection have been neutron radiographed. A summary of the inspection results is given in this paper. The future development foreseen for the design and operation strategy is also presented, concerning fuel assemblies, control rods, operating strategies and power up-rating

  10. Detecting small flaws in fuel rods with sophisticated Eddy Current testing and single rod sipping

    International Nuclear Information System (INIS)

    AREVA has profound experience in efficient methods for finding defective irradiated fuel rods: - Eddy Current (EC) testing of single fuel rods - Sipping of fuel assemblies. In order to further improve the efficiency, AREVA developed new techniques: A. New sophisticated EC for detecting Small Defects in Irradiated Fuel Rod Claddings (SDIRC-EC) B. Single rod sipping (orig.)

  11. Development of CFD analysis method based on droplet tracking model for BWR fuel assemblies

    International Nuclear Information System (INIS)

    It is well known that the minimum critical power ratio (MCPR) of the boiling water reactor (BWR) fuel assembly depends on the spacer grid type. Recently, improvement of the critical power is being studied by using a spacer grid with mixing devices attaching various types of flow deflectors. In order to predict the critical power of the improved BWR fuel assembly, we have developed an analysis method based on the consideration of detailed thermal-hydraulic mechanism of annular mist flow regime in the subchannels for an arbitrary spacer type. The proposed method is based on a computational fluid dynamics (CFD) model with a droplet tracking model for analyzing the vapor-phase turbulent flow in which droplets are transported in the subchannels of the BWR fuel assembly. We adopted the general-purpose CFD software Advance/FrontFlow/red (AFFr) as the base code, which is a commercial software package created as a part of Japanese national project. AFFr employs a three-dimensional (3D) unstructured grid system for application to complex geometries. First, AFFr was applied to single-phase flows of gas in the present paper. The calculated results were compared with experiments using a round cellular spacer in one subchannel to investigate the influence of the choice of turbulence model. The analyses using the large eddy simulation (LES) and re-normalisation group (RNG) k-ε models were carried out. The results of both the LES and RNG k-ε models show that calculations of velocity distribution and velocity fluctuation distribution in the spacer downstream reproduce the experimental results qualitatively. However, the velocity distribution analyzed by the LES model is better than that by the RNG k-ε model. The velocity fluctuation near the fuel rod, which is important for droplet deposition to the rod, is also simulated well by the LES model. Then, to examine the effect of the spacer shape on the analytical result, the gas flow analyses with the RNG k-ε model were performed

  12. Measurements of pellet/cladding gaps and thermal feed-back effects in operating fuel rods

    International Nuclear Information System (INIS)

    A gap meter rig featuring equipment for monitoring pellet-to-cladding gap width on operating rods has been in operation in the Halden test reactor since 1981. Hot gap width in an operating fuel rod is an important parameter in determining fuel temperature, fission product release rate and onset of pellet/cladding mechanical interaction and consequently in determining PCI failure thresholds for LWR fuel rods. The gap measuring method consists basically of elastically squeezing the cladding diametrically whilst simultaneously logging the force required and the diameter decrease. Additional rod instrumentation includes two sets of diameter gauges for profilometry measurements, cladding extensometers and a central oxide fuel thermocouple. Such combined thermal and dimensional measurements are very valuable since they enable detailed exploration of interacting physical phenomena affecting fuel behaviour. Two BWR type rods have been tested, one helium-filled at 1 atm, with an as-fabricated gap of 150 μm, the other dimensionally identical but prefilled with xenon. The paper will describe design features of the rig and discuss results from two test rods. The thermal behaviour and gap closure trends with power and burn-up in the two rods were quite different. The observed difference in the fuel pellet behaviour is attributed to the higher power rating in the helium rod, producing larger fuel radial temperature gradients which appears to promote fuel cracking and outward relocation of fuel fragments. High operating temperature at low heat rates (as in xenon-filled rods) on the other hand will result in larger pellet shrinkage due to densification and an increase in operating hot gaps, at least early-in-life. Low rating produces negligible fuel outward relocation. A power ramp to 50 kW/m at 7.5 MWd/kgUO2 in the helium rod caused appreciable fission gas release and a large rise in fuel centreline temperature ascribed to fill gas dilution and thermal feedback effects. (author)

  13. Transient and stability analysis of a BWR core with thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779 Col. Narvarte, 03020 Mexico, DF (Mexico); Espinosa-Paredes, Gilberto [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, DF (Mexico)], E-mail: gepe@xanum.uam.mx; Francois, Juan-Luis [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec Mor. (Mexico)

    2008-08-15

    The kinetic response of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material, in an integrated blanket-seed assembly, is presented in this work. Additionally an in-house code was developed to evaluate this core under steady state and transient conditions including a stability analysis. The code has two modules: (a) the time domain module for transient analysis and (b) the frequency domain module for stability analysis. The thermal-hydraulic process is modeled by a set of five equations, considering no homogeneous flow with drift-flux approximation and non-equilibrium thermodynamic. The neutronic process is calculated with a point kinetics model. Typical BWR reactivity effects are considered: void fraction, fuel temperature, moderator temperature and control rod density. Collapsed parameters were included in the code to represent the core using an average fuel channel. For the stability analysis, in the frequency domain, the transfer function is determined by applying Laplace-transforming to the calculated pressure drop perturbations in each of the considered regions where a constant total pressure drop was considered. The transfer function was used to study the system response in the frequency domain when an inlet flow perturbation is applied. The results show that the neutronic behavior of the core with thorium uranium fuel is similar to a UO{sub 2} core, even during transient conditions. The stability and transient analysis show that the thorium-uranium fuel can be operated safely in current BWRs.

  14. Fission gas release and related behaviours of BWR fuel under steady and transient conditions

    International Nuclear Information System (INIS)

    Detailed post-irradiation examinations (PIEs) have been carried out on five lead use assemblies of current BWR Step II type fuel (Step II LUA) irradiated up to 47.8 GWd/t burn-up. Our database for fission gas release (FGR) has been extended to 51 GWd/t in rod burn-up and to 61 GWd/t in pellet burn-up. Furthermore, 25 segment rods of burn-up range from 43 to 61 GWd/t were power ramped and some of them were examined destructively. The FGR fraction of base irradiated Step II LUAs was less than that of the previous types of fuel rods, indicating the effectiveness of design improvements to reduce fission gas release and that of ramped segment rods showed a dependency on ramp terminal power, burn-up and cumulative holding time. Though the work is still in progress, some preliminary results of FGR and extensive PIEs, focusing on local data of fission product release and pellet microstructure, are presented. (author)

  15. Probabilistic assessment for nuclear fuel rods behavior

    International Nuclear Information System (INIS)

    BACO is a code for the simulation of the thermo-mechanical and fission gas behavior of a cylindrical fuel rod under operation conditions. Input parameters and, therefore, output ones may include statistical dispersion. In this paper, experimental CANDU fuel rods irradiated at the NRX reactor together with experimental MOX fuel rods and the IAEA'CRP FUMEX cases are used in order to determine the sensitivity of BACO code predictions. We analyze the CARA and CAREM fuel rods relation between predicted performance and statistical dispersion in order of enhanced their original designs. These exercises show the sensitivity of the predictions concerning such parameters and the extended features of the BACO code for a probability study. (author)

  16. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  17. Fuel rod failure as a consequence of departure from nucleate boiling or dryout

    International Nuclear Information System (INIS)

    PWR and BWR reactor test data on the brittle failure of Zircaloy fuel rod cladding are compared with out-of-pile test data. The reactor test fuel rods were exposed to power-cooling mismatch (PCM) and to consequent departure from nucleate boiling (DNB) or to dryout and consequent clad over-temperature, under PWR and BWR test conditions, respectively. The reactor test data show that cladding integrity is generally maintained despite exposure to very severe accident environments. The cladding time-at-temperature boundaries between the failure and non-failure data from the reactor tests and from the out-of-pile tests are in very good agreement. Therefore, it would appear that brittle-ductile boundary curves generated out-of-pile can be used to predict cladding oxidation embrittlement and subsequent brittle failure which might be caused by reactor upset and accident conditions

  18. Radial power density distribution of MOX fuel rods in the IFA-651

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Ho; Koo, Yang Hyun; Joo, Hyung Kook; Cheon, Jin Sik; Oh, Je Yong; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    Two MOX fuel rods, which were fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with Korea Atomic Energy Research Institute, have been irradiated in the HBWR from June, 2000 in the framework of OECD-HRP together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is basic in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR{sub H}BWR that calculates radial power density distribution for three MOX fuel rods has been developed based on neutron physics results and DEPRESS program. The developed subroutine FACTOR{sub H}BWR gives good agreement with the physics calculation except slight under-prediction at the outer part of the pellet above the burnup of 20 MWd/kgHM. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. 24 figs., 4 tabs. (Author)

  19. Radial power density distribution of MOX fuel rods in the HBWR

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Joo, Hyung Kook; Lee, Byung Ho; Sohn, Dong Seong

    1999-07-01

    Two MOX fuel rods, which ar being fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with the Korea Atomic Energy Research Institute (KAERI), are going to be irradiated in the HBWR (Halden Boiling Water Reactor) from the beginning of 2000 in the framework of OECD Halden Reactor Programme (HRP) together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is a basic property in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR{sub H}BWR that calculates radial power density distribution for three MOX fuel rods have been developed subroutine FACTOR{sub H}BWR gives good agreement with the physics calculation except slight underprediction in the central part and a little overprediction at the outer part of the pellet. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. (author). 5 refs., 3 tabs., 24 figs.

  20. Development of alternative materials for BWR fuel springs

    International Nuclear Information System (INIS)

    Major sources of radioactivity introduced into reactor water of BWR were estimated fuel crud and in-core materials (especially, fuel springs). Fuel springs are used for fixation of fuel cladding tubes with spacer grid. Those are small parts (total length is only within 25 mm) and so many numbers are loaded simultaneously and then total surfaces area are calculated up to about 200 m2. Fuel springs are located under high radiation field and high oxidative environment. Conventional fuel spring is made of alloy-X750 which is one of nickel-based alloy and is reported to show relatively higher corrosion release rate. 58Co and 60Co will be released directly into reactor water from intensely radio-activated fuel springs surface and increase radioactivity concentrations in primary coolant. Corrosion release control from fuel springs is an important technical item and a development of alternative material instead of alloy-X750 for fuel spring is a key subject to achieve ultra low man-rem exposure BWR plant. In present work, alloy-X718 which started usage for PWR fuel springs and stainless steel type 316L which has many mechanical property data are picked up for alternative materials and compared their corrosion behaviors with conventional material. Corrosion experiment was conducted under vapor-water two phases flow which is simulated fuel cladding surface boiling condition. After exposure, corrosion film formed under corrosion test was analyzed in detail and corrosion film amount and corrosion release amount are estimated among three materials. (authors)

  1. Behavior of irradiated BWR fuel under reactivity-initiated-accident conditions. Results of tests FK-1, -2 and -3

    International Nuclear Information System (INIS)

    Boiling water reactor (BWR) fuel rods with burnups of 41 to 45 GWd/tU were pulse-irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior during a reactivity initiated accident (RIA) at cold startup. BWR fuel segment rods of 8 x 8BJ (STEP I) type from the Fukushima Daiichi Nuclear Power Station Unit 3 were refabricated into short test rods, and they were subjected to prompt enthalpy insertion from 293 to 607 J/g (70 to 145 cal/g) within about 20 ms. The fuel cladding had enough ductility against the prompt deformation due to pellet cladding mechanical interaction. The plastic hoop strain reached 1.5% at the peak location. The cladding surface temperature locally reached about 600 degC. Recovery of irradiation defects in the cladding due to high temperature during the pulse irradiation was indicated via X-ray diffractometry. The amount of fission gas released during the pulse irradiation was from 3.1% to 8.2% of total inventory, depending on the peak fuel enthalpy and the normal operation conditions. (author)

  2. International symposium on fuel rod simulators: development and application

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W. (comp.)

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  3. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M. (Argonne National Lab., IL (USA))

    1989-09-01

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt % gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 {mu}m in thickness after burnups of 11 to 30 MWd/kgU. For one of the BWRs, which was operated at 307{degree}C rather than the normal 288{degree}C, a relatively thick (50 to 70 {mu}m) uniform oxide, rather than nodular oxides, was observed after a burnup of 27 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conductive to nodular oxidation. 23 refs., 9 figs.

  4. Fuel rod welding (LWBR development program)

    International Nuclear Information System (INIS)

    Procedures were developed to weld both ends of approximately 25,000 fuel rods for the Light Water Breeder Reactor (LWBR) core. The rods were welded using the gas tungsten arc (GTA) method in high-purity helium at 1 atmosphere. Welding parameters, including weld current, arc gap, and speed of rotation, were established to control the size of the weld. Electrode and chill positioning with respect to the endclosure/tube joint controlled the location of the weld. Weld quality of the fuel rods was ensured by 100-percent nondestructive testing by ultrasonic and radiographic inspection and the destructive evaluation of process control samples in each weld lot

  5. Method for making nuclear fuel rods

    International Nuclear Information System (INIS)

    A method of manufacturing a nuclear rod is described. It comprises only partially filling a mold cavity with nuclear fuel particles, closing the mold cavity and reducing the volume thereof such that the fuel particles substantially fill the mold cavity, injecting a fluid solidifiable binder into the particle-filled mold cavity to fill the interstices between the fuel particles. The volume of particle-filled mold cavity is reduced by applying pressure to the contents thereof via a movable portion of mold cavity, and solidifying binder in cavity to form a fuel rod

  6. Benchmark calculation with MOSRA-SRAC for burnup of a BWR fuel assembly

    International Nuclear Information System (INIS)

    The Japan Atomic Energy Agency has developed the Modular Reactor Analysis Code System MOSRA to improve the applicability of neutronic characteristics modeling. The cell calculation module MOSRA-SRAC is based on the collision probability method and is one of the core modules of the MOSRA system. To test the module on a real-world problem, it was combined with the benchmark program 'Burnup Credit Criticality Benchmark Phase IIIC.' In this program participants are requested to submit the neutronic characteristics of burnup calculations for a BWR fuel assembly containing fuel rods poisoned with gadolinium (Gd2O3), which is similar to the fuel assembly at TEPCO's Fukushima Daiichi Nuclear Power Station. Because of certain restrictions of the MOSRA-SRAC burnup calculations part of the geometry model was homogenized. In order to verify the validity of MOSRA-SRAC, including the effects of the homogenization, the calculated burnup dependent infinite multiplication factor and the nuclide compositions were compared with those obtained with the burnup calculation code MVP-BURN which had already been validated for many benchmark problems. As a result of the comparisons, the applicability of MOSRA-SRAC module for the BWR assembly has been verified. Furthermore, it can be shown that the effects of the homogenization are smaller than the effects due to the calculation method for both multiplication factor and compositions. (author)

  7. LWR fuel rod testing facilities in high flux reactor (HFT) Petten for investigation of power cycling and ramping behaviour

    International Nuclear Information System (INIS)

    LWR fuel rod irradiation experiments are being performed in HFR's Pool Side Facility (PSF) by means of pressurized boiling water capsules (BWFC). For more than 6 years the major application of these devices has been in performing irradiation programs to investigate the power ramp behaviour of PWR and BWR rods which have been pre-irradiated in power reactors. Irradiation devices with various types of monitoring instrumentation are available, e.g. for fuel rod length, fuel stack length, fuel rod internal pressure and fuel rod central temperature measurements. The application scope covers PWR and BWR fuel rods, with burn-up levels up to 45 MWd/kg(U), max. linear heat generation rates up to 700 W/cm and simulation of constant power change rates between 0.05 and 1000 W/cm.min. The paper describes the different designs of LWR fuel rod testing facilities and associated non-destructive testing devices in use at the HFR Petten. It also addresses the new test capabilities that will become available after exchange of the HFR vessel in 1983. Furthermore it shows some typical results. (author)

  8. Development of neural network simulating power distribution of a BWR fuel bundle

    International Nuclear Information System (INIS)

    A neural network model is developed to simulate the precise nuclear physics analysis program code for quick scoping survey calculations. The relation between enrichment and local power distribution of BWR fuel bundles was learned using two layers neural network (ENET). A new model is to introduce burnable neutron absorber (Gadolinia), added to several fuel rods to decrease initial reactivity of fresh bundle. The 2nd stages three layers neural network (GNET) is added on the 1st stage network ENET. GNET studies the local distribution difference caused by Gadolinia. Using this method, it becomes possible to survey of the gradients of sigmoid functions and back propagation constants with reasonable time. Using 99 learning patterns of zero burnup, good error convergence curve is obtained after many trials. This neural network model is able to simulate no learned cases fairly as well as the learned cases. Computer time of this neural network model is about 100 times faster than a precise analysis model. (author)

  9. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland [GNS, Essen (Germany); Helmut Kuhl [WTI, Julich (Germany)

    2015-05-15

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs.

  10. Study of transient rod extraction failure without RBM in a BWR

    International Nuclear Information System (INIS)

    The study and analysis of the operational transients are important for predicting the behavior of a system to short-term events and the impact that would cause this transient. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could cause an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis results of the transient rod extraction failure in which not taken into operation the RBM is presented. The study was conducted for a BWR of 2027 MWt, in an intermediate cycle of its useful life and using the computer code Simulate-3K a scenario of anomalies was created in the core reactivity which gave a coherent prediction to the type of presented event. (Author)

  11. Fuel rod consolidation: Costs, system implementation and economic incentives

    International Nuclear Information System (INIS)

    The authors analysis indicate that it is possible to consolidate fuel in Millstone Unit 1 BWR plant. The motive to develop consolidation equipment is to increase spent fuel pools' storage capabilities. With consolidation, the author hopes to achieve lifetime storage for all four of the units. From a broader viewpoint, rod consolidation at reactors prior to shipment to DOE can have significant benefits for the Waste Management program. These benefits are summarized as follows; the number of spent fuel shipments can be halved; the number of casks required for shipment can be halved; the cost for shipping can be halved; the cost for a large central rod consolidation facility can be avoided; and savings of $900 million can be achieved. It is pointed out that the costs for at-reactor consolidation are based on modest design improvements to equipment that is presently being reduced to practice. The capital costs for a central facility, however, are projections of the costs of equipment and facilities yet to be designed, tested, and fabricated

  12. Reversible BWR fuel assembly and method of using same

    International Nuclear Information System (INIS)

    A nuclear fuel assembly is described comprising: (a) a flow channel; (b) a lower nozzle assembly structurally attached to the flow channel to form therewith an external envelope; (c) an invertible fuel bundle adapted to be inserted into the envelope, the fuel bundle comprising elongated fuel rods held in a spaced lateral array between top and bottom tie plates. Each of the top and bottom tie plates is substantially identical and has means for supporting the fuel bundle within the envelope in either of two mutually inverted vertical orientations whereby the orientation of the fuel bundle in a flow channel may be reversed during burn-up operation

  13. COBRA-SFS [Spent-Fuel Storage] thermal-hydraulic analyses of the CASTOR-1C and REA 2023 BWR storage casks containing consolidated spent fuel

    International Nuclear Information System (INIS)

    Consolidation of spent nuclear fuel rods is being considered as one option for more efficient and compact storage of reactor spent fuel assemblies. In this concept, rods from two disassembled spent fuel assemblies will be consolidated in a space originally intended to store a single unconsolidated assembly. The thermal performance of consolidated fuel rods in dry storage, especially in multiassembly storage systems, is one of the major issues that must be addressed prior to implementation. In this study, Pacific Northwest Laboratory researchers performed thermal-hydraulic analyses for both the REA 2023 cask and the CASTOR-1C cask containing either unconsolidated or consolidated BWR spent fuel assemblies. The objective was to determine the effect of consolidating spent fuel assemblies on the temperature distributions within both types of casks. Two major conclusions resulted from this study. First, a lumping technique (combining rods and flow channels), which reduces the number of computational nodes required to model complex multiassembly geometries, could be used for both unconsolidated and consolidated rods with negligible effect on prediction accuracies. Second, with a relatively high thermal conductivity backfill gas (e.g., helium), the predicted peak fuel rod temperature in a canister of consolidated rods generating the same amount of heat as an unconsolidated assembly is essentially the same as the peak temperature in the unconsolidated assembly. In contrast, with a relatively low thermal conductivity backfill gas (e.g., nitrogen), the opposite is true and the predicted peak temperature in a consolidated canister is significantly higher than in an unconsolidated assembly. Therefore, when rods are consolidated, selection of the backfill gas is important in maintaining peak rod temperatures below allowable values for rods with relatively high decay heat generation rates

  14. Nuclear reactor fuel assembly with fuel rod removal means

    International Nuclear Information System (INIS)

    A fuel assembly is described for a nuclear reactor. The assembly has a bottom nozzle, at least one longitudinally extending control rod guide thimble attached to and projecting upwardly from the bottom nozzle and transverse grids spaced along the thimble. An organized array of elongated fuel rods are transversely spaced and supported by the grids and axially captured between the bottom nozzle and a top nozzle. The assembly comprises: (a) a transversely extending adapter plate formed by an arrangement of integral cross-laced ligaments defining a plurality of coolant flow openings; (b) means for mounting the adapter plate on an upper end portion of the thimble and spaced axially above and disposed transversely over the upper ends of all of the fuel rods present in the fuel assembly such that ones of the ligaments overlie corresponding ones of the fuel rods so as to prevent the fuel rods from moving upwardly through the coolant flow openings; and (c) removable plug means confined within the adapter plate and positioned over and spaced axially above selected ones of the fuel rods in providing access to at least one fuel rod for removal thereof upwardly through the axially spaced adapter plate without removing the top nozzle from the fuel assembly

  15. Upper end plug of fuel rod

    International Nuclear Information System (INIS)

    The present invention concerns a seal-welding of an upper end plug of a fuel rod for nuclear fuels conducted in a final stage of molding fabrication of the fuel rod in a pressurized helium gas. A welding protrusion is formed at the periphery of a vent hole on the upper surface of the upper end plug, and the welding protrusion is melted by irradiation of laser beams. The melted protrusion intrudes into the end portion of the bent hole by capillary to close the vent hole. The upper end plug can be closed by an extremely simple operation of irradiating the laser beams to the protrusion. Control for electrode gap on every fuel rods and exchange for the electrodes as in TIG welding can be saved, thereby enabling to speed up and simplify the sealing operation for the upper end plug. (N.H.)

  16. Spacer for fuel rods in nuclear fuel elements

    International Nuclear Information System (INIS)

    Spacers for fuel rods in nuclear reactor fuel elements are described, especially for use aboard ships. Spacers are used in a grid formed by web plates orthogonally intersecting and assembled together in a tooth-comb fashion forming a plurality of channels. The web plates are joined together and each of the web plates includes apertures through which resilient and separator members are joined. The resilient and separator members are joined. The resilient and separator members are in adjacent channels and with other similar members in the same channel, contact a fuel rod in the channel. The contact pressure between the members and fuel rod is radially directed

  17. Film cooling of vertical fuel rods

    International Nuclear Information System (INIS)

    Spray cooling of vertical rods has been studied at low heat fluxes appropriate to the removal of fission product heating following a reactor shut down. A series of tests have been made at atmospheric pressure using electrically heated rods, both singly and in a seven rod cluster, cooled by a falling film of water. Four modes of film breakdown were observed; progressive evaporation of the film; dry-patch formation due to surface tension effects at high inlet subcooling; stripping of the film by the flooding action of counterflow steam; and the disruption of the film on a hot rod caused by sputtering. Each of these phenomena is described in relation to the application of film cooling to long vertical fuel rod clusters. (author)

  18. EB welding and quality control of nuclear reactor fuel rods at ASEA-ATOM

    International Nuclear Information System (INIS)

    Fourteen years ago ASEA-ATOM chose EB welding for fuel rod plug/tube welds. This choice was made on the basis of 7 years of experience of EB-welding of fuel rods in a pilot plant. The specific reasons were the high quality and the high process yield, which are made possible by the great degree of controlability and reproducibility of this process and because the welds are suitable for QC inspection by an inline ultrasonic method which we developed at the same time. To date ASEA-ATOM has manufactured approximately 600,000 fuel rods with 1,200,000 EB-welds. The results have met expections as regards quality, process yield and service in BWR and PWR reactors. Descriptions are given of the automatic Sciaky EB welding machines, of the ultrasonic inspection equipment and of their process qualification. Some comments are made on quality and process yield

  19. Analysis of Double-encapsulated Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Hales, Jason Dean [Idaho National Laboratory; Medvedev, Pavel G [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Perez, Danielle Marie [Idaho National Laboratory; Williamson, Richard L [Idaho National Laboratory

    2014-09-01

    In an LWR fuel rod, the cladding encapsulates the fuel, contains fission products, and transfers heat directly to the water coolant. In some situations, it may be advantageous to separate the cladding from the coolant through use of a secondary cladding or capsule. This may be done to increase confidence that the fuel or fission products will not mix with the coolant, to provide a mechanism for controlling the rod temperature, or to place multiple experimental rodlets within a single housing. With an axisymmetric assumption, it is possible to derive closed-form expressions for the temperature profile in a fuel rod using radially-constant thermal conductivity in the fuel. This is true for both a traditional fuel-cladding rod and a double-encapsulated fuel (fuel, cladding, capsule) configuration. Likewise, it is possible to employ a fuel performance code to analyse both a traditional and a double-encapsulated fuel. In the case of the latter, two sets of gap heat transfer conditions must be imposed. In this work, we review the equations associated with radial heat transfer in a cylindrical system, present analytic and computational results for a postulated power and gas mixture history for IFA-744, and describe the analysis of the AFC-2A, 2B metallic fuel alloy experiments at the Advanced Test Reactor, including the effect of a release of fission products into the cladding-capsule gap. The computational results for these two cases were obtained using BISON, a fuel performance code under development at Idaho National Laboratory.

  20. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor

    International Nuclear Information System (INIS)

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  1. Recent experience and development of BWR fuel at NFI

    International Nuclear Information System (INIS)

    This paper describes the results of recent investigations by Nuclear Fuel Industries, Ltd. (NFI) conducted in cooperation with BWR electric power companies in Japan regarding high burnup fuel behavior, i.e. fuel cladding corrosion and hydrogen pickup, degradation of pellet thermal conductivity with burnup, and fission gas release. The authors confirmed by pool inspection that 9x9 assemblies irradiated up to 53 GWd/t, which is the maximum burnup in our experience, showed good performance without any harmful phenomena. With respect to the advanced Zr alloy HiFi, it was confirmed that HiFi retained high corrosion resistance and showed low hydrogen pick up and good mechanical properties after six cycles of irradiation. Regarding the high burnup fuel behavior, it was confirmed that the thermal behavior of the fuel, such as pellet thermal conductivity degradation and fission gas release behavior beyond 80 GWd/t, was stable in the extrapolation range of the burnup fuel behavior between about 60-70 GWd/t. In addition, a fuel performance analysis code developed by NFI was verified to predict the data measured beyond 80 GWd/t well. (author)

  2. Fuel rod for nuclear reactors

    International Nuclear Information System (INIS)

    The fuel or breeder element with fission gas plenum has hollow spaces on the central part of the fuel or breeder material volume, which are filled with sodium. During operation, this sodium provides a second heat transport mechanism, as the sodium evaporates, rises into the fission gas plenum, condenses on the metal sleeve there and returns to the fuel or breeding zone under gravity or capillary effect. (DG)

  3. Thermomechanical analysis of fuel rods during transitory events using the RAMONA and FETMA codes; Analisis termomecanico de barras combustibles durante eventos transitorios usando los codigos RAMONA y FETMA

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H. [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: hector.hernandez@inin.gob.mx

    2009-10-15

    In National Institute of Nuclear Research, the fuel management system (FMS) has been used by long time to simulate the BWR operation in stationary state, as well as during a transitory event. To evaluate the thermomechanical behavior of a fuel element was created and interface between the FMS codes and the fuel element thermo mechanical analysis (FETMA) code properly developed and implemented. In this work, the results of thermomechanical behavior of fuel rods that compose the hot channel during the simulation of a transitory event of a BWR are shown. The transitory events considered in this work are a load rejection and failure in controller of feed water, which are events more important that can to occur in a BWR. The results show that during the developed conditions by both transitory events some failure is not presented in fuel rods. Also, that the transitory event of load rejection is more claimant in security terms that of controller failure of feed water. (Author)

  4. Safety analysis of thorium-based fuels in the General Electric Standard BWR

    International Nuclear Information System (INIS)

    A denatured (U-233/Th)O2 fuel assembly has been designed which is energy equivalent to and hardware interchangeable with a modern boiling water reactor (BWR) reference reload assembly. Relative to the reference UO2 fuel, the thorium fuel design shows better performance during normal and transient reactor operation for the BWR/6 product line and will meet or exceed current safety and licensing criteria. Power distributions are flattened and thermal operating margins are increased by reduced steam void reactivity coefficients caused by U-233. However, a (U-233/Th)O2-fueled BWR will likely have reduced operating flexibility. A (U-235/Th)O2-fueled BWR should perform similar to a UO2-fueled BWR under all operating conditions. A (Pu/Th)O2-fueled BWR may have reduced thermal margins and similar accident response and be less stable than a UO2-fueled BWR. The assessment is based on comparisions of point model and infinite lattice predictions of various nuclear reactivity parameters, including void reactivity coefficients, Doppler reactivity coefficients, and control blade worths

  5. Measurement of pressure drops in prototypic BWR and PWR fuel assemblies in the laminar regime - Pressure drop measurement of laminar air flow in prototypic BWR and PWR fuel assemblies

    International Nuclear Information System (INIS)

    Laminar pressure drops in nuclear fuel assemblies are of interest for evaluating complete loss-of-coolant accident scenarios in spent fuel pools and for performance analyses of dry storage casks. To the knowledge of the authors, this study represents the first attempt to directly quantify pressure losses in prototypic fuel assemblies in the laminar regime. Two commercial fuel assemblies were examined including a 17x17 PWR and a 9x9 BWR. The assemblies were tested in the laminar regime with Reynolds numbers ranging from 10 to 1000, based on the average assembly velocity and hydraulic diameter. Pressure drop measurements were made across individual bundle spans and grid spacers in the mock fuel assemblies using high-sensitivity differential pressure gauges. These gauges are capable of detecting extremely small changes in differential pressure with a resolution of ∼0.02 Pa. This level of sensitivity allows meaningful pressure drop measurements across separate fuel components, even at low Reynolds numbers. The fuel assembly mock-ups were constructed from commercial fuel assembly structural components and stainless steel tubing that is within 0.6 pc of the outer diameter of actual fuel. The outer flow boundary in the BWR assembly bundle was defined by the walls of a prototypic canister. In the PWR assembly, the flow was confined by the walls of different stainless steel storage cells. Two of the PWR storage cell sizes represented dimensions spanning pool and cask cells available in industry. Pressure ports were installed along the length of the assemblies at locations corresponding to the entrance and exit of fuel components. Dry, ambient air was metered into the bottom of each assembly through a flow straightener. The geometries of the tube bundles in 17x17 PWR and 9x9 BWR fuel assemblies are fundamentally different. The PWR bundle has a larger flow area and incorporates more grid spacers compared to the BWR bundle. Additionally, eight of the 74 fuel rods in the 9x9

  6. Thermographic imaging of nuclear fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Oldberg, S. Jr. (Electric Power Research Inst., Palo Alto, CA); Honey, R.C.; Falconer, D.G.; Zebroski, E.L.

    1977-04-01

    A method has been demonstrated for imaging details of the fuel-cladding gap region in nuclear fuel rods. The method exploits the geometry-sensitive variation in fuel-cladding gap conductance. After rapid electric resistance heating of the cladding tube by discharge of a capacitor bank, those regions of cladding cool first that have narrow fuel-cladding gaps. The cladding surface temperature is recorded by an infrared camera with a cathode ray tube display. Potential is seen for the measurement technique as a research tool and as a receiving inspection method.

  7. Preliminary nuclear design for test MOX Fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Jeong, Hyung Guk; Noh, Jae Man; Cho, Jin Young; Kim, Young Il; Kim, Young Jin; Sohn, Dong Seong

    1997-10-01

    As a part of activity for future fuel development project, test MOX fuel rods are going to be loaded and irradiated in Halden reactor core as a KAERI`s joint international program with Paul Scherrer Institute (PSI). PSI will fabricate test MOX rods with attrition mill device which was developed by KAERI. The test fuel assembly rig contains three MOX rods and three inert matrix rods. One of three MOX rods will be fabricated by BNFL, the other two MOX fuel rods will be manufacturing jointly by KAERI and PSI. Three inert matrix fuel rods will be fabricated with Zr-Y-Er-Pu oxide. Neutronic evaluation was preliminarily performed for test fuel assembly suggested by PSI. The power distribution of test fuel rod in test fuel assembly was analyzed for various fuel rods position in assembly and the depletion characteristic curve for test fuel was also determined. The fuel rods position in test fuel assembly does not effect the rod power distribution, and the proposal for test fuel rods suggested by PSI is proved to be feasible. (author). 2 refs., 13 tabs., 16 figs.

  8. An intelligent spent fuel database for BWR fuels

    International Nuclear Information System (INIS)

    The present aim is to establish an intelligent database of Spent Fuel Data (including physical fuel data and reactor operating history information) to support burnup credit analyses for Boiling Water Reactor Fuel. At a later date, information of Pressurized Water Reactor Fuel and existing Post-Irradiation Examination (PIE) data for benchmarking fuel composition calculations may be integrated into the database. (author)

  9. Nuclear fuel rod frame with fuel rods positioned by moveable member

    International Nuclear Information System (INIS)

    Described is a grid structure for holding a plurality of nuclear fuel rods. The grid structure is of the type having wall means, including rigidly interconnected generally rectangular metal strips, forming a plurality of passageways and adapted to support nuclear fuel rods within some of the passageways. The improvement comprises providing elongated slots intermediate and normal to the longitudinal edges of each of the strips at each intersection of the strips whereby the slots form openings in each corner of each passageway

  10. Method and means of packaging nuclear fuel rods for handling

    International Nuclear Information System (INIS)

    Nuclear fuel rods, especially spent nuclear fuel rods that may show physical distortion, are encased within a metallic enclosing structure by forming a tube about the fuel pod. The tube has previously been rolled to form and overlapping tubular structure and then unrolled and coiled about an axis perpendicular to the tube. The fuel rod is inserted into the tube as the rolled tube is removed from a coiled strip and allowed to reassume its tubular shape about the fuel rod. Rollers support the coiled strip in an open position as the coiled strip is uncoiled and allowed to roll about the fuel rod

  11. Determination of reactor parameters by single fuel rod experiments

    International Nuclear Information System (INIS)

    Reactor parameters were measured by measuring neutron flux distribution in the vicinity of single fuel rod and it was shown that it can be applied for testing fuel elements. Four types of fuel elements were used, natural uranium rod, 2% enriched fuel element, and fuel clusters with 19 and 27 fuel rods. Neutron flux distribution was measured by irradiating Au and Dy foils. results were compared to results obtained by two-group and three-group neutron diffusion theory

  12. Development of neural network for analysis of local power distributions in BWR fuel bundles

    International Nuclear Information System (INIS)

    A neural network model has been developed to learn the local power distributions in a BWR fuel bundle. A two layers neural network with total 128 elements is used for this model. The neural network learns 33 cases of local power peaking factors of fuel rods with given enrichment distribution as the teacher signals, which were calculated by a fuel bundle nuclear analysis code based on precise physical models. This neural network model studied well the teacher signals within 1 % error. It is also able to calculate the local power distributions within several % error for the different enrichment distributions from the teacher signals when the average enrichment is close to 2 %. This neural network is simple and the computing speed of this model is 300 times faster than that of the precise nuclear analysis code. This model was applied to survey the enrichment distribution to meet a target local power distribution in a fuel bundle, and the enrichment distribution with flat power shape are obtained within short computing time. (author)

  13. Development of a statistical fuel rod design methodology

    International Nuclear Information System (INIS)

    A statistical fuel rod design methodology, which uses the response surface method and Monte Carlo calculation, has been developed to reduce conservatism included in the rod internal gas pressure calculation by replacing the worst case data by data with statistically known conservatism. 95% value of rod internal gas pressure estimated by the statistical fuel rod design methodology is much smaller than rod internal gas pressure obtained by the worst case data

  14. Behavior of water reactor fuel rod

    International Nuclear Information System (INIS)

    This paper reviewed the fuels used widely in forms of (1) Zircaloy-sheathed UO2 fuel in light water-commercial power reactor, (2) Zircaloy-sheathed PuO2-UO2 fuel in plutonium-thermal reactor and advanced reactor (ATR), (3) aluminide and silicide fuel in Material Testing Reactors. From fundamental view points, physical/chemical properties and irradiation behaviors of both fuels and zircaloy claddings are briefly reviewed in chapters 1 and 2. Change of the fuel rod physical parameters with progress of burn-up are summed up in chapter 3. Some fuel troubles and failures encountered in past usage of worldwide LWR fuels are introduced with counterplans taken. In the last session of this chapter, recent results of R and D works have been carried out by fuel vendors are reviewed. Especially, in-core behaviors of PCI-remedy fuels developed to use for high burn-up extension and for load-follow operation are highlighted. Reactor accidents occurred through past forty years are surveyed and reviewed. Fuel behaviors during the reactivity initiated accident (RIA), the power-coolant mismatch (PCM), and the loss-of-coolant accident (LOCA) are taken into this review by using disclosed literatures. Safety criteria being used in Japanese licensing authorities are introduced relating to the fuel design limit. (author)

  15. Elliptical cross section fuel rod study II

    International Nuclear Information System (INIS)

    In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab

  16. Fuel rod design by statistical methods for MOX fuel

    International Nuclear Information System (INIS)

    Statistical methods in fuel rod design have received more and more attention during the last years. One of different possible ways to use statistical methods in fuel rod design can be described as follows: Monte Carlo calculations are performed using the fuel rod code CARO. For each run with CARO, the set of input data is modified: parameters describing the design of the fuel rod (geometrical data, density etc.) and modeling parameters are randomly selected according to their individual distributions. Power histories are varied systematically in a way that each power history of the relevant core management calculation is represented in the Monte Carlo calculations with equal frequency. The frequency distributions of the results as rod internal pressure and cladding strain which are generated by the Monte Carlo calculation are evaluated and compared with the design criteria. Up to now, this methodology has been applied to licensing calculations for PWRs and BWRs, UO2 and MOX fuel, in 3 countries. Especially for the insertion of MOX fuel resulting in power histories with relatively high linear heat generation rates at higher burnup, the statistical methodology is an appropriate approach to demonstrate the compliance of licensing requirements. (author)

  17. Development of neural network for predicting local power distributions in BWR fuel bundles considering burnable neutron absorber

    International Nuclear Information System (INIS)

    A neural network model is under development to predict the local power distribution in a BWR fuel bundle as a high speed simulator of precise nuclear physical analysis model. The relation between 235U enrichment of fuel rods and local peaking factor (LPF) has been learned using a two-layered neural network model ENET. The training signals used were 33 patterns having considered a line symmetry of a 8x8 assembly lattice including 4 water rods. The ENET model is used in the first stage and a new model GNET which learns the change of LPFs caused by burnable neutron absorber Gadolinia, is added to the ENET in the second stage. Using this two-staged model EGNET, total number of training signals can be decreased to 99. These training signals are for zero-burnup cases. The effect of Gadolinia on LPF has a large nonlinearity and the GNET should have three layers. This combined model of EGNET can predict the training signals within 0.02 of LPF error, and the LPF of a high power rod is predictable within 0.03 error for Gadolinia rod distributions different from the training signals when the number of Gadolinia rods is less than 10. The computing speed of EGNET is more than 100 times faster than that of a precise nuclear analysis model, and EGNET is suitable for scoping survey analysis. (author)

  18. Fuel rod under power oscillations; calculations with the ENIGMA code

    International Nuclear Information System (INIS)

    Power oscillations in a BWR may result from a series of events starting from a re-circulation pump trip or can be initiated during start-up at low-flow conditions by other perturbations. Whole core and regional oscillations have been observed. Severe consequences may be anticipated if the instability diverges and the reactor protection system fails (no scram) in all phases of the incident (ATWS). Power peaks higher than ten times of the pre-transient power level have been speculated to appear. Low-magnitude oscillations have been observed at the TVO plant, Olkiluoto 1987, and at the Lasalle-2 plant, 1988, and in other BWRs world-wide. Typically, a boiling water reactor has an unstable operational point at low flow and high power conditions. The physical phenomenon behind the instability is density wave oscillations leading to boiling boundary oscillations and void fraction fluctuations across the heated channel. These in turn, make the fission power vary. The typical frequency of the oscillations seems to be of the order of 0.5 Hz, and thus the power peak for a fuel rod is considerably wider than a RIA-pulse, for instance. Large oscillations can result in elevated fuel temperatures, accelerated fission gas release and additional internal loads on the cladding. These effects may be more severe for a high burnup rod with a large fission gas inventory and a closed gap. Therefore, an experiment has been proposed to be conducted at Halden reactor for simulating the fuel rod response under power oscillations. As there is lack of knowledge also on the relevant boundary conditions, pre-calculations with various input options have been performed and are further suggested. Calculations with FRAPTRAN code have shown the importance of the cladding-coolant heat transfer to the fuel temperature. The applicability of the ENIGMA code to this kind of transients was confirmed. To support the planning of the proposed Halden test, estimates on fuel and cladding temperatures as well as

  19. Modelling of fuel oxidation behaviour in operating defective fuel rods

    International Nuclear Information System (INIS)

    A fuel oxidation model is proposed for operating defective nuclear fuel rods. The present model is based on adsorption theory and accounts for high pressure effects. This model is in agreement with the fuel oxidation kinetics observed in high temperature annealing experiments conducted at 1 473 to 1 623 K in steam over a range of pressure from 0.001 to 0.1 MPa. Using a Freundlich adsorption isotherm, the current model is also consistent with recent experiments conducted at a higher pressure of 7 MPa. The model also considers radiolytic effects as a consequence of fission fragment bombardment in the fuel-to-clad gap. This treatment suggests that radiolysis-assisted oxidation is insignificant in operating defective rods (as compared to thermal effects), as supported by limited in-reactor data. The effects of diffusion of the interstitial oxygen ions in the solid in the operating rod is further discussed. (authors)

  20. Fuel rod behaviour during transients

    International Nuclear Information System (INIS)

    The clad deformation code CANSWELL-2 is described. This is used, either as a stand-alone code or within MABEL-2, to predict and analyse the results of LOCA simulations in the Halden and NRU reactors and in the KfK and PROPAT rigs. Experimental evidence on fuel behaviour in RIA, PCM and ATWS events is presented with inclusion of certain FRAP-T5 results. Published calculations from the accident codes FRAP-T4 and FRAP-T5 are compared with experimental results in simulated loss of coolant tests in the Power Burst Facility. The limitations of this code in its treatment of RIA, PCM and ATWS events are considered. (U.K.)

  1. Artificial intelligence applied to fuel management in BWR type reactors

    International Nuclear Information System (INIS)

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  2. Design and axial optimization of nuclear fuel for BWR reactors

    International Nuclear Information System (INIS)

    In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the

  3. Experimental design for HTGR fuel rods

    International Nuclear Information System (INIS)

    Fuel rods for the high temperature gas cooled reactor are composed of pyrolytic carbon coated fuel particles bounded by a carbonaceous matrix. Because of differential shrinkage between coated particles and the carbonaceous matrix, breakage of the pyrolytic coating has been observed with certain combinations of coated particles and matrix compositions. The pyrolytic coating is intended to be the primary containment for fission products. Therefore, an experiment is desired to determine the breakage characteristics of different strength coated particles combined with different matrix compositions during irradiation

  4. Thermal phenomenae in nuclear fuel rods

    International Nuclear Information System (INIS)

    Thermal phenomenae occurring in a nuclear fuel rod under irradiation are studied. The most important parameters of either steady or transient thermal states are determined. The validity of applying the Fourier's approximation equations to these problems is also studied. A computer program TRANS is developed in order to study the transient cases. This program solves a system of coupled, non-linear partial differential equations, of parabolic type, in cylindrical coordinates with various boundary conditions. The benchmarking of the TRANS program is done by comparing its predictions with the analytical solution of some simplified transient cases. Complex transient cases such as those corresponding to characteristic reactor accidents are studied, in particular for typical pressurized heavy water reactor (PHWR) fuel rods, such as those of Atucha I. The Stefan problem emerging in the case of melting of the fuel element is solved. Qualitative differences between the classical Stefan problem, without inner sources, and that one, which includes sources are discussed. The MSA program, for solving the Stefan problem with inner sources is presented; and furthermore, it serves to predict thermal evolution, when the fuel element melts. Finally a model for fuel phase change under irradiation is developed. The model is based on the dimensional invariants of the percolation theory when applied to the connectivity of liquid spires nucleated around each fission fragment track. Suggestions for future research into the subject are also presented. (autor)

  5. Study of transient rod extraction failure without RBM in a BWR; Estudio del transitorio error de extraccion de barra sin RBM en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L., E-mail: amhed_jvq@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-09-15

    The study and analysis of the operational transients are important for predicting the behavior of a system to short-term events and the impact that would cause this transient. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could cause an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis results of the transient rod extraction failure in which not taken into operation the RBM is presented. The study was conducted for a BWR of 2027 MWt, in an intermediate cycle of its useful life and using the computer code Simulate-3K a scenario of anomalies was created in the core reactivity which gave a coherent prediction to the type of presented event. (Author)

  6. Factors influencing helium measurements for detection of control rod failures in BWR

    International Nuclear Information System (INIS)

    Much effort has been made to minimize the number and consequences of fuel failures at nuclear power plants. The consequences of control rod failures have also gained an increased attention. In this paper we introduce a system for on-line surveillance of control rod integrity which has several advantages comparing to the surveillance methods available today in boiling water reactors (BWRs). This system measures the helium released from failed control rods containing boron carbide (B4C). However, there are a number of factors that might influence measurements, which have to be taken into consideration when evaluating the measured data. These factors can be separated into two groups: 1) local adjustments, made on the sampling line connecting the detector to the off-gas system, and 2) plant operational parameters. The adjustments of the sample line conditions include variation of gas flow rate and gas pressure in the line. Plant operational factors that may influence helium measurements can vary from plant to plant. The factors studied at Leibstadt nuclear power plant (KKL) were helium impurities in injected hydrogen gas, variation of the total off-gas flow and regular water refill. In this paper we discuss these factors and their significance and present experimental results of measurements at KKL. (authors)

  7. Control rod cluster with removable rods for nuclear fuel assembly

    International Nuclear Information System (INIS)

    For each removable control rod, the open end section of the sleeve has a certain length of reduced diameter with openings in its wall. The top end of the rod is joined to an extension tube that surrounds the shaft over part of its lenght. This extension tube fits over the reduced part of the sleeve when the shaft is screwed into the bore of the sleeve. Rotation of the rod in the sleeve is prevented by deforming the extension tube locally in the openings of the end part of the sleeve. The rod is dismantled by exerting a torque on it using a gripping area near the end of the rod

  8. Implementation of a methodology to perform the uncertainty and sensitivity analysis of the control rod drop in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M. del C.

    2015-07-01

    A methodology to perform uncertainty and sensitivity analysis for the cross sections used in a Trace/PARCS coupled model for a control rod drop transient of a BWR-5 reactor was implemented with the neutronics code PARCS. A model of the nuclear reactor detailing all assemblies located in the core was developed. However, the thermohydraulic model designed in Trace was a simple model, where one channel representing all the types of assemblies located in the core, it was located inside a simple vessel model and boundary conditions were established. The thermohydraulic model was coupled with the neutronics model, first for the steady state and then a Control Rod Drop (CRD) transient was performed, in order to carry out the uncertainty and sensitivity analysis. To perform the analysis of the cross sections used in the Trace/PARCS coupled model during the transient, Probability Density Functions (PDFs) were generated for the 22 parameters cross sections selected from the neutronics parameters that PARCS requires, thus obtaining 100 different cases for the Trace/PARCS coupled model, each with a database of different cross sections. All these cases were executed with the coupled model, therefore obtaining 100 different outputs for the CRD transient with special emphasis on 4 responses per output: 1) The reactivity, 2) the percentage of rated power, 3) the average fuel temperature and 4) the average coolant density. For each response during the transient an uncertainty analysis was performed in which the corresponding uncertainty bands were generated. With this analysis it is possible to observe the results ranges of the responses chose by varying the uncertainty parameters selected. This is very useful and important for maintaining the safety in the nuclear power plants, also to verify if the uncertainty band is within of safety margins. The sensitivity analysis complements the uncertainty analysis identifying the parameter or parameters with the most influence on the

  9. Implementation of a methodology to perform the uncertainty and sensitivity analysis of the control rod drop in a BWR

    International Nuclear Information System (INIS)

    A methodology to perform uncertainty and sensitivity analysis for the cross sections used in a Trace/PARCS coupled model for a control rod drop transient of a BWR-5 reactor was implemented with the neutronics code PARCS. A model of the nuclear reactor detailing all assemblies located in the core was developed. However, the thermohydraulic model designed in Trace was a simple model, where one channel representing all the types of assemblies located in the core, it was located inside a simple vessel model and boundary conditions were established. The thermohydraulic model was coupled with the neutronics model, first for the steady state and then a Control Rod Drop (CRD) transient was performed, in order to carry out the uncertainty and sensitivity analysis. To perform the analysis of the cross sections used in the Trace/PARCS coupled model during the transient, Probability Density Functions (PDFs) were generated for the 22 parameters cross sections selected from the neutronics parameters that PARCS requires, thus obtaining 100 different cases for the Trace/PARCS coupled model, each with a database of different cross sections. All these cases were executed with the coupled model, therefore obtaining 100 different outputs for the CRD transient with special emphasis on 4 responses per output: 1) The reactivity, 2) the percentage of rated power, 3) the average fuel temperature and 4) the average coolant density. For each response during the transient an uncertainty analysis was performed in which the corresponding uncertainty bands were generated. With this analysis it is possible to observe the results ranges of the responses chose by varying the uncertainty parameters selected. This is very useful and important for maintaining the safety in the nuclear power plants, also to verify if the uncertainty band is within of safety margins. The sensitivity analysis complements the uncertainty analysis identifying the parameter or parameters with the most influence on the

  10. Qualification of helium measurement system for detection of fuel failures in a BWR

    Science.gov (United States)

    Larsson, I.; Sihver, L.; Loner, H.; Grundin, A.; Helmersson, J.-O.; Ledergerber, G.

    2014-05-01

    There are several methods for surveillance of fuel integrity during the operation of a boiling water reactor (BWR). The detection of fuel failures is usually performed by analysis of grab samples of off-gas and coolant activities, where a measured increased level of ionizing radiation serves as an indication of new failure or degradation of an already existing one. At some nuclear power plants the detection of fuel failures is performed by on-line nuclide specific measurements of the released fission gases in the off-gas system. However, it can be difficult to distinguish primary fuel failures from degradation of already existing failures. In this paper, a helium measuring system installed in connection to a nuclide specific measuring system to support detection of fuel failures and separate primary fuel failures from secondary ones is presented. Helium measurements provide valuable additional information to measurements of the gamma emitting fission gases for detection of primary fuel failures, since helium is used as a fill gas in the fuel rods during fabrication. The ability to detect fuel failures using helium measurements was studied by injection of helium into the feed water systems at the Forsmark nuclear power plant (NPP) in Sweden and at the nuclear power plant Leibstadt (KKL) in Switzerland. In addition, the influence of an off-gas delay line on the helium measurements was examined at KKL by injecting helium into the off-gas system. By using different injection rates, several types of fuel failures with different helium release rates were simulated. From these measurements, it was confirmed that the helium released by a failed fuel can be detected. It was also shown that the helium measurements for the detection of fuel failures should be performed at a sampling point located before any delay system. Hence, these studies showed that helium measurements can be useful to support detection of fuel failures. However, not all fuel failures which occurred at

  11. Calibration of the TVO spent BWR reference fuel assembly

    International Nuclear Information System (INIS)

    In 1989 the Support Programmes of Finland (FSP) and Sweden (SSP) initiated a joint task to cross calibrate the burnup of the IAEA spent BWR reference fuel assembly at the TVO AFR storage facility (TVO KPA-STORE) in Finland. The reference assembly, kept separately under the IAEA seal, is used for verification measurements of spent fuel by GBUV method (SG-NDA-38). The cross calibration was performed by establishing a calibration curve, 244Cm neutron rate versus burnup, using passive neutron assay (PNA) measurements. The declared burnup of the reference assembly was compared with the burnup value deduced from the calibration curve. A calibration line was also established by using the GBUV method with the aid of high resolution gamma ray spectrometry (HRGS). Normalization between the two different facilities was performed using sealed neutron and gamma calibration sources. The results of the passive neutron assay show consistency, better than 1 %, between the declared mean burnup of the reference assembly and the burnup deduced from the calibration curve. The corresponding consistency is within +-2 % for the HRGS measurements

  12. Fuel Rod Consolidation Project: Phase 2, Final report: Volume 1

    International Nuclear Information System (INIS)

    This design report describes the NUS final design of the Prototype Spent Nuclear Fuel Rod Consolidation System. This summary presents the approach and the subsequent sections describe, in detail, the final design. Detailed data, drawings, and the design Basis Accident Report are provided in Volumes II thru V. The design as presented, represents one cell of a multicell facility for the dry consolidation of any type of PWR and BWR fuel used in the United States LWR industry that will exceed 1% of the fuel inventory at the year 2000. The system contains the automatically-controlled equipment required to consolidate 750MT (heavy metal)/year, at 75% availability. The equipment is designed as replaceable components using state-of-the-art tchnology. The control system utilizes the most advanced commercially available equipment on the market today. Two state-of-the-art advanced servo manipulators are provided for system maintenance. In general the equipment is designed utilizing fabricated and commercial components. For example, the main drive systems use commercially available roller screws. These rollers screws have 60,000 hours of operation in nuclear power plants and have been used extensively in other applications. The motors selected represent the most advanced designed servo motors on the market today for the precision control of machinery. In areas where precise positioning was not required, less expensive TRW Globe motors were selected. These are small compact motors with a long history of operations in radiation environments. The Robotic Bridge Transporters are modified versions of existing bridge cranes for remote automatic operations. Other equipment such as the welder for fuel canister closure operations is a commercially available product with an operating history applicable to this process. In general, this approach was followed throughout the design of all the equipment and will enable the system to be developed without costly development programs

  13. Radial optimization of a BWR fuel cell using genetic algorithms

    International Nuclear Information System (INIS)

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U235 and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix the placement of

  14. The BG18, a B(U)F type package used for the transport of irradiated fuel rods - return of experience

    International Nuclear Information System (INIS)

    The purpose of this presentation is to share the return of experience of Transnubel after a period of nearly 3 years operation of the BG18 package in several nuclear power plants and hot cell facilities. This package has been used mainly for the shipment of full scale as well as samples of irradiated fuel rods - UOX or MOX, PWR or BWR

  15. The BG18, a B(U)F type package used for the transport of irradiated fuel rods - return of experience

    Energy Technology Data Exchange (ETDEWEB)

    Juergen, S.; Herman, S. [Transnubel, Dessel (Belgium)

    2004-07-01

    The purpose of this presentation is to share the return of experience of Transnubel after a period of nearly 3 years operation of the BG18 package in several nuclear power plants and hot cell facilities. This package has been used mainly for the shipment of full scale as well as samples of irradiated fuel rods - UOX or MOX, PWR or BWR.

  16. Thermal performance of nuclear fuel rod with a Jacobian elliptic cross sectional form

    International Nuclear Information System (INIS)

    Boiling water reactors, BWR, commercially use fuel rods with a circular cross section. Set the operational conditions as well as the distribution of these rods, a specific power is established. Changing this form while conserving the cross sectional area may deliver a better performance. This fact is investigated here for a family of elliptic forms, in a thermal sense, using the finite element method. Two limiting values are considered: the melting temperature of the fuel and the critical flux rate. For 2 d models, gains of the order of twenty percent in performance are estimated. It is also perceived the advantage of this alteration in other form of reactor, and discussed means of addressing other aspects of the problem. (author)

  17. Process for tightly sealing nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    This invention refers to a process for pressurising and tightly sealing fuel rods used in nuclear reactors. The fuel rods utilised in commercial nuclear reactors are usually composed of a zircaloy tubular cladding of around 15 mm in diameter and up to 5 m long, filled with fuel pellets maintained in place by end plugs sealed on each end of the cladding. The main purpose of the invention is to promote a process using laser beam welding equipment to seal the end plugs on the fuel rods, drill a pressurising hole in one of the end plugs and hermetically seal the hole after the fuel rod has been placed under pressure

  18. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    International Nuclear Information System (INIS)

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt% gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 μm in thickness after burnups of 11 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes, i.e., (1) partial amorphization of large Zr-Fe-Cr and Zr-Fe-Ni precipitates (300 to 800 nm in size), (2) virtually complete amorphization of small intermetallic precipitates and subsequent dissolution of the alloying elements, and (3) spinodal-like fluctuation and redistribution of the alloying elements following the amorphization and dissolution. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conducive to nodular oxidation. Besides the microstructural features associated with the intermetallic precipitates, TEM stereo electron microscopy revealed microscopic zirconium hydrides (30 to 100 nm in size) that were too small to be resolved by OM or SEM. Stereoscopic examination revealed a tendency for precipitation of the microscopic hydrides with c-component dislocations as the burnup increased. Also, an examination of bright- and dark-field stereopair images revealed three-dimensional distributions of fine cubic-zirconium-oxide precipitates (5 to 10 nm in size) and unidentified ''black-dot'' (5 to 10 nm) and ''white

  19. Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.

    1998-01-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  20. Fission gas release and pellet microstructure change of high burnup BWR fuel

    International Nuclear Information System (INIS)

    UO2 fuel, with and without Gadolinium, irradiated for three, five, and six irradiation cycles up to about 60 GWd/t pellet burnup in a commercial BWR were studied. The fission gas release and the rim effect were investigated by the puncture test and gas analysis method, OM (optical microscope), SEM (scanning electron microscope), and EPMA (electron probe microanalyzer). The fission gas release rate of the fuel rods irradiated up to six cycles was below a few percent; there was no tendency for the fission gas release to increase abruptly with burnup. On the other hand, microstructure changes were revealed by OM and SEM examination at the rim position with burnup increase. Fission gas was found depleted at both the rim position and the pellet center region using EPMA. There was no correlation between the fission gas release measured by the puncture test and the fission gas depletion at the rim position using EPMA. However, the depletion of fission gas in the center region had good correlation with the fission gas release rate determined by the puncture test. In addition, because the burnup is very large at the rim position of high burnup fuel and also due to the fission rate of the produced Pu, the Xe/Kr ratio at the rim position of high burnup fuel is close to the value of the fission yield of Pu. The Xe/Kr ratio determined by the gas analysis after the puncture test was equivalent to the fuel average but not to the pellet rim position. From the results, it was concluded that fission gas at the rim position was released from the UO2 matrix in high burnup, however, most of this released fission gas was held in the porous structure and not released from the pellet to the free volume. (author)

  1. Nondestructive assay of green HTGR fuel rods

    International Nuclear Information System (INIS)

    This report describes the nondestructive (NDA) work done at Los Alamos during 1979 and 1980 as part of the New Brunswick Laboratory-sponsored evaluation of NDA of the uranium content of fabricated fuel rods for high-temperature gas-cooled reactors (HTGR). The methods used (delayed neutron and passive gamma ray) are concisely described, and the results are summarized and compared in graphical and tabular form. The results indicate that, with the use of proper physical standards, accuracies within about 1 percent should be achievable by NDA procedures

  2. Nuclear reactor internals construction and failed fuel rod detection system

    International Nuclear Information System (INIS)

    A system is provided for determining during operation of a nuclear reactor having fluid pressure operated control rod mechanisms the exact location of a fuel assembly with a defective fuel rod. The construction of the reactor internals is simplified in a manner to facilitate the testing for defective fuel rods and the reduce the cost of producing the upper internals of the reactor. 13 claims, 10 drawing figures

  3. Effect of fraction of voids in the nuclear fuel burned for a 10 X 10 assembly of a BWR

    International Nuclear Information System (INIS)

    A major source of uncertainty in BWR reactor physics is associated with the properties of moderation and coolant bypass regions with a very significant impact on nuclear parameters such as: the finite multiplication factor (k∞), area migration of neutrons (M2) and the void coefficient of reactivity (aν). In this work, we assess the effect caused by the presence of voids in the moderator during the burning of fuel in a fuel assembly type SVEA-96 for a BWR; the codes uses as a tool were INTERPIN-3 and CASMO-4. The geometry SVEA-96 is characterized by an assembly subdivided in four sub-bundles, through an internal bypass cross-shaped gap that allows a more uniform distribution of the moderator, providing a better distribution in the neutrons flux, and thus provide a better distribution of energy and burned. This study was conducted for a wide range of void fractions, from 0% (pure liquid) to 100% (pure steam) and covered: 1) The effect caused by the presence of voids during the burning of nuclear fuel 2) the effects of the structure of energy groups including libraries of cross sections based on ENDF/B-4, and 3) the impact of the presence of control rod. The burning range is from 0 G Wd/Mt to 50 G Wd/Mt. (Author)

  4. Implement of MOX fuel assemblies in the design of the fuel reload for a BWR

    International Nuclear Information System (INIS)

    At the present time the use of mixed oxides as nuclear fuel is a technology that has been implemented in mixed reloads of fuel for light water reactors. Due to the plutonium production in power reactors, is necessary to realize a study that presents the plutonium use like nuclear fuel. In this work a study is presented that has been carried out on the design of a fuel assembly with MOX to be proposed in the supply of a fuel reload. The fissile relationship of uranium to plutonium is presented for the design of the MOX assembly starting from plutonium recovered in the reprocessing of spent fuel and the comparison of the behavior of the infinite multiplication factor is presented and of the local power peak factor, parameters of great importance in the fuel assemblies design. The study object is a fuel assembly 10 x 10 GNF2 type for a boiling water reactor. The design of the fuel reload pattern giving fuel assemblies with MOX, so the comparison of the behavior of the stop margin for a fuel reload with UO2 and a mixed reload, implementing 12 and 16 fuel assemblies with MOX are presented. The results show that the implement of fuel assemblies with MOX in a BWR is possible, but this type of fuels creates new problems that are necessary to study with more detail. In the development of this work the calculus tools were the codes: INTREPIN-3, CASMO-4, CMSLINK and SIMULATE-3. (Author)

  5. Customer benefits due to cycle specific fuel rod design analysis

    International Nuclear Information System (INIS)

    Plant operating conditions vary from cycle to cycle and are influenced by the core loading pattern, as well as by the plant operation itself. The goal of a fuel rod design analysis is the verification of a safe operation of the fuel rods with an optimized core design and plant operation, assessed by the fulfillment of all fuel rod design criteria. In the following, it is shown how the cycle by cycle thermo1mechanical fuel rod design analysis, based on full core information, supports this goal. The fuel rod loads during normal operation are influenced mainly by the fuel rod power histories (linear heat generation rate versus time). Therefore, the focus in the following chapters will be on the consequences of such loads (e.g. rod internal pressure, long term interaction between fuel and cladding, cladding corrosion). Other loads and possible design goals must also be considered (e.g. initial conditions for dry storage, RIA risk assessment) or evaluations of fuel rod load related to specific operational conditions. Other full core cycle by cycle evaluations are related to the verification of conservative bounds of the hot rod analysis and the extent of damage analysis. A detailed analysis of the whole core, cycle by cycle, is especially important and useful, if non1technical bounding conditions lead to untypical loading patterns like fuel tax or limited life time of plants. (orig.)

  6. Nuclear fuel rods along the sand dunes?

    International Nuclear Information System (INIS)

    Just north of the small town of Covert, Michigan, Consumers Power Co. officials and environmental activists are locked in a battle that marks a new phase in the nation's long-running struggle over nuclear power. The company's Palisades power plant reactor needs refueling. But the utility has no more room for the spent fuel rods it must place in its water-filled storage pool. So Consumers is taking advantage of a 1990 Nuclear Regulatory Commission rule that lets utilities store waste above ground without agency review. Palisades officials plan to transfer older radioactive fuel rods from its storage pool into concrete and steel silo-like casks on a site overlooking Lake Michigan. Over the next decade, nearly half of the nation's 109 operating nuclear plants will run out of space in water-filled storage pools and be forced to consider aboveground storage. The Palisades plant is causing a stir because it is the first to exploit the 1990 NRC rule, which doesn't require utilities to seek approval for waste-storage sites as long as the waste is stored in an approved container. Before 1990, five other utilities had received the agency O.K. for above-ground storage - but only after a lengthy and exhaustive analysis of each site

  7. Physics of BWR MOX fuel results of an international benchmark study by the OECD/NEA nuclear science committee

    International Nuclear Information System (INIS)

    The results of a theoretical benchmark of boiling water reactor (BWR) assembly containing MOX fuel rods are summarised. This study was carried out by the OECD/NEA Working Party on Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR). A modern 10 x 10 BWR design with large internal water structure was chosen for this exercise. It corresponds to an ATRIUM 10 (10-9Q) type with symmetrical water gaps. About 30 solutions were submitted by approximately 20 participants using a dozen different code systems with data from well-known state-of-the-art evaluated nuclear data files, a response which underlines the widespread interest in BWR MOX physics. The discrepancies between the participants for the infinite multiplication factor from beginning of life through burn-ups up to 50 MWd/kg are relatively small (less than 1%). The effect due to diverse evaluated data libraries, e.g. JEF and ENDF represents about 1%. The peaking factor is a local value, more dependent on the methods used in the codes, and with lower compensation effects than for reactivity. The discrepancies are larger in value and there are inconsistencies in the location of the peak. The average values with and without the extreme values differ by 2%, implying that the extreme values could be outside the acceptable range. Other parameters examined include the behaviour of the peaking factor under cold conditions, the evolution of peaking factor with burn-up and the effect of voiding the assembly. Close attention was also paid to the depletion behaviour of gadolinia and the burn-up evolution of the heavy metals. The paper describes the results from this benchmark study and draws conclusions on the consistency of the different solutions provided and provides recommendations for the most effective methods. (author)

  8. Development of fission gas sampling system for PWR spent nuclear fuel rods and test evaluation using dummy nuclear fuel rods

    International Nuclear Information System (INIS)

    Fission gas sampling system for measuring the fission gas quantity and internal pressure of PWR spent nuclear fuel rods was developed in KAERI. This system has the advantages of reducing the time required in equilibrium pressure by using as positive pressure in the chamber when the fission gas is expanded from the fuel rod to the puncturing and standard chamber, also improving the accuracy in measuring the fuel rod internal pressure. As a results of performance evaluation test using several dummy fuel rods in the inactive region, the accuracy of measuring system appeared to be good agreement within ±5% error range

  9. ADS-demo fuel rod performance analysis

    International Nuclear Information System (INIS)

    A forward step towards the Pu, MA and LLFP transmuter Accelerator Driven System (ADS) is the realisation of a 80 MWt ADS-demo (XADS) whose basic objective is the system feasibility demonstration. The XADS is forecasted to adopt the UO2-PuO2 mixed-oxides (MOX) fuel already experimented in the French SPX-1 sodium cooled fast reactor. The present analysis, performed by using Transuranus Code, was carried out for the Normal Operation (nominal reactor power and 120% nominal reactor power), aimed at verifying that the fuel system allows for an ample margin with respect to the design limits (i.e., centreline fuel temperature, cladding temperature and damage) during all the in-reactor lifetime. Most relevant assumptions in the present calculations were the AISI-316 as cladding material and no consideration of any LBE (Lead-Bismuth Eutectic) corrosion effect. It is there confidence that this ample margin would help to cover also this limitation. Furthermore, it is shown that some modifications on fuel rod specifications, such as increasing the fabrication filling gas pressure, will reduce significantly the FGR (Fission Gas Release). The analysis was performed in the context of a cooperation between POLIMI (Politecnico di Milano), ENEA and ITU (Institute for Transuranium Elements, Karlsruhe, Germany). (author)

  10. Apparatus for consolidation of spent nuclear fuel rods

    International Nuclear Information System (INIS)

    This patent describes apparatus for the consolidation of nuclear fuel rods and compaction of their structural member within a storage pool. It comprises: a multi-axis computer controlled robot mounted above the pool, the robot having an operating arm adapted to be swung over the pool, the arm having a distal end to which is mounted a depending shaft, the shaft having a distal end to which is mounted coupling means, a frame member extending vertically within the pool below the robot, an apertured work table mounted to the frame member within the pool, the work table having vertically extending holders mounted in the apertures thereof, at least a first one of the holders being a fuel assembly holder, and a second one of the holders being adapted to hold a fuel rod canister therein, means for tilting the second one of the holders at an angle to the vertical, rod guiding means for guiding fuel rods into a fuel rod canister within the second one of the holders, long reach tools mounted adjacent the frame, at lease one of the tools having first and second ends and having coupling means adapted to couple to the coupling means on the shaft mounted on the first end and fuel rod grasping means adapted to grasp a fuel rod at the second end, tool guide means for guiding the second end to a location directly over a fuel rod in the fuel assembly

  11. Thermal behavior simulation of a nuclear fuel rod through an eletrically heated rod

    International Nuclear Information System (INIS)

    In thermalhydraulic loops the nuclear industry often uses electrically heated rods to simulate power transients, which occur in nuclear fuel rods. The development and design of a electrically heated rod, by supplying the dimensions and materials which should be used in order to yeld the same temperature and heat flux at the surfaces of the nuclear rod and the electrically heated rod are presented. To a given nuclear transient this equality was obtained by fitting the linear power through the lumped parameters technique. (Author)

  12. Fuel rod behaviour analysis during normal reactor operation

    International Nuclear Information System (INIS)

    This paper describes thermal model and dimensional changes of a fuel rod. Using a fuel rod design computer program FUELROD we have analysed its behaviour for various irradiation of core in steady-state and during power cycling according to the daily powe demand. (author)

  13. Status and development of RBMK fuel rods and reactor materials

    International Nuclear Information System (INIS)

    The paper presents current status and development of RBMK fuel rods and reactor materials. With regard to fuel rod cladding the following issues have been discussed: corrosion, tensile properties, welding technology and testing of an alternative cladding alloy with a composition of Zr-Nb-Sn-Fe. Erbium doped fuel has been suggested for safety improvement. Also analysis of fuel reliability is presented in the paper. (author)

  14. On-line fuel and control rod integrity surveillance in BWRs

    International Nuclear Information System (INIS)

    Surveillance of fuel and control rod integrity in a BWR core is essential to maintain a safe and reliable operation of the nuclear power plant. Any actions to be taken in the event of a fuel failure during reactor operation should be based on the best available information regarding the failure and expected consequences. The detection of fuel and control rod failures in BWRs is usually performed by analyzing samples of off-gases and coolant taken with a certain time intervals, e.g. once a week or once a month. This procedure can, however, leave the failure undetected in the core for quite some time. Therefore, a sufficient improvement of the surveillance of fuel and control rods can be achieved by simultaneous measurements of He and gamma emitting noble gases on-line in the off gas system. In this paper, experiences of such measurements performed at Kernkraftwerk Leibstadt (KKL) in Switzerland and Forsmark nuclear power plant (NPP) in Sweden will be presented. (author)

  15. Dependence of control rod worth on fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Savva, P., E-mail: savvapan@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Varvayanni, M., E-mail: melina@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Catsaros, N., E-mail: nicos@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece)

    2011-02-15

    Research highlights: Diffusion and MC calculations for rod worth dependence on burnup and Xe in reactors. One-step rod withdrawal/insertion are used for rod worth estimation. The study showed that when Xe is present the rods worth is significantly reduced. Rod worth variation with burnup depends on rod position in core. Rod worth obtained with MC code is higher than that obtained from deterministic. - Abstract: One important parameter in the design and the analysis of a nuclear reactor core is the reactivity worth of the control rods, i.e. their efficiency to absorb excess reactivity. The control rod worth is affected by parameters such as the fuel burnup in the rod vicinity, the Xe concentration in the core, the operational time of the rod and its position in the core. In the present work, two different computational approaches, a deterministic and a stochastic one, were used for the determination of the rods worth dependence on the fuel burnup level and the Xe concentration level in a conceptual, symmetric reactor core, based on the MTR fuel assemblies used in the Greek Research Reactor (GRR-1). For the deterministic approach the neutronics code system composed by the SCALE modules NITAWL and XSDRN and the diffusion code CITATION was used, while for the stochastic one the Monte Carlo code TRIPOLI was applied. The study showed that when Xe is present in the core, the rods worth is significantly reduced, while the rod worth variation with increasing burnup depends on the rods position in the core grid. The rod worth obtained with the use of the Monte Carlo code is higher than the one obtained from the deterministic code.

  16. Welding nuclear reactor fuel rod end plugs

    International Nuclear Information System (INIS)

    Apparatus for applying a vacuum to a nuclear fuel rod cladding tube's interior through its open end while girth welding an inserted end plug to its other end. An airtight housing has an orifice with a seal which can hermetically engage the tube's open end. A vacuum hose has one end connected to the housing and the other end connected to a vacuum pump. A mechanized device which moves the housing to engage or disengage its seal with the tube's open end includes at least one arm having one end attached to the housing and the other end pivotally attached to a movable table; an arm rotating device to coaxially align the housing's orifice with the welding-positioned tube; and a table moving device to engage the seal of the coaxially aligned orifice with the tube's open end. (author)

  17. Welding nuclear reactor fuel rod end plugs

    International Nuclear Information System (INIS)

    Apparatus for applying a vacuum to a nuclear fuel rod cladding tube's interior through its open end while girth welding an inserted end plug to its other end. An airtight housing has an orifice with a seal which can hermetically engage the tube's open end. A vacuum hose has one end connected to the housing and the other end connected to a vacuum pump. A mechanized device moves the housing to engage or disengage its seal with the tube's open end. Preferably the mechanized device includes an arm having one end attached to the housing and the other end pivotally attached to a moveable table; an arm rotating device to coaxially align the housing's orifice with the welding-positioned tube; and a table moving device to engage the seal of the coaxially aligned orifice with the tube's open end

  18. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO2 fuel in Japan. The design concept should be compatible with UO2 fuel design. High burnup UO2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO2 8 x 8 array fuel developed for a second step of UO2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  19. Validation of BWR advanced core and fuel nuclear designs with power reactor measurements

    International Nuclear Information System (INIS)

    Power reactor measurements have been important in validating the reliability, performance characteristics and economics of BWR advanced core and fuel designs. Such measurements go beyond the data obtainable from normal reactor operation and provide detailed benchmark data necessary to verify design and licensing computer design and simulation models. In some cases, such as in the validation of the performance of zirconium barrier pellet-cladding-interaction (PCI) resistant cladding, the BWR power reactor measurements have subjected the advanced fuel design to operating conditions more severe than normal operating conditions, thereby providing nuclear-thermal-mechanical-corrosion performance data for accelerated or extended conditions of operation. In some cases destructive measurements have been carried out on BWR power reactor fuel to provide microscopic and macroscopic data of importance in validating design and licensing analysis methods. There is not uniform agreement among core and fuel designers on the needs for special power reactor core and fuel measurements for validation of advanced designs. The General Electric approach has been to error on the side of extensive, detailed measurements so as to assure reliable performance licensing and economic design and predictive capability. This paper is a summary of some of the validative power reactor measurements that have been carried out on advanced BWR core and fuel designs. Some comparisons of predictions with the data are summarized

  20. Revaluation on measured burnup values of fuel assemblies by post-irradiation experiments at BWR plants

    International Nuclear Information System (INIS)

    Fuel composition data for 8x8 UO2, Tsuruga MOX and 9x9-A type UO2 fuel assemblies irradiated in BWR plants were measured. Burnup values for measured fuels based on Nd-148 method were revaluated. In this report, Nd-148 fission yield and energy per fission obtained by burnup analyses for measured fuels were applied and fuel composition data for the measured fuel assemblies were revised. Furthermore, the adequacies of revaluated burnup values were verified through the comparison with burnup values calculated by the burnup analyses for the measured fuel assemblies. (author)

  1. System for fuel rod removal from a reactor module

    International Nuclear Information System (INIS)

    This patent describes a robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system

  2. Axial gas flow in irradiated PWR fuel rods

    International Nuclear Information System (INIS)

    Transient and steady state axial gas flow experiments were performed on six irradiated, commercial pressurized water reactor fuel rods at ambient temperature and 533 K. Laminar flow equations, as used in the FRAP-T2 and SSYST fuel behavior codes, were used with the gas flow results to calculate effective fuel rod radial gaps. The results of these analyses were compared with measured gap sizes obtained from metallographic examination of one fuel rod. Using measured gap sizes as input, the SSYST code was used to calculate pressure drops and mass fluxes and the results were compared with the experimental gas flow data

  3. Fuel rod mechanical deformation during the PBF/LOFT lead rod loss-of-coolant experiments

    International Nuclear Information System (INIS)

    Results of four PBF/LOFT Lead Rod (LLR) sequential blowdown tests conducted in the Power Burst Facility (PBF) are presented. Each test employed four separately shrouded fuel rods. The primary objective of the test series was to evaluate the extent of mechanical deformation that would be expected to occur to low pressure (0.1 MPa), light water reactor design fuel rods when subjected to a series of double ended cold leg break loss-of-coolant accident (LOCA) tests, and to determine whether subjecting these deformed fuel rods to subsequent testing would result in rod failure. The extent of mechanical deformation (buckling, collapse, or waisting of the cladding) was evaluated by comparison of cladding temperature and system pressure measurements with out-of-pile experimental data, and by posttest visual examinations and cladding diametral measurements

  4. Concept of the core for a small-to-medium-sized BWR that does not use control rods during normal operation

    International Nuclear Information System (INIS)

    A small-to-medium-sized boiling water reactor (BWR) with a natural circulation system is being developed for countries where initial investment funds for construction are limited and electricity transmission networks have not been fully constructed. To lighten operators' work load, a core that does not use control rods during normal operation (control rod-free core) was developed by using a neutronics calculation system coupled with core flow evaluation. The control rod-free core had large core power fluctuation with conventional burnable poison design. The target of core power fluctuation was set to less than 10% and was achieved by optimization of burnable poison arrangement. (author)

  5. Locating leaking fuel rods in light water reactors

    International Nuclear Information System (INIS)

    Several techniques have been developed to perform the rod-by-rod leakage discrimination tests on nuclear fuel elements that rod replacement requires, including visual, vibrational analysis, eddy current and ultrasonic techniques. The ultrasonic technique has proved to have the most potential. It is the only system that in the field has provided a reliable, unambiguous indication of which fuel pins have leaked and which are intact without moving any fuel rods in the assembly. The through-transmission system is shown to be reliable and has been successfully used in many countries. It depends however, on specialised personnel to operate it and interpret the data. A new system, Echo-330, has been developed by Babcock and Wilcox. This is fully automated, and uses a multiple probe system with computerized control and data evaluation. The probe design is illustrated and typical output data shown. The time needed to locate leaking fuel rods is considerably reduced. (U.K.)

  6. Hydraulic reinforcement of channel at lower tie-plate in BWR fuel bundle

    International Nuclear Information System (INIS)

    This patent describes an apparatus in a fuel bundle for confining fuel rods for the generation of steam in a steam water mixture passing interior of the fuel bundle. The fuel bundle includes: a lower tie-plate for supporting the fuel rods and permitting flow from the lower exterior portion of the fuel bundle into the interior portion of the fuel bundle; a plurality of fuel rods. The fuel rods supported on the lower tie-plate extending upwardly to and towards the upper portion of the fuel bundle for the generation of steam in a passing steam and water mixture interior of the fuel bundle; an upper tie-plate for maintaining the fuel rods in side-by-side relation and permitting a threaded connection between a plurality of the fuel rods with the threaded connection being at the upper and lower tie-plate. The upper tie-plate permitting escape of a steam water mixture from the top of the fuel bundle; a fuel bundle channel; and a labyrinth seal configured in the lower tie-plate

  7. The KWU fission gas release model for LWR fuel rods: Description, data base and parametric study of the model

    International Nuclear Information System (INIS)

    The KWU model for fission gas release of LWR fuel is based on the physical processes of fission gas release as reported in the published literature and on KWU post irradiation examination results. The model is composed of two different submodels which predict the steady state and the transient fission gas release, respectively. 1) The steady state submodel can be divided into two main parts. Part 1: The fission gas produced is retained in the UO2-matrix up to a certain saturation concentration, and all fission gas exceeding this matrix concentration is collected at grain boundaries. The temperature and burnup dependent saturation concentration of the matrix has been taken from experimental results published in the literature. Part 2: The rate of fission gas release df/dt to the void volume is assumed to be proportional to the gas inventory g at the grain boundaries: df/dt=K.g. The factor K depends on temperature, burnup and open porosity. 2) The submodel for transient fission gas release is presently based on the assumption that transient release is caused by grain boundary separations due to the growth of grain surface bubbles. The transient gas release calculated in the model depends on the inventory g of fission gas retained at grain boundaries and on the power increase Δq-prime during the transient. The fission gas release model is implemented in the KWU fuel rod computer code CARO and calibrated against measured fission gas release values of approximately 100 KWU fuel rods: PWR and BWR fuel rods with burnups up to 40 MWd/kg(U), unpressurized and pre-pressurized fuel rods, rods with mixed oxide fuel and test rods with center line temperature up to 2000 deg. C, rods under normal operation and rods with a transient at the end of operation. A parametric study demonstrates the characteristic behaviour of the model. (author)

  8. Estimation of the coolant flow through a natural circulation BWR fuel channel applying and equivalent electrical model

    International Nuclear Information System (INIS)

    This work presents the design and implementation of an advanced controller for a reduced order model of a BWR reactor core cooled by natural circulating water, which allows real time estimates of coolant flows through fuel assemblies about standard neutron flux strings. Nuclear power plants with boiling water reactors control individual fuel assembly coolant flows by forced circulation using external or internal water pumps and different core support plate orifices. These two elements reduce flow dependency on local channel pressure drops. In BWR reactors using only natural circulation coolant flows, these two elements are not available and therefore individual channel coolant flows are highly dependent in local conditions, such as power distributions and local pressure drops. Therefore it is expected that grater uncertainties in these variables be used during safety, fuel management and other analysis, which in turns may lead to increased operation penalties, such as tighter operating limits. The objective of this work is to asses by computer simulations means to reduce uncertainties in the measurement of fuel assembly coolant flows and eventually the associated penalties. During coolant phase transitions, pressure drops and local power may alter local natural circulation through fuel assemblies and flow estimates can be helped or not by control rod moves. This work presents the construction of an optimal controller for a core flow estimator based on a reduced order model of the coolant going though the reactor vessel components and nuclear core. This model is to be driven by plant signals from standard BWR instrumentation in order to estimate the coolant flows in selected fuel assemblies about a LPRM string. For this purpose an equivalent electrical model has been mathematically developed and numerically tested. The power-flow maps of typical BRW are used as steady state references for this equivalent model. Once these were fully reproduced for steady state

  9. Development of a fuel rod thermal-mechanical analysis code for high burnup fuel

    International Nuclear Information System (INIS)

    The thermal-mechanical analysis code for high burnup BWR fuel rod has been developed by NFI. The irradiation data accumulated up to the assembly burnup of 55 GWd/t in commercial BWRs were adopted for the modeling. In the code, pellet thermal conductivity degradation with burnup progress was considered. Effects of the soluble FPs, irradiation defects and porosity increase due to RIM effect were taken into the model. In addition to the pellet thermal conductivity degradation, the pellet swelling due to the RIM porosity was studied. The modeling for the high burnup effects was also carried out for (U, Gd)O2 and MOX fuel. The thermal conductivities of all pellet types, UO2, (U, Gd)O2 and (U, Pu)O2 pellets, are expressed by the same form of equation with individual coefficient γ in the code. The pellet center temperature was calculated using this modeling code, and compared with measured values for the code verification. The pellet center temperature calculated using the thermal conductivity degradation model agreed well with the measured values within ±150 deg. C. The influence of rim porosity on pellet center temperature is small, and the temperature increase in only 30 deg. C at 75 GWd/t and 200 W/cm. The pellet center temperature of MOX fuel was also calculated, and it was found that the pellet center temperature of MOX fuel with 10wt% PuO2 is about 60 deg. C higher than UO2 fuel at 75 GWd/t and 200 W/cm. (author)

  10. SEFLEX fuel rod simulator effects in flooding experiments. Pt. 1

    International Nuclear Information System (INIS)

    The aim of the SEFLEX program has been to quantify the influence of the design and the physical properties of different fuel rod simulators on heat transfer and quench front progression in unblocked and blocked rod bundles during the reflood phase of a LOCA in a PWR. Fuel rod simulators with Zy claddings and a gas-filled gap between claddings and pellets exhibit lower peak cladding temperatures and shorter quench times than gapless heater rods with stainless steel claddings. Grid spacers cause significant cooling enhancement downstream during the time span at which maximum cladding temperatures occur. Ballooned Zy claddings, forming e.g. a 90 percent blockage, are quenched substantially earlier than thickwall stainless steel blockage sleeves attached to the rods, and even earlier than undeformed rod claddings. A comparison of test data with results of the 'Best Estimate' computer program COBRA-TF shows a good agreement with unblocked bundle data including grid spacer effects. (orig./HP)

  11. Common Cause Failure Analysis of Control Rods and Drives in the Swedish and Finnish BWR Plants. Operating Experiences in 1983 - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Mankamo, Tuomas [Avaplan Oy, Espoo (Finland)

    2006-11-15

    The control rod and drives in a Boiling Water Reactor (BWR) constitute a highly redundant system. The reliability of the system is determined by how well the design withstands dependencies, as Common Cause Failures (CCFs). This report upgrades an earlier data collection on CCFs of control rod and drives (SKI Report 1996:77) to more recent years, with the objective to report the data to ICDE project (International Common Cause Failure Data Exchange) and to the safety analysts in the Nordic countries. The operating experiences were analyzed at the BWRs of former Asea-Atom design, comprising 9 units in Sweden and Olkiluoto 1 and 2 in Finland, covering years 1983 - 2003. A new logical scheme was developed to classify interconnected failure modes of the two redundant functions for reactivity shutdown, fast hydraulic insertion and slower screw insertion of control rods. The scheme makes an explicit distinction between the different attributes of the failure event: - affected function - affected movement direction - detectability - criticality, i.e. inoperable control rod function versus only degraded functionality Another novel idea emerged for grouping the events according to generic failure mechanism. The generic classes will help to organize and structure the information efficiently, because in most cases within a class, the failure modes prove to be same, or there are only a few alternatives to chose from. From the set of 72 candidate cases, altogether 27 actual or more significant potential CCFs were screened out. Special emphasis was placed to identify any multiple failure or degradation indicating that adjacent rods would be more vulnerable to failure, because such phenomena are far more critical for reactivity shutdown as compared to failure of randomly placed rods. Only slight tendency of position dependence could be determined. Another positive insight is that the events, where foreign objects caused the jamming of rod insertion, were separated by both

  12. Common Cause Failure Analysis of Control Rods and Drives in the Swedish and Finnish BWR Plants. Operating Experiences in 1983 - 2003

    International Nuclear Information System (INIS)

    The control rod and drives in a Boiling Water Reactor (BWR) constitute a highly redundant system. The reliability of the system is determined by how well the design withstands dependencies, as Common Cause Failures (CCFs). This report upgrades an earlier data collection on CCFs of control rod and drives (SKI Report 1996:77) to more recent years, with the objective to report the data to ICDE project (International Common Cause Failure Data Exchange) and to the safety analysts in the Nordic countries. The operating experiences were analyzed at the BWRs of former Asea-Atom design, comprising 9 units in Sweden and Olkiluoto 1 and 2 in Finland, covering years 1983 - 2003. A new logical scheme was developed to classify interconnected failure modes of the two redundant functions for reactivity shutdown, fast hydraulic insertion and slower screw insertion of control rods. The scheme makes an explicit distinction between the different attributes of the failure event: - affected function - affected movement direction - detectability - criticality, i.e. inoperable control rod function versus only degraded functionality Another novel idea emerged for grouping the events according to generic failure mechanism. The generic classes will help to organize and structure the information efficiently, because in most cases within a class, the failure modes prove to be same, or there are only a few alternatives to chose from. From the set of 72 candidate cases, altogether 27 actual or more significant potential CCFs were screened out. Special emphasis was placed to identify any multiple failure or degradation indicating that adjacent rods would be more vulnerable to failure, because such phenomena are far more critical for reactivity shutdown as compared to failure of randomly placed rods. Only slight tendency of position dependence could be determined. Another positive insight is that the events, where foreign objects caused the jamming of rod insertion, were separated by both

  13. Numerical algorithms for mechanical analysis of fuel rod performance

    International Nuclear Information System (INIS)

    The safe and economic operation of a commercial power reactor is determined to a large extent by the efficiency and reliability of its fuel rod, which is one of the basic components in the reactor. To keep the mechanical integrity of the fuel rod, the mechanical behavior under the high temperature and irradiation becomes one of the most important issues of the fuel rod performance. The paper constructs the mechanism model. which takes into fact of temperature and irradiation, based on the stress-strain constitutive and equilibrium equations, as well as seven components of strain: elastic, thermal, plastic, creep as well as strains due to densification, swelling and relocation. The numerical algorithm to perform mechanical analysis is developed based on solving the stress-strain equations with a multi-zone fuel rod spatial discretization. This becomes the theoretical foundation of the research and development work for Chinese own used fuel comprehensive performance analysis code. (authors)

  14. Detection of cracks in TRIGA fuel rods by neutron radiography

    International Nuclear Information System (INIS)

    Two of nine fresh TRIGA fuel rods gave a noise similar to that of a Samba shaker when turned upside down. To obtain the kind and position of the obvious defects a neutron radiography investigation was performed. The direct method using a NE 426 Li6F-ZNS(AG) scintillator could be applied, because the activity of new fuel elements is negligible and therefore produces no gamma-background. An assembly was constructed which allowed to radiograph simultaneously an obviously defective and an undefective fuel rod at any desired position. By that way in one defective rod two cracks running right through the whole diameter of the U-ZrH briquette could be detected. The cracks were about 2 - 3 mm broad. The other defective rod showed three cracks of the same kind while the radiographs of the undefective elements showed an entirely homogenous fuel. The fuel became slightly radioactive. Explicit data of the radiation exposure are reported. (author)

  15. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  16. Comparative steady-state and power-ramping performance of annular-coated-pressurized, sphere-pac and reference test rods in the Halden BWR

    International Nuclear Information System (INIS)

    Instrumented fuel rods were irradiated and power-ramp tested in the Halden Boiling Water Reactor under the Fuel Performance Improvement Program. The fuel rods were irradiated to burnup levels up to 16 MWd kgM-1 at linear heat generation rates of up to approx. 40kWm-1. After these base irradiations, the fuel rods were power ramped to terminal powers in the 66-74 kW m-1 range. The types of fuel rod instrumentation included cladding elongation monitors, internal rod pressure sensors, and fuel centerline thermocouples. None of the fuel rods failed during the base irradiation or power-ramping tests. This paper summarizes the measurements performed during these irradiation tests and discusses the specific irradiation behaviour of each fuel design concept. (author)

  17. Radial distribution of UO2 and Gd2O3 in fuel cells of a BWR Reactor

    International Nuclear Information System (INIS)

    The fuel system that is used at the moment in a power plant based on power reactors BWR, includes as much like the one of its substantial parts to the distribution of the fissile materials like a distribution of burnt poisons within each one of the cells which they constitute the fuel assemblies, used for the energy generation. Reason why at the beginning of a new operation cycle in a reactor of this type, the reactivity of the nucleus should be compensated by the exhaustion of the assemblies that it moves away of the nucleus for their final disposition. This compensation is given by means of the introduction of the recharge fuel, starting from the UO2 enriched in U235, and of the Gadolinium (Gd2O3). The distribution of these materials not only defines the requirements of energy generation, but in certain measures also the form in that the margins will behave to the limit them thermal during the operation of the reactor. These margins must be taken into account for the safe and efficient extraction of the energy of the fuel. In this work typical fuel cells appear that are obtained by means of the use of a emulation model of an ants colony. This model allows generating from a possible inventory of values of enrichment of U235, as well as of concentration of Gadolinium a typical fuel cell, which consists of an arrangement of lOxlO rods, of which 92 contain U235, some of these rods contain a concentration of Gd2O3 and 8 of the total contain only water. The search of each cell finishes when the value of the Local Peak Power Factor (LPPF) in the cell reaches a minimal value, or when a pre established value of iterations is reached. The cell parameters are obtained from the results of the execution of the code HELIOS, which incorporates like a part integral of the search algorithm. (Author)

  18. Modelling of fuel rod hydriding failures in water reactors

    International Nuclear Information System (INIS)

    Mechanistic models which were developed to describe primary hydriding phenomena in claddings of initially intact rods with residual moisture are described. The models include the following key processes: fuel rod thermal behavior, UO2 fuel oxidation in steam-hydrogen atmosphere under irradiation, hydrogen diffusion in zirconium and in the hydride, growth of the hydride phase. Fuel rod thermomechanical behavior is calculated by using RTOP integral fuel code. An oxidation model represents the effects of temperature dynamics and temperature profile along fuel axis and radius on fuel oxidation as well as on hydrogen accumulation inside the fuel rod. Along with ordinary thermal dissociation of water molecules, the oxidation model also addresses radiolysis of the steam-hydrogen mixture due to fission fragments. The present radiolysis model takes into account the effects of the gas mixture composition, temperature and pressure. A new model of cladding hydriding is proposed in which calculation of the massive hydride growth is performed in 2-D geometry. Hydrogen transport in zirconium cladding is modeled with account for thermodiffusion. The RTOP code comprising the models developed allows us to calculate different scenarios of hydriding rod failures under given operation conditions. Test calculations were carried out and compared to available data. It is shown that there are threshold values of initial steam content inside the intact fuel rod which lead to the possibility of through-cladding hydride growth and formation of the primary defect. The threshold values depend on the oxidation state of the cladding inner surface, linear power profile in the fuel rod, fuel rod geometry, cladding temperature conditions and hydrogen diffusivities in zirconium and zirconium hydride

  19. Supercell burnup model for the physics design of BWR fuel assemblies

    International Nuclear Information System (INIS)

    A code called SUPERB has been developed for the BWR fuel assembly burnup analyses using supercell model. Each of the characteristic heterogeneities of a BWR fuel assembly like water gap, poisoned pins, control blade etc., is treated by invoking appropriate supercell concept. The burnup model of SUPERB is so devised as to strike a balance between accuracy and speed. This is achieved by building isotopic densities in each fuel pin separately while the depletion equations are solved only in a few groups of pins or burnup zones and the multigroup neutron spectra are differentiated in fewer group of pincell types. Multiple fuel ring burnup is considered only for Gd isotopes. A special empirical formula allows the microscopic cross section of Gd isotopes to be varied even during burnup integration. The supercell model has been tested against Monte Carlo results for the fresh cold clean Tarapur fuel assembly with two Gd fuel pins. The burnup model of SUPERB has been validated against one of the most sophisticated codes LWR-WIMS for a benchmark problem involving all the complexities of a BWR fuel assembly. The agreement of SUPERB results with both Monte Carlo and LWR-WIMS results is found to be excellent. (auth.)

  20. SEFLEX fuel rod simulator effects in flooding experiments. Pt. 3

    International Nuclear Information System (INIS)

    This report presents typical data and a limited heat transfer analysis from blocked bundle reflood tests of an experimental thermal-hydraulic program. Full-length bundles of 5x5 fuel rod simulators having a gas-filled gap between the Zy cladding and the alumina pellets were tested in the test rig designed for the earlier Flooding Experiments with Blocked Arrays (FEBA-program). The 5x5 FEBA rod bundle tests were performed with gapless heater rods. These rods have a close thermal contact between the stainless steel cladding and the electric insulation material. A comparison of the SEFLEX data with the reference data of FEBA obtained under identical initial and reflood conditions shows the influence of different fuel rod simulators on the thermal-hydraulic behavior during forced feed bottom reflooding of unblocked and blocked arrays. Compared to bundles of gapless rods, bundles of rods with Zy claddings and a gas filled gap between claddings and pellets, which more closely represent the features that exist in an actual fuel rod geometry, produced higher quench front velocities, enhanced removal of stored heat in the rods, reduced peak cladding temperatures, increased grid spacer effects and absolutely unproblematic coolability of 90 percent blockages with bypass. The data offer the opportunity for further validation of computer codes to make realistic predictions of safety margins during a LOCA in a PWR. (orig./HP)

  1. Evaluation of fission gas release in Oskarshamn 2 fuel rods

    International Nuclear Information System (INIS)

    Data on fission gas release from 30 Oskarshamn 2 fuel rods is presented and analyzed. These rods were selected by gamma scanning screening measurements performed on 65 fuel rods. The rods experienced peak power levels 25-34 kW/m in the burnup range of 18.5 to 41 MWd/kg U, higher power and burnups than the previous experimental programs, the Oskarshamn 1 and Barsebeck 1 rods. As a result, a larger fraction of rods fall into the high fission gas release group. The STAV5 code is used for the analysis of fission gas release data. The code is capable in most instances to capture the experimental points. It takes as an input the fuel rod design dimensions data and power histories calculated by other ASEA-ATOM codes. With STAV5, one is enabled to treat each rod individually on the bases of its detailed power histories and its UO2 stability properties. The report includes manufacturing data, PIE data, and the description of the models used in STAV5 for gas release prediction. The results of STAV5 calculations for a number of rods are reported and several remarks for improvements have been proposed. (author)

  2. Sealing end plug of nuclear fuel rod

    International Nuclear Information System (INIS)

    An upper end plug of a nuclear fuel rod comprises an end plug main body having a diameter substantially equal with an outer diameter of a cladding tube, and an open-top portion formed integrally with the end plug main body by way of a connection portion. The open top portion is a cylindrical member having the outer diameter substantially equal with the inner diameter of the cladding tube and having a tapered portion formed at the top end. The connection portion has a tapered surface having a diameter on the side of the open-top portion equal with the outer diameter of the open-top portion and having a diameter on the side of the end plug main body greater than the maximum inner diameter of the cladding tube. The upper end plug is inserted under pressure to the cladding tube and the joining portion between the cladding tube and the upper end plug is welded under pressure. The welded portion between the upper end plug and the cladding tube is uniformly welded circumferentially, so that neither molten metal is urged to the inner wall of the cladding tube, nor porosity is formed at the inside of the molten metal. In addition, sealing is ensured by the tapered surface disposed at the connection portion of the upper end plug, and causing no failure occurs in the wall thickness of the welded metal due to swelling. (I.N.)

  3. Leaked water detection device for control rod drive and BWR type reactor

    International Nuclear Information System (INIS)

    The device of the present invention can specify a control rod drive causing great amount of water leakage among a large number of control rod drives. Namely, water leaked from the control rod drives is introduced to each of leaked water pipelines. Further, it is introduced from the leaked water pipelines to flow glasses at which leaked water can visually be recognized individually, and then discharged through a drain pipeline. With such procedures, the amount of leaked water from the leaked water pipelines can visually be recognized at the flow glasses. As a result, the control rod drives which cause a great amount of leakage can be specified among large number of control rod drives. Accordingly, an accurate inspection schedule for a shaft-sealing portion of the control rod drives can be formed. The shaft-sealing portion degradated in the sealing property can reliably be inspected and repaired. Purge water can be ensured to improve reliability of the operation of equipments. (I.S.)

  4. Gripping device for a cluster of nuclear fuel rods

    International Nuclear Information System (INIS)

    This device is made by a central rectangular aperture subdivided into sections by parralel partitions. Mobile spacers in these sections push each rod against the spacers. With this device it is possible to dismantle, with only one manipulation, a cluster of nuclear fuel rods

  5. Removal and replacement of fuel rods in nuclear fuel assembly

    International Nuclear Information System (INIS)

    Apparatus for replacing components of a nuclear fuel assembly stored in a pit under about 10 m. of water. The fuel assembly is secured in a container which is rotatable from the upright position to an inverted position in which the bottom nozzle is upward. The bottom nozzle plate is disconnected from the control-rod thimbles by means of a cutter for severing the welds. To guide and provide lateral support for the cutter a fixture including bushings is provided, each encircling a screw fastener and sealing the region around a screw fastener to trap the chips from the severed weld. Chips adhering to the cutter are removed by a suction tube of an eductor. (author)

  6. A subchannel and CFD analysis of void distribution for the BWR fuel bundle test benchmark

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang-Kee; Hwang, Dae-Hyun [Korea Atomic Energy Research Institute (KAERI), 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Jeong, Jae Jun, E-mail: jjjeong@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2013-05-15

    Highlights: ► We analyzed subchannel void distributions using subchannel, system and CFD codes. ► The mean error and standard deviation at steady states were compared. ► The deviation of the CFD simulation was greater than those of the others. ► The large deviation of the CFD prediction is due to interface model uncertainties. -- Abstract: The subchannel grade and microscopic void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility have been evaluated with a subchannel analysis code MATRA, a system code MARS and a CFD code CFX-10. Sixteen test series from five different test bundles were selected for the analysis of the steady-state subchannel void distributions. Four test cases for a high burn-up 8 × 8 fuel bundle with a single water rod were simulated using CFX-10 for the microscopic void distribution benchmark. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5 to 25%. The results of the transient calculations were also similar to each other and very reasonable. The CFD simulation reproduced the overall radial void distribution trend which produces less vapor in the central part of the bundle and more vapor in the periphery. However, the predicted variation of the void distribution inside the subchannels is small, while the measured one is large showing a very high concentration in the center of the subchannels. The variations of the void distribution between the center of the subchannels and the subchannel gap are estimated to be about 5–10% for the CFD prediction and more than 20% for the experiment.

  7. Fuel performance annual report for 1981. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.; Tokar, M.

    1982-12-01

    This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included.

  8. Fuel rod behavior of a PWR during load following

    International Nuclear Information System (INIS)

    The behavior of a PWR fuel rod when operating in normal power cycles, excluding in case of accidents, is analysed. A computer code, that makes the mechanical analysis of the cladding using the finite element method was developed. The ramps and power cycles were simulated suposing the existence of cracks in pellets when the cladding-pellet interaction are done. As a result, an operation procedure of the fuel rod in power cycle is recommended. (E.G.)

  9. Design and axial optimization of nuclear fuel for BWR reactors; Diseno y optimizacion axial de combustible nuclear para reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Garcia V, M.A

    2006-07-01

    In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the

  10. Criticality assessment of fuel assemblies with missing fuel rods - an intractable problem?

    International Nuclear Information System (INIS)

    In current certificates of package approval the arrangement of water and guide tubes within the array of fuel rods of a fuel assembly is specified in detail. Fuel assemblies with deviating water and guide tube arrangements or missing rods are not allowed to be loaded into the casks. The reason behind is that the reactivity of a standard fuel assembly increases if some rods are removed. For a certain number and arrangement of missing rods a maximum of reactivity is reached. Due to the missing fissile material the reactivity will decrease again if further rods are then removed. For the comprehensive assessment of the maximum of reactivity all possible configurations of fuel rods and missing rods have to be investigated. The paper describes the problem at hand in detail giving estimates for the complexity of the analysis

  11. A methodology for obtaining the control rod patterns in a BWR using genetic algorithms

    International Nuclear Information System (INIS)

    In this work the GACRP system based on the genetic algorithms technique for the obtaining of the drivers of control bars in a BWR reactor is presented. This methodology was applied to a transition cycle and a one of balance of the Laguna Verde nuclear power station (CNLV). For each one of the studied cycles, it was executed the methodology with a fixed length of the cycle and it was compared the effective multiplication factor of neutrons at the end of the cycle that it is obtained with the proposed drivers of control bars and the multiplication factor of neutrons obtained by means of a Haling calculation. It was found that it is possible to extend several days the length of both cycles with regard to the one Haling calculation. (Author)

  12. Express diagnostics of WWER fuel rods at nuclear power plants

    International Nuclear Information System (INIS)

    Higher safety and economical efficiency of nuclear power plants (NPP) call for a continuous design modification and technological development of fuel assemblies and fuel rods as well as optimization of their operating conditions. In doing so the efficiency of new fuel introduction depends on the completeness of irradiated fuel data in many respects as well as on the rapidity and cost of such data obtaining. Standard examination techniques of fuel assemblies (FA) and fuel rods (FR) intended for their use in hot cell conditions do not satisfy these requirements in full extent because fuel assemblies require preliminary cooling at NPP to provide their shipment to the research center. Expenditures for FA transportation, capacity of hot cells and expenditures for the examined fuel handling do not make it possible to obtain important information about the condition of fuel assemblies and fuel rods after their operation. In order to increase the comprehensiveness of primary data on fuel assemblies and fuel rods immediately after their removal from the reactor, inspection test facilities are widely used for these purposes. The inspection test facilities make it possible to perform nondestructive inspection of fuel in the NPP cooling pools. Moreover these test facilities can be used to repair failed fuel assemblies. The ultrasonic testing of failed fuel rods inside the fuel assembly was developed for stands of inspection and repair of TVSA WWER-1000 for the Kalinin NPP and Temelin NPP. This method was tested for eight leaking fuel assemblies WWER-440 and WWER-1000 with a burnup of ∼14 up to 38 MW·day/kgU. The ultrasonic testing proved its high degree of reliability and efficiency. The defectoscopy by means of the pulsed eddy-current method was adapted for the stand of inspection and repair of TVSA WWER-1000 for the Kalinin NPP. This method has been used at RIAR as an express testing method of FR claddings during the post-irradiation examinations of fuel assemblies WWER

  13. Failure development in leaking LWR fuel rods - a literature survey

    International Nuclear Information System (INIS)

    This review of failure development is based largely on a literature survey up by some personal interpretation and judgement where conflicting evidence appears to exist. A brief review of known causes of defects in LWR fuel rods is included. Primary defects in fuel rods may not be single, isolated, leak sites, PCI defects being a classical example where very many penetrating cracks can form in a single fuel rod. The only secondary defect mechanism is internal hydriding, although knock-on events can follow on the same, or neighbouring rods, from defects that cause and interference with local coolant flow. The major part of this survey comprises information on leak rates from typical defects, causes and rates of development of primary leak sites, meachanisms and rates of development of secondary hydride defects and analysis of activity release measurements in an attempt to characterise the number and severity of defects present

  14. Refabrication of fuel rods - qualification of the end plug welds

    International Nuclear Information System (INIS)

    Refabrication of irradiated fuel rods is applied at SCK/CEN, both to make short fuel rodlets for tests in research reactors and to reconstitute full-size rods for their reinsertion in the original fuel assembly as an elegant back end solution for industrial fuel rods after their use in fuel research programs. In both cases the end cap welds have to be qualified thoroughly, to prove their proper performance either under irradiation and/or during long-term storage. The paper describes the qualification process that is applied at the hot laboratory LHMA at SCK/CEN to qualify the welding methodology and the actual welds made according this methodology. The results obtained on a typical refabrication case are included. (Author)

  15. Experiments on the load following behaviour of PWR fuel rods

    International Nuclear Information System (INIS)

    KWU had studied the effects of load following operation on fuel performance from the beginning of commercial operation of nuclear power plants: The first power cycling experiments were started in 1970 in the nuclear power plant Obrigheim (KWO) and in the High Flux Reactor (HFR) Petten. These power cycling tests performed at various power levels and burnups of up to 25 GWd/t(U) showed that the fuel rod cycling performance compares well with the performance of fuel rods operated under essentially constant load at comparable power levels. Two additional cycling tests as described in this paper were performed on the HFR Petten with preirradiated PWR fuel rods having burnups of up to 40 GWd/t(U). These experiments comprised up to 60 cycles between 250/360 W/cm and 215/320 W/cm with 10% power overshoot (400, 370 W/cm) after each cycle. Also, these experiments ended up with sound fuel rods. Moreover, detailed investigations before and between power cycles and after experiment termination showed clearly that the fuel performance corresponds to a single ramp to peak power and that the cycling effects are indeed very small. This confirmed earlier findings that due to crack reversal in the UO2 the cyclic dimensional changes mainly occur in the UO2 itself. Altogether the experiments show that power cycling does not lead to fuel rod failures, which is also confirmed by successful load follow operation in commercial power plants. (orig.)

  16. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  17. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    International Nuclear Information System (INIS)

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  18. Removal and replacement of fuel rods in nuclear fuel assembly

    International Nuclear Information System (INIS)

    To remove the bottom nozzle of a nuclear fuel assembly, the nozzle plate must be disconnected from the control-rod thimbles. For nozzles whose control-rod thimbles are connected to the nozzle plate by screw fasteners having lock pins welded to the nozzle plate, a cutter for severing the welds is provided. The cutter is rotated by a motor at the work position through a long floating shaft. A long feed shaft operated by a thumb nut at the work position feeds the floating shaft and cutter downwardly through the weld. The bushings extend from a bushing plate, each encircling a screw fastener. Each bushing has a yieldable sleeve for sealing the region around a screw fastener to trap the chips from the severed weld. The cutter is indexed from weld to weld by indexing plates. To remove chips adhering to the cutter, the suction tube of a suction-pump-operated eductor is inserted in the auxiliary hole and the cutter is inserted in the bushing and chips are removed by suction. By inserting the suction tube into the bushings which seal the regions around the screw fasteners and enabling the eductor, the captured chips may be removed. Once the welds are severed the screw-fasteners may be unscrewed and removed by the eductor. The bottom nozzle may then be removed

  19. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    Science.gov (United States)

    Trianti, Nuri; Su'ud, Zaki; Arif, Idam; Riyana, EkaSapta

    2014-09-01

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tight concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.

  20. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    International Nuclear Information System (INIS)

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tight concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained

  1. MELCOR/SNAP analysis of Chinshan (BWR/4) Nuclear Power Plant spent fuel pool for the similar Fukushima accident

    International Nuclear Information System (INIS)

    Chinshan nuclear power plant (NPP), a BWR/4 plant, is the first NPP in Taiwan. After Fukushima NPP event occurred, there is more concern for the safety of NPPs in Taiwan. Therefore, in order to estimate the safety of Chinshan NPP spent fuel pool, by using MELCOR 2.1 and SNAP 2.2.7 codes, INER (Institute of Nuclear Energy Research, Atomic Energy Council, R.O.C.) performed the safety analysis of Chinshan NPP spent fuel pool (SFP). There were two main steps in this research. The first step was the establishment of Chinshan NPP SFP MELCOR/SNAP model. And the transient analysis under the SFP cooling system failure condition was performed. Besides, in order to study the detailed thermal-hydraulic performance of this transient, TRACE was used in this analysis. CFD data from INER report was used to compare with the results of MELCOR and TRACE. The next step was the fuel rod performance analysis by using FRAPTRAN and TRACE's results. Besides, the animation model of Chinshan NPP SFP was presented using the animation function of SNAP with MELCOR analysis results. (author)

  2. Estimating PWR fuel rod failures throughout a cycle

    International Nuclear Information System (INIS)

    A fuel performance engineer requires good prediction models for fuel conditions to help assure that any fuel repair operation he may recommend for the next refueling outage will have a minimal impact on nuclear plant operation. For nearly two decades, simple equilibrium equations have been used to provide estimates of the number of failed fuel rods in a pressurized water reactor (PWR) core. The unknown parameter is the isotopic escape rate (upsilon), which is often assumed to be --1 X 10/sup -8//s for the release of /sup 131/I from a 3- to 4-m-long PWR rod. The use of this escape rate value will generally produce end-of-cycle (EOC) predictions that are accurate within a factor of --3. When applied at the time when fuel rods initially fail, such as early in a reactor cycle, however, the prediction obtained may overestimate the number of failed rods present by a factor of 10 or more. While a goal of Combustion Engineering's (C-E's) efforts on failed fuel prediction (FFP) models over the past decade has been to increase the accuracy of the EOC estimate, recent efforts have emphasized improving prediction capability for failed rods present early in a reactor cycle. The C-E approach to modeling iodine release from failed fuel rods is based on dynamic escape rate theory that is incorporated in the C-E IODYNE (for iodine dynamic evaluation) code. This theory has been empirically modified to account for specific observed time dependencies of the release rates for /sup 131/I and /sup 133/I from a failed rod. In a current version of IODYNE, four such factors have been included in the FFP model, as described in this paper

  3. Evaluation of the Westinghouse 10B depletion for BWR control rods

    International Nuclear Information System (INIS)

    The aim of this work was to establish the 10B depletion model for CR 99 control rods by using the latest version of POLCA7. In order to obtain an understanding of the differences between the currently used 10B depletion models implemented in POLCA4 at O3 and in SIMULATE-3 at OL1, and the latest improved model implemented in the latest POLCA7, this work has been performed in three different parts. The first part of the work was to find out how large differences there exist in 10B depletion between the calculated data by using the latest core monitoring system (POLCA7 version 4.10.0) and the measured data obtained in the hot-cell laboratory in Studsvik. It was found that the 10B depletion computed by the latest POLCA7 version is in good agreement with the measured data from Studsvik. A poor agreement with a conservative overestimation in 10B depletion was also found between the old model and the measured data. The aim of the second part of the work was to compare the calculated 10B depletion values for two CR 99 rods from Olkiluoto 1 with the calculated 10B depletion value for a CR 99 rod from Oskarshamn 3, by using the new 10B depletion model implemented in the latest POLCA7 version. Swelling measurements of the boron carbide pins, used as absorber material, have indicated that the 10B depletion should be of similar magnitude for the rods in Olkiluoto 1 and the rod in Oskarshamn 3, whereas the calculated values by using the earlier 10B depletion models on the process computers showed a difference of about 20 %. By using the new 10B depletion model m POLCA7, it was found that the 10B depletion in the two studied cases was similar to each other and, thus, the hypothesis of a linear relationship between B4C swelling and thermal neutron fluence was supported. This third part of the work was carried out at KKL, Switzerland, and focused on comparing the B depletion models used in Westinghouse/POLCA7 and KKL/PRESTO-2. It was found that there is a slight difference in the

  4. Irradiation performance of HTGR fuel rods with diluted thermosetting matrices

    International Nuclear Information System (INIS)

    Satisfactory irradiation performance of experimental thermosetting HTGR fuel rods whose injected matrices were properly diluted with a low-char-yield additive (fugitive) was demonstrated for a fast-neutron fluence of 5x1021 n/cm2 (E>0.18 MeV) at a temperature of 12000C. The addition of the fugitive introduced microporosity throughout the fired matrix; this reduced internal matrix shrinkage during irradiation by limiting the amount of binder char present, and it also reduced the strength and bondability of the matrix. Sufficient fugitive had to be added to reduce the percentage of binder char (PBC) in the graphite-filled matrix to less than 32 wt.% in order to prevent pyrocarbon coatings on close-packed fuel particles from being damaged during irradiation by strong particle-to-matrix bonding in conjunction with large matrix shrinkage, as had previously occurred for undiluted thermosetting rods. At the same time, the PBC had to be maintained at or above 17 wt.% to give the rods strength enough for adequate particle retention. Within the window of acceptability defined above, thermosetting rods performed about as well under irradiation as did the standard pitch-based rod that was included for comparison. Moreover, such rods offer processing advantages over the thermoplastic standard used in the fabrication of fresh fuel in that they can be subjected to free-standing carbonization, and this might be particularly important in the remote fabrication of reprocessed fuel. (Auth.)

  5. BWR SFAT, gross-defect verification of spent BWR fuel. Final report on Task FIN A563 on the Finnish Support Programme to IAEA Safeguards including BWR SFAT User Manual

    International Nuclear Information System (INIS)

    A measurement instrument called Spent Fuel Attribute Tester, SFAT, has been designed, fabricated and taken into use by the IAEA in gross defect verification of spent BWR fuel assemblies. The equipment consists of an underwater measurement head connected with cables to a control unit on the bridge of the fuel handling machine as well as to a PMCA for measurement of the gamma spectra. The BWR SFAT is optimized for the AFR interim storage, TVO KPA-STORE, of the TVO Power Company in Olkiluoto, Finland. It has a shape and it is moved like a fuel assembly using the fuel handling machine. No fuel movements are needed. Spent fuel specific radiation from the fission product 137Cs at the gamma-ray energy of 662 keV is detected above the assemblies in the storage rack using a NaI(Tl) detector. In the design and in licensing the requirements of the IAEA, operator and the safety authority have been taken into account. The BWR SFAT allows modifications for other LWR fuel types with minor changes. The work has been carried out under the task FIN A 563 of the Finnish Support Programme to IAEA Safeguards. (orig.) (9 refs., 22 figs.)

  6. Detection of defective fuel rods in water reactors - a review

    International Nuclear Information System (INIS)

    Consideration of the fundamental processes of fission product release within fuel pellets and at the pellet surface, and its transport in the fuel/cladding interspace and from fuel rod to coolant, indicates what radio-nuclides will be detectable in the coolant from small and large cladding failures. A better understanding of the aggregate fission product transport is required to allow reactor operators to interpret signals from detection systems in terms of quantitative cladding deterioration. This needs experimental investigation in a specially instrumented loop, as well as development of a technique to cause a rod to defect deliberately during steady power operation. (author)

  7. Gap conductance in Zircaloy-clad LWR fuel rods

    International Nuclear Information System (INIS)

    This report describes the procedures currently used to calculate fuel-cladding gap conductance in light water reactor fuel rods containing pelleted UO2 in Zircaloy cladding, under both steady-state and transient conditions. The relevant theory is discussed together with some of the approximations usually made in performance modelling codes. The state of the physical property data which are needed for heat transfer calculations is examined and some of the relevant in- and out-of-reactor experimental work on fuel rod conductance is reviewed

  8. The thermo-mechanics of the PWR fuel rod

    International Nuclear Information System (INIS)

    The fuel rod mechanics is of a great importance in the safety and performance of the reactors. In this domain a meeting has been organized by the SFEN the 18 march 1998 at Paris. With the participation of scientists from CEA, EDF and Framatome, the physics of the fuel rods was presented based on four main aspects. Two first papers dealt with the solicitations of the fuel rod in normal and accidental conditions. The physical phenomena under irradiation were then detailed in the four following talks. Three papers presented the simulation and the codes of the fuel-cladding interactions with the diabolo effect. The last paper was devoted to the experiment feedback and the research programs. (A.L.B.)

  9. Heating apparatus for single-fuel-rod experiments

    International Nuclear Information System (INIS)

    A single-fuel-rod heating apparatus was constructed for installation to Semi-Homogeneous Experimental Assembly (SHE); which is used to measure the reactivity temperature coefficient of a single fuel rod in verification of the precision of nuclear design of the VHTR (very high temperature reactor). The apparatus raises the temperature of a single fuel rod up to 7000C. A fuel rod is enclosed in a silica tube coiled with nichrome heater. The silica tube is confined in a zircalloy tube of which outer surfaces are cooled with air to remove the radiation heat. The zircalloy tube is then confined in a double-walled evacuated aluminum tube to prevent heat transfer to SHE core. The heating apparatus consists of evacuation, cooling, instrumentation, control and safety system, beside the heating tube. The heating tube is inserted in a space made by withdrawing a graphite matrix tube along the central axis of SHE core. The base of the heating tube is connected to an evacuation system, which is set on the table of the movable half of SHE. Performance of the heating apparatus shown by test operation with a single graphite rod are: 1. Single fuel rod: 24 mm in diameter, 2400 mm long. 2. Heating ability: The heating up of a single fuel rod to 7000C in 40 min with electric power 3 kW. 3. Cooling capacity: Blower in flow 1.4 m3/min at pressure 0.4 kg/cm2. 4. Heat leakage: lower than 20 W. (author)

  10. A parametric study and comparison of BWR fuel depletion calculations using CASMO-4, MCNPX, and SCALE/TRITON

    International Nuclear Information System (INIS)

    CASMO-4 is a multigroup two-dimensional transport code for LWR lattice physics calculations. MCNPX and TRITON/T6-Depl are two general-purpose transport codes with depletion capability for various fuel designs. MCNPX can use continuous-energy cross sections while TRITON currently only supports multigroup depletion calculations. This study presented a systematic comparison of these three codes for depletion calculations of a typical BWR fuel assembly. Key parameters for sensitivity studies were neutron cross-section libraries, burnup steps, modeling of poison rods, inclusion of additional nuclides for depletion, thermal expansion, pin-by-pin depletion, and Dancoff factors. The CASMO-4 results were arbitrarily taken as a reference base on which the differences of MCNPX or TRITON calculations were evaluated. Useful observations from the comparisons were as follows: The ENDF/B-VII cross-section library gave the most consistent result with CASMO-4. At least five radially subdivided zoning of a Gd-bearing rod was necessary for depletion calculations. MCNPX calculations were more sensitive to choices of burnup steps and numbers of nuclides being traced in fuel inventory than TRITON did. Applying the same thermal expansion corrections in TRITON reduced its differences with CASMO-4 in the middle of cycle. Pin-by-pin depletion is necessary but only slightly changed k∞ profiles in this case compared with average depletion. Using more accurate Dancoff factors in TRITON resulted in an excellent agreement of k∞ values with CASMO-4 at the early stage of burnup, but they still gradually deviated at later burnups. Overall, both MCNPX and TRITON predicted k∞ profiles in this problem were within 500 pcm agreement with CASMO-4 in the entire burnup period. (author)

  11. Post Irradiation Examination on SMIRP-1 Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Jin Sik; Lee, B. O.; Lee, C. T. and others

    2014-05-15

    This paper summarizes the non-destructive and destructive test results of the fuel rodlets together with analyzing the fuel temperature based on the irradiation history. KAERI initiated its program to develop SFR metal fuel technology in 2007. As an effort to validate the relevant fuel design and fabrication technologies, the first fuel irradiation test, SMIRP-1, was performed for 182 EFPD in HANARO. There were 12 rodlets which consist of 6 U-10Zr and 6 U-10Zr-5Ce slugs with T92 cladding. Among them, four rodlets had a thin Cr layer which was electroplated. Subsequently the irradiated fuel rods were subjected to PIE at IMEF.

  12. Impact of the moderation ratio over the performance of different BWR fuel assemblies

    International Nuclear Information System (INIS)

    Highlights: • Performance of fuel assemblies is assessed using moderation ratio as a merit figure. • Burnup changes moderation ratio operating conditions for the fuel assembly. • After 30 GWd/MT fuel assemblies are working in the over-moderated region. • For an 18-month cycle discharge fuel assembly burnup is over 40 GWd/MT. • For extended cycles or up-rate conditions use of these FA could result in reduced margins to meet safety constraints. - Abstract: Fuel assembly design plays a very important role in the reactor core performance. A fuel assembly has to be designed to achieve safe and efficient performance during its active life inside the nuclear reactor core. Fuel assemblies are designed to be under-moderated to produce a negative moderator temperature coefficient under all operational circumstances. This study assesses the behavior of the infinite multiplication factor (k∞) as a function of the moderation ratio and its dependence on the burnup, for several BWR fuel assemblies. The results show that the moderation ratio at which the fuel assembly transitions from under-moderated to over-moderated changes through the life of the fuel assembly (i.e. with burnup). This study shows that the fuel assembly designs considered, operate in the over-moderated region for burnups over 30 GWd/MT. In a typical 18-month cycle BWR core, even though the fraction of fuel assemblies with burnups over 40 GWd/MT can reach about 50% at the end of cycle the core still meets safety constraints. However, if the fuel assembly designs used were to experience burnups over 45 GWd/MT, the fraction of fuel assemblies operating in the over-moderated region would be high enough to compromise the safety performance of the core

  13. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor; Evaluacion del diseno radial de celdas de combustible en un ciclo de operacion de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, J.; Martin del Campo M, C. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jgco@ver.megared.net.mx

    2003-07-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  14. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    International Nuclear Information System (INIS)

    utilized or referenced, justification has been provided as to why the data can be utilized for BWR fuel.

  15. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    utilized or referenced, justification has been provided as to why the data can be utilized for BWR fuel.

  16. FRANCO, Finite Element Method (FEM) Fuel Rod Analysis for Solid and Annular Configurations

    International Nuclear Information System (INIS)

    1 - Description of program or function: The FRANCO code is a quasi- static two-dimensional fuel rod analysis code, that calculates the fuel temperature and material deformation as a function of heat generation rate. Both solid and annular fuel configurations are modeled. 2 - Method of solution: FRANCO uses two-dimensional finite element theory and applications for mechanical deformation and heat conduction, and determines the temperature distribution from the fuel center to the coolant adjacent to the clad at a position along the fuel rod axis. FRANCO calculates the average temperature of each radial division, the nodal displacement, and strain and stress within the fuel pellet and clad. The principal stresses, which represent maximum and minimum stresses within an element, result from Mohr's circle relationship between normal stresses. FRANCO is capable of predicting the thermo-mechanical behavior in the radial direction of a single fuel rod for both boiling water reactors (BWR's) and pressurized water reactors (PWR's). The cross sectional plane geometry of fuel rod is modeled using three-node constant strain triangular finite elements, and both thermal and mechanical solutions are computed with the same finite element configurations. The local linear heat generation rate is modeled as a uniform heat source in a fuel pellet, and the coolant temperature and heat transfer coefficient are applied as known boundary conditions at the boundary of the cladding surface. The total load to form the global force vector consists of the thermal load that results from thermal expansion of the material and the mechanical load exerted by pressure. FRANCO assumes the fuel-cladding gap region to be conductive material in order to simplify the analysis, and this gap is simulated by either an open gap or a closed gap model. A time- dependent problem can be simulated by FRANCO using quasi-static analysis when time-dependent parameters are provided. FRANCO can treat a steady-state or

  17. Experience of Areva in fuel services for PWR and BWR

    International Nuclear Information System (INIS)

    AREVA being an integrated supplier of fuel assemblies has included in its strategy to develop services and solutions to customers who desire to improve the performance and safety of their fuel. These services go beyond the simple 'after sale' services that can be expected from a fuel supplier: The portfolio of AREVA includes a wide variety of services, from scientific calculations to fuel handling services in a nuclear power plant. AREVA is committed to collaborate and to propose best-in-class solutions that really make the difference for the customer, based on 40 years of Fuel design and manufacturing experience. (Author)

  18. Investigation of Burnup Credit Issues in BWR Fuel

    International Nuclear Information System (INIS)

    Calculations for long-term-disposal criticality safety of spent nuclear fuel requires the application of burnup credit because of the large mass of fissile material that will be present in the repository. Burnup credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents, followed by criticality calculations to assess the value of keff for a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models used to characterize spent fuel. Most effort in the United States this decade has focused on burnup issues related to pressurized-water reactors. However, requirements for the permanent disposal of fuel from boiling-water reactors has necessitated development of methods for prediction of spent fuel contents for such fuels. Concomitant with such analyses, validation is also necessary. This paper provides a summary of initial efforts at the Oak Ridge National Laboratory to better understand and validate spent fuel analyses for boiling-water-reactor fuel

  19. Fuel performance improvement program. Quarterly/annual progress report, October 1977--September 1978. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Crouthamel, C.E. (comp.)

    1978-10-01

    This quarterly/annual report reviews and summarizes the activities performed in support of the Fuel Performance Improvement Program (FPIP) during Fiscal Year 1978 with emphasis on those activities that transpired during the quarter ending September 30, 1978. Significant progress has been made in achieving the primary objectives of the program, i.e., to demonstrate commercially viable fuel concepts with improved fuel - cladding interaction (FCI) behavior. This includes out-of-reactor experiments to support the fuel concepts being evaluated, initiation of instrumented test rod experiments in the Halden Boiling Water Reactor (HBWR), and fabrication of the first series of demonstration rods for irradiation in the Big Rock Point Reactor (BRPR).

  20. Studies on the mechanics of fuel rods and fuel subassemblies - studies on the simulation irradiation project

    International Nuclear Information System (INIS)

    This report includes eight single papers which are a report of activities performed at the IRT on the mechanics of fuel rods and fuel subassemblies and on the Simulation Irradiation Project. (orig./HP)

  1. Radiography inspection of weld for nuclear fuel rod

    International Nuclear Information System (INIS)

    The survey of radiography inspection, advantages, disadvantages and applications of main kinds of radiography inspection methods are presented. Emphasis is put upon the structure and functions of X-ray flaw detecting device for nuclear fuel rod welds, the actuating program of the device, as well as the structure of some key mechanism and the functions of them. The analysis is made upon the actuating principles. Finally, the test of long-term operation proves the device to be stable in operation, reliable in action, to possess high level of automation and high sensitivity and it can simultaneously perform on-line X-ray inspection of 25 nuclear fuel rods with a diameter less than 10 mm, and meet the requirements of large-scale production of nuclear fuel rods (5 figs.)

  2. High burnup effects in WWER fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, V.; Smirnov, A. [RRC Research Institute of Atomic Reactors, Dimitrovqrad (Russian Federation)

    1996-03-01

    Since 1987 at the Research Institute of Atomic Reactors, the examinations of the WWER spent fuel assemblies has been carried out. These investigations are aimed to gain information on WWER spent fuel conditions in order to validate the fuel assemblies use during the 3 and 4 year fuel cycle in the WWER-440 and WWER-1000 units. At present time, the aim is to reach an average fuel burnup of 55 MWd/kgU. According to this aim, a new investigation program on the WWER spent fuel elements is started. The main objectives of this program are to study the high burnup effects and their influence on the WWER fuel properties. This paper presented the main statistical values of the WWER-440 and WWER-1000 reactors` fuel assemblies and their fragment parameters. Average burnup of fuel in the investigated fuel assemblies was in the range of 13 to 49.7 MWd/kgU. In this case, the numer of fuel cycles was from 1 to 4 during operation of the fuel assemblies.

  3. Comparison of metaheuristic optimization techniques for BWR fuel reloads pattern design

    International Nuclear Information System (INIS)

    Highlights: ► This paper shows a performance comparison of several optimization techniques for fuel reload in BWR. ► Genetic Algorithms, Neural Networks, Tabu Search and several Ant Algorithms were used. ► All optimization techniques were executed under same conditions: objective function and an equilibrium cycle. ► Fuel bundles with minor actinides were loaded into the core. ► Tabu search and Ant System were the best optimization technique for the studied problem. -- Abstract: Fuel reload pattern optimization is a crucial fuel management activity in nuclear power reactors. Along the years, a lot of work has been done in this area. In particular, several metaheuristic optimization techniques have been applied with good results for boiling water reactors (BWRs). In this paper, a comparison of different metaheuristics: genetic algorithms, tabu search, recurrent neural networks and several ant colony optimization techniques, were applied, in order to evaluate their performance. The optimization of an equilibrium core of a BWR, loaded with mixed oxide fuel composed of plutonium and minor actinides, was selected to be optimized. Results show that the best average values are obtained with the recurrent neural networks technique, meanwhile the best fuel reload was obtained with tabu search. However, according to the number of objective functions evaluated, the two fastest optimization techniques are tabu search and Ant System.

  4. MELCOR 1.8.2 assessment: The DF-4 BWR Damaged Fuel experiment

    International Nuclear Information System (INIS)

    MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data

  5. A system automatic study for the spent fuel rod cutting and simulated fuel pellet extraction device

    International Nuclear Information System (INIS)

    A fuel pellet extraction device of the spent fuel rods is described. The device consists of a cutting device of the spent fuel rods and the decladding device of the fuel pellets. The cutting device is to cut a spent fuel rod to n optimal size for fast decladding operation. To design the device, the fuel rod properties are investigated including the dimension and material of fuel rod tubes and pellets. Also, various methods of existing cutting method are investigated. The design concepts accommodate remote operability for the Hot-Cell(radioactive ) area operation. Also, the modularization of the device structure is considered for the easy maintenance. The decladding device is to extract the fuel pellet from the rod cut. To design this device, the existing method is investigated including the chemical and mechanical decladding methods. From the view point of fuel recovery and feasibility of implementation. it is concluded that the chemical decladding method is not appropriate due to the mass production of radioactive liquid wastes, in spite of its high fuel recovery characteristics. Hence, in this paper, the mechanical decladding method is adopted and the device is designed so as to be applicable to various lengths of rod-cuts. As like the cutting device,the concepts of remote operability and maintainability is considered. Both devices are fabricated and the performance is investigated through a series of experiments. From the experimental result, the optimal operational condition of the devices is established

  6. Assembly Based Modular Ray Tracing and CMFD Acceleration for BWR Cores with Different Fuel Lattices

    International Nuclear Information System (INIS)

    The geometry module of the DeCART direct whole core calculation code has been extended in order to analyze BWR cores which might have a mixed loading of different fuel types. First, an assembly based modular ray tracing scheme was implemented for the Method of Characteristic (MOC) calculation, and a CMFD formulation applicable for unaligned mesh conditions was then developed for acceleration the MOC calculation. The new calculation feature has been validated by comparing DeCART BWR assembly calculations with the MCU Monte Carlo calculations. A good agreement identified by the maximum eigenvalue difference of 120 pcm and the maximum pin power error of about 1% has been achieved. The CMFD scheme is shown to reduce the number of MOC iterations by factors of 12-25 without loss of accuracy. (authors)

  7. Development of reinstrumenting technique of fuel rods with pressure gages

    International Nuclear Information System (INIS)

    Comprehensive procedures were designed in order to reinstrument irradiated fuel rods with fission gas pressure gages and measure inner pressure of the fuel rods in following re-irradiation experiments. The procedures have necessitated development of wide-ranging techniques which have been successfully being carried out. This report outlines the reinstrumenting procedures and summarizes in and out-of-pile characteristics of the developed pressure gage. Efforts were made to provide designed performance in fabrication process, which resulted in several revisions in the pressure gage design. In and out-of-pile performance tests verified successful workability of the developed pressure gage under expected service environments. (author)

  8. Liquid film thickness on fuel rod under high pressure and high temperature steam-water two phase flow

    International Nuclear Information System (INIS)

    This paper deals with behavior of liquid film on the fuel rod which is very important for the critical power prediction. In this study, the liquid film measurement device using an ultrasonic transducer has been developed and the liquid film thickness data has been obtained for a simulated BWR 4 x 4 rod bundle under 1 MPa condition. The cooling fluid is steam-water mixture and flow direction is vertical. Also the following results were obtained. Firstly, the liquid film thickness becomes thinner with increasing quality and the liquid film thickness is about 0.2 mm at 9.3% of quality. Secondary, the time change of liquid film thickness becomes smaller with increasing the quality. It was found that the change of liquid film thickness becomes more smoothly near the dryout condition. (author)

  9. Experience of MOX-fuel operation in the Gundremmingen BWR plant: Nuclear characteristics and in-core fuel management

    International Nuclear Information System (INIS)

    After 4 years of good experience with MOX-fuel operation in the BWR plants Gundremmingen units B and C the number of inserted MOX-FAs will be increased in the future continuously. Until now all MOX-FAs are in good condition. Furthermore calculations and measurements concerning zero power tests and tip measurements are in good agreement as expected: all results lead to the conclusion that MOX-FAs can be calculated with the same precision as uranium-FAs. (author)

  10. Spacer grids for laterally supporting and spacing rod -like or tube-like elements and methods of spacing and laterally supporting fuel rods within spacer grids of nuclear fuel rod assemblies

    International Nuclear Information System (INIS)

    New designs of spacer grids for laterally supporting and spacing rod-like or tube-like elements and methods of spacing and laterally supporting fuel rods within spacer grids of nuclear fuel rod assemblies are described. The invention consists of efficient, economical apparatus and method for inserting fuel rods into cells of a grid plate lattice that utilize protrusions to positively space and support the fuel elements or rods without marring the fuel surfaces of the elements or rods and a versatile grid plate design adaptable for supporting the tubes of vapor generators, shell and tube heat exchangers and the like. (U.K.)

  11. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  12. Impact of fuel release on alpha contamination of coolant and of fuel rod's outer surfaces; Einfluss von Brennstoff-Freisetzungen auf die Alphakontamination des Kuehlmittels und der Brennstab-Aussenoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Schienbein, M.; Zeh, P. [AREVA NP GmbH, Erlangen (Germany). Radiochemisches Laboratorium; Rosskamp, M. [VENE, Kernkraftwerk Brunsbuettel GmbH und Co oHG, Brunsbuettel (Germany); Mailand, I. [AXPO, Kernkraftwerk Beznau, Doettlingen (Switzerland); Bolz, M. [EnBW Kernkraft GmbH, Philippsburg (Germany). Kernkraftwerk Philippsburg

    2010-07-01

    Lately many studies dealt with the relationship between the amount of released fuel in fuel element damages and plant-specific alpha-situation. The mobilization phenomena and transport phenomena of tramp uranium and alpha-emitters differ in the primary system of a pressurized water reactor of boiling water reactors. The actual processes involved are not yet fully investigated and described. The estimations of tramp uranium based on radio-chemical plant data primarily are based on models whose boundary conditions are very difficult to verify. For a better understanding of these processes, nuclide-specific alpha-data of fuel rod surface coatings (defined CRUD samples) of various BWR and PWR fuel elements are evaluated and compared with the results of theoretical terms. Here, significant differences between the BWR and PWR plants have been identified. Based on these results, further optimization of the models for the tramp uranium calculation and alpha-balancing are possible.

  13. Test plan for thermogravimetric analyses of BWR spent fuel oxidation

    International Nuclear Information System (INIS)

    Preliminary studies indicated the need for additional low-temperature spent fuel oxidation data to determine the behavior of spent fuel as a waste form for a tuffy repository. Short-term thermogravimetric analysis tests were recommended in a comprehensive technical approach as the method for providing scoping data that could be used to (1) evaluate the effects of variables such as moisture and burnup on the oxidation rate, (2) determine operative mechanisms, and (3) guide long-term, low-temperature oxidation testing. The initial test series studied the temperature and moisture effects on pressurized water reactor fuel as a function of particle and grain size. This document presents the test matrix for studying the oxidation behavior of boiling water reactor fuel in the temperature range of 140 to 225/degree/C. 17 refs., 7 figs., 3 tabs

  14. Assessment of the prediction capability of the TRANSURANUS fuel performance code on the basis of power ramp tested LWR fuel rods

    International Nuclear Information System (INIS)

    The present work is aimed at assessing the prediction capability of the TRANSURANUS code for the performance analysis of LWR fuel rods under power ramp conditions. The analysis refers to all the power ramp tested fuel rods belonging to the Studsvik PWR Super-Ramp and BWR Inter-Ramp Irradiation Projects, and is focused on some integral quantities (i.e., burn-up, fission gas release, cladding creep-down and failure due to pellet cladding interaction) through a systematic comparison between the code predictions and the experimental data. To this end, a suitable setup of the code is established on the basis of previous works. Besides, with reference to literature indications, a sensitivity study is carried out, which considers the 'ITU model' for fission gas burst release and modifications in the treatment of the fuel solid swelling and the cladding stress corrosion cracking. The performed analyses allow to individuate some issues, which could be useful for the future development of the code. Keywords: Light Water Reactors, Fuel Rod Performance, Power Ramps, Fission Gas Burst Release, Fuel Swelling, Pellet Cladding Interaction, Stress Corrosion Cracking

  15. Study on the effect of fuel rod vibration characteristics on the grid-to-rod fretting wear

    International Nuclear Information System (INIS)

    The fretting wear-induced fuel rod failure may be caused by excessive flow-induced vibration and/or inadequate fuel rod support by spacer grid springs. In order to evaluate the fuel rod support conditions, the GRIDFORCE program has been developed. This program takes into account cladding creep rate, initial spring deflection, initial spring force, and spring force relaxation rate as the key fuel design parameters affecting the in-reactor fuel rod supporting conditions. On the other hand, relationship of fuel rod supporting conditions and flow-induced vibration characteristics has been derived, based on fretting wear damage patterns observed in some PWRs. Comparison of the predicted data of the GRIDFORCE program and the fretting wear damage patterns indicates that the GRIDFORCE program can be utilized as an effective tool in evaluating the fretting wear damage

  16. Method of joining nuclear fuel rod end caps and nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    A method of joining fuel rod end caps and cladding tubes by resistance pressure welding within a welding chamber is described. A welding device is brought into engagement with an end portion of a rigidly mounted cladding tube. An opening chuck as well as a divided welding electrode, both of which are mounted at one side of the welding chamber, are shifted along a predetermined length of the cladding tube end portion. The chuck and the divided welding electrode are brought into contact with the cladding tube end portion. Another welding electrode carrying an end cap is thrust into the welding chamber from the other side thereof so that the end cap is fed to the open end of the cladding tube end portion. The welding chamber is sealed by sealing members sealingly engaging the cladding tube end portion and the other welding electrode and then the interior of the welding chamber is evacuated and filled with protective gas. The end cap is pressed onto the open end of the cladding tube end portion. A welding current is passed through the welding electrodes so as to weld the end cap to the end of the cladding tube end portion

  17. BWR fuel reloads design using a Tabu search technique

    International Nuclear Information System (INIS)

    We have developed a system to design optimized boiling water reactor fuel reloads. This system is based on the Tabu Search technique along with the heuristic rules of Control Cell Core and Low Leakage. These heuristic rules are a common practice in fuel management to maximize fuel assembly utilization and minimize core vessel damage, respectively. The system uses the 3-D simulator code CM-PRESTO and it has as objective function to maximize the cycle length while satisfying the operational thermal limits and cold shutdown constraints. In the system tabu search ideas such as random dynamic tabu tenure, and frequency-based memory are used. To test this system an optimized boiling water reactor cycle was designed and compared against an actual operating cycle. Numerical experiments show an improved energy cycle compared with the loading patterns generated by engineer expertise and genetic algorithms

  18. BWR fuel reloads design using a Tabu search technique

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Alejandro E-mail: jacm@nuclear.inin.mx; Alonso, Gustavo E-mail: galonso@nuclear.inin.mx; Morales, Luis B. E-mail: lbm@servidor.unam.mx; Martin del Campo, Cecilia; Francois, J.L.; Valle, Edmundo del E-mail: edmundo@esfm.ipn.mx

    2004-01-01

    We have developed a system to design optimized boiling water reactor fuel reloads. This system is based on the Tabu Search technique along with the heuristic rules of Control Cell Core and Low Leakage. These heuristic rules are a common practice in fuel management to maximize fuel assembly utilization and minimize core vessel damage, respectively. The system uses the 3-D simulator code CM-PRESTO and it has as objective function to maximize the cycle length while satisfying the operational thermal limits and cold shutdown constraints. In the system tabu search ideas such as random dynamic tabu tenure, and frequency-based memory are used. To test this system an optimized boiling water reactor cycle was designed and compared against an actual operating cycle. Numerical experiments show an improved energy cycle compared with the loading patterns generated by engineer expertise and genetic algorithms.

  19. Application of ultrasonic echo technique to the measurement of 2-dimensional local instantaneous liquid film thickness on a simulated nuclear fuel rod

    International Nuclear Information System (INIS)

    A subchannel analysis for nuclear reactor core thermal hydraulics solves the basic conservation equations for mass, momentum and energy for each sub-channel, taking into account the effect of cross flows between neighboring subchannels. The three fluid model formulation is often considered for the analysis of droplet dispersed annular flow regions where the liquid film flow on the fuel rods is determined by a balance among entrainment and deposition rates of liquid droplets in the vapor flow and evaporation rate on a heated wall. The critical heat flux in a BWR is therefore characterized by film dryout. It is well known that in a typical BWR fuel rod assembly there are mechanical spacers placed at, for example, every 50 centimeters in axial direction to keep the rod clearance adequately which in turn result in flow obstacles consequently, and thus local time dependent film flow structure is changed before and after these spacers. The previous studies revealed a general trend that the liquid film thickness normally reduces in a spacer region due to droplet entrainment rate enhanced by an accelerated vapor flow, whereas in a region downstream of the spacers it recovers again because of highly agitated nature of the flow behind the spacers and increased deposition rate. Thus the accurate prediction of time dependent 2-dimensional film thickness on the fuel rods is extremely indispensable for the evaluation of the critical heat flux for BWR fuel assemblies. However, for the moment, we do not have reliable data-base for non-homogeneous liquid film flow on the fuel rods mainly because of a lack in accurate non-intrusive measuring techniques. The purpose of this work is therefore to present the outline of a new development in high speed ultrasonic echo technique which we are now pursuing at our laboratory with a view to applying it to measurement of time-sequential 2-dimensional thickness of the film flow around a simulated nuclear fuel rod. The scanning time required to

  20. LOFT fuel-rod-transient DNB probability density function studies

    International Nuclear Information System (INIS)

    Significantly improved DNB safety margins were calculated for LOFT reactor fuel rods by use of probability density functions (PDF) for transient MDNBR. Applicability and sensitivity studies determined that the PDF and resulting nominal MDNBR limits are stable, applicable over a wide range of potential input parameters, and applicable to most transients

  1. The effect of power ramping on fuel rod behaviour

    International Nuclear Information System (INIS)

    The behaviour under irradiation of a typical proposed small P.W.R. (100 MWth) fuel rod has been studied with the COMETHE Code-Code for predicting mechanical and thermal fuel performance the fuel rod has been assumed to be irradiated in low power rated core zone during three cycles of operation. The COMETHE results at the end of cycle two (E0C2) have been saved in order to study the power ramping effect on the fuel rod behaviour stress induced in the clad-and to optimize the best way of reaching the full power. Also, in the design of fuel pins, a precise knowledge of the thermal and mechanical behaviour of the rods during irradiation time is required. This involves a realistic evaluation of a number of interrelated parameters, e.g., the temperature distribution, the reconstructing and swelling rates of fuel pellets, the dimensions, the stresses and the strains in the clad, the inner gas pressure, etc. This complex problem can only be properly handed by a computer programme which analyses the fuel pin thermal and mechanical behaviour at successive steps of its irradiation life. COMETHE III-J is a multipurpose code which can provide the user with a realistic solution of this complex problem. The COMETHE III-J has been tested and calibrated with experimental results and here after, there will come some of applications of this code: 1. Evaluation of fuel vendor proposal. 2. Comparison between different proposed designs. 3. Analysis of the effects of tolerances. 4. Analysis of the effects of power history, power ramping, core management, effects anticipated by vendor and operation limitations imposed by the vendor, etc. 5. Help for selection of PIE and interpretation of the results. 6. Analysis of steady state input values for LOCA analysis. 7. Improvement of plant availability and manoeuvrability through reduction of pin failure probability and minimization of limitations from LOCA. (Author)

  2. CONDOR: neutronic code for fuel elements calculation with rods

    International Nuclear Information System (INIS)

    CONDOR neutronic code is used for the calculation of fuel elements formed by fuel rods. The method employed to obtain the neutronic flux is that of collision probabilities in a multigroup scheme on two-dimensional geometry. This code utilizes new calculation algorithms and normalization of such collision probabilities. Burn-up calculations can be made before the alternative of applying variational methods for response flux calculations or those corresponding to collision normalization. (Author)

  3. TMI-2 standing fuel rod segments: Preliminary examination report

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D W; Russell, M L

    1987-08-01

    The principal purpose of the nondestructive examination of the six fuel rod segments obtained from partially intact fuel assemblies still standing in the core of the Three Mile Island Unit 2 (TMI-2) reactor was to evaluate their potential for providing information that may contribute significantly toward understanding the TMI-2 accident. Objectives of the examinations were to (1) evaluate the necessity for performing destructive metallurgical and radiochemical examinations and (2) identify the best locations for removing samples for other analyses.

  4. Design study of Thorium-232 and Protactinium-231 based fuel for long life BWR

    Science.gov (United States)

    Trianti, N.; Su'ud, Z.; Riyana, E. S.

    2012-06-01

    A preliminary design study for the utilization of thorium added with 231Pa based fuel on BWR type reactor has been performed. In the previous research utilization of fuel based Thorium-232 and Uranium-233 show 10 years operation time with maximum excess-reactivity about 4.075% dk/k. To increase reactor operation time and reduce excess-reactivity below 1% dk/k, Protactinium (Pa-231) is used as Burnable Poison. Protactinium-231 has very interesting neutronic properties, which enable the core to reduce initial excess-reactivity and simultaneously increase production of 233U to 231Pa in burn-up process. Optimizations of the content of 231Pa in the core enables the BWR core to sustain long period of operation time with reasonable burn-up reactivity swing. Based on the optimization of fuel element composition (Th and Pa) in various moderation ratio we can get reactor core with longer operation time, 20 ˜ 30 years operation without fuel shuffling or refuelling, with average power densities maximum of about 35 watt/cc, and maximum excess-reactivity 0.56% dk/k.

  5. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR

    International Nuclear Information System (INIS)

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  6. Structural analysis and modeling of water reactor fuel rod behavior

    International Nuclear Information System (INIS)

    An important aspect of the design and analysis of nuclear reactor is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system under normal and emergency operating conditions. To achieve these objectives and in order to provide a suitable computer code based on fundamental material properties for design and study of the thermal-mechanical behavior of water reactor fuel rods during their irradiation life and also to demonstrate the fuel rod design and modeling for students, The KIANA-1 computer program has been developed by the writer at Amir-Kabir university of technology with support of Atomic Energy Organization of Iran. KIANA-1 is an integral one-dimensional computer program for the thermal and mechanical analysis in order to predict fuel rods performance and also parameter study of Zircaloy-clad UO2 fuel rod during steady state conditions. The code has been designed for the following main objectives: To give a solution for the steady state heat conduction equation for fuel as a heat source and clad by using finite difference, control volume and semi-analytical methods in order to predict the temperature profile in the fuel and cladding. To predict the inner gas pressures due to the filling gases and released gaseous fission products. To predict the fission gas production and release by using a simple diffusion model based on the Booth models and an empirical model. To calculate the fuel-clad gap conductance for cracked fuel with partial contact zones to a closed gap with strong contact. To predict the distribution of stress in three principal directions in the fuel and sheet by assuming one-dimensional plane strain and asymmetric idealization. To calculate the strain distribution in three principal directions and the corresponding deformation in the fuel and cladding. For this purpose the permanent strain such as creep or plasticity as well as the thermoelastic deformation and also the swelling, densification, cracking

  7. Infinite fuel element simulation of pin power distributions and control blade history in a BWR fuel assembly

    International Nuclear Information System (INIS)

    Pellet-Cladding Interaction (PCI) is a well known effect in fuel pins. One possible reason for PCI-effects could be local power excursions in the fuel pins, which can led to a rupture of the fuel cladding tube. From a reactor safety point of view this has to be considered as a violence of the barrier principal in order to retain fission products in the fuel pins. This paper focuses on the pin power distributions in a 2D infinite lattice of a BWR fuel element. Lots of studies related PCI effect can be found in the literature. In this compact, coupled neutronic depletion calculations taking the control history effect into account are described. Depletion calculations of an infinite fuel element of a BWR were carried out with controlled, uncontrolled and temporarily controlled scenarios. Later ones are needed to describe the control blade history (CBH) effect. A Monte-Carlo approach is mandatory to simulate the neutron physics. The VESTA code was applied to couple the Monte-Carlo-Code MCNP(X) with the burnup code ORIGEN. Additionally, CASMO-4 is also employed to verify the method of simulation results from VESTA. The cross sections for Monte Carlo and burn-up calculations are derived from ENDF/B-VII.0. (orig.)

  8. Fuel element reshuffling and fuel follower control rods (FFCR) replacement for PUSPATI TRIGA reactor

    International Nuclear Information System (INIS)

    The PUSPATI TRIGA Reactor has been utilized for more than 25 years using the same fuel elements and control rods. Generally, there are four control rods being used to control the neutron production inside the reactor core. A maintenance program has been developed to ensure its integrity, capability and safety of the reactor and it has been maintained twice a year since the first operation in 1982. The activities involve during the maintenance period including fuel elements and control rods inspections, electronics and mechanical systems, and others related works. During the maintenance in August 2008, there are some irregularities found on the fuel follower control rods and needed to be replaced. Even though the irregularities was not contributed into any unwanted incident, it were decided to replace with new control rods to avoid any potential hazards and unsafe condition occurred during operation later. Replacing any of the control rods would involved in imbalance of neutron flux and power distribution inside the core. Therefore, a number of fuel elements need to be reshuffled in order to compensate the neutron flux and power distribution as well as to balance the fuel elements burn-up in the core. This paper will described the fuel elements reshuffling and fuel follower control rods (FFCR) replacement for PUSPATI TRIGA Reactor. (Author)

  9. Assessment of Fuel Rod Failure Thresholds for Reactivity Initiated Accidents

    International Nuclear Information System (INIS)

    Failure thresholds for high-burnup light water reactor UO2 fuel rods, subjected to postulated reactivity initiated accidents (RIAs), are here assessed by use of best-estimate computational methods. The considered RIAs are the hot zero power rod ejection accident (HZP REA) in pressurized water reactors and the cold zero power control rod drop accident (CZP CRDA) in boiling water reactors. Failure thresholds for these events, formulated in terms of allowable fuel enthalpy with respect to fuel burnup, are calculated for fuel burnups ranging from 30 to 70 MWd/kgU. The calculations are performed with best-estimate models, applied in the FRAPCON-3.2 and SCANAIR-3.2 computer codes. Fuel rod integrity under RIA is assessed by use of a strain-based clad failure criterion, which is formulated specifically for the performed analyses. The criterion is intended for best-estimate prediction of clad tube failure, caused by pellet-clad mechanical interaction under the early heat-up phase of an RIA. Supported by the results of three-dimensional core kinetics analyses, the considered RIA power pulses are simulated by a Gaussian line shape, with a fixed width of either 25 ms (REA) or 45 ms (CRDA). Notwithstanding the differences in postulated accident scenarios between the REA and the CRDA, the calculated fuel rod failure thresholds for these two events are similar. The calculated failure enthalpy decreases gradually with fuel burnup, from approximately 650 J/gUO2 at 30 MWd/kgU to 530 J/gUO2 at 70 MWd/kgU. Calculated clad temperatures and hoop plastic strains at time of clad failure are typically 800-900 K and 1.2-1.6 %, respectively, for both the REA and the CRDA. Calculated hoop strain rates at failure are 0.6-0.9/s for the considered REA and 0.2-0.5/s for the CRDA. Parametric sensitivity studies are performed in addition to the best-estimate analyses, in order to estimate uncertainties in calculated results, and also to identify key parameters and models in the analyses. These

  10. Evaluation of the reduction of boron-10 in the control rods in the BWR of the Laguna Verde Central, through steady state calculations; Evaluacion de la reduccion del Boro-10 en las barras de control en los BWR de la CLV, mediante calculos en estado estacionario

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J.L.; Perusquia, R.; Hernandez, J.L.; Ramirez S, J.R. [Departamento de Sistemas Nucleares, ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    One of the more important aspects related with the safety and economy in the operation of a nuclear power reactor, it is without a doubt the control of the reactivity. During the normal operation of a reactor of boiling water (BWR-Boiling Water Reactor), the control of the reactivity in the nucleus it is strongly determined by the efficiency of the control rods. In the case of the Laguna Verde Nuclear power station (CNLV) the nucleus of the reactors has 109 control rods grouped in 4 sets. The CNLV at the moment uses the CCC method (Control Cell Core) in the design of the cycle. With this method only the A2 group is used for the control of the reactivity at full power. With the purpose of quantifying the effect of the decrease of the burnable poison (B{sub 4}C) of the control rods and in particular to the effect due to the postulated lost of 10% of Boron 10, it was carried out a series of calculations of the nucleus in stationary state by means of the system of HELIOS/CM-PRESTO codes. In this work the main derived results of these 3D simulations(three dimensions) of the reactors of the CNLV are presented. It was analyzed the one behavior of the infinite neutron multiplication factor (K{sub infinite}), at fuel assemble cell level used in an equilibrium cycle for the CNLV. It was also analyzed the effect in the shutdown margin (ShutDown Margin- SDM) in cold condition CZP (Cold Zero Power). Its are also included those results of the ARI cases (All Rods In) and SRO (Strong Rod Out). From the cases in condition HFP (Hot Full Power) the behavior of the effective multiplication factor (K{sub eff}) is presented. (Author)

  11. Simulation of nuclear fuel rods by using process computer-controlled power for indirect electrically heated rods

    International Nuclear Information System (INIS)

    An investigation was carried out to determine how the simulation of nuclear fuel rods with indirect electrically heated rods could be improved by use of a computer to control the electrical power during a loss-of-coolant accident (LOCA). To aid in the experiment, a new version of the HETRAP code was developed which simulates a LOCA with heater rod power controlled by a computer that adjusts rod power during a blowdown to minimize the difference in heat flux of the fuel and heater rods. Results show that without computer control of heater rod power, only the part of a blowdown up to the time when the heat transfer mode changes from nucleate boiling to transition or film boiling can be simulated well and then only for short times. With computer control, the surface heat flux and temperature of an electrically heated rod can be made nearly identical to that of a reactor fuel rod with the same cooling conditions during much of the LOCA. A small process control computer can be used to achieve close simulation of a nuclear fuel rod with an indirect electrically heated rod

  12. Thermographic imaging of nuclear fuel rods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Honey, R.C.; Falconer, D.G.

    1976-01-01

    A novel thermographic technique is discussed for the nondestructive testing of nuclear fuel rods. The technique can sense the gap spacings between the metallic cladding and the uranium oxide pellets within the rod. The principle used is to electrically heat the metallic cladding in a time short compared to all thermal relaxation times, then observe the differential thermal patterns on the surface of the cladding as they rapidly develop and then fade away with time. These patterns can be correlated with different gap spacings, with a spatial resolution on the order of the cladding thickness. (GRA)

  13. Studies on vibration of fuel rods Pt. 1

    International Nuclear Information System (INIS)

    An adequate model of dynamic behaviour of fuel rods in NPP-s was generated to estimate their eigenfrequencies. The eigenfrequencies were computed for different kind of clamps of the rods. Contrary to the usual models based on string vibration this model showed that the eigenfrequencies took place at the quadratic higher harmonics. These solutions agree with the earlier results of measurements. Changes in the eigenfrequencies of lower models were detected and interpreted by the examination of different clamping modes. (author) 6 refs.; 8 figs

  14. Test requirement for PIE of HANARO irradiated fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Lim, I. C.; Cho, Y. G

    2000-06-01

    Since the first criticality of HANARO reached in Feb. of 1995, the rod type U{sub 3}Si-A1 fuel imported from AECL has been used. From the under-water fuel inspection which has been conducted since 1997, a ballooning-rupture type abnormality was observed in several fuel rods. In order to find the root cause of this abnormality and to find the resolution, the post irradiation examination(PIE) was proposed as the best way. In this document, the information from the under-water inspection as well as the PIE requirements are described. Based on the information in this document, a detail test plan will be developed by the project team who shall conduct the PIE.

  15. WWER-440 fuel rod experiments under simulated dry storage conditions

    International Nuclear Information System (INIS)

    There is significant interest in Member States operating WWER reactors in obtaining information about the highest allowable cladding temperatures for spent fuel assemblies in dry storage facilities. Therefore, special efforts have been made to simulate dry storage tests with WWER-440 fuel rods at the State Scientific Centre of the Russian Federation, Scientific Research Institute for Nuclear Reactors (RIIAR) in Dimitrovgrad using extra-budgetary funds supplied by the Government of Japan, leading to publication of the results in this TECDOC. The aim is to provide an insight into the maximum spent fuel cladding temperature at the beginning of placement in a dry storage facility, in the context of the pre-cooling time. This TECDOC contains the results of pre-characterization of the rods, descriptions of the tests and the results of characterizations in the two principal temperature regimes

  16. FREC-3: a computer program to analyze stress and strain of fuel rods in accordance with fuel-rod irradiation history

    International Nuclear Information System (INIS)

    FREC-3 (Fuel Realiability Evaluation Code Version-3) analyzes the changes of fuel-rod design parameters in accordance with irradiation history, and evaluates the cladding strain, important fuel rods safety. The program is based on reports of the CYGRO developed by Westinghouse Electric Corporation (U.S.). This report describes the calculation procedure and models in FREC-3. (author)

  17. FY15 Status Report: CIRFT Testing of Spent Nuclear Fuel Rods from Boiler Water Reactor Limerick

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    The objective of this project is to perform a systematic study of used nuclear fuel (UNF, also known as spent nuclear fuel [SNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. The additional CIRFT was conducted on three HBR rods (R3, R4, and R5) in which two specimens failed and one specimen was tested to over 2.23 10⁷ cycles without failing. The data analysis on all the HBR UNF rods demonstrated that it is necessary to characterize the fatigue life of the UNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum of tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, ten SNF rod segments from BWR Limerick were tested using ORNL CIRFT, with one under static and nine dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at maximum curvature 4.0 m⁻¹. The specimen did not show any sign of failure in three repeated loading cycles to almost same maximum curvature. Ten cyclic tests were conducted with amplitude varying from 15.2 to 7.1 N·m. Failure was observed in nine of the tested rod specimens. The cycles to failure were

  18. Strategy for Fuel Rod Receipt, Characterization, Sample Allocation for the Demonstration Sister Rods

    Energy Technology Data Exchange (ETDEWEB)

    Marschman, Steven C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Warmann, Stephan A. [Portage, Inc., Idaho Falls, ID (United States); Rusch, Chris [NAC International, Inc., Norcross, GA (United States)

    2014-03-01

    , inert gas backfilling, and transfer to an Independent Spent Fuel Storage Installation (ISFSI) for multi-year storage. To document the initial condition of the used fuel prior to emplacement in a storage system, “sister ” fuel rods will be harvested and sent to a national laboratory for characterization and archival purposes. This report supports the demonstration by describing how sister rods will be shipped and received at a national laboratory, and recommending basic nondestructive and destructive analyses to assure the fuel rods are adequately characterized for UFDC work. For this report, a hub-and-spoke model is proposed, with one location serving as the hub for fuel rod receipt and characterization. In this model, fuel and/or clad would be sent to other locations when capabilities at the hub were inadequate or nonexistent. This model has been proposed to reduce DOE-NE’s obligation for waste cleanup and decontamination of equipment.

  19. Strategy for Fuel Rod Receipt, Characterization, Sample Allocation for the Demonstration Sister Rods

    International Nuclear Information System (INIS)

    , inert gas backfilling, and transfer to an Independent Spent Fuel Storage Installation (ISFSI) for multi-year storage. To document the initial condition of the used fuel prior to emplacement in a storage system, ''sister'' fuel rods will be harvested and sent to a national laboratory for characterization and archival purposes. This report supports the demonstration by describing how sister rods will be shipped and received at a national laboratory, and recommending basic nondestructive and destructive analyses to assure the fuel rods are adequately characterized for UFDC work. For this report, a hub-and-spoke model is proposed, with one location serving as the hub for fuel rod receipt and characterization. In this model, fuel and/or clad would be sent to other locations when capabilities at the hub were inadequate or nonexistent. This model has been proposed to reduce DOE-NE's obligation for waste cleanup and decontamination of equipment.

  20. BWR - Spent Fuel Transport and Storage with the TNTM9/4 and TNTM24BH Casks

    International Nuclear Information System (INIS)

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., the Muehleberg Nuclear Power Plant owner, is involved in this process and has elected to store its BWR spent fuel in a new high capacity dual-purpose cask, the TNeTeM24BH from the COGEMA Logistics/TRANSNUCLEAR TNTM24 family. The Muehleberg BWR spent fuels are transported by road in a medium size shuttle transport cask and then transferred to a heavy transport/storage cask (dry transfer) in the hot cell of ZWILAG site. For that purpose, COGEMA Logistics designed and supplied: - Two shuttle casks, TNTM9/4, mainly devoted to transport of spent fuel from Muehleberg NPP to ZWILAG. Licensed according to IAEA 1996, the TNTM9/4 is a 40 ton transport cask, for 7 BWR high bum-up spent fuel assemblies. - A series of new high capacity dual-purpose casks, TNTM24BH, holding 69 BWR spent fuels. Two transport campaigns took place in 2003 and 2004. For each campaign, ten TNTM9/4 round trips are performed, and one TNTM24BH is loaded. 5 additional TNTM24BH are being manufactured for BKW, and the next transport campaigns are scheduled from 2006. The TNTM24BH high capacity dual purpose cask and the TNTM9/4 transport cask characteristics and capabilities will then be detailed. (authors)

  1. Optical coherence tomography for nondestructive evaluation of fuel rod degradation

    Science.gov (United States)

    Renshaw, Jeremy B.; Jenkins, Thomas P.; Buckner, Benjamin D.; Friend, Brian

    2015-03-01

    Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.

  2. TRANSURANUS: A fuel rod analysis code ready for use

    International Nuclear Information System (INIS)

    The basic concepts of fuel rod performance codes are discussed. The TRANSURANUS code developed at the Institute for Transuranium Elements, Karlsruhe (GE) is presented. It is a quasi two-dimensional (11/2-D) code designed for treatment of a whole fuel rod for any type of reactor and any situation. The fuel rods found in the majority of test- or power reactors can be analyzed for very different situations (normal, off-normal and accidental). The time scale of the problems to be treated may range from milliseconds to years. The TRANSURANUS code consists of a clearly defined mechanical/mathematical framework into which physical models can easily be incorporated. This framework has been extensively tested and the programming very clearly reflects this structure. The code is well structured and easy to understand. It has a comprehensive material data bank for different fuels, claddings, coolants and their properties. The code can be employed in a deterministic and a statistical version. It is written in standard FORTRAN 77. The code system includes: 2 preprocessor programs (MAKROH and AXORDER) for setting up new data cases; the post-processor URPLOT for plotting all important quantities as a function of the radius, the axial coordinate or the time; the post-processor URSTART evaluating statistical analyses. The TRANSURANUS code exhibits short running times. A new WINDOWS-based interactive interface is under development. The code is now in use in various European institutions and is available to all interested parties. 7 figs., 15 refs

  3. Drilling Experiments of Dummy Fuel Rods Using a Mock-up Drilling Device and Detail Design of Device for Drilling of Irradiated Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Yong; Lee, H. K.; Chun, Y. B.; Park, S. J.; Kim, B. G

    2007-07-15

    KAERI are developing the safety evaluation method and the analysis technology for high burn-up nuclear fuel rod that is the project, re-irradiation for re-instrumented fuel rod. That project includes insertion of a thermocouple in the center hole of PWR nuclear fuel rod with standard burn-up, 3,500{approx}4,000MWD/tU and then inspection of the nuclear fuel rod's heat performance during re-irradiation. To re-fabricate fuel rod, two devices are needed such as a drilling machine and a welding machine. The drilling machine performs grinding a center hole, 2.5 mm in diameter and 50 mm in depth, for inserting a thermocouple. And the welding machine is used to fasten a end plug on a fuel rod. Because these two equipment handle irradiated fuel rods, they are operated in hot cell blocked radioactive rays. Before inserting any device into hot cell, many tests with that machine have to be conducted. This report shows preliminary experiments for drilling a center hole on dummy of fuel rods and optimized drilling parameters to lessen operation time and damage of diamond dills. And the design method of a drilling machine for irradiated nuclear fuel rods and detail design drawings are attached.

  4. Experimental simulation of LOCA in a PWHR : analytical study of similarity of thermal response between fuel rod simulators and nuclear fuel rods under reflood conditions

    International Nuclear Information System (INIS)

    For the safety analysis of a nuclear reactor, the similarity of the thermal response of an electrically heated Fuel Rod Simulator (FRS), mostly used in Loss-of-Coolant-Accident (LOCA) experiments, to that of a nuclear fuel rod is of great significance. The present analysis describes the characteristics and the similarity of thermal response fuel rods under reflood conditions of LOCA. The analysis has shown that the thermal response of a nuclear fuel rod can be well simulated by the use of an electrically heated FRS. (author). 7 refs., 12 figs

  5. Failure root cause of a PCI suspect liner fuel rod

    International Nuclear Information System (INIS)

    Zirconium-lined claddings reveal increased PCI resistance of fuel rods and provide large flexibility in reactor operation by allowing faster power ascension rates. Nevertheless a liner fuel rod failed after 3 cycles of operation and an approximate burn-up of 26 MWd/kgU in a Swiss Boiling Water Reactor, after a power transient following a control blade manoeuvre. Poolside inspection of the rod showed a primary defect in the shape of a small axial crack (X-mark). A PCI type failure was therefore suspected, although operating limits had not been exceeded. This paper describes the hot cell examinations, which were undertaken to investigate the root cause of the failure. Standard NDT methods, high resolution neutron radiography with 'fuel-in' condition, and detailed metallography were applied to assess the status of the pellets and the cladding at the location of the defect. The findings were compared to the characteristics of a sibling sound rod. The investigation revealed a pellet with a missing surface at the origin of the cladding crack, which had not been rejected during the manufacturing process. A similar case had been observed in a US reactor before and the size of the defect in the pellets was comparable. PCI analysis using the EPRI-FREY code showed that due to the missing pellet surface local stresses are generated in the cladding during such power transients, which are considered large enough to trigger ISCC. A second important effect is the degraded transfer across the large pellet-cladding gap associated with a missing pellet surface. This condition raises the fuel pellet surface temperature and promotes the migration and transport of volatile fission products conducive to ISCC towards the cladding. The presence of these reactive fission products further stimulates the ISCC process in the zirconium liner and then through the remainder of the cladding wall. The results from the FREY-01 analysis demonstrate that the PCI-type crack observed in heat KLG072 Rod

  6. Development of fuel performance code FEMAXI-6 and analysis of mechanical loading on cladding during power ramp for high burn-up fuel rod

    International Nuclear Information System (INIS)

    A fuel performance code FEMAXI-6 has been developed for the analysis of LWR fuel rod behaviors in normal operation and transient (not accident) conditions. The code uses FEM for mechanical analysis, and has incorporated thermal and mechanical models of phenomena anticipated in high burn-up fuel rods, such as fuel thermal conductivity degradation and pellet-clad bonding. In the present study, PCMI induced by swelling in a high burn-up BWR type fuel rod has been analyzed by the FEMAXI-6 code. During a power ramp for the high burn-up fuel, instantaneous pellet swelling can significantly exceed the level that is predicted by a 'steady-rate' swelling model, causing a large circumferential strain in cladding. This phenomenon has been simulated by a new swelling model to take into account the fission gas bubble growth, and we found that the new model can give satisfactory predictions on cladding diametral expansion in comparison with measurements in test rod. The bubble growth model assumes an equilibrium between bubble size and external pressure on the bubble, and simultaneous solution is obtained with both bubble size determination and diffusion equation of fission gas atoms. In addition, a pellet-clad bonding model which assumes firm mechanical coupling between pellet outer surface and cladding inner surface predicts an elevated tensile stress in the axial direction of cladding during ramp, indicating the generation of bi-axial stress state in the cladding. These analyses by the FEMAXI-6 code enable us to predict the magnitude of mechanical loading on cladding during transient and also serve for failure investigation. Clearly, prediction by code calculation depends on the creep and stress-strain properties of highly irradiated cladding. (author)

  7. MOX fuel use in a BWR with extended power up-rate

    International Nuclear Information System (INIS)

    Highlights: ► Use of MOX fuel is assessed for a BWR under a extended power uprate (EPU). ► EPU conditions reduce the maximum amount of MOX fuel to be loaded. ► The use of MOX fuel affects mainly the core neutronics and not to the thermal hydraulics. ► Start up of an equilibrium mixed UO2–MOX core under EPU does not present stability problems. -- Abstract: Although MOX fuel coming from reprocessed depleted uranium fuels has been used as a recycling strategy by countries like France and Japan it is not a common policy in the 30 countries that uses nuclear power, nowadays it seems to be a more direct alternative to reduce the depleted fuel interim storage. Previously, the spent fuel pools of Laguna Verde Nuclear Power plant were redesigned to host the total operating life depleted fuel under its original nominal power condition, however the plant has been up-rated to 120% of its original nominal power increasing the number of depleted fuel forecasted. This new situation makes necessary the analysis of alternatives, being one of them recycling. The current paper assesses the viability of using MOX fuel in the up-rated Power Plant; the design of the boiling water reactor MOX fuel addresses the two main constraints of its use: shutdown margin and reactor stability. Fuel design proposed sets the appropriate MOX enrichment and the maximum MOX fuel batch reload that does not imply any modification to the reactor control systems to avoid an extra economical cost due to its use.

  8. Study on flow-induced vibration of the fuel rod in HTTR

    International Nuclear Information System (INIS)

    This study was performed in order to investigate flow-induced vibration characteristics of a fuel rod in HTTR (High Temperature engineering Test Reactor) from both an experiment and a numerical simulation. Two kinds of fuel rods were used in this experiment: one was a graphite rod which simulated a specification of the HTTR's fuel rod and the other was an aluminum rod whose weight was a half of the graphite one. The experiment was carried out up to Re = 31000 using air at room temperature and pressure. Air flowed downstream in an annular passage which consisted of the fuel rod and the graphite channel. Numerical simulations by fluid and frequency equations were also carried out. Numerical and experimental results were then compared. The following conclusions were drived: (1) The fuel rod amplitudes increase with the flow rate and with a decrease of the fuel rod weight. (2) The fuel rod amplitudes are obtained by δ/De = 2.22 x 10-10Re1.43, 9000 ≤ Re ≤ 31000, where δ is a vibration amplitude, De is a hydraulic diameter and Reis Reynolds number. (3) The fuel rod frequencies shift from lower natural frequency to higher as the flow rate increases. (4) The flow-induced vibration behavior of the fuel rod can simulate well by simultaneous equations which used the turbulence model for fluid and the mass model for vibration of the fuel rod. (author)

  9. An assessment of entrainment correlations for the dryout prediction in BWR fuel bundles

    International Nuclear Information System (INIS)

    Thermal-hydraulic analysis in BWR fuel bundles usually includes calculations of detailed annular flow characteristics up to the point of dryout. State-of-the-art methods numerically resolve the governing balance equations for the relevant fields (i.e. droplet, liquid film and steam) for the system and geometry of interest (e.g. a BWR fuel bundle). However, constitutive relations are needed to close the system of equations and are fundamental to an accurate solution. One of the most important constitutive relations to consider is the droplet entrainment rate from the annular liquid film, which has an integrated effect upon the film flowrate axial distribution from the onset of annular flow (thick film) up to the dryout location (very thin film). However, currently available entrainment correlations are often developed for a relatively limit range of experimental conditions, which may not fully cover the range of applications. In this paper, we present a collection of publicly available droplet entrainment rate measurements (more than 1000 points) that have been stored into an electronic format and is used to assess the performance of several published entrainment correlations. Even though large scatter was observed for all 6 tested correlations, the model developed by Okawa et al. was shown to yield the best overall performance. (author)

  10. BWR simulation in a stationary state for the evaluation of fuel cell design

    International Nuclear Information System (INIS)

    In this paper the simulation of a BWR in order to evaluate the performance of a set of fuel assemblies under stationary state in three dimensions (3-D) is presented. 15 cases selected from a database containing a total of 18225 cases are evaluated. The main selection criteria were based on the results of the design phase of the power cells in two dimensions (2-D) and 3-D initial study. In 2-D studies the parameters that were used to qualify and select the designs were basically the local power peaking factor and neutron multiplication factor of each fuel cell. In the initial 3-D study variables that defined the quality of results, and from which the selection was realized, are the margins to thermal limits of reactor operation and the value of the effective multiplication factor at the end of cycle operation. From the 2-D and 3-D results of the studies described a second 3-D study was realized, where the optimizations of the fuel reload pattern was carried out. The results presented in this paper correspond to this second 3-D study. It was found that the designs of the fuel cell they had a similar behavior to those provided by the fuel supplier of reference BWR. Particularly it noted the impact of reload pattern on the cold shut down margin. An estimate of the operation costs of reference cycle analyzed with each one designed reload batch was also performed. As a result a positive difference (gain) up to 10,347 M/US D was found. (Author)

  11. VVER-1000 fresh fuel and CPS control rods entry control

    International Nuclear Information System (INIS)

    Procedures and documentation used for the entry control of fresh fuel and CPS control rods in the Kozloduy NPP are described. Entry control includes: tests of the control equipment; inspection of the containers with the fuel casks; the Nuclear fuel group instructions , supervised by the controlling physicist. There are two types of fresh fuel control - entry control and technical certification of the fuel after the storage term has inspired. The results from the tests show that mechanical damages of the casks in case of violation of the transportation conditions show as changes in the form and disposition of the casks and is easily found by external observation of the casks and inspection of the passability of the assembly. In some cases additional inspections are made. The entry control is completed by the issuance of a permission for operation

  12. Probabilistic fuel rod analyses using the TRANSURANUS code

    International Nuclear Information System (INIS)

    After more than 25 years of fuel rod modelling research, the basic concepts are well established and the limitations of the specific approaches are known. However, the widely used mechanistic approach leads in many cases to discrepancies between theoretical predictions and experimental evidence indicating that models are not exact and that some of the physical processes encountered are of stochastic nature. To better understand uncertainties and their consequences, the mechanistic approach must therefore be augmented by statistical analyses. In the present paper the basic probabilistic methods are briefly discussed. Two such probabilistic approaches are included in the fuel rod performance code TRANSURANUS: the Monte Carlo method and the Numerical Noise Analysis. These two techniques are compared and their capabilities are demonstrated. (author). 12 refs, 4 figs, 2 tabs

  13. Licensing of spent fuel dry storage and consolidated rod storage

    International Nuclear Information System (INIS)

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs

  14. Hollow fuel tablets for improvement of characteristics of rod fuel elements

    International Nuclear Information System (INIS)

    It is suggested to substitute compact fuel tablets for hollow ones. At that fuel temperature can be significantly reduced for equal thermal loadings. A lower fuel temperature when changing capacity results in decreasing thermal fuel expansion (reduction of mechanical stresses) as well as in decreasing the fission product release. Therefore, there is a possibility to improve the rod fuel element behaviour when changing linear power. Considerable reduction of fuel temperature in the hollow tablets with respect to the compact ones and a lesser energy content of a fuel element caused by its result in an additional advantage with respect to fuel behaviour during emergency leakage of coolant

  15. Spring spacer device for resiliently supporting nuclear fuel rods

    International Nuclear Information System (INIS)

    Lantern type spring spacers which are mounted in a latticed frame by cross-pieces are respectively composed of square configured cylindrical end portions supported in the cross-pieces and four leaf spring members respectively provided between corresponding sides of the square cylindrical end portions. Each of the leaf springs includes flat end portions and a central outwardly bent portion which is projected against a nuclear fuel rod to be supported in the latticed frame. (Official Gazette)

  16. Pressure equalization system in PWR-fuel rods

    International Nuclear Information System (INIS)

    The pressure equalization system, developed on the basis of activated charcoal, is capable of reducing the internal pressure rise in fuel rods by adsorption of the fission gases. He-prepressure does not affect the system and Helium will not be adsorbed. Irradiation does not reduce the adsorption capacity of activated charcoal down to an unacceptable limit. Shaped activated charcoal is a suitable material which can be well defined and characterized. Feasible techniques of activating and assembling methods can be proposed. (orig.)

  17. LOFT fuel rod transient DNB probability density function studies

    International Nuclear Information System (INIS)

    Significantly improved calculated DNB safety margins were defined by the development and use of probability density functions (PDF) for transient MDNBR nuclear fuel rods in the Loss of Fluid Test (LOFT) reactor. Calculations for limiting transients and response surface methods were used thereby including transient interactions and trip uncertainties in the MDNBR PDF. Applicability and sensitivity studies determined that the PDF and resulting nominal MDNBR limits are stable, applicable over a wide range of potential input parameters, and applicable to most transients

  18. Welding of zircaloy tubes for fuel rods fabrication

    International Nuclear Information System (INIS)

    The TIG process form welding zircaloy tube-end plug to fabricate UO2 pellet fuel rods is presented. The zircaloy tube is used as weld by welding zircaloy end-plugs inserted into ends. The technical aspects of this welding process, necessary equipment, and weld properties are discussed. The main problems involved with this type of weld and the nondestructive and destructive weld quality controls are emphasized. (Author)

  19. Development of nuclear fuel rod inspection technique using ultrasonic resonance phenomenon

    International Nuclear Information System (INIS)

    Acoustic resonance scattering from a nuclear fuel rod in water is analyzed. A new model for the background which is attributed to the interference of reflected wave and diffracted wave is found and here named the inherent background. The resonance spectrum of a fuel rod is obtained by subtracting the inherent background from the scattered pressure. And also analyzed are the effect of material damping of cladding tube and pellet on the resonance spectrum of a fuel rod. The propagation characteristics of circumferential waves which cause the resonances of cladding tube is produced and the appropriate resonance modes for the application to the inspection of assembled fuel rods are selected. The resonance modes are experimentally measured for pre- and post-irradiated fuel rods and the validation of the fuel rod inspection using ultrasonic resonance phenomenon is examined. And thin ultrasonic sensors accessible into the narrow interval (about 2-3mm) between assembled fuel rods are designed and manufactured. 14 refs. (Author)

  20. Process for charging a container with reactor fuel rods or absorber rods, and device for implementation of the process

    International Nuclear Information System (INIS)

    For the optimum utilisation of the vessel volume, a vessel is charged with fuel rods whose longitudinal axes are parallel to one another by first loading the vessel with imitation rods adapted in size to the real ones packed together closely in the same way as the real ones. The imitation rods are replaced by the real ones when the latter are inserted into the planned closely-packed arrangement in an axial direction. (orig./HP)

  1. Characterization of control rod worths and fuel rod power peaking factors in the university of Utah TRIGA Mark I reactor

    OpenAIRE

    Alroumi Fawaz; Kim Donghoon; Schow Ryan; Jevremovic Tatjana

    2016-01-01

    Control rod reactivity (worths) for the three control rods and fuel rod power peaking factors in the University of Utah research reactor (100 kW TRIGA Mark I) are characterized using the AGENT code system and the results described in this paper. These values are compared to the MCNP6 and existing experimental measurements. In addition, the eigenvalue, neutron spatial flux distributions and reaction rates are analyzed and discussed. The AGENT code system is ...

  2. Simulation of fuel rod irradiation capsules in water loops by electric heater rods

    International Nuclear Information System (INIS)

    The out of pile simulation of irradiation devices was carried out by J.E.N. in the frame of the KfK-JEN joint experiment for irradiation of fast reactor fuel rods (IVO-FR2-Vg7). A typical single-wall-Nak (22% Na, 78% K) electrical heated capsule was fabricated and hydraulical tests were done. The capsule was instrumented with 10 thermocouples in order to obtain the radial temperature profile into the capsule in function of the electrical rod power (max. 215 w/cm), flow rate (max. 2,4 m3/h) and coolant temperature (max. 60degC). The experimental values are compared to the Tecap-Code results. (author)

  3. Optimization of fuel reloads for a BWR using the ant colony system

    International Nuclear Information System (INIS)

    In this work some results obtained during the development of optimization systems are presented, which are employees for the fuel reload design in a BWR. The systems use the ant colony optimization technique. As first instance, a system is developed that was adapted at travel salesman problem applied for the 32 state capitals of Mexican Republic. The purpose of this implementation is that a similarity exists with the design of fuel reload, since the two problems are of combinatorial optimization with decision variables that have similarity between both. The system was coupled to simulator SIMULATE-3, obtaining good results when being applied to an operation cycle in equilibrium for reactors of nuclear power plant of Laguna Verde. (Author)

  4. Technique of manufacturing specimen of irradiated fuel rods

    International Nuclear Information System (INIS)

    Technique of manufacturing specimen of irradiated fuel rods to perform efficient PIE is developed by analyzing the relation between requiring time of manufacturing specimen and manufacturing method in irradiated fuel rods. It takes within an hour to grind 1 mm of specimen thickness under 150 rpm in speed of grinding, 600 g gravity in force using no.120, no.240, no.320 of grinding paper. In case of no.400 of grinding paper, it takes more an hour to grind the same thickness as above. It takes up to a quarter to grind 80-130 μm in specimen thickness using no.400 of grinding paper. When grinding time goes beyond 15 minutes, the grinding thickness of specimen does not exist. The polishing of specimen with 150 Rpms in speed of grinding machine, 600 g gravity in force, 10 minutes in polishing time using diamond paste 15 μm on polishing cloths amounts to 50 μm in specimen thickness. In case of diamond paste 9 μm on polishing cloth, the polishing of specimen amounts to 20 μm. The polishing thickness of specimen with 15 minutes in polishing time using 6 μm, 3 μm, 1 μm, 1/4 μm does not exist. Technique of manufacturing specimen of irradiated fuel rods will have application to the destructive examination of PIE. (author). 6 refs., 1 tab., 10 figs

  5. Profilometry of fuel rods with the laser scan micrometer

    International Nuclear Information System (INIS)

    In the hot laboratory of the Paul Scherrer Institute (PSI) fuel rod inspection for nuclear power plants is performed periodically. The older system, using linear variable displacement transducers, is outperformed regarding accuracy, speed and maintenance effort. It was decided to design a non contact laser scanner. The laser scanning of fuel rods is now fully integrated in the non destructive researches in the laboratory of material behaviour from PSI. To summarize: - The new laser scanner is working well on fuel rods. Shielding is very important to keep a constant signal from the reception unit and keep the laser scanner working for a long time; - The performance of the non contact laser profilometry is better than the old mechanical equipment, regarding accuracy, speed and maintenance; - Set up and calibration of the unit within one day, measuring ovality in midspan areas and diameter in positions 0/180; 45/225; 90/270; 135/315 degrees, step size 0.5 mm, over a length of about 4000 mm within 20 hr; - Accuracy < 1 micron is reached; - Costs about 30000 Euros. (authors)

  6. Preliminary design report for the prototypical fuel rod consolidation system

    International Nuclear Information System (INIS)

    This report documents NUTECH's preliminary design of a dry, spent fuel rod consolidation system. This preliminary design is the result of Phase I of a planned four phase project. The present report on this project provides a considerable amount of detail for a preliminary design effort. The design and all of its details are described in this Preliminary Design Report (PDR). The NUTECH dry rod consolidation system described herein is remotely operated. It provides for automatic operation, but with operator hold points between key steps in the process. The operator has the ability to switch to a manual operation mode at any point in the process. The system is directed by the operator using an executive computer which controls and coordinates the operation of the in-cell equipment. The operator monitors the process using an in-cell closed circuit television (CCTV) system with audio output and equipment status displays on the computer monitor. The in-cell mechanical equipment consists of the following: (1) two overhead cranes with manipulators; (2) a multi-degree of freedom fuel handling table and its clamping equipment; (3) a fuel assembly end fitting removal station and its tools; (4) a consolidator (which pulls rods, assembles the consolidated bundle and loads the canister); (5) a canister end cap welder and weld inspection system; (6) decontamination systems; and (7) the CCTV and microphone systems

  7. Parallel channel effects under BWR LOCA conditions

    International Nuclear Information System (INIS)

    Due to parallel channel effects, different flow patterns such as liquid down-flow and gas up-flow appear simultaneously in fuel bundles of a BWR core during postulated LOCAs. Applying the parallel channel effects to the fuel bundle, water drain tubes with a restricted bottom end have been developed in order to mitigate counter-current flow limiting and to increase the falling water flow rate at the upper tie plate. The upper tie plate with water drain tubes is an especially effective means of increasing the safety margin of a reactor with narrow gaps between fuel rods and high steam velocity at the upper tie plate. The characteristics of the water drain tubes have been experimentally investigated using a small-scaled steam-water system simulating a BWR core. Then, their effect on the fuel cladding temperature was evaluated using the LOCA analysis program SAFER. (orig.)

  8. Modal Testing and Model Updating of a Real Scale Nuclear Fuel Rod

    International Nuclear Information System (INIS)

    In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior

  9. Criteria for removal of defective fuel rod from fuel assembly under repair without cladding rupture

    International Nuclear Information System (INIS)

    During repair of a failed fuel assembly (FA) there is a risk of cladding rupture while a defective fuel rod is forced out of the assembly skeleton. To reduce the corresponding risks, a program of experimental and analytical studies for WWER fuel was performed. It resulted in formulation of criteria for successful removal of the defective fuel rod from the FA under repair. 'Successful' means that no cladding rupture occurs. The paper summarizes the available data of post-irradiation examinations of WWER FAs with leaking fuel rods. A technique for express estimation of hydrogen content in cladding of a defective fuel rod is presented. The degradation of cladding mechanical properties can be estimated with this technique as well. A criterion of severe secondary hydriding involved in the risk analysis is also discussed. Finally, it is shown how the information on operation conditions may be used for prompt evaluation of the limiting force for successful removal of a defective fuel rod during FA repair in the inspection stand. (author)

  10. CALCULATION OF STRESS AND DEFORMATION IN FUEL ROD CLADDING DURING PELLET-CLADDING INTERACTION

    Directory of Open Access Journals (Sweden)

    Dávid Halabuk

    2015-12-01

    Full Text Available The elementary parts of every fuel assembly, and thus of the reactor core, are fuel rods. The main function of cladding is hermetic separation of nuclear fuel from coolant. The fuel rod works in very specific and difficult conditions, so there are high requirements on its reliability and safety. During irradiation of fuel rods, a state may occur when fuel pellet and cladding interact. This state is followed by changes of stress and deformations in the fuel cladding. The article is focused on stress and deformation analysis of fuel cladding, where two fuels are compared: a fresh one and a spent one, which is in contact with cladding. The calculations are done for 4 different shapes of fuel pellets. It is possible to evaluate which shape of fuel pellet is the most appropriate in consideration of stress and deformation forming in fuel cladding, axial dilatation of fuel, and radial temperature distribution in the fuel rod, based on the obtained results.

  11. Assessment of Inner Channel Blockage on the Annular Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C. H.; In, W. K.; Oh, D. S.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    A dual-cooled annular fuel for a pressurized water reactor (PWR) has been introduced for a significant amount of reactor power uprate. The Korea Atomic Energy Research Institute (KAERI) has been performing a research to develop a dual-cooled annular fuel for the power uprate of 20% in an optimized PWR in Korea, OPR1000. An inner channel blockage is principal one of technical issues of the annular fuel rod. The inner channel in an annular fuel is isolated from the neighbor channels unlike the outer channels. The inner channel will be faced with a DNB accident by the partial blockage. In this paper, the largest fractional channel blockage was assessed by subchannel analysis code MATRA-AF and an end plug design to complement inlet blockage of inner channel was estimated by CFD code, CFD-ACE

  12. Fuel rod bundles proposed for advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    The paper aims to be a general presentation for fuel bundles to be used in Advanced Pressure Tube Nuclear Reactors (APTNR). The characteristics of such a nuclear reactor resemble those of known advanced pressure tube nuclear reactors like: Advanced CANDU Reactor (ACRTM-1000, pertaining to AECL) and Indian Advanced Heavy Water Reactor (AHWR). We have also developed a fuel bundle proposal which will be referred as ASEU-43 (Advanced Slightly Enriched Uranium with 43 rods). The ASEU-43 main design along with a few neutronic and thermalhydraulic characteristics are presented in the paper versus similar ones from INR Pitesti SEU-43 and CANDU-37 standard fuel bundles. General remarks regarding the advantages of each fuel bundle and their suitability to be burned in an APTNR reactor are also revealed. (authors)

  13. Spent fuel from the Finnish Triga research reactor in the surroundings of BWR spent fuel final disposal repository. Safety assessment and comparison to the risks of the BWR fuel

    International Nuclear Information System (INIS)

    The Finnish Triga reactor, a 250 kW research reactor, has been in operation since 1962. According to the current operating license of our reactor we have to achieve a binding agreement between our Research Centre and the domestic Nuclear Power Companies about the possibility to use the Olkiluoto final disposal facility for our spent fuel. Naturally there is also the possibility to make an agreement with USDOE about the return of our spent fuel back to USA. In case of the domestic final disposal solution the main safety aspects, which have to be analyzed and compared to the spent fuel coming from the nuclear power plants, are the criticality safety, the solubility of the fuel (UZrHx) to water and the existence of some moving and long-lived radioactive isotopes. The criticality safety calculations show that it is possible to load safely all the TRIGA fuel elements in one heavy final disposal canister. A simple safety analysis for the Triga fuel has been carried out in order to evaluate the long term risks of the final disposal. For the analysis a few scenarios from the TILA-99 safety assessment have been chosen. These scenarios will give a good picture of the potential risk of disposed Triga fuel compared to BWR fuel. TILA-99 safety assessment includes about 100 calculated different scenarios for the spent fuel so it's not reasonable to calculate them all for the Triga fuel. The main result is that the risks from the final disposal of Triga fuel are minor compared to BWR mainly due to smaller activity inventories. (author)

  14. Double-D water rod for 9 by 9 fuel bundle

    International Nuclear Information System (INIS)

    This patent describes an improved fuel assembly including a lower tie-plate, an upper tie-plate, a square sectioned channel connecting the lower and upper tie-plate in fluid tight relation whereby fluid entering the lower tie-plate is discharged out the upper tie-plate, fuel rods each containing fissionable material therewithin. The fuel rods being held at the upper and lower tie-plates in a 9 by 9 array of rows and columns with all fuel rods having the same diameter; a plurality of spacers placed between the fuel rods for maintaining the fuel rods in spaced apart relation between the upper and lower tie-plates. The fuel rods in the 9 by 9 array having three the fuel rods removed from the middle row and two the fuel rods removed from each row on either side of the middle row to create a vacated interstitial volume defined by the absence of the removed fuel rods. The removal of the fuel rods at each row on either side displaced towards adjacent corners of the 9 by 9 array

  15. Preliminary study on characteristics of equilibrium thorium fuel cycle of BWR

    International Nuclear Information System (INIS)

    One of the main objectives behind the transuranium recycling ideas is not merely to utilize natural resource that is uranium much more efficiently, but to reduce the environmental impact of the radio-toxicity of the nuclear spent fuel. Beside uranium resource, there is thorium which has three times abundance compared to that of uranium which can be utilized as nuclear fuel. On top of that thorium is believed to have less radio-toxicity of spent fuel since its produce smaller amount of higher actinides compared to that of uranium. However, the studies on the thorium utilization in nuclear reactor in particular in light water reactors (LWR) are not performed intensively yet. Therefore, the aim of the present study is to evaluate the characteristics of thorium fuel cycle in LWR, especially boiling water reactor (BWR). To conduct the comprehensive investigations we have employed the equilibrium burnup model (1-3). The equilibrium burnup model is an alternative powerful method since its can handle all possible generated nuclides in any nuclear system. Moreover, this method is a simple time independent method. Hence the equilibrium burnup method could be very useful for evaluating and forecasting the characteristics of any nuclear fuel cycle, even the strange one, e.g. all nuclides are confined in the reactor1). We have employed 1368 nuclides in the equilibrium burnup calculation where 129 of them are heavy metals (HMs). This burnup code then is coupled with SRAC cell calculation code by using PIJ module to compose an equilibrium-cell burnup code. For cell calculation, 26 HMs, 66 fission products (FPs) and one pseudo FP have been utilized. The JENDL 3.2 library has been used in this study. References: 1. A. Waris and H. Sekimoto, 'Characteristics of several equilibrium fuel cycles of PWR', J. Nucl. Sci. Technol., 38, p.517-526, 2001 2. A. Waris, H. Sekimoto, and G. Kastchiev, Influence of Moderator-to-Fuel Volume Ratio on Pu and MA Recycling in Equilibrium Fuel Cycles of

  16. The ‘Fuel Rod Analysis ToolBox’: A general program for preparing the input of a fuel rod performance code

    International Nuclear Information System (INIS)

    Highlights: • An input-file preparation tool for fuel rod performance codes is developed • The new tool can be used for benchmarks of fuel rod performance codes • The new tool can condense irradiation histories, synchronise and merge signals • The new toolbox for fuel rod analysis has a graphical user interface • The new toolbox for fuel rod analysis is available for free - Abstract: This paper gives an overview of the new ‘Fuel Rod Analysis Toolbox’, which is a program for the pre-processing of input data for fuel rod performance codes with a graphical user interface. It consists of three different modules that can handle several tasks such as data condensation, merging and synchronization. The ‘Fuel Rod Analysis Toolbox’ helps: • to reduce the amount of input data, • to simplify the setup of input files for complex data sets with input from experimental data as well as input resulting from neutronics or thermo-hydraulics codes, and • to reduce computation time. These advantages are already evident for complex fuel rod analyses employing a conventional one-and-a-half-dimensional code but they become even more important for two- or three-dimensional approaches

  17. The analysis of failed nuclear fuel rods by gamma computed tomography

    Science.gov (United States)

    Dobrin, Relu; Craciunescu, Teddy; Tuturici, Ioan Liviu

    1997-07-01

    The failure of the cladding of an irradiated nuclear fuel rod can lead to the loss of some γ-radioactive fission products. Consequently the distribution of these fission products is altered in the cross-section of the fuel rod. The modification of the distribution, obtained by gamma computed tomography, is used to determine the integrity of the fuel cladding. The paper reports an experimental result, obtained for a CANDU-type fuel rod, irradiated in a TRIGA 14 MWth reactor.

  18. The analysis of failed nuclear fuel rods by gamma computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dobrin, R. [Inst. for Nucl. Res., Pitesti (Romania). INR-LEPI; Craciunescu, T. [Nat. Inst. of Nucl. Phys. and Eng., Bucharest (Romania). IFIN/HH Lab.; Tuturici, I.L. [Inst. for Nucl. Res., Pitesti (Romania). INR-LEPI

    1997-07-01

    The failure of the cladding of an irradiated nuclear fuel rod can lead to the loss of some {gamma}-radioactive fission products. Consequently the distribution of these fission products is altered in the cross-section of the fuel rod. The modification of the distribution, obtained by gamma computed tomography, is used to determine the integrity of the fuel cladding. The paper reports an experimental result, obtained for a CANDU-type fuel rod, irradiated in a TRIGA 14 MWth reactor. (orig.).

  19. Experimental investigation of the enthalpy- and mass flow-distribution in 16-rod clusters with BWR-PWR-geometries and conditions

    International Nuclear Information System (INIS)

    The enthalpy- and mass-flow-distribution at the outlet of two different 16-rod cluster test sections with uniform heating in axial and radial direction under steady state conditions has been measured for the first time by simultaneous sampling of 5 from 6 present characteristic subchannels in the bundle using the isokinetic technique and analysing the outlet quantities by a calorimetic method. The test-sections are provided with typical geometrical configurations for BWR s (70 bars; test section PELCO-S) and PWR s (160 bars; test-section EUROP). The latter has also been tested under BWR conditions (70 bars) to study the influence of geometry and pressure. The results showed the abnormal behaviour of the corner subchannel under BWR typical conditions (70 bars) which could not be found for PWR conditions (160 bars) and which is only an effect of pressure and not of geometry. The analysis of the experimental data confirms the usefullness of the subchannel sampling technique for the better understanding of the complex thermohydraulic phenomena under two-phase flow conditions in multirod bundles. Calculations of subchannel resistance coefficients for both types of spacers under one-phase flow conditions have been made with a special sub-structure method which showed a rather high local value of the corner subchannel. With the local drag coefficents the total resistance of the spacer has been evaluated and agreed well with measured values under adiabatic conditions. The measured subchannel data permit a direct valuation and examination of respective computer codes in a fundamental manner which are, however, not subject of this report

  20. A comparison of thermal algorithms of fuel rod performance code systems

    International Nuclear Information System (INIS)

    The goal of the fuel rod performance is to identify the robustness of a fuel rod with cladding material. Computer simulation of the fuel rod performance becomes one of important parts to designed and evaluate new nuclear fuels and claddings. To construct a computing code system for the fuel rod performance, several algorithms of the existing fuel rod performance code systems are compared and are summarized as a preliminary work. Among several code systems, FRAPCON, and FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. Thermal algorithms of the above codes are investigated including methodologies and subroutines. This work will be utilized to construct a computing code system for dry process fuel rod performance

  1. Modelling of pellet-cladding interaction for PWRs reactors fuel rods

    International Nuclear Information System (INIS)

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyzes the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. Linear and non-linear material behaviors are allowed. Elastic, plastic and creep behaviors are considered for the cladding materials. The modelling is applied to Angra-II fuel rod design. The results are analyzed and compared. (author)

  2. Joining techniques for core flow test loop fuel rod simulators

    International Nuclear Information System (INIS)

    Laser welding and furnace brazing techniques have been developed to join subassemblies for fuel rod simulators (FRSs) that have survived up to 1000-h steady-state operation at 700 to 11000C cladding temperatures and over 5000 thermal transients, ranging from 10 to 500C/s. A pulsed-laser welding procedure uses small diameter filler wire to join one end of a resistance heating element to a tubular conductor. The other end of the heating element is laser welded to an end plug, which in turn is welded to a central conductor. Before these welding operations, the intermediate material conductors (either tubular or rod) are vacuum brazed to matching copper leads. On room temperature tensile testing, 10 of 11 brazements between copper and nickel rods failed in the copper rather than the brazement. The thin walls and ductility of the copper and nickel tubular conductors caused joint machining and fitup problems. Accordingly, it has not been possible to consistently produce tensile test samples of brazed dissimilar metal tubular conductors that will fail outside the joint area. A unique tubular electrode carrier has also been developed for gas tungsten arc welding FRSs to the tubesheet of a test assembly. Two seven-rod mockups of the simulator-to-tubesheet joint area were welded and successfully cycled 500 times from 3700C (6980F) down to 1000C (2120F) with an internal pressure of 11.72 MPa (1700 psi). No leakage was detected by helium mass spectrometry, either before or after testing. Modified versions of the electrode carrier were developed for brazing electrical leads to the upper ends of the FRSs. Satisfactory brazes have been made on both single-rod mockups and arrays of simulators

  3. A basic design of a double cladding fuel rod to control the irradiation temperature on nuclear fuels

    International Nuclear Information System (INIS)

    An instrumented capsule for a nuclear fuel irradiation test (hereinafter referred to as 'instrumented fuel capsule') has been developed to measure fuel characteristics, such as a fuel center and surface temperature, the internal pressure of a fuel rod, a fuel pellet elongation and neutron flux, during an irradiation test at HANARO. And six types of dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been developed to enhance the efficiency of an irradiation test using an instrumented fuel capsule at HANARO. In the future, nuclear fuel irradiation tests under a high temperature condition are expected from users. To prepare for this request, we have continued developing the technologies for high temperature nuclear fuel irradiation tests at HANARO. The purpose of this paper is to control the temperature of nuclear fuels during an irradiation test at HANARO. Therefore we basically designed a double cladding fuel rod and an instrumented fuel capsule basically. The basic design of a double cladding rod was based on out-pile tests using mockups and the thermal analyses using some relevant codes. This paper presents the design and fabrication of the double cladding fuel rod mockups, the results of the out-pile tests, the results of the temperature calculation and the basic design of a double cladding fuel rod and an instrumented fuel capsule. (author)

  4. Effects of cladding and pellet variables on PWR fuel rod performance

    International Nuclear Information System (INIS)

    Two standard 15 x 15 PWR fuel assemblies containing test fuel rods were irradiated to an average burnup of 24,500 MWD/MTU through two cycles of operation. The assemblies had a total of 56 experimental fuel rods representing four different cladding types and two different fuel pellet types in rods located in peripheral positions. Sixteen of these test rods, representing all eight cladding/pellet combinations, were extracted from one of these assemblies for extensive nondestructive examination in the B and W LRC Hot Cells. The results obtained thus far indicate significant differences in cladding deformation and fuel pellet densification

  5. Method for verifying the pressure in a nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Disclosed is a method of accurately verifying the pressure contained in a sealed pressurized fuel rod by utilizing a pressure balance measurement technique wherein an end of the fuel rod extends through and is sealed in a wall of a small chamber. The chamber is pressurized to the nominal (desired) fuel rod pressure and the fuel rod is then pierced to interconnect the chamber and fuel rod. The deviation of chamber pressure is noted. The final combined pressure of the fuel rod and drill chamber is substantially equal to the nominal rod pressure; departure of the combined pressure from nominal is in direct proportion to departure of rod pressure from nominal. The maximum error in computing the rod pressure from the deviation of the combined pressure from nominal is estimated at plus or minus 3.0 psig for rod pressures within the specified production limits. If the rod pressure is corrected for rod void volume using a digital printer data record, the accuracy improves to about plus or minus 2.0 psig

  6. Behaviour of a defective MOX fuel rod in a PWR

    International Nuclear Information System (INIS)

    At then end of the DAMPIERRE 1 power plant 11th cycle in 1993, routine sipping techniques identified a leak on a mixed oxide (MOX) fuel assembly. Application of failed fuel management policy led to the reloading of this assembly for the 12th cycle. It was its second irradiation campaign. This situation allowed EDF and CEA to set up a special monitoring programme during the cycle in order to obtain numerous information about the behaviour of defective MOX fuel at steady state power levels and during transients. These data have been obtained due to: a very good knowledge of its power history; the daily routine measurements of the primary circuit activity, conducted by the plant operator; a specific on-line gamma spectrometry facility installed by CEA to monitor the primary water during this cycle; various on-site post-irradiation examinations carried out at the end of the 12th cycle: visual inspection, qualitative and quantitative sipping tests, defective fuel rods detection and localization. Analyses of this behaviour were mainly in relation with two scopes: determination of the gaseous and airborne fission product release rates out of a defective MOX stack, in relation with theoretical prediction (PROFIP code) and with results obtained on experimental similar rods in a research reactor (EDITHMOX 01 experiment); application of on-line discrimination methods developed by EDF and CEA in order to know the type (uranium oxide UO2 or mixed oxide) of fission product source. Based on measurement of gaseous isotopes, these methods allow plant operator to detect very early a possible evolution of the defect and to foresee on-site examinations during shutdown period. The main results of this programme were: release rates of gaseous fission product were similar to those observed with defective UO2 fuel; no worsening of the defect size or of activity release occurred over one year of irradiation; discrimination methods have been in good agreement with the type of fuel. (author

  7. Criticality calculations for a spent fuel storage pool for a BWR type reactor

    International Nuclear Information System (INIS)

    In this work, the methodology for the calculation of the constant of effective multiplication for the arrangement of spent fuel assemblies in the pool of a BWR type reactor is shown. Calculations were done for the pool of spent fuel specified in FSAR and for the assemblies that is thought a conservative composition of high enrichment and without Gadolinium, giving credit to the stainless steel boxes of the frames that keep the assemblies. To carry out this simulation, RECORD and MIXQUIC codes were used. With record code, macroscopic cross sections, two energy groups, for the characteristics of the thought assemblies were obtained. Cross sections, as well as the dimensions of the frames that keep the fuel assemblies were used as input data for MIXQUIC code. With this code, criticality calculations in two dimensions were done, supposing that there is not leak of neutrons along the axial of the main line. Additional calculations, supposing changes in the temperature, distance among fuel assemblies and the thickness of the stainless steel box of the frame were done. The obtained results, including the effect in tolerances due to temperature, weight and thickness, show that the arrangement in the pool, when frames are fully charged, is subcritical by less than 5% in δK. (Author)

  8. Optimization of fuel reloads for a BWR using the ant colony system; Optimizacion de recargas de combustible para un BWR usando el sistema de colonia de hormigas

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel E, J. [Universidad Autonoma del Estado de Mexico, Facultad de Ingenieria, Cerro de Coatepec s/n, Ciudad Universitaria, 50110 Toluca, Estado de Mexico (Mexico); Ortiz S, J. J. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: jaime.es.jaime@gmail.com

    2009-10-15

    In this work some results obtained during the development of optimization systems are presented, which are employees for the fuel reload design in a BWR. The systems use the ant colony optimization technique. As first instance, a system is developed that was adapted at travel salesman problem applied for the 32 state capitals of Mexican Republic. The purpose of this implementation is that a similarity exists with the design of fuel reload, since the two problems are of combinatorial optimization with decision variables that have similarity between both. The system was coupled to simulator SIMULATE-3, obtaining good results when being applied to an operation cycle in equilibrium for reactors of nuclear power plant of Laguna Verde. (Author)

  9. BWR blowdown/emergency core cooling program: 64-rod bundle blowdown heat transfer (8 x 8 BDHT). Final report

    International Nuclear Information System (INIS)

    System performance and thermal response characteristics of BWR's, during the blowdown phase of the postulated loss-of-coolant accident (LOCA) conditions, were investigated in a test apparatus with different scaled configurations. Effects of the configuration changes on the system responses were identified. Test data obtained serve as baseline data for the BD/ECC interaction experiments and information to tie back to the previous 7 x 7 BDHT tests. Comparisons of the predictions with the tests were made

  10. Performance evaluation of the Loviisa advanced type fuel rods

    International Nuclear Information System (INIS)

    The fuel vendor TVEL has supplied to Loviisa WWER-440 power plant six lead assemblies of an advanced type which have profiling of the fuel enrichment, demountability of the assembly and a reduced shroud wall thickness. The pool side examination programme of these assemblies is underway including visual inspections, diameter and length measurements between operation cycles, and end-of-life fission gas release measurements, determined from 85Kr activity in the plenum. Complementary evaluations and testing of models are done with the ENIGMA fuel performance code. The diameters of the corner rods have decreased to 30 μm during the first cycle and 40 to 70 μm after two cycles (with rod burnups of 24-30 MWd/kgU). The extent of creep-down is generally as expected, and agrees with the creep model adjusted for Russian Zr1%Nb cladding type and the Loviisa coolant and neutron flux conditions. The gap closure and reversed hoop strain are to be awaited during the third cycle so the new data will be an interesting validation exercise for the model and ENIGMA. Calculated temperatures stay low, and therefore low fission gas release fractions are anticipated as well

  11. Visualization test facility of nuclear fuel rod emergency cooling system

    International Nuclear Information System (INIS)

    The nuclear reactors safety is determined according to their protection against the consequences that may result from postulated accidents. The Loss of Coolant Accident (LOCA) is one the most important design basis accidents (DBA). The failure may be due to rupture of the primary loop piping. Another accident postulated is due to lack of power in the pump motors in the primary circuit. In both cases the reactor shut down automatically due to the decrease of reactivity to maintain the fissions, and to the drop of control rods. In the event of an accident it is necessary to maintain the coolant flow to remove the fuel elements residual heat, which remains after shut down. This heat is a significant amount of the maximum thermal power generated in normal operation (about 7%). Recently this event has been quite prominent in the press due to the reactor accident in Fukushima nuclear power station. This paper presents the experimental facility under rebuilding at the Thermal Hydraulic Laboratory of the Nuclear Technology Development Center (CDTN) that has the objective of monitoring and visualization of the process of emergency cooling of a nuclear fuel rod simulator, heated by Joule effect. The system will help the comprehension of the heat transfer process during reflooding after a loss of coolant accident in the fuel of light water reactor core. (author)

  12. Fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly of a BWR type reactor comprises a rectangular parallelopiped channel box and fuel bundles contained in the channel box. The fuel bundle comprises an upper tie plate, a lower tie plate, a plurality of spacers a plurality of fuel rods and a water rod. In each fuel rod, the amount of fission products is reduced at upper and lower end regions of an effective fuel portion than that in other regions of the effective fuel region. In a portion of the fuel rods, fuel pellets containing burnable poisons are disposed at the upper and lower end regions. In addition, the upper and lower portions are constituted with natural uranium. Each of the upper and lower end regions is not greater than 15% of the effective fuel length. Since this can enhance reactivity control effect without worsening fuel economy, the control amount for excess reactivity upon long-term cycle operation can be increased. (I.N.)

  13. Determination of the age of research-reactor fuel rods

    International Nuclear Information System (INIS)

    It is demonstrated that a previously developed method for non-destructive, gamma-spectrometric age determination of uranium can be successfully used to determine the age of research-reactor fuel rods. It relies on measuring the daughter/parent activity ratio 214Bi/234U by low-background, high-resolution gamma-spectrometry using intrinsic efficiency calibration. The method does not require the use of any reference materials nor the use of an efficiency-calibrated geometry, and in many cases it could be applied by safeguards inspectors even on the site of the inspection. (author)

  14. In-Core Measurements of Fuel Rods Depletion

    International Nuclear Information System (INIS)

    Knowledge of fissile material content in fuel rods is crucial for the prediction of physical parameters of a reactor. For this reason, detailed burn-up calculations are performed routinely during the reactor operation. However, when major uncertainties regarding the fissile material content arise, one needs to determine them experimentally. This paper briefly describes the principles of a novel experimental method, based on in-pile neutron flux measurements performed in sub-critical configurations, driven by a fixed source. The feasibility of the method is demonstrated via a numerical simulation of an experiment. planned to be performed in IRR-1 research reactor core

  15. Full-length fuel rod behavior under severe accident conditions

    International Nuclear Information System (INIS)

    This document presents an assessment of the severe accident phenomena observed from four Full-Length High-Temperature (FLHT) tests that were performed by the Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. These tests were conducted for the US Nuclear Regulatory Commission (NRC) as part of the Severe Accident Research Program. The objectives of the test were to simulate conditions and provide information on the behavior of full-length fuel rods during hypothetical, small-break, loss-of-coolant severe accidents, in commercial light water reactors

  16. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  17. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  18. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, Jesus S. [Univ. Politecnica de Madrid (Spain); Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William BJ J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  19. FDD-1 System On-line Monitoring Fuel Rod Failure of Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    CHENPeng; ZHANGYing-chao; JISong-tao; GAOYong-guang; YINZhen-guo; HANChuan-bin

    2003-01-01

    The FDD-1 system developed by CIAE for on-line monitoring fuel rod failure of nuclear power plant consists of γ-ray detector, γ-ray spectrum analyzer, computer, and an analysis code for evaluating the status of fuel rod failure. It would be determined that the fuel rod failure occurs when a large amount of γ activity increases in the primary system measured by γ-ray detector near the CVCS.

  20. Results of simulated abnormal heating events for full-length nuclear fuel rods

    International Nuclear Information System (INIS)

    Full-length nuclear fuel rods were tested in a furnace to simulate the slow heating rates postulated for commercial pressurized water reactor fuel rods exposed to an overheating event in a storage cask. Fuel rod temperatures and internal gas pressures were monitored during the test and are presented along with mensural data for cladding. Metallography of the cladding provided data on grain growth, hydriding, oxidation, cladding stresses, and the general nature of the failures

  1. Non-destructive Testing Dummy Nuclear Fuel Rods by Neutron Radiography

    Institute of Scientific and Technical Information of China (English)

    WEI; Guo-hai; HAN; Song-bai; HE; Lin-feng; WANG; Yu; WANG; Hong-li; LIU; Yun-tao; CHEN; Dong-feng

    2013-01-01

    As a unique non-destructive testing technique,neutron radiography can be used to measure nuclear fuel rods with radioactivity.The images of the dummy nuclear fuel rods were obtained at the CARR.Through imaging analysis methods,the structure defections,the hydrogen accumulation in the cladding and the 235U enrichment of the pellet were studied and analyzed.Experiences for non-destructive testing real PWR nuclear fuel rods by NR

  2. The results of postirradiation examinations of VVER-1000 and VVER-440 fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovin, K.P.; Ivanov, E.G.; Strijov, P.N.; Yakovlev, V.V. (Kurchatov Inst. of Atomic Energy, Moscow (USSR))

    1991-02-01

    The paper presents the results of postirradiation examination of fuel rods having different fuel-cladding gaps, pellet densities, pellet inner diameters and so on. The fuel rods were irradiated in the material science reactor (MR) of the Kurchatov Institute of Atomic Energy and at 4 unit of the Novo-Voronezh nuclear powerplant. Some data on fission gas release and rod geometry and compared with computer code predictions. (orig.).

  3. The results of postirradiation examinations of VVER-1000 and VVER-440 fuel rods

    International Nuclear Information System (INIS)

    The paper presents the results of postirradiation examination of fuel rods having different fuel-cladding gaps, pellet densities, pellet inner diameters and so on. The fuel rods were irradiated in the material science reactor (MR) of the Kurchatov Institute of Atomic Energy and at 4 unit of the Novo-Voronezh nuclear powerplant. Some data on fission gas release and rod geometry and compared with computer code predictions. (orig.)

  4. The results of postirradiation examinations of VVER-1000 and VVER-440 fuel rods

    Science.gov (United States)

    Dubrovin, K. P.; Ivanov, E. G.; Strijov, P. N.; Yakovlev, V. V.

    1991-02-01

    The paper presents the results of postirradiation examination of the fuel rods having different fuel-cladding gaps, pellet densities, pellet inner diameters and so on. The fuel rods were irradiated in the material science reactor (MR) of the Kurchatov Institute of Atomic Energy and at 4 unit of the Novo-Voronezh nuclear powerplant. Some data on fission gas release and rod geometry and compared with computer code predictions.

  5. Advanced BWR core component designs and the implications for SFD analysis

    International Nuclear Information System (INIS)

    Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B4C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities

  6. Development of Tools for Treating an Irradiated Fuel Rod Assembly in the Pool of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. T.; Ahn, S. H.; Kim, K. H.; Joung, C. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    To inspect a fuel rod during irradiation testing at the test loop of a research reactor, the test rig should be disassembled from the IPS (In-pile test section), and the targeted fuel rod assembly should be disassembled from the test rig and encapsulated in a cask to deliver the assembly to the hot cell. In addition, the fuel rod assembly under inspection in the hot cell should be delivered to the reactor pool and reassembled into the test rig to resume the irradiation test. Because the irradiated fuel rod is highly radioactive, all of the assembly and disassembly operations should be carried out in the reactor pool. Therefore, special tools need to be developed to treat the test rig in the pool of a research reactor. In this study, a new mechanically detachable fuel rod assembly has been developed for intermediate inspection during irradiation test at HANARO. A fuel rod assembly can be divided into two parts, such as an instrumented fuel rod assembly and a non-instrumented fuel rod assembly. In particular, an instrumented fuel rod assembly is assembled at the lower part of the test rig, and a non-instrumented fuel rod assembly is assembled at the bottom of the instrumented fuel rod assembly. The non-instrumented fuel rod assembly is locked in the test rig during irradiation test, and is easily disassembled from the instrumented fuel rod assembly by pushing the anchor button and twisting the non-instrumented fuel rod assembly. In addition, because a test rig is 5.4 meters long and the disassembling operation should be carried out at 6 meters deep in the pool of HANARO, tools to help disassemble and assemble the non-instrumented fuel rod assembly have also been developed. All components were designed to operate mechanically and are made of stainless steel and Al 6061 to minimize the effects from the radioactivity. The performance of the developed fuel rod assembly and tools have been verified through an out pile test.

  7. Flow induced vibration forces on a fuel rod by LES CFD analysis

    International Nuclear Information System (INIS)

    The purpose of the present study is to evaluate the feasibility of use of CFD Large Eddy Simulation (LES) modeling techniques in CD-adapco CFD code STAR-CCM+ to calculate the instantaneous stress tensor on the fuel rod wall and then utilize these data for mechanical calculations. Transient hydraulic forces on the fuel rod resulting from the CFD model are linked to the Westinghouse VITRAN code to predict fuel rod vibration response. The coupled CFD/mechanical solution has provided a reasonable prediction of fuel rod vibration and a more accurate representation of all the important physics and excitation forces. (author)

  8. Progress of U-Mo dispersion rod fuel qualification program in Korea

    International Nuclear Information System (INIS)

    In the irradiation test performed in HANARO since June in 2001 relating to a qualification program of atomized U-Mo dispersion rod fuel for HANARO, a failure happened from the cleavage of cladding under the influence of the fuel meat swelling. An examination on the cross sections showed that the Al matrix of fuel meat at high power region had almost interacted with fuel particles. The depletion of the Al matrix deteriorated the thermal conductivity of fuel meat and resulted in the very high temperature around the center region of fuel meat. Swelling calculations using the Al matrix fractions of fuel meats showed a relatively good agreement with the measured swellings by immersion densities. The swelling in the failure region of about 15% does not seem to be enough to affect the rupture of the pure aluminum cladding. A failure reason could be attributed to the fabrication defects of the cladding. The next irradiation test for U-Mo dispersion rod fuels was planned and the fuel fabrication is under way. The loading density was changed from 6.0 g-U/cc to 4.5 g-U/cc and the smaller fuel meat diameter of 5.49 mm was chosen in the viewpoint of the centerline temperature of fuel meat to be lower than 2000C. The next irradiation will include the various tests for the following rods; 1) a fuel rod containing U-Mo hollow cylinder, 2) two different particle size fuel rods to investigate the particle size effect, 3) a fuel rod coated with Ni to prevent corrosion, 3) a fuel rod added with poison material of Er2O3 relating to fuel life extension, 4) a fuel rod dispersed with U-9wt.Mo particles, 5) A U3Si dispersion fuel rod for a reference. It is scheduled that the loading in HANARO will be done around the end of November. (author)

  9. Re-fabrication and re-instrumentation of irradiated LWR fuel rods for irradiation testing at the HFR Petten

    International Nuclear Information System (INIS)

    LWR fuel testing at the High Flux Reactor (HFR) and the Hot Cells at Petten has been successfully performed with pre-irradiated fuel rod segments. The testing methods have been extended with hot cell techniques for re-fabrication of test fuel rods from full length fuel rods from power reactors; re-instrumentation of pre-irradiated fuel rod segments with pressure sensors; and instrumentation of re-fabricated fuel rods or fuel rod segments with central thermocouple and/or pressure sensors. 5 refs, 9 figs, 5 tabs

  10. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  11. Development for analysis system of rods enrichment of nuclear fuels

    International Nuclear Information System (INIS)

    Nuclear industry is strongly regulated all over the world and quality assurance is important in every nuclear installation or process related with it. Nuclear fuel manufacture is not the exception. ININ was committed to manufacture four nuclear fuel bundles for the CFE nucleo electric station at Laguna Verde, Veracruz, under General Electric specifications and fulfilling all the requirements of this industry. One of the quality control requisites in nuclear fuel manufacture deals with the enrichment of the pellets inside the fuel bundle rods. To achieve the quality demanded in this aspect, the system described in this work was developed. With this system, developed at ININ it is possible to detect enrichment spikes since 0.4 % in a column of pellets with a 95 % confidence interval and to identify enrichment differences greater than 0.2 % e between homogeneous segments, also with a 95 % confidence interval. ININ delivered the four nuclear fuel bundles to CFE and these were introduced in the core of the nuclear reactor of Unit 1 in the fifth cycle. Nowadays they are producing energy and have shown a correct mechanical performance and neutronic behavior. (Author)

  12. Fuel behavior modeling using the MARS computer code

    International Nuclear Information System (INIS)

    The fuel behaviour modeling code MARS against experimental data, was evaluated. Two cases were selected: an early comercial PWR rod (Maine Yankee rod) and an experimental rod from the Canadian BWR program (Canadian rod). The MARS predictions are compared with experimental data and predictions made by other fuel modeling codes. Improvements are suggested for some fuel behaviour models. Mars results are satisfactory based on the data available. (Author)

  13. The Defect Inspection of Irradiated Fuel Rods using Differential Encircling Coil Probe

    International Nuclear Information System (INIS)

    The defective fuels of nuclear reactors, which affect the safety of nuclear reactor operation, are inspected using ECT(Eddy Current Test). ECT, which inspects the defects in fuel rods through eddy current due to electromagnetic induction law, is an effective method acquiring defect shape, defect size in fuel rods and defect location. In this study, the eddy current test on the fuel rods, which are irradiated in Youngkwang 4 reactor, is performed, and the defect signals of fuel rods are acquired and the integrity of the fuel rods is evaluated, and the reliability of the eddy current test is confirmed by comparing the results of ECT with those of visual inspection. These PIE(Post Irradiation Examination) data are available for reactor operation and the design of nuclear fuels

  14. Development of a fuzzy logic method to build objective functions in optimization problems: application to BWR fuel lattice design

    International Nuclear Information System (INIS)

    In this paper we develop a methodology based on the use of the Fuzzy Logic technique to build multi-objective functions to be used in optimization processes applied to in-core nuclear fuel management. As an example, we selected the problem of determining optimal radial fuel enrichment and gadolinia distributions in a typical 'Boiling Water Reactor (BWR)' fuel lattice. The methodology is based on the use of the mathematical capability of Fuzzy Logic to model nonlinear functions of arbitrary complexity. The utility of Fuzzy Logic is to map an input space into an output space, and the primary mechanism for doing this is a list of if-then statements called rules. The rules refer to variables and adjectives that describe those variables and, the Fuzzy Logic technique interprets the values in the input vectors and, based on the set of rules assigns values to the output vector. The methodology was developed for the radial optimization of a BWR lattice where the optimization algorithm employed is Tabu Search. The global objective is to find the optimal distribution of enrichments and burnable poison concentrations in a 10*10 BWR lattice. In order to do that, a fuzzy control inference system was developed using the Fuzzy Logic Toolbox of Matlab and it has been linked to the Tabu Search optimization process. Results show that Tabu Search combined with Fuzzy Logic performs very well, obtaining lattices with optimal fuel utilization. (authors)

  15. Disposition of oxygen and hydrogen arising from water ingress in a failed Sn-alloyed zirconium liner fuel rod

    International Nuclear Information System (INIS)

    An ABB Atom fuel rod with Sn-alloyed liner cladding in the Barsebaeck 2 BWR failed due to debris fretting, and subsequently operated for another 5 months until the scheduled refuelling outage. The rod was sent to the Studsvik hot cells for extensive post-irradiation examinations. The primary debris fretting failure was located 2870 mm from the bottom of the rod. Visual inspection revealed a few bulges and small cracks in the lower part of the rod, which neutron radiography showed to be due to hydride blisters. Axial gamma scanning indicated that there had been a flow of steam through the rod from the lowest small secondary crack to the primary penetration, resulting in a release of Cs from this part of the fuel stack. Scanning electron microscopy (SEM) of the cladding was performed at nine different axial positions along the rod, including locations below the lowest secondary, above the primary failure, and between and close to these two penetrations; the oxide thickness on the inner and outer surface of the cladding was determined at all nine elevations. The local hydrogen distribution through the cladding and liner were determined by backscattered image analysis in six of the samples. SEM and electron probe micro-analysis (EPMA) measurements of the fuel were performed on the other three samples, in order to determine the extent and consequences of the fuel oxidation. Fuel stoichiometry measurements, using kinetic phosphorescence analysis, were performed on pellet samples close to three of the SEM samples. The cladding SEM showed the average oxide thickness on the inner surface to be roughly 20 pin, which could account for just over half of the total hydrogen in the cladding (assuming 100 % pickup of the hydrogen produced as a result of the oxidation of the cladding). The hydrogen concentration in the liner material was similar to the mean hydrogen concentration in the Zircaloy, with the highest levels occurring in the outer part of the Zircaloy. A ''sunburst

  16. SIVAR - Computer code for simulation of fuel rod behavior in PWR during fast transients

    International Nuclear Information System (INIS)

    Fuel rod behavior during a stationary and a transitory operation, is studied. A computer code aiming at simulating PWR type rods, was developed; however, it can be adapted for simulating other type of rods. A finite difference method was used. (E.G.)

  17. Feasibility of plutonium use in BWR reactors. A way to dispose of the spent fuel

    International Nuclear Information System (INIS)

    To assess the convenience of a closed fuel cycle, preliminary calculations have been done to evaluate which option will be the most attractive to follow from an economic point of view. Currently in Mexico, there is no defined policy for high level waste, so it is necessary to perform several studies to help define a possible strategy focused on the spent fuel. The calculations shown here indicate that from the economic point of view, recycling could be an expensive solution or at least more expensive than the once-through option. 1. Introduction. The BWR reactors of Laguna Verde Nuclear Power Plant have an electrical output of 654 MWe each, and the core contains 444 fuel assemblies. To reach the 18-month cycle currently established for operation, it is necessary to load around 112 fresh fuel assemblies (1/4 of the core, approximately) after each operation cycle, resulting in 112 spent fuel assemblies being discharged from the reactor. The BWR fuel assembly (FA) contains approximately 180 Kg of heavy metal (uranium). After discharge and reprocessing, the amount recovered will be 94% uranium and 1% plutonium, which means 169.2 kg of uranium and 1.8 Kg of reactor grade plutonium. If a once-through cycle is considered for both reactors, the amount of fuel assemblies through their entire life of operation will be 112 fuel assemblies/cycle multiplied by the number cycles minus one plus the initial load of the reactor. This produces 3244 assemblies for each reactor, resulting in a total of 6488 fuel assemblies or 1622 ton of high radioactive waste. When recycling the spent fuel of both reactors, practically all the fuel discharged will be reprocessed except for the last four cycles (if the plant is planning to close and there is no license extension). This would result in 1448 UOX assemblies plus 612 MOX fuel assemblies as spent fuel from both reactors, or the equivalent to 515 ton of high radioactive waste. So, when using recycling, the amount of spent fuel is reduced to

  18. Design of a fuel recharge for a BWR using advanced optimization systems

    International Nuclear Information System (INIS)

    The fuel recharge design for a BWR reactor it was carried out, which includes the design of four fuel cells to form an assembly, the accommodation design of fresh and partially consumed assemblies and the control bars pattern design to use along an operation cycle. The three stages were approached as optimization problems using different computational tools, each one of those includes an objective function to measure quantitatively the evolution of the different candidate solutions. With the tool used in the fuel cells design that makes use of the tabu search technique its were obtained cells that showed to be lightly more reactive that other similar taken as reference. With the four designed cells it was formed a fuel assembly that turn out to have an average enrichment lightly smaller to the one of another assembly similar taken as reference. In the recharge pattern design it was used another optimization tool, also based on tabu search to obtain the accommodation of 108 fresh fuels and 336 partially consumed, fulfilling the conditions imposed to operate with the core strategies with control cells (CCC) and of low leakage. A Haling calculation reported that with the obtained accommodation it was achievement to increase in 8% the cycle length with regard to the one obtained using a similar reference pattern. In the design of the control bars patterns it was used a tool based on the use of the genetic algorithms to obtain the placement patterns of the control bars along an operation cycle. The search tool only uses the bars of the A2 sequence and it makes use of the 1/8 symmetry of the core, with that the number of used control bars it decreases at 5. Also the use of control bars in intermediate positions is also avoided. With the obtained patterns a cycle length is obtained that is lightly bigger to the reported value in a Haling calculation. (Author)

  19. BWR feedwater nozzle and control rod drive return line nozzle cracking: resolution of generic technical activity A-10. Technical report

    International Nuclear Information System (INIS)

    This report summarizes work performed by the NRC staff in the resolution of Generic Technical Activity A-10, 'BWR Nozzle Cracking'. Generic Technical Activity A-10 is one of the generic technical subjects designated as 'unresolved safety issues' pursuant to Section 210 of the Energy Reorganization Act of 1974. The report describes the technical issues, the technical studies and analyses performed by the General Electric Company and the NRC staff, the staff's technical positions based on these studies, and the staff's plans for continued implementation of its technical positions. It also provides information for further work to resolve the non-destructive examination issue

  20. Analysis of the structural integrity of the fuel rod cladding based on ring compression tests

    International Nuclear Information System (INIS)

    Due to the reduced amount of material involved and the relatively simple test set-up, Ring Compression Tests (RCT) on fuel rod cladding specimens has become a well-accepted test to determine the conditions resulting in a brittle response on the cladding. Indeed, from its application under LOCA conditions, also it is used under the Spent Fuel Storage and Transportation conditions. Although the RCT may run the involved material through three stages: elastic, elasto-plastic and damage propagation and relevant information on material properties may be obtained, the non-homogenous stress and strain conditions makes the analysis of the test results, difficult. Even though, some efforts have successfully provided key cladding performance parameters such as the fracture toughness. Others approaches use the RCT as a screening test to determine conditions resulting in a Ductile-to-Brittle transition based on a selected criterion. This paper proposes a criterion from the RCT results based on first principles to address cladding ductility under the pinch loads that occurs during the transportation accident of the cask horizontal drop. The insights gained from a mechanical analysis of the RCT are applied on a number of RCT performed on unirradiated pre-hydrided specimens. Besides, RCT results performed on BWR irradiated cladding with several degrees of radial reorientation of the hydrides, imposed by a previous creep test, are also analyzed following the same approach. Based on this analysis and the expected diametric displacement, allowed by the end of irradiation pellet to clad gap and the outward cladding creep during drying and storage in a dry cask, a criterion is determined. (author)

  1. PIE of a failed rod from IFA 597.2

    International Nuclear Information System (INIS)

    Two rods in IFA 597.2 were refabricated from fuel rod 33-25065 irradiated in Ringhals 1. The irradiation of the father rod in Ringhals was prolonged to 'two lives' to reach high burnup. The objective of the test at Halden was to study the thermal behaviour and the fission gas release of high burnup commercial BWR-LWR fuel. The rods in the test were instrumented with fuel centreline thermocouples and bellows pressure transducers. Fuel rod 5 in IFA 597.2 failed during the test at Halden. The failed rod was transported to Studsvik for post irradiation examination. The main purpose of the examination was a study of the failure. The examination of the failed rod, described in this paper, was financed by the Swedish Nuclear Power Inspectorate (author) (ml)

  2. Criticality evaluation of BWR MOX fuel transport packages using average Pu content

    International Nuclear Information System (INIS)

    Currently in France, criticality studies in transport configurations for Boiling Water Reactor Mixed Oxide fuel assemblies are based on conservative hypothesis assuming that all rods (Mixed Oxide (Uranium and Plutonium), Uranium Oxide, Uranium and Gadolinium Oxide rods) are Mixed Oxide rods with the same Plutonium-content, corresponding to the maximum value. In that way, the real heterogeneous mapping of the assembly is masked and covered by a homogeneous Plutonium-content assembly, enriched at the maximum value. As this calculation hypothesis is extremely conservative, COGEMA LOGISTICS has studied a new calculation method based on the average Plutonium-content in the criticality studies. The use of the average Plutonium-content instead of the real Plutonium-content profiles provides a highest reactivity value that makes it globally conservative. This method can be applied for all Boiling Water Reactor Mixed Oxide complete fuel assemblies of type 8 x 8, 9 x 9 and 10 x 10 which Plutonium-content in mass weight does not exceed 15%; it provides advantages which are discussed in our approach. With this new method, for the same package reactivity, the Pu-content allowed in the package design approval can be higher. The COGEMA LOGISTICS' new method allows, at the design stage, to optimise the basket, materials or geometry for higher payload, keeping the same reactivity

  3. IAMBUS, a computer code for the design and performance prediction of fast breeder fuel rods

    International Nuclear Information System (INIS)

    IAMBUS is a computer code for the thermal and mechanical design, in-pile performance prediction and post-irradiation analysis of fast breeder fuel rods. The code deals with steady, non-steady and transient operating conditions and enables to predict in-pile behavior of fuel rods in power reactors as well as in experimental rigs. Great effort went into the development of a realistic account of non-steady fuel rod operating conditions. The main emphasis is placed on characterizing the mechanical interaction taking place between the cladding tube and the fuel as a result of contact pressure and friction forces, with due consideration of axial and radial crack configuration within the fuel as well as the gradual transition at the elastic/plastic interface in respect to fuel behavior. IAMBUS can be readily adapted to various fuel and cladding materials. The specific models and material correlations of the reference version deal with the actual in-pile behavior and physical properties of the KNK II and SNR 300 related fuel rod design, confirmed by comparison of the fuel performance model with post-irradiation data. The comparison comprises steady, non-steady and transient irradiation experiments within the German/Belgian fuel rod irradiation program. The code is further validated by comparison of model predictions with post-irradiation data of standard fuel and breeder rods of Phenix and PFR as well as selected LWR fuel rods in non-steady operating conditions

  4. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    International Nuclear Information System (INIS)

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  5. Research on Integrity of High Burnup Spent Fuel Under the Long Term Dry Storage

    International Nuclear Information System (INIS)

    Objectives were to acquire the following behaviour data by dynamic load impact tests on high burnup spent fuel rods of BWR and PWR and to improve the guidance of regulation of spent fuel storage and transportation. (1) The limit of load and strain for high burnup fuel in the cask drop accident. (2) The amount of deformation of high burnup fuel rods under dynamic load impact. (3) The amount of fuel pellet material released from fuel rods under dynamic load impact

  6. Optimization of fuel cells for BWR based in Tabu modified search

    International Nuclear Information System (INIS)

    The advances in the development of a computational system for the design and optimization of cells for assemble of fuel of Boiling Water Reactors (BWR) are presented. The method of optimization is based on the technique of Tabu Search (Tabu Search, TS) implemented in progressive stages designed to accelerate the search and to reduce the time used in the process of optimization. It was programed an algorithm to create the first solution. Also for to diversify the generation of random numbers, required by the technical TS, it was used the Makoto Matsumoto function obtaining excellent results. The objective function has been coded in such a way that can adapt to optimize different parameters like they can be the enrichment average or the peak factor of radial power. The neutronic evaluation of the cells is carried out in a fine way by means of the HELIOS simulator. In the work the main characteristics of the system are described and an application example is presented to the design of a cell of 10x10 bars of fuel with 10 different enrichment compositions and gadolinium content. (Author)

  7. BWR spent-fuel measurements with the ION-1/fork detector and a calorimeter

    International Nuclear Information System (INIS)

    Gamma-ray and neutron measurements were made on about 50 irradiated boiling-water reactor (BWR) fuel assemblies using the Los Alamos National Laboratory ION-1/fork detector. The assemblies were placed in a dry storage cask (DOE's REA-2023) at the General Electric Morris Operation (GE-MO) as part of a program to evaluate the cask performance. Battelle Pacific Northwest Laboratory (PNL) conducted the program. PNL compared axial radiation profiles developed from ION-1/fork measurements with calculated profiles to interpret the temperature distributions within the cask. The gamma-ray profiles correlated with heat-emission rates measured with a calorimeter, which suggests that the ION-1/fork detector is much faster than the more direct calorimeter. In addition, the radiation profiles from the ION-1/fork detector can prevent cask loadings with undesirable heat source distributions. The detector also provides safeguards information by verifying the declared exposures and cooling times. The genuineness of the assemblies is thus confirmed just before the filling and sealing of a cask. The ION-1/fork detector was permanently installed in the GE-MO fuel storage pond for 1 year without any breakdowns or significant maintenance required. Data were gathered for 9 months and analyzed using techniques developed during previous measurement campaigns. A few anomalies were found in generally satisfactory results. The detector's ease of use, reliability, and reproducibility were excellent

  8. Effect analysis of air introduced by pressurization on fuel rod performances

    International Nuclear Information System (INIS)

    In the process of pressurization and seal welding, it is common practice to vacuumize before gas filling for the sake of preventing introducing air and other impurities, which would affect the gas composition inside of the fuel rod. However, vacuumization during pressurization is likely not being required sometimes in order to simplify the fabrication procedure. In the present work, based on the AFA3G fuel rod design with 2 MPa of filling gas, analyses on fuel rod performances were carried out under the condition of pressurization with and without vacuumization, respectively. Furthermore, the effect on hydrogen content in fuel rod was preliminarily discussed. Results indicate that the impacts of air composition introduced by pressurization on fuel rod thermal-mechanical performances, such as internal pressure and fuel center temperature, were extremely slight. The gap conductance varies to some extent as a result of the change of gas composition due to air introduced in fuel rod. The impact of humidity on water content in fuel rod is negligible at a low temperature of around 25℃. However, at higher temperature, it is essential to pay attention on the control of fabrication process, and prevent much moisture entering into the fuel rod and increasing the probability of hydriding failure. (authors)

  9. Thermomechanical evaluation of BWR fuel elements for procedures of preconditioned with FEMAXI-V

    International Nuclear Information System (INIS)

    The limitations in the burnt of the nuclear fuel usually are fixed by the one limit in the efforts to that undergo them the components of a nuclear fuel assembly. The limits defined its provide the direction to the fuel designer to reduce to the minimum the fuel failure during the operation, and they also prevent against some thermomechanical phenomena that could happen during the evolution of transitory events. Particularly, a limit value of LHGR is fixed to consider those physical phenomena that could lead to the interaction of the pellet-shirt (Pellet Cladding Interaction, PCI). This limit value it is related directly with an PCI limit that can be fixed based on experimental tests of power ramps. This way, to avoid to violate the PCI limit, the conditioning procedures of the fuel are still required for fuel elements with and without barrier. Those simulation procedures of the power ramp are carried out for the reactor operator during the starting maneuvers or of power increase like preventive measure of possible consequences in the thermomechanical behavior of the fuel. In this work, the thermomechanical behavior of two different types of fuel rods of the boiling water reactor is analyzed during the pursuit of the procedures of fuel preconditioning. Five diverse preconditioning calculations were carried out, each one with three diverse linear ramps of power increments. The starting point of the ramps was taken of the data of the cycle 8 of the unit 1 of the Laguna Verde Nucleo electric Central. The superior limit superior of the ramps it was the threshold of the lineal power in which a fuel failure could be presented by PCI, in function of the fuel burnt. The analysis was carried out with the FEMAXI-V code. (Author)

  10. The effect of axial fuel rod power profile on fuel temperature and cladding strain

    Directory of Open Access Journals (Sweden)

    Kim Kyu-Tae

    2010-01-01

    Full Text Available The most limiting design criteria for nuclear reactor normal operating conditions (ANS Condition I are known to be rod internal pressure and cladding oxidation, while those for nuclear reactor transient operating conditions (ANS Conditon II to be fuel centerline temperature and transient cladding total tensile strain. However, the design margins against fuel temperature and transient cladding tensile strain become smaller since power uprating is being or will be utilized for the most of nuclear power reactors to enhance the economics of nuclear power. In order to secure sufficient design margins against fuel temperature and cladding total tensile strain even for power uprating, the current axial rod power profiles used in the reactor transient analysis were optimized to reduce over-conservatism, considering that 118% overpower of a steady-state peak rod average power was not exceeded during the reactor transients. The comparison of the current axial rod power profiles and the optimized ones indicates that the latter reduces the fuel centerline temperature and cladding total tensile strain by 26°C and 0.02%, respectively.

  11. Fuel design with low peak of local power for BWR reactors with increased nominal power

    International Nuclear Information System (INIS)

    The Federal Commission of Electricity recently announcement the beginning of the works related with the increase of the power to 120% of the original nominal one in the Boiling Water Reactors (BWR) of the Laguna Verde Central (CLV): In the National Institute of Nuclear Research (ININ) are carried out studies of the impact on the design of the recharge of derived fuel of this increase. One of the main effects of the power increase type that it is promoting, is the increment of the flow of generated vapor, what takes, to a bigger fraction of vacuum in the core presenting increased values of the maximum fraction to the limit, so much of the ratio of lineal heat generation (XFLPD) as of the ratio of critic power (MFLCPR). In the made studies, it is found that these fractions rise lineally with the increase of the nominal power. Considering that the reactors of the CLV at the moment operate to 105% of the original nominal power, it would imply an increment of the order of 13.35% in the XFLPD and in the MFLCPR operating to a nominal power of 120% of the original one. This would propitiate bigger problems to design appropriately the fuel cycle and the necessity, almost unavoidable, of to resort to a fuel assembly type more advanced for the recharges of the cores. As option, in the ININ the feasibility of continuing using the same type of it fuel assembles that one has come using recently in the CLV, the type GE12 is analyzed. To achieve it was outlined to diminish the peak factor of local power (LPPF) of the power cells that compose the fuel recharge in 13.35%. It was started of a fuel design previously used in the recharge of the unit 1 cycle 12 and it was re-design to use it in the recharge design of the cycle 13 of the unit 1, considering an increase to 120% of the original power and the same requirements of cycle extension. For the re-design of the fuel assembly cell it was used the PreDiCeldas computer program developed in the ININ. It was able to diminish the LPPF

  12. Free-hanging bow measurements of LWBR fuel rods (LWBR Development Program)

    International Nuclear Information System (INIS)

    Special inspection equipment was developed to ensure that the fuel rods for the Light Water Breeder Reactor met the required straightness criteria. The fuel rods were hung in a vertical position and the free-hanging shape was measured. These data were then used analytically to predict both the forces required to constrain the rods in a grid array and the resultant restrained shape. The development of a computerized system which was used for measuring the free-hanging bow of fuel rods used in the LWBR core is described in this paper

  13. Formed parts for packaging spent nuclear fuel rods, and production process

    International Nuclear Information System (INIS)

    Nuclear fuel rods in their original shape or shaped to another design are embedded in a shaped body made of graphite and nickel sulphide for safe integration over long periods. Mechanical integrity and heat removal are increased if the shaped unit contains anchor plates at the top and bottom ends and metal rods fitted into the anchor plates running parallel to the main axis of the shaped unit in the nuclear-fuel-rod-free part of the inside. (orig.)

  14. Automatic system of welding for nuclear fuel rods

    International Nuclear Information System (INIS)

    The welding process of nuclear fuel must be realized in an inert gas environment (He) and constant flow of this. In order to reach these conditions it is necessary to do vacuum at the chamber and after it is pressurized with the noble gas (purge) twice in the welding chamber. The purge eliminates impurities that can provoke oxidation in the weld. Once the conditions for initiating the welding are gotten, it is necessary to draw a graph of the flow parameters, pressure, voltage and arc current and to analyse those conditions in which have been carried out the weld. The rod weld must be free of possible pores or cracks which could provoke rod leaks, so reducing the probability of these failures should intervene mechanical and metallurgical factors. Automatizing the process it allows to do reliable welding assuring that conditions have been performed, reaching a high quality welding. Visually it can be observed the welding process by means of a mimic which represents the welding system. There are the parameters acquired such as voltage, current, pressure and flow during the welding arc to be analysed later. (Author)

  15. Structural integrity of irradiated fuel rod cladding under axial loads from hypothetical transportation accident

    International Nuclear Information System (INIS)

    One of the most limiting situations for the analysis of the fuel rod integrity under hypothetical transportation accident is the end drop impact of the cask system for the 9 meter free drop. In this situation, fuel rod buckling is produced and its lateral deflection is only limited by adjacent rods or by the wall of the cask basket. The integrity of the fuel rod cladding is usually demonstrated by limiting the maximum stress to the yield stress or by limiting the maximum deformation to that of the ultimate strain. Different approaches based on different assumptions have been followed in order to calculate this integrity, concerning the participation of the fuel mass, about the additional stiffness provided by the fuel column or about the constraints limiting the lateral deflection of the rod. This paper presents an evaluation of the response of an irradiated fuel rod with reduced cladding section to account for waterside corrosion, and placing the focus on the influence of the lateral gap sizes. For that purpose, several FEM models have been developed in ANSYS code. Fuel rod behavior inside the storage basket during a potential accident of a cask system free drop condition has been studied. The relationship between the lateral gap size and the maximum acceleration that the fuel rod can support before yielding is presented, and conclusions on the lateral gap assumptions are drawn. (author)

  16. Flow induced vibration analysis for preventing PWR fuel rods from excessive fretting wear

    International Nuclear Information System (INIS)

    In order to prevent PWR fuel rods excessive fretting wear, the author analysed flow induced vibration. The methods developed and used by FRAMATOME to analyze and to justify the fuel rod behaviour with respect to flow induced vibrations and wear at grid support locations were presented

  17. Performance analysis of VVER-type fuel rods with the STOFFEL-1 computer code

    International Nuclear Information System (INIS)

    The main features of the fuel rod performance modelling computer code STOFFEL-1 are described. Submodels of the code are briefly characterized, and some results of comparisons between model predictions and experiments are presented. Examples of modelling calculations are given for some thermo-mechanical values of VVER-1000 fuel rods. (author)

  18. Underwater Nuclear Fuel Disassembly and Rod Storage Process and Equipment Description. Volume II

    International Nuclear Information System (INIS)

    The process, equipment, and the demonstration of the Underwater Nuclear Fuel Disassembly and Rod Storage System are presented. The process was shown to be a viable means of increasing spent fuel pool storage density by taking apart fuel assemblies and storing the fuel rods in a denser fashion than in the original storage racks. The assembly's nonfuel-bearing waste is compacted and containerized. The report documents design criteria and analysis, fabrication, demonstration program results, and proposed enhancements to the system

  19. Development of burnup dependent fuel rod model in COBRA-TF

    Science.gov (United States)

    Yilmaz, Mine Ozdemir

    The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN

  20. A Multi-Stage Wear Model for Grid-to-Rod Fretting of Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2014-01-01

    The wear of fuel rod cladding against the supporting structures in the cores of pressurized water nuclear reactors (PWRs) is an important and potentially costly tribological issue. Grid-to-rod fretting (GTRF), as it is known, involves not only time-varying contact conditions, but also elevated temperatures, flowing hot water, aqueous tribo-corrosion, and the embrittling effects of neutron fluences. The multi-stage, closed-form analytical model described in this paper relies on published out-of-reactor wear and corrosion data and a set of simplifying assumptions to portray the conversion of frictional work into wear depth. The cladding material of interest is a zirconium-based alloy called Zircaloy-4, and the grid support is made of a harder and more wear-resistant material. Focus is on the wear of the cladding. The model involves an incubation stage, a surface oxide wear stage, and a base alloy wear stage. The wear coefficient, which is a measure of the efficiency of conversion of frictional work into wear damage, can change to reflect the evolving metallurgical condition of the alloy. Wear coefficients for Zircaloy-4 and for a polyphase zirconia layer were back-calculated for a range of times required to wear to a critical depth. Inputs for the model, like the friction coefficient, are taken from the tribology literature in lieu of in-reactor tribological data. Concepts of classical fretting were used as a basis, but are modified to enable the model to accommodate the complexities of the PWR environment. Factors like grid spring relaxation, pre-oxidation of the cladding, multiple oxide phases, gap formation, impact, and hydrogen embrittlement are part of the problem definition but uncertainties in their relative roles limits the ability to validate the model. Sample calculations of wear depth versus time in the cladding illustrate how GTRF wear might occur in a discontinuous fashion during months-long reactor operating cycles. A means to account for grid/rod gaps

  1. A methodology for obtaining the control rods patterns in a BWR using systems based on ants colonies

    International Nuclear Information System (INIS)

    In this work the AZCATL-PBC system based on a technique of ants colonies for the search of control rods patterns of those reactors of the Nuclear Power station of Laguna Verde (CNLV) is presented. The technique was applied to a transition cycle and one of balance. For both cycles they were compared the kef values obtained with a Haling calculation and the control rods pattern proposed by AZCATL-PBC for a burnt one fixed. It was found that the methodology is able to extend the length of the cycle with respect to the Haling prediction, maintaining sure to the reactor. (Author)

  2. Artificial intelligence applied to fuel management in BWR type reactors; Inteligencia artificial aplicada a la administracion de combustible en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J

    1998-10-01

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  3. Encapsulation of failed fuel rods - a Siemens contribution to the customer's back end services

    International Nuclear Information System (INIS)

    In order to assist the customer's need to avoid water contamination of the spent fuel pool in case of defective irradiated fuel assemblies, and to assure the defect-free intermediate storage of spent fuel assemblies, Siemens has developed techniques to encapsulate defective fuel rods in special gas-tight capsules. The design features, handling, and performance of the Siemens capsules for defective fuel rods are outlined. The experience of the first encapsulation campaign of 27 defective fuel rods of different suppliers in the Finnish Boiling Water Reactors Olkiluoto 1 and 2 is also described. And an outlook of further Siemens activities in the field of gas-tight and particle-tight capsules and canisters for defective fuel rods in Boiling Water Reactors or Pressurized Water Reactors is given. (authors)

  4. BWR 90: The ABB advanced BWR design

    International Nuclear Information System (INIS)

    ABB has two evolutionary advanced fight water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and the total power generation costs have been low. In the development of BWR 90 specific changes were introduced to the reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher dim that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Thus, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The work is scheduled for completion in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with the 'evolutionary' design BWR 90+. The primary design goal is to develop the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is

  5. Optimized critical power in a fuel bundle with part length rods

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E.B.; Matzner, B.; Dix, G.E.; Wolters, R.A. Jr.; Reese, A.P.

    1993-07-20

    In a boiling water reactor having discrete bundles of fuel rods confined within channel enclosed fuel assemblies wherein the fuel bundle includes: a plurality of fuel rods for placement within said channel, each fuel rod containing fissile material for producing nuclear reaction; a lower tie plate for supporting the bundle of fuel rods within said channel, the lower tie plate joining the bottom of the channel to close the bottom end of the channel, the lower tie plate providing defined apertures for the inflow of water coolant in the channel between the fuel rods for generation of steam; the plurality of fuel rods extending from the lower tie plate wherein a single phase region of the water in the bundle is defined to an upward portion of the bundle wherein an annular flow regime of the water and steam in the bundle is defined during nuclear steam generating reaction; an upper tie plate for supporting the upper end of the bundle of fuel rods, the upper tie plate joining the top of the channel, the upper tie plate providing apertures for the outflow of water and generated steam in the channel; spacers intermediate the upper and lower tie plates at preselected elevations along the fuel rods for maintaining the fuel rods in spaced apart location along the length of the fuel assembly including a first group of spacers in thelower region of the fuel bundle and a second group of spacers in the upper annular flow regime of the fuel bundle; a plurality of the fuel rods being part length extending from thelower tie plate towards the upper tie plate, the partial length fuel rods terminating at ends within the upper region of the fuel bundle before reaching the upper tie plate and causing deceased pressure drop in said annular flow regime of said fuel bundle during said nuclear steam generating reaction; the improvement to said bundle comprising: means in the annular flow regime of the fuel bundle for restoring at least some of the decreased pressure drop.

  6. Optimized critical power in a fuel bundle with part length rods

    International Nuclear Information System (INIS)

    In a boiling water reactor having discrete bundles of fuel rods confined within channel enclosed fuel assemblies wherein the fuel bundle includes: a plurality of fuel rods for placement within said channel, each fuel rod containing fissile material for producing nuclear reaction; a lower tie plate for supporting the bundle of fuel rods within said channel, the lower tie plate joining the bottom of the channel to close the bottom end of the channel, the lower tie plate providing defined apertures for the inflow of water coolant in the channel between the fuel rods for generation of steam; the plurality of fuel rods extending from the lower tie plate wherein a single phase region of the water in the bundle is defined to an upward portion of the bundle wherein an annular flow regime of the water and steam in the bundle is defined during nuclear steam generating reaction; an upper tie plate for supporting the upper end of the bundle of fuel rods, the upper tie plate joining the top of the channel, the upper tie plate providing apertures for the outflow of water and generated steam in the channel; spacers intermediate the upper and lower tie plates at preselected elevations along the fuel rods for maintaining the fuel rods in spaced apart location along the length of the fuel assembly including a first group of spacers in thelower region of the fuel bundle and a second group of spacers in the upper annular flow regime of the fuel bundle; a plurality of the fuel rods being part length extending from thelower tie plate towards the upper tie plate, the partial length fuel rods terminating at ends within the upper region of the fuel bundle before reaching the upper tie plate and causing deceased pressure drop in said annular flow regime of said fuel bundle during said nuclear steam generating reaction; the improvement to said bundle comprising: means in the annular flow regime of the fuel bundle for restoring at least some of the decreased pressure drop

  7. HYTHEST, Dependence of Fuel Fabrication Tolerances on Hydraulics of BWR, PWR

    International Nuclear Information System (INIS)

    1 - Nature of physical problem solved: HYTHEST is a Monte Carlo programme. With this programme it is possible to study statistically the influence that the random variation of the independent parameters subjected to fabrication tolerances (fuel density and enrichment, geometric dimension) have on dependent thermal hydraulic variables (temperatures, vapour quality, pressure drop) in a PWR and BWR reactor core. 2 - Method of solution: According to the spot model, a random core is built up, choosing in every region of core the values of the independent parameters with the aid of a random sampling routine. Next with a detailed thermal hydraulic calculation routine the values of the dependent variables are calculated in this random sampled core. This procedure is repeated according to a Monte Carlo technique choosing as many random cores as necessary. 3 - Restrictions on the complexity of the problem: 900 maximum number of Monte Carlo histories; 220 maximum number of intervals in the channel; 50 maximum number of points in which the interval Ymax-Ymin must be subdivided

  8. Development of underwater high-definition camera for the confirmation test of core configuration and visual examination of BWR fuel

    International Nuclear Information System (INIS)

    The purpose of this study is to develop underwater High-Definition camera for the confirmation test of core configuration and visual examination of BWR fuels in order to reduce the time of these tests and total cost regarding to purchase and maintenance. The prototype model of the camera was developed and examined in real use condition in spent fuel pool at HAMAOKA-2 and 4. The examination showed that the ability of prototype model was either equaling or surpassing to conventional product expect for resistance to radiation. The camera supposes to be used in the dose rate condition of under about 10 Gy/h. (author)

  9. FRAPCON-1: a computer code for the steady state analysis of oxide fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Berna, G. A.; Bohn, M. P.; Coleman, D. R.; Lanning, D. D.

    1978-08-01

    FRAPCON is a FORTRAN IV computer code which predicts the steady state long-term burnup response of a light water reactor fuel rod. The coupled effects of fuel and cladding deformation, temperature, and internal gas pressure on the behavior of the fuel rod are considered in determining fuel rod response. The cladding deformation model includes multi-axial, elasto-plastic analysis and considers both primary and secondary creep. The fuel temperature model considers the effects of fuel cracking and relocation in determining the fuel temperature distribution. Burnup dependent fission gas generation and release is included in calculating fuel rod internal pressure. An integral fuel rod failure subcode determines failure and failure modes based on the operating conditions at each timestep. The material property subcode, MATPRO, provides gas, fuel and cladding properties to the computational subcodes in FRAPCON. No material properties need to be supplied by the code user. FRAPCON is a completely modular code with each major computational subcode isolated within the code and coupled to the main code by subroutine calls and data transfer through argument lists. FRAPCON is soft-coupled to the transient fuel rod code, FRAP-T, to provide initial conditions to initiate analysis of such off-normal transients as a loss-of-coolant accident. The code is presently programmed and running on a CDC 7600 computer.

  10. Design of a fuel recharge for a BWR using advanced optimization systems; Diseno de una recarga de combustible para un BWR empleando sistemas avanzados de optimizacion

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, J.L. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico); Francois L, J.L.; Martin del Campo, M. C. [FI. UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: jlhm@nuclear.inin.mx

    2006-07-01

    The fuel recharge design for a BWR reactor it was carried out, which includes the design of four fuel cells to form an assembly, the accommodation design of fresh and partially consumed assemblies and the control bars pattern design to use along an operation cycle. The three stages were approached as optimization problems using different computational tools, each one of those includes an objective function to measure quantitatively the evolution of the different candidate solutions. With the tool used in the fuel cells design that makes use of the tabu search technique its were obtained cells that showed to be lightly more reactive that other similar taken as reference. With the four designed cells it was formed a fuel assembly that turn out to have an average enrichment lightly smaller to the one of another assembly similar taken as reference. In the recharge pattern design it was used another optimization tool, also based on tabu search to obtain the accommodation of 108 fresh fuels and 336 partially consumed, fulfilling the conditions imposed to operate with the core strategies with control cells (CCC) and of low leakage. A Haling calculation reported that with the obtained accommodation it was achievement to increase in 8% the cycle length with regard to the one obtained using a similar reference pattern. In the design of the control bars patterns it was used a tool based on the use of the genetic algorithms to obtain the placement patterns of the control bars along an operation cycle. The search tool only uses the bars of the A2 sequence and it makes use of the 1/8 symmetry of the core, with that the number of used control bars it decreases at 5. Also the use of control bars in intermediate positions is also avoided. With the obtained patterns a cycle length is obtained that is lightly bigger to the reported value in a Haling calculation. (Author)

  11. Nuclear fuel rod straightness measuring system and method

    International Nuclear Information System (INIS)

    A method is described for measuring the straightness of a rod, comprising the following steps: (a) supporting the rod so that if the rod were straight, the rod would remain straight without transverse translational movement while supported and if rotated about its longitudinal axis, and so that if the rod were cambered, the rod would remain so cambered while supported and if rotated; (b) rotating the supported the rod so that if the rod were straight, the rod would be rotated about its longitudinal axis; (c) measuring the distances during the rotation between the supported and rotating the rod and rigidly-mounted, spaced-apart range finders, the range finders disposed apart from and directed towards the supported and rotating the rod and disposed so that if the rod were straight, the range finders would each be directed transverse to the longitudinal axis; and (d) calculating for each of the range finders the difference between the maximum and minimum of the distance measurements, the differences indicating the degree of straightness of the rod

  12. Fission product migration in intact fuel rods S176 experiments 1-5: Metallography results

    International Nuclear Information System (INIS)

    This work is part of a project, the aim of which is to provide information on the distribution of fission products in intact irradiated fuel rods, both within the UO2 fuel and on the inside of the zircaloy clad. Fuel rods, previously irradiated to appreciable burnups in the Aagesta R3 reactor, after cooling, are re-irradiated in the Studsvik R2 test reactor for short periods to build up significant inventories of short-lived fission products of interest. The irradiation conditions are well defined. In this report the results from the ceramographic analyses of the fuel rods are presented together with the beta autoradiography results

  13. Thermal performance of the nuclear fuel rods submitted to angular variation of the heat exchanger coefficients

    International Nuclear Information System (INIS)

    Generally, LMFBR fuel rods consist of fuel pellets encapsulated in cladding tubes. These tubes are wrapped by a helical wire, working as a spacer. Distortions in the rod temperature distribution and in the external heat flux can be generated by angular variations in the local heat transfer coefficients due to the wire, by excentricity between pellet and clad or by ovalization of the cladding tube. Also, the temperature distributions can be affected by fuel densification, reestructuring and swelling. The present work consists of the development of a computer code in order to analyse the fuel rod performance as function of geometrical and operational effects, in steady state regime. (Author)

  14. Design of the Instrumented Fuel Capsule(05F-01K) for the Dual Instrumented Fuel Rods Irradiation Test at HANARO

    International Nuclear Information System (INIS)

    The instrumented capsule for the nuclear fuel irradiation test (hereinafter referred to as 'instrumented fuel capsule'), which is crucial for the verification of a nuclear fuel performance and safety, has been developed at HANARO(High-flux Advanced Neutron Application Reactor). The irradiation test of the first instrumented fuel capsule(02F-11K) was carried out in March 2003 and the irradiation test of the second instrumented fuel capsule(03F-05K) was carried out in April 2004. Through the irradiation tests of the two capsules, the design specifications and safety of the instrumented fuel capsule were verified successfully. In the first instrumented fuel capsule(02F-11K), only the technologies for measuring the center temperature of the nuclear fuel and neutron flux were implemented. In the second instrumented fuel capsule(03F-05K), the technologies for measuring the center temperature of the nuclear fuel, the internal pressure of the fuel rod, the elongation of the nuclear fuel and the neutron flux were implemented. The dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been designed to enhance the efficiency of the irradiation test using the instrumented fuel capsule. This paper presents the design of the 05F-01K instrumented fuel capsule for the irradiation test of dual instrumented fuel rods

  15. A new SCWR fuel assembly with two-row fuel rods between the hexagonal moderator channels

    International Nuclear Information System (INIS)

    Highlights: • We propose a SCWR fuel assembly with two-row fuel rods between the hexagonal moderator channels. • The new concept can resolve the contradiction between uniform and sufficient moderation. • Structural size and thermal–hydraulic performance are taken account of in the fuel assembly. • Larger infinite multiplication factor and smaller local power peaking factor could be obtained. • Two two-row hexagonal fuel assembly concepts are proposed for the engineering application. - Abstract: A new hexagonal fuel assembly (FA) design which has two rows of fuel rods between the hexagonal moderator channels is proposed for the thermal supercritical water cooled reactor (SCWR). The new concept is well considered for the performance of uniform moderation and sufficient moderation, and with respect to structural size and thermal–hydraulic performance. The neutron physical performance of the two-row hexagonal FA with acceptable configuration is discussed. The results show clearly that a better balance between uniform moderation and sufficient moderation can be obtained in the two-row hexagonal fuel assembly

  16. End plug for fuel rod and welding method therefor

    International Nuclear Information System (INIS)

    An end plug of a fuel rod comprises a pressure-insertion portion having a diameter somewhat greater than the inner diameter of a fuel cladding tube and a welding portion having a diameter substantially the same as the outer diameter of the cladding tube. A V-shaped recess having an outer diameter smaller than the greatest outer diameter of the pressure-insertion portion is formed over the entire circumferential surface of the outer circumference of the connection portion of the pressure-insertion portion and the welding portion. The pressure-insertion portion of the end plug is inserted to the end of the cladding tube till the end of the cladding tube abuts against the inclined surface of the V-shaped recess. The abutting surfaces of the end plug and the cladding tube are subjected to resistance welding in this state. The inner portion bulged from the inclined surface of the V-shaped recess is filled in the recess in a molten state. Lowering of temperature of the cladding tube in the vicinity of the welded portion is decreased by γ heat during reactor operation. Accordingly, lowering of ductility of the cladding tube and degradation of material of the welded region due to segregation of hydrogen in the cladding tube can be suppressed. (I.N.)

  17. Optimization of fuel cells for BWR based in Tabu modified search; Optimizacion de celdas de combustible para BWR basada en busqueda Tabu modificada

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Francois L, J.L. [Facultad de Ingenieria, UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Palomera P, M.A. [Facultad de Ingenieria, UNAM, Posgrado en Ingenieria en Computacion, Circuito exterior s/n, Ciudad Universitaria, Mexico, D.F. (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2004-07-01

    The advances in the development of a computational system for the design and optimization of cells for assemble of fuel of Boiling Water Reactors (BWR) are presented. The method of optimization is based on the technique of Tabu Search (Tabu Search, TS) implemented in progressive stages designed to accelerate the search and to reduce the time used in the process of optimization. It was programed an algorithm to create the first solution. Also for to diversify the generation of random numbers, required by the technical TS, it was used the Makoto Matsumoto function obtaining excellent results. The objective function has been coded in such a way that can adapt to optimize different parameters like they can be the enrichment average or the peak factor of radial power. The neutronic evaluation of the cells is carried out in a fine way by means of the HELIOS simulator. In the work the main characteristics of the system are described and an application example is presented to the design of a cell of 10x10 bars of fuel with 10 different enrichment compositions and gadolinium content. (Author)

  18. The effects of fission gas release on PWR fuel rod design and performance

    International Nuclear Information System (INIS)

    The purpose of this investigation was to determine the effects of fission gas release on PWR fuel rod design and performance. Empirical models were developed from fission gas release data. Fission gas release during normal operation is a function of burnup. There is little additional fission gas release during anticipated transients. The empirical models were used to evaluate Westinghouse fuel rod designs. It was determined that fission gas release is not a limiting parameter for obtaining rod average burnups in the range of 50 000 to 60 000 MWD/MTU. Fission gas release during anticipated transients has a negligible effect on the margins to rod design limits. (author)

  19. The effects of fission gas release on PWR fuel rod design and performance

    International Nuclear Information System (INIS)

    The purpose of this investigation was to determine the effects of fission gas release on PWR fuel rod design and performance. Empirical models were developed from fission gas release data. Fission gas release during normal operation is a function of burnup. There is little additional fission gas release during anticipated transients. The empirical models were used to evaluate Westinghouse fuel rod designs. It was determined that fission gas release is not a limiting parameter for obtaining rod average burnups in the range of 50,000 to 60,000 MWD/MTU. Fission gas release during anticipated transients has a negligible effect on the margins to rod design limits. (author)

  20. BWR-spent fuel transport and storage with the TN trademark 9/4 and TN trademark 24BH casks

    International Nuclear Information System (INIS)

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks in ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., as Muehleberg Nuclear Power Plant owner, is involved in this process and has selected to store its spent fuel, a new high capacity dual-purpose cask, the TN trademark 24BH. For the transport in a medium size cask, COGEMA LOGISTICS has developed a new cask, the TN trademark 9/4, to replace the NTL9 cask, which performed numerous transports of BWR spent fuel in the past decades. Licensed IAEA 1996, the TN trademark 9/4 is a 40 ton transport cask, for 7 BWR high burn-up spent fuel assemblies. The spent fuel assemblies can be transferred in the ZWILAG hot cell in the TN trademark 24BH cask. The first use of these casks took place in 2003. Ten TN trademark 9/4 transports were performed, and one TN trademark 24BH was loaded. After a brief presentation of the operational aspects, the paper will focus on the TN trademark 24BH high capacity dual purpose cask, the TN trademark 9/4 transport cask and describe in detail their characteristics and possibilities

  1. A practical optimization procedure for radial BWR fuel lattice design using tabu search with a multiobjective function

    International Nuclear Information System (INIS)

    An optimization procedure based on the tabu search (TS) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The procedure was coded in a computing system in which the optimization code uses the tabu search method to select potential solutions and the HELIOS code to evaluate them. The goal of the procedure is to search for an optimal fuel utilization, looking for a lattice with minimum average enrichment, with minimum deviation of reactivity targets and with a local power peaking factor (PPF) lower than a limit value. Time-dependent-depletion (TDD) effects were considered in the optimization process. The additive utility function method was used to convert the multiobjective optimization problem into a single objective problem. A strategy to reduce the computing time employed by the optimization was developed and is explained in this paper. An example is presented for a 10x10 fuel lattice with 10 different fuel compositions. The main contribution of this study is the development of a practical TDD optimization procedure for BWR fuel lattice design, using TS with a multiobjective function, and a strategy to economize computing time

  2. Production and release of the fission gas in (Th U)O2 fuel rods

    International Nuclear Information System (INIS)

    The volume, composition and release of the fission gas products were caculated for (Th, U)O2 fuel rods. The theorectical calculations were compared with experimental results available on the literature. In ThO2 + 5% UO2 fuel rods it will be produced approximated 5% more fission gas as compared to UO2 fuel rods. The fission gas composition or Xe to Kr ratio has showed a decreasing fuel brunup dependence, in opposition to that of UO2. Under the same fuel rod operational conditions, the (Th, U)O2 fission gas release will be smaller as compared to UO2. This behaviour of (Th, U)O2 fuel comes from smallest gas atom difusivity and higher activation energies of the processes that increase the fission gas release. (Author)

  3. Common cause failure analysis of hydraulic scram and control rod systems in the Swedish and Finnish BWR plants

    International Nuclear Information System (INIS)

    The main task of the project included the analysis of the operating experiences at the BWRs of ABB Atom design, comprising 9 units in Sweden and 2 in Finland. International experience and reference information were also surveyed. A reference application was done for the Barsebaeck plant. This pilot study covered all systems which contribute to the reactor shutdown, including also the actuation relays at the interface to the reactor protection system. The Common Load Model was used as the quantification method, which proved to be a practicable approach. This method provides a consistent handling of failure combinatorics and workable extension to evaluate localized dependence between adjacent control rod and drive assemblies (CRDAs). As part of this project, instructions of handbook style were prepared for the CCF analysis of high redundancy systems. The primary focus in the analysis of operating experience was placed on the scram valves and CRDAs. Due to the limited component population, the experiences for the scram valve constitute only a few single failures and some potential but none actual CCF event. These insights are compatible with the generic data for these valves. The experiences for the CRDAs include several single failures, and some actual and many potential CCF events of varying degree of functional impact. Special emphasis was placed to identify any multiple failure or degradation indicating that adjacent rods would be more vulnerable to failure, because such phenomena are far more critical for the scram function as compared to failure of randomly placed rods. 17 refs

  4. Thermomechanical evaluation of BWR fuel elements for procedures of preconditioned with FEMAXI-V; Evaluacion termomecanica de elementos combustible BWR para procedimientos de preacondicionado con FEMAXI-V

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Lucatero, M.A.; Ortiz V, J. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: hhl@nuclear.inin.mx

    2006-07-01

    The limitations in the burnt of the nuclear fuel usually are fixed by the one limit in the efforts to that undergo them the components of a nuclear fuel assembly. The limits defined its provide the direction to the fuel designer to reduce to the minimum the fuel failure during the operation, and they also prevent against some thermomechanical phenomena that could happen during the evolution of transitory events. Particularly, a limit value of LHGR is fixed to consider those physical phenomena that could lead to the interaction of the pellet-shirt (Pellet Cladding Interaction, PCI). This limit value it is related directly with an PCI limit that can be fixed based on experimental tests of power ramps. This way, to avoid to violate the PCI limit, the conditioning procedures of the fuel are still required for fuel elements with and without barrier. Those simulation procedures of the power ramp are carried out for the reactor operator during the starting maneuvers or of power increase like preventive measure of possible consequences in the thermomechanical behavior of the fuel. In this work, the thermomechanical behavior of two different types of fuel rods of the boiling water reactor is analyzed during the pursuit of the procedures of fuel preconditioning. Five diverse preconditioning calculations were carried out, each one with three diverse linear ramps of power increments. The starting point of the ramps was taken of the data of the cycle 8 of the unit 1 of the Laguna Verde Nucleo electric Central. The superior limit superior of the ramps it was the threshold of the lineal power in which a fuel failure could be presented by PCI, in function of the fuel burnt. The analysis was carried out with the FEMAXI-V code. (Author)

  5. Fuel rod replacements-a support for experimental investigations and enhancement of LWR performance

    International Nuclear Information System (INIS)

    Increased competitiveness of the nuclear kWh cost and operation of reactors with high flexibility require the development of new products very often based on the knowledge of the material behaviour changes at different fluences and in-reactor residence times. The existing experience feedback helps to validate the in-core behaviour models prediction. In order to limit the extrapolation of the models, resetting points are necessary. This is usually done during a reactor outage by removing characterized fuel rods for examination. The fuel rod is replaced with a rod with the same geometry and sometimes with a different composition (enrichment, stainless steel ...). The fuel assembly is therefore heterogeneous which modifies the pin power distribution. The impacts of this modification have to be analyzed to ensure safety limits of the reactor. Fuel rod replacement is also an important issue in case of fuel assembly leakage. In such a case, the non-reloading of leaking fuel rods is a priority for the utilities. The possibility to replace one or several fuel rods during outages is therefore economically very attractive. To better meet the different requirements and to allow the evaluation of all the replacement possibilities, FRAMATOME-ANP has developed new calculation procedures to evaluate the impact associated with the fuel rod replacement. The procedures, used in anticipation of a fuel rod failure, make it possible to develop sensitivity studies and therefore to propose fuel rod replacement solutions to minimize or eliminate design penalties. The paper seeks to detail the method, supported by illustrations from particular studies. It then presents other aspects: impacts on the safety analysis, the advantages and the first insights. (authors)

  6. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  7. Assessment of precision gamma scanning for inspecting LWR fuel rods. Final report

    International Nuclear Information System (INIS)

    Reconstruction of the radial two-dimensional distributions of fission products using projections obtained by nondestructive gamma scanning was evaluated. The filtered backprojection algorithm provided the best reconstruction for simulated gamma-ray sources, as well as for actual irradiated fuel material. Both a low-burnup (11.5 GWd/tU) light-water reactor fuel rod and a high-burnup (179.1 GWd/tU) fast breeder reactor fuel rod were examined using this technique

  8. Characterization of control rod worths and fuel rod power peaking factors in the university of Utah TRIGA Mark I reactor

    Directory of Open Access Journals (Sweden)

    Alroumi Fawaz

    2016-01-01

    Full Text Available Control rod reactivity (worths for the three control rods and fuel rod power peaking factors in the University of Utah research reactor (100 kW TRIGA Mark I are characterized using the AGENT code system and the results described in this paper. These values are compared to the MCNP6 and existing experimental measurements. In addition, the eigenvalue, neutron spatial flux distributions and reaction rates are analyzed and discussed. The AGENT code system is widely benchmarked for various reactor types and complexities in their geometric arrangements of the assemblies and reactor core material distributions. Thus, it is used as a base methodology to evaluate neutronics variables of the research reactor at the University of Utah. With its much shorter computation time than MCNP6, AGENT provides agreement with the MCNP6 within a 0.5 % difference for the eigenvalue and a maximum difference of 10% in the power peaking factor values. Differential and integral control rod worths obtained by AGENT show well agreement with MCNP6 and the theoretical model. However, regulating the control rod worth is somewhat overestimated by both MCNP6 and AGENT models when compared to the experimental/theoretical values. In comparison to MCNP6, the total control rod worths and shutdown margin obtained with AGENT show better agreement to the experimental values.

  9. Uncertainty analysis of spent nuclear fuel isotopics and rod internal pressure

    Science.gov (United States)

    Bratton, Ryan N.

    The bias and uncertainty in fuel isotopic calculations for a well-defined radio- chemical assay benchmark are investigated with Sampler, the new sampling-based uncertainty quantification tool in the SCALE code system. Isotopic predictions are compared to measurements of fuel rod MKP109 of assembly D047 from the Calvert Cliffs Unit 1 core at three axial locations, representing a range of discharged fuel burnups. A methodology is developed which quantifies the significance of input parameter uncertainties and modeling decisions on isotopic prediction by compar- ing to isotopic measurement uncertainties. The SCALE Sampler model of the D047 assembly incorporates input parameter uncertainties for key input data such as multigroup cross sections, decay constants, fission product yields, the cladding thickness, and the power history for fuel rod MKP109. The effects of each set of input parameter uncertainty on the uncertainty of isotopic predictions have been quantified. In this work, isotopic prediction biases are identified and an investiga- tion into their sources is proposed; namely, biases have been identified for certain plutonium, europium, and gadolinium isotopes for all three axial locations. More- over, isotopic prediction uncertainty resulting from only nuclear data is found to be greatest for Eu-154, Gd-154, and Gd-160. The discharge rod internal pressure (RIP) and cladding hoop stress (CHS) distributions are quantified for Watts Bar Nuclear Unit 1 (WBN1) fuel rods by modeling core cycle design data, operation data (including modeling significant trips and downpowers), and as-built fuel enrichments and densities of each fuel rod in FRAPCON-3.5. A methodology is developed which tracks inter-cycle as- sembly movements and assembly batch fabrication information to build individual FRAPCON inputs for each considered WBN1 fuel rod. An alternate model for the amount of helium released from zirconium diboride (ZrB2) integral fuel burn- able absorber (IFBA) layers is

  10. Analysis of the Behavior of CAREM-25 Fuel Rods Using Computer Code BACO

    International Nuclear Information System (INIS)

    The thermo-mechanical behavior of a fuel rod subjected to irradiation is a complex process, on which a great quantity of interrelated physical-chemical phenomena are coupled.The code BACO simulates the thermo-mechanical behavior and the evolution of fission gases of a cylindrical rod in operation.The power history of fuel rods, arising from neutronic calculations, is the program input.The code calculates, among others, the temperature distribution and the principal stresses in the pellet and cladding, changes in the porosity and restructuring of pellet, the fission gases release, evolution of the internal gas pressure.In this work some of design limits of CAREM-25's fuel rods are analyzed by means of the computer code BACO.The main variables directly related with the integrity of the fuel rod are: Maximum temperature of pellet; Cladding hoop stresses; Gases pressure in the fuel rod; Cladding axial and radial strains, etc.The analysis of results indicates that, under normal operation conditions, the maximum fuel pellet temperature, cladding stresses, pressure of gases at end of life, etc, are below the design limits considered for the fuel rod of CAREM-25 reactor

  11. Heat conductance of the fuel-to-cladding gap of LWR rods (irradiation tests)

    International Nuclear Information System (INIS)

    The fuel temperature - and therefore the stored heat energy which has to be removed in the case of a hypothetical LOCA - strongly depends on the heat conductance of the gap between fuel and cladding. To establish this heat conductance more precisely within existing conservative fuel rod modelling assumptions, irradiation tests with 7 instrumented test fuel rods were performed in the research reactor FRJ-2 of Kernforschungsanlage Juelich (KFA). The (as-fabricated-) gap size, fillgas and fillgas-pressure in the fuel rods as well as the surface roughness of the fuel pellets were varied independently, the influence of these variations was monitored by thermocouples. These in-pile measurements were supplemented by post-irradiation examinations in the Hot Cells of KFA. The test results show no axial gas segregation and with that no temperature changes in the fuel rod during normal reactor operation. No temperature increase caused by different roughness of the fuel pellet surface was observed under these conditions. A data base for further fuel rod modelling development was created by a large amount of measurement data (temperature versus power) under well defined conditions (gas mixtures, gas pressure, condition of the rod quasi - b.o.l.). (orig.) With 4 refs., 5 tabs., 92 figs

  12. Design of the dual instrumented fuel rods to measure the nuclear fuel characteristics during Irradiation test at HANARO

    International Nuclear Information System (INIS)

    The instrumented capsule for the nuclear fuel irradiation test (hereinafter referred to instrumented fuel capsule), which are crucial for the verification of a nuclear fuel performance and safety, have been developed at HANARO(High-flux Advanced Neutron Application Reactor). The irradiation test of the first instrumented fuel capsule(02F-11K) was carried out in March 2003 for 1,296 MWD(Mega Watt Day) and the irradiation test of the second instrumented fuel capsule(03F-05K) was carried out in April 2004 for 1,533MWD at HANARO. Through the irradiation tests of the two capsules, the design specifications and safety of the instrumented fuel capsule were verified successfully. In the 02F-11K instrumented fuel capsule, only the technologies for measuring the center temperature of the nuclear fuel and neutron flux were implemented. In the 03F-05K instrumented fuel capsule, the technologies for measuring the center temperature of the nuclear fuel, the internal pressure of the fuel rod, the elongation of the nuclear fuel and the neutron flux were implemented. The purpose of this paper is to develop the dual instrumented technology that enables two characteristics to be measured simultaneously in one fuel rod. Therefore, this paper presents the design of the dual instrumented fuel rods and the plan of the irradiation test for the newly designed fuel rods

  13. Design and evaluation of an on-line fuel rod assay device for an HTGR fuel refabrication plant

    International Nuclear Information System (INIS)

    Refabricated HTGR fuel rods will contain from approx. 0.15 to 0.5 g 233U and/or 235U. The fuel rods are approx. 16 mm in diameter and 62 mm long. A typical commercial fuel refabrication facility will have six fuel rod production lines, each producing approximately one fuel rod every 4 seconds at design capacity. One on-line assay device will be present for each two production lines. The relative standard deviation in an individual fuel rod fissile material measurement must be less than 3% to satisfy process and quality control requirements. Systematic errors must be kept less than approx. 0.3% for fissile material measured in fuel rods produced over two months to satisfy material accountability requirements. Several nondestructive assay (NDA) methods were investigated. Because the gamma-ray activity of the refabricated fuel is relatively high due to the presence of 232U in the fuel and because the gamma-ray activity is not directly related to total or fissile uranium content, NDA methods employing gamma-ray detection did not appear practicable. A method using thermal neutron irradiation and fast-fission neutron detection was selected. An experimental assay device was fabricated based on this NDA method. Experiments were performed to determine the precision and accuracy of the measurements and to investigate potential interferences and systematic errors. Operating procedures were evaluated, and analysis procedures were identified

  14. Express methods for post-reactor research of cladding-free rod carbide fuel pins

    International Nuclear Information System (INIS)

    Brief descriptions of the following express methods of irradiated rod carbide fuel pins research were provided: the method of fuel pins bunch swirl angle evaluation in heating section, the method of fuel pin small-scale bending detection, the method of surface crack detection in fuel pin, the method of fuel pin swelling X-ray detection and the method of fuel carbide microhardness measuring in case of structure high porosity. Appliance boundaries of each developed method are pointed out. (author)

  15. Fuel assembly

    International Nuclear Information System (INIS)

    Purpose: To reconstruct a BWR type reactor into a high conversion reactor with no substantial changes for the reactor inner structure such as control rod structure. Constitution: The horizontal cross sectional shape of a channel box is reformed into a square configuration and the arrangement of fuel rods is formed as a trigonal lattice-like configuration. As a method of improving the conversion ratio, there is considered to use a dense lattice by narrowing the distance between fuel rods and trigonal lattice arrangement for fuel rod is advantageous therefor. A square shape cross sectional configuration having equal length both in the lateral and longitudinal directions is suitable for the channel box as a guide upon movement of the control rod. Fuel rods can be arranged with no loss by the trigonal lattice configuration, by which it is possible to improve the neutron moderation, increase the reactor core reactivity and conduct effective fuel combustion. In this way, it is possible to attain the object by inserting the follower portion of the control rod at the earier half and extracting the same at the latter half during the operation period in the reactor core comprising fuel assemblies suitable to a high conversion BWR type reactor having average conversion ratio of about 0.8. (Kamimura, M.)

  16. Comparative steady-state and power ramping performance of annual-coated-pressurized, sphere-pac and reference test rods in the Halden BWR

    International Nuclear Information System (INIS)

    The Fuel Performance improvement Program (FPIP) is sponsored by the U.S. Department of Energy (DOE) and is performed by Consumers Power Company (CPC), Exxon Nuclear Company, Inc. (ENC), and the Battelle Pacific Northwest Laboratory (PNL). One objective of the FPIP is to better understand the pellet-cladding interaction (PCI) behavior of advanced LWR fuel designs during steady-state and power-ramping operation. The described work summarizes that part of the FPIP done at the Halden Boiling Water Reactor (HBWR). Fuel rods of advanced design were irradiated in instrumented fuel assembly test rigs to burnup levels up to 16 MWd/kgM at linear heat generation rates (LHGR) of up to ∼40 kw/m. These base irradiations were followed by power ramps to terminal powers in the range from 66 to 74 kw/m. Base irradiation results and analysis are presented. Power ramping results contain mechanical, chemical, and thermal behaviour

  17. Re-fabrication and instrumentation technique on pre-irradiated LWR fuel rod

    International Nuclear Information System (INIS)

    A re-fabrication and instrumentation technique is of important for a re-irradiation test of irradiated fuel rod at the Reactor Fuel Examination Facility (RFEF) in JAERI. The re-fabrication and instrumentation wok have been conducted since 1987. Up to the present, 15 re-fabricated fuel rods for a pulse-irradiation test in the Nuclear Safety Research Reactor (NSRR) and 5 re-fabricated fuel rods for a ramp test using a boiling water capsule test in the Japan Materials Testing Reactor (JMTR) have been completed. This paper describes the re-fabrication procedure and the in-core instruments of re-fabricated fuel rods in RFEF. (author). 7 refs, 4 figs, 2 photos

  18. Final Report: Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation

    International Nuclear Information System (INIS)

    This report documents the Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation. The review followed the approved Plan of Action (POA) and Implementation Plan (IP) using the identified core requirements. The activity was limited scope focusing on the control rod drives functional isolation and fuel element movement. The purpose of this review is to ensure the facility's readiness to move fuel elements thus supporting inspection and functionally isolate the control rod drives to maintain the required shutdown margin.

  19. Final Report: Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Rowsell, David Leon [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-06-01

    This report documents the Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation. The review followed the approved Plan of Action (POA) and Implementation Plan (IP) using the identified core requirements. The activity was limited scope focusing on the control rod drives functional isolation and fuel element movement. The purpose of this review is to ensure the facility's readiness to move fuel elements thus supporting inspection and functionally isolate the control rod drives to maintain the required shutdown margin.

  20. Adaptive fuzzy system for fuel rod cladding failure in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Antonio C.F. [Instituto de Engenharia Nuclear - Divisao de Reatores/CNEN, Ilha do Fundao s/n, 21945-970, P.O. Box 68550, Rio de Janeiro (Brazil)]. E-mail: tony@ien.gov.br; Lapa, Celso M.F. [Instituto de Engenharia Nuclear - Divisao de Reatores/CNEN, Ilha do Fundao s/n, 21945-970, P.O. Box 68550, Rio de Janeiro (Brazil)]. E-mail: lapa@ien.gov.br

    2007-03-15

    A new approach to the study of ballooning that causes cladding failure in fuel rods using an adaptive neural fuzzy inference system (ANFIS) is presented in this paper. By mapping input/output patterns describing cladding failure phenomena through average inner cladding temperature and fuel rod gas pressure, ANFIS shows a great potential to modeling this problem in alternative to the traditional approach. A typical pressurized water reactor fuel rod data was used to this application. The results confirm the potential of ANFIS comparatively to experimental calculations.

  1. Estimation of water-water energy reactor fuel rod failure in design basis accidents

    International Nuclear Information System (INIS)

    The definition of failure fuel rod amount under water-water energy reactor (WWER) design basis accidents (DBA) conditions is an urgent task of modern design substantiations of WWER type fuel cycles, it is necessary for an adequate estimation of possible radiological consequences of DBA. The various aspects of a problem devoted to definition of failure fuel rod quantity under WWER DBA are considered: procedural, experimental, settlement-analytical. To analyze fuel rod behavior and to forecast by settlement cladding failure under DBA conditions (loss of coolant accident (LOCA) and reactivity initiated accident (RIA)) the RAPTA-5 code is used. For support and development of the RAPTA-5 program the experimental researches results of WWER fuel rod behavior under conditions, characterized for LOCA and RIA are used. The growing requirements of modern design substantiations cause necessity of thermal-mechanical and corrosion fuel rod models specifications, decrease of models conservatism, expansion of applicability ranges concerning fuel burnup, fuel and cladding materials, conditions of fuel rod loading. In pile and out of pile experiments, which were used for models development and verification of the RAPTA-5 code, are submitted. For account of cladding plastic deformation the multi-parametric function of a cladding material flow stress depended upon strain and strain rate, temperature and heating rate, fast neutrons fluence, oxygen concentration is used. To determine realistic estimations of cladding hoop strain at failure moment the non-axis-symmetrical deformation model of fuel rod cladding is proposed. The verification of the given model is carried out: by test results of WWER-1000 type 37-fuel rods assembly with E110 cladding on the electro-heating PARAMETER - M facility, the temperature mode of fuel rod cladding under second stage of LOCA conditions was simulated in this experiment; by test results of BT-2 experiment, performed on the MIR research reactor, where

  2. Cladding corrosion and hydriding in irradiated defected zircaloy fuel rods (LWBR Development Program)

    International Nuclear Information System (INIS)

    Twenty-one LWBR irradiation test rods containing ThO2-UO2 fuel and Zircaloy cladding with holes or cracks operated successfully. Zircaloy cladding corrosion on the inside and outside diameter surfaces and hydrogen pickup in the cladding were measured. The observed outer surface Zircaloy cladding corrosion oxide thicknesses of the test rods were similar to thicknesses measured for nondefected irradiation test rods. An analysis model, which was developed to calculate outer surface oxide thickness of non-defected rods, gave results which were in reasonable agreement with the outer surface oxide thicknesses of defected rods. When the analysis procedure was modified to account for additional corrosion proportional to fission rate and to time, the calculated values agreed well with measured inner oxide corrosion film values. Hydrogen pickup in the defected rods was not directly proportional to local corrosion oxide weight gain as was the case for non-defected rods. 16 refs., 6 figs., 8 tabs

  3. Numerical analysis on the dynamic response of nuclear fuel rods under side drop loading

    International Nuclear Information System (INIS)

    Spent nuclear fuel assemblies are stored in the cask with the necessary protective function during the spent fuel transportation or storage. The structural integrity of the fuel rods for the impact load caused by cask mishandling drop accident has to be evaluated to realize more economical and safe operation. However, the experiments for the spent fuel rods accompany many of difficulties and the available experimental data is limited. Hence, the numerical simulation is useful method to predict and evaluate the dynamic response of the fuel rods. This paper deals with the dynamic response of the spent fuel rods under side drop condition. One spacer span of the fuel rod of the undermost layer during side drop is analyzed by finite element method (LS-DYNA). The fuel rod was held between the upper and lower spacers. In the numerical model, the fixed rigid base and the drop weight were connected to the lower and upper spacers, respectively. The numerical analyses were carried out by varying the impact speed of the drop weight and the spacer plate size. Further, the cases of entire drop, in which both the drop weight and fuel rod have the same impact speed, and weight drop, in which only the weight collides with the spent fuel rod placed on the rigid wall were also analyzed. It is found that the fuel pellet and cladding tube reached their yield stresses near the impact point even for the lowest impact speed (2.4 m/s) regardless of the spacer size and drop conditions. The plastic region of the pellets is limited within one pellet and the corner part of the neighboring pellet even for the highest impact speed (13.3 m/s). The deflection of the fuel rod increased from impact point to the end of the fuel rod in the entire drop condition, but it was limited near the impact point in the weight drop condition. Therefore, the weight drop condition may underestimate the deformation or damage of the spent fuel rod compared to the entire drop condition. (author)

  4. Rod consolidation of RG and E's [Rochester Gas and Electric Corporation] spent PWR [pressurized water reactor] fuel

    International Nuclear Information System (INIS)

    The rod consolidation demonstration involved pulling the fuel rods from five fuel assemblies from Unit 1 of RG and E's R.E. Ginna Nuclear Power Plant. Slow and careful rod pulling efforts were used for the first and second fuel assemblies. Rod pulling then proceeded smoothly and rapidly after some minor modifications were made to the UST and D consolidation equipment. The compaction ratios attained ranged from 1.85 to 2.00 (rods with collapsed cladding were replaced by dummy rods in one fuel assembly to demonstrate the 2:1 compaction ratio capability). This demonstration involved 895 PWR fuel rods, among which there were some known defective rods (over 50 had collapsed cladding); no rods were broken or dropped during the demonstration. However, one of the rods with collapsed cladding unexplainably broke during handling operations (i.e., reconfiguration in the failed fuel canister), subsequent to the rod consolidation demonstration. The broken rod created no facility problems; the pieces were encapsulated for subsequent storage. Another broken rod was found during postdemonstration cutting operations on the nonfuel-bearing structural components from the five assemblies; evidence indicates it was broken prior to any rod consolidation operations. During the demonstration, burnish-type lines or scratches were visible on the rods that were pulled; however, experience indicates that such lines are generally produced when rods are pulled (or pushed) through the spacer grids. Rods with collapsed cladding would not enter the funnel (the transition device between the fuel assembly and the canister that aids in obtaining high compaction ratios). Reforming of the flattened areas of the cladding on those rods was attempted to make the rod cross sections more nearly circular; some of the reformed rods passed through the funnel and into the canister

  5. FREC-4A: a computer program to predict fuel rod performance under normal reactor operation

    International Nuclear Information System (INIS)

    The program FREC-4A (Fuel Reliability Evaluation Code-version 4A) is used for predicting fuel rod performance in normal reactor operation. The performance is calculated in accordance with the irradiation history of fuel rods. Emphasis is placed on the prediction of the axial elongation of claddings induced by pellet-cladding mechanical interaction, including the influence of initially preloaded springs inserted in fuel rod lower plenums. In the FREC-4A, an fuel rod is divided into axial segments. In each segment, it is assumed that the temperature, stress and strain are axi-symmetrical, and the axial strain in constant in fuel pellets and in a cladding, though the values in the pellets and in the cladding are different. The calculation of the contact load and the clearance along the length of a fuel rod and the stress and strain in each segment is explained. The method adopted in the FREC-4A is simple, and suitable to predict the deformation of fuel rods over their full length. This report is described on the outline of the program, the method of solving the stiffness equations, the calculation models, the input data such as irradiation history, output distribution, material properties and pores, the printing-out of input data and calculated results. (Kako, I.)

  6. Code package to analyse behavior of the WWER fuel rods in normal operation: TOPRA's code

    International Nuclear Information System (INIS)

    This paper briefly describes the code package intended for analysis of WWER fuel rod characteristics. The package includes two computer codes: TOPRA-1 and TOPRA-2 for full-scale fuel rod analyses; MRZ and MKK codes for analyzing the separate sections of fuel rods in r-z and r-j geometry. The TOPRA's codes are developed on the base of PIN-mod2 version and verified against experimental results obtained in MR, MIR and Halden research reactors (in the framework of SOFIT, FGR-2 and FUMEX experimental programs). Comparative analysis of calculation results and results from post-reactor examination of the WWER-440 and WWER-1000 fuel rod are also made as additional verification of these codes. To avoid the enlarging of uncertainties in fuel behavior prediction as a result of simplifying of the fuel geometry, MKK and MRZ codes are developed on the basis of the finite element method with use of the three nodal finite elements. Results obtained in the course of the code verification indicate the possibility for application of the method and TOPRA's code for simplified engineering calculations of WWER fuel rods thermal-physical parameters. An analysis of maximum relative errors for predicting of the fuel rod characteristics in the range of the accepted parameter values is also presented in the paper

  7. Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)

    International Nuclear Information System (INIS)

    Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated

  8. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses.

  9. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses

  10. Reassessment of fuel failure behavior in the SPERT and PBF experiments for irradiated fuel rods under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    The current safety guideline for the evaluation of postulated reactivity initiated events in light water reactors was established by the Nuclear Safety Commission in January, 1984 on the basis of the experimental results from the NSRR program using fresh fuels. As for the burnup effects on fuel failure, the results of the previous American SPERT-CDC experiments were considered in the guideline. However, failure threshold and failure mechanism for preirradiated fuel rods were not established because only a few irradiated fuel rods were tested. Experiments with preirradiated fuel rods are now in progress as the next major research items in the NSRR program. This paper presents behavior of fuel failure for irradiated fuel rods under reactivity initiated accident conditions. Results from the previous SPERT and PBF experiments which should be compared with the experiments of the NSRR program are reviewed. The modes of fuel failure in the SPERT and PBF experiments were different from those in the experiments with fresh fuels. Cladding rupture and PCMI failure came out in the SPERT experiments, Cladding rupture in the SPERT experiments might be related to a FP gas release during both preirradiation and power burst. The rod with burnup of 31,800 MWd/t and total energy of 190 cal/g·UO2 in the SPERT experiments failed at low energy deposition (85 cal/g·UO2) with PCMI. The observed cracks appeared to be brittle fractures along the whole active length of the rod. The failure of this ROd was probably related to the cladding embrittlement by the excessive corrosion during preirradiation. Moreover, relationship between supposed failure mechanisms and influencing factor for generally irradiated fuel rod under reactivity initiated accident conditions is discussed. (author)

  11. Fuel rod modelling during transients: The TOUTATIS code

    International Nuclear Information System (INIS)

    The TOUTATIS code is devoted to the PCI local phenomena simulation, in correlation with the METEOR code for the global behaviour of the fuel rod. More specifically, the TOUTATIS objective is to evaluate the mechanical constraints on the cladding during a power transient thus predicting its behaviour in term of stress corrosion cracking. Based upon the finite element computation code CASTEM 2000, TOUTATIS is a set of modules written in a macro language. The aim of this paper is to present both code modules: The axisymmetric bi-dimensional module, modeling a unique block pellet; The tri dimensional module modeling a radially fragmented pellet. Having shown the boundary conditions and the algorithms used, the application will be illustrated by: A short presentation of the bidimensional axisymmetric modeling performances as well as its limits; The enhancement due to the three dimensional modeling will be displayed by sensitivity studies to the geometry, in this case the pellet height/diameter ratio. Finally, we will show the easiness of the development inherent to the CASTEM 2000 system by depicting the process of a modeling enhancement by adding the possibility of an axial (horizontal) fissuration of the pellet. As conclusion, the future improvements planned for the code are depicted. (author)

  12. Computer simulation of the behaviour and performance of a CANDU fuel rod

    International Nuclear Information System (INIS)

    At the Argentine Atomic Energy Commission (Comision Nacional de Energia Atomica, CNEA) the BACO code (for 'BArra COmbustible', fuel rod) was developed. It allows the simulation of the thermo-mechanical performance of a cylindrical fuel rod in a Pressurized Heavy Water Reactor (PHWR). The standard present version of the code (2.30), is a powerful tool for a relatively easy and complete evaluation of fuel behaviour predictions. Input parameters and, therefore, output ones may include statistical dispersion. As a demonstration of BACO capabilities we include a review of CANDU fuel applications, and the calculation and a parametric analysis of a characteristic CANDU fuel. (author)

  13. Prediction of the local power factor in BWR fuel cells by means of a multilayer neural network

    International Nuclear Information System (INIS)

    To the beginning of a new operation cycle in a BWR reactor the reactivity of this it increases by means of the introduction of fresh fuel, the one denominated reload fuel. The problem of the definition of the characteristics of this reload fuel represents a combinatory optimization problem that requires significantly a great quantity of CPU time for their determination. This situation has motivated to study the possibility to substitute the Helios code, the one which is used to generate the new cells of the reload fuel parameters, by an artificial neuronal network, with the purpose of predicting the parameters of the fuel reload cell of a BWR reactor. In this work the results of the one training of a multilayer neuronal net that can predict the local power factor (LPPF) in such fuel cells are presented. The prediction of the LPPF is carried out in those condition of beginning of the life of the cell (0.0 MWD/T, to 40% of holes in the one moderator, temperature of 793 K in the fuel and a moderator temperature of 560 K. The cells considered in the present study consist of an arrangement of 10x10 bars, of those which 92 contains U235, some of these bars also contain a concentration of Gd2O3 and 8 of them contain only water. The axial location inside the one assembles of recharge of these cells it is exactly up of the cells that contain natural uranium in the base of the reactor core. The training of the neuronal net is carried out by means of a retro-propagation algorithm that uses a space of training formed starting from previous evaluations of cells by means of the Helios code. They are also presented the results of the application of the neuronal net found for the prediction of the LPPF of some cells used in the real operation of the Unit One of the Laguna Verde Nuclear Power station. (Author)

  14. Fuel rod behavior under normal operating conditions in Super Fast Reactor with high power density

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Haitao, E-mail: haitaoju@gmail.com [Science and Technology on Reactor System Design Technology Laboratory, Chengdu, Sichuan 610041 (China); Ishiwatari, Yuki [Department of Nuclear Engineering and Management, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Oka, Yoshiaki [Joint Department of Nuclear Energy, Waseda University, Totsukamachi, Shinjuku, Tokyo 169-8050 (Japan)

    2015-08-15

    Highlights: • The improved core of Super Fast Reactor with high power density is analyzed. • We analyzed four types of the limiting fuel rods. • The influence of Pu enrichment and compressive stress to yield strength ratio are analyzed. • The improved fuel rod design of the new core is suggested. - Abstract: A Super Fast Reactor is a pressure-vessel type, fast spectrum SuperCritical Water Reactor (SCWR) which is presently researched in a Japanese project. A preliminary core has an average power density of 158.8 W/cc. However one of the most important advantages of the Super Fast Reactor is the higher power density compared to the thermal spectrum SCWR, which reduces the capital cost. After the sensitivity analyses on the fuel rod configurations, the fuel assembly configurations and the core configurations, an improved core with an average power density of 294.8 W/cc is designed by 3-D neutronic/thermal-hydraulic coupled calculations. In order to ensure the fuel rod integrity of new core design with high power density, the fuel rod behaviors under normal operating condition are analyzed using fuel performance code FEMAXI-6. The power histories of each fuel rod are taken from the neutronics calculation results in the core design. The cladding surface temperature histories are generated from the thermal-hydraulic calculation results in the core design. Four types of the limiting fuel rods, individually with the Maximum Cladding Surface Temperature (MCST), Maximum Power Peak (MPP), Maximum Discharge Burnup (MDB) and Different Coolant Flow Pattern (DCFP), are chosen to cover all the fuel rods in the core. The available design range of the fuel rod design parameters, such as initial gas plenum pressure, gas plenum position, gas plenum length, grain size and gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900 °C. (2) Maximum cladding stress in circumferential direction should

  15. A user input manual for single fuel rod behaviour analysis code FEMAXI-III

    International Nuclear Information System (INIS)

    Principal objectives of Safety related research in connection with lighr water reactor fuel rods under normal operating condition are mainly addressed 1) to assess fuel integrity under steady state condition and 2) to generate initial condition under hypothetical accident. These assessments have to be relied principally upon steady state fuel behaviour computing code that is able to calculate fuel conditions to tbe occurred in a various manner. To achieve these objectives, efforts have been made to develope analytical computer code that calculates in-reactor fuel rod behaviour in best estimate manner. The computer code developed for the prediction of the long-term burnup response of single fuel rod under light water reactor condition is the third in a series of code versions:FEMAMI-III. The code calculates temperature, rod internal gas pressure, fission gas release and pellet-cladding interaction related rod deformation as a function of time-dependent fuel rod power and coolant boundary conditions. This document serves as a user input manual for the code FEMAMI-III which has opened to the public in year of 1982. A general description of the code input and output are included together with typical examples of input data. A detailed description of structures, analytical submodels and solution schemes in the code shall be given in the separate document to be published. (author)

  16. Development of Disassembly Tool for Intermediate Examination of Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Heo, Sungho; Kim, Kahye; Park, Sungjae; Joung, Changyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    To check the characteristics of nuclear fuels during an irradiation test, the nuclear fuel rod needs to be disassembled from the test rig located in the pool of the research reactor. Then, the disassembled fuel rod is delivered to the hot cell for intermediate examination. A fuel rod that passes the intermediate examination is delivered to the reactor pool to be reassembled into the test rig. The irradiation test is resumed with the reassembled test rig. Because nuclear fuel rods irradiated by neutrons are highly radioactive, all the disassembly and reassembly processes should be carried out in the pool of the research reactor to prevent operators being exposed to radiation. In particular, because a test rig is 5.4-m long and the reactor pool of HANARO is 6-m deep, special tools need to be developed for performing the disassembly and reassembly processes. In this study, a new assembly design of nuclear fuel rods for intermediate examination is introduced. Furthermore, tools for treating the irradiated fuel rod assembly are introduced, and their performance is verified by an out pile test.

  17. Dynamic characteristics and design criteria of fuel rod assemblies in a baffle jet flow

    International Nuclear Information System (INIS)

    During recent refuelling operations of a PWR type nuclear power plant it was found that several fuel assemblies located at baffle joint were damaged. It was assumed that the damage had been caused by severe vibration of fuel rods induced by coolant leakage through baffle joint. Model testing was con-ducted to identify the vibration mechanism and to obtain the safety criteria for fuel assemblies in a baffle jet flow. Fuel rods are long beams supported along their length by seven grid assemblies. Those prototype rods were simulated as single span simply supported beams. Model assemblies are 4 x 4 and 5 x 4 bundles of simply supported beams with a pitch ratio of 1.33. Flow tests were carried out in a water loop of 40 GPM. It was found that rod assemblies in a jet flow experience large amplitude vibration caused by jet induced instability. The stability boundary of rod assemblies is determined to be Vc/fD=2.3 √(D/h)(msub(o) deltasub(o))/(rho D2). Based on the stability boundary provided, safety limit of baffle gap is calculated as to be 1.6 x 10-3 in. The effect of the position of fuel rod assemblies relative to the baffle joint was investigated. And it was found that the susceptibility of rod assemblities to vibration increases as the stand off distance shortens. (Author)

  18. Power ramping test programme on Fragema fuel rods during the years 1984 to 1986

    International Nuclear Information System (INIS)

    Fragema and CEA have carried out a large-scale R and D programme to study the effect of transients on fuel behaviour, especially with regard to PCI. The FABRICE technique has been used to study portions of fuel rods previously irradiated in commercial reactors. The tested fuel rods were of Fragema design and cut from long rods, which were previously irradiated in the CAP reactor and/or the FESSENHEIM UNIT 2 power plant. Before ramping, those coming from CAP were subjected to daily load follow and frequency control in conditions representative of power reactors. The peak burnups ranged between 20 MWd/kg U and 35 MWd/kg U. The rods were precisely characterized before ramp testing. Power ramp tests were performed in the CEA OSIRIS and SILOE reactors. No failures were detected on the rods, at linear heat rating ranging between 400 W/cm and 640 W/cm. The post-irradiation examination showed important sharp increase and important large ridges at mid-pellet sections. Fission gas measurements indicated extensive releases at high power level. Fuel creep can explain the fact that no failures were detected at high linear heat rating. The extension of this programme done in co-operation with EDF is now in progress in order to increase the database to burnups higher than 30 MWd/kg U on CAP rods and higher than 55 MWd/kg U on fuel rods previously irradiated in FESSENHEIM. (author). 9 refs, 6 figs, 2 tabs

  19. Development of oxide layer thickness measuring device for irradiated nuclear fuel rods in hot cell

    International Nuclear Information System (INIS)

    It has been known that water side corrosion of fuel rods in nuclear reactor is accompanied with the loss of metallic wall thickness and pickup of hydrogen. This corrosion is one of the important limiting factors in the operating life of fuel rods. In connection with the fuel cladding corrosion, a device to measure the water side oxide layer thickness by means of the eddy current method without destructing the fuel rod was developed by KAERI. The device was installed on the multi function testing bench in the nondestructive test hot cell and its calibration was carried out successfully for the standard rod attached with plastic thin films whose thicknesses are predetermined. It shows good precision within 10% error

  20. Analysis of reactivity transients and heat conduction in cylindrical fuel rod

    International Nuclear Information System (INIS)

    The derivation of an algorithm for calculating the transient temperature distribution in a cylindrical fuel rod from the Paret computer code is presented. The finite diference method and the Crank-Nicholson method are used. (E.G.)

  1. Seal-welding detection device for fuel rod and detection method therefor

    International Nuclear Information System (INIS)

    The present invention provides a method of and a device for detecting presence or absence of abnormality of welded portions (nugget portions) for sealing an end plug sealing hole of a fuel rod. Namely, the end face of the fuel rod is photographed, and the nugget region is detected based on the photographed images by a nugget boundary recognition means. The region to be sealed is determined as a control-range mark on the image of the end face of the fuel rod. Whether the control-range mark is included in the nugget portion or not is compared and evaluated as a comparing and judging means. Then, the presence or absence of the abnormality for the seal in the nugget portion of the fuel rod end plug can be visually monitored automatically and continuously. In addition, since the remote-detection can be conducted and in non-contact manner, operator's exposure can be eliminated. (I.S.)

  2. Prediction of the influence of material properties on fuel rod behaviour

    International Nuclear Information System (INIS)

    There is an increasing interest on the influence of materials properties on fuel rod behaviour under constant power, power ramping and load-following operation of a nuclear power plant. Analytical tools are required in order to determine the effect of the modification of given material properties, as well as to analyze actual irradiation behaviour and PIE results. CNEA has developed the BACO Code for the analysis of fuel rod behaviour under irradiation. Its modular structure and detailed coupling of thermo-mechanical and irradiation induced phenomena makes it an interesting tool for the prediction of the influence of material properties on the fuel rod performance and integrity. In this paper, we present a study of the effect of some material properties - i.e. fuel porosity, densification, Zircaloy mechanical properties and anisotropy, among others - on fuel rod behaviour. The study covers constant power, and power ramping. Power ramping due to fuel reshuffling in HWRs is specially analyzed, as well as the influence of ramp velocity and pre-conditioning on the fuel rod integrity. A brief discussion is included regarding the interrelation between basic fuel design, material properties, operating conditions and fuel integrity. (author)

  3. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    Energy Technology Data Exchange (ETDEWEB)

    Sample, C R [comp.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.

  4. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    International Nuclear Information System (INIS)

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL

  5. Safety analysis report supplement for consolidated fuel rod storage at an independent spent fuel storage installation. Volume IV

    International Nuclear Information System (INIS)

    The purpose of this report is to supplement a safety analysis report for an independent spent fuel storage installation to allow the incorporation of consolidated nuclear fuel into an otherwise licensed facility. This report presents only information regarding storage of consolidated pressurized water reactor fuel. The document contains supplemental criticality, radiological, structural, and thermal information which must be added to an existing safety analysis report to permit upgrading the method of fuel storage to consolidated fuel rod storage

  6. Tension test of central rod welded section of the HANARO fuel and the capsule

    International Nuclear Information System (INIS)

    The central rod in HANARO fuel assembly and irradiation capsule is manufactured by electron beam welding of φ 8 mm rod and rod tip. Effects of pre-welding joint of the welding specimens were evaluated by tensile tests of the welded specimen. The screw type pre-welding joint gives the tensile strength of 429 N/mm2 while disk shape joint gives the tensile strength 475 N/mm2. Therefore, both pre-welding joint methods of the central rod satisfied the design requirement of the tensile strength

  7. Investigation of axial power gradients near a control rod tip

    International Nuclear Information System (INIS)

    Highlights: → Pin power gradients near BWR control rod tips have been investigated. → A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. → Small nodes increases pin power gradients; standard nodes underestimates gradients. → The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, ∼15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.

  8. Flow processes during subcooled boiling in fuel rod clusters of water-cooled reactors

    International Nuclear Information System (INIS)

    The theoretical fundamentals for the thermohydraulic calculation of fuel rod clusters in light water-cooled reactors are presented with special regard to boiling on fuel rods in unsaturated water. It is shown which preconditions concerning the structure of the two-phase flow must be met in order to apply the methods of single-phase continuum mechanics to two-phase flows. (orig./TK)

  9. Verification of a BWR code package by gamma scan measurements

    International Nuclear Information System (INIS)

    High-burnup 8 x 8 fuel with a large central water rod (called step 2 fuel) has been recently introduced to the latest Japanese boiling water reactor (BWR) plants. Lanthanum-140 gamma intensity is almost directly related to nodal powers. By gamma scan measurement, the axial distribution of 140La in the exposed fuel was measured at the end of cycle (EOC) 1 and was compared with the calculation by a BWR code package TGBLA/LOGOS. The multienrichment fuel-type core (MEC) design was adopted for the initial cycle core of the plants. The MEC design contains three different enrichment types of fuels to simulate the equilibrium cycles, achieve much higher discharge exposure, and save fuel cycle cost, and the low-enrichment fuels are loaded in periphery and in control cells. Such MEC design could be a challenge to the BWR design methods because of the large spectrum mismatch among the fuel assemblies of the different enrichments. The aforementioned comparison has shown that the accuracy of the TGBLA/LOGOS code package is satisfactory

  10. Use of fuel elements and fuel rod arrays of WWER-type with 20 % enriched cermet fuel for reactors of floating power plant KLT-40S

    International Nuclear Information System (INIS)

    It was carried out numerical analysis of the physical characteristics of change from normal active zone to fuel elements and fuel rod arrays using fuel cycle of WWER-1000 type as well as at replacement of oxide fuel to cermet fuel (60%UO2+40% of silumin) with 20% enrichment. At that the main physical characteristics of active zone and reactor are kept - geometric sizes, power, coolant properties etc. It was given the main physical properties of fuel elements and fuel rod arrays of active zone with cermet fuel. Calculation of neutron physical characteristics was carried out. The reactor has internal self-protectability

  11. Preliminary Study on the Fretting Wear Behaviors of a Duel Cooled Fuel Rod

    International Nuclear Information System (INIS)

    Based on MIT's concept, an innovative fuel development project was launched by KAERI that a substantial power up-rating could be realized by introducing an internally and externally double cooled annular fuel for current PWR reactors. In order to apply this duel cooled fuel to an OPR 1000 reactor system, geometrical features of structural parts in a fuel assembly should be changed except an overall dimension of a fuel assembly. Typical changes are summarized as fuel rod diameter and weight, shape and position of a spacer grid spring, etc. When considering a duel cooled fuel rod, its vibration characteristic and fretting behavior should be verified because the modified shape and dimension of spacer grid spring, fuel rod diameter and weight, number of spacer grid assembly are closely related to a flow-induced vibration in a duel cooled fuel assembly. In this study, based on FIV test results of 4x4 fuel assembly, fretting wear tests of an outer duel cooled fuel rod were performed by using an embossing type spacer grid spring that could adjust its spring stiffness. The discussion was focused on the evaluation of the optimized spring stiffness and spring position in 1x1 cell by analyzing the fretting wear results. (authors)

  12. Non-destructive testing dummy nuclear fuel rods by neutron radiography

    International Nuclear Information System (INIS)

    Background: The nuclear fuel rod is a key component of nuclear plants and reactors. It works in the extreme conditions, so it is easy to be broken. In order to be safe in operation, lots of testings have to be carried out from fabricating to operating of the fuel rod. Purpose: As a unique non-destructive testing technique, neutron radiography can be used to measure the nuclear fuel rods with radioactivity by an indirect neutron radiography method. Study the indirect neutron radiography method is the primary step of testing. Methods: Non-destructive testing experiments were carried out at China Advanced Research Reactor (CARR) by indirect neutron radiography method with dummy nuclear fuel rods as the samples. The 0.1 mm-thick Dy foil was used as the neutron converter. Results: The neutron images of dummy nuclear fuel rods were obtained. The resolution of testing was analyzed with the images. Through imaging analysis methods, the structure defections, the hydrogen accumulation in the cladding and the U-235 enrichment of pellet were studied and analyzed. Conclusions: The indirect neutron radiography method and the neutron image analysis method were studied. The work described in this paper provides a primary guideline for investigating actual irradiated fuel rods by the neutron radiography at CARR in the future. (authors)

  13. Water-side oxide layer thickness measurement of the irradiated PWR fuel rod by NDT method

    International Nuclear Information System (INIS)

    It has been known that water-side corrosion of fuel rods in nuclear reactor is accompanied with the loss of metallic wall thickness and pickup of hydrogen. This corrosion is one of the important limiting factors in the operating life of fuel rods. In connection with the fuel cladding corrosion, a device to measure the water-side oxide layer thickness by means of the eddy-current method without destructing the fuel rod was developed by KAERI. The device was installed on the multi-function testing bench in the nondestructive test hot-cell and its calibration was carried out successfully for the standard rod attached with plastic thin films whose thicknesses are predetermined. It shows good precision within about 10% error. And a PWR fuel rod, one of the J-44 assembly discharged from Kori nuclear power plant Unit-2, has been selected for oxide layer thickness measurements. With the result of data analysis, it appeared that the oxide layer thicknesses of Zircaloy cladding vary with the length of the fuel rod, and their thicknesses were compared with those of the destructive test results to confirm the real thicknesses

  14. Method and apparatus for reading lased bar codes on shiny-finished fuel rod cladding tubes

    International Nuclear Information System (INIS)

    This patent describes, in a nuclear fuel rod identification system, a method of reading a bar code etched directly on a surface of a nuclear fuel rod. It comprises: defining a pair of light diffuser surfaces adjacent one another but in oppositely inclined relation to a beam of light emitted from a light reader; positioning a fuel rod, having a cylindrical surface portion with a bar code etched directly thereon, relative to the light diffuser surfaces such that the surfaces are disposed adjacent to and in oppositely inclined relation along opposite sides of the fuel rod surface portion and the fuel rod surface portion is aligned with the beam of light emitted from the light reader; directing the beam of light on the bar code on fuel rod cylindrical surface portion such that the light is reflected therefrom onto one of the light diffuser surfaces; and receiving and reading the reflected light from the bar code via the one of the light diffuser surfaces to the light reader

  15. Single rod leak detection and repair of leaking or damaged fuel assemblies

    International Nuclear Information System (INIS)

    In some circumstances, it is necessary to perform rework operations on some fuel assemblies in order to make them reusable in reactors, movable, transportable or consistent with fuel reprocessor specifications, depending on the plant utility policy. These rework operations are of two types: - Those which consist in restoring the leak tightness of the fuel assemblies. They are made after a series of tests allowing the localization of the failed fuel rods: at first, overall leak detection is provided by monitoring primary coolant activity during reactor operation; then, during refuelling, leaking assemblies are identified by subjecting each of the assemblies scheduled for reloading to a sipping test; finally individual leaking fuel rods are singled out before the defective assemblies can be repaired, i.e. failed rods can be replaced. - Those which involve replacement of part of or the whole assembly structure (combined or not with replacement of failed fuel rods). In order to meet these two needs for rework operations, FRAGEMA has developed a full range of test and tooling systems for detecting single leaking rods in irradiated fuel assemblies and for restoring fuel assemblies to be used in PWR nuclear power plants. As an illustration of the means available, two of these systems are described

  16. End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)

    International Nuclear Information System (INIS)

    Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 25800F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs

  17. Investigating mechanical behavior and radiation resistant of fuel rods clad in nuclear power plant

    International Nuclear Information System (INIS)

    interstitials in metal lattice under irradiation causes increased strength and hardness but decreases ductility in metals.The increase in strength and hardness depends on obstacles that prevent the motion of dislocations. The clustering of point defects are responsible for these changes. Irradiation also induces instabilities in phases due to enhancement of diffusion, solute segregation, precipitate formation, order- disorder transformation and resolution of small precipitates. From the microscopic point of view accumulation of vacancies accompanied by formation of He and H2 gases under irradiation cause an increase in volume which results in swelling and eventually ends up with embrittlement of metals. This subject was described in chapter three Zirconium and its alloys are the best structural materials for fuel cladding of BWR and PWR reactors core. The working condition in the core of nuclear reactor are very serve, respect temperature and radiation dose. It should be realized that, if fuel cladding receive damage and get cracked, the first cooling cycle and the maine equipment will be contaminated with active materials which cause additional environmental problems. Furthermore, replacement of fuel rods are very costly. Therefore, for increasing life time of fuel cladding and minimizing damage, the effect of radiation and heat on Zirconium and its alloys must be investigated. This subject was described in chapter four.The mechanical behavior and radiation resistant of fuel cladding in PWR reactor (specifically WWER ) have been investigated which is described in chapter five. Result, discussion and final conclusion are summarized in last chapter and also several points for improvement have been offered

  18. Welding of stainless steel clad fuel rods for nuclear reactors

    International Nuclear Information System (INIS)

    This work describes the obtainment of austenitic stainless steel clad fuel rods for nuclear reactors. Two aspects have been emphasized: (a) obtainment and qualification of AISI 304 and 304 L stainless steel tubes; b) the circumferential welding of pipe ends to end plugs of the same alloy followed by qualification of the welds. Tubes with special and characteristic dimensions were obtained by set mandrel drawing. Both, seamed and seamless tubes of 304 and 304 L were obtained.The dimensional accuracy, surface roughness, mechanical properties and microstructural characteristics of the tubes were found to be adequate. The differences in the properties of the tubes with and without seams were found to be insignificant. The TIG process of welding was used. The influence of various welding parameters were studied: shielding gas (argon and helium), welding current, tube rotation speed, arc length, electrode position and gas flow. An inert gas welding chamber was developed and constructed with the aim of reducing surface oxidation and the heat affected zone. The welds were evaluated with the aid of destructive tests (burst-test, microhardness profile determination and metallographic analysis) and non destructive tests (visual inspection, dimensional examination, radiography and helium leak detection). As a function of the results obtained, two different welding cycles have been suggested; one for argon and another for helium. The changes in the microstructure caused by welding have been studied in greater detail. The utilization of work hardened tubes, permitted the identification by optical microscopy and microhardness measurements, of the different zones: weld zone; heat affected zone (region of grain growth, region of total and partial recrystallization) and finally, the zone not affected by heat. Some correlations between the welding parameters and metallurgical phenomena such as: solidification, recovery, recrystallization, grain growth and precipitation that occurred

  19. The SABRE code for fuel rod cluster thermohydraulics

    International Nuclear Information System (INIS)

    This paper describes the capabilities of the SABRE code for the calculation of single phase and two phase fluid flow and temperature in fuel pin bundles, discusses the methods used in the modelling and solution of the problem, and presents some results including comparison with experiments. The SABRE code permits calculation of steady-state or transient, single or two phase flows and the geometrical options include general representation of grids, wire wraps, multiple blockages, bowed pins, etc. The derivation and solution of the difference equations is discussed. Emphasis is given to the derivation of the spatial differences in triangular subchannel geometry, and the use of central, upward or vector upwind schemes. The method of solution of the difference equations is described for both steady state and transient problems. Together with these topics we consider the problems involved in turbulence modelling and how it is implemented in SABRE. This includes supporting work with a fine scale curvilinear coordinate programme to provide turbulence source data. The problem of modelling boiling flows is discussed, with particular reference to the numerical problems caused by the rapid density change on boiling. The final part of the paper presents applications of the code to the analysis of blockage situations, the study of flow and power transients and analysis of natural circulation within clusters to demonstrate the scope of the code and compare with available experimental results. The comparisons include the calculation of a flow pressure drop characteristic of a boiling channel showing the Ledinegg instability, examples of overpower and flow rundown transients which lead to coolant boiling, and calculation of natural circulation within a rod cluster. (orig./GL)

  20. Use of radiography to monitor structural movement in GCFR-CFTL fuel rod bundles

    International Nuclear Information System (INIS)

    The Core Flow Test Loop (CFTL) is designed to simulate accident conditions of the Gas-Cooled Fast Reactor (GCFR). The reactor fuel rods are simulated by electric heater rods. An important consideration in data acquisition for loss of coolant studies is structural movement in the test bundle, that is, axial expansion and laterial movement (bowing) of fuel rod simulators and ducts. Radiography is superior to proximity sensors and extensometers for monitoring structural movement because radiography is external to the CFTL vessel and nonintrusive. Both fluoroscopy and film radiography were investigated. Both techniques were determined feasible, and both are recommended for GCFR-CFTL applications