WorldWideScience

Sample records for bwr fuel assembly

  1. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    In the fuel assembly of the present invention, a means for mounting and securing short fuel rods is improved. Not only long fuel rods but also short fuel rods are disposed in channel of the fuel assembly to improve reactor safety. The short fuel rods are supported by a screw means only at the lower end plug. The present invention prevents the support for the short fuel rod from being unreliable due to the slack of the screw by the pressure of inflowing coolants. That is, coolant abutting portions such as protrusions or concave grooves are disposed at a portion in the channel box where coolants flowing from the lower tie plate, as an uprising stream, cause collision. With such a constitution, a component caused by the pressure of the flowing coolants is formed. The component acts as a rotational moment in the direction of screwing the male threads of the short fuel rod into the end plug screw hole. Accordingly, the screw is not slackened, and the short fuel rods are mounted and secured certainly. (I.S.)

  2. Determination of BWR Spent Nuclear Fuel Assembly Effective Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew D. Hinds

    2001-10-17

    The purpose of this calculation is to provide an effective thermal conductivity for use in predicting peak cladding temperatures in boiling water reactor (BWR) fuel assemblies with 7x7,8x8, and 9x9 rod arrays. The first objective of this calculation is to describe the development and application of a finite element representation that predicts peak spent nuclear fuel temperatures for BWR assemblies. The second objective is to use the discrete representation to develop a basis for determining an effective thermal conductivity (described later) for a BWR assembly with srneared/homogeneous properties and to investigate the thermal behavior of a spent fuel assembly. The scope of this calculation is limited to a steady-state two-dimensional representation of the waste package interior region. This calculation is subject to procedure AP-3.124, Calculations (Ref. 27) and guided by the applicable technical work plan (Ref. 14). While these evaluations were originally developed for the thermal analysis of conceptual waste package designs emplaced in the potential repository at Yucca Mountain, the methodology applies to storage and transportation thermal analyses as well. Note that the waste package sketch in Attachment V depicts a preliminary design, and should not be interpreted otherwise.

  3. PWR and BWR spent fuel assembly gamma spectra measurements

    Science.gov (United States)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  4. Calibration of the TVO spent BWR reference fuel assembly

    International Nuclear Information System (INIS)

    In 1989 the Support Programmes of Finland (FSP) and Sweden (SSP) initiated a joint task to cross calibrate the burnup of the IAEA spent BWR reference fuel assembly at the TVO AFR storage facility (TVO KPA-STORE) in Finland. The reference assembly, kept separately under the IAEA seal, is used for verification measurements of spent fuel by GBUV method (SG-NDA-38). The cross calibration was performed by establishing a calibration curve, 244Cm neutron rate versus burnup, using passive neutron assay (PNA) measurements. The declared burnup of the reference assembly was compared with the burnup value deduced from the calibration curve. A calibration line was also established by using the GBUV method with the aid of high resolution gamma ray spectrometry (HRGS). Normalization between the two different facilities was performed using sealed neutron and gamma calibration sources. The results of the passive neutron assay show consistency, better than 1 %, between the declared mean burnup of the reference assembly and the burnup deduced from the calibration curve. The corresponding consistency is within +-2 % for the HRGS measurements

  5. Optimization of fuel rod enrichment distribution for BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Yasushi; Hida, Kazuki; Sakurada, Koichi; Yamamoto, Munenari [Toshiba Corp., Kawasaki, Kanagawa (Japan). Nuclear Engineering Lab.

    1996-09-01

    A practical method was developed for determining the optimum fuel enrichment distribution within a boiling water reactor fuel assembly. The method deals with two different optimization problems, i.e. the combinatorial optimization problem of grouping fuel rods into a given number of rod groups with the same enrichment, and the problem of determining an optimal enrichment for each fuel rod under the resultant rod-grouping pattern. In solving these problems, the primary goal is to minimize a predefined objective function over a given exposure period. The objective function used here is defined by the linear combination C{sub 1}X + C{sub 2}X{sub G}, where X and X{sub G} stand, respectively, for control variables giving constraint to the local power peaking factor and the gadolinium rod power. C{sub 1} and C{sub 2} are user-definable weighting factors to accommodate design preferences. The algorithm for solving this combinatorial optimization problem starts by finding the optimal enrichment vector without any rod-grouping, and promising candidates of rod-grouping patterns are found by exhaustive enumeration based on the resulting fuel enrichment ordering. This latter problem is solved using the method of approximation programming. A practical application is shown for a contemporary 8 x 8 Pu mixed-oxide fuel assembly with 10 gadolinium-poisoned rods. (author)

  6. Revaluation on measured burnup values of fuel assemblies by post-irradiation experiments at BWR plants

    International Nuclear Information System (INIS)

    Fuel composition data for 8x8 UO2, Tsuruga MOX and 9x9-A type UO2 fuel assemblies irradiated in BWR plants were measured. Burnup values for measured fuels based on Nd-148 method were revaluated. In this report, Nd-148 fission yield and energy per fission obtained by burnup analyses for measured fuels were applied and fuel composition data for the measured fuel assemblies were revised. Furthermore, the adequacies of revaluated burnup values were verified through the comparison with burnup values calculated by the burnup analyses for the measured fuel assemblies. (author)

  7. Proving test on thermal-hydraulic performance of BWR fuel assemblies

    International Nuclear Information System (INIS)

    Nuclear Power Engineering Corporation (NUPEC) has conducted a proving test for thermal-hydraulic performance of BWR fuel (high-burnup 8 x 8, 9 x 9) assemblies entrusted by the Ministry of Economy, Trade and Industry (NUPEC-TH-B Project). The high-burnup 8 x 8 fuel (average fuel assembly discharge burnup: about 39.5 GWd/t), has been utilized from 1991. And the 9 x 9 fuel (average fuel assembly discharge burnup: about 45 GWd/t), has started to be used since 1999. There are two types (A-type and B-type) of fuel design in 9 x 9 fuel assembly. Using an electrically heated test assembly which simulated a BWR fuel bundle on full scale, flow induced vibration, pressure drop, critical power under steady state condition and post-boiling transition (post-BT) tests were carried out in an out-of pile test facility that can simulate the high pressure and high temperature conditions of BWRs. This paper completed the results of 9 x 9 fuel combined with the previously reported results of high-burnup 8 x 8 fuel. As a result of NUPEC-TH-B Project, the validity of the current BWR thermal-hydraulic design method was confirmed and the reliability of BWR thermo-hydraulic fuel performance was demonstrated. Based on the test data, a new correlation of the estimation of fuel rod vibration amplitude, new post-BT heat transfer and rewet correlations for the estimation of fuel rod surface temperature were developed. (author)

  8. Critical experiments for BWR fuel assemblies with cluster of gadolinia rods

    International Nuclear Information System (INIS)

    Gadolinia-bearing fuel rods are needed for high-burnup fuels. Strong neutron absorption of gadolinia makes an assembly heterogeneous from the viewpoint of reactor physics. The cluster of gadolinia-bearing fuel rods is useful for higher-burnup fuels than current fuels. Few critical experiments have been reported for fuel assemblies with the cluster of gadolinia-bearing fuel rods. We conducted critical experiments for BWR fuel assemblies with the cluster of gadolinia-bearing fuel rods in the Toshiba Nuclear Critical Assembly (NCA). Critical water level and power distribution were measured. Measurements were compared with analyses by a continuous-energy Monte Carlo code, MCNP, with the JENDL3.3 nuclear data library. (author)

  9. Droplet entrainment and deposition rate models for determination of boiling transition in BWR fuel assembly

    International Nuclear Information System (INIS)

    Droplet entrainment and deposition rates are of vital importance for mechanistic determination of critical power and location of boiling transition in a BWR fuel assembly. Data from high-pressure, high-temperature steam-water adiabatic experiments conducted in very tall test sections are used to develop a combination of equilibrium entrainment-deposition rate. Application of this combination to the heated tests conducted in a shorter test section of typical height of a BWR fuel assembly shows that correct split of total liquid in form of the film and droplets at the onset of annular-mist flow regime is also important to obtain good prediction of film flow rates/entrainment fraction. The improved model is then applied to simulate critical power tests in annulus and rod bundles. (author)

  10. BWR fuel performance

    International Nuclear Information System (INIS)

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  11. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  12. Implement of MOX fuel assemblies in the design of the fuel reload for a BWR; Implemento de ensambles de combustible MOX en el diseno de la recarga de combustible para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez C, P.; Ramirez S, J. R.; Alonso V, G.; Palacios H, J. C., E-mail: pastor.enriquez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    At the present time the use of mixed oxides as nuclear fuel is a technology that has been implemented in mixed reloads of fuel for light water reactors. Due to the plutonium production in power reactors, is necessary to realize a study that presents the plutonium use like nuclear fuel. In this work a study is presented that has been carried out on the design of a fuel assembly with MOX to be proposed in the supply of a fuel reload. The fissile relationship of uranium to plutonium is presented for the design of the MOX assembly starting from plutonium recovered in the reprocessing of spent fuel and the comparison of the behavior of the infinite multiplication factor is presented and of the local power peak factor, parameters of great importance in the fuel assemblies design. The study object is a fuel assembly 10 x 10 GNF2 type for a boiling water reactor. The design of the fuel reload pattern giving fuel assemblies with MOX, so the comparison of the behavior of the stop margin for a fuel reload with UO{sub 2} and a mixed reload, implementing 12 and 16 fuel assemblies with MOX are presented. The results show that the implement of fuel assemblies with MOX in a BWR is possible, but this type of fuels creates new problems that are necessary to study with more detail. In the development of this work the calculus tools were the codes: INTREPIN-3, CASMO-4, CMSLINK and SIMULATE-3. (Author)

  13. Infinite fuel element simulation of pin power distributions and control blade history in a BWR fuel assembly

    International Nuclear Information System (INIS)

    Pellet-Cladding Interaction (PCI) is a well known effect in fuel pins. One possible reason for PCI-effects could be local power excursions in the fuel pins, which can led to a rupture of the fuel cladding tube. From a reactor safety point of view this has to be considered as a violence of the barrier principal in order to retain fission products in the fuel pins. This paper focuses on the pin power distributions in a 2D infinite lattice of a BWR fuel element. Lots of studies related PCI effect can be found in the literature. In this compact, coupled neutronic depletion calculations taking the control history effect into account are described. Depletion calculations of an infinite fuel element of a BWR were carried out with controlled, uncontrolled and temporarily controlled scenarios. Later ones are needed to describe the control blade history (CBH) effect. A Monte-Carlo approach is mandatory to simulate the neutron physics. The VESTA code was applied to couple the Monte-Carlo-Code MCNP(X) with the burnup code ORIGEN. Additionally, CASMO-4 is also employed to verify the method of simulation results from VESTA. The cross sections for Monte Carlo and burn-up calculations are derived from ENDF/B-VII.0. (orig.)

  14. Transportation activities for BWR fuels at NFI

    International Nuclear Information System (INIS)

    Nuclear Fuel Industries, LTD. (NFI) supplies fuel assemblies for both PWR and BWR in Japan. We can also manage transportation of the fuel assemblies from our fabrication facilities to the nuclear power plants of Japanese utilities. For the transportation of fuel assembly, we designed and fabricated the transportation containers to meet the requirements of the IAEA regulations, and licensed in Japan. This paper introduced the recent activity and R and D of NFI concerning transportation of BWR fuel assembly. NT-XII transportation container was developed for fresh BWR fuel assemblies. NT-XII container consists of inner container and outer container. Two BWR fuel assemblies with up to 5 wt.-% 235-U enriched are enclosed in an inner container. In the concept of NT-XII container design, we made the best priority to transportation efficiency, as well as ensuring fuel integrity during transportation. NT-XII has been used since 2002 in Japan. Thanks to the lightening weight of containers, the number of containers to be loaded to one transportation truck was increased up to 9 containers (equivalent to 18 fuel assemblies) compared with former type container (NT-IV transportation container) which can be loaded up to 6 containers (equivalent to 12 fuel assemblies). In addition to the design of brand-new container, we promote the improvement of the packaging methods. In Japan, in order to reduce the damage to the fuel rod and fuel spacer while transporting, polyethylene sleeves which are called 'packing separators' are inserted in the rod-to-rod gap of fuel assembly. However, packing separators requires time and cost for the installation at fuel fabrication facility. In the same way, huge time and cost are needed for removal of packing separators at nuclear power plant. For the improvement of preparation efficiency before and after transportation, we investigated the influence of vibration to fuel integrity in case of transportation without packing separators. Based on the above

  15. Investigation of burnup credit implementation for BWR fuel

    International Nuclear Information System (INIS)

    Burnup Credit allows considering the reactivity decrease due to fuel irradiation in criticality studies for the nuclear fuel cycle. Its implementation requires to carefully analyze the validity of the assumptions made to define the axial profile of the burnup and void fraction (for BWR), to determine the composition of the irradiated fuel and to compute the criticality simulation. In the framework of Burnup Credit implementation for BWR fuel, this paper proposes to investigate part of these items. The studies presented in this paper concern: the influence of the burnup and of the void fraction on BWR spent fuel content and on the effective multiplication factor of an infinite array of BWR assemblies. A code-to-code comparison for BWR fuel depletion calculations relevant to Burnup Credit is also performed. (authors)

  16. OECD/NEA burnup credit criticality benchmarks phase IIIA: Criticality calculations of BWR spent fuel assemblies in storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ando, Yoshihira [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2000-09-01

    The report describes the final results of Phase IIIA Benchmarks conducted by the Burnup Credit Criticality Calculation Working Group under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The benchmarks are intended to confirm the predictive capability of the current computer code and data library combinations for the neutron multiplication factor (k{sub eff}) of a layer of irradiated BWR fuel assembly array model. In total 22 benchmark problems are proposed for calculations of k{sub eff}. The effects of following parameters are investigated: cooling time, inclusion/exclusion of FP nuclides and axial burnup profile, and inclusion of axial profile of void fraction or constant void fractions during burnup. Axial profiles of fractional fission rates are further requested for five cases out of the 22 problems. Twenty-one sets of results are presented, contributed by 17 institutes from 9 countries. The relative dispersion of k{sub eff} values calculated by the participants from the mean value is almost within the band of {+-}1%{delta}k/k. The deviations from the averaged calculated fission rate profiles are found to be within {+-}5% for most cases. (author)

  17. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Purpose: To reconstruct a BWR type reactor into a high conversion reactor with no substantial changes for the reactor inner structure such as control rod structure. Constitution: The horizontal cross sectional shape of a channel box is reformed into a square configuration and the arrangement of fuel rods is formed as a trigonal lattice-like configuration. As a method of improving the conversion ratio, there is considered to use a dense lattice by narrowing the distance between fuel rods and trigonal lattice arrangement for fuel rod is advantageous therefor. A square shape cross sectional configuration having equal length both in the lateral and longitudinal directions is suitable for the channel box as a guide upon movement of the control rod. Fuel rods can be arranged with no loss by the trigonal lattice configuration, by which it is possible to improve the neutron moderation, increase the reactor core reactivity and conduct effective fuel combustion. In this way, it is possible to attain the object by inserting the follower portion of the control rod at the earier half and extracting the same at the latter half during the operation period in the reactor core comprising fuel assemblies suitable to a high conversion BWR type reactor having average conversion ratio of about 0.8. (Kamimura, M.)

  19. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercial spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.

  20. Optimization of fuel rod enrichment distribution to minimize rod power peaking throughout life within BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Yasushi; Hida, Kazuki; Sakurada, Koichi; Yamamoto, Munenari [Toshiba Corp., Kawasaki, Kanagawa (Japan). Nuclear Engineering Lab.

    1997-01-01

    A practical method was developed for determining the optimum fuel enrichment distribution within a boiling water reactor fuel assembly. The method deals with two different optimization problems, i.e. a combinatorial optimization problem grouping fuel rods into a given number of rod groups with the same enrichment, and a problem determining an optimal enrichment for each fuel rod under the resultant rod-grouping pattern. In solving these problems, the primary goal is to minimize a predefined objective function over a given exposure period. The objective function used here is defined by a linear combination: C{sub 1}X+C{sub 2}X{sub G}, where X and X{sub G} stand for a control variable to give the constraint respectively for a local power peaking factor and a gadolinium rod power, and C{sub 1} and C{sub 2} are user-definable weighting factor to accommodate the design preference. The algorithm of solving the combinatorial optimization problem starts with finding the optimal enrichment vector without any rod-grouping, and promising candidates of rod-grouping patterns are found by exhaustive enumeration based on the resulting fuel enrichment ordering, and then the latter problem is solved by using the method of approximation programming. The practical application of the present method is shown for a contemporary 8x8 Pu mixed-oxide fuel assembly with 10 gadolinium-poisoned rods. (author)

  1. Modeling and validation of a mechanistic tool (MEFISTO) for the prediction of critical power in BWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Adamsson, Carl, E-mail: carl.adamsson@psi.ch [Westinghouse Electric Sweden, SE-721 63, Vaesteras (Sweden); Le Corre, Jean-Marie, E-mail: lecorrjm@westinghouse.com [Westinghouse Electric Sweden, SE-721 63, Vaesteras (Sweden)

    2011-08-15

    Highlights: > The MEFISTO code efficiently and accurately predicts the dryout event in a BWR fuel bundle, using a mechanistic model. > A hybrid approach between a fast and robust sub-channel analysis and a three-field two-phase analysis is adopted. > MEFISTO modeling approach, calibration, CPU usage, sensitivity, trend analysis and performance evaluation are presented. > The calibration parameters and process were carefully selected to preserve the mechanistic nature of the code. > The code dryout prediction performance is near the level of fuel-specific empirical dryout correlations. - Abstract: Westinghouse is currently developing the MEFISTO code with the main goal to achieve fast, robust, practical and reliable prediction of steady-state dryout Critical Power in Boiling Water Reactor (BWR) fuel bundle based on a mechanistic approach. A computationally efficient simulation scheme was used to achieve this goal, where the code resolves all relevant field (drop, steam and multi-film) mass balance equations, within the annular flow region, at the sub-channel level while relying on a fast and robust two-phase (liquid/steam) sub-channel solution to provide the cross-flow information. The MEFISTO code can hence provide highly detailed solution of the multi-film flow in BWR fuel bundle while enhancing flexibility and reducing the computer time by an order of magnitude as compared to a standard three-field sub-channel analysis approach. Models for the numerical computation of the one-dimensional field flowrate distributions in an open channel (e.g. a sub-channel), including the numerical treatment of field cross-flows, part-length rods, spacers grids and post-dryout conditions are presented in this paper. The MEFISTO code is then applied to dryout prediction in BWR fuel bundle using VIPRE-W as a fast and robust two-phase sub-channel driver code. The dryout power is numerically predicted by iterating on the bundle power so that the minimum film flowrate in the bundle

  2. Crud deposition modeling on BWR fuel rods

    International Nuclear Information System (INIS)

    Deposition of boiling water reactor (BWR) system corrosion products (crud) on operating fuel rods has resulted in performance-limiting conditions in a number of plants. The operational impact of performance-limiting conditions involving crud deposition can be detrimental to a BWR operator, resulting in unplanned or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and/or undesirable core design restrictions. To facilitate improved management of crud-related fuel performance risks, EPRI has developed the CORAL (Crud DepOsition Risk Assessment ModeL) tool. This paper presents a summary of the CORAL elements and benchmarking results. Applications of CORAL as a tool for fuel performance risk assessment are also discussed. (author)

  3. Safety analysis of thorium-based fuels in the General Electric Standard BWR

    International Nuclear Information System (INIS)

    A denatured (U-233/Th)O2 fuel assembly has been designed which is energy equivalent to and hardware interchangeable with a modern boiling water reactor (BWR) reference reload assembly. Relative to the reference UO2 fuel, the thorium fuel design shows better performance during normal and transient reactor operation for the BWR/6 product line and will meet or exceed current safety and licensing criteria. Power distributions are flattened and thermal operating margins are increased by reduced steam void reactivity coefficients caused by U-233. However, a (U-233/Th)O2-fueled BWR will likely have reduced operating flexibility. A (U-235/Th)O2-fueled BWR should perform similar to a UO2-fueled BWR under all operating conditions. A (Pu/Th)O2-fueled BWR may have reduced thermal margins and similar accident response and be less stable than a UO2-fueled BWR. The assessment is based on comparisions of point model and infinite lattice predictions of various nuclear reactivity parameters, including void reactivity coefficients, Doppler reactivity coefficients, and control blade worths

  4. OECD/NEA burnup credit criticality benchmarks phase IIIB. Burnup calculations of BWR fuel assemblies for storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  5. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    International Nuclear Information System (INIS)

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  6. ATRIUMTM Fuel - Continuous Upgrading for High Duty BWR Plants

    International Nuclear Information System (INIS)

    AREVA NP is a supplier of nuclear fuel assemblies and associated core components to Boiling Water Reactors worldwide, representing today more than 60 000 fuel assemblies. Since first delivered in 1992, ATRIUMTM10 fuel assemblies have now been supplied to a total of 32 BWR plants in the US, Europe, and Asia resulting in an operating experience over 20 000 fuel assemblies. Among them, the latest versions are ATRIUMTM 10XP and ATRIUMTM 10XM fuel assemblies which have been delivered to several utilities worldwide. During six years of operation experience reaching a maximum fuel assembly burnup of 66 MWd/kgU, no fuel failure of ATRIUMTM 10XP/XM occurred. Regular upgrading of the fuel assemblies' reliability and performance has been made possible thanks to AREVA NP's continuous improvement process and the 'Zero tolerance for failure' program. In this frame, the in-core behavior follow-up, manufacturing experience feedback and customer expectations are the bases for setting improvement management objectives. As an example, most fuel rod failures observed in the past years resulted from debris fretting and Pellet Cladding Interaction (PCI) generally caused by Missing Pellet Surface. To address these issues, the development of the Improved FUELGUARDTM debris filter was initiated and completed while implementation of chamfered pellets and Cr doped fuel will address PCI aspects. In the case of fuel channel bow issue, efforts to ensure dimensional stability at high burnup levels and under challenging corrosion environments have been done resulting in material recommendations and process developments. All the described solutions will strongly support the INPO goal of 'Zero fuel failures by 2010'. In a longer perspective, the significant trend in nuclear fuel operation is to increase further the discharge burnup and/or to increase the reactor power output. In the majority of nuclear power plants worldwide, strong efforts in power up-rating were made and are still ongoing. Most

  7. Experience and reliability of Framatome ANP's PWR and BWR fuel

    International Nuclear Information System (INIS)

    Based on three decades of fuel supply to 169 PWR and BWR plants on four continents, Framatome ANP has a very large database from operating experience feedback. The performance of Framatome PWR and BWR fuel is discussed for the period 1992-2001 with special emphasis on fuel failures, countermeasures and their effectiveness. While PWR fuel performance in most reactors has been good, the performance in some years did suffer from special circumstances that caused grid-to-rod fretting failures in few PWRs. After solving this problem, fuel of all types showed high reliability again. Especially the current PWR fuel products AFA 3G, HTP, Mark B and Mark BW showed a very good operating performance. Fuel reliability of Framatome ANP BWR fuel has been excellent over the last decade with average annual fuel rod failure rates under 1x10-5 since 1991. More than 40% of all BWR fuel failures in the 1992-2001 decade were caused by debris fretting. The debris problem has been remedied with the FUELGUARDTM lower tie plate, and by reactor operators' efforts to control the sources of debris. PCI, the main failure mechanism in former periods, affected only 10 rods. All of these rods had non-liner cladding. (author)

  8. Fuel assembly

    International Nuclear Information System (INIS)

    Since the neutron flux distribution and the power distribution of a fuel assembly in which short fuel rods vary greatly in the vicinity of a boundary where the distribution of uranium amount is different, the reading value of local power range monitors, having the detectors positioned in the vicinity of the boundary is varied. Then in the present invention, the upper end of the effective axial length of fuel rod is so made as not approaching with the detection position of the local power range monitor in a reactor core. Further, the upper end of the effective axial length of fuel rods in a 4 x 4 fuel rod lattice positioned at the corner on the side of the local power range monitor is so made as not approaching the detection position of the local power range monitor. As a result, the change of the neutron flux distribution and power distribution in the vicinity of the position where the detector of the local power range monitor is situated can be extremely reduced. Accordingly, there is no scattering and fluctuation for the reading value by the local power range monitor, to improve the monitoring performance for thermal characteristics in the reactor core. (N.H.)

  9. On the domestic fuel channel for BWR

    International Nuclear Information System (INIS)

    Kobe Steel Ltd. started the domestic manufacture of fuel channel boxes for BWRs in 1967, and entered the actual production stage four years after that. Since 1976, the mass production system was adopted with the increase of the demand. The requirements about the surface contamination and the dimensional accuracy over whole length are very strict in the fuel channel boxes, moreover, special consideration must be given so as to prevent the deformation in use. The unique working methods such as electron beam welding, high temperature press forming and so on are employed in Kobe Steel Ltd. to satisfy such strict requirements, therefore the quality of the produced fuel channel boxes is superior to imported ones. At present, the fuel channel boxes domestically made by Kobe Steel Ltd. are used for almost all BWRs in Japan. The functions of fuel channel boxes are to flow boiling coolant uniformly upward, to guide control rods, and to increase the rigidity of fuel assembly. The fuel channel boxes are the square tubes of zircaloy 4 of 134.06 mm inside width, 2.03 mm thickness, and 4118 or 4239 mm length. The progress of the development and the features of the fuel channel boxes and the manufacturing processes are described. Zircaloy plates are formed into channels, and two channels are electron beam-welded after the edge preparation, to make a box. Ultrasonic examination and stress relief treatment are applied, and clips and spacers are welded. (Kako, I.)

  10. Void Reactivity Coefficient Analysis during Void Fraction Changes in Innovative BWR Assemblies

    Directory of Open Access Journals (Sweden)

    Andrius Slavickas

    2015-01-01

    Full Text Available The study of the void reactivity variation in innovative BWR fuel assemblies is presented in this paper. The innovative assemblies are loaded with high enrichment fresh UO2 and MOX fuels. UO2 fuel enrichment is increased above existing design limitations for LWR fuels (>5%. MOX fuel enrichment with fissile Pu content is established to achieve the same burnup level as that of high enrichment UO2 fuel. For the numerical analysis, the TRITON functional module of SCALE 6.1 code with the 238-group ENDF/B-VI cross section data library was applied. The investigation of the void reactivity feedback is performed in the entire 0–100% void fraction range. Higher values of void reactivity coefficient for assembly loaded with MOX fuel are found in comparison with values for assembly loaded with UO2 fuel. Moreover, coefficient values for MOX fuel are positive over 75% void fraction. The variation of the void reactivity coefficient is explained by the results of the decomposition analysis based on four-factor formula and neutron absorption reactions for main isotopes. Additionally, the impact of the moderation enhancement on the void reactivity coefficient was investigated for the innovative assembly with MOX fuel.

  11. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6th of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  12. Analysis of Void Reactivity Coefficient for 3D BWR Assembly Model

    Directory of Open Access Journals (Sweden)

    Andrius Slavickas

    2016-01-01

    Full Text Available The effect of BWR fuel assembly 3D model on void reactivity coefficient (VRC estimation is investigated. VRC values were calculated for different BWR assembly models applying deterministic T-NEWT and Monte Carlo KENO-VI functional modules of SCALE 6.1 code package. The difference between deterministic T-NEWT and Monte Carlo KENO-VI simulations is negligible (0.18 pcm/%. The influence of the assumed more detailed coolant density profile was estimated as well. VRC increases with the application of a larger number of coolant density values across fuel assembly height. It was shown that the coolant density profile described by 6 values per height could be considered sufficient from prospect of VRC estimation, as a more detailed density profile has impact below 1% on total assembly void effects. VRC values were decomposed to values for individual nodes and isotopes, since decomposition provides useful insights to describe the overall behaviour of VRC in detail.

  13. Decomposition Analysis of Void Reactivity Coefficient for Innovative and Modified BWR Assemblies

    Directory of Open Access Journals (Sweden)

    Andrius Slavickas

    2014-01-01

    Full Text Available The decomposition analysis of void reactivity coefficient for innovative BWR assemblies is presented in this paper. The innovative assemblies were loaded with high enrichment UO2 and MOX fuels. Additionally the impact of the moderation enhancement on the void reactivity coefficient through a full fuel burnup discharge interval was investigated for the innovative assembly with MOX fuel. For the numerical analysis the TRITON functional module of SCALE code with ENDF/B-VI cross section library was applied. The obtained results indicate the influence of the most important isotopes to the void reactivity behaviour over a fuel burnup interval of 70 GWd/t for both UO2 and MOX fuels. From the neutronic safety concern positive void reactivity coefficient values are observed for MOX fuel at the beginning of the fuel irradiation cycle. For extra-moderated assembly designs, implementing 8 and 12 water holes, the neutron spectrum softening is achieved and consequently the lower void reactivity values. Variations in void reactivity coefficient values are explained by fulfilled decomposition analysis based on neutrons absorption reactions for separate isotopes.

  14. Radial optimization of a BWR fuel cell using genetic algorithms

    International Nuclear Information System (INIS)

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U235 and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix the placement of

  15. Analysis of assemblies exchange in the core of a reactor BWR; Analisis del intercambio de ensambles en el nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kauil U, J. S. [Universidad Autonoma de Yucatan, Facultad de Ingenieria, Av. Industrias no contaminantes por Anillo Periferico Norte s/n, Apdo. Postal 150 Cordemex, Merida, Yucatan (Mexico); Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia del Cueto, R., E-mail: san_dino@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The performance of the core of a boiling water reactor (BWR) was evaluated when two assemblies are exchanged during the fuel reload in erroneous way. All with the purpose of analyzing the value of the neutrons effective multiplication factor and the thermal limits for an exchange of assemblies. In their realization the mentioned study was based in a transition cycle of the Unit 1 of the nuclear power plant of Laguna Verde. The obtained results demonstrate that when carrying out an exchange between two fuel assemblies in erroneous way, with regard to the original reload, the changes in the neutrons effective multiplication factor do not present a serious problem, unless the exchange has been carried out among a very burnt assembly with one fresh, where this last is taken to the periphery. (Author)

  16. Experimental investigation of control absorber blade effects in a modern 10x10 BWR assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.; Grimm, P.; Murphy, M.; Luethi, A.; Seiler, R.; Joneja, O.; Meister, A.; Geemert, R. van; Brogli, R.; Chawla, R. [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland); Williams, T. [EGL Laufenburg (Switzerland); Helmersson, S. [Westinghouse Atom (Sweden)

    2001-03-01

    The accurate estimation of reactor physics parameters related to the presence of cruciform absorber blades. In Boiling Water Reactors (BWR) is important for safety assessment, and for achieving a flexible operation during the cycle. Characteristics which are affected strongly include the power distribution for controlled core regions and its impact on linear heat generation rate margins, as well as the build-up of plutonium, and its influence on core excess reactivity and the reactivity worth of the shutdown system. PSI and the Swiss Nuclear Utilities (UAK) are conducting an experimental reactor physics programme related to modern Light Water Reactor (LWR) fuel assemblies, as employed in the Swiss nuclear power plants: the so-called. LWR-PROTEUS Phase I project. A significant part of this project has been devoted to the characterization of highly heterogeneous BWR fuel elements in the presence of absorber blades. The paper presents typical results for the performance of modern lattice codes in the estimation of controlled assembly reaction rate distributions, the sensitivity to the geometrical and material characterization, and a preliminary comparison of reflected-test-zone calculations with experimental reaction rate distributions measured in a Westinghouse SVEA-96+ assembly under full-density water moderation conditions in the presence of Westinghouse boron-carbide absorber blades. (author)

  17. BWROPT: A multi-cycle BWR fuel cycle optimization code

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Keith E.; Maldonado, G. Ivan, E-mail: Ivan.Maldonado@utk.edu

    2015-09-15

    Highlights: • A multi-cycle BWR fuel cycle optimization algorithm is presented. • New fuel inventory and core loading pattern determination. • The parallel simulated annealing algorithm was used for the optimization. • Variable sampling probabilities were compared to constant sampling probabilities. - Abstract: A new computer code for performing BWR in-core and out-of-core fuel cycle optimization for multiple cycles simultaneously has been developed. Parallel simulated annealing (PSA) is used to optimize the new fuel inventory and placement of new and reload fuel for each cycle considered. Several algorithm improvements were implemented and evaluated. The most significant of these are variable sampling probabilities and sampling new fuel types from an ordered array. A heuristic control rod pattern (CRP) search algorithm was also implemented, which is useful for single CRP determinations, however, this feature requires significant computational resources and is currently not practical for use in a full multi-cycle optimization. The PSA algorithm was demonstrated to be capable of significant objective function reduction and finding candidate loading patterns without constraint violations. The use of variable sampling probabilities was shown to reduce runtime while producing better results compared to using constant sampling probabilities. Sampling new fuel types from an ordered array was shown to have a mixed effect compared to random new fuel type sampling, whereby using both random and ordered sampling produced better results but required longer runtimes.

  18. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  19. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  20. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor

    International Nuclear Information System (INIS)

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  1. BWR fuel cycle optimization using neural networks

    International Nuclear Information System (INIS)

    Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.

  2. Fuel Thermal Expansion (FTHEXP). [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Reymann, G. A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO/sub 2/ and PuO/sub 2/ in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO/sub 2/, and the fraction of fuel which is molten.

  3. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  4. High-fidelity multiphysics simulation of BWR assembly with coupled TORT-TD/CTF

    Energy Technology Data Exchange (ETDEWEB)

    Magedanz, J. [Dept. of Mechanical and Nuclear Engineering, Pennsylvania State Univ., Reber Building, Univ. Park, PA 16802 (United States); Perin, Y. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS mbH, Forschungsinstitute, D-85748 Garching (Germany); Avramova, M. [Dept. of Mechanical and Nuclear Engineering, Pennsylvania State Univ., Reber Building, Univ. Park, PA 16802 (United States); Pautz, A.; Puente-Espel, F.; Seubert, A.; Sureda, A.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS mbH, Forschungsinstitute, D-85748 Garching (Germany)

    2012-07-01

    This paper describes the application of the coupled codes TORT-TD and CTF to the pin-by-pin modeling of a BWR fuel assembly with thermal-hydraulic feedback. TORT-TD, developed at GRS, is a time-dependent three dimensional discrete ordinates code. CTF is the PSU's improved version of the subchannel code COBRA-TF, which uses a two-fluid, three-field model to represent two-phase flow with entrained droplets, and is commonly applied to evaluate LWR safety margins. The coupled codes system TORT-TD/CTF, already applied to several PWR cases involving MOX, was adapted from PWR to BWR applications. The purpose of the research described in this paper is to verify the coupling for modeling two-phase flow at the pin cell level. Using an ATRIUM-10 assembly, the system's steady-state capabilities were tested on two cases: one without control blade insertion and another with partially inserted blades. The influence of the neutron absorber on local axial and radial parameters is presented. The description of an inlet flow reduction transient is an example for the time-dependent capability of the coupled system. (authors)

  5. Measurement of uranium and plutonium content in a fuel assembly using the RPI spent fuel assay device

    International Nuclear Information System (INIS)

    In this paper we report measurements of the significant parameters, the sensitivities of the slowing-down-time assay device to the fissile contents of a boiling water reactor (BWR) assembly mock-up of fresh fuel

  6. Liquid films and droplet deposition in a BWR fuel element

    International Nuclear Information System (INIS)

    In the upper part of boiling water reactors (BWR) the flow regime is dominated by a steam-water droplet flow with liquid films on the nuclear fuel rod, the so called (wispy) annular flow regime. The film thickness and liquid flow rate distribution around the fuel rod play an important role especially in regard to so called dryout, which is the main phenomenon limiting the thermal power of a fuel assembly. The deposition of droplets in the liquid film is important, because this process sustains the liquid film and delays dryout. Functional spacers with different vane shapes have been used in recent decades to enhance droplet deposition and thus create more favorable conditions for heat removal. In this thesis the behavior of liquid films and droplet deposition in the annular flow regime in BWR bundles is addressed by experiments in an adiabatic flow at nearly ambient pressure. The experimental setup consists of a vertical channel with the cross-section resembling a pair of neighboring subchannels of a fuel rod bundle. Within this double subchannel an annular flow is established with a gas-water mixture. The impact of functional spacers on the annular flow behavior is studied closely. Parameter variations comprise gas and liquid flow rates, gas density and spacer shape. The setup is instrumented with a newly developed liquid film sensor that measures the electrical conductance between electrodes flush to the wall with high temporal and spatial resolution. Advanced post-processing methods are used to investigate the dynamic behavior of liquid films and droplet deposition. The topic is also assessed numerically by means of single-phase Reynolds-Averaged-Navier-Stokes CFD simulations of the flow in the gas core. For this the commercial code STAR-CCM+ is used coupled with additional models for the liquid film distribution and droplet motion. The results of the experiments show that the liquid film is quite evenly distributed around the circumference of the fuel rods. The

  7. Design and axial optimization of nuclear fuel for BWR reactors; Diseno y optimizacion axial de combustible nuclear para reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Garcia V, M.A

    2006-07-01

    In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the

  8. Composition and Distribution of Tramp Uranium Contamination on BWR and PWR Fuel Rods

    International Nuclear Information System (INIS)

    In a joint research project of VGB and AREVA NP GmbH the behaviour of alpha nuclides in nuclear power plants with light water reactors has been investigated. Understanding the source and the behaviour of alpha nuclides is of big importance for planning radiation protection measures for outages and upcoming dismantling projects. Previous publications have shown the correlation between plant specific alpha contamination of the core and the so called 'tramp fuel' or 'tramp uranium' level which is linked to the defect history of fuel assemblies and accordingly the amount of previously washed out fuel from defective fuel rods. The methodology of tramp fuel estimation is based on fission product concentrations in reactor coolant but also needs a good knowledge of tramp fuel composition and in-core distribution on the outer surface of fuel rods itself. Sampling campaigns of CRUD deposits of irradiated fuel assemblies in different NPPs were performed. CRUD analyses including nuclide specific alpha analysis have shown systematic differences between BWR and PWR plants. Those data combined with literature results of fuel pellet investigations led to model improvements showing that a main part of fission products is caused by fission of Pu-239 an activation product of U-238. CRUD investigations also gave a better picture of the in-core composition and distribution of the tramp uranium contamination. It was shown that the tramp uranium distribution in PWR plants is time dependent. Even new fuel assemblies will be notably contaminated after only one cycle of operation. For PWR applies the following logic: the higher the local power the higher the contamination. With increasing burnup the local rod power usually decreases leading to decreasing tramp uranium contamination on the fuel rod surface. This is not applicable for tramp uranium contamination in BWR. CRUD contamination (including the tramp fuel deposits) is much more fixed and is constantly increasing

  9. Criticality calculations for a spent fuel storage pool for a BWR type reactor

    International Nuclear Information System (INIS)

    In this work, the methodology for the calculation of the constant of effective multiplication for the arrangement of spent fuel assemblies in the pool of a BWR type reactor is shown. Calculations were done for the pool of spent fuel specified in FSAR and for the assemblies that is thought a conservative composition of high enrichment and without Gadolinium, giving credit to the stainless steel boxes of the frames that keep the assemblies. To carry out this simulation, RECORD and MIXQUIC codes were used. With record code, macroscopic cross sections, two energy groups, for the characteristics of the thought assemblies were obtained. Cross sections, as well as the dimensions of the frames that keep the fuel assemblies were used as input data for MIXQUIC code. With this code, criticality calculations in two dimensions were done, supposing that there is not leak of neutrons along the axial of the main line. Additional calculations, supposing changes in the temperature, distance among fuel assemblies and the thickness of the stainless steel box of the frame were done. The obtained results, including the effect in tolerances due to temperature, weight and thickness, show that the arrangement in the pool, when frames are fully charged, is subcritical by less than 5% in δK. (Author)

  10. Application of the PDET detector to BWR fuel assemblies: gross defect testing using the spatial distribution of neutron and photon flux

    OpenAIRE

    ROSSA Riccardo; Peerani, Paolo; HAM Young; SITARAMAN Shivakumar

    2013-01-01

    Over 80 per cent of the material placed under safeguards today is in the form of spent fuel and one of the main ways to verify it is by Non-Destructive Assays. The main goal for the safeguards inspections is to verify that some or all the material has not been diverted to other purposes by detecting the eventual gross or partial defect. The European Commission with the JRC-ITU located in Ispra in collaboration with Lawrence Livermore National Laboratory is studying the application of a det...

  11. Transient and stability analysis of a BWR core with thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779 Col. Narvarte, 03020 Mexico, DF (Mexico); Espinosa-Paredes, Gilberto [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, DF (Mexico)], E-mail: gepe@xanum.uam.mx; Francois, Juan-Luis [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec Mor. (Mexico)

    2008-08-15

    The kinetic response of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material, in an integrated blanket-seed assembly, is presented in this work. Additionally an in-house code was developed to evaluate this core under steady state and transient conditions including a stability analysis. The code has two modules: (a) the time domain module for transient analysis and (b) the frequency domain module for stability analysis. The thermal-hydraulic process is modeled by a set of five equations, considering no homogeneous flow with drift-flux approximation and non-equilibrium thermodynamic. The neutronic process is calculated with a point kinetics model. Typical BWR reactivity effects are considered: void fraction, fuel temperature, moderator temperature and control rod density. Collapsed parameters were included in the code to represent the core using an average fuel channel. For the stability analysis, in the frequency domain, the transfer function is determined by applying Laplace-transforming to the calculated pressure drop perturbations in each of the considered regions where a constant total pressure drop was considered. The transfer function was used to study the system response in the frequency domain when an inlet flow perturbation is applied. The results show that the neutronic behavior of the core with thorium uranium fuel is similar to a UO{sub 2} core, even during transient conditions. The stability and transient analysis show that the thorium-uranium fuel can be operated safely in current BWRs.

  12. Fuel Assembly Damping Summary

    International Nuclear Information System (INIS)

    This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping

  13. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, Jesus S. [Univ. Politecnica de Madrid (Spain); Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William BJ J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  14. Study of behavior on bonding and failure mode of pressurized and doped BWR fuel rod

    International Nuclear Information System (INIS)

    The study of transient behavior on the bonding and the failure mode was made using the pressurized/doped 8 x 8 BWR type fuel rod. The dopant was mullite minerals consisted mainly of silicon and aluminum up to 1.5 w/o. Pressurization of the fuel rod with pure helium was made to the magnitude about 0.6 MPa. As a reference, the non-pressurized/non-doped 8 x 8 BWR fuel rod and the pressurized/7 x 7 BWR fuel rod up to 0.6 MPa were prepared. Magnitude of energy deposition given to the tested fuel rods was 248, 253, and 269 cal/g·fuel, respectively. Obtained results from the pulse irradiation in NSRR are as follows. (1) It was found from the experiment that alternation of the fuel design by the adoption of pressurization up to 0.6 MPa and the use of wider gap up to 0.38 mm could avoid the dopant BWR fuel from the overall bonding. The failure mode of the present dopant fuel was revealed to be the melt combined with rupture. (2) The time of fuel failure of the pressurized/doped 8 x 8 BWR fuel defected by the melt/rupture mode is of order of two times shorter than that of the pressurized/ 7 x 7 BWR defected by the rupture mode. Failure threshold of the pressurized/doped 8 x 8 BWR BWR tended to be lower than that of non-pressurized/non-doped 8 x 8 BWR one. Cracked area of the pressurized/doped 8 x 8 BWR was more wider and magnitude of oxidation at the place is relatively larger than the other tested fuels. (3) Failure mode of the non-pressurized/ 8 x 8 BWR fuel rod was the melt/brittle accompanied with a significant bonding at failed location. While, failure mode of the pressurized/ 7 x 7 BWR fuel rod was the cladding rupture accompanied with a large ballooning. No bonding at failed location of the latter was observed. (author)

  15. BWR Fuel Lattice Design Using an Ant Colony Model

    International Nuclear Information System (INIS)

    This paper deals with one of the steps of the nuclear fuel design: the radial fuel lattice design. It can be seen as a combinatorial optimization problem for determining the optimal 2D fuel rods enrichment and gadolinia distribution. In order to solve this optimization problem, the ant colony system technique is proposed. The main idea of the ant colony approach consists of emulating the real ant colony behaviour in their searching for minimum paths between two given points, usually between the nest and a food source. In this case, the environment where the artificial ants move is the space defined by the discrete possible values of Gd2O3 contents, the U235 enrichment, and the valid locations inside the 10x10 BWR fuel lattice array. In order to assess any candidate fuel lattice in the optimization process, the HELIOS neutronic transport code is used. The results obtained in the application of the implemented model show that the proposed technique is a powerful tool to tackle this step of the fuel design. (authors)

  16. BWR Fuel Lattice Design Using an Ant Colony Model

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Jose L.; Ortiz, Juan J. [Instituto Nacional de Investigaciones Nucleares, Depto. de Sistemas Nucleares, Carretera Mexico Toluca S/N. La Marquesa Ocoyoacac. 52750, Estado de Mexico (Mexico); Francois, Juan L.; Martin-del-Campo, Cecilia [Depto. de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico Paseo Cuauhnahuac 8532. Jiutepec, Mor. 62550 (Mexico)

    2008-07-01

    This paper deals with one of the steps of the nuclear fuel design: the radial fuel lattice design. It can be seen as a combinatorial optimization problem for determining the optimal 2D fuel rods enrichment and gadolinia distribution. In order to solve this optimization problem, the ant colony system technique is proposed. The main idea of the ant colony approach consists of emulating the real ant colony behaviour in their searching for minimum paths between two given points, usually between the nest and a food source. In this case, the environment where the artificial ants move is the space defined by the discrete possible values of Gd{sub 2}O{sub 3} contents, the U{sup 235} enrichment, and the valid locations inside the 10x10 BWR fuel lattice array. In order to assess any candidate fuel lattice in the optimization process, the HELIOS neutronic transport code is used. The results obtained in the application of the implemented model show that the proposed technique is a powerful tool to tackle this step of the fuel design. (authors)

  17. Entrainment and deposition modeling of liquid films with applications for BWR fuel rod dryout

    Science.gov (United States)

    Ratnayake, Ruwan Kumara

    While best estimate computer codes provide the licensing basis for nuclear power facilities, they also serve as analytical tools in overall plant and component design procedures. An ideal best estimate code would comprise of universally applicable mechanistic models for all its components. However, due to the limited understanding in these specific areas, many of the models and correlations used in these codes reflect high levels of empiricism. As a result, the use of such models is strictly limited to the range of parameters within which the experiments have been conducted. Disagreements between best estimate code predictions and experimental results are often explained by the mechanistic inadequacies of embedded models. Significant mismatches between calculated and experimental critical power values are common observations in the analyses of Boiling Water Reactors (BWR). Based on experimental observations and calculations, these mismatches are attributed to the additional entrainment and deposition caused by spacer grids in BWR fuel assemblies. In COBRA-TF (Coolant Boiling in Rod Arrays-Two Fluid); a state of the art industrial best estimate code, these disagreements are hypothesized to occur due the absence of an appropriate spacer grid model. In this thesis, development of a suitably detailed spacer grid model and integrating it to COBRA-TF is documented. The new spacer grid model is highly mechanistic so that the applicability of it is not seriously affected by geometric variations in different spacer grid designs. COBRA-TF (original version) simulations performed on single tube tests and BWR rod bundles with spacer grids showed that single tube predictions were more accurate than those of the rod bundles. This observation is understood to arise from the non-availability of a suitable spacer grid model in COBRA-TF. Air water entrainment experiments were conducted in a test section simulating two adjacent BWR sub channels to visualize the flow behavior at

  18. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  19. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor; Diseno de una recarga mixta con ensambles MOX de mayor relacion de moderacion para un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios H, J. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2004-07-01

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  20. Spent fuel assembly hardware

    International Nuclear Information System (INIS)

    When spent nuclear fuel is disposed of in a repository, the waste package will include the spent fuel assembly hardware, the structural portion of the fuel assembly, and the fuel pins. The spent fuel assembly hardware is the subject of this paper. The basic constituent parts of the fuel assembly will be described with particular attention on the materials used in their construction. The results of laboratory analyses performed to determine radionuclide inventories and trace impurities also will be described. Much of this work has been incorporated into a US Department of Energy (DOE) database maintained by Oak Ridge National Laboratory (ORNL). This database is documented in DOE/RW-0184 and can be obtained from Karl Notz at ORNL. The database provides a single source for information regarding wastes that may be sent to the repository

  1. Artificial intelligence applied to fuel management in BWR type reactors

    International Nuclear Information System (INIS)

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  2. Experience of Areva in fuel services for PWR and BWR

    International Nuclear Information System (INIS)

    AREVA being an integrated supplier of fuel assemblies has included in its strategy to develop services and solutions to customers who desire to improve the performance and safety of their fuel. These services go beyond the simple 'after sale' services that can be expected from a fuel supplier: The portfolio of AREVA includes a wide variety of services, from scientific calculations to fuel handling services in a nuclear power plant. AREVA is committed to collaborate and to propose best-in-class solutions that really make the difference for the customer, based on 40 years of Fuel design and manufacturing experience. (Author)

  3. Analysis of the performance of fuel cells BWR with a single enrichment and radial distribution of enrichments; Analisis del desempeno de celdas combustibles BWR con un solo enriquecimiento y con distribucion radial de enriquecimientos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Vargas, S.; Alonso, G.; Del Valle, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, Mexico D. F. 07738 (Mexico); Xolocostli M, J. V. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: govaj666@hotmail.com

    2008-07-01

    The efficient use of the fuel is one of the objectives in the assemblies design of type BWR. The present tendency in the assemblies design of type BWR is through a radial distribution of enrichments. The present work has like object showing the because of this decision, for what a comparison of the neutronic performance of two fuel cells with the same enrichment average but one of them with radial distribution of enrichment and the other with a single enrichment equal to the average. The cells were analyzed with the CASMO-4 code and the obtained results of the behavior of the neutron flow and the power sustain the because of the radial distribution of enrichments. (Author)

  4. Appearance detection device for fuel assembly

    International Nuclear Information System (INIS)

    The present invention concerns a device for detecting the appearance of fuel assemblies for a power plant, in which the device photographs corners of fuel assemblies by a TV-camera to perform detection with higher reliability. Namely, heretofore, fuel assembly to substantially square pillar shape for a BWR and a PWR has been rotated and one or two faces have been detected from the front by the TV-camera. In the present invention, a TV-camera used exclusively for corners is additionally disposed on or near the diagonal line of the corners. With such a constitution, corners of the fuel assemblies can be photographed simultaneously with the conventional appearance test. As a result, since appearance test for the front and the corners can be conducted at the same time, extremely effective detection can be conducted in terms of detection of a rupture of grids and prevention of dead angle. The corners of assemblies which tend to undergo damages upon charge/discharge of fuels can be detected carefully. Accordingly, a highly reliable detection can be conducted. (I.S.)

  5. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Lacey, Benjamin Paul; York, William David; Stevenson, Christian Xavier

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  6. Design of a fuel recharge for a BWR using advanced optimization systems

    International Nuclear Information System (INIS)

    The fuel recharge design for a BWR reactor it was carried out, which includes the design of four fuel cells to form an assembly, the accommodation design of fresh and partially consumed assemblies and the control bars pattern design to use along an operation cycle. The three stages were approached as optimization problems using different computational tools, each one of those includes an objective function to measure quantitatively the evolution of the different candidate solutions. With the tool used in the fuel cells design that makes use of the tabu search technique its were obtained cells that showed to be lightly more reactive that other similar taken as reference. With the four designed cells it was formed a fuel assembly that turn out to have an average enrichment lightly smaller to the one of another assembly similar taken as reference. In the recharge pattern design it was used another optimization tool, also based on tabu search to obtain the accommodation of 108 fresh fuels and 336 partially consumed, fulfilling the conditions imposed to operate with the core strategies with control cells (CCC) and of low leakage. A Haling calculation reported that with the obtained accommodation it was achievement to increase in 8% the cycle length with regard to the one obtained using a similar reference pattern. In the design of the control bars patterns it was used a tool based on the use of the genetic algorithms to obtain the placement patterns of the control bars along an operation cycle. The search tool only uses the bars of the A2 sequence and it makes use of the 1/8 symmetry of the core, with that the number of used control bars it decreases at 5. Also the use of control bars in intermediate positions is also avoided. With the obtained patterns a cycle length is obtained that is lightly bigger to the reported value in a Haling calculation. (Author)

  7. VIPRE-W / MEFISTO-T - A mechanistic tool for transient prediction of dryout in BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Adamsson, C., E-mail: carl.adamsson@psi.ch [Westinhouse Electric Sweden, Vasteras (Sweden); Paul Scherrer Institut, Villigen (Switzerland); Le Corre, J-M., E-mail: lecorrjm@westinghouse.com [Westinhouse Electric Sweden, Vasteras (Sweden)

    2011-07-01

    The VIPRE-W/MEFISTO-T code package constitutes a simplified approach to sub-channel film-flow analysis whereby the transport equations for the liquid films are decoupled from each other. The approach allows fast and robust simulation with high axial resolution of realistic BWR transients. It has previously been shown that a steady-state version of the model agrees well with dryout measurements in full-scale fuel assembly mock-ups performed at the Westinghouse FRIGG loop. In this paper, we present validation of the transient version of the code with around 300 transient dryout experiments from the same loop. The transients involve realistic variations of flow and power and three different axial power distributions at conditions typical for BWR operation. The results from the film-flow analysis show high precision in the dryout prediction but a hitherto unexplained bias that reduces the accuracy. (author)

  8. Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.

    1998-01-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  9. Validation of SCALE (SAS2H) isotopic predictions for BWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.; DeHart, M.D.

    1998-09-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  10. BWR-spent fuel transport and storage with the TN trademark 9/4 and TN trademark 24BH casks

    International Nuclear Information System (INIS)

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks in ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., as Muehleberg Nuclear Power Plant owner, is involved in this process and has selected to store its spent fuel, a new high capacity dual-purpose cask, the TN trademark 24BH. For the transport in a medium size cask, COGEMA LOGISTICS has developed a new cask, the TN trademark 9/4, to replace the NTL9 cask, which performed numerous transports of BWR spent fuel in the past decades. Licensed IAEA 1996, the TN trademark 9/4 is a 40 ton transport cask, for 7 BWR high burn-up spent fuel assemblies. The spent fuel assemblies can be transferred in the ZWILAG hot cell in the TN trademark 24BH cask. The first use of these casks took place in 2003. Ten TN trademark 9/4 transports were performed, and one TN trademark 24BH was loaded. After a brief presentation of the operational aspects, the paper will focus on the TN trademark 24BH high capacity dual purpose cask, the TN trademark 9/4 transport cask and describe in detail their characteristics and possibilities

  11. A Mechanistic Approach for the Prediction of Critical Power in BWR Fuel Bundles

    Science.gov (United States)

    Chandraker, Dinesh Kumar; Vijayan, Pallipattu Krishnan; Sinha, Ratan Kumar; Aritomi, Masanori

    The critical power corresponding to the Critical Heat Flux (CHF) or dryout condition is an important design parameter for the evaluation of safety margins in a nuclear fuel bundle. The empirical approaches for the prediction of CHF in a rod bundle are highly geometric specific and proprietary in nature. The critical power experiments are very expensive and technically challenging owing to the stringent simulation requirements for the rod bundle tests involving radial and axial power profiles. In view of this, the mechanistic approach has gained momentum in the thermal hydraulic community. The Liquid Film Dryout (LFD) in an annular flow is the mechanism of CHF under BWR conditions and the dryout modeling has been found to predict the CHF quite accurately for a tubular geometry. The successful extension of the mechanistic model of dryout to the rod bundle application is vital for the evaluation of critical power in the rod bundle. The present work proposes the uniform film flow approach around the rod by analyzing individual film of the subchannel bounded by rods with different heat fluxes resulting in different film flow rates around a rod and subsequently distributing the varying film flow rates of a rod to arrive at the uniform film flow rate as it has been found that the liquid film has a strong tendency to be uniform around the rod. The FIDOM-Rod code developed for the dryout prediction in BWR assemblies provides detailed solution of the multiple liquid films in a subchannel. The approach of uniform film flow rate around the rod simplifies the liquid film cross flow modeling and was found to provide dryout prediction with a good accuracy when compared with the experimental data of 16, 19 and 37 rod bundles under BWR conditions. The critical power has been predicted for a newly designed 54 rod bundle of the Advanced Heavy Water Reactor (AHWR). The selected constitutive models for the droplet entrainment and deposition rates validated for the dryout in tube were

  12. Behavior of small-sized BWR fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    The present work was performed on this small-sized BWR fuel, where Zr liner and rod prepressurization were taken as experimental parameters. Experiment was done under simulated reactivity initiated accident (RIA) conditions at Nuclear Safety Research Reactor (NSRR) belonged to Japan Atomic Energy Research Institute (JAERI). Major remarks obtained are as follows: (1) Three different types of the fuel rods consisted of (a) Zr lined/pressurized (0.65MPa), (b) Zr lined/non-pressurized and (c) non-Zr lined/pressurized (o.65MPa) were used, respectively. Failure thresholds of these were not less than that (260 cal/g·fuel) described in Japanese RIA Licensing Guideline. Small-sized BWR and conventional 8 x 8 BWR fuels were considered to be in almost the same level in failure threshold. Failure modes of the three were (a) cladding melt/brittle, (b) cladding melt/brittle and (c) rupture by large ballooning, respectively. (2) The magnitude of pressure pulse at fuel fragmentation was also studied by lined/pressurized and non-lined/pressurized fuels. Above the energy deposition of 370 cal/g·fuel, mechanical energy (or pressure) was found to be released from these fragmented fuels. No measurable difference was, however, observed between the tested fuels and NSRR standard (and conventional 8 x 8 BWR) fuels. (3) It is worthy of mentioning that Zr liner tended to prevent the cladding from large ballooning. Non-lined/pressurized fuel tended to cause wrinkle deformation at cladding. Hence, cladding external was notched much by the wrinkles. (4) Time to fuel failure measured from the tested BWR fuels (pressurization < 0.6MPA) was longer than that measured from PWR fuels (pressurization < 3.2MPa). The magnitude of the former was of the order of 3 ∼ 6s, while that of the latter was < 1s. (J.P.N.)

  13. Experimental data report for test TS-5 Reactivity Initiated Accident test in the NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    This report presents experimental data for Test TS-5 which was the fifth test in a series of Reactivity Initiated Accident (RIA) tests using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in January, 1993. Test fuel rod used in the Test TS-5 was a short-sized BWR (7x7) type rod which was re-fabricated from a commercial rod irradiated in the Tsuruga Unit 1 power reactor of Japan Atomic Power Co. The fuel had an initial enrichment of 2.79% and a burnup of 26GWd/tU. A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The nominal energy deposition of 117±5cal/g·fuel (98±4cal/g·fuel in peak fuel enthalpy) was subjected to the test fuel rod and no fuel failure was observed in the test. The test fuel was pulse irradiated in a flow shroud which simulates fuel/water ratio in the commercial assembly. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and results of pre-pulse and post-pulse irradiation examinations are described in this report. (author)

  14. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Purpose: To increase the fuel assembly rigidity while making balance in view of the dimension thereby improving the earthquake proofness. Constitution: In a nuclear fuel assembly having a control rod guide thimble tube, the gap between the thimble tube and fuel insert (inner diameter of the guiding thimble tube-outer diameter of the fuel insert) is made greater than 1.0 mm. Further, the wall thickness of the thimble tube is made to about 4 - 5 % of the outer diameter, while the flowing fluid pore cross section S in the thimble tube is set as: S = S0 x A0/A where S0: cross section of the present flowing fluid pore, A: effective cross section after improvement, = Π/4(d2 - D2) in which d is the thimble tube inner diameter and the D is the fuel insert outer diameter. A0: present effective cross section. (Seki, T.)

  15. Transfer of fuel assemblies

    International Nuclear Information System (INIS)

    Fuel assemblies of a nuclear reactor are transferred during fueling or refueling or the like by a crane. The work-engaging fixture of the crane picks up an assembly, removes it from this slot, transfers it to the deposit site and deposits it in its slot at the deposit site. The control for the crane includes a strain gauge connected to the crane line which raises and lowers the load. The strain gauge senses the load on the crane. The signal from the strain gauge is compared with setpoints; a high-level setpoint, a low-level setpoint and a slack-line setpoint. If the strain gauge signal exceeds the high-level setpoint, the line drive is disabled. This event may occur during raising of a fuel assembly which encounters resistance. The high-level setpoint may be overridden under proper precautions. The line drive is also disabled if the strain gauge signal is less than the low-level setpoint. This event occurs when a fuel assembly being deposited contacts the bottom of its slot or an obstruction in, or at the entry to the slot. To preclude lateral movement and possible damage to a fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge exceets the lov-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than the slack-line set-point. This occurs when the lines has been set in slack-line setting. When the line is tensioned after slack-li ne setting, the traverse drive remains enabled only if the line has been disconnected from the fuel assembly

  16. Comparison of heat capacity and thermal time constant between BWR fuel and simulated heater rod

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    It is important to know the thermal characteristics of BWR fuel, i.e. heat capacity and thermal time constant, in order to evaluate the thermal hydraulics at BWR accidents and the events under thermal-hydraulic and neutronic coupling condition. Further, since the heater rod simulating BWR fuel is used in the tests for BWR accidents and for BWR thermal hydraulics coupled with neutronics, it is important to know the thermal characteristics of the heater rod. Therefore, the author investigated the thermal characteristics of BWR fuel and the heater rod by performing experiments and analyzing with J-TRAC code capable to analyze 2-dimensional heat conduction problem. The heat capacity per unit length of BWR fuel cp{rho}A (kJ/mK) was estimated to be 0.34 kJ/mK - 0.36 kJ/mK in 300 deg. C - 800 deg. C. The heat capacity of the heater rod was almost identical with each other regardless of the differences in rods and positions. It was higher with higher temperature. The heat capacity of the heater rod used in the test for BWR accidents was about 0.38 kJ/mK at 600 deg. C, which was about 9% higher than the average (0.35 kJ/mK) of BWR fuel. On the other hand, the heat capacity used in the test for BWR thermal hydraulics coupled with neutronics was about 0.42 kJ/mK at 600 deg. C, which was about 20% higher than the average of BWR fuel. Thermal time constant was affected by surface heat transfer coefficient, thermal diffusivity, and gap conductance. When the surface heat transfer coefficient is small, it controls the heat transfer and thermal time constant depends mainly on the surface heat transfer coefficient. When the surface heat transfer coefficient is large, the heat conduction controls the heat transfer and thermal time constant depends mainly on the thermal diffusivity. In the former case, one point heat transfer model is applicable and the thermal time constant is proportional to the inverse of the surface heat transfer coefficient. In this case, the thermal time

  17. High burnup (41 - 61 GWd/tU) BWR fuel behavior under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Kusagaya, Kazuyuki; Yoshinaga, Makio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    High burnup boiling water reactor (BWR) fuel was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity initiated accident (RIA) conditions. Temperature, deformation, failure, and fission gas release behavior under the simulated RIA condition was studied in the tests. Fuel failure due to pellet-cladding mechanical interaction (PCMI) did not occur in the tests with typical domestic BWR fuel at burnups up to 56 GWd/tU, because they had limited cladding embrittlement due to hydrogen absorption of about 100 ppm or less. However, the cladding failure occurred in tests with fuel at a burnup of 61 GWd/tU, in which the peak hydrogen content in the cladding was above 150 ppm. This type of failure was observed for the first time in BWR fuels. The cladding failure occurred at fuel enthalpies of 260 to 360 J/g (62 to 86 cal/g), which were higher than the PCMI failure thresholds decided by the Japanese Nuclear Safety Commission. From post-test examinations of the failed fuel, it was found that the crack in the BWR cladding progressed in a manner different from the one in PWR cladding failed in earlier tests, owing to its more randomly oriented hydride distribution. Because of these differences, the BWR fuel was judged to have failed at hydrogen contents lower than those of the PWR fuel. Comparison of the test results with code calculations revealed that the PCMI failure was caused by thermal expansion of pellets, rather than by the fission gas expansion in the pellets. The gas expansion, however, was found to cause large cladding hoop deformation later after the cladding temperature escalated. (author)

  18. Central position detection method for fuel assembly and device therefor

    International Nuclear Information System (INIS)

    The present invention provides a method for detecting a central position of a fuel assembly by an image processing technique without influenced by a deviation of the central position of the fuel assembly depending on the accuracy for the stoppage of an underwater vehicle and rattling of fuels in a fuel basket. Namely, a characteristic amount comparing method and a linear detecting method are utilized by image processing techniques. Images are taken by a camera disposed at a predetermined position, and common characteristically shaped portions of each of the top portions of fuel assemblies are detected based on the photographed images. The central position at the top of the fuel assembly is detected based on the characteristic. In a case of a BWR fuel assembly, a channel fastener screw portion and a handle at the top of the fuel constitute the characteristic portions. The longitudinal component of the handle is detected by the linear method, and the aperture like circular portion of the channel fastener screw portion is detected by the characteristic amount comparing method. In a case of a PWR type fuel assembly, two positioning pin holes at a fuel top corner portion are detected using the characteristic amount comparing method. The central position of the fuel assembly is detected based on each of the results. (I.S.)

  19. Fuel assembly supporting structure

    International Nuclear Information System (INIS)

    For use in forming the core of a pressurized-water reactor, a fuel assembly supporting structure for holding a bundle of interspaced fuel rods, is formed by interspaced end pieces having holes in which the end portions of control rod guide tubes are inserted, fuel rod spacer grids being positioned by these guide tubes between the end pieces. The end pieces are fastened to the end portions of the guide tubes, to integrate the supporting structure, and in the case of at least one of the end pieces, this is done by means which releases that end piece from the guide tubes when the end pieces receive an abnormal thrust force directed towards each other and which would otherwise place the guide tubes under a compressive stress that would cause them to buckle. The spacer grids normally hold the fuel rods interspaced by distances determined by nuclear physics, and buckling of the control rod guide tubes can distort the fuel rod spacer grids with consequent dearrangement of the fuel rod interspacing. A sudden loss of pressure in a pressurized-water reactor pressure vessel can result in the pressurized coolant in the vessel discharging from the vessel at such high velocity as to result in the abnormal thrust force on the end pieces of each fuel assembly, which could cause buckling of the control rod guide tubes when the end pieces are fixed to them in the normal rigid and unyielding manner

  20. Development of prediction method of void fraction distribution in fuel assemblies for use in safety analysis

    International Nuclear Information System (INIS)

    The establishment of code system for BWR safety analysis is now in progress at Institute of Nuclear Safety (INS), in order to predict the onset of boiling transition (BT) in nuclear fuel assemblies in any thermal-hydraulic condition without relying on the thermal-hydraulic characteristic data provided by licensee. The prediction method for void fraction distribution across cross section of BWR fuel assemblies has been developed based on multi-dimensional two-fluid model. Lift forces working on bubbles and void diffusion that can not be handled with one-dimensional analysis were considered. Comparisons between calculated results and experimental data obtained from thermal-hydraulic tests of PWR and BWR mock-up fuel assemblies showed good agreement. Lift force models have been empirical and further studies were needed, but the calculations showed the possibility of applying these models to multi-dimensional gas-liquid two-phase flow analysis. (author)

  1. Fuel assemblies chemical cleaning

    International Nuclear Information System (INIS)

    NPP Paks found a thermal-hydraulic anomaly in the reactor core during cycle 14 that was caused by corrosion product deposits on fuel assemblies (FAs) that increased the hydraulic resistance of the FAs. Consequently, the coolant flow through the FAs was insufficient resulting in a temperature asymmetry inside the reactor core. Based on this fact NPP Paks performed differential pressure measurements of all fuel assemblies in order to determine the hydraulic resistance and subsequently the limit values for the hydraulic acceptance of FAs to be used. Based on the hydraulic investigations a total number of 170 FAs was selected for cleaning. The necessity for cleaning the FAs was explained by the fact that the FAs were subjected to a short term usage in the reactor core only maximum of 1,5 years and had still a capacity for additional 2 fuel cycles. (authors)

  2. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO2 fuel in Japan. The design concept should be compatible with UO2 fuel design. High burnup UO2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO2 8 x 8 array fuel developed for a second step of UO2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  3. Optimization of fuel cells for BWR based in Tabu modified search

    International Nuclear Information System (INIS)

    The advances in the development of a computational system for the design and optimization of cells for assemble of fuel of Boiling Water Reactors (BWR) are presented. The method of optimization is based on the technique of Tabu Search (Tabu Search, TS) implemented in progressive stages designed to accelerate the search and to reduce the time used in the process of optimization. It was programed an algorithm to create the first solution. Also for to diversify the generation of random numbers, required by the technical TS, it was used the Makoto Matsumoto function obtaining excellent results. The objective function has been coded in such a way that can adapt to optimize different parameters like they can be the enrichment average or the peak factor of radial power. The neutronic evaluation of the cells is carried out in a fine way by means of the HELIOS simulator. In the work the main characteristics of the system are described and an application example is presented to the design of a cell of 10x10 bars of fuel with 10 different enrichment compositions and gadolinium content. (Author)

  4. BWR Spent Nuclear Fuel Interfacial Bonding Efficiency Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    The objective of this project is to perform a systematic study of spent nuclear fuel (SNF, also known as “used nuclear fuel” [UNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. Additional CIRFT testing was conducted on three HBR rods; two specimens failed, and one specimen was tested to over 2.23 × 107 cycles without failing. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of the SNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, eleven SNF rod segments from the Limerick BWR were tested using the ORNL CIRFT equipment; one test under static conditions and ten tests under dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at a maximum curvature of 4.0 m-1. The specimen did not show any sign of failure during three repeated loading cycles to a similar maximum curvature. Ten cyclic tests were conducted with amplitudes varying from 15.2 to 7.1 N·m. Failure was observed in nine of

  5. Prediction of the local power factor in BWR fuel cells by means of a multilayer neural network

    International Nuclear Information System (INIS)

    To the beginning of a new operation cycle in a BWR reactor the reactivity of this it increases by means of the introduction of fresh fuel, the one denominated reload fuel. The problem of the definition of the characteristics of this reload fuel represents a combinatory optimization problem that requires significantly a great quantity of CPU time for their determination. This situation has motivated to study the possibility to substitute the Helios code, the one which is used to generate the new cells of the reload fuel parameters, by an artificial neuronal network, with the purpose of predicting the parameters of the fuel reload cell of a BWR reactor. In this work the results of the one training of a multilayer neuronal net that can predict the local power factor (LPPF) in such fuel cells are presented. The prediction of the LPPF is carried out in those condition of beginning of the life of the cell (0.0 MWD/T, to 40% of holes in the one moderator, temperature of 793 K in the fuel and a moderator temperature of 560 K. The cells considered in the present study consist of an arrangement of 10x10 bars, of those which 92 contains U235, some of these bars also contain a concentration of Gd2O3 and 8 of them contain only water. The axial location inside the one assembles of recharge of these cells it is exactly up of the cells that contain natural uranium in the base of the reactor core. The training of the neuronal net is carried out by means of a retro-propagation algorithm that uses a space of training formed starting from previous evaluations of cells by means of the Helios code. They are also presented the results of the application of the neuronal net found for the prediction of the LPPF of some cells used in the real operation of the Unit One of the Laguna Verde Nuclear Power station. (Author)

  6. COBRA-SFS [Spent-Fuel Storage] thermal-hydraulic analyses of the CASTOR-1C and REA 2023 BWR storage casks containing consolidated spent fuel

    International Nuclear Information System (INIS)

    Consolidation of spent nuclear fuel rods is being considered as one option for more efficient and compact storage of reactor spent fuel assemblies. In this concept, rods from two disassembled spent fuel assemblies will be consolidated in a space originally intended to store a single unconsolidated assembly. The thermal performance of consolidated fuel rods in dry storage, especially in multiassembly storage systems, is one of the major issues that must be addressed prior to implementation. In this study, Pacific Northwest Laboratory researchers performed thermal-hydraulic analyses for both the REA 2023 cask and the CASTOR-1C cask containing either unconsolidated or consolidated BWR spent fuel assemblies. The objective was to determine the effect of consolidating spent fuel assemblies on the temperature distributions within both types of casks. Two major conclusions resulted from this study. First, a lumping technique (combining rods and flow channels), which reduces the number of computational nodes required to model complex multiassembly geometries, could be used for both unconsolidated and consolidated rods with negligible effect on prediction accuracies. Second, with a relatively high thermal conductivity backfill gas (e.g., helium), the predicted peak fuel rod temperature in a canister of consolidated rods generating the same amount of heat as an unconsolidated assembly is essentially the same as the peak temperature in the unconsolidated assembly. In contrast, with a relatively low thermal conductivity backfill gas (e.g., nitrogen), the opposite is true and the predicted peak temperature in a consolidated canister is significantly higher than in an unconsolidated assembly. Therefore, when rods are consolidated, selection of the backfill gas is important in maintaining peak rod temperatures below allowable values for rods with relatively high decay heat generation rates

  7. Optimization of fuel cells for BWR based in Tabu modified search; Optimizacion de celdas de combustible para BWR basada en busqueda Tabu modificada

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Francois L, J.L. [Facultad de Ingenieria, UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Palomera P, M.A. [Facultad de Ingenieria, UNAM, Posgrado en Ingenieria en Computacion, Circuito exterior s/n, Ciudad Universitaria, Mexico, D.F. (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2004-07-01

    The advances in the development of a computational system for the design and optimization of cells for assemble of fuel of Boiling Water Reactors (BWR) are presented. The method of optimization is based on the technique of Tabu Search (Tabu Search, TS) implemented in progressive stages designed to accelerate the search and to reduce the time used in the process of optimization. It was programed an algorithm to create the first solution. Also for to diversify the generation of random numbers, required by the technical TS, it was used the Makoto Matsumoto function obtaining excellent results. The objective function has been coded in such a way that can adapt to optimize different parameters like they can be the enrichment average or the peak factor of radial power. The neutronic evaluation of the cells is carried out in a fine way by means of the HELIOS simulator. In the work the main characteristics of the system are described and an application example is presented to the design of a cell of 10x10 bars of fuel with 10 different enrichment compositions and gadolinium content. (Author)

  8. Effects of radial void distribution within fuel assembly on assembly neutronic characteristics

    International Nuclear Information System (INIS)

    The effect of radial subchannel-wise void distribution in a fuel assembly on assembly neutronic characteristics has been investigated using the assembly calculation code SRAC95 and the subchannel analysis code THERMIT2. With the iterative calculation of assembly calculation and the subchannel analysis (Method 1), subchannel-wise void fraction distribution, pin-power distribution and the infinite multiplication factor of the assembly are calculated. The results are compared with the result of the assembly calculation using uniform void distribution as input (Method 2). The calculation is performed for two assembly configurations in the present study: one is a fuel assembly that does not include a water rod (Case 1) and the other is the assembly that includes a water rod (Case 2). The differences in the infinite multiplication factor and pin-power peaking factor between the two methods are small in both cases. In typical BWR fuel assemblies that are investigated in the present study, the method that does not consider the radial subchannel-wise void fraction distribution within a fuel assembly (Method 2) is accurate enough for practical applications. (author)

  9. Fuel performance annual report for 1981. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.; Tokar, M.

    1982-12-01

    This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included.

  10. Seismic behaviour of fuel assembly

    International Nuclear Information System (INIS)

    A general approach for the dynamic time-history analysis of the reactor core is presented in this paper as a part of the fuel assembly qualification program. Several detailed core models are set up to reflect the placement of the fuel assemblies within the core shroud. Peak horizontal responses are obtained for each model for the motions induced from earthquake. The dynamic responses such as fuel assembly shear force, bending moment and displacement, and spacer grid impact loads are carefully investigated. Also, the sensitivity responses are obtained for the earthquake motions and the fuel assembly non-linear response characteristics are discussed. (Author) 9 refs., 24 figs., 1 tab

  11. Seismic behaviour of fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Heuy Gap; Jhung, Myung Jo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-11-01

    A general approach for the dynamic time-history analysis of the reactor core is presented in this paper as a part of the fuel assembly qualification program. Several detailed core models are set up to reflect the placement of the fuel assemblies within the core shroud. Peak horizontal responses are obtained for each model for the motions induced from earthquake. The dynamic responses such as fuel assembly shear force, bending moment and displacement, and spacer grid impact loads are carefully investigated. Also, the sensitivity responses are obtained for the earthquake motions and the fuel assembly non-linear response characteristics are discussed. (Author) 9 refs., 24 figs., 1 tab.

  12. Effects of Void Uncertainties on Pin Power Distributions and the Void Reactivity Coefficient for a 10X10 BWR Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.; Krouthen, J.; Helmersson, S.; Chawla, R

    2004-03-01

    A significant source of uncertainty in Boiling Water Reactor physics is associated with the precise characterisation of the axially-dependent neutron moderation properties of the coolant inside the fuel assembly channel, and the corresponding effects on reactor physics parameters such as the lattice neutron multiplication, the neutron migration length, and the pin-by-pin power distribution. In this paper, the effects of particularly relevant void fraction uncertainties on reactor physics parameters have been studied for a BWR assembly of type Westinghouse SVEA-96 using the CASMO-4, HELIOS/PRESTO-2 and MCNP4C codes. The SVEA-96 geometry is characterised by the sub-division of the assembly into four different sub-bundles by means of an inner bypass with a cruciform shape. The study has covered the following issues: (a) the effects of different cross-section data libraries on the void coefficient of reactivity, for a wide range of void fractions; (b) the effects due to a heterogeneous vs. homogeneous void distribution inside the sub-bundles; and (c) the consequences of partly inserted absorber blades producing different void fractions in different sub-bundles. (author)

  13. Actinides record, power calculations and activity for present isotopes in the spent fuel of a BWR; Historial de actinidos y calculos de potencia y actividad para isotopos presentes en el combustible gastado de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez C, P.; Ramirez S, J. R.; Lucatero, M. A., E-mail: pastor.enriquez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The administration of spent fuel is one of the more important stages of the nuclear fuel cycle, and this has become a problem of supreme importance in countries that possess nuclear reactors. Due to this in this work, the study on the actinides record and present fission products to the discharge of the irradiated fuel in a light water reactor type BWR is shown, to quantify the power and activity that emit to the discharge and during the cooling time. The analysis was realized on a fuel assembly type 10 x 10 with an enrichment average of 3.69 wt % in U-235 and the assembly simulation assumes four cycles of operation of 18 months each one and presents an exposition of 47 G Wd/Tm to the discharge. The module OrigenArp of the Scale 6 code is the computation tool used for the assembly simulation and to obtain the results on the actinides record presents to the fuel discharge. The study covers the following points: a) Obtaining of the plutonium vector used in the fuel production of mixed oxides, and b) Power calculation and activity for present actinides to the discharge. The results presented in this work, correspond at the same time immediate of discharge (0 years) and to a cooling stage in the irradiated fuel pool (5 years). (Author)

  14. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  15. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    International Nuclear Information System (INIS)

    utilized or referenced, justification has been provided as to why the data can be utilized for BWR fuel.

  16. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    utilized or referenced, justification has been provided as to why the data can be utilized for BWR fuel.

  17. Use of high energy gamma emission tomography for partial defect verification of spent fuel assemblies

    International Nuclear Information System (INIS)

    The possibility to use passive gamma emission tomography for revealing non-destructively the rod structure of spent BWR fuel assemblies has been studied in cooperation with the Finnish Support Programme to the IAEA Safeguards (task FIN A98) and the Technical University of Budabest in Hungary. The ultimate goal is to develop partial verification methods for verification of spent nuclear fuel. The task included experimental measurements of irradiated BWR assemblies using underwater measurement techniques together with computer analysis of the measured data as well as computer simulation of tomographic measurements. The results obtained show that rod-level partial defect verification of spent LWR fuel assemblies is feasible using computed gamma emission tomography. This report describes the results of this project. (orig.). (7 refs., 29 figs., 2 tabs.)

  18. Comparison of metaheuristic optimization techniques for BWR fuel reloads pattern design

    International Nuclear Information System (INIS)

    Highlights: ► This paper shows a performance comparison of several optimization techniques for fuel reload in BWR. ► Genetic Algorithms, Neural Networks, Tabu Search and several Ant Algorithms were used. ► All optimization techniques were executed under same conditions: objective function and an equilibrium cycle. ► Fuel bundles with minor actinides were loaded into the core. ► Tabu search and Ant System were the best optimization technique for the studied problem. -- Abstract: Fuel reload pattern optimization is a crucial fuel management activity in nuclear power reactors. Along the years, a lot of work has been done in this area. In particular, several metaheuristic optimization techniques have been applied with good results for boiling water reactors (BWRs). In this paper, a comparison of different metaheuristics: genetic algorithms, tabu search, recurrent neural networks and several ant colony optimization techniques, were applied, in order to evaluate their performance. The optimization of an equilibrium core of a BWR, loaded with mixed oxide fuel composed of plutonium and minor actinides, was selected to be optimized. Results show that the best average values are obtained with the recurrent neural networks technique, meanwhile the best fuel reload was obtained with tabu search. However, according to the number of objective functions evaluated, the two fastest optimization techniques are tabu search and Ant System.

  19. Investigation of Burnup Credit Issues in BWR Fuel

    International Nuclear Information System (INIS)

    Calculations for long-term-disposal criticality safety of spent nuclear fuel requires the application of burnup credit because of the large mass of fissile material that will be present in the repository. Burnup credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents, followed by criticality calculations to assess the value of keff for a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models used to characterize spent fuel. Most effort in the United States this decade has focused on burnup issues related to pressurized-water reactors. However, requirements for the permanent disposal of fuel from boiling-water reactors has necessitated development of methods for prediction of spent fuel contents for such fuels. Concomitant with such analyses, validation is also necessary. This paper provides a summary of initial efforts at the Oak Ridge National Laboratory to better understand and validate spent fuel analyses for boiling-water-reactor fuel

  20. Experience of MOX-fuel operation in the Gundremmingen BWR plant: Nuclear characteristics and in-core fuel management

    International Nuclear Information System (INIS)

    After 4 years of good experience with MOX-fuel operation in the BWR plants Gundremmingen units B and C the number of inserted MOX-FAs will be increased in the future continuously. Until now all MOX-FAs are in good condition. Furthermore calculations and measurements concerning zero power tests and tip measurements are in good agreement as expected: all results lead to the conclusion that MOX-FAs can be calculated with the same precision as uranium-FAs. (author)

  1. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  2. Radial distribution of UO2 and Gd2O3 in fuel cells of a BWR Reactor

    International Nuclear Information System (INIS)

    The fuel system that is used at the moment in a power plant based on power reactors BWR, includes as much like the one of its substantial parts to the distribution of the fissile materials like a distribution of burnt poisons within each one of the cells which they constitute the fuel assemblies, used for the energy generation. Reason why at the beginning of a new operation cycle in a reactor of this type, the reactivity of the nucleus should be compensated by the exhaustion of the assemblies that it moves away of the nucleus for their final disposition. This compensation is given by means of the introduction of the recharge fuel, starting from the UO2 enriched in U235, and of the Gadolinium (Gd2O3). The distribution of these materials not only defines the requirements of energy generation, but in certain measures also the form in that the margins will behave to the limit them thermal during the operation of the reactor. These margins must be taken into account for the safe and efficient extraction of the energy of the fuel. In this work typical fuel cells appear that are obtained by means of the use of a emulation model of an ants colony. This model allows generating from a possible inventory of values of enrichment of U235, as well as of concentration of Gadolinium a typical fuel cell, which consists of an arrangement of lOxlO rods, of which 92 contain U235, some of these rods contain a concentration of Gd2O3 and 8 of the total contain only water. The search of each cell finishes when the value of the Local Peak Power Factor (LPPF) in the cell reaches a minimal value, or when a pre established value of iterations is reached. The cell parameters are obtained from the results of the execution of the code HELIOS, which incorporates like a part integral of the search algorithm. (Author)

  3. Test plan for thermogravimetric analyses of BWR spent fuel oxidation

    International Nuclear Information System (INIS)

    Preliminary studies indicated the need for additional low-temperature spent fuel oxidation data to determine the behavior of spent fuel as a waste form for a tuffy repository. Short-term thermogravimetric analysis tests were recommended in a comprehensive technical approach as the method for providing scoping data that could be used to (1) evaluate the effects of variables such as moisture and burnup on the oxidation rate, (2) determine operative mechanisms, and (3) guide long-term, low-temperature oxidation testing. The initial test series studied the temperature and moisture effects on pressurized water reactor fuel as a function of particle and grain size. This document presents the test matrix for studying the oxidation behavior of boiling water reactor fuel in the temperature range of 140 to 225/degree/C. 17 refs., 7 figs., 3 tabs

  4. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  5. Axial profiles of burned and fraction of holes for calculations of criticality with credit for BWR fuel burning; Perfiles axiales de quemado y fraccion de huecos para calculos de criticidad con credito al quemado para combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Casado Sanchez, C.; Rubio Oviedo, P.

    2014-07-01

    This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)

  6. Comparison study of the thermal mechanical performance of fuel rods during BWR fuel preconditioning operations using the computer codes FUELSIM and FEMAXI-V

    Energy Technology Data Exchange (ETDEWEB)

    Pantoja C, R. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Ingenieria Nuclear, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Ortiz V, J.; Castillo D, R., E-mail: rafael.pantoja10@yahoo.com.m [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-10-15

    The safety of nuclear power plants requires monitoring those parameters having some direct or indirect effect on safety. The thermal limits are values set for those parameters considered having most impact on the safe operation of a nuclear power reactor. Some thermal limits monitoring requires the thermal-mechanical analysis of the rods containing the nuclear fuel. The fuel rod thermal-mechanical behaviour under irradiation is a complex process in which there exists a great deal of interrelated physical and chemical phenomena, so that the fuel rod performance analysis in the core of a nuclear power reactor is generally accomplished by using computer codes, which integrate several of the phenomena that are expected to occur during the lifetime of the fuel rod in the core. In the operation of a nuclear power reactor, pre-conditioning simulations are necessary to determine in advance limit values for the power that can be generated in a fuel rod during any power ramp, and mainly during reactor startup, and thus avoiding any rod damage. In this work, a first analysis of the thermal-mechanical performance of typical fuel rods used in nuclear reactors of the type BWR is performed. This study includes two types of fuel rods: one from a fuel assembly design with array 8 x 8, and the other one from a 10 x 10 fuel assembly design, and a comparison of the thermal-mechanical performance between the two different rod designs is performed. The performance simulations were performed by the code FUELSIM, and compared against results previously obtained from similar simulation with the code FEMAXI-V. (Author)

  7. Sphere-pac versus pellet UO2 fuel in de Dodewaard BWR

    International Nuclear Information System (INIS)

    Comparative testing of UO2 sphere-pac and pellet fuel rods under LWR conditions has been jointly performed by the Netherlands Utilities Research Centre (KEMA) in Arnhem, the Netherlands Energy Research Foundation (ECN) at Petten and the Netherlands Joint Nuclear Power Utility (GKN) at Dodewaard. This final report summarizes the highlights of this 1968-1988 program with strong emphasis on the fuel rods irradiated in the Dodewaard BWR. The conclusion reached is that under normal LWR conditions sphere-pac UO2 in LWR fuel rods offers better resistance against stress corrosion cracking of the cladding, but that under fast, single step, power ramping conditions pellet UO2 in LWR fuel rods has a better resistance against hoop stress failure of the cladding. 128 figs., 36 refs., 19 tabs

  8. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR

    International Nuclear Information System (INIS)

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  9. BWR simulation in a stationary state for the evaluation of fuel cell design; Simulacion de un reactor BWR en estado estacionario para la evaluacion del diseno de celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J. L.; Ortiz S, J. J.; Perusquia del C, R.; Castillo M, A., E-mail: joseluis.montes@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this paper the simulation of a BWR in order to evaluate the performance of a set of fuel assemblies under stationary state in three dimensions (3-D) is presented. 15 cases selected from a database containing a total of 18225 cases are evaluated. The main selection criteria were based on the results of the design phase of the power cells in two dimensions (2-D) and 3-D initial study. In 2-D studies the parameters that were used to qualify and select the designs were basically the local power peaking factor and neutron multiplication factor of each fuel cell. In the initial 3-D study variables that defined the quality of results, and from which the selection was realized, are the margins to thermal limits of reactor operation and the value of the effective multiplication factor at the end of cycle operation. From the 2-D and 3-D results of the studies described a second 3-D study was realized, where the optimizations of the fuel reload pattern was carried out. The results presented in this paper correspond to this second 3-D study. It was found that the designs of the fuel cell they had a similar behavior to those provided by the fuel supplier of reference BWR. Particularly it noted the impact of reload pattern on the cold shut down margin. An estimate of the operation costs of reference cycle analyzed with each one designed reload batch was also performed. As a result a positive difference (gain) up to 10,347 M/US D was found. (Author)

  10. FUEL ASSEMBLY SHAKER TEST SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

    2013-05-30

    This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through

  11. CFD prediction of flow and phase distribution in fuel assemblies with spacers

    Energy Technology Data Exchange (ETDEWEB)

    Anglart, H.; Nylund, O. [ABB Atom AB, Vasteras (Switzerland); Kurul, N. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.

  12. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor

    International Nuclear Information System (INIS)

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  13. Evaluation of the thermal-mechanical performance of fuel rods of a BWR during a power ramp using the FUELSIM code

    International Nuclear Information System (INIS)

    To avoid the risk to environment due to release of radioactive material, because of occurrence of an accident, it is the priority of the design and performance of the diverse systems of safety of a commercial nuclear power plant. The safety of nuclear power plants requires, therefore, monitoring those parameters having some direct or indirect effect on safety. The thermal limits are values set for those parameters considered having most impact on the safe operation of a nuclear power reactor. Some thermal limits monitoring requires the thermal-mechanical analysis of the rods containing the nuclear fuel. The fuel rod thermal-mechanical behavior under irradiation is a complex process in which there exists a great deal of interrelated physical and chemical phenomena, so that the fuel rod performance analysis in the core of a nuclear power reactor is generally accomplished by using computer codes, which integrate several of the phenomena that are expected to occur during the lifetime of the fuel rod in the core. The main application of the thermal-mechanical analysis codes is the prediction of occurrence of conditions and/or phenomena that could lead to the deterioration or even mechanical failure of the fuel rod cladding, as, for example, the pellet-cladding interaction. In the operation of a nuclear power reactor, fuel preconditioning operations refer to the operational procedures employed to reduce the fuel rod failure probability due to fuel-cladding interaction, specially during reactor startup. Preconditioning simulations are therefore necessary to determine in advance limit values for the power that can be generated in a fuel rod, and thus avoiding any rod damage. In this work, a first analysis of the thermal-mechanical performance of typical fuel rods used in nuclear reactors of the type BWR 5/6, as those two nuclear reactors in Laguna Verde, Veracruz, is performed. This study includes two types of fuel rods: one from a fuel assembly design with an array 8 x 8

  14. Development of neural network for predicting local power distributions in BWR fuel bundles considering burnable neutron absorber

    International Nuclear Information System (INIS)

    A neural network model is under development to predict the local power distribution in a BWR fuel bundle as a high speed simulator of precise nuclear physical analysis model. The relation between 235U enrichment of fuel rods and local peaking factor (LPF) has been learned using a two-layered neural network model ENET. The training signals used were 33 patterns having considered a line symmetry of a 8x8 assembly lattice including 4 water rods. The ENET model is used in the first stage and a new model GNET which learns the change of LPFs caused by burnable neutron absorber Gadolinia, is added to the ENET in the second stage. Using this two-staged model EGNET, total number of training signals can be decreased to 99. These training signals are for zero-burnup cases. The effect of Gadolinia on LPF has a large nonlinearity and the GNET should have three layers. This combined model of EGNET can predict the training signals within 0.02 of LPF error, and the LPF of a high power rod is predictable within 0.03 error for Gadolinia rod distributions different from the training signals when the number of Gadolinia rods is less than 10. The computing speed of EGNET is more than 100 times faster than that of a precise nuclear analysis model, and EGNET is suitable for scoping survey analysis. (author)

  15. Optimization of fuel reloads for a BWR using the ant colony system

    International Nuclear Information System (INIS)

    In this work some results obtained during the development of optimization systems are presented, which are employees for the fuel reload design in a BWR. The systems use the ant colony optimization technique. As first instance, a system is developed that was adapted at travel salesman problem applied for the 32 state capitals of Mexican Republic. The purpose of this implementation is that a similarity exists with the design of fuel reload, since the two problems are of combinatorial optimization with decision variables that have similarity between both. The system was coupled to simulator SIMULATE-3, obtaining good results when being applied to an operation cycle in equilibrium for reactors of nuclear power plant of Laguna Verde. (Author)

  16. Development of neural network simulating power distribution of a BWR fuel bundle

    International Nuclear Information System (INIS)

    A neural network model is developed to simulate the precise nuclear physics analysis program code for quick scoping survey calculations. The relation between enrichment and local power distribution of BWR fuel bundles was learned using two layers neural network (ENET). A new model is to introduce burnable neutron absorber (Gadolinia), added to several fuel rods to decrease initial reactivity of fresh bundle. The 2nd stages three layers neural network (GNET) is added on the 1st stage network ENET. GNET studies the local distribution difference caused by Gadolinia. Using this method, it becomes possible to survey of the gradients of sigmoid functions and back propagation constants with reasonable time. Using 99 learning patterns of zero burnup, good error convergence curve is obtained after many trials. This neural network model is able to simulate no learned cases fairly as well as the learned cases. Computer time of this neural network model is about 100 times faster than a precise analysis model. (author)

  17. Optimal estimate of the coolant flow in the assemblies of a BWR of natural circulation in real time; Estimacion optima del flujo de refrigerante en los ensambles de un BWR de circulacion natural en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, Facultad de Ingenieria, Division de Estudios de Posgrado, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: julfi_jg@yahoo.com.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2012-10-15

    The present work exposes the design and the implementation of an advanced controller that allows estimating the coolant flow in the fuel assemblies of a BWR reactor of natural circulation in real time. To be able to reduce the penalizations that are established in the calculations of the operation limits due to the magnitude of the uncertainties in the coolant flows of a natural circulation reactor, is the objective of this research. In this work the construction of the optimal controller that allows estimating the coolant flows in a fuel channels group of the reactor is shown, as well as the operation of this applied to a reduced order model that simulates the dynamics of a natural circulation reactor. The controller design required of an estimator of the valuation variables not directly of the plant and of the estimates use of the local distributions of the coolant flow. The controller construction of the estimator was based mathematically in the filter Kalman whose algorithm allows to be carried out an advanced control of the system. To prove the estimator operation was development a simplified model that reproduces the basic dynamics of the flowing coolant in the reactor, which works as observer of the system, this model is coupled by means of the estimator controller to a detail model of the plant. The results are presented by means of graphics of the interest variables and the estimate flow, and they are documented in the chart that is presented at the end of this article. (Author)

  18. Design and optimization of a fuel reload of BWR with plutonium and minor actinides; Diseno y optimizacion de una recarga de combustible de BWR con plutonio y actinidos menores

    Energy Technology Data Exchange (ETDEWEB)

    Guzman A, J. R.; Francois L, J. L.; Martin del Campo M, C.; Palomera P, M. A. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: maestro_juan_rafael@hotmail.com

    2008-07-01

    In this work is designed and optimized a pattern of fuel reload of a boiling water reactor (BWR), whose fuel is compound of uranium coming from the enrichment lines, plutonium and minor actinides (neptunium, americium, curium); obtained of the spent fuel recycling of reactors type BWR. This work is divided in two stages: in the first stage a reload pattern designs with and equilibrium cycle is reached, where the reload lot is invariant cycle to cycle. This reload pattern is gotten adjusting the plutonium content of the assembly for to reach the length of the wished cycle. Furthermore, it is necessary to increase the concentration of boron-10 in the control rods and to introduce gadolinium in some fuel rods of the assembly, in order to satisfy the margin approach of out. Some reactor parameters are presented: the axial profile of power average of the reactor core, and the axial and radial distribution of the fraction of holes, for the one reload pattern in balance. For the design of reload pattern codes HELIOS and CM-PRESTO are used. In the second stage an optimization technique based on genetic algorithms is used, along with certain obtained heuristic rules of the engineer experience, with the intention of optimizing the reload pattern obtained in the first stage. The objective function looks for to maximize the length of the reactor cycle, at the same time as that they are satisfied their limits related to the power and the reactor reactivity. Certain heuristic rules are applied in order to satisfy the recommendations of the fuel management: the strategy of the control cells core, the strategy of reload pattern of low leakage, and the symmetry of a quarter of nucleus. For the evaluation of the parameters that take part in the objective function it simulates the reactor using code CM-PRESTO. Using the technique of optimization of the genetic algorithms an energy of the cycle of 10834.5 MW d/tHM is obtained, which represents 5.5% of extra energy with respect to the

  19. Prediction of the local power factor in BWR fuel cells by means of a multilayer neural network; Prediccion del factor local de potencia en celdas de combustible BWR mediante una red neuronal multicapas

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J.L.; Ortiz, J.J.; Perusquia C, R. [ININ, Carretera Mexico-Toluca s/n, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico); Francois, J.L.; Martin del Campo M, C. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: jlmt@nuclear.inin.mx

    2007-07-01

    To the beginning of a new operation cycle in a BWR reactor the reactivity of this it increases by means of the introduction of fresh fuel, the one denominated reload fuel. The problem of the definition of the characteristics of this reload fuel represents a combinatory optimization problem that requires significantly a great quantity of CPU time for their determination. This situation has motivated to study the possibility to substitute the Helios code, the one which is used to generate the new cells of the reload fuel parameters, by an artificial neuronal network, with the purpose of predicting the parameters of the fuel reload cell of a BWR reactor. In this work the results of the one training of a multilayer neuronal net that can predict the local power factor (LPPF) in such fuel cells are presented. The prediction of the LPPF is carried out in those condition of beginning of the life of the cell (0.0 MWD/T, to 40% of holes in the one moderator, temperature of 793 K in the fuel and a moderator temperature of 560 K. The cells considered in the present study consist of an arrangement of 10x10 bars, of those which 92 contains U{sup 235}, some of these bars also contain a concentration of Gd{sub 2}O{sub 3} and 8 of them contain only water. The axial location inside the one assembles of recharge of these cells it is exactly up of the cells that contain natural uranium in the base of the reactor core. The training of the neuronal net is carried out by means of a retro-propagation algorithm that uses a space of training formed starting from previous evaluations of cells by means of the Helios code. They are also presented the results of the application of the neuronal net found for the prediction of the LPPF of some cells used in the real operation of the Unit One of the Laguna Verde Nuclear Power station. (Author)

  20. Optimization of fuel reloads for a BWR using the ant colony system; Optimizacion de recargas de combustible para un BWR usando el sistema de colonia de hormigas

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel E, J. [Universidad Autonoma del Estado de Mexico, Facultad de Ingenieria, Cerro de Coatepec s/n, Ciudad Universitaria, 50110 Toluca, Estado de Mexico (Mexico); Ortiz S, J. J. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: jaime.es.jaime@gmail.com

    2009-10-15

    In this work some results obtained during the development of optimization systems are presented, which are employees for the fuel reload design in a BWR. The systems use the ant colony optimization technique. As first instance, a system is developed that was adapted at travel salesman problem applied for the 32 state capitals of Mexican Republic. The purpose of this implementation is that a similarity exists with the design of fuel reload, since the two problems are of combinatorial optimization with decision variables that have similarity between both. The system was coupled to simulator SIMULATE-3, obtaining good results when being applied to an operation cycle in equilibrium for reactors of nuclear power plant of Laguna Verde. (Author)

  1. Qualification of helium measurement system for detection of fuel failures in a BWR

    Science.gov (United States)

    Larsson, I.; Sihver, L.; Loner, H.; Grundin, A.; Helmersson, J.-O.; Ledergerber, G.

    2014-05-01

    There are several methods for surveillance of fuel integrity during the operation of a boiling water reactor (BWR). The detection of fuel failures is usually performed by analysis of grab samples of off-gas and coolant activities, where a measured increased level of ionizing radiation serves as an indication of new failure or degradation of an already existing one. At some nuclear power plants the detection of fuel failures is performed by on-line nuclide specific measurements of the released fission gases in the off-gas system. However, it can be difficult to distinguish primary fuel failures from degradation of already existing failures. In this paper, a helium measuring system installed in connection to a nuclide specific measuring system to support detection of fuel failures and separate primary fuel failures from secondary ones is presented. Helium measurements provide valuable additional information to measurements of the gamma emitting fission gases for detection of primary fuel failures, since helium is used as a fill gas in the fuel rods during fabrication. The ability to detect fuel failures using helium measurements was studied by injection of helium into the feed water systems at the Forsmark nuclear power plant (NPP) in Sweden and at the nuclear power plant Leibstadt (KKL) in Switzerland. In addition, the influence of an off-gas delay line on the helium measurements was examined at KKL by injecting helium into the off-gas system. By using different injection rates, several types of fuel failures with different helium release rates were simulated. From these measurements, it was confirmed that the helium released by a failed fuel can be detected. It was also shown that the helium measurements for the detection of fuel failures should be performed at a sampling point located before any delay system. Hence, these studies showed that helium measurements can be useful to support detection of fuel failures. However, not all fuel failures which occurred at

  2. Development of neural network for analysis of local power distributions in BWR fuel bundles

    International Nuclear Information System (INIS)

    A neural network model has been developed to learn the local power distributions in a BWR fuel bundle. A two layers neural network with total 128 elements is used for this model. The neural network learns 33 cases of local power peaking factors of fuel rods with given enrichment distribution as the teacher signals, which were calculated by a fuel bundle nuclear analysis code based on precise physical models. This neural network model studied well the teacher signals within 1 % error. It is also able to calculate the local power distributions within several % error for the different enrichment distributions from the teacher signals when the average enrichment is close to 2 %. This neural network is simple and the computing speed of this model is 300 times faster than that of the precise nuclear analysis code. This model was applied to survey the enrichment distribution to meet a target local power distribution in a fuel bundle, and the enrichment distribution with flat power shape are obtained within short computing time. (author)

  3. Fuel design with low peak of local power for BWR reactors with increased nominal power; Diseno de un combustible con bajo pico de potencia local para reactores BWR con potencia nominal aumentada

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia C, R.; Montes, J.L.; Hernandez, J.L.; Ortiz, J.J.; Castillo, A. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mrpc@nuclear.inin.mx

    2006-07-01

    The Federal Commission of Electricity recently announcement the beginning of the works related with the increase of the power to 120% of the original nominal one in the Boiling Water Reactors (BWR) of the Laguna Verde Central (CLV): In the National Institute of Nuclear Research (ININ) are carried out studies of the impact on the design of the recharge of derived fuel of this increase. One of the main effects of the power increase type that it is promoting, is the increment of the flow of generated vapor, what takes, to a bigger fraction of vacuum in the core presenting increased values of the maximum fraction to the limit, so much of the ratio of lineal heat generation (XFLPD) as of the ratio of critic power (MFLCPR). In the made studies, it is found that these fractions rise lineally with the increase of the nominal power. Considering that the reactors of the CLV at the moment operate to 105% of the original nominal power, it would imply an increment of the order of 13.35% in the XFLPD and in the MFLCPR operating to a nominal power of 120% of the original one. This would propitiate bigger problems to design appropriately the fuel cycle and the necessity, almost unavoidable, of to resort to a fuel assembly type more advanced for the recharges of the cores. As option, in the ININ the feasibility of continuing using the same type of it fuel assembles that one has come using recently in the CLV, the type GE12 is analyzed. To achieve it was outlined to diminish the peak factor of local power (LPPF) of the power cells that compose the fuel recharge in 13.35%. It was started of a fuel design previously used in the recharge of the unit 1 cycle 12 and it was re-design to use it in the recharge design of the cycle 13 of the unit 1, considering an increase to 120% of the original power and the same requirements of cycle extension. For the re-design of the fuel assembly cell it was used the PreDiCeldas computer program developed in the ININ. It was able to diminish the LPPF

  4. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions

  5. Study of intermediate configurations during the fuel reload in BWRs; Estudio de configuraciones intermedias durante la recarga de combustible en BWR's

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia del C, R. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Jacinto C, S., E-mail: luis.fuentes@inin.gob.mx [Universidad Autonoma del Estado de Yucatan, Calle 60 No. 491-A por 57, 97000 Merida, Yucatan (Mexico)

    2012-10-15

    The criticality state of the core of a boiling water reactor (BWR) was evaluated, during the reload process for the intermediate states between the load pattern of cycle end and the beginning of the next, using the information of the load pattern of the operation cycles 13 and 14 of Unit 1 of the nuclear power plant of Laguna Verde. For this evaluation the codes CASMO-4 and Simulate-3 for conditions of the core in cold were used. The strategy consisted on moving assemblies with 4 burned cycles of the reactor core. Later on were re situated the remaining assemblies, placing them in the positions to occupy in the next operation cycle. Finally, was carried out the assemblies load of fresh fuel. In each realized change, it was observing the behavior of the k-effective value that is the parameter used to evaluate the criticality state of each state of the core change. In a second stage, was designed a program that builds in automatic way each one of the intermediate cores and also analyzes the criticality state of the reactor core after each withdrawal, re situated and load of fuel assemblies. (Author)

  6. Design report of the disposal canister for twelve fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, H. [VTT Energy, Espoo (Finland); Salo, J.P. [Posiva Oy, Helsinki (Finland)

    1999-05-01

    The report provides a summary of the design of the canister for final disposal of spent nuclear fuel. The canister structure consists of a cylindrical massive nodular graphite cast iron insert covered by a 50 mm thick copper overlay. The capacity of the canister is 12 assemblies of BWR or VVER 440 fuel. The canister shall be tight with a high probability for about 100 000 years. The good and long lasting tightness requires: (1) The good initial tightness that is achieved by high quality requirements and extensive quality control, (2) The good corrosion resistance, which is obtained by the overpack of oxygen free copper, and (3) Mechanical strength of the canister, that is ensured by analyses (the following loads are considered: hydrostatic pressure, even and uneven swelling pressure of bentonite, thermal effects, and elevated hydrostatic pressure during glaciation. The allowed stresses and strains are set in such a way that reasonable engineering safety factors are obtained in all assessed design base loading cases). The canister shall limit the radiation dose rate outside the canister to minimise the radiolysis of the water in the vicinity of the canister. The canister insert shall keep the fuel assemblies in a subcritical configuration even if the void in the canister is filled with water due to postulated leakage. The design basis of the canister is set, the performed analyses are summarised and the results are assessed and discussed in the report. (orig.) 35 refs.

  7. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods

    International Nuclear Information System (INIS)

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  8. Development of a computer program of fast calculation for the pre design of advanced nuclear fuel 10 x 10 for BWR type reactors

    International Nuclear Information System (INIS)

    In the National Institute of Nuclear Research (ININ) a methodology is developed to optimize the design of cells 10x10 of assemble fuels for reactors of water in boil or BWR. It was proposed a lineal calculation formula based on a coefficients matrix (of the change reason of the relative power due to changes in the enrichment of U-235) for estimate the relative powers by pin of a cell. With this it was developed the computer program of fast calculation named PreDiCeldas. The one which by means of a simple search algorithm allows to minimize the relative power peak maximum of cell or LPPF. This is achieved varying the distribution of U-235 inside the cell, maintaining in turn fixed its average enrichment. The accuracy in the estimation of the relative powers for pin is of the order from 1.9% when comparing it with results of the 'best estimate' HELIOS code. With the PreDiCeldas it was possible, at one minimum time of calculation, to re-design a reference cell diminishing the LPPF, to the beginning of the life, of 1.44 to a value of 1.31. With the cell design with low LPPF is sought to even design cycles but extensive that those reached at the moment in the BWR of the Laguna Verde Central. (Author)

  9. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    International Nuclear Information System (INIS)

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe

  10. Hydrogen uptake of BWR fuel rods. Power history effects at long irradiation times

    International Nuclear Information System (INIS)

    AREVA LTP (Low Temperature Process) Zircaloy-2 cladding for Boiling Water Reactors (BWR) in both RXA (Recrystallized Annealed) and CWSR (Cold Worked Stress Relieved) metallurgical states, has an optimized microstructure with an optimum size of SPP (Secondary Phase Particles) that has reduced the nodular corrosion to a minimum while maintaining a good uniform corrosion performance with acceptable hydrogen pickup. Classically hydrogen uptake is described by the Hydrogen Pick-Up Fraction (HPUF), which is the ratio of the hydrogen generated by uniform oxidation that is eventually picked up by the metal to the total hydrogen generated by oxidation. In the past, the hydrogen uptake database showed a low HPUF with hydrogen concentration close to the saturation value of the metal at operating temperature and correspondingly little hydride formation. The hydrogen concentration was correlated with irradiation time via the HPUF (at an almost constant corrosion and hydrogen production rate). Recently, some significantly higher hydrogen concentration values (300 wppm and more) have been measured for medium and high burnup rods. This effect was also observed on four AREVA fuel rods from BWR (Boiling Water Reactors). This prompted a thorough analysis of the hydrogen pickup database as well as material and environmental factors influencing corrosion and hydrogen uptake. The most important outcome of the investigation was that a low power – low steam condition is associated with increased hydrogen pickup. The linear power is a proxy variable for low heat flux and low steam quality in the coolant, which were identified as important parameters for physical processes that could explain the enhanced hydrogen uptake in some cases. The paper will present the database of the enhanced hydrogen uptake measured in European power reactors and demonstrate the effect of power history on the uptake process. Power histories with high hydrogen uptake included extended low power periods later in

  11. Nuclear fuel assembly identification using computer vision

    International Nuclear Information System (INIS)

    This report describes an improved method of remotely identifying irradiated nuclear fuel assemblies. The method uses existing in-cell TV cameras to input an image of the notch-coded top of the fuel assemblies into a computer vision system, which then produces the identifying number for that assembly. This system replaces systems that use either a mechanical mechanism to feel the notches or use human operators to locate notches visually. The system was developed for identifying fuel assemblies from the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor, but could be used for other reactor assembly identification, as appropriate

  12. Fuel fire tests of selected assemblies

    Science.gov (United States)

    Kydd, G.; Spindola, K.; Askew, G. K.

    1982-04-01

    A varing assortment of clothing assemblies was tested in the Fuel Fire Test Facility at the Naval Air Development Center. Included was a Nomex-Kevlar Cloque Coverall which had relatively good protection from fuel flames.

  13. Artificial intelligence applied to fuel management in BWR type reactors; Inteligencia artificial aplicada a la administracion de combustible en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J

    1998-10-01

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  14. Thermal Analysis of a TREAT Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, Dionissios [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, Arthur E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-07-09

    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  15. Evaluation of FSV-1 cask for the transport of LWR irradiated fuel assemblies

    International Nuclear Information System (INIS)

    The Model FSV-1 spent fuel shipping cask was designed by General Atomic Company (GA) to service the Fort St. Vrain (FSV) nuclear generating station, a High Temperature Gas Reactor (HTGR) owned and operated by Public Service Company of Colorado (PSC). This report presents an evaluation of the suitability of the FSV-1 cask for the transport of irradiated Light Water Reactor (LWR) fuel assemblies from both Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). The FSV-1 cask evaluation parameters covered a wide spectrum of LWR fuel assemblies, based on burnup in Megawatt Days/Metric Ton of Heavy Metal (MWD/MTHM) and years of decay since irradiation. The criteria for suitability included allowable radiation dose rates, cask surface and interior temperatures and the Gross Vehicle Weight (GVW) of the complete shipping system

  16. Advanced BWR core component designs and the implications for SFD analysis

    International Nuclear Information System (INIS)

    Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B4C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities

  17. Thermomechanical evaluation of BWR fuel elements for procedures of preconditioned with FEMAXI-V

    International Nuclear Information System (INIS)

    The limitations in the burnt of the nuclear fuel usually are fixed by the one limit in the efforts to that undergo them the components of a nuclear fuel assembly. The limits defined its provide the direction to the fuel designer to reduce to the minimum the fuel failure during the operation, and they also prevent against some thermomechanical phenomena that could happen during the evolution of transitory events. Particularly, a limit value of LHGR is fixed to consider those physical phenomena that could lead to the interaction of the pellet-shirt (Pellet Cladding Interaction, PCI). This limit value it is related directly with an PCI limit that can be fixed based on experimental tests of power ramps. This way, to avoid to violate the PCI limit, the conditioning procedures of the fuel are still required for fuel elements with and without barrier. Those simulation procedures of the power ramp are carried out for the reactor operator during the starting maneuvers or of power increase like preventive measure of possible consequences in the thermomechanical behavior of the fuel. In this work, the thermomechanical behavior of two different types of fuel rods of the boiling water reactor is analyzed during the pursuit of the procedures of fuel preconditioning. Five diverse preconditioning calculations were carried out, each one with three diverse linear ramps of power increments. The starting point of the ramps was taken of the data of the cycle 8 of the unit 1 of the Laguna Verde Nucleo electric Central. The superior limit superior of the ramps it was the threshold of the lineal power in which a fuel failure could be presented by PCI, in function of the fuel burnt. The analysis was carried out with the FEMAXI-V code. (Author)

  18. Evaluation of the thermal-mechanical performance of fuel rods of a BWR during a power ramp using the FUELSIM code; Evaluacion del desempeno termomecanico de barras de combustible de un reactor BWR durante una rampa de potencia utilizando el codigo FUELSIM

    Energy Technology Data Exchange (ETDEWEB)

    Pantoja C, R.

    2010-07-01

    To avoid the risk to environment due to release of radioactive material, because of occurrence of an accident, it is the priority of the design and performance of the diverse systems of safety of a commercial nuclear power plant. The safety of nuclear power plants requires, therefore, monitoring those parameters having some direct or indirect effect on safety. The thermal limits are values set for those parameters considered having most impact on the safe operation of a nuclear power reactor. Some thermal limits monitoring requires the thermal-mechanical analysis of the rods containing the nuclear fuel. The fuel rod thermal-mechanical behavior under irradiation is a complex process in which there exists a great deal of interrelated physical and chemical phenomena, so that the fuel rod performance analysis in the core of a nuclear power reactor is generally accomplished by using computer codes, which integrate several of the phenomena that are expected to occur during the lifetime of the fuel rod in the core. The main application of the thermal-mechanical analysis codes is the prediction of occurrence of conditions and/or phenomena that could lead to the deterioration or even mechanical failure of the fuel rod cladding, as, for example, the pellet-cladding interaction. In the operation of a nuclear power reactor, fuel preconditioning operations refer to the operational procedures employed to reduce the fuel rod failure probability due to fuel-cladding interaction, specially during reactor startup. Preconditioning simulations are therefore necessary to determine in advance limit values for the power that can be generated in a fuel rod, and thus avoiding any rod damage. In this work, a first analysis of the thermal-mechanical performance of typical fuel rods used in nuclear reactors of the type BWR 5/6, as those two nuclear reactors in Laguna Verde, Veracruz, is performed. This study includes two types of fuel rods: one from a fuel assembly design with an array 8 x 8

  19. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  20. Seismic response of nuclear fuel assembly

    Directory of Open Access Journals (Sweden)

    Hlaváč Z.

    2014-06-01

    Full Text Available The paper deals with mathematical modelling and computer simulation of the seismic response of fuel assembly components. The seismic response is investigated by numerical integration method in time domain. The seismic excitation is given by two horizontal and one vertical synthetic accelerograms at the level of the pressure vessel seating. Dynamic response of the hexagonal type nuclear fuel assembly is caused by spatial motion of the support plates in the reactor core investigated on the reactor global model. The modal synthesis method with condensation is used for calculation of the fuel assembly component displacements and speeds on the level of the spacer grid cells.

  1. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part)

    International Nuclear Information System (INIS)

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  2. Establishment of China Nuclear Fuel Assembly Database

    Institute of Scientific and Technical Information of China (English)

    CHENPeng; ZHANGYing-chao; LIUTing-jin; JINYong-li

    2003-01-01

    During researching, designing, manufacturing and post irradiation, a large amount of data on fuel assembly of China nuclear power plants has been accumulated. It is necessary to collect the data together,so that the researchers, designers, manufactures and managers could use the data conveniently. It was proposed to establish a China Nuclear Fuel Assembly Database through the Internet on workstations during the year of 2003 to 2006, so the data would be shared in China nuclear industry.

  3. Nuclear reactor fuel assembly with fuel rod removal means

    International Nuclear Information System (INIS)

    A fuel assembly is described for a nuclear reactor. The assembly has a bottom nozzle, at least one longitudinally extending control rod guide thimble attached to and projecting upwardly from the bottom nozzle and transverse grids spaced along the thimble. An organized array of elongated fuel rods are transversely spaced and supported by the grids and axially captured between the bottom nozzle and a top nozzle. The assembly comprises: (a) a transversely extending adapter plate formed by an arrangement of integral cross-laced ligaments defining a plurality of coolant flow openings; (b) means for mounting the adapter plate on an upper end portion of the thimble and spaced axially above and disposed transversely over the upper ends of all of the fuel rods present in the fuel assembly such that ones of the ligaments overlie corresponding ones of the fuel rods so as to prevent the fuel rods from moving upwardly through the coolant flow openings; and (c) removable plug means confined within the adapter plate and positioned over and spaced axially above selected ones of the fuel rods in providing access to at least one fuel rod for removal thereof upwardly through the axially spaced adapter plate without removing the top nozzle from the fuel assembly

  4. Thermomechanical evaluation of BWR fuel elements for procedures of preconditioned with FEMAXI-V; Evaluacion termomecanica de elementos combustible BWR para procedimientos de preacondicionado con FEMAXI-V

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Lucatero, M.A.; Ortiz V, J. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: hhl@nuclear.inin.mx

    2006-07-01

    The limitations in the burnt of the nuclear fuel usually are fixed by the one limit in the efforts to that undergo them the components of a nuclear fuel assembly. The limits defined its provide the direction to the fuel designer to reduce to the minimum the fuel failure during the operation, and they also prevent against some thermomechanical phenomena that could happen during the evolution of transitory events. Particularly, a limit value of LHGR is fixed to consider those physical phenomena that could lead to the interaction of the pellet-shirt (Pellet Cladding Interaction, PCI). This limit value it is related directly with an PCI limit that can be fixed based on experimental tests of power ramps. This way, to avoid to violate the PCI limit, the conditioning procedures of the fuel are still required for fuel elements with and without barrier. Those simulation procedures of the power ramp are carried out for the reactor operator during the starting maneuvers or of power increase like preventive measure of possible consequences in the thermomechanical behavior of the fuel. In this work, the thermomechanical behavior of two different types of fuel rods of the boiling water reactor is analyzed during the pursuit of the procedures of fuel preconditioning. Five diverse preconditioning calculations were carried out, each one with three diverse linear ramps of power increments. The starting point of the ramps was taken of the data of the cycle 8 of the unit 1 of the Laguna Verde Nucleo electric Central. The superior limit superior of the ramps it was the threshold of the lineal power in which a fuel failure could be presented by PCI, in function of the fuel burnt. The analysis was carried out with the FEMAXI-V code. (Author)

  5. Fuel assembly for a boiling water reactor

    International Nuclear Information System (INIS)

    The fuel assembly of a boiling water reactor contains a number of vertical fuel rods with their lower ends against a bottom tie plate. The rods are positioned by spacers, which are fixed to the canning. The upward motion is reduced by the top plate of a special design. (G.B.)

  6. Apparatus and method for assembling fuel elements

    International Nuclear Information System (INIS)

    A nuclear fuel element assembling method and apparatus is preferably operable under programmed control unit to receive fuel rods from storage, arrange them into axially aligned stacks of closely monitored length, and transfer the stacks of fuel rods to a loading device for insertion into longitudinal passages in the fuel elements. In order to handle large numbers of one or more classifications of fuel rods or other cylindrical parts, the assembling apparatus includes at least two feed troughs each formed by a pair of screw members with a movable table having a plurality of stacking troughs for alignment with the feed troughs and with a conveyor for delivering the stacks to the loading device, the fuel rods being moved along the stacking troughs upon a fluid cushion. 23 claims, 6 figures

  7. 44-BWR WASTE PACKAGE LOADING CURVE EVALUATION

    International Nuclear Information System (INIS)

    The objective of this calculation is to evaluate the required minimum burnup as a function of initial boiling water reactor (BWR) assembly enrichment that would permit loading of spent nuclear fuel into the 44 BWR waste package configuration as provided in Attachment IV. This calculation is an application of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent (wt%) U-235, and a burnup range of 0 through 40 GWd/MTU. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing BWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results of 100 percent of the current BWR projected waste stream being able to be disposed of in the 44-BWR waste package with Ni-Gd Alloy absorber plates is contingent upon the referenced waste stream being sufficiently similar to the waste stream received for disposal. (3) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials

  8. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J.V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  9. SOLID GAS SUSPENSION NUCLEAR FUEL ASSEMBLY

    Science.gov (United States)

    Schluderberg, D.C.; Ryon, J.W.

    1962-05-01

    A fuel assembly is designed for use in a gas-suspension cooled nuclear fuel reactor. The coolant fluid is an inert gas such as nitrogen or helium with particles such as carbon suspended therein. The fuel assembly is contained within an elongated pressure vessel extending down into the reactor. The fuel portion is at the lower end of the vessel and is constructed of cylindrical segments through which the coolant passes. Turbulence promotors within the passageways maintain the particles in agitation to increase its ability to transfer heat away from the outer walls. Shielding sections and alternating passageways above the fueled portion limit the escape of radiation out of the top of the vessel. (AEC)

  10. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J.V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  11. Analysis of the behavior of irradiated BWR fuel rod in storage dry conditions; Analisis del comportamiento de una barra combustible irradiada BWR en condiciones de almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A.; Montes, D.; Ruiz-Hervias, J.; Munoz-Reja, C.

    2014-07-01

    In order to complete previous studies of creep on PWR sheath material, developed a joint experimental program by CSN, ENRESA and ENUSA about BWR (Zircaloy-2) sheath material. This program consisted in creep tests and then on the material under creep, compression testing diametral obtaining the permissible displacement of the sheath to break. (Author)

  12. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  13. Nuclear fuel assembly identification using computer vision

    International Nuclear Information System (INIS)

    A new method of identifying fuel assemblies has been developed. The method uses existing in-cell TV cameras to read the notch-coded handling sockets of Fast Flux Test Facility (FFTF) assemblies. A computer looks at the TV image, locates the notches, decodes the notch pattern, and produces the identification number. A TV camera is the only in-cell equipment required, thus avoiding complex mechanisms in the hot cell. Assemblies can be identified in any location where the handling socket is visible from the camera. Other advantages include low cost, rapid identification, low maintenance, and ease of use

  14. BWR spent fuel transport and storage system for KKL: TN trademark 52L, TN trademark 97L, TN trademark 24 BHL

    Energy Technology Data Exchange (ETDEWEB)

    Sicard, D.; Verdier, A. [COGEMA Logistics (AREVA Group) (France); Monsigny, P.A. [NOK/KKL (Switzerland)

    2004-07-01

    The LEIBSTADT (KKL) nuclear power plant in Switzerland has opted to ship spent fuel to a central facility called ZWILAG for interim storage. In the mid-nineties, COGEMA LOGISTICS was contracted by KKL for the supply of the TN trademark a52L and TN trademark 97L transport and storage casks for BWR fuel types. In 2003, KKL also ordered from COGEMA LOGISTICS the supply of six TNae24 BHL transport and storage casks. This paper shows how all the three cask designs have responded to the KKL needs to ship and store BWR spent fuel. In addition, it highlights the already significant operational feedback of the TN trademark 52L and TN trademark 97L casks by the KKL and ZWILAG operators.

  15. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR; BUTREN-RC un sistema hibrido para la optimizacion de recargas de combustible nuclear en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J.; Castillo M, J.A. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico); Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  16. RBMK fuel assemblies: Current status and perspectives

    International Nuclear Information System (INIS)

    The safety enhancement measures implemented since 1986 have led to substantial burnup reduction in the RBMK fuel assemblies and consequently to economical losses. With the purpose to compensate the losses, computer analysis and experiments were performed during the last decade. The works were aimed at the RBMK fuel charge perfection to reduce void reactivity effect and to increase fuel burnup. The paper presents principle results of the studies which are currently under implementation or are supposed to be implemented in the nearest future. (author)

  17. Behavior of BWR-type fuel elements with B{sub 4}C/steel absorber tested under severe fuel damage conditions in the CORA facility

    Energy Technology Data Exchange (ETDEWEB)

    Sepold, L.; Hagen, S.; Hofmann, P.; Schanz, G.

    2009-01-15

    The CORA experiments carried out in an out-of-pile facility at the Kernforschungszentrum Karlsruhe (KfK), Federal Republic of Germany, are part of the ''Severe Fuel Damage'' (SFD) program. The experimental program was to provide information on the failure mechanisms of Light Water Reactor (LWR) fuel elements in a temperature range from 1200 C to 2000 C and in a few cases up to 2400 C. In the CORA experiments two different bundle configurations were tested: PWR (Pressurized Water Reactor) and BWR (Boiling Water Reactor) bundles. The BWR-type bundles consisted of 18 fuel rod simulators (heated and unheated rods), an absorber blade of steel containing eleven absorber rods filled with boron carbide powder. The larger bundle CORA-18 contained the same number of absorber rods but was made up of 48 fuel rod simulators. All BWR bundles were surrounded by a zircaloy shroud and the absorber blades by a channel box wall on each side, also made of zircaloy. The test bundles were subjected to temperature transients of a slow heatup rate in a steam environment. Thus, an accident sequence was simulated, which may develop from a small-break loss-of-coolant accident of a LWR. The transient phases of the tests were initiated with a temperature ramp rate of 1 K/s. The temperature escalation due to the exothermal zircaloy(Zry)-steam reaction started at about 1100 C, leading the bundles to maximum temperatures of approximately 2000 C. In all experiments bundle destruction started in the upper region (axially) with melting of the absorber blade and the absorber rod cladding at about 1250 C by interaction of boron carbide and steel. After destruction of the channel box walls this melt attacked the zircaloy fuel rod cladding and started to interact with the UO{sub 2} pellets. The test bundles also resulted in severe oxidation of the following components made of zircaloy: shroud, cladding, and grid spacers at the central and upper positions. Relocated absorber melt

  18. Optimization of analysis best-estimate of a fuel element BWR with Code STAR-CCM+; Optimizacion del analisis best-estimate de un elemento combustible BWR con el codigo STAR-CCM+

    Energy Technology Data Exchange (ETDEWEB)

    Morgado Canada, E.; Concejal Barmejo, A.; Jimenez Varas, G.; Solar Martinez, A.

    2014-07-01

    The objective of the project is the evaluation of the code STAR-CCM +, as well as the establishment of guidelines and standardized procedures for the discretization of the area of study and the selection of physical models suitable for the simulation of BWR fuel. For this purpose several of BFBT experiments have simulated [1] provide a data base for the development of experiments for measuring distribution of fractions of holes to changes in power in order to find the most appropriate models for the simulation of the problem. (Author)

  19. Non-destructive γ-ray spectrometry and analysis on spent fuel assemblies of the JPDR-I

    International Nuclear Information System (INIS)

    Non-destructive gamma-ray spectrometry was carried out on the spent fuel assemblies of the whole core of JPDR-I which was a BWR. These data were analyzed by considering power distribution, spatial variation of neutron spectrum, and history of reactor operation. The burnup and the Pu/U atom ratio in each assembly were derived from the non-destructively measured distributions of 137Cs activity and 134Cs/137Cs activity ratio, respectively, by using calibration curves established for fuel specimens of a standard assembly of the core. The results were compared with calculational ones based on the operational data, and good correlations were found between them. The total amount of plutonium build-up in the core estimated from the non-destructive measurements agreed quite well with the amount obtained from reprocessing. (author)

  20. MELCOR/SNAP analysis of Chinshan (BWR/4) Nuclear Power Plant spent fuel pool for the similar Fukushima accident

    International Nuclear Information System (INIS)

    Chinshan nuclear power plant (NPP), a BWR/4 plant, is the first NPP in Taiwan. After Fukushima NPP event occurred, there is more concern for the safety of NPPs in Taiwan. Therefore, in order to estimate the safety of Chinshan NPP spent fuel pool, by using MELCOR 2.1 and SNAP 2.2.7 codes, INER (Institute of Nuclear Energy Research, Atomic Energy Council, R.O.C.) performed the safety analysis of Chinshan NPP spent fuel pool (SFP). There were two main steps in this research. The first step was the establishment of Chinshan NPP SFP MELCOR/SNAP model. And the transient analysis under the SFP cooling system failure condition was performed. Besides, in order to study the detailed thermal-hydraulic performance of this transient, TRACE was used in this analysis. CFD data from INER report was used to compare with the results of MELCOR and TRACE. The next step was the fuel rod performance analysis by using FRAPTRAN and TRACE's results. Besides, the animation model of Chinshan NPP SFP was presented using the animation function of SNAP with MELCOR analysis results. (author)

  1. Advanced methods for BWR transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A.; Wehle, F.; Opel, S.; Velten, R. [AREVA, AREVA NP, Erlangen (Germany)

    2008-07-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  2. Advanced methods for BWR transient and stability analysis

    International Nuclear Information System (INIS)

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  3. Calibration of spent fuel measurement assembly

    International Nuclear Information System (INIS)

    The LVR-15 research reactor (Czech Republic) had been converted from the highly enriched IRT-2M to the low enriched IRT-4M fuel. For the possibility of the independent pre-transport evaluation of IRT-2M burnup, a spectrometric system was developed. This spectrometric system consists of the fuel holder, the collimator and the portable Canberra Big MAC HPGe (High Purity Germanium) detector. In order to have well reproducible and reliable experimental data for modeling of the measurement system, calibration with the 110mAg isotope with known activity was performed. This isotope was chosen for having energies similar to isotopes measured in fuel assemblies. The 110mAg isotope was prepared by irradiating of the silver foil in LVR-15 research reactor; its activity was evaluated in the LVR-15's spectrometric laboratory. From the measured data, an efficiency curve of the spectrometric system has been determined. The experimental data were compared to the calculation results with the MCNPX model of the spectrometric system. - Highlights: • Calibration of research reactor spent fuel measurement assembly. • On-site prepared 110mAg isotope used for the measurement. • Calculated self-shielding factor for the IRT-2M fuel. • Applicable to other research reactor fuel geometries

  4. Process development and fabrication for sphere-pac fuel rods. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted.

  5. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part); MCTP, un codigo para el analisis termo-mecanico de una barra combustible de reactores tipo BWR (Parte Neutronica)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Ortiz V, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: hhl@nuclear.inin.mx

    2003-07-01

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  6. Model for the analysis of transitories and stability of a BWR reactor with fuel of thorium

    International Nuclear Information System (INIS)

    In this work it is described the thermo hydraulic and neutronic pattern used to simulate the behavior of a nucleus of thorium-uranium under different conditions of operation. The analysed nucleus was designed with base to assemblies that operate under the cover-seed concept. The pattern was proven to conditions of stationary state and transitory state. Here it is only presented the simulation of the one SCRAM manual and it is compared in the behavior of a nucleus with UO2. Additionally one carries out an analysis of stability taking into account the four corners that define the area of stability of the map flow-power and to conditions of 100% of flow and 100% of power. The module of stability is based on the pattern of Lahey and Podowsky to estimate the drops of pressure during a perturbation. It is concludes that the behavior of this nucleus is not very different to the one shown by the nuclei loaded with the fuel of UO2. (Author)

  7. Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization

    International Nuclear Information System (INIS)

    This work proposes advances in the implementation of a flexible genetic algorithm (GA) for fuel loading pattern optimization for Boiling Water Reactors (BWRs). In order to avoid specific implementations of genetic operators and to obtain a more flexible treatment, a binary representation of the solution was implemented; this representation had to take into account that a little change in the genotype must correspond to a little change in the phenotype. An identifier number is assigned to each assembly by means of a Gray Code of 7 bits and the solution (the loading pattern) is represented by a binary chain of 777 bits of length. Another important contribution is the use of a Fitness Function which includes a Heuristic Function and an Objective Function. The Heuristic Function which is defined to give flexibility on the application of a set of positioning rules based on knowledge, and the Objective Function that contains all the parameters which qualify the neutronic and thermal hydraulic performances of each loading pattern. Experimental results illustrating the effectiveness and flexibility of this optimization algorithm are presented and discussed.

  8. Calculation of activity content and related properties in PWR and BWR fuel using ORIGEN 2

    International Nuclear Information System (INIS)

    This report lists the conditions for calculations of the core inventory for a PWR and BWR. The calculations have been performed using the computer code ORIGEN 2. The amount (grams), the total radioactivity (bequerels), the thermal power (watts), the radioactivity from theα-decay (bequerels), and the neutron emission (neutrons/sec) from the core after the last burnup have been determined. All the parameters have been calculated as a function of the burnup and the natural decay, the latter over a time period of 0-1.0E07 years. The calculations have been performed for 68 heavy nuclides, 60 daughter nuclides, to the heavy nuclides with atomic numbers under 92, 852 fission products and 7 light nucli ides. The most important results are listed. (author)

  9. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  10. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor; Evaluacion del diseno radial de celdas de combustible en un ciclo de operacion de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, J.; Martin del Campo M, C. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jgco@ver.megared.net.mx

    2003-07-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  11. FUEL ASSEMBLY SHAKER AND TRUCK TEST SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.; Hanson, Brady D.

    2014-09-25

    This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revised model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when travelling down the same road at

  12. Method for the detection of defective nuclear fuel assemblies

    International Nuclear Information System (INIS)

    There is applied an ultrasonic transmitter on a tape carrier by means of which the ultrasonic transmitter can be guided underwater between the fuel assemblies. If a fuel assembly is defective, i.e. filled with water, the reflection coefficient at the front interface between cladding and inner space of the fuel assembly will decrease. Essential parts of the ultrasonic signal will move through the liquid and will not be reflected until the backward liquid/metal interface of the fuel assembly. This impulse echo is different from that of the gas-filled fuel assembly. (DG)

  13. Advanced membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  14. Impact analysis of modifying the composition of the nuclear fuel of a BWR with beryllium oxide; Analisis del impacto de modificar la composicion del combustible nuclear de un BWR con oxido de berilio

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo V, J. M.; Morales S, J. B., E-mail: euqrop@hotmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2013-10-15

    The beryllium oxide (Be O) presents excellent physical properties, especially its high thermal conductivity that contrasts clearly with that of the uranium dioxide (UO{sub 2}) used at the present as fuel in a great number of nuclear plants. The present work models a nuclear reactor cooled by light water in boiling with two external recirculation loops (BWR/5) using the code for the transitory analysis and postulated accidents Trac-B F1, implementing a UO{sub 2} mixture and different fractions of Be O, with the objective of improving the thermal conductivity of the fuel. The numeric results and the realized analyses indicate that when adding a fraction in volume of 10% the central temperature decreases in 30.4% in stationary state, while during the large break loss of coolant accident the peak cladding temperature diminishes in 7%. Although the real interaction of the mixture has not been determined experimentally, the obtained results are promising. (Author)

  15. HEDL contribution to SRL fuel recycle program. Quarterly report, January--March 1977. [Sensitivity analysis of LMFBR fuel fabrication cost

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.F.

    1977-08-01

    Research on LWR fuel cycle is being done in the following categories: economic studies (sensitivity analysis of LMFBR fuel fabrication costs), spent fuel receipt and storage (failure of PWR and BWR fuel assemblies), fuel materials preparation or finishing processes, reduction of TRU waste generation, and environmental impacts. 12 tables. (DLC)

  16. Nuclear data uncertainty and sensitivity analysis with XSUSA for fuel assembly depletion calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zwermann, W.; Aures, A.; Gallner, L.; Hannstein, V.; Krazykacz-Hausmann, B.; Velkov, K. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany); Martinez, J. S. [Dept. of Nuclear Engineering, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-06-15

    Uncertainty and sensitivity analyses with respect to nuclear data are performed with depletion calculations for BWR and PWR fuel assemblies specified in the framework of the UAM-LWR Benchmark Phase II. For this, the GRS sampling based tool XSUSA is employed together with the TRITON depletion sequences from the SCALE 6.1 code system. Uncertainties for multiplication factors and nuclide inventories are determined, as well as the main contributors to these result uncertainties by calculating importance indicators. The corresponding neutron transport calculations are performed with the deterministic discrete-ordinates code NEWT. In addition, the Monte Carlo code KENO in multi-group mode is used to demonstrate a method with which the number of neutron histories per calculation run can be substantially reduced as compared to that in a calculation for the nominal case without uncertainties, while uncertainties and sensitivities are obtained with almost the same accuracy.

  17. Spent fuel assembly source term parameters

    International Nuclear Information System (INIS)

    Containment of cask contents by a transport cask is a function of the cask body, one or more closure lids, and various bolting hardware, and seals associated with the cavity closure and other containment penetrations. In addition, characteristics of cask contents that impede the ability of radionuclides to move from an origin to the external environment also provide containment. In essence, multiple release barriers exist in series in transport casks, and the magnitude of the releasable activity in the cask is considerably lower than the total activity of its contents. A source term approach accounts for the magnitude of the releasable activity available in the cask by assessing the degree of barrier resistance to release provided by material characteristics and inherent barriers that impede the release of radioactive contents. Standardized methodologies for defining the spent-fuel transport packages with specified regulations have recently been developed. An essential part of applying the source term methodology involves characterizing the response of the spent fuel under regulatory conditions of transport. Thermal and structural models of the cask and fuel are analyzed and used to predict fuel rod failure probabilities. Input to these analyses and failure evaluations cover a wide range of geometrical and material properties. An important issue in the development of these models is the sensitivity of the radioactive source term generated during transport to individual parameters such as temperature and fluence level. This paper provides a summary of sensitivity analyses concentrating on the structural response and failure predictions of the spent fuel assemblies

  18. Interface ring for gas turbine fuel nozzle assemblies

    Science.gov (United States)

    Fox, Timothy A.; Schilp, Reinhard

    2016-03-22

    A gas turbine combustor assembly including a combustor liner and a plurality of fuel nozzle assemblies arranged in an annular array extending within the combustor liner. The fuel nozzle assemblies each include fuel nozzle body integral with a swirler assembly, and the swirler assemblies each include a bellmouth structure to turn air radially inwardly for passage into the swirler assemblies. A radially outer removed portion of each of the bellmouth structures defines a periphery diameter spaced from an inner surface of the combustor liner, and an interface ring is provided extending between the combustor liner and the removed portions of the bellmouth structures at the periphery diameter.

  19. A comparison between genetic algorithms and neural networks for optimizing fuel recharges in BWR

    International Nuclear Information System (INIS)

    In this work the results of a genetic algorithm (AG) and a neural recurrent multi state network (RNRME) for optimizing the fuel reload of 5 cycles of the Laguna Verde nuclear power plant (CNLV) are presented. The fuel reload obtained by both methods are compared and it was observed that the RNRME creates better fuel distributions that the AG. Moreover a comparison of the utility for using one or another one techniques is make. (Author)

  20. The JAERI code system for evaluation of BWR ECCS performance

    International Nuclear Information System (INIS)

    Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)

  1. Fuel performance improvement program. Quarterly/annual progress report, October 1977--September 1978. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Crouthamel, C.E. (comp.)

    1978-10-01

    This quarterly/annual report reviews and summarizes the activities performed in support of the Fuel Performance Improvement Program (FPIP) during Fiscal Year 1978 with emphasis on those activities that transpired during the quarter ending September 30, 1978. Significant progress has been made in achieving the primary objectives of the program, i.e., to demonstrate commercially viable fuel concepts with improved fuel - cladding interaction (FCI) behavior. This includes out-of-reactor experiments to support the fuel concepts being evaluated, initiation of instrumented test rod experiments in the Halden Boiling Water Reactor (HBWR), and fabrication of the first series of demonstration rods for irradiation in the Big Rock Point Reactor (BRPR).

  2. Fuel assembly with a flute for water distribution

    International Nuclear Information System (INIS)

    The fuel assembly is arranged so that groups of fuel rods are enclosed into walls. The top end of the assembly has a peripherical distribution channel which recieves water for emergency cooling and distributes it evenly over the fuel rods. (G.B.)

  3. Optical matrix for nuclear fuel assemblies

    International Nuclear Information System (INIS)

    In order to detect the presence of fuel rods, it was selected a reflection optical transducer, which provides a measurable electrical signal when the beam at a certain distance is interrupted then there is a reflection causing a excitation to the sensor that provides a change of state at the output of transducer. This step is coupled through an operational amplifier which drives the opto coupler circuit isolating this step of the interface and a personal computer. This work presents the description of components, designs, signal coupler and opto isolater circuit, interface circuit and tutorial assemble program. (Author)

  4. BWR control rod patterns and fuel loading optimization using heuristic methods

    International Nuclear Information System (INIS)

    We show the results obtained with the OCOTH system to optimize the Fuel Reloads Design and Control Rod Patterns Design in a Boiling Water Reactor. Our system solves both problems in a coupled way. We used the 3-dimensional CM-PRESTO code to evaluate the solutions quality. The process has three stages. In the first step we obtain a Fuel Reload Design 'seed' using the Haling's principle. The followings steps are an iterative process between the Control Rod Patterns Designs and Fuel Reloads Design. Control Rod Patterns Design is proposed for the Fuel Reload Design 'seed' and then Control Rod Patterns Design is used to find a new Fuel Reload Design. Both processes are coupled in an iterative loop until a criterion stop is fulfilled. In the whole process, the genetic algorithms, neural networks and ant colony system optimization techniques were used. (authors)

  5. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 5: Analysis of the reactivity coefficients and the stability of a BWR loaded with MOx fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    2000-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). For this purpose, the Core Management System (CMS) codes of Studsvik Scandpower are used. This package is constituted by CASMO-4/TABLES-3/SIMULATE-3. It has been shown in previous reports that these codes are able to accurately represent and model MOx bundles. This report is thus devoted to the study of BWR cores loaded (partially or totally) with MOx bundles. The plutonium quality used is the Pu type 2016 (mostly Pu-239, 56 %, and Pu-240, 26 %), but a variation of the plutonium isotopic vector was also investigated, in case of a partial MOx loading. One notices that the reactivity coefficients do not present significant changes in comparison with a full UOx loading. Nevertheless, two main problems arise: the shutdown margin at BOC is lower than 1 % and the stability to in-phase oscillations is slightly decreased. (The SIMULATE-3 version used for this study does not contain the latest MOx enhancements described in literature, since these code developments have not been provided to the department. Nevertheless, as the nominal average enrichment of the MOx bundles is 5.41 % (total amount of plutonium), which can still be considered as a relatively low enrichment, the accuracy of the CMS codes is acceptable without the use of the MOx improvements for this level of Pu enrichment.

  6. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  7. Information to be requested from the NSSS vendor for fuel management capability for BWR

    Energy Technology Data Exchange (ETDEWEB)

    Minguez, E.; Esteban, A.; Gomez, M.; Leira, G.; Martinez, R.; Serrano, J.

    1975-07-01

    A set of the nuclear, thermal-hydraulic, and mechanical parameters necessary according to the design of BWRs, is listed. This parameters are necessary to perform the fuel elements management and design, and it must be supplied by the Reactor Manufacturer to the Utility. (Author) 18 refs.

  8. Zirconium fuel cladding corrosion prediction in fuel assembly operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, V.G.; Berezina, I.G., E-mail: kritsky@givnipiet.spb.ru, E-mail: alemaskina@givnipiet.ru [Leading Inst. ' VNIPIET' , Saint Petersburg (Russian Federation)

    2010-07-01

    At present, the work to extend fuel cycles is carried out at NPP with VVER reactors. With the increase of fuel assembly burn-up to 70-100 MWd/kg U and linear power, the local coolant «nucleate boiling» is inevitable which in combination with coolant «acidification» alongside with the existing water chemistry norms will increase zirconium alloy corrosion. The rate of Zr alloy corrosion under reactor irradiation depends on temperature and heat flux through fuel cladding, coolant chemistry (concentrations of H{sub 2}O{sub 2}, OH{sup -}, O{sub 2}, hydrogen, ammonia, strong alkalis - LiOH, KOH, pH, ets.), steam content, alloy composition and some other parameters. A generalized model for calculating Zr alloys corrosion, which take into account the above-mentioned factors, was developed: K = k{sub 1}e {sup -}ΣvQ{sub 1}/R(T+ΔT) + k{sub 2} 1/1 - α + β Φ{sup n} where K{sub 1}, K{sub 2} are the coefficients depending on the water chemistry conditions and composition of Zr alloys; α is the value of steam content; Φ is a neutron flux; n is the coefficient depending on the fuel assembly type; β is the coefficient considering the impact of impurities suppressing the radiolysis, Q{sub 1} is energy contributions of alloying components and water impurities to oxide formation, v{sub i} - stehiometry coefficient. This model allows to predict a fuel cladding corrosion taking into account the alloys composition, water chemistry and fuel burn-up. The model was verified with the help of autoclave and reactor tests for commercial and modified Zr alloys. The activation energy of oxidation process is calculating on the base of ideal mixed oxide formation model. The success of such approach makes possible to propose a generalized model for calculating the corrosion of different Zr alloys in all types of water chemistry environments of old and new LWRs. (author)

  9. A comparison of crud phases appearing on some Swedish BWR fuel rods using Laser Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P. [Studsvik Nuclear AB, Nykoeping (Sweden)]|[Lulea Univ. of Technology (Sweden)

    2002-07-01

    Previous investigations showed that laser Raman spectroscopy (LRS) can be used as a phase specific analytical tool for radioactive fuel crud samples and also for details in the underlying layer of zirconium dioxide. It is relatively easy to record Raman spectra that discriminate between chemical phases for all crud oxides of interest. The method has therefore been recommended for crud investigations within the Swedish program. At ideal conditions the resolution is about 1 {mu}m, permitting detailed position determination of crud phases in the sample. Therefore LRS is a very good complement to X-ray diffraction (XRD). The methods for sample preparation and handling of radioactive crud samples for LRS turn out to be relatively simple. A detailed LRS study on fuel crud samples from Barsebaeck 2, Forsmark 2, Forsmark 3 and Ringhals 1 was performed in this work. All of those Swedish BWRs were operated at different conditions at the time of sampling. The chemistry regimes covered NWC, HWC and other variable conditions. Also different types of fuel, exposure times and sampling positions were selected. (authors)

  10. A comparison of crud phases appearing on some Swedish BWR fuel rods using Laser Raman Spectroscopy

    International Nuclear Information System (INIS)

    Previous investigations showed that laser Raman spectroscopy (LRS) can be used as a phase specific analytical tool for radioactive fuel crud samples and also for details in the underlying layer of zirconium dioxide. It is relatively easy to record Raman spectra that discriminate between chemical phases for all crud oxides of interest. The method has therefore been recommended for crud investigations within the Swedish program. At ideal conditions the resolution is about 1 μm, permitting detailed position determination of crud phases in the sample. Therefore LRS is a very good complement to X-ray diffraction (XRD). The methods for sample preparation and handling of radioactive crud samples for LRS turn out to be relatively simple. A detailed LRS study on fuel crud samples from Barsebaeck 2, Forsmark 2, Forsmark 3 and Ringhals 1 was performed in this work. All of those Swedish BWRs were operated at different conditions at the time of sampling. The chemistry regimes covered NWC, HWC and other variable conditions. Also different types of fuel, exposure times and sampling positions were selected. (authors)

  11. Serpent: an alternative for the nuclear fuel cells analysis of a BWR

    International Nuclear Information System (INIS)

    In the last ten years the diverse research groups in nuclear engineering of the Universidad Nacional Autonoma de Mexico and Instituto Politecnico Nacional (UNAM, IPN), as of research (Instituto Nacional de Investigaciones Nucleares, ININ) as well as the personnel of the Nuclear Plant Management of the Comision Federal de Electricidad have been using the codes Helios and /or CASMO-4 in the generation of cross sections (X S) of nuclear fuel cells of the cores corresponding to the Units 1 and 2 of the nuclear power plant of Laguna Verde. Both codes belong to the Studsvik-Scandpower Company who receives the payment for the use and their respective maintenance. In recent years, the code Serpent appears among the nuclear community distributed by the OECD/Nea which does not has cost neither in its use neither in its maintenance. The code is based on the Monte Carlo method and makes use of the processing in parallel. In the Escuela Superior de Fisica y Matematicas of the IPN, the personnel has accumulated certain experience in the use of Serpent under the direction of personal of the ININ; of this experience have been obtained for diverse fuel burned, the infinite multiplication factor for three cells of nuclear fuel, without control bar and with control bar for a known thermodynamic state fixed by: a) the fuel temperature (Tf), b) the moderator temperature (Tm) and c) the vacuums fraction (α). Although was not realized any comparison with the X S that the codes Helios and CASMO-4 generate, the results obtained for the infinite multiplication factor show the prospective tendencies with regard to the fuel burned so much in the case in that is not present the control bar like when it is. The results are encouraging and motivate to the study group to continue with the X S generation of a core in order to build the respective library of nuclear data as a following step and this can be used for the codes PARCS, of USA NRC, DYN3D of HZDR, or others developed locally in the IPN

  12. Separator assembly for use in spent nuclear fuel shipping cask

    Science.gov (United States)

    Bucholz, James A.

    1983-01-01

    A separator assembly for use in a spent nuclear fuel shipping cask has a honeycomb-type wall structure defining parallel cavities for holding nuclear fuel assemblies. Tubes formed of an effective neutron-absorbing material are embedded in the wall structure around each of the cavities and provide neutron flux traps when filled with water.

  13. Comparison of heuristic optimization techniques for the enrichment and gadolinia distribution in BWR fuel lattices and decision analysis

    International Nuclear Information System (INIS)

    Highlights: • Different metaheuristic optimization techniques were compared. • The optimal enrichment and gadolinia distribution in a BWR fuel lattice was studied. • A decision making tool based on the Position Vector of Minimum Regret was applied. • Similar results were found for the different optimization techniques. - Abstract: In the present study a comparison of the performance of five heuristic techniques for optimization of combinatorial problems is shown. The techniques are: Ant Colony System, Artificial Neural Networks, Genetic Algorithms, Greedy Search and a hybrid of Path Relinking and Scatter Search. They were applied to obtain an “optimal” enrichment and gadolinia distribution in a fuel lattice of a boiling water reactor. All techniques used the same objective function for qualifying the different distributions created during the optimization process as well as the same initial conditions and restrictions. The parameters included in the objective function are the k-infinite multiplication factor, the maximum local power peaking factor, the average enrichment and the average gadolinia concentration of the lattice. The CASMO-4 code was used to obtain the neutronic parameters. The criteria for qualifying the optimization techniques include also the evaluation of the best lattice with burnup and the number of evaluations of the objective function needed to obtain the best solution. In conclusion all techniques obtain similar results, but there are methods that found better solutions faster than others. A decision analysis tool based on the Position Vector of Minimum Regret was applied to aggregate the criteria in order to rank the solutions according to three functions: neutronic grade at 0 burnup, neutronic grade with burnup and global cost which aggregates the computing time in the decision. According to the results Greedy Search found the best lattice in terms of the neutronic grade at 0 burnup and also with burnup. However, Greedy Search is

  14. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  15. The formation process of the pellet-cladding bonding layer in high burnup BWR fuels

    International Nuclear Information System (INIS)

    The bonding formation process was studied by EPMA analysis, XRD measurements, and SEM/TEM observations for the oxide layer on a cladding inner surface and the pellet-cladding bonding layer in irradiated fuel rods. Specimens were prepared from fuels which had been irradiated to the pellet average burnups of 15, 27, 42 and 49 GWd/t in BWRs. In the lower burnup specimens of 15 and 27 GWd/t, no bonding layer was found, while the higher burnup specimens of 42 and 49 GWd/t had a typical bonding layer about 10 to 20 μm thick. A bonding layer which consisted of two regions was found in the latter fuels. One region of the inner surface of the Zr liner cladding was made up mainly of ZrO2 with a small amount of dissolved UO2. The structure of this ZrO2 consisted of cubic polycrystals a few nanometers in size, while no monoclinic crystals were found. The other region, near the pellet surface, had both a cubic solid solution of (U,Zr)O2 and amorphous phase in which the concentrations of UO2 and ZrO2 changed continuously. Even in the lower burnup specimens having no bonding layer, cubic ZrO2 phase was identified in the cladding inner oxide layer. The XRD measurements were consistent with the TEM results of the absence of the monoclinic ZrO2 phase. Phase transformation and amorphization were attributed to fission damage, since such phenomena have never been observed in the cladding outer surface. Phase transformation from monoclinic to cubic ZrO2 and amorphization by irradiation damage of fission products were discussed in connection with the formation mechanism and conditions of the bonding layer. (author)

  16. Precharacterization Report for Instrumented Fuel Assembly (IFA)-527

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M. E.; Bradley, E. R.; Daniel, J. L.; Davis, N. C.; Lanning, D. D.; Williford, R. E.

    1981-07-01

    This report is a resource document covering the rationale, design, fabrication, and preirradiation characterization of instrumented fuel assembly (IFA)-527. This assembly is being irradiated in the Halden Boiling Water Reactor (HBWR) in Norway as part of the Experimental Support and Development of Single-Rod Fuel Codes Program conducted by Pacific Northwest laboratory (PNL) and sponsored by the Fuel Behavior Research Branch of the U.S. Nuclear Regulatory Commission (NRC). Data from this assembly will be used to better understand light water reactor (LWR) fuel behavior under normal operating conditions.

  17. Dynamic modelling of PWR fuel assembly for seismic behaviour

    International Nuclear Information System (INIS)

    Vibration and snap back tests have shown that the behaviour of PWR fuel assemblies was non linear : the fuel assembly eigenfrequencies decrease with the excitation level or with the motion amplitude, which was supposed to be due to the slippage of the fuel rods through the grids. Up to now the fuel assembly models were linear and composed by one beam alone representing both the guide thimbles and the fuel rods or by two beams (one for the guide thimbles and one for the fuel rods). The stiffness of such models' were adjusted to fit with the measured eigenfrequency corresponding to a given amplitude. The aim of this paper is to identify the influence of the slippage between grids and fuel rods on the dynamic behaviour of the fuel assembly. For that purpose a non linear fuel assembly model is proposed representing explicitly the slippage phenomenon and is applied to the reduced scale fuel assemblies which have been tested in the framework of a collaboration between FRAMATOME and CEA-DMT. Comparisons between calculations and experiments will be presented and the limitation of this model will be also discussed

  18. Modelling and modal properties of nuclear fuel assembly

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2011-12-01

    Full Text Available The paper deals with the modelling and modal analysis of the hexagonal type nuclear fuel assembly. This very complicated mechanical system is created from the many beam type components shaped into spacer grids. The cyclic and central symmetry of the fuel rod package and load-bearing skeleton is advantageous for the fuel assembly decomposition into six identical revolved fuel rod segments, centre tube and skeleton linked by several spacer grids in horizontal planes. The derived mathematical model is used for the modal analysis of the Russian TVSA-T fuel assembly and validated in terms of experimentally determined natural frequencies, modes and static deformations caused by lateral force and torsional couple of forces. The presented model is the first necessary step for modelling of the nuclear fuel assembly vibration caused by different sources of excitation during the nuclear reactor VVER type operation.

  19. Method of handling and/or storing a nuclear fuel assembly consisting of an elongated frame that contains fuel rods and fuel assembly designed specially for this method

    International Nuclear Information System (INIS)

    In order to assure subcriticality during handling, transport and/ore storage of nuclear reactor fuel assemblies and additional body containing a neutron absorbing material and touching beside the fuel rods is fixed to the frame of the fuel assembly. This body has a handle with an adapted coupling element mounted on a holding device for handling and/or storage of the fuel assembly. (orig./RW)

  20. Radial distribution of UO{sub 2} and Gd{sub 2}O{sub 3} in fuel cells of a BWR Reactor; Distribucion radial de UO{sub 2} y Gd{sub 2}O{sub 3} en celdas de combustible de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J.L.; Ortiz, J.J.; Perusquia del C, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Francois, J.L.; Martin del Campo M, C. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62500 (Mexico)]. e-mail: jlmt@nuclear.inin.mx

    2008-07-01

    The fuel system that is used at the moment in a power plant based on power reactors BWR, includes as much like the one of its substantial parts to the distribution of the fissile materials like a distribution of burnt poisons within each one of the cells which they constitute the fuel assemblies, used for the energy generation. Reason why at the beginning of a new operation cycle in a reactor of this type, the reactivity of the nucleus should be compensated by the exhaustion of the assemblies that it moves away of the nucleus for their final disposition. This compensation is given by means of the introduction of the recharge fuel, starting from the UO{sub 2} enriched in U{sup 2}35, and of the Gadolinium (Gd{sub 2}O{sub 3}). The distribution of these materials not only defines the requirements of energy generation, but in certain measures also the form in that the margins will behave to the limit them thermal during the operation of the reactor. These margins must be taken into account for the safe and efficient extraction of the energy of the fuel. In this work typical fuel cells appear that are obtained by means of the use of a emulation model of an ants colony. This model allows generating from a possible inventory of values of enrichment of U{sup 2}35, as well as of concentration of Gadolinium a typical fuel cell, which consists of an arrangement of lOxlO rods, of which 92 contain U{sup 2}35, some of these rods contain a concentration of Gd{sub 2}O{sub 3} and 8 of the total contain only water. The search of each cell finishes when the value of the Local Peak Power Factor (LPPF) in the cell reaches a minimal value, or when a pre established value of iterations is reached. The cell parameters are obtained from the results of the execution of the code HELIOS, which incorporates like a part integral of the search algorithm. (Author)

  1. Dynamic response of nuclear fuel assembly excited by pressure pulsations

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2012-12-01

    Full Text Available The paper deals with dynamic load calculation of the hexagonal type nuclear fuel assembly caused by spatial motion of the support plates in the reactor core. The support plate motion is excited by pressure pulsations generated by main circulation pumps in the coolant loops of the primary circuit of the nuclear power plant. Slightly different pumps revolutions generate the beat vibrations which causes an amplification of fuel assembly component dynamic deformations and fuel rods coating abrasion. The cyclic and central symmetry of the fuel assembly makes it possible the system decomposition into six identical revolved fuel rod segments which are linked with central tube and skeleton by several spacer grids in horizontal planes.The modal synthesis method with condensation of the fuel rod segments is used for calculation of the normal and friction forces transmitted between fuel rods and spacer grids cells.

  2. The influence of fuel assembly characteristics on reactor safety

    International Nuclear Information System (INIS)

    To improve fuel utilization and nuclear plant economy, most nuclear plants of China adopt increased fuel enrichment and long cycle analysis. Core power distribution will be worse with these advanced items. Radial and axial peak increase too. This is a challenge to reactor safety. Since the fuel assembly is the most important part of a reactor core, fuel assembly characteristics affect reactor safety a lot. A few aspects of influence on reactor safety are discussed in this paper as a reference for fuel assembly design. A better fuel assembly design can increase heat exchange ability, especially in cold wall cells. The grids nearby core outlet can efficiently mix the flow of hot channel and average channel to decrease DNBR. In safety analysis, we always suppose the center of center assembly is the hot channel, but sometimes based on actual power distribution the hot channel occurs at side cell or corner cell. So the distribution of grids pressure drop coefficients can affect the minimum DNBR. A better fuel assembly design can help to spread core power distribution, decrease radial and axial peak efficiently. To spread core power distribution, different neutronic poisons are added into fuel pellet by different ways, and then the relative effects on reactor safety are different. At the same time, better fuel assembly design should leave enough margins for reactor safety to handle high burnup condition and so on. Fuel pellet and clad capabilities are getting worse versus increasing fuel burnup. This is a challenge to reactor safety, so more attentions should be paid to fuel burnup characteristics. (author)

  3. Optical fiber scope for inspecting fuel assembly

    International Nuclear Information System (INIS)

    Since a fiber scope has only one objective section, it has to observe a plurality of places successively. Then, if the time for the observation is long, the objective section is deteriorated by radiation rays, which causes a problem of interrupting the observation and increasing operator's radiation dose. In view of the above, one or two light guides are combined with an image guide to form one objective section, and a plurality of them are formed in parallel and gathered as a comb-like shape. A prism is put into a window of the objective section and resins are filled or a glass cover is attached, to make the objective section smooth and flat. Compared with the case of using only one objective section, it is no more necessary for successive observation, and objection can be conducted at one time. For example, if a fiber scope having nine objective sections is used for observing 8 x 8 arrangement fuel assembly, the observation time is shortened to 1/9. Since the prism, the glass cover, and the resins are used for making the window flat, cruds deposited between the optical fiber and a reflection mirror are easily removed, to obtain clear images. (N.H.)

  4. Serpent: an alternative for the nuclear fuel cells analysis of a BWR; SERPENT: una alternativa para el analisis de celdas de combustible nuclear de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silva A, L.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: lidi.s.albarran@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In the last ten years the diverse research groups in nuclear engineering of the Universidad Nacional Autonoma de Mexico and Instituto Politecnico Nacional (UNAM, IPN), as of research (Instituto Nacional de Investigaciones Nucleares, ININ) as well as the personnel of the Nuclear Plant Management of the Comision Federal de Electricidad have been using the codes Helios and /or CASMO-4 in the generation of cross sections (X S) of nuclear fuel cells of the cores corresponding to the Units 1 and 2 of the nuclear power plant of Laguna Verde. Both codes belong to the Studsvik-Scandpower Company who receives the payment for the use and their respective maintenance. In recent years, the code Serpent appears among the nuclear community distributed by the OECD/Nea which does not has cost neither in its use neither in its maintenance. The code is based on the Monte Carlo method and makes use of the processing in parallel. In the Escuela Superior de Fisica y Matematicas of the IPN, the personnel has accumulated certain experience in the use of Serpent under the direction of personal of the ININ; of this experience have been obtained for diverse fuel burned, the infinite multiplication factor for three cells of nuclear fuel, without control bar and with control bar for a known thermodynamic state fixed by: a) the fuel temperature (T{sub f}), b) the moderator temperature (T{sub m}) and c) the vacuums fraction (α). Although was not realized any comparison with the X S that the codes Helios and CASMO-4 generate, the results obtained for the infinite multiplication factor show the prospective tendencies with regard to the fuel burned so much in the case in that is not present the control bar like when it is. The results are encouraging and motivate to the study group to continue with the X S generation of a core in order to build the respective library of nuclear data as a following step and this can be used for the codes PARCS, of USA NRC, DYN3D of HZDR, or others developed locally

  5. The development of flow test technology for PWR fuel assembly

    International Nuclear Information System (INIS)

    KAERI has an extensive program to develope PWR fuel assembly. In relation to the program, development of flow test technology is needed to evaluate the thermal hydraulic compactibility and mechanical integrity of domestically fabricated nuclear fuels. A high-pressure and high-temperature flow test facility was designed to test domestically fabricated fuel assembly. The test section of the facility has capacity of a 6x6 full length PWR fuel assembly. A flow test rig was designed and installed at Cold Test Loop to carry out model experiments with 5x5 rod assembly under atmosphere pressure to get information about the characteristics of pressure loss of spacer grids and velocity distribution in the subchannels. LDV measuring technology was established using TSI's Laser Dopper Velocimeter 9100-3 System

  6. Temperature measuring analysis of the nuclear reactor fuel assembly

    Science.gov (United States)

    F., Urban; Ľ., Kučák; Bereznai, J.; Závodný, Z.; Muškát, P.

    2014-08-01

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  7. Parallel processing of neutron transport in fuel assembly calculation

    International Nuclear Information System (INIS)

    Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's

  8. Verification of the Advanced Nodal Method on BWR Core Analyses by Whole-Core Heterogeneous Transport Calculations

    International Nuclear Information System (INIS)

    Recent boiling water reactor (BWR) core and fuel designs have become more sophisticated and heterogeneous to improve fuel cycle cost, thermal margin, etc. These improvements, however, tend to lead to a strong interference effect among fuel assemblies, and it my cause some inaccuracies in the BWR core analyses by advanced nodal codes. Furthermore, the introduction of mixed-oxide (MOX) fuel will lead to a much stronger interference effect between MOX and UO2 fuel assemblies. However, the CHAPLET multiassembly characteristics transport code was developed recently to solve two-dimensional cell-heterogeneous whole-core problems efficiently, and its results can be used as reference whole-core solutions to verify the accuracy of nodal core calculations. In this paper, the results of nodal core calculations were compared with their reference whole-core transport solutions to verify their accuracy (in keff, assembly power and pin power via pin power reconstruction) of the advanced nodal method on both UO2 and MOX BWR whole-core analyses. Especially, it was investigated if there were any significant differences in the accuracy between MOX and UO2 results

  9. ABB. CASE's GUARDIANTM Debris Resistant Fuel Assembly Design

    International Nuclear Information System (INIS)

    ABB CE's experience, that 72% of all recent fuel-rod failures are caused by debris fretting, is typical. In response to this problem, ABB Combustion Engineering began supplying in the late 1980s fuel assemblies with a variety of debris resistant features, including both long-end caps and small flow holes. Now ABB CAE has developed an advanced debris resistant design concept, GUARDIANTM, which has the advantage of capturing and retaining more debris than other designs, while displacing less plenum or active fuel volume than the long end-cap design. GUARDIANTM design features have now been implemented into four different assembly designs. ABB CASE's GUARDIANTM fuel assembly is an advanced debris-resistant design which has both superior filtering performance and uniquely, excellent debris retention, Retention effectively removes the debris from circulation in the coolant so that it is not able to threaten the fuel again. GUARDIANTM features have been incorporated into four ABB. CAE fuel assembly designs. These assemblies are all fully compatible with the NSLS, and full-batch operation with GUARDIANTM began in 1992. The number of plants of both CAE and non-CAE design which accept GUARDIANTM for debris protection is expected to grow significantly during the next few years

  10. Review of qualifications for fuel assembly fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Slabu, Dan; Zemek, Martin; Hellwig, Christian [Axpo AG, Baden (Switzerland)

    2013-02-15

    The required quality of nuclear fuel in industrial production can only be assured by applying processes in fabrication and inspection, which are well mastered and have been proven by an appropriate qualification. The present contribution shows the understanding and experiences of Axpo with respect to qualifications in the frame of nuclear fuel manufacturing and reflects some related expectations of the operator. (orig.)

  11. Thermomechanical evaluation of the fuel assemblies fabricated in the ININ

    International Nuclear Information System (INIS)

    The pilot plant of fuel production of the National Institute of Nuclear Research (ININ) provided to the Laguna Verde Nuclear Power Plant (CNLV) four fuel assemblies type GE9B. The fuel irradiation was carried out in the unit 1 of the CNLV during four operation cycles, highlighting the fact that in their third cycle the four assemblies were placed in the center of the reactor core. In the Nuclear Systems Department (DSN) of the ININ it has been carried out studies to evaluate their neutron performance and to be able to determine the exposure levels of this fuels. Its also outlines the necessity to carry out a study of the thermomechanical behavior of the fuel rods that compose the assemblies, through computational codes that simulate their performance so much thermal as mechanical. For such purpose has been developing in the DSN the FETMA code, together with the codes that compose the system Fuel Management System (FMS), which evaluates the thermomechanical performance of fuel elements. In this work were used the FETMA and FEMAXI codes (developed by JAERI) to study the thermomechanical performance of the fuel elements manufactured in the ININ. (Author)

  12. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  13. Design of an equilibrium nucleus of a BWR type reactor based in a Thorium-Uranium fuel; Diseno de un nucleo de equilibrio de un reactor tipo BWR basado en un combustible de Torio-Uranio

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J.L.; Nunez C, A. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria-UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)

    2003-07-01

    In this work the design of the reactor nucleus of boiling water using fuel of thorium-uranium is presented. Starting from an integral concept based in a type cover-seed assemble is carried out the design of an equilibrium reload for the nucleus of a reactor like that of the Laguna Verde Central and its are analyzed some of the main design variables like the cycle length, the reload fraction, the burnt fuel, the vacuum distribution, the generation of lineal heat, the margin of shutdown, as well as a first estimation of the fuel cost. The results show that it is feasible to obtain an equilibrium reload, comparable to those that are carried out in the Laguna Verde reactors, with a good behavior of those analyzed variables. The cost of the equilibrium reload designed with the thorium-uranium fuel is approximately 2% high that the uranium reload producing the same energy. It is concluded that it is convenient to include burnable poisons, type gadolinium, in the fuel with the end of improving the reload design, the fuel costs and the margin of shutdown. (Author)

  14. Pressure drop evaluation in fuel assembly bottom nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Sydney da Silva; Brittes, Luiz Henrique A. [Industrias Nucleares do Brasil S.A. (INB), Resende, RJ (Brazil)]. E-mails: sydney@inb.gov.br; brittes@inb.gov.br; Navarro, Moyses A. [Centro de Desenvolvimento de Energia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: navarro@cdtn.br

    2007-07-01

    Experiments were conducted in order to assess the pressure drop through an anti-debris bottom nozzle relatively to a standard bottom nozzle of a nuclear fuel assembly. Two kinds of experiments have been performed: one using bottom nozzles connected with the lower part of a Fuel Assembly (containing two spacer grids) and another one using the bottom nozzle alone. Reynolds numbers ranging from 10500 . 95000 have been employed, temperatures ranging from 40 . 55 deg C and pressures up to 4 bar. Results have shown that the pressure drop coefficients of the anti-debris nozzle referring to the whole lower region of the Fuel Assembly were {approx} 13% (for Re {approx_equal} 95000) till {approx} 17% (for Re {approx_equal} 10500) higher than the coefficients for standard bottom nozzle. This difference increases up to 118% when the pressure drop coefficients of the bottom nozzle alone are considered. (author)

  15. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  16. DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.

    2010-06-17

    A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

  17. BWR Source Term Generation and Evaluation

    International Nuclear Information System (INIS)

    This calculation is a revision of a previous calculation (Ref. 7.5) that bears the same title and has the document identifier BBAC00000-01717-0210-000061. The purpose of this revision is to remove TBV (to-be-verified) -41 10 associated with the output files of the previous version (Ref. 7.30). The purpose of this and the previous calculation is to generate source terms for a representative boiling water reactor (BWR) spent nuclear fuel (SNF) assembly for the first one million years after the SNF is discharged from the reactors. This calculation includes an examination of several ways to represent BWR assemblies and operating conditions in SAS2H in order to quantify the effects these representations may have on source terms. These source terms provide information characterizing the neutron and gamma spectra in particles per second, the decay heat in watts, and radionuclide inventories in curies. Source terms are generated for a range of burnups and enrichments (see Table 2) that are representative of the waste stream and stainless steel (SS) clad assemblies. During this revision, it was determined that the burnups used for the computer runs of the previous revision were actually about 1.7% less than the stated, or nominal, burnups. See Section 6.6 for a discussion of how to account for this effect before using any source terms from this calculation. The source term due to the activation of corrosion products deposited on the surfaces of the assembly from the coolant is also calculated. The results of this calculation support many areas of the Monitored Geologic Repository (MGR), which include thermal evaluation, radiation dose determination, radiological safety analyses, surface and subsurface facility designs, and total system performance assessment. This includes MGR items classified as Quality Level 1, for example, the Uncanistered Spent Nuclear Fuel Disposal Container (Ref. 7.27, page 7). Therefore, this calculation is subject to the requirements of the Quality

  18. Measuring device for effective multiplication factors of a fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Makoto

    1988-11-14

    Purpose: To measure the effective multiplication factor of a fuel assembly without using an external neutron source. Constitution: Neutron absorbers disposed on the surface of a fuel assembly incorporating a spontaneous neutron source so as to put the surface of the assembly therebetween is moved. As the neutron absorber, a cadmium plate is most suitable, but boron, gadolinium or disprosium may also be used. Neutron counting rate phi upon setting the distance between the neutron absorbers and the surface of the fuel assembly to greater than 2 cm and neutron counting rate phi' upon setting it to less than 2 cm are measured by neutron detectors. The effective multiplication factor of the fuel assembly is calculated based on the results of both of the measurements according to the following equation: K = (A(phi/phi')-1)/(AB(phi/phi'-1)) According to this method, exchange for the external neutron source is no more required, and the maintenance is easier and working efficiency is higher as compared with the prior art. Further, since phi/phi' can be determined in one identical detector in a short period of time, the measuring error can be reduced. (Horiuchi, T.).

  19. A spent fuel assemblies monitoring device by nondestructive analysis 'PYTHON'

    International Nuclear Information System (INIS)

    The monitoring of spent fuel assemblies (16 x 16 UOX) in KWG-reactor pool with the use of non-destructive methods (total Gamma and neutron counting) allow the control of average burn-up and the extremity burn-up. The measurements allow a safety-criticality control before loading the fuel assemblies into the transport casks. A device called PYTHON has been tested and qualified in France. This paper presents a description of the industrial PYTHON device and the results of the measurements. (orig.)

  20. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type; Calculo de las razones de generacion de calor lineal que violen el limite termomecanico de deformacion plastica de la camisa en funcion del quemado de una barra combustible tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M.A.; Hernandez L, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mal@nuclear.inin.mx

    2003-07-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  1. Nuclear imaging of the fuel assembly in ignition experiments

    International Nuclear Information System (INIS)

    First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium–tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models' prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%–25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface

  2. Nuclear imaging of the fuel assembly in ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Grim, G. P.; Guler, N.; Merrill, F. E.; Morgan, G. L.; Danly, C. R.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Clark, D. S.; Hinkel, D. E.; Jones, O. S.; Raman, K. S.; Izumi, N.; Fittinghoff, D. N.; Drury, O. B.; Alger, E. T.; Arnold, P. A.; Ashabranner, R. C.; Atherton, L. J.; Barrios, M. A.; Batha, S.; Bell, P. M.; Benedetti, L. R.; Berger, R. L.; Bernstein, L. A.; Berzins, L. V.; Betti, R.; Bhandarkar, S. D.; Bionta, R. M.; Bleuel, D. L.; Boehly, T. R.; Bond, E. J.; Bowers, M. W.; Bradley, D. K.; Brunton, G. K.; Buckles, R. A.; Burkhart, S. C.; Burr, R. F.; Caggiano, J. A.; Callahan, D. A.; Casey, D. T.; Castro, C.; Celliers, P. M.; Cerjan, C. J.; Chandler, G. A.; Choate, C.; Cohen, S. J.; Collins, G. W.; Cooper, G. W.; Cox, J. R.; Cradick, J. R.; Datte, P. S.; Dewald, E. L.; Di Nicola, P.; Di Nicola, J. M.; Divol, L.; Dixit, S. N.; Dylla-Spears, R.; Dzenitis, E. G.; Eckart, M. J.; Eder, D. C.; Edgell, D. H.; Edwards, M. J.; Eggert, J. H.; Ehrlich, R. B.; Erbert, G. V.; Fair, J.; Farley, D. R.; Felker, B.; Fortner, R. J.; Frenje, J. A.; Frieders, G.; Friedrich, S.; Gatu-Johnson, M.; Gibson, C. R.; Giraldez, E.; Glebov, V. Y.; Glenn, S. M.; Glenzer, S. H.; Gururangan, G.; Haan, S. W.; Hahn, K. D.; Hammel, B. A.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Haynam, C.; Hermann, M. R.; Herrmann, H. W.; Hicks, D. G.; Holder, J. P.; Holunga, D. M.; Horner, J. B.; Hsing, W. W.; Huang, H.; Jackson, M. C.; Jancaitis, K. S.; Kalantar, D. H.; Kauffman, R. L.; Kauffman, M. I.; Khan, S. F.; Kilkenny, J. D.; Kimbrough, J. R.; Kirkwood, R.; Kline, J. L.; Knauer, J. P.; Knittel, K. M.; Koch, J. A.; Kohut, T. R.; Kozioziemski, B. J.; Krauter, K.; Krauter, G. W.; Kritcher, A. L.; Kroll, J.; Kyrala, G. A.; Fortune, K. N. La; LaCaille, G.; Lagin, L. J.; Land, T. A.; Landen, O. L.; Larson, D. W.; Latray, D. A.; Leeper, R. J.; Lewis, T. L.; LePape, S.; Lindl, J. D.; Lowe-Webb, R. R.; Ma, T.; MacGowan, B. J.; MacKinnon, A. J.; MacPhee, A. G.; Malone, R. M.; Malsbury, T. N.; Mapoles, E.; Marshall, C. D.; Mathisen, D. G.; McKenty, P.; McNaney, J. M.; Meezan, N. B.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. S.; Moran, M. J.; Moreno, K.; Moses, E. I.; Munro, D. H.; Nathan, B. R.; Nelson, A. J.; Nikroo, A.; Olson, R. E.; Orth, C.; Pak, A. E.; Palma, E. S.; Parham, T. G.; Patel, P. K.; Patterson, R. W.; Petrasso, R. D.; Prasad, R.; Ralph, J. E.; Regan, S. P.; Rinderknecht, H.; Robey, H. F.; Ross, G. F.; Ruiz, C. L.; Seguin, F. H.; Salmonson, J. D.; Sangster, T. C.; Sater, J. D.; Saunders, R. L.; Schneider, M. B.; Schneider, D. H.; Shaw, M. J.; Simanovskaia, N.; Spears, B. K.; Springer, P. T.; Stoeckl, C.; Stoeffl, W.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P.; Traille, A. J.; Wonterghem, B. Van; Wallace, R. J.; Weaver, S.; Weber, S. V.; Wegner, P. J.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wood, R. D.; Young, B. K.; Zacharias, R. A.; Zylstra, A.

    2013-05-01

    First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium–tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models’ prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%–25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.

  3. Advanced PWR fuel assembly development programs in Korea

    International Nuclear Information System (INIS)

    Both KNFC and Westinghouse have continued to focus on developing products that will meet the challenge of increasing fuel duty requirements in Korea. These higher duty conditions include higher energy core designs through improved plant capacity factors, power uprate, extended fuel burnup, peaking factor increases, and more severe coolant chemistry (including high lithium concentration). Recent advanced fuel development activities in Korea include implementation of the 17x17 Robust Fuel Assembly (RFA), which is currently in operation with excellent performance in the United States and Europe, as well as the 16x16 PLUS7TM fuel assembly for use in KSNP plants. KNFC and Westinghouse are jointly developing advanced fuel that will meet future fuel duty challenges of 17x17 and 16x16 Westinghouse type plants. This paper focuses on advanced fuel assembly development programs that are underway and how these designs demonstrate improved margins under high duty plant operating conditions. In designing for these high duty conditions key design considerations for the various operational modes (i.e. power uprating, high burnup, long cycles, etc.) must be identified. These design considerations will include the traditional factors such as safety margin (DNB and LOCA), fuel rod design margin (e.g. corrosion, internal pressure, etc.) and mechanical design margins, among others. In addressing these design considerations, the fundamental approach is to provide additional design margin through materials, mechanical, and thermal performance enhancements, to assure flawless fuel performance. The foundation of all fuel designs is the product development process used to meet the demands of modern high duty operation including power uprating, high burnup, longer cycles, and high-lithium coolant chemistries. These advanced fuel assembly designs incorporate features that provide improved mechanical design margin, as well as thermal performance margin (DNB). Enhanced grid designs result in a

  4. Development of a computer program of fast calculation for the pre design of advanced nuclear fuel 10 x 10 for BWR type reactors; Desarrollo de un program de computo de calculo rapido para el prediseno de celdas de combustible nuclear avanzado 10 x 10 para reactores de agua en ebullicion

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia, R.; Montes, J.L.; Ortiz, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mrpc@nuclear.inin.mx

    2005-07-01

    In the National Institute of Nuclear Research (ININ) a methodology is developed to optimize the design of cells 10x10 of assemble fuels for reactors of water in boil or BWR. It was proposed a lineal calculation formula based on a coefficients matrix (of the change reason of the relative power due to changes in the enrichment of U-235) for estimate the relative powers by pin of a cell. With this it was developed the computer program of fast calculation named PreDiCeldas. The one which by means of a simple search algorithm allows to minimize the relative power peak maximum of cell or LPPF. This is achieved varying the distribution of U-235 inside the cell, maintaining in turn fixed its average enrichment. The accuracy in the estimation of the relative powers for pin is of the order from 1.9% when comparing it with results of the 'best estimate' HELIOS code. With the PreDiCeldas it was possible, at one minimum time of calculation, to re-design a reference cell diminishing the LPPF, to the beginning of the life, of 1.44 to a value of 1.31. With the cell design with low LPPF is sought to even design cycles but extensive that those reached at the moment in the BWR of the Laguna Verde Central. (Author)

  5. Reassembling Procedure of the Fuel Assemblies for the Nuclear Power Ship ''Mutsu''

    International Nuclear Information System (INIS)

    Japan's first voyage utilized by nuclear power was made by the nuclear powered ship ''Mutsu'' in 1990. After a research voyage in 1992, decommissioning work of the nuclear reactor for ''Mutsu'' was started to change it from the nuclear power ship to an ordinary power ship. Thirty-four irradiated fuel assemblies of ''Mutsu'' were removed from the reactor and transported to the Reactor Fuel Examination Facility (RFEF) in Nuclear Science Research Institute (NSRI) of Japan Atomic Energy Agency (JAEA). ''Mutsu'' fuel assemblies were loaded into a hot cell of RFEF using the roof gate as the top loading procedure. After the reliability confirmation tests, fuel assemblies were reassembled for reprocessing. To perform the reliability confirmation tests and reassembling, new devices were developed and installed in the hot cells, ''Fuel assembly transportation device'' for transporting the fuel assemblies between the hot cells, ''Upper nozzle cutting device'' for removing the upper nozzle from the fuel assembly, ''Fuel rod drawing device'' for drawing a fuel rod from the fuel assembly and so on. Thirty-four fuel assemblies were reassembled as six PWR type fuel assemblies in order to adjust the acceptable specifications of the reprocessing plant in JAEA: the shape of fuel assembly is the same as the PWR type commercial reactor fuel and the average enrichment of uranium in the assembly is under 4.0%. This paper reports the reassembling techniques of the ''Mutsu'' irradiated fuel assemblies for reprocessing. (author)

  6. Fuel gases generation in the primary contention during a coolant loss accident in a nuclear power plant with reactor type BWR

    International Nuclear Information System (INIS)

    During an accident design base of coolant loos, the hydrogen gas can accumulate inside the primary contention as a result of several generation mechanisms among those that are: 1) the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant, 2) the metals corrosion for the solutions used in the emergency cooling and dew of the contention, and 3) the radio-decomposition of the cooling solutions of post-accident emergency. In this work the contribution of each generation mechanism to the hydrogen total in the primary contention is analyzed, considering typical inventories of zirconium, zinc, aluminum and fission products in balance cycle of a reactor type BWR. In the analysis the distribution model of fission products and hydrogen production proposed in the regulator guide 1.7, Rev. 2 of the US NRC was used. The results indicate that the mechanism that more contributes to the hydrogen generation at the end of a period of 24 hours of initiate the accident is the radio-decomposition of the cooling solutions of post-accident emergency continued by the reaction metal-water involving the zirconium of the fuel cladding with the reactor coolant, and lastly the aluminum and zinc oxidation present in the primary contention. However, the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant is the mechanism that more contributes to the hydrogen generation in the first moments after the accident. This study constitutes the first part of the general analysis of the generation, transport and control of fuel gases in the primary contention during a coolant loss accident in BWRs. (Author)

  7. Post-irradiation examination of Fugen reactor fuel assembly at reactor fuel examination facility

    International Nuclear Information System (INIS)

    Post-irradiation examination of the first assembly of a monitoring program for Heavy Water Reactor ''Fugen'' of PNC (Power Reactor and Nuclear Fuel Development Corporation) has been executed since Oct. 1983 at the Reactor Fuel Examination Facility, JAERI Tokai (Japan Atomic Energy Research Institute, Tokai Research Establishment). The fuel assembly is a cylindrical cluster, with 4,400mm length, composed of 28 rods in 3 concentric circles, 12 spring-grid spacers and the upper and lower tie plates. The fuel is plutonium-uranium mixed oxide (0.8 w/o), and the material of cladding tube is Zry-2. The average burnup of the fuel assembly is about 13,600 MWd/t. This paper describes the methods and some results on the post irradiation examination items as follows: 1. Radioactive measurement of water in transportation cask; 2. Visual inspection of the fuel assembly in dry cell, before and after removing the crud, by ultrasonic vibration method; 3. Chemical analyses and radioactive measurement of the crud materials; 4. Dimensional measurement of assembly length and rod-rod gaps, before and after removing the crud; 5. Disassembly and dimensional measurement of rod-rod gaps in the inner circles; 6. Several nondestructive testing techniques of fuel rods. (author)

  8. A new SCWR fuel assembly with two-row fuel rods between the hexagonal moderator channels

    International Nuclear Information System (INIS)

    Highlights: • We propose a SCWR fuel assembly with two-row fuel rods between the hexagonal moderator channels. • The new concept can resolve the contradiction between uniform and sufficient moderation. • Structural size and thermal–hydraulic performance are taken account of in the fuel assembly. • Larger infinite multiplication factor and smaller local power peaking factor could be obtained. • Two two-row hexagonal fuel assembly concepts are proposed for the engineering application. - Abstract: A new hexagonal fuel assembly (FA) design which has two rows of fuel rods between the hexagonal moderator channels is proposed for the thermal supercritical water cooled reactor (SCWR). The new concept is well considered for the performance of uniform moderation and sufficient moderation, and with respect to structural size and thermal–hydraulic performance. The neutron physical performance of the two-row hexagonal FA with acceptable configuration is discussed. The results show clearly that a better balance between uniform moderation and sufficient moderation can be obtained in the two-row hexagonal fuel assembly

  9. Behaviour of spent fuel assemblies during extended storage

    International Nuclear Information System (INIS)

    This report is the final report of the IAEA Co-ordinated Research Programme on Behaviour of Spent Fuel Assemblies During Extended Storage (BEFAST, Phase I, 1981-86). It contains the results on wet and dry spent fuel storage technologies obtained from 11 institutes (10 countries: Austria, Canada, Czechoslovakia, Finland, German Democratic Republic, Hungary, Japan, Sweden, USA and USSR) participating in the BEFAST CRP during the time period 1981-86. Names of participating institutes and chief investigators are given. The interim spent fuel storage has been recognized as an important independent step in the nuclear fuel cycle. Due to the delay in commercial reprocessing of spent fuel in some cases it should be stored up to 30-50 years or more before reprocessing or final disposal. This programme was evaluated by all its participants and observers as very important and helpful for the nuclear community and it was decided to continue it further (1986-91) as BEFAST, Phase II

  10. Comparative analysis of results between CASMO, MCNP and Serpent for a suite of Benchmark problems on BWR reactors; Analisis comparativo de resultados entre CASMO, MCNP y SERPENT para una suite de problemas Benchmark en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J. V.; Vargas E, S.; Gomez T, A. M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Reyes F, M. del C.; Del Valle G, E., E-mail: vicente.xolocostli@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, UP - Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico)

    2014-10-15

    In this paper a comparison is made in analyzing the suite of Benchmark problems for reactors type BWR between CASMO-4, MCNP6 and Serpent code. The Benchmark problem consists of two different geometries: a fuel cell of a pin and assembly type BWR. To facilitate the study of reactors physics in the fuel pin their nuclear characteristics are provided to detail, such as burnt dependence, the reactivity of selected nuclide, etc. With respect to the fuel assembly, the presented results are regarding to infinite multiplication factor for burning different steps and different vacuum conditions. Making the analysis of this set of Benchmark problems provides comprehensive test problems for the next fuels generation of BWR reactors with high extended burned. It is important to note that when making this comparison the purpose is to validate the methodologies used in modeling for different operating conditions, if the case is of other BWR assembly. The results will be within a range with some uncertainty, considering that does not depend on code that is used. Escuela Superior de Fisica y Matematicas of Instituto Politecnico Nacional (IPN (Mexico) has accumulated some experience in using Serpent, due to the potential of this code over other commercial codes such as CASMO and MCNP. The obtained results for the infinite multiplication factor are encouraging and motivate the studies to continue with the generation of the X S of a core to a next step a respective nuclear data library is constructed and this can be used by codes developed as part of the development project of the Mexican Analysis Platform of Nuclear Reactors AZTLAN. (Author)

  11. Nuclear fuel assembly top nozzle with improved arrangement of hold-down leaf spring assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, C.N.

    1991-06-26

    A fuel assembly has a top nozzle which includes a lower adapter plate and a plurality of guide structures which are attached to an extend along the periphery of the lower plate and upwardly therefrom. The top nozzle also includes an upper hold-down plate supported by a plurality of leaf spring assemblies. The upper plate is mounted to the guide structures for vertical slidable movement relative thereto. The leaf spring assemblies are provided in a non-peripheral arrangement relative to the periphery of the lower plate in which the assemblies are provided in a non-peripheral arrangement relative to the periphery of the lower plate in which the assemblies cross the interior of the lower plate in a diagonal fashion between adjacent ones of the guide structures. (author).

  12. Determination of mixing factors for VVER-440 fuel assembly head

    International Nuclear Information System (INIS)

    CFD models have been developed for the heads of the old, the present and new type VVER-440 fuel assemblies using the experiences of former validation process. With these models, temperature distributions were investigated in typical assemblies and in-core thermocouple signals were calculated. The analyses show that coolant mixing is intensive but not-perfect in the assembly heads. Difference between the thermocouple signal and cross-sectional average temperature at measurement level depends on the assembly type. Using the models, weight factors of the rod bundle regions for the in-core thermocouple have been determined. With these factors, the thermocouple signals were estimated and results were statistically tested using the registered data of the Hungarian nuclear power plant. This test shows that deviations between measured and calculated temperatures can be significantly decreased and consequently monitoring uncertainties can be reduced with using the weight factors. (author)

  13. Comparative analysis of results between CASMO, MCNP and Serpent for a suite of Benchmark problems on BWR reactors

    International Nuclear Information System (INIS)

    In this paper a comparison is made in analyzing the suite of Benchmark problems for reactors type BWR between CASMO-4, MCNP6 and Serpent code. The Benchmark problem consists of two different geometries: a fuel cell of a pin and assembly type BWR. To facilitate the study of reactors physics in the fuel pin their nuclear characteristics are provided to detail, such as burnt dependence, the reactivity of selected nuclide, etc. With respect to the fuel assembly, the presented results are regarding to infinite multiplication factor for burning different steps and different vacuum conditions. Making the analysis of this set of Benchmark problems provides comprehensive test problems for the next fuels generation of BWR reactors with high extended burned. It is important to note that when making this comparison the purpose is to validate the methodologies used in modeling for different operating conditions, if the case is of other BWR assembly. The results will be within a range with some uncertainty, considering that does not depend on code that is used. Escuela Superior de Fisica y Matematicas of Instituto Politecnico Nacional (IPN (Mexico) has accumulated some experience in using Serpent, due to the potential of this code over other commercial codes such as CASMO and MCNP. The obtained results for the infinite multiplication factor are encouraging and motivate the studies to continue with the generation of the X S of a core to a next step a respective nuclear data library is constructed and this can be used by codes developed as part of the development project of the Mexican Analysis Platform of Nuclear Reactors AZTLAN. (Author)

  14. Calculation of the BN-600 fuel assemblies mode in a gas medium

    International Nuclear Information System (INIS)

    Potentiality of calculated modeling of temperature conditions of warming up elements of spent fuel assemblies of the BN-600 reactor during their transportation within gaseous medium is shown. The calculated modeling of spent fuel assemblies warming up in gaseous medium, their residual heat release values being different, permits substantiating and optimizing safe conditions of post-reactor handling of the fuel assemblies

  15. Design of Neptunium-bearing Fuel Assembly for Transmutation Research in CEFR

    International Nuclear Information System (INIS)

    In order to have a better understanding of irradiation performance of the fuel containing neptunium, an experimental assembly is designed for future irradiation in CEFR. There is only one fuel pin in the assembly with neptunium content of 5%. Temperature monitors and neutron fluence detectors are attached. The report presents the basic structure of the fuel pin and the assembly. (author)

  16. The Welding Process of the Small In-pile Testing Fuel Assembly

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The small in-pile testing fuel assembly is designed for high performance fuel assembly study. It has two parts of which are four fuel element with double layer cladding and a detect system for measurement of testing pressure and temperature. The fuel element is composed of UO2 pellets, the stainless steel cladding and end caps. The detect system is direct contact with the fuel element by electron beam welding. In the fabrication of the assembly, some special welding technologies are

  17. Vibration Characteristics of a Plate Type Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yim, J.S.; Kim, H.J.; Tahk, Y.W.; Oh, J.Y.; Lee, B.H. [Nuclear Fuel Design for Research Reactor, KAERI, 305-353 Daeduck Daero 1045, Yuseong-Ku, Taejon (Korea, Republic of)

    2011-07-01

    A flat fuel plate and a box type fuel assembly for a research reactor were modeled to be finite element meshes of the ANSYS to predict dynamic characteristics, such as natural frequencies and mode shapes. These characteristics provide the basic information about their vibrations. If the model is properly prepared, it can be used for further calculations of the dynamic behaviors under the SSE or even in the static stress calculation. With the FE Model, the natural frequencies and the mode shapes of a fuel plate and a FA were obtained in air and in water environments. The effects of fluid surrounding the fuel plate and the FA as well as the combs on the natural vibration of the FA are discussed. (author)

  18. Neutron resonance transmission analysis of reactor spent fuel assemblies

    International Nuclear Information System (INIS)

    A method called Neutron Resonance Transmission Analysis (NRTA) is under study which would use a pulsed neutron beam for nondestructive isotopic assay of a complete spent fuel assembly. Neutrons removed from the collimated beam by absorption or scattering in the resonances of the various isotopes in the spent fuel appear as dips in the neutron transmission. The method is completely insensitive to matrix materials such as oxide, fuel cladding, and other structural members. Measurements on spent fuel buttons using the NBS linac as a pulsed neutron source demonstrate a high accuracy capability for the isotopes 234235236238U, 239240241242Pu, 241Am, 243Am, and several fission products. The NRTA method offers high speed and modest operational cost, and it can be implemented with commercially available medical or radiographic γ-ray generators adapted for neutron production. (Auth.)

  19. Fuel Services Germany - AREVA NP

    Energy Technology Data Exchange (ETDEWEB)

    Langenberger, Jan; Seidel, Jana [AREVA, AREVA NP, P.O Box 11 09, 91001 Erlangen (Germany)

    2008-07-01

    AREVA NP has over 30 years of nuclear fuel inspection and repair experience. Our service staff is trained regularly and holds a long lasting experience in their field of work. Our services comprise all activities within examinations of lead test assemblies, all necessary inspections and tests of fuel assemblies and other core components during an outage, reconstitution of fuel assemblies for further use in the reactor and activities within the disposal of fuel assemblies and core components. Furthermore we deliver facilities and systems that are necessary for the above mentioned services. These are in particular facilities for inspections, sipping, repair and for disposal (e.g. conditioning equipment, facility for encapsulation of leaking fuel rods). Continuous research and development guarantee that the applied facilities always comply with the latest state of the art. They are suitable for a variety of fuel assembly designs of AREVA's and external supplier's latest and conventional technology. The facilities are applicable in different BWR-, PWR and VVER nuclear power plants. Inspections in PWR- and BWR Plants: - Measurements with contact and contact less measuring methods of fuel assemblies, fuel rods, fuel channels and other core components; - High-definition video inspections; - Mast-, In-core- and Box-sipping to detect defective fuel assemblies; - Support (e.g. measurements on site) for post irradiation examinations; - Sampling of material (e.g. taking CRUD or material probes) and fuel rod preparation for hot cell examination. Repair in PWR- and BWR Plants: - Exchange of defective fuel rods of a fuel assembly for further use in the reactor and preparation of the fuel assembly or defective fuel rod for disposal; - Reconstitution of fuel assemblies with damaged structure parts (spacer, springs, upper-and lower end fitting). We offer products that meet the requirements of pressure-tightness under water (e. g. for use in the fuel storage pool), that are

  20. Analysis of the sub-channel of SCWR two-row fuel assembly

    International Nuclear Information System (INIS)

    Based on the COBRA-Ⅳ code, a new sub-channel code system developed for the supercritical water cooled reactor (SCWR) fuel assembly is analyzed. In order to optimize the SCWR fuel assembly design, a sub-channel analysis of two rows SCWR fuel assembly is performed, including steady-state and transient calculation. For the steady-state calculation, several channel's parameters are selected to evaluate the thermal-hydraulic performance of the fuel assemblies. Based on the steady-state results, two transient calculations (change of fuel rod power and change of coolant flow) are carried out to estimate the dynamic behavior of the fuel assemblies. The results achieved so far indicate a good applicability of the sub-channel code for the SCWR fuel assembly analysis, which is good for the future optimization of SCWR fuel assembly design. (authors)

  1. The Technology Trend of Japanese Patent for the Nuclear Fuel Assembly Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Lee, Nam Ho; Jeong, Kyung Min; Suh, Yong Chil; Kim, Chang Hoi; Shin, Jung Cheol

    2008-06-15

    Japanese technology patents for the nuclear fuel assembly inspection unit, from the year 1993 to the year 2006, were investigated. The fuel rods which contain fissile material are grouped together in a closely-spaced array within the fuel assembly. Various kinds of reactor including the PWR reactor are being operated in Japan. There are many kinds of nuclear fuel assemblies in Japan, and the shape and the size of these nuclear fuel assemblies are various also. As the structure of these various fuel assemblies is a regular square as the same as the Korean one, the inspection method described in Japanese technology patent can be applied to the inspection of the nuclear fuel assembly of the Korea. This report focuses on advances in VIT(visual inspection test) of nuclear fuel assembly using the state-of-the-art CCD camera system.

  2. Micro-Pocket Fission Detectors (MPFD) For Fuel Assembly Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Troy Unruh; Michael Reichenberger; Phillip Ugorowski

    2013-09-01

    Neutron sensors capable of real-time measurement of thermal flux, fast flux, and temperature in a single miniaturized probe are needed in irradiation tests required to demonstrate the performance of candidate new fuels, and cladding materials. In-core ceramic-based miniature neutron detectors or “Micro-Pocket Fission Detectors” (MPFDs) have been studied at Kansas State University (KSU). The first MPFD prototypes were tested in various neutron fields at the KSU TRIGA research reactor with successful results. Currently, a United States Department of Energy-sponsored joint KSU/Idaho National Laboratory (INL) effort is underway to develop a high-temperature, high-pressure version of the MPFD using radiation-resistant, high temperature materials, which would be capable of withstanding irradiation test conditions in high performance material and test reactors (MTRs). Ultimately, this more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, existing and advanced reactor designs, high performance MTRs, and transient test reactors has the potential to lead to higher accuracy and resolution data from irradiation testing, more detailed core flux measurements and enhanced fuel assembly processing. Prior evaluations by KSU indicate that these sensors could also be used to monitor burn-up of nuclear fuel. If integrated into nuclear fuel assemblies, MPFDs offer several advantages to current spent fuel management systems.

  3. Process and device for fabricating nuclear fuel assembly grids

    International Nuclear Information System (INIS)

    The method for fabricating PWR fuel assembly grids consists to place the grid of which the constituent parts are held firmly in place within a frame into a sealed chamber full of inert gas. This chamber can rotate about an axis. The welding on one face at a time is carried out with a laser beam orthogonal to the axis orientation of the device. The laser source is outside of the chamber and the beam penetrates via a transparent view port

  4. Dynamics of nuclear fuel assemblies in vertical flow channels

    International Nuclear Information System (INIS)

    DYNMOD is a computer program designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow. The calculations performed by DYNMOD and the input data required by the program are described in this report. Examples of DYNMOD usage and a brief assessment of the accuracy of the dynamic model are also presented. It is intended that the report will be used as a reference manual by users of DYNMOD

  5. Estimate of radiation-induced steel embrittlement in the BWR core shroud and vessel wall from reactor-grade MOX/UOX fuel for the nuclear power plant at Laguna Verde, Veracruz, Mexico

    Science.gov (United States)

    Vickers, Lisa Rene

    The government of Mexico has expressed interest to utilize the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18--30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons. There is concern that a core with a fraction of MOX fuel (i.e., increased 239Pu wt%) would increase the radiation-induced steel embrittlement within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation-induced steel embrittlement within the core shroud and vessel wall is a concern because of the potentially adverse affect to plant and public safety, environment, and operating life of the reactor. This dissertation provides computational results of the neutron fluence, flux, energy spectrum, and radiation damage displacements per atom per second (dpa-s-1) in steel within the core shroud and vessel wall of the Laguna Verde Unit 1 BWR. The results were computed using the nuclear data processing code NJOY99 and the continuous energy Monte Carlo Neutral Particle transport code MCNP4B. The MCNP4B model of the reactor core was for maximum core loading fractions of ⅓ MOX and ⅔ UOX reactor-grade fuel in an equilibrium core. The primary conclusion of this dissertation was that the addition of the maximum fraction of ⅓ MOX fuel to the LV1 BWR core did significantly accelerate the radiation-induced steel embrittlement such that without mitigation of steel embrittlement by periodic thermal annealing or reduction in operating parameters such as, neutron fluence, core temperature and pressure, it posed a potentially adverse affect to the plant and public safety, environment, and operating life of the reactor.

  6. A CFD Simulation Process for Fast Reactor Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Kurt D. Hamman; Ray A. Berry

    2010-09-01

    A CFD modeling and simulation process for large-scale problems using an arbitrary fast reactor fuel assembly design was evaluated. Three-dimensional flow distributions of sodium for several fast reactor fuel assembly pin spacing configurations were simulated on high performance computers using commercial CFD software. This research focused on 19-pin fuel assembly “benchmark” geometry, similar in design to the Advanced Burner Test Reactor, where each pin is separated by helical wire-wrap spacers. Several two-equation turbulence models including the k–e and SST (Menter) k–? were evaluated. Considerable effort was taken to resolve the momentum boundary layer, so as to eliminate the need for wall functions and reduce computational uncertainty. High performance computers were required to generate the hybrid meshes needed to predict secondary flows created by the wire-wrap spacers; computational meshes ranging from 65 to 85 million elements were common. A general validation methodology was followed, including mesh refinement and comparison of numerical results with empirical correlations. Predictions for velocity, temperature, and pressure distribution are shown. The uncertainty of numerical models, importance of high fidelity experimental data, and the challenges associated with simulating and validating large production-type problems are presented.

  7. A CFD simulation process for fast reactor fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Hamman, Kurt D., E-mail: Kurt.Hamman@inl.go [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Berry, Ray A. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)

    2010-09-15

    A CFD modeling and simulation process for large-scale problems using an arbitrary fast reactor fuel assembly design was evaluated. Three-dimensional flow distributions of sodium for several fast reactor fuel assembly pin spacing configurations were simulated on high performance computers using commercial CFD software. This research focused on 19-pin fuel assembly 'benchmark' geometry, similar in design to the Advanced Burner Test Reactor, where each pin is separated by helical wire-wrap spacers. Several two-equation turbulence models including the k-{epsilon} and SST (Menter) k-{omega} were evaluated. Considerable effort was taken to resolve the momentum boundary layer, so as to eliminate the need for wall functions and reduce computational uncertainty. High performance computers were required to generate the hybrid meshes needed to predict secondary flows created by the wire-wrap spacers; computational meshes ranging from 65 to 85 million elements were common. A general validation methodology was followed, including mesh refinement and comparison of numerical results with empirical correlations. Predictions for velocity, temperature, and pressure distribution are shown. The uncertainty of numerical models, importance of high fidelity experimental data, and the challenges associated with simulating and validating large production-type problems are presented.

  8. Fuel assembly simulations using LRGR-CFD and CGCFD

    International Nuclear Information System (INIS)

    In addition to the traditional fuel assembly simulation approaches using system codes, subchannel codes or porous medium approaches, as well as detailed CFD simulations to analyze single sub channels, a Low Resolution Geometry Resolving (LRGR) CFD approach and a Coarse-Grid-CFD (CGCFD) approach is taken. Both methods are based on a low resolution mesh that allows the capture of large and medium scale flow features such as recirculation zones, which cannot be reproduced by the system codes, subchannel codes and porous media approaches. The LRGR approach allows for instance fine-tuning the porous parameters which are important input for a porous medium approach. However, it should be noted that the prediction of detailed flow features such as secondary flows is not feasible. Using this approach, the consequences of flow blockages for detection possibilities and cladding temperatures can be discussed. Within the Coarse-Grid CFD approach a subgrid model (SGM) accounts for sub grid volumetric forces which are derived from validated CFD simulations. The volumetric forces take account of the non resolved physics due to the coarse mesh. The CGCFD approach with SGM can be applied to simulate complete fuel assemblies or even complete cores capturing the unique features of the complex flow induced by the fuel assembly geometry and its spacers. In such a case, grids with a very low grid resolution are employed. The current paper discusses and presents both, the CGCFD and the LRGR approaches. (author)

  9. The Dit nuclear fuel assembly physics design code

    International Nuclear Information System (INIS)

    DIT is the Combustion Engineering, Inc. (C-E) nuclear fuel assembly design code. It belongs to a class of codes, all similar in structure and strategy, which may be characterized by the spectrum and spatial calculations being performed in 2D and in a single job step for the entire assembly. The forerunner of this class of codes is the U.K.A.E.A. WIMS code, the first version of which was completed 25 years ago. The structure and strategy of assembly spectrum codes have remained remarkably similar to the original concept thus proving its usefulness. As other organizations, including C-E, have developed their own versions of the concept, many important variations have been added which significantly influence the accuracy and performance of the resulting computational tool. This paper describes and discusses those features which are unique to the DIT code and which might be of interest to the community of fuel assembly physics design code users and developers

  10. The DIT nuclear fuel assembly physics design code

    International Nuclear Information System (INIS)

    The DIT code is the Combustion Engineering, Inc. (C-E) nuclear fuel assembly design code. It belongs to a class of codes, all similar in structure and strategy, that may be characterized by the spectrum and spatial calculations being performed in two dimensions and in a single job step for the entire assembly. The forerunner of this class of codes is the United Kingdom Atomic Energy Authority WIMS code, the first version of which was completed 25 yr ago. The structure and strategy of assembly spectrum codes have remained remarkably similar to the original concept thus proving its usefulness. As other organizations, including C-E, have developed their own versions of the concept, many important variations have been added that significantly influence the accuracy and performance of the resulting computational tool. Those features, which are unique to the DIT code and which might be of interest to the community of fuel assembly physics design code users and developers, are described and discussed

  11. Fuel assembly design for APR1400 with low CBC

    Science.gov (United States)

    Hah, Chang Joo

    2015-04-01

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gd rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to ΔkTARGET. A set of new designed fuel assembly satisfies an objective function, min [f =∑i (ΔkF A-Δki ) ] , and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to ΔkTARGET as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.

  12. Fuel assembly design for APR1400 with low CBC

    Energy Technology Data Exchange (ETDEWEB)

    Hah, Chang Joo, E-mail: changhah@kings.ac.kr [Department of NPP Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-04-29

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gd rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to Δk{sub TARGET}. A set of new designed fuel assembly satisfies an objective function, min [f=∑{sub i}(Δk{sub FA}−Δk{sub i})], and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to Δk{sub TARGET} as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.

  13. Development of an ultrasonic cleaning method for fuel assemblies

    International Nuclear Information System (INIS)

    Almost all radiation buildup in light water reactors is the result of the deposition of activated corrosion and wear products in out-of-core areas. After operation, a significant quantity of corrosion and wear products is deposited on the fuel rods as crud. At refueling shutdowns, these activation products are available for removal. If they can be quickly and easily removed, buildup of radioactivity on out-of-core surfaces and individual exposure dose can be greatly reduced. After studying various physical cleaning methods (e.g., water jet and ultrasonic), the ultrasonic cleaning method was selected as the most effective for fuel assembly cleaning. The ultrasonic cleaning method is especially able to efficiently clean the fuel without removing the channel box. The removed crud in the channel box would be swept out to the filtration unit. Parameter survey tests were carried out to evaluate the optimum conditions for ultrasonic cleaning using a mock-up of a short section of fuel assembly with the channel box. The ultrasonic device used was a 600-W ultrasonic transducer operating at 26-kHz ultrasonic frequency

  14. Development of an ultrasonic cleaning method for fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Heki, H.; Komura, S.; Kato, H.; Sakai, H. (Toshiba Corp., Kawasaki City (Japan)); Hattori, T. (Tokyo Electric Power Co., Kashiwazaki-shi (Japan))

    1991-01-01

    Almost all radiation buildup in light water reactors is the result of the deposition of activated corrosion and wear products in out-of-core areas. After operation, a significant quantity of corrosion and wear products is deposited on the fuel rods as crud. At refueling shutdowns, these activation products are available for removal. If they can be quickly and easily removed, buildup of radioactivity on out-of-core surfaces and individual exposure dose can be greatly reduced. After studying various physical cleaning methods (e.g., water jet and ultrasonic), the ultrasonic cleaning method was selected as the most effective for fuel assembly cleaning. The ultrasonic cleaning method is especially able to efficiently clean the fuel without removing the channel box. The removed crud in the channel box would be swept out to the filtration unit. Parameter survey tests were carried out to evaluate the optimum conditions for ultrasonic cleaning using a mock-up of a short section of fuel assembly with the channel box. The ultrasonic device used was a 600-W ultrasonic transducer operating at 26-kHz ultrasonic frequency.

  15. Tomographic techniques for safeguards measurements of nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist Saleh, Tobias

    2007-10-15

    Nuclear power is currently experiencing increased interest over the world. New nuclear reactors are being built and techniques for taking care of the nuclear waste are being developed. This development puts new demands and standards to safeguards, i.e. the international efforts for ensuring the non-proliferation of nuclear weapons. New measuring techniques and devices are continuously being developed for enhancing the ability to detect diversion of fissile material. In this thesis, tomographic techniques for application in safeguards are presented. Tomographic techniques can non-destructively provide information of the inner parts of an object and may thus be used to control that no material is missing from a nuclear fuel assembly. When using the tomographic technique described in this thesis, the radiation field around a fuel assembly is first recorded. In a second step, the internal source distribution is mathematically reconstructed based on the recorded data. In this work, a procedure for tomographic safeguards measurements is suggested and the design of a tomographic measuring device is presented. Two reconstruction algorithms have been specially developed and evaluated for the application on nuclear fuel; one algorithm for image reconstruction and one for reconstructing conclusive data on the individual fuel rod level. The combined use of the two algorithms is suggested. The applicability for detecting individual removed or replaced rods has been demonstrated, based on experimental data

  16. Tomographic techniques for safeguards measurements of nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Nuclear power is currently experiencing increased interest over the world. New nuclear reactors are being built and techniques for taking care of the nuclear waste are being developed. This development puts new demands and standards to safeguards, i.e. the international efforts for ensuring the non-proliferation of nuclear weapons. New measuring techniques and devices are continuously being developed for enhancing the ability to detect diversion of fissile material. In this thesis, tomographic techniques for application in safeguards are presented. Tomographic techniques can non-destructively provide information of the inner parts of an object and may thus be used to control that no material is missing from a nuclear fuel assembly. When using the tomographic technique described in this thesis, the radiation field around a fuel assembly is first recorded. In a second step, the internal source distribution is mathematically reconstructed based on the recorded data. In this work, a procedure for tomographic safeguards measurements is suggested and the design of a tomographic measuring device is presented. Two reconstruction algorithms have been specially developed and evaluated for the application on nuclear fuel; one algorithm for image reconstruction and one for reconstructing conclusive data on the individual fuel rod level. The combined use of the two algorithms is suggested. The applicability for detecting individual removed or replaced rods has been demonstrated, based on experimental data

  17. Operation experience of WWER-440 fuel assemblies and measures to increase fuel reliability

    International Nuclear Information System (INIS)

    The paper presents technical data for the fuel cycles used in 14 WWER-440 reactors of B-213 type situated outside CIS-territory on the basis of the 2001 operational results. The paper reflects the dynamics of average and maximum fuel burnup as well as information on the annual rate of the leaking fuel rods for the above reactor group identified during the 1997-2001 discharge period. As an example of work performed by RIAR in 2001 the paper brings forth the PIE-results of a leaking WWER-440 fuel assemblies (FAs). It is reported that the reason behind the leaking and failed fuel rods of the FA was interaction with a foreign object being in the coolant flow. The paper describes the measures taken by the NPPs together with the Supplier (JSC TVEL) and Manufacturer (JSC MSZ) to enhance the fuel operational safety. (author)

  18. Irradiation-induced dimensional changes of fuel compacts and graphite sleeves of OGL-1 fuel assemblies

    International Nuclear Information System (INIS)

    Experimental data are summarized on irradiation-induced dimensional changes of fuel compacts and graphite sleeves of the first to ninth OGL-1 fuel assemblies. The range of fast-neutron fluence is up to 4 x 1024 n/m2 (E > 0.18 MeV); and that of irradiation temperature is 900 - 1400 deg C for fuel compacts and 800 - 1050 deg C for graphite sleeves. The dimensional change of the fuel compacts was shrinkage under these test conditions, and the shrinkage fraction increased almost linearly with fast-neutron fluence. The shrinkage fraction of the fuel compacts was larger by 20 % in the axial direction than in the radial direction. Influence of the irradiation temperature on the dimensional-change behavior of the fuel compacts was not observed clearly; presumably the influence was hidden by scatter of the data because of low level of the fast-neutron fluence and the resultant small dimensional changes. (author)

  19. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 1, Activation measurements and comparison with calculations for spent fuel assembly hardware

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1. 5 refs., 4 figs., 21 tabs.

  20. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 2, Calculated activity profiles of spent nuclear fuel assembly hardware for pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Lotz, T.L.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report present a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from Laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  1. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 3, Calculated activity profiles of spent nuclear fuel assembly hardware for boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly that is also radioactive and required disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volume 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  2. Control assembly for controlling a fuel cell system during shutdown and restart

    Science.gov (United States)

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  3. Post-processor for simulations of the ORIGEN program and calculation of the composition of the activity of a burnt fuel core by a BWR type reactor

    International Nuclear Information System (INIS)

    The composition calculation and the activity of nuclear materials subject to processes of burnt, irradiation and decay periods are of utility for diverse activities inside the nuclear industry, as they are it: the processes design and operations that manage radioactive material, the calculation of the inventory and activity of a core of burnt nuclear fuel, for studies of type Probabilistic Safety Analysis (APS), as well as for regulation processes and licensing of nuclear facilities. ORIGEN is a program for computer that calculates the composition and the activity of nuclear materials subject to periods of burnt, irradiation and decay. ORIGEN generates a great quantity of information whose processing and analysis are laborious, and it requires thoroughness to avoid errors. The automation of the extraction, conditioning and classification of that information is of great utility for the analyst. By means of the use of the post-processor presented in this work it is facilitated, it speeds up and wide the capacity of analysis of results, since diverse consultations with several classification options and filtrate of results can be made. As illustration of the utility of the post-processor, and as an analysis of interest for itself, it is also presented in this work the composition of the activity of a burned core in a BWR type reactor according to the following classification criteria: by type of radioisotope (fission products, activation products and actinides), by specie type (gassy, volatile, semi-volatile and not volatile), by element and by chemical group. The results show that the total activity of the studied core is dominated by the fission products and for the actinides, in proportion four to one, and that the gassy and volatile species conform a fifth part of the total activity of the core. (Author)

  4. Nuclear material attractiveness: an assessment of used-fuel assemblies

    International Nuclear Information System (INIS)

    This paper examines the material attractiveness of used-fuel assemblies in a hypothetical scenario in which terrorists steal one or more assemblies in order to use the special nuclear materials (SNM) within an assembly in a nuclear explosive device. For assessing material attractiveness, this paper uses the Figure of Merit (FOM) that was used in earlier studies to examine the attractiveness of the SNM associated with the reprocessing of used light water reactor (LWR) fuel by various reprocessing schemes. However, for a theft scenario the mass used in the Acquisition Factor of the FOM is the mass of the stolen object conta ining SNM ; whereas the mass used for analyzing the material attractiveness of the products of various reprocessing schemes in the earlier studies was a fraction of the bare critical mass in recognition that a successful proliferator must avoid a criticality accident. This paper will indicate how long after discharge the radiation emanating from a cooling assembly is no longer self-protecting. Additionally, this paper will give the time scale for the SNM within the assembly to become more attractive. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of ''attractiveness levels'' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented. Additionally, this paper discusses how the results presented herein impact the application of safeguards and the securitization of SNM, and how they could be used to help inform policy makers.

  5. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. On such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97 degrees C and whether the cladding of the stored spent fuel ever exceeds 350 degrees C. Limiting the borehole to temperatures of 97 degrees C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350 degrees C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97 degrees C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350 degrees C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft x 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40 degrees C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation

  6. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  7. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array

  8. Status update of the BWR cask simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations

  9. Criteria for removal of defective fuel rod from fuel assembly under repair without cladding rupture

    International Nuclear Information System (INIS)

    During repair of a failed fuel assembly (FA) there is a risk of cladding rupture while a defective fuel rod is forced out of the assembly skeleton. To reduce the corresponding risks, a program of experimental and analytical studies for WWER fuel was performed. It resulted in formulation of criteria for successful removal of the defective fuel rod from the FA under repair. 'Successful' means that no cladding rupture occurs. The paper summarizes the available data of post-irradiation examinations of WWER FAs with leaking fuel rods. A technique for express estimation of hydrogen content in cladding of a defective fuel rod is presented. The degradation of cladding mechanical properties can be estimated with this technique as well. A criterion of severe secondary hydriding involved in the risk analysis is also discussed. Finally, it is shown how the information on operation conditions may be used for prompt evaluation of the limiting force for successful removal of a defective fuel rod during FA repair in the inspection stand. (author)

  10. Manufacture of a Dual-Cooled Fuel Assembly Mockup for Mechanical Characterization Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeyong; Kim, Hyungkyu; Yoon, Kyungho; Lee, Kanghee; Kang, Heungseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    All components were made of stainless steel 304 for research. A DUO fuel assembly mockup was assembled by mechanical fastening and laser welding methods with them. The conceptual feasibility of each component was checked through it. In this paper, manufactured items for a DUO fuel and a DUO fuel assembly are briefly described. Although the research of a DUO fuel has been done by USA, they have just focused on pellets, not mechanical parts such as TEP/BEP, GTs, and SGs. We designed and manufactured them and assembled a DUO fuel assembly. The realizable possibility of a DUO fuel assembly was checked. Mechanical characterization tests will be performed to measure the DUO fuel's mechanical properties such as bending rigidity, modal characteristics, impact durability, etc.

  11. The choice of the fuel assembly for VVER-1000 in a closed fuel cycle based on REMIX-technology

    Directory of Open Access Journals (Sweden)

    Bobrov Evgenii

    2016-01-01

    Full Text Available This paper shows basic features of different fuel assembly (FA application for VVER-1000 in a closed fuel cycle based on REMIX-technology. This investigation shows how the change in the water–fuel ratio in the VVER FA affects on the fuel characteristics produced by REMIX technology during multiple recycling.

  12. Study on pressure drop prediction of Tight Lattice Fuel Assembly using CFD

    International Nuclear Information System (INIS)

    This paper presents a prediction method about pressure drop of the tight lattice fuel assembly. To evaluate the core performance, the pressure drop of fuel assembly is important parameter for the reliability and safety. The shape of fuel assembly is complicated and the shape has a strong effect on pressure drop. Therefore, to obtain the pressure drop of fuel assembly, the experiments are needed. However the experiments need a lot of time and money. The purpose of this study is to predict the pressure drop of the tight lattice fuel assembly using CFD (computational fluid dynamics) and law of two phase flow similarity without experiments. Prediction method for pressure drop is, first the shape of fuel assembly was reproduced by 3D-CAD, then to evaluate the parameters depending on the shape using CFD analysis under the single phase flow condition. And then, to calculate pressure drop of two phase flow using law of two phase flow similarity. The predicted results by this method were compared with the experimental results of 3 types of the tight lattice fuel assemblies, 7-rod, 14-rod, and 37-rod fuel assembly. Fluid conditions (pressure, mass flux and quality) of test results covered the typical operating range of the LWR fuel assembly. It was found from comparison result that this method can predict the pressure drop of the LWR fuel assembly with sufficient accuracy. The prediction accuracy (predicted value/test value) is about 10%. (author)

  13. Development of a reference spent fuel library of 17x17 PWR fuel assemblies

    International Nuclear Information System (INIS)

    One of the most common ways to investigate new Non-Destructive Assays (NDA) for the spent fuel assemblies are Monte Carlo simulations. In order to build realistic models the user must define in an accurate way the material compositions and the source terms in the system. This information can be obtained using burnup codes such as ORIGEN-ARP and ALEPH2.2, developed at SCK-CEN. These software applications allow the user to select the irradiation history of the fuel assembly and to calculate the corresponding isotopic composition and neutron/gamma emissions as a function of time. In the framework of the development of an innovative NDA for spent fuel verifications, SCK•CEN built an extensive fuel library for 17x17 PWR assemblies, using both ORIGEN-ARP and ALEPH2.2. The parameters considered in the calculations were initial enrichment, discharge burnup, and cooling time. The combination of these variables allows to obtain more than 1500 test cases. Considering the broad range of the parameters, the fuel library can be used for other purposes apart from spent fuel verifications, for instance for the direct disposal in geological repositories. In addition to the isotopic composition of the spent fuel, the neutron and photon emissions were also calculated and compared between the two codes. The comparison of the isotopic composition showed a good agreement between the codes for most of the relevant isotopes in the spent fuel. However, specific isotopes as well as neutron and gamma spectra still need to be investigated in detail.

  14. Out-of-pile Verifying Test for the Hydraulic Stability of the CARR Standard Fuel Assembly

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The CARR standard fuel element is a flat-plate-type assembly. A fuel plate consists of 0.6 mmthickness layer of uranium- silicon - aluminum fuel (U3Si2-Al) and 0.38 mm thickness of aluminumcladding. The fuel plates are attached to aluminum alloy side plates by a "roll swaging" technique. Thistype of fuel assembly is first used in China. The testing simulates the in-pile thermal-hydraulic operating conditions except for neutron

  15. Passive Gamma Analysis of the Boiling-Water-Reactor Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    Passive gamma analysis can be used to determine BU and CT of BWR assembly. The analysis is somewhat more complicated and less effective than similar method for PWR assemblies. From the measurements along the lengths of the BWR1 and BWR9 assemblies, there are hints that we may be able to use their information to help improve the model functions for better results.

  16. Passive Gamma Analysis of the Boiling-Water-Reactor Assemblies

    International Nuclear Information System (INIS)

    Passive gamma analysis can be used to determine BU and CT of BWR assembly. The analysis is somewhat more complicated and less effective than similar method for PWR assemblies. From the measurements along the lengths of the BWR1 and BWR9 assemblies, there are hints that we may be able to use their information to help improve the model functions for better results.

  17. Experimental and calculational study of temperature distributions in deformed model fuel assemblies of fast reactors

    International Nuclear Information System (INIS)

    Experimental and calculational data tastify to absence of temperature nonuniformity stabilization in fuel assembly peripheral area. The effect of fuel lattice deformation on the fuel assembly temperature field at shroud crushing in the core centre is demonstrated. 17 refs.; 21 figs

  18. Simulating fuel assemblies with low resolution CFD approaches

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, F., E-mail: roelofs@nrg.eu [NRG, Petten (Netherlands); Gopala, V.R. [NRG, Petten (Netherlands); Chandra, L. [IIT Rajasthan (India); Viellieber, M.; Class, A. [KIT, Karlsruhe (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Justification for development of low resolution mesh approaches. Black-Right-Pointing-Pointer Mathematical background of the approaches. Black-Right-Pointing-Pointer Meshing considerations for different approaches are presented. Black-Right-Pointing-Pointer Examples of applications are provided. - Abstract: In addition to the traditional fuel assembly simulations using system codes, subchannel codes or porous medium approaches, as well as detailed CFD simulations to analyze single sub channels, a Low Resolution Geometry Resolving (LRGR) CFD approach and a Coarse-Grid-CFD (CGCFD) approach are taken. Both methods are based on a low resolution mesh that allows the capture of large and medium scale flow features such as recirculation zones, which are difficult to be reproduced by the system codes, subchannel codes and porous media approaches. The LRGR approach allows for instance fine-tuning the porous parameters which are important input for a porous medium approach. However, it should be noted that the prediction of detailed flow features such as secondary flows (small flows in the direction perpendicular to the main flow) is not feasible. Using this approach, the consequences of flow blockages for detection possibilities and cladding temperatures can be discussed. The goal of the CGCFD approach with SGM is that it can be applied to simulate complete fuel assemblies or even complete cores capturing the unique features of the complex flow induced by the fuel assembly geometry and its spacers. In such a case, grids with a very low grid resolution are employed. Within the CGCFD a subgrid model (SGM) accounts for sub grid volumetric forces which are derived from validated CFD simulations. The volumetric forces take account of the non resolved physics due to the coarse mesh. The current paper discusses and presents both, the CGCFD and the LRGR approaches.

  19. Revised uranium--plutonium cycle PWR and BWR models for the ORIGEN computer code

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A. G.; Bjerke, M. A.; Morrison, G. W.; Petrie, L. M.

    1978-09-01

    Reactor physics calculations and literature searches have been conducted, leading to the creation of revised enriched-uranium and enriched-uranium/mixed-oxide-fueled PWR and BWR reactor models for the ORIGEN computer code. These ORIGEN reactor models are based on cross sections that have been taken directly from the reactor physics codes and eliminate the need to make adjustments in uncorrected cross sections in order to obtain correct depletion results. Revised values of the ORIGEN flux parameters THERM, RES, and FAST were calculated along with new parameters related to the activation of fuel-assembly structural materials not located in the active fuel zone. Recommended fuel and structural material masses and compositions are presented. A summary of the new ORIGEN reactor models is given.

  20. VVER-1000/V320 decay heat analysis involving TVS-M and TVSA fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, Plamen V. [' Kozloduy' NPP, 3321 Kozloduy, Vratsa (Bulgaria)], E-mail: pvpetkov@yahoo.com; Hristov, Danail V. [' Kozloduy' NPP, 3321 Kozloduy, Vratsa (Bulgaria)], E-mail: dvhristov@npp.bg

    2008-12-15

    MELCOR 1.8.4 is an integral computer code, developed for severe accident calculations. It is used primarily for the simulation of PWR and BWR types of reactors as there exists an internal database, suitable for modeling of their core inventory. Despite similarity between VVER-1000/V320 and PWR, accounting of specificities of Russian reactor designs is still required. Part of it is the simulation of core decay heat rate after the shutdown. MELCOR 1.8.4 distinguishes fifteen classes. Each of them contains chemical elements with similar properties. Twelve are involved in radioactive products decay. In current paper the authors present two boundary reactor core loadings, designed with corresponding fuel assemblies: TVS-M and TVSA. They have calculated decay heat after reactor shutdown from 100% and 104% of nominal power by SCALE 4.4a package. The amount of generated nuclides had also been estimated. Irradiation history had been accounted as proposed in Kolobashkin et al. (p. 141) [Kolobashkin, V.M., Rubtsov, P.M., Rujanskiy, P.A., Sidorenko, V.D., 1983. Radionuclide Inventory Estimation Handbook (on Russian). Energoatomizdat, Moscow, pp. 138-188]. Newly developed Core Inventory Estimation Tool (CIET), described in this paper, written and tested previously, has been used for the evaluation of core decay heat fractions, distributed over chemical classes. Twelve curves were generated by following the same numerical procedure implemented in MELCOR for representation of decay in W/kg. Comparison of chemical element decay rates to the defaults for PWR shows deviations from the expectations to maximal values of 37% in Uranium for TVSA fuel assemblies. The total number of radionuclides, separated in chemical classes, given in Gauntt et al. [Gauntt, R.O., Cole, R.K., Rodrigez, S.B., Sanders, R.L., Smith, R.C., Stuard, D.S., Summers, R.M., Young, M.F., 1997. MELCOR Computer Code Manuals. NUREG/CR-6119 Report, Vol. 1 and Vol. 2, SAND97-2398] was compared to the ones involved in

  1. Welding fixture for nuclear reactor fuel assembly grid

    International Nuclear Information System (INIS)

    A welding fixture for a nuclear fuel assembly grid having rigid top and bottom members and having apparatus for releasably securing them together. The bottom and top members each have an egg-crate configuration of interleaved fixture straps. Top notches on the bottom fixture straps' top edges are placed to engage the grid straps' bottom edges when the grid straps are aligned for welding. Likewise, bottom notches on the top fixture straps' bottom edges are placed to engage the grid straps' top edges when the grid straps are aligned for welding

  2. Model for the analysis of transitories and stability of a BWR reactor with fuel of thorium; Modelo para el analisis de transitorios y de estabilidad de un reactor BWR con combustible de torio

    Energy Technology Data Exchange (ETDEWEB)

    Nunez C, A. [CNSNS, 03020 Mexico D.F. (Mexico)]. E-mail: anunezc@cnsns.gob.mx; Espinosa P, G. [UAM-I, 09340 Mexico D.F. (Mexico); Francois L, J.L. [Fac. de Ingenieria, UNAM 62550 Jiutepec, Morelos (Mexico)

    2004-07-01

    In this work it is described the thermo hydraulic and neutronic pattern used to simulate the behavior of a nucleus of thorium-uranium under different conditions of operation. The analysed nucleus was designed with base to assemblies that operate under the cover-seed concept. The pattern was proven to conditions of stationary state and transitory state. Here it is only presented the simulation of the one SCRAM manual and it is compared in the behavior of a nucleus with UO{sub 2}. Additionally one carries out an analysis of stability taking into account the four corners that define the area of stability of the map flow-power and to conditions of 100% of flow and 100% of power. The module of stability is based on the pattern of Lahey and Podowsky to estimate the drops of pressure during a perturbation. It is concludes that the behavior of this nucleus is not very different to the one shown by the nuclei loaded with the fuel of UO{sub 2}. (Author)

  3. Integrity assessment of test fuel assemblies of the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Assessment of integrity has been made on the B-type fuel assemblies, which will be loaded in the High Temperature Engineering Test Reactor (HTTR) as test fuel assemblies. Specifications of coated fuel particles for the B-1 type fuel assembly have been slightly changed in the fuel kernel diameter and thickness of coating layers from those for the A-type fuel assembly, which is employed as the driver fuel. These changes have been directed toward safer side in developing this advanced fuel for use up to higher burnups at higher temperatures. The B-2 type fuel assembly uses the zirconium-carbide (ZrC) coating layer with excellent high-temperature chemical stability, instead of the silicon carbide (SiC) layer. This change has lead to demonstration of its better performance than the A-type fuel assembly in the kernel migration, corrosion by fission products including palladium, and coating failure at extremely high temperatures. The B-3 type fuel assembly adopts the (U,Th)O2 kernel - SiC TRISO coated fuel articles. The service condition (1000degC and 22,000 MWd/t) of the B-3 type fuel assembly is decided as the range within which the performance data of the fuel have been sufficiently obtained. Thus, it has been judged that the integrity of these B-type fuel assemblies will be maintained under the normal operating conditions of the HTTR. Moreover, the validity of the permissible design limit of the fuel has been confirmed, which requires that the fuel temperature shall not exceed 1,600degC at anticipated operational transients. (author)

  4. Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells

    Science.gov (United States)

    Wittstadt, U.; Wagner, E.; Jungmann, T.

    Membrane electrode assemblies for regenerative polymer electrolyte fuel cells were made by hot pressing and sputtering. The different MEAs are examined in fuel cell and water electrolysis mode at different pressure and temperature conditions. Polarisation curves and ac impedance spectra are used to investigate the influence of the changes in coating technique. The hydrogen gas permeation through the membrane is determined by analysing the produced oxygen in electrolysis mode. The analysis shows, that better performances in both process directions can be achieved with an additional layer of sputtered platinum on the oxygen electrode. Thus, the electrochemical round-trip efficiency can be improved by more than 4%. Treating the oxygen electrode with PTFE solution shows better performance in fuel cell and less performance in electrolysis mode. The increase of the round-trip efficiency is negligible. A layer sputtered directly on the membrane shows good impermeability, and hence results in high voltages at low current densities. The mass transportation is apparently constricted. The gas diffusion layer on the oxygen electrode, in this case a titanium foam, leads to flooding of the cell in fuel cell mode. Stable operation is achieved after pretreatment of the GDL with a PTFE solution.

  5. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  6. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    Science.gov (United States)

    Shore, Lawrence; Matlin, Ramail

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  7. The Conceptual Design for a Fuel Assembly of a New Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, J-S.; Cho, Y-G.; Yoon, D-B.; Dan, H-J.; Chae, H-T.; Park, C.

    2004-10-06

    A new Research Reactor (ARR) has been under design by KAERI since 2002. In this work, as a first step for the design of the fuel assembly of the ARR, the conceptual design has been carried out. The vibration characteristics of the tubular fuel model and the locking performance of the preliminary designed locking devices were investigated. In order to investigate the effects of the stiffener on the vibration characteristics of the tubular fuel, a modal analysis was performed for the finite element models of the tubular fuels with stiffeners and without stiffeners. The analysis results show that the vibration characteristics of the tubular fuel with stiffeners are better than those of the tubular fuel without stiffeners. To investigate the locking performance of the preliminary designed locking devices for the fuel assembly of the ARR, the elements of the locking devices were fabricated. Then the torsional resistance, fixing status and vibration characteristics of the locking devices were tested. The test results show that using the locking device with fins on the bottom guide can prevent the torsional motion of the fuel assembly, and that additional springs or guides on the top of the fuel assembly are needed to suppress the lateral motion of the fuel assembly. Based on the modal analysis and experimental results, the fuel assembly and locking devices of the ARR were designed and its prototype was fabricated. The locking performance, pressure drop characteristics and vibration characteristics of the newly designed fuel assembly will be tested in the near future.

  8. Nuclear fuel assembly top nozzle with improved arrangement of hold-down leaf spring assemblies

    Energy Technology Data Exchange (ETDEWEB)

    De Mario, E.E.; Lawson, C.N.

    1991-10-15

    This patent describes a top nozzle for use in a fuel assembly having guide thimbles for mounting the top nozzle. It comprises: a lower adapter plate having a periphery bounding an interior thereof mountable to the guide thimbles: guide structures attached to and extending along the periphery of the adapter plate and upwardly therefrom; an upper hold-down plate mounted to the guide structures for slidable movement relative thereto such that the upper plate can move toward and away from the interior of the lower plate within the space bounded by the guide structures as the upper plate slidably moves along the guide structures; and leaf spring assemblies interposed between and engaged with the lower and upper plates so as to yieldably support the upper plate in spaced relation above the lower plate and bias the upper plate for movement away from the lower plate; the leaf spring assemblies being provided in a non-peripheral arrangement relative to the periphery of the lower plate in which the assemblies cross the interior of the lower plate in a diagonal fashion between adjacent ones of the guide structures.

  9. Irradiation experiments of the 13th-15th OGL-1 fuel assemblies

    International Nuclear Information System (INIS)

    The Oarai Gas Loop-1, OGL-1, which had been installed in the Japan Materials Testing Reactor (JMTR) of the Oarai Research Establishment of the Japan Atomic Energy Research Institute (JAERI), was an in-pile helium loop for irradiation of high-temperature gas-cooled reactor fuels at high pressure and temperature. This report describes results of fabrication, irradiation and post-irradiation examinations (PIEs) of the 13th-15th OGL-1 fuel assemblies. The 13th and 15th fuel assemblies employed the first-charge fuel of the High Temperature Engineering Test Reactor (HTTR). The 13th assembly was loaded with a high quality fuel, whose as-produced failure fraction had been drastically decreased, compared with that for fuels before that time. The 15th assembly was loaded with a fuel, which had been produced by the same apparatus that was used afterwards for the first charge fuel of the HTTR. Both of these fuel assemblies gave good results in PIEs as well as in the fission-gas release rates during irradiation. The 14th fuel assembly used a trial product of an advanced fuel for high burnup utilization, which employed coated fuel particles (CFPs) with thicker coating layers than those for the first charge fuel. This fuel assembly indicated a spike release of fission gas during irradiation at 1500degC after a transient temperature increase up to this value. As a whole, all of the 13th - 15th assemblies demonstrated good performance of the loaded fuels, giving significantly lower values in fission-gas release rates during irradiation and in failure fractions of CFPs after irradiation, than the corresponding design limit values for the first charge fuel of the HTTR. (author)

  10. Irradiation experiments of the 13th-15th OGL-1 fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kimio; Sawa, Kazuhiro; Kitajima, Toshio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Shiratori, Tetsuo; Kikuchi, Hironobu; Fukuda, Kousaku; Itoh, Tadaharu; Waragai, Heita [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-01-01

    The Oarai Gas Loop-1, OGL-1, which had been installed in the Japan Materials Testing Reactor (JMTR) of the Oarai Research Establishment of the Japan Atomic Energy Research Institute (JAERI), was an in-pile helium loop for irradiation of high-temperature gas-cooled reactor fuels at high pressure and temperature. This report describes results of fabrication, irradiation and post-irradiation examinations (PIEs) of the 13th-15th OGL-1 fuel assemblies. The 13th and 15th fuel assemblies employed the first-charge fuel of the High Temperature Engineering Test Reactor (HTTR). The 13th assembly was loaded with a high quality fuel, whose as-produced failure fraction had been drastically decreased, compared with that for fuels before that time. The 15th assembly was loaded with a fuel, which had been produced by the same apparatus that was used afterwards for the first charge fuel of the HTTR. Both of these fuel assemblies gave good results in PIEs as well as in the fission-gas release rates during irradiation. The 14th fuel assembly used a trial product of an advanced fuel for high burnup utilization, which employed coated fuel particles (CFPs) with thicker coating layers than those for the first charge fuel. This fuel assembly indicated a spike release of fission gas during irradiation at 1500degC after a transient temperature increase up to this value. As a whole, all of the 13th - 15th assemblies demonstrated good performance of the loaded fuels, giving significantly lower values in fission-gas release rates during irradiation and in failure fractions of CFPs after irradiation, than the corresponding design limit values for the first charge fuel of the HTTR. (author)

  11. Between-cycle laser system for depressurization and resealing of modified design nuclear fuel assemblies

    International Nuclear Information System (INIS)

    A laser beam is used to puncture fuel cladding for release of contained pressurized fission gas from plenum sections or irradiated fuel pins. Exhausted fission gases are collected and trapped for safe disposal. The laser beam, adjusted to welding mode, is subsequently used to reseal the puncture holes. The fuel assembly is returned to additional irradiation or, if at end of reactivity lifetime, is routed to reprocess. The fuel assembly design provides graded cladding lengths, by rows or arrays, such that the cladding of each component fuel element of the assembly is accessible to laser beam reception

  12. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  13. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Science.gov (United States)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  14. Changes to Irradiation Conditions of VVER-1000 Surveillance Specimens Resulting from Fuel Assemblies with Greater Fuel Height

    Science.gov (United States)

    Panferov, Pavel; Kochkin, Viacheslav; Erak, Dmitry; Makhotin, Denis; Reshetnikov, Alexandr; Timofeev, Andrey

    2016-02-01

    The goal of the work was to obtain experimental data on the influence of newtype fuel assemblies with higher fuel rods on the irradiation conditions of surveillance specimens installed on the baffe of VVER-1000. For this purpose, two surveillance sets with container assemblies of the same design irradiated in reactors with different fuel assemblies in the core were investigated. Measurements of neutron dosimeters from these sets and retrospective measurements of 54Mn activity accumulated in each irradiated specimen allow a detailed distribution of the fast neutron flux in the containers to be obtained. Neutron calculations have been done using 3D discrete ordinate code KATRIN. On the basis of the obtained results, a change of the lead factor due to newtype fuel assemblies was evaluated for all types of VVER-1000 container assemblies.

  15. Changes to Irradiation Conditions of VVER-1000 Surveillance Specimens Resulting from Fuel Assemblies with Greater Fuel Height

    Directory of Open Access Journals (Sweden)

    Panferov Pavel

    2016-01-01

    Full Text Available The goal of the work was to obtain experimental data on the influence of newtype fuel assemblies with higher fuel rods on the irradiation conditions of surveillance specimens installed on the baffe of VVER-1000. For this purpose, two surveillance sets with container assemblies of the same design irradiated in reactors with different fuel assemblies in the core were investigated. Measurements of neutron dosimeters from these sets and retrospective measurements of 54Mn activity accumulated in each irradiated specimen allow a detailed distribution of the fast neutron flux in the containers to be obtained. Neutron calculations have been done using 3D discrete ordinate code KATRIN. On the basis of the obtained results, a change of the lead factor due to newtype fuel assemblies was evaluated for all types of VVER-1000 container assemblies.

  16. Cap assembly for a bundled tube fuel injector

    Energy Technology Data Exchange (ETDEWEB)

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-04-26

    A cap assembly for a bundled tube fuel injector includes an impingement plate and an aft plate that is disposed downstream from the impingement plate. The aft plate includes a forward side that is axially separated from an aft side. A tube passage extends through the impingement plate and the aft plate. A tube sleeve extends through the impingement plate within the tube passage towards the aft plate. The tube sleeve includes a flange at a forward end and an aft end that is axially separated from the forward end. A retention plate is positioned upstream from the impingement plate. A spring is disposed between the retention plate and the flange. The spring provides a force so as to maintain contact between at least a portion of the aft end of the tube sleeve and the forward side of the aft plate.

  17. Measurement of gamma and neutron radiations inside spent fuel assemblies with passive detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.cz [Nuclear Research Institute Rez plc, 250 68 Husinec-Rez 130 (Czech Republic); Research Centre Rez Ltd. (Czech Republic); Lahodova, Z.; Voljanskij, A.; Klupak, V.; Koleska, M. [Nuclear Research Institute Rez plc, 250 68 Husinec-Rez 130 (Czech Republic); Research Centre Rez Ltd. (Czech Republic); Cabalka, M. [Nuclear Research Institute Rez plc, 250 68 Husinec-Rez 130 (Czech Republic); Turek, K. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic)

    2011-10-01

    During operation of a fission nuclear reactor, many radionuclides are generated in fuel by fission and activation of {sup 235}U, {sup 238}U and other nuclides present in the assembly. After removal of a fuel assembly from the core, these radionuclides are sources of different types of radiation. Gamma and neutron radiation emitted from an assembly can be non-destructively detected with different types of detectors. In this paper, a new method of measurement of radiation from a spent fuel assembly is presented. It is based on usage of passive detectors, such as alanine dosimeters for gamma radiation and track detectors for neutron radiation. Measurements are made on the IRT-2M spent fuel assemblies used in the LVR-15 research reactor. During irradiation of detectors, the fuel assembly is located in a water storage pool at a depth of 6 m. Detectors are inserted into central hole of the assembly, irradiated for a defined time interval, and after the detectors removed from the assembly, gamma dose or neutron fluence are evaluated. Measured profiles of gamma dose rate and neutron fluence rate inside of the spent fuel assembly are presented. This measurement can be used to evaluate relative fuel burn-up.

  18. Measurement of gamma and neutron radiations inside spent fuel assemblies with passive detectors

    Science.gov (United States)

    Viererbl, L.; Lahodová, Z.; Voljanskij, A.; Klupák, V.; Koleška, M.; Cabalka, M.; Turek, K.

    2011-10-01

    During operation of a fission nuclear reactor, many radionuclides are generated in fuel by fission and activation of 235U, 238U and other nuclides present in the assembly. After removal of a fuel assembly from the core, these radionuclides are sources of different types of radiation. Gamma and neutron radiation emitted from an assembly can be non-destructively detected with different types of detectors. In this paper, a new method of measurement of radiation from a spent fuel assembly is presented. It is based on usage of passive detectors, such as alanine dosimeters for gamma radiation and track detectors for neutron radiation. Measurements are made on the IRT-2M spent fuel assemblies used in the LVR-15 research reactor. During irradiation of detectors, the fuel assembly is located in a water storage pool at a depth of 6 m. Detectors are inserted into central hole of the assembly, irradiated for a defined time interval, and after the detectors removed from the assembly, gamma dose or neutron fluence are evaluated. Measured profiles of gamma dose rate and neutron fluence rate inside of the spent fuel assembly are presented. This measurement can be used to evaluate relative fuel burn-up.

  19. A spray cooling technique for spent fuel assembly stored in pool

    International Nuclear Information System (INIS)

    For the safety of spent nuclear fuel assemblies stored in storage pool in the extreme condition where the water is lost completely, a passive spray cooling technique was designed, and its effectiveness has been validated by a functional experiment. The spray cooling characteristics of the spent fuel assembly have also been investigated by the experiment.

  20. A spray cooling technique for spent fuel assembly stored in pool

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dao-Gang; Cao, Q. [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Wang, Y.; Zhong, Hao-Liang; Duan, Xiao-Han

    2016-05-15

    For the safety of spent nuclear fuel assemblies stored in storage pool in the extreme condition where the water is lost completely, a passive spray cooling technique was designed, and its effectiveness has been validated by a functional experiment. The spray cooling characteristics of the spent fuel assembly have also been investigated by the experiment.

  1. Modeling the effect of engine assembly mass on engine friction and vehicle fuel economy

    Science.gov (United States)

    An, Feng; Stodolsky, Frank

    An analytical model is developed to estimate the impact of reducing engine assembly mass (the term engine assembly refers to the moving components of the engine system, including crankshafts, valve train, pistons, and connecting rods) on engine friction and vehicle fuel economy. The relative changes in frictional mean effective pressure and fuel economy are proportional to the relative change in assembly mass. These changes increase rapidly as engine speed increases. Based on the model, a 25% reduction in engine assembly mass results in a 2% fuel economy improvement for a typical mid-size passenger car over the EPA Urban and Highway Driving Cycles.

  2. A comparison between genetic algorithms and neural networks for optimizing fuel recharges in BWR; Una comparacion entre algoritmos geneticos y redes neuronales para optimizar recargas de combustible en BWR's

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz J, J. [Instituto Nacional de Investigaciones Nucleares, Depto. Sistemas Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Requena, I. [Universidad de Granada (Spain)

    2002-07-01

    In this work the results of a genetic algorithm (AG) and a neural recurrent multi state network (RNRME) for optimizing the fuel reload of 5 cycles of the Laguna Verde nuclear power plant (CNLV) are presented. The fuel reload obtained by both methods are compared and it was observed that the RNRME creates better fuel distributions that the AG. Moreover a comparison of the utility for using one or another one techniques is make. (Author)

  3. Buoyancy-driven flow excursions in fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-12-31

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating moderator downward through channels in cylindrical fuel tubes. Powers were limited to prevent a flow excursion from occurring in one or more of these parallel channels. During full-power operation, limits prevented a boiling flow excursion from taking place. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increases beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of historical levels.

  4. Buoyancy-driven flow excursions in fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-09-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations.

  5. Heat Transfer Calculation on Plate-Type Fuel Assembly of High Flux Research Reactor

    Directory of Open Access Journals (Sweden)

    Daxin Gong

    2015-01-01

    Full Text Available Heat transfer characteristics of fuel assemblies for a high flux research reactor with a neutron trap are numerically investigated in this study. Single-phase turbulence flow is calculated by a commercial code, FLUENT, where the computational objective covers standard and control fuel assemblies. The simulation is carried out with an inlet coolant velocity varying from 4.5 m/s to 7.5 m/s in hot assemblies. The results indicate that the cladding temperature is always lower than the saturation temperature in the calculated ranges. The temperature rise in the control fuel assembly is smaller than that of the standard fuel assembly. Additionally, the assembly with a hot spot is specially studied, and the safety of the research reactor is also approved.

  6. Sensitivity and System Response of Pin Power Peaking in VVER-1000 Fuel Assembly Using TSUNAMI-2D

    Science.gov (United States)

    Frybort, J.

    2014-04-01

    Pin power peaking in a VVER-1000 fuel assembly and its sensitivity and uncertainty was analyzed by TSUNAMI-2D code. Several types of fuel assemblies were considered. They differ in number and position of gadolinium fuel pins. The calculations were repeated for several fuel compositions obtained by fuel depletion calculation. The results are quantified sensitivity data, which can be used for enrichment profiling.

  7. ROSA-IV Large Scale Test Facility (LSTF) system description for second simulated fuel assembly

    International Nuclear Information System (INIS)

    The ROSA-IV Program's Large Scale Test Facility (LSTF) is a test facility for integral simulation of thermal-hydraulic response of a pressurized water reactor (PWR) during small break loss-of-coolant accidents (LOCAs) and transients. In this facility, the PWR core nuclear fuel rods are simulated using electric heater rods. The simulated fuel assembly which was installed during the facility construction was replaced with a new one in 1988. The first test with this second simulated fuel assembly was conducted in December 1988. This report describes the facility configuration and characteristics as of this date (December 1988) including the new simulated fuel assembly design and the facility changes which were made during the testing with the first assembly as well as during the renewal of the simulated fuel assembly. (author)

  8. Influence of Spacer Grid Outer Strap on Fuel Assembly Thermal Hydraulic Performance

    Directory of Open Access Journals (Sweden)

    Jingwen Yan

    2014-01-01

    Full Text Available The outer strap as a typical structure of a spacer grid enhances the mechanical strength, decreases hang-up susceptibility, and also influences thermal hydraulic performance, for example, pressure loss, mixing performance, and flow distribution. In the present study, a typical grid spacer with different outer strap designs is adopted to investigate the influence of outer strap design on fuel assembly thermal hydraulic performance by using a commercial computational fluid dynamics (CFD code, ANSYS CFX, and a subchannel analysis code, FLICA. To simulate the outer straps’ influence between fuel assemblies downstream, four quarter-bundles from neighboring fuel assemblies are constructed to form the computational domain. The results show that the outer strap design has a major impact on cross-flow between fuel assemblies and temperature distribution within the fuel assembly.

  9. Neutronic and thermohydraulic characteristics of a new breeding thorium–uranium mixed SCWR fuel assembly

    International Nuclear Information System (INIS)

    Highlights: • A new Th–U mixed fuel assembly for SCWR has been introduced and investigated. • Neutronic and thermohydraulic characteristics of the new assembly have been studied. • The new fuel assembly satisfies design rules of SCWR. • The introduced fuel assembly can fulfill the sustainable breeding Th–U cycle. • The new fuel assembly also has advantages with respect to lower generation of minor actinides and reactor safety. - Abstract: The exploitation of thorium fuel is a promising way to overcome the pressing problems of nuclear fuel supply, nuclear waste and nuclear proliferation. In this paper, a novel conceptual design of a breeding thorium–uranium (Th–U) mixed fuel assembly in SCWR is proposed, which is aimed to achieve the breeding ratio bigger than 1.0, so as to fulfill the sustainable breeding thorium–uranium cycle. Through the calculations of neutronics and neutronic/thermohydraulic (N–T) coupling, the results indicate that the introduced conceptual design of a breeding Th–U mixed fuel assembly in SCWR satisfies design rules of SCWR, with considerable advantages with respect to breeding performance, lower minor actinide generation and reactor safety

  10. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    International Nuclear Information System (INIS)

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction

  11. Updating of the costs of the nuclear fuels of the equilibrium reloading of the A BWR and EPR reactors; Actualizacion de los costos de combustible nuclear de la recarga de equilibrio de los reactores ABWR y EPR

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, R.F. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: rortega@fi-b.unam.mx

    2008-07-01

    In the last two and a half years, the price of the uranium in the market spot has ascended of US$20.00 dollars by lb U{sub 3O}8 in January, 2005 to a maximum of US$137.00 dollars by Ib U{sub 3}O{sub 8} by the middle of 2007. At the moment this price has been stabilized in US$90.00 dollars by Ib U{sub 3}O{sub 8} such for the market spot, like for the long term contracts. In this work the reasons of this increment are analyzed, as well as their impact in the fuel prices of the balance recharge of the advanced reactors of boiling water (A BWR) and of the advanced water at pressure reactors (EPR). (Author)

  12. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  13. Recent developments in BWR water chemistry

    International Nuclear Information System (INIS)

    Water chemistry is of critical importance to the operation and economic viability of the Boiling Water Reactor (BWR). A successful water chemistry program will satisfy the following goals: - Minimize the incidence and growth of SCC/IASCC, - Minimize plant radiation fields controllable by chemistry, -Maintain fuel integrity by minimizing cladding corrosion, - Minimize flow-accelerated corrosion (FAC) in balance-of-plant components. The impact of water chemistry on each of these goals is discussed in more detail in this paper. It should be noted that water chemistry programs also include surveillance and operating limits for other plant water systems (e.g., service water, closed cooling water systems, etc.) but these are out of the scope of this paper. This paper reviews developments in water chemistry guidelines for U.S. BWR nuclear power plants. (author). 2 figs., 2 tabs., 7 refs

  14. Trends in BWR transient analysis

    International Nuclear Information System (INIS)

    While boiling water reactor (BWR) analysis methods for transient and loss of coolant accident analysis are well established, refinements and improvements continue to be made. This evolution of BWR analysis methods is driven by the new applications. This paper discusses some examples of these trends, specifically, time domain stability analysis and analysis of the simplified BWR (SBWR), General Electric's design approach involving a shift from active to passive safety systems and the elimination/simplification of systems for improved operation and maintenance

  15. Estimation of the nuclear fuel assembly eigenfrequencies in the probability sense

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2014-12-01

    Full Text Available The paper deals with upper and lower limits estimation of the nuclear fuel assembly eigenfrequencies, whose design and operation parameters are random variables. Each parameter is defined by its mean value and standard deviation or by a range of values. The gradient and three sigma criterion approach is applied to the calculation of the upper and lower limits of fuel assembly eigenfrequencies in the probability sense. Presented analytical approach used for the calculation of eigenfrequencies sensitivity is based on the modal synthesis method and the fuel assembly decomposition into six identical revolved fuel rod segments, centre tube and load-bearing skeleton linked by spacer grids. The method is applied for the Russian TVSA-T fuel assembly in the WWER1000/320 type reactor core in the Czech nuclear power plant Temelín.

  16. Operation method for BWR type reactor

    International Nuclear Information System (INIS)

    In a BWR type reactor, the number of fuels at low enrichment, among initially loaded fuels, is increased greater than that of fuels to be exchanged, and the number of fuels at low enrichment remained in a reactor core after fuel exchange is decreased to smaller than that of entire control rods. Further, the fuels at low enrichment are disposed to the inner side except for the outermost circumference in the reactor core after fuel exchange. Since fuels of high reactivity are disposed at the outermost circumference in a second cycle, leakage of neutrons is increased and effective breeding factor is decreased. However, since the number of brought over fuels at low enrichment is decreased and the number of fuels at high enrichment is increased, effective average reactor core enrichment degree is increased, to compensate the lowering thereof due to the increase of neutron leakage. Since dispersion effect for the distribution of the enrichment degree can be utilized as much as possible by greatly reducing the number and the enrichment degree of fuels at low enrichment for initially loaded fuels, irrespective of the average enrichment degree and the fueling pattern in a first cycle, a burnup degree upon take-out of initially loaded fuels at ow enrichment degree can be increased to maximum. (N.H.)

  17. Effects of the chemical decontamination on the component parts of the ATR fuel assembly

    International Nuclear Information System (INIS)

    The chemical decontamination technique has been developed in order to remove the crud adhering to the surface of the components constructing the primary coolant system, as a part of the measure to decrease the exposure in the annual inspection. The technique has been already applied to the prototype reactor 'Fugen', in the core of which the fuel assemblies were not loaded. The chemical decontamination, for the core in which the fuel assemblies are loaded, has been planned for the purpose of improving the utilization factor. It is necessary to confirm, through the test before putting the plan into practice, that the decontamination reagent does not exert a bad influence upon the components constructing the fuel assembly. This report describes the test results which have been carried out so as to investigate the influence of the reagent on the components constructing the fuel assembly. The outline of the results is as follows: (1) The susceptibility to stress corrosion cracking of the chemical decontamination treatment and the residual decontamination reagent on the components constructing the fuel assembly is low enough. (2) The chemical decontamination treatment and the residual decontamination reagent do not exert a bad influence upon the integrity of the fuel assembly concerning the fuel rod holding function of the spacer and the characteristics of the fretting wear caused on the fuel claddings. (author)

  18. Preliminary Design of U-Mo Alloy Dispersion Fuel Assembly

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>As a kind of new type fuel for research reactor, high density U-Mo alloy dispersion fuel which will substitute current fuel in the future is being studied and developed by RERTR. There are two characteristics

  19. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin T [ORNL; Hamilton, Steven P [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Pugmire, Dave [ORNL; Dilts, Gary [Los Alamos National Laboratory (LANL); Banfield, James E [ORNL

    2012-02-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  20. Differential Die-Away Instrument: Report on Fuel Assembly Mock-up Measurements with Neutron Generator

    Energy Technology Data Exchange (ETDEWEB)

    Goodsell, Alison Victoria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rael, Carlos D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Desimone, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-18

    Fresh fuel experiments for the differential die-away (DDA) project were performed using a DT neutron generator, a 15x15 PWR fuel assembly, and nine 3He detectors in a water tank inside of a shielded cell at Los Alamos National Laboratory (LANL). Eight different fuel enrichments were created using low enriched (LEU) and depleted uranium (DU) dioxide fuel rods. A list-mode data acquisition system recorded the time-dependent signal and analysis of the DDA signal die-away time was performed. The die-away time depended on the amount of fissile material in the fuel assembly and the position of the detector. These experiments were performed in support of the spent nuclear fuel Next Generation Safeguards Initiative DDA project. Lessons learned from the fresh fuel DDA instrument experiments and simulations will provide useful information to the spent fuel project.

  1. Structural integrity assessment and stress measurement of CHASNUPP-1 fuel assembly

    OpenAIRE

    Waseem; Murtaza Ghulam; Siddiqui Ashfaq Ahmad; Akhtar Syed Waseem

    2016-01-01

    Fuel assembly of the PWR nuclear power plant is a long and flexible structure. This study has been made in an attempt to find the structural integrity of the fuel assembly (FA) of Chashma Nuclear Power Plant-1 (CHASNUPP-1) at room temperature in air. The non-linear contact and structural tensile analysis have been performed using ANSYS 13.0, in order to determine the fuel assembly (FA) elongation behaviour as well as the location and values of the stress intensity and stresses developed in ax...

  2. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    International Nuclear Information System (INIS)

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds

  3. VVER-1000/V320 decay heat analysis, involving TVS-M and TVS-A fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, P.V.; Hristov, D.V. [Kozloduy NPP, Vratsa (Bulgaria)

    2007-07-01

    MELCOR-1.8.4 is an integrated computer code, developed for severe accident calculations. It is used primarily for simulation of PWR and BWR types of reactors since the code includes an internal database, suitable for modeling of their cores inventory. Despite similarity between VVER-1000/V320 and PWR, there is still required accounting of specificities of Russian reactor design. MELCOR distinguishes 15 classes, each of them containing chemical elements with similar properties, 12 are involved in radioactive product decay. Part of it appears in the simulation of core decay heat rate after shutdown. In this paper the authors present two reactor core loadings corresponding to fuel assemblies: TVS-M and TVS-A. They have calculated decay heat after reactor shutdown from 100% and 104% of nominal power by SCALE 4.4a package. They also have estimated the amount of generated nuclides. The Newly developed Core Inventory Estimation Tool (CIET), described in this paper, written and tested previously, has been used for the evaluation of core decay heat fractions, distributed over chemical classes. Twelve curves were generated, following the same numerical procedure, implemented in MELCOR for representation of decay heat in W/kg. Comparison of curves shows deviations from the expectations. The total amount of radionuclides, separated in chemical classes, given in MELCOR Computer Code User's was compared to the ones involved in default MELCOR decay heat calculation. The results have confirmed that neglected chemical elements give 0.9% and 1.1% of total core mass for TVS-M and TVS-A and correspondingly 0.5% and 0.6% of total core decay heat.

  4. Structural integrity assessment and stress measurement of CHASNUPP-1 fuel assembly

    Directory of Open Access Journals (Sweden)

    Waseem

    2016-01-01

    Full Text Available Fuel assembly of the PWR nuclear power plant is a long and flexible structure. This study has been made in an attempt to find the structural integrity of the fuel assembly (FA of Chashma Nuclear Power Plant-1 (CHASNUPP-1 at room temperature in air. The non-linear contact and structural tensile analysis have been performed using ANSYS 13.0, in order to determine the fuel assembly (FA elongation behaviour as well as the location and values of the stress intensity and stresses developed in axial direction under applied tensile load of 9800 N or 2 g being the fuel assembly handling or lifting load [Y. Zhang et al., Fuel assembly design report, SNERDI, China, 1994]. The finite element (FE model comprises spacer grids, fuel rods, flexible contacts between the fuel rods and grid's supports system and guide thimbles with dash-pots and flow holes, in addition to the spot welds between spacer grids and guide thimbles, has been developed using Shell181, Conta174 and Targe170 elements. FA is a non-straight structure. The actual behavior of the geometry is non-linear due to its curvature or design tolerance. It has been observed that fuel assembly elongation values obtained through FE analysis and experiment [SNERDI Tech. Doc., Mechanical strength and calculation for fuel assembly, Technical Report, F3.2.1, China, 1994] under applied tensile load are comparable and show approximately linear behaviors. Therefore, it seems that the permanent elongation of fuel assembly may not occur at the specified load. Moreover, the values of stresses obtained at different locations of the fuel assembly are also comparable with the stress values of the experiment determined at the same locations through strain gauges. Since the results of both studies (analytical and experimental are comparable, therefore, validation of the FE methodology is confirmed. The stress intensity of the FE model and maximum stresses developed along the guide thimbles in axial direction are

  5. Single PWR spent fuel assembly heat transfer data for computer code evaluations

    International Nuclear Information System (INIS)

    The descriptions and results of two separate heat transfer tests designed to investigate the dry storage of commercial PWR spent fuel assemblies are presented. Presented first are descriptions and selected results from the Fuel Temperature Test performed at the Engine Maintenance and Disassembly facility on the Nevada Test Site. An actual spent fuel assembly from the Turkey Point Unit Number 3 Reactor with a decay heat level of 1.17 KW, was installed vertically in a test stand mounted canister/liner assembly. The boundary temperatures were controlled and the canister backfill gases were alternated between air, helium and vacuum to investigate the primary heat transfer mechanisms of convection, conduction and radiation. The assembly temperature profiles were experimentally measured using installed thermocouple instrumentation. Also presented are the results from the Single Assembly Heat Transfer Test designed and fabricated by Allied General Nuclear Services, under contract to the Department of Energy, and ultimately conducted by the Pacific Northwest Laboratory. For this test, an electrically heated 15 x 15 rod assembly was used to model a single PWR spent fuel assembly. The electrically heated model fuel assembly permitted various ''decay heat'', levels to be tested; 1.0 KW and 0.5 KW were used for these tests. The model fuel assembly was positioned within a prototypic fuel tube and in turn placed within a double-walled sealed cask. The complete test assembly could be positioned at any desired orientation (horizontal, vertical, and 250 from horizontal for the present work) and backfilled as desired (air, helium, or vacuum). Tests were run for all combinations of ''decay heat,'' backfill, and orientation. Boundary conditions were imposed by temperature controlled guard heaters installed on the cask exterior surface

  6. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    International Nuclear Information System (INIS)

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent fuel casks used for transportation and storage. Recently, analyses have demonstrated the technical feasibility and estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This report summarizes the extension of the previous PWR technical feasibility assessment to boiling water reactor (BWR) fuel. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. Two different aspects of fuel characterization were considered:l first, the generation of burn- up dependent material interaction probabilities; second, the prediction of material inventories over time (depletion). After characterizing the spent fuel at various stages of exposure and decay, three dimensional (3-D) models for an infinite array of assemblies and, in several cases, infinite arrays of assemblies in a typical shipping cask basket were analyzed. Results for assemblies without a basket provide reactivity control requirements as a function of burnup and decay, while results including the basket allow assessment of typical basket configurations to provide sufficient reactivity control for spent BWR fuel. Resulting basket worths and reactivity trends over time are then evaluated to determine whether burnup credit is needed and feasible in BWR applications

  7. Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine

    Science.gov (United States)

    Wiebe, David J; Fox, Timothy A

    2015-03-31

    A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passage is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.

  8. Commercial MOX fuel production - the challenge

    International Nuclear Information System (INIS)

    The paper outlines the design of the Sellafield MOX Plant (SMP). This plant is being designed and constructed by BNFL as a highly automated MOX fabrication facility with capability to manufacture PWR and BWR fuel assemblies. Additionally, it will be possible to make pellets for other reactor types (e.g. Fast Reactor and AGR). The design philosophies incorporated to achieve the stringent safety standards for modern nuclear plant design are identified. (author)

  9. The underwater coincidence counter for plutonium measurements in mixed-oxide fuel assemblies manual

    Energy Technology Data Exchange (ETDEWEB)

    G. W. Eccleston; H. O. Menlove; M. Abhold; M. Baker; J. Pecos

    1999-05-01

    This manual describes the Underwater Coincidence Counter (UWCC) that has been designed for the measurement of plutonium in mixed-oxide (MOX) fuel assemblies prior to irradiation. The UWCC uses high-efficiency {sup 3}He neutron detectors to measure the spontaneous-fission and induced-fission rates in the fuel assembly. Measurements can be made on MOX fuel assemblies in air or underwater. The neutron counting rate is analyzed for singles, doubles, and triples time correlations to determine the {sup 240}Pu effective mass per unit length of the fuel assembly. The system can verify the plutonium loading per unit length to a precision of less than 1% in a measurement time of 2 to 3 minutes. System design, components, performance tests, and operational characteristics are described in this manual.

  10. Feasibility study of boiling water reactor core based on thorium-uranium fuel concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col Narvarte, 03020 Mexico D.F. (Mexico); Francois Lacouture, Juan Luis; Martin del Campo, Cecilia [Universidad Nacional Autonoma de Mexico, Facultad de Ingenieria, Paseo Cuauhnahuac 8532, Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, Mexico D.F. 09340 (Mexico)], E-mail: gepe@xanum.uam.mx

    2008-01-15

    The design of a boiling water reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to {sup 233}U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main core operating parameters were obtained. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The economic analysis shows that the fuel cycle cost of the proposed core design can be competitive with a standard uranium core design. Finally, a comparison of the toxicity of the spent fuel showed that the toxicity is lower in the thorium cycle than in other fuel cycles (UO{sub 2} and MOX uranium and plutonium) in the case of the once through cycle for light water reactors (LWR)

  11. Nondestructive verification with minimal movement of irradiated light-water-reactor fuel assemblies

    International Nuclear Information System (INIS)

    Nondestructive verification of irradiated light-water reactor fuel assemblies can be performed rapidly and precisely by measuring their gross gamma-ray and neutron signatures. A portable system measured fuel assemblies with exposures ranging from 18.4 to 40.6 GWd/tU and with cooling times ranging from 1575 to 2638 days. Differences in the measured results for side or corner measurements are discussed. 25 figures, 20 tables

  12. Positioning of Nuclear Fuel Assemblies by Means of Image Analysis on Tomographic Data

    OpenAIRE

    Troeng, Mats

    2004-01-01

    A tomographic measurement technique for nuclear fuel assemblies has been developed at the Department of Radiation Sciences at Uppsala University [1]. The technique requires highly accurate information about the position of the measured nuclear fuel assembly relative to the measurement equipment. In experimental campaigns performed earlier, separate positioning measurements have therefore been performed in connection to the tomographic measurements. In this work, another positioning approach h...

  13. A CAREM fuel assembly prototype construction in order to verify its mechanical design using hydrodynamic testing

    International Nuclear Information System (INIS)

    The scope of this paper is to describe the activities of several Groups from three Atomic Centers (C. A. Bariloche, C. A. Ezeiza and C. A. Constituyentes), involved in the manufacturing of a CAREM fuel assembly prototype. The Design Group (UAIN-CAB) carried out the fuel assembly engineering. Cladding components were constructed by the Special Alloys Pilot Factory (UAMCN-CAE). Engineering Group (UACN-CAC) manufactured the parts to be processed, resorting to qualified suppliers. Elastic spacers were completely designed and constructed by this Group, and fuel rods, control rods, guide tubes and spacers were also welded here. Research Reactors Fuels Group (UACN-CAC) carried out the dimensional control of the elaborated parts, while Postirradiation Testing Group (UACN-CAC) performed the assembling of the fuel element. This paper also refers to the design and development of special equipment and devices, all of them required for the prototype construction. (author)

  14. Application of PLUTO Test Facility for U. S. NRC Licensing of a Fuel Assembly

    International Nuclear Information System (INIS)

    The fuel assembly of the PLUS-7 loaded in the APR-1400 follows the same schedule. Meanwhile, In July 1998, the U.S. NRC adopted a research plan to address the effects of high burnup from a Loss of Coolant Accident (LOCA). From these programs, several important technical findings for rule revision were obtained. Based on the technical findings, the U. S. NRC has amended the 10 CFR 50.46 which will be proclaimed sooner or later. Through the amendment, a LOCA analysis on the fuel assembly has to show the safety at both a fresh and End of Life (EOL) state. The U. S. NRC has already required EOL effects on seismic/LOCA performance for a fuel assembly since 1998. To obtain U.S NRC licensing of a fuel assembly, based on the amendment of 10CFR50.46, a LOCA analysis of the fuel assembly has to show safety both fresh and EOL states. The proper damping factor of the fuel assembly measured at the hydraulic test loop for a dynamic model in a LOCA and a seismic analysis code are at least required. In this paper, we have examined the damping technologies and compared the test facility of PLUTO with others in terms of performance. PLUTO has a better performance on the operating conditions than any others

  15. Application of PLUTO Test Facility for U. S. NRC Licensing of a Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dongseok; Shin, Changhwan; Lee, Kanghee; Kang, Heungseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The fuel assembly of the PLUS-7 loaded in the APR-1400 follows the same schedule. Meanwhile, In July 1998, the U.S. NRC adopted a research plan to address the effects of high burnup from a Loss of Coolant Accident (LOCA). From these programs, several important technical findings for rule revision were obtained. Based on the technical findings, the U. S. NRC has amended the 10 CFR 50.46 which will be proclaimed sooner or later. Through the amendment, a LOCA analysis on the fuel assembly has to show the safety at both a fresh and End of Life (EOL) state. The U. S. NRC has already required EOL effects on seismic/LOCA performance for a fuel assembly since 1998. To obtain U.S NRC licensing of a fuel assembly, based on the amendment of 10CFR50.46, a LOCA analysis of the fuel assembly has to show safety both fresh and EOL states. The proper damping factor of the fuel assembly measured at the hydraulic test loop for a dynamic model in a LOCA and a seismic analysis code are at least required. In this paper, we have examined the damping technologies and compared the test facility of PLUTO with others in terms of performance. PLUTO has a better performance on the operating conditions than any others.

  16. Development of mechanical test techniques on the irradiated grid elements in PWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang Bok; Kim, Do Sik; Baik, Seung Jai; Choo, Yong Sun; Baek, Sang Youl; Ryu, Woo Seok [Korea Atomic Energy Research Institute, Daejon (Korea, Republic of); Ha, Dong Keun; Seo, Jeong Min [Korea Nuclear Fuel Company, Daejon (Korea, Republic of)

    2008-11-15

    The mechanical properties of the parts of a nuclear fuel assembly are degraded during the operation of the reactor, through the mechanism of irradiation damage. The properties changes of the parts of the fuel assembly should be quantitatively estimated to ensure the safety of the fuel assembly and rod during the operation. The test techniques developed in this paper are used to produce the irradiation data of the grid 1x1 cell, the inner/outer strip of the grid and the welded part. The specimens were irradiated in the CT test hole of HANARO of a 30MW thermal output at 300.deg.C. From the spring tests of mid grid 1x1 cell and grid plate, the irradiation effects can be examined. The irradiation effects on the irradiation growth also were occurred. The buckling load of mid grid 1x1 cell does not change with a neutron irradiation. From the tensile tests, the strengths increased but the elongations decreased due to an irradiation. From the tensile tests, the strengths increased but the elongations decreased due to an irradiation. the tensile test and microstructure examination of the spot and fillet welded parts are performed for the evaluation of an irradiation effects. Through these tests of components, the essential data on the fuel assembly design could be obtained. These results will be used to update the irradiation behavior databases, to improve the performance of fuel assembly, and to predict the service life of the fuel assembly in a reactor.

  17. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly.

    Science.gov (United States)

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-04-21

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

  18. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly

    Directory of Open Access Journals (Sweden)

    Ben De Pauw

    2016-04-01

    Full Text Available Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

  19. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly.

    Science.gov (United States)

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-01-01

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation. PMID:27110782

  20. AllianceTM, the fuel assembly on the threshold of the third millennium

    International Nuclear Information System (INIS)

    Nuclear energy competitiveness has become a major challenge of the end of this century. In order to respond, Framatome has developed a new nuclear fuel assembly for an enhanced utilisation of existing PWRs, and also for the future European Pressurized Reactor (EPR). This development is the result of a joint Framatome and Framatome Cogema Fuels (FCF) strategy to propose today a fuel product meeting their customer's future needs. ALLIANCE is a fuel assembly designed for assembly burnup of at least 70 GWd/t. This allows the utilities to consider modes of operation of their reactors which were not technically accessible until now. ALLIANCE is based on an in depth analysis of the market needs of Framatome and Fragema, and also of FCF. ALLIANCE benefits from Framatome long term commitment in a large R and D program, which has provided significant outcomes such as new alloys, new components and new fuel assembly concepts. This R and D program allows direct access to all the CEA expertise and facilities. As a result, ALLIANCE is a fuel assembly with unmatched and totally demonstrated performance. ALLIANCE takes also advantage of the extended operational experience available through all the reactors supplied with Framatome fuel: number of irradiated assemblies reactor types operational conditions - sometimes very demanding. Framatome major customers have been directly involved in the development of this assembly. All the available operational feedback has been taken into account at the early stages of the ALLIANCE design. The main features of the ALLIANCE assembly are: cladding tubes and an assembly structure in M5 alloy, a mono-metallic mixing grid with enhanced thermo-hydraulic performance, the possibility to add mid span mixing grids, the Monobloc guide tube, the Trapper bottom nozzle and a new structure designed for assembly burnups of at least 70 GW d/t. The first ALLIANCE assemblies will be loaded in 1999 in an EdF reactor. In 2000, ALLIANCE assemblies will be loaded

  1. Irradiation experiments of the 6th-12th OGL-1 fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kimio; Minato, Kazuo; Kobayashi, Fumiaki; Kikuchi, Hironobu; Fukuda, Kousaku; Kikuchi, Teruo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saruta, Tohru; Kitajima, Toshio

    1994-10-01

    The Oarai Gas Loop-1, OGL-1, is an in-pile helium gas loop, installed in the Japan Materials Testing Reactor (JMTR), for irradiation of high-temperature gas-cooled reactor fuels at high pressure and temperature. The present report describes results of fabrication, irradiation and post-irradiation examinations (PIE) of the 6th-12th OGL-1 fuel assemblies. The 6th-8th assemblies used coated fuel particles produced by a small-scale fluidized bed. On the other hand, the 9th-12th assemblies used trial manufacturing fuels, produced with a large-scale fluidized bed for mass production of the fuel for the High Temperature Engineering Test Reactor (HTTR) being constructed. For the 9th assembly loaded with the first mass-product fuel, the fission gas release, R/B of {sup 88}Kr, was relatively high, 1.5x10{sup -5}, and various defects were observed in the ceramography of the irradiated coating layers. Afterwards, a decrease was achieved in the through-coating failure fractions at the fabrication. Correspondingly, the R/B of {sup 88}Kr for the 12th assembly was reduced to an excellent value of 2x10{sup -6}. Thus, the production technology and the irradiation performance of the HTTR design fuels were successfully demonstrated. (author).

  2. Irradiation experiments of the 6th-12th OGL-1 fuel assemblies

    International Nuclear Information System (INIS)

    The Oarai Gas Loop-1, OGL-1, is an in-pile helium gas loop, installed in the Japan Materials Testing Reactor (JMTR), for irradiation of high-temperature gas-cooled reactor fuels at high pressure and temperature. The present report describes results of fabrication, irradiation and post-irradiation examinations (PIE) of the 6th-12th OGL-1 fuel assemblies. The 6th-8th assemblies used coated fuel particles produced by a small-scale fluidized bed. On the other hand, the 9th-12th assemblies used trial manufacturing fuels, produced with a large-scale fluidized bed for mass production of the fuel for the High Temperature Engineering Test Reactor (HTTR) being constructed. For the 9th assembly loaded with the first mass-product fuel, the fission gas release, R/B of 88Kr, was relatively high, 1.5x10-5, and various defects were observed in the ceramography of the irradiated coating layers. Afterwards, a decrease was achieved in the through-coating failure fractions at the fabrication. Correspondingly, the R/B of 88Kr for the 12th assembly was reduced to an excellent value of 2x10-6. Thus, the production technology and the irradiation performance of the HTTR design fuels were successfully demonstrated. (author)

  3. Passive neutron assay of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Passive neutron assay of irradiated nuclear fuel has been investigated by calculations and experiments as a simple, complementary technique to the gamma assay. From the calculations it is found that the neutron emission arises mainly from the curium isotopes, the neutrons exhibit very good penetrability of the assemblies, and the neutron multiplication is not affected by the burnup. From the experiments on BWR and PWR assemblies, it is found that the neutron emission rate is proportional to burnup raised to 3.4 power. Recent investigations indicate that the passive neutron assay is a simple and useful technique to determine the consistency of burnups between assemblies. 10 refs

  4. Passive neutron assay of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Passive neutron assay of irradiated nuclear fuel has been investigated by calculations and experiments as a simple, complementary technique to the gamma assay. From the calculations it was found that the neutron emission arises mainly from the curium isotopes, the neutrons exhibit very good penetrability of the assemblies, and the neutron multiplication is not affected by the burnup. From the experiments on BWR and PWR assemblies, the neutron emission rate is proportional to burnup raised to 3.4 power. The investigations indicate that the passive neutron assay is a simple and useful technique to determine the consistency of burnups between assemblies

  5. Simplified distributed parameters BWR dynamic model for transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico, DF 09340 (Mexico)]. E-mail: gepe@xanum.uam.mx; Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragan 779, Col. Narvarte, Mexico, DF 03020 (Mexico); Vazquez-Rodriguez, Alejandro [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico, DF 09340 (Mexico)

    2006-09-15

    This paper describes a simplified model to perform transient and linear stability analysis for a typical boiling water reactor (BWR). The simplified transient model was based in lumped and distributed parameters approximations, which includes vessel dome and the downcomer, recirculation loops, neutron process, fuel pin temperature distribution, lower and upper plenums reactor core and pressure and level controls. The stability was determined by studying the linearized versions of the equations representing the BWR system in the frequency domain. Numerical examples are used to illustrate the wide application of the simplified BWR model. We concluded that this simplified model describes properly the dynamic of a BWR and can be used for safety analysis or as a first approach in the design of an advanced BWR.

  6. Semi-automated proper orthogonal decomposition reduced order model non-linear analysis for future BWR stability

    International Nuclear Information System (INIS)

    variants when applying the ROMing to different fields of physics. Persecuting validation and verification, a wide and systematic spectrum of representative test examples has been treated. The desired goal of describing the non-linear stability behavior of the two-phase flow within a fuel assembly of a BWR will be achieved by the investigation of the time domain analysis of BWR instability (TOBI) model. This paper focuses on model-specific options and aspects of the POD-ROM methodology which are afterwards illustrated by means of a strongly non-linear dynamical system showing complex oscillating behavior

  7. Advances in the development and validation of CFD-BWR, a two-phase computational fluid dynamics model for the simulation of flow and heat transfer in boiling water reactors

    International Nuclear Information System (INIS)

    This paper presents recent advances in the validation of an advanced Computational Fluid Dynamics (CFD) computer code (CFD-BWR) that allows the detailed analysis of two-phase flow and heat transfer phenomena in Boiling Water Reactor (BWR) fuel bundles. The CFD-BWR code is being developed as a customized module built on the foundation of the commercial CFD-code STAR-CD which provides general two-phase flow modeling capabilities. We have described the model development strategy that has been adopted by the development team for the prediction of boiling flow regimes in a BWR fuel bundle. This strategy includes the use of local flow topology maps and flow topology specific phenomenological models. The paper reviews the key boiling phenomenological models and focuses on recent results of experiment analyses for the validation of two-phase BWR phenomena models including cladding-to-coolant heat transfer and Critical Heat Flux experiments and the BWR Full-size Assembly Boiling Test (BFBT). The two-phase flow models implemented in the CFD-BWR code can be grouped into three broad categories: models describing the vapor generation at the heated cladding surface, models describing the interactions between the vapor and the liquid coolant, and models describing the heat transfer between the fuel pin and the two-phase coolant. These models have been described and will be briefly reviewed. The boiling model used in the second generation of the CFD-BWR code includes a local flow topology map which allows the cell-by-cell selection of the local flow topology. Local flow topologies can range from a bubbly flow topology where the continuous phase is liquid, to a transition flow topology, to a droplet flow topology where the continuous phase is vapor, depending primarily on the local void fraction. The models describing the cladding-to-coolant heat transfer and the interplay between these models and the local flow topology are important in Critical Heat Flux (CHF) analyses, and will

  8. Physics Design of Criticality Assembly in Experimental Research About Criticality Safety in Spent Fuel Dissolver

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Qi

    2012-01-01

    <正>In order to meet the experimental demand of criticality safety research in the spent fuel dissolver, we need to design a suitable criticality assembly. The key problem of the design work is the core design because there are many limits for it such as the number of fuel rods loaded, fissile materials existed in the solution, reactivity control, core size and etc.

  9. SICOM, An equipment for very accurate dimensional and corrosion inspection of irradiated fuel assemblies

    International Nuclear Information System (INIS)

    Nuclear fuel undergo evolution in its properties and characteristics as result of the operation in the nuclear reactors. Knowledge of this evolution is necessary to guaranty the behaviour and safety in the operation, as well as to optimize the economic performance of the fuel cycle. When, with the objective of improving the performance of fuel, some important modifications are made, it is necessary to prove the effect on the behaviour and evaluate the influence in each of the critical characteristics of the fuel assemblies. In this cases, it could be necessary to burn a reduced number of fuel assemblies of the new design (demonstration assemblies). During the demonstration process, some characterization of the behaviour of the fuel is made, usually at the end of each cycle. An important part of this characterization is made using NDE methods, applied at the nuclear plant during the refuelling outages. Within the Electrotechnical Research and Development Program (PIE), and with participation by IBERDROLA, TECNATOM and ENUSA, an inspection system (SICOM) has been developed for spent fuel assemblies from pressurized water plants, the aim being to check the following features: general condition, apply dimensional controls and measure the oxide layer on the peripheral fuel rods. This equipment was qualified at Tecnatom and Almaraz I NPP during the first quarter of 1995. Subsequently, in September, it was validated for the EDF P'4 plants at C.N.P.E. Belleville

  10. Analysis of Spent Fuel Assembly Thermal Behaviors in Boil-off Accident Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Min; Chun, Tae-Hyun; Kim, Sun-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The spent fuel pool (SFP) accidents would occur due to many different postulated scenarios, for example a SBO (Station Black Out) at SFP storage or an attack from external factor. In this study, we focused on the SFP boil off accident and analyzed the thermal behaviors of spent fuels following this accident, using MELCOR 1.8.6. version. MELCOR, originally the severe accident code, has been developed to also be appropriate to the SFP accident. This paper provides the spent fuel heatup characteristics in terms of decay heat, water level and fuel arrangement. The SFP model is based on 17x17 PWR assembly designed by Westinghouse. Spent fuel coolability has been analyzed with single and 1x4 assembly MELCOR models in the case of boil-off accident. It was shown that the low powered spent fuel assembly could be more vulnerable in the partial loss of coolant inventory because of lack of steam cooling and more fuel being uncovered. In addition, it was found that minimum water level has to be maintained above half of assembly height so as not to experience fuel failure, which depends on decay heat power.

  11. End-of-irradiation data report for the instrumented fuel assembly (IFA)-527

    International Nuclear Information System (INIS)

    This report presents data obtained during the irradiation of the six-rod instrumented fuel assembly (IFA)-527 in the Halden Boiling Water Reactor (HBWR), Halden, Norway. This assembly is the last in a series of US Nuclear Regulatory Commission (NRC)-sponsored tests to obtain data for the development and verification of steady-state fuel performance computer codes. IFA-527 contains five identical rods with high-density stable fuel pellets and 230-μm diametral gaps and one rod with similar fuel pellets but with a 60-μm diametral gap. All six rods were xenon-filled to simulate the effects of fission gas and to enhance the observable effects of fuel cracking and relocation on fuel temperatures. This report presents both pre- and postfailure data for IFA-527

  12. Determination of the Effectiveness of Control Rods in the VVER Reactor Fuel Assemblies

    International Nuclear Information System (INIS)

    The paper describes experiments done in homogeneous mock-ups of the fuel assemblies from the VVER Reactor (at one level of enrichment) to determine the effectiveness of absorbing systems comprising shim fuel assemblies or water cavities and of absorbing rods clad in jackets made of differing materials. The paper also gives data on some experiments that have been done in mock-ups of assemblies with differing levels of enrichment. These experiments make it possible to verify the methods used in calculation and to evaluate the prospects of using them for heterogeneous reactors. (author)

  13. Verification of 235U enrichment of fresh VVER-440 fuel assemblies.

    Science.gov (United States)

    Almási, I; Nguyen, C T; Zsigrai, J; Lakosi, L; Hlavathy, Z; Nagy, P; Buglyó, N

    2012-10-01

    Enrichment of uniformly and non-uniformly enriched ("profiled") fuel assemblies in a range of 1.6-4.4% was verified by gamma-ray spectrometry at a nuclear power plant (NPP). HPGe detectors and a CdZnTe (CZT) detector, the latter fitting into the central tube of the assemblies, were used for obtaining information from outer and inner fuel rods. A procedure which has minimal impact on the NPP work was developed for verifying freshly arrived assemblies under normal operational conditions, and is now in routine use.

  14. Welding device for nuclear fuel assembly structure elements

    International Nuclear Information System (INIS)

    The device has two parallel assembling positions next to each other. The welding robot is carried by a carriage with displacement parallel to the guide tubes and has enough degrees of freedom to move from one assembling position to the other and have access to the structural elements

  15. Fuel assembly mechanical behavior with respect to center guide tube welding points

    International Nuclear Information System (INIS)

    A fuel assembly with modified welding procedure between the center guide tube and sleeves on grid structures is proposed in the work, and some mechanical behavior of the fuel assembly is presented. While all sleeves on grid assemblies are welded to center guide tube in the present design, the modified fuel assembly with reduced welding is proposed. To evaluate mechanical performance of the design, lateral bending deflection test and lateral vibration test were performed in a test facility. Applying a lateral static load at 6-th grid, the fuel assembly deflection at each grid was measured in the lateral static test. In the vibration test, displacement signal at every grid is measured while the fuel assembly is excited by a dynamic shaker at the 6-th grid. Processing the measured signals, modal properties such as natural frequency, damping, and mode shapes can be found based on frequency response functions. The test results, comparing to a previous design with all girds welding to the center guide tube, do not show any notable deviation in the structural behaviors

  16. Transport of fresh MOX fuel assemblies for the MONJU initial core

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Y.; Ouchi, Y.; Kurakami, J. [Power Reactor and Nuclear Fuel Development Corp., Tokai Works, Naka, Ibaraki (Japan); Usami, M. [Power Reactor and Nuclear Fuel Development Corp., Head Office Sankaido Building, Minato, Tokyo (Japan)

    1997-12-31

    Transport of fresh MOX fuel assemblies for the prototype FBR MONJU initial core started in July 1992 and ended in March 1994. As many as 205 fresh MOX fuel assemblies (109 assemblies for an inner core, 91 assemblies for an outer core and 5 assemblies for testing) were transported in nine transport missions. The packaging for fuel assemblies, which has shielding and shock absorbing material inside, meets IAEA regulatory requirements for Type B(U) packaging including hypothetical accident conditions such as the 9 m drop test, fire test, etc. Moreover, this packaging design features such advanced technologies as high performance neutron shielding material and an automatic hold-down mechanism for the fuel assemblies. Every effort was made to carry out safe transport in conjunction with the cooperation of every competent organisation. This effort includes establishment of the transport control centre, communication training, and accompanying the radiation monitoring expert. No transport accident occurred during the transport and all the transport missions were successfully completed on schedule. (Author).

  17. A US perspective on fast reactor fuel fabrication technology and experience part I: metal fuels and assembly design

    International Nuclear Information System (INIS)

    This paper is part I of a review focusing on the United States experience with metallic fast reactor fuel fabrication and assembly design for the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF). Experience with metal fuel fabrication in the United States is extensive, including over 60 years of research conducted by the government, national laboratories, industry, and academia. This experience has culminated in a considerable amount of research that resulted in significant improvements to the technologies employed to fabricate metallic fast reactor fuel. This part of the review documents the current state of fuel fabrication technologies for metallic fuels, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  18. Apparatus for removing and/or positioning fuel assemblies of a nuclear reactor

    International Nuclear Information System (INIS)

    Apparatus for positioning fuel assemblies of a nuclear reactor includes a control for a crane comprising a strain gauge connected to the crane line which raises and lowers the load. The signal from the strain gauge is compared with setpoints; which if the strain gauge signal exceeds a high-level setpoint, indicating that the movement of a fuel assembly is obstructed, the line drive is disabled. The line drive is also disabled if the strain gauge signal is less than a low-level setpoint, indicating that a fuel being deposited contacts the bottom of its slot or an obstruction. To preclude lateral movement of the fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge signal exceeds the low-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than a slack-line setpoint. (author)

  19. Application of the ballooning analysis code MATARE on a generic PWR fuel assembly

    International Nuclear Information System (INIS)

    The MATARE (MAbel-TAlink-RElap) code is a new multi-pin deformation analysis code created through the dynamic coupling between the thermal-hydraulic code RELAP5 and multiple instances of the single-pin thermal-mechanics code MABEL. A multi-pin representation of different zones of a typical PWR fuel assembly under post-LOCA reflooding conditions was analysed including some of the most relevant features that characterise a typical nuclear reactor fuel assembly and evaluate their effect on the behaviour of the fuel rods under conditions leading to clad ballooning. The code was able to simulate the deformation of wide regions of a fuel assembly under reflood conditions and has shown how differences in pin pressure and the presence of rod with burnable poisons and control rod guide thimbles also contribute to a substantial incoherent ballooning in agreement with the experimental data. (author)

  20. Gamma-ray measurements of spent PWR fuel and determination of residual power

    OpenAIRE

    Jansson, Peter; Håkansson, Ane; Bäcklin, Anders

    1997-01-01

    The method for determining residual thermal power in spent BWR fuel described in ISV-4/97 have been used in an extended study where spent PWR fuel assemblies have been considered. The experimental work has been carried out at the interim storage CLAB. By using the 137Cs radiation it is shown in the present study that it is possible to experimentally determine the residual thermal power within 3%.

  1. Advanced core physics and thermal hydraulics analysis of boiling water reactors using innovative fuel concepts

    OpenAIRE

    Winter, Dominik

    2014-01-01

    The economical operation of a boiling water reactor (BWR) is mainly achieved by the axially uniform utilization of the nuclear fuel in the assemblies which is challenging because the neutron spectrum in the active reactor core varies with the axial position. More precisely, the neutron spectrum becomes harder the higher the position is resulting in a decrease of the fuel utilization because the microscopic fission cross section is smaller by several orders of magnitude. In this work, the use ...

  2. A computational technique to identify the optimal stiffness matrix for a discrete nuclear fuel assembly model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam-Gyu, E-mail: nkpark@knfc.co.kr [R and D Center, KEPCO Nuclear Fuel Co., LTD., 493 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Kyoung-Joo, E-mail: kyoungjoo@knfc.co.kr [R and D Center, KEPCO Nuclear Fuel Co., LTD., 493 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Kyoung-Hong, E-mail: kyounghong@knfc.co.kr [R and D Center, KEPCO Nuclear Fuel Co., LTD., 493 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Suh, Jung-Min, E-mail: jmsuh@knfc.co.kr [R and D Center, KEPCO Nuclear Fuel Co., LTD., 493 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2013-02-15

    Highlights: ► An identification method of the optimal stiffness matrix for a fuel assembly structure is discussed. ► The least squares optimization method is introduced, and a closed form solution of the problem is derived. ► The method can be expanded to the system with the limited number of modes. ► Identification error due to the perturbed mode shape matrix is analyzed. ► Verification examples show that the proposed procedure leads to a reliable solution. -- Abstract: A reactor core structural model which is used to evaluate the structural integrity of the core contains nuclear fuel assembly models. Since the reactor core consists of many nuclear fuel assemblies, the use of a refined fuel assembly model leads to a considerable amount of computing time for performing nonlinear analyses such as the prediction of seismic induced vibration behaviors. The computational time could be reduced by replacing the detailed fuel assembly model with a simplified model that has fewer degrees of freedom, but the dynamic characteristics of the detailed model must be maintained in the simplified model. Such a model based on an optimal design method is proposed in this paper. That is, when a mass matrix and a mode shape matrix are given, the optimal stiffness matrix of a discrete fuel assembly model can be estimated by applying the least squares minimization method. The verification of the method is completed by comparing test results and simulation results. This paper shows that the simplified model's dynamic behaviors are quite similar to experimental results and that the suggested method is suitable for identifying reliable mathematical model for fuel assemblies.

  3. Interpretation of the results of the CORA-33 dry core BWR test

    International Nuclear Information System (INIS)

    All BWR degraded core experiments performed prior to CORA-33 were conducted under ''wet'' core degradation conditions for which water remains within the core and continuous steaming feeds metal/steam oxidation reactions on the in-core metallic surfaces. However, one dominant set of accident scenarios would occur with reduced metal oxidation under ''dry'' core degradation conditions and, prior to CORA-33, this set had been neglected experimentally. The CORA-33 experiment was designed specifically to address this dominant set of BWR ''dry'' core severe accident scenarios and to partially resolve phenomenological uncertainties concerning the behavior of relocating metallic melts draining into the lower regions of a ''dry'' BWR core. CORA-33 was conducted on October 1, 1992, in the CORA tests facility at KfK. Review of the CORA-33 data indicates that the test objectives were achieved; that is, core degradation occurred at a core heatup rate and a test section axial temperature profile that are prototypic of full-core nuclear power plant (NPP) simulations at ''dry'' core conditions. Simulations of the CORA-33 test at ORNL have required modification of existing control blade/canister materials interaction models to include the eutectic melting of the stainless steel/Zircaloy interaction products and the heat of mixing of stainless steel and Zircaloy. The timing and location of canister failure and melt intrusion into the fuel assembly appear to be adequately simulated by the ORNL models. This paper will present the results of the posttest analyses carried out at ORNL based upon the experimental data and the posttest examination of the test bundle at KfK. The implications of these results with respect to degraded core modeling and the associated safety issues are also discussed

  4. High-level neutron-coincidence-counter (HLNCC) implementation: assay of the plutonium content of mixed-oxide fuel assemblies

    International Nuclear Information System (INIS)

    The portable High-Level Neutron Coincidence Counter is used to assay the 240Pu-effective loading of a reference mixed-oxide fuel assembly by neutron coincidence counting. We have investigated the effects on the coincidence count rate of the total fuel loading (UO2 + PuO2), the fissile loading, the fuel rod diameter, and the fuel rod pattern. The coincidence count rate per gram of 240Pu-effective per centimeter is primarily dependent on the total fuel loading of the assembly; the higher the loading, the higher the coincidence count rate. Detailed procedures for the assay of mixed-oxide fuel assemblies are developed

  5. Validation of PWR core seismic models with shaking table tests on interacting scale 1 fuel assemblies

    International Nuclear Information System (INIS)

    The fuel assembly mechanical strength must be justified with respect to the lateral loads under accident conditions, in particular seismic loads. This justification is performed by means of time-history analyses with dynamic models of an assembly row in the core, allowing for assembly deformations, impacts at grid locations and reactor coolant effects. Due to necessary simplifications, the models include 'equivalent' parameters adjusted with respect to dynamic characterisation tests of the fuel assemblies. Complementing such tests on isolated assemblies by an overall model validation with shaking table tests on interacting assemblies is obviously desirable. Seismic tests have been performed by French CEA (Commissariat a l'Energie Atomique) on a row of six full scale fuel assemblies, including two types of 17 x 17 12ft design. The row models are built according to the usual procedure, with preliminary characterisation tests performed on a single assembly. The test-calculation comparisons are made for two test configurations : in air and in water. The relatively large number of accelerograms (15, used for each configuration) is also favourable to significant comparisons. The results are presented for the impact forces at row ends, displacements at mid assembly, and also 'statistical' parameters. Despite a non-negligible scattering in the results obtained with different accelerograms, the calculations prove realistic, and the modelling process is validated with a good confidence level. This satisfactory validation allows to evaluate precisely the margins in the seismic design methodology of the fuel assemblies, and thus to confirm the safety of the plants in case of seismic event. (author)

  6. Applicability of a set of tomographic reconstruction algorithms for quantitative SPECT on irradiated nuclear fuel assemblies

    International Nuclear Information System (INIS)

    A fuel assembly operated in a nuclear power plant typically contains 100–300 fuel rods, depending on fuel type, which become strongly radioactive during irradiation in the reactor core. For operational and security reasons, it is of interest to experimentally deduce rod-wise information from the fuel, preferably by means of non-destructive measurements. The tomographic SPECT technique offers such possibilities through its two-step application; (1) recording the gamma-ray flux distribution around the fuel assembly, and (2) reconstructing the assembly's internal source distribution, based on the recorded radiation field. In this paper, algorithms for performing the latter step and extracting quantitative relative rod-by-rod data are accounted for. As compared to application of SPECT in nuclear medicine, nuclear fuel assemblies present a much more heterogeneous distribution of internal attenuation to gamma radiation than the human body, typically with rods containing pellets of heavy uranium dioxide surrounded by cladding of a zirconium alloy placed in water or air. This inhomogeneity severely complicates the tomographic quantification of the rod-wise relative source content, and the deduction of conclusive data requires detailed modelling of the attenuation to be introduced in the reconstructions. However, as shown in this paper, simplified models may still produce valuable information about the fuel. Here, a set of reconstruction algorithms for SPECT on nuclear fuel assemblies are described and discussed in terms of their quantitative performance for two applications; verification of fuel assemblies' completeness in nuclear safeguards, and rod-wise fuel characterization. It is argued that a request not to base the former assessment on any a priori information brings constraints to which reconstruction methods that may be used in that case, whereas the use of a priori information on geometry and material content enables highly accurate quantitative

  7. Applicability of a set of tomographic reconstruction algorithms for quantitative SPECT on irradiated nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsson Svärd, Staffan, E-mail: staffan.jacobsson_svard@physics.uu.se; Holcombe, Scott; Grape, Sophie

    2015-05-21

    A fuel assembly operated in a nuclear power plant typically contains 100–300 fuel rods, depending on fuel type, which become strongly radioactive during irradiation in the reactor core. For operational and security reasons, it is of interest to experimentally deduce rod-wise information from the fuel, preferably by means of non-destructive measurements. The tomographic SPECT technique offers such possibilities through its two-step application; (1) recording the gamma-ray flux distribution around the fuel assembly, and (2) reconstructing the assembly's internal source distribution, based on the recorded radiation field. In this paper, algorithms for performing the latter step and extracting quantitative relative rod-by-rod data are accounted for. As compared to application of SPECT in nuclear medicine, nuclear fuel assemblies present a much more heterogeneous distribution of internal attenuation to gamma radiation than the human body, typically with rods containing pellets of heavy uranium dioxide surrounded by cladding of a zirconium alloy placed in water or air. This inhomogeneity severely complicates the tomographic quantification of the rod-wise relative source content, and the deduction of conclusive data requires detailed modelling of the attenuation to be introduced in the reconstructions. However, as shown in this paper, simplified models may still produce valuable information about the fuel. Here, a set of reconstruction algorithms for SPECT on nuclear fuel assemblies are described and discussed in terms of their quantitative performance for two applications; verification of fuel assemblies' completeness in nuclear safeguards, and rod-wise fuel characterization. It is argued that a request not to base the former assessment on any a priori information brings constraints to which reconstruction methods that may be used in that case, whereas the use of a priori information on geometry and material content enables highly accurate quantitative

  8. Applicability of a set of tomographic reconstruction algorithms for quantitative SPECT on irradiated nuclear fuel assemblies

    Science.gov (United States)

    Jacobsson Svärd, Staffan; Holcombe, Scott; Grape, Sophie

    2015-05-01

    A fuel assembly operated in a nuclear power plant typically contains 100-300 fuel rods, depending on fuel type, which become strongly radioactive during irradiation in the reactor core. For operational and security reasons, it is of interest to experimentally deduce rod-wise information from the fuel, preferably by means of non-destructive measurements. The tomographic SPECT technique offers such possibilities through its two-step application; (1) recording the gamma-ray flux distribution around the fuel assembly, and (2) reconstructing the assembly's internal source distribution, based on the recorded radiation field. In this paper, algorithms for performing the latter step and extracting quantitative relative rod-by-rod data are accounted for. As compared to application of SPECT in nuclear medicine, nuclear fuel assemblies present a much more heterogeneous distribution of internal attenuation to gamma radiation than the human body, typically with rods containing pellets of heavy uranium dioxide surrounded by cladding of a zirconium alloy placed in water or air. This inhomogeneity severely complicates the tomographic quantification of the rod-wise relative source content, and the deduction of conclusive data requires detailed modelling of the attenuation to be introduced in the reconstructions. However, as shown in this paper, simplified models may still produce valuable information about the fuel. Here, a set of reconstruction algorithms for SPECT on nuclear fuel assemblies are described and discussed in terms of their quantitative performance for two applications; verification of fuel assemblies' completeness in nuclear safeguards, and rod-wise fuel characterization. It is argued that a request not to base the former assessment on any a priori information brings constraints to which reconstruction methods that may be used in that case, whereas the use of a priori information on geometry and material content enables highly accurate quantitative assessment, which

  9. Experimental investigations for determination of heat-transfer coefficients and temperature fields in simulated fuel assemblies of BREST reactor with fuel elements spaced by transverse grids

    International Nuclear Information System (INIS)

    The consideration is given to heat transfer and temperature fields in fuel pin bundles with transverse spacer grids (s/d =1.33) equally spaced along energy deposition length. Experimental data are obtained on two simulated 37-rod core assemblies: one assembly is with uniform geometry along the cross-section and in the other there is nonheated rod simulating supporting pipe in fuel assembly of reactor with heavy coolant. Eutectic Na-K alloy is used as coolant. Nusselt numbers and temperature nonuniformity along the perimeter of measurement fuel element simulator obtained in these assemblies are compared as well as available data for finned (wire to wire) fuel rods

  10. Latest experiences in inspecting the inside of BWR vessel shields

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.

    2001-07-01

    In the last few years, the owners of BWR nuclear power plants have been forced to address new fuel shield inspection requirements, TECNATOM has responded to this situation by launching the TEIDE projects, which include development of an inspection machine and the corresponding Non-Destructive Tests to examine the inside of this shield. With these projects, TECNATOM has performed more than 12 fuel shield inspections in different countries. This article describes the experience gained in the last three years. (Author)

  11. Simulation of Spent PWR Fuel Assembly Behavior Under Normal Conditions of Transport

    International Nuclear Information System (INIS)

    The behavior of a PWR high-burnup spent fuel assembly under normal conditions of transport is simulated in a dynamic analysis of a 0.3-m free drop of a transportation cask unprotected by impact limiters striking a flat rigid surface in the horizontal orientation. The structural analysis employs a finite element numerical model consisting of the cask, the fuel assemblies, the fuel rods, the guide tubes and the cask’s internal structures that hold the fuel assemblies in position. Appropriate mechanical properties for the cask’s structural components, as well as the elastic-plastic properties typical of high-burnup Zircaloy-4 cladding, are utilized. Emphasis is placed on fuel rods responses at locations where maximum forces would be expected, which include end-plate positions and spacer-grid positions at assembly mid-span. Temporal and spatial variations of the forces acting on the fuel rods are calculated and post-processed to obtain frequency distributions, which statistically represent the total fuel rod population in the cask. The results show that the largest pinch force, (ror-to-rod contact force), is 1700 lb, the maximum axial force is 600 lb, and the largest bending moment is 175 in-lb. Failure analysis of fuel rods using these force quantities, and considering the effects of potential hydrides reorientation on cladding failure resistance, indicates, under conservative assumptions, a factor of safety of least 2 against longitudinal tearing, and no failure is predicted for transverse tearing or rod breakage. Fuel reconfiguration is predicted not to occur, and although partial tearing of guide tubes is possible, it is not enough to impair post-accident assembly retrieval. (author)

  12. Nuclear coupled flow instability study for natural circulation BWR startup transient

    International Nuclear Information System (INIS)

    Natural circulation Boiling Water Reactor (BWR) startup transient was investigated in Purdue University Multidimensional Test Assembly (PUMA) facility based on a natural circulation BWR design. Strategy and results of the experiments, which consider the effects of void-reactivity and fuel heat conduction time constant, are discussed. Total reactivity is treated to be composed of two components: external reactivity due to control rod motion and void-reactivity. A detailed analysis for heat conduction problem is performed to derive dimensionless groups. Based on area-averaged heat conduction equations for pellet and clad regions, Fourier and Biot numbers are derived to simulate wall heat flux response. Power transient, which has been used for startup transient investigation without void-reactivity feedback is used to derive the control rod reactivity. Twelve conductivity probes are used to measure local void fraction inside core at three axial locations. The local void-fraction data is used to calculate volume average void fraction, which is used to calculate the voil-reactivity. A real-time Point Kinetic Model solver is implemented to PUMA heater power control program to determine power transient during startup. The results demonstrate that the inclusion of void-reactivity feedback worsen the scenario for startup instabilities and may cause large amplitude neutron flux oscillations. (author)

  13. Transport of fresh MOX fuel assemblies for the Monju initial core

    Energy Technology Data Exchange (ETDEWEB)

    Kurakami, J.; Ouchi, Y. [Power Reactor and Nuclear Fuel Development Corp., Tokai Works (Japan); Usami, M. [Power Reactor and Nuclear Fuel Development Corp., Tokyo Head Office, Power Reactor and Nuclear Fuel Development Corp., Ibaraki (Japan)

    1997-12-01

    Transport of fresh MOX fuel assemblies for the prototype FBR MONJU initial core started in July 1992 and ended in March 1994. As many as 205 fresh MOX fuel assemblies for an inner core, 91 assemblies for an outer core and 5 assemblies for testing were transported in nine transport missions. The packaging for fuel assemblies, which has shielding and shock absorbing material inside, meets IAEA regulatory requirements for Type B(U) packaging including hypothetical accident conditions such as the 9 m drop test, fire test, etc. Moreover, this package design feature such advanced technologies as high performance neutron shielding material and an automatic hold-down mechanism for the fuel assemblies. Every effort was made to carry out safe transport in conjunction with the cooperation of every competent organisation. This effort includes establishment of the transport control centre, communication training, and accompanying of the radiation monitoring expert. No transport accident occurred during the transport and all the transport missions were successfully completed on schedule. (Author).

  14. Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.; Yang, Z.; Zhong, Y.; Xiao, Y.; Hu, L. [Chongqing Univ. (China). Key Lab. of Low-grade Energy Utilization Technologies and Systems

    2016-07-15

    In pressurized water reactors (PWRs), the spacer grids of the fuel assembly has significant impact on the thermal-hydraulic performance of the fuel assembly. Particularly, the spacer grids with the mixing vanes can dramatically enhance the secondary flow and have significant effect on the void distribution in the fuel assembly. In this paper, the CFD study has been carried out to analyze the effects of the spacer grid with the steel contacts, dimples and mixing vanes on the boiling two-phase flow characteristics, such as the two-phase flow field, the void distribution, and so on. Considered the influence of the boiling phase change on two-phase flow, a boiling model was proposed and applied in the CFD simulation by using the UDF (User Defined Function) method. Furthermore, in order to analyze the effects of the spacer grid with mixing vanes, the adiabatic (without boiling) two-phase flow has also been investigated as comparison with the boiling two-phase flow in the fuel assembly with spacer grids. The CFD simulation on two-phase flow in the fuel assembly with the proposed boiling model can predict the characteristics of two-phase flow better.

  15. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  16. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO2 and UO2), typically containing 95% or more UO2. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO2 powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO2 powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required

  17. AREVA's fuel assemblies addressing high performance requirements of the worldwide PWR fleet

    International Nuclear Information System (INIS)

    Taking advantage of its presence in the fuel activities since the start of commercial nuclear worldwide operation, AREVA is continuing to support the customers with the priority on reliability, to: >participate in plant operational performance for the in core fuel reliability, the Zero Tolerance for Failure ZTF as a continuous improvement target and the minimisation of manufacturing/quality troubles, >guarantee the supply chain a proven product stability and continuous availability, >support performance improvements with proven design and technology for fuel management updating and cycle cost optimization, >support licensing assessments for fuel assembly and reloads, data/methodologies/services, >meet regulatory challenges regarding new phenomena, addressing emergent performance issues and emerging industry challenges for changing operating regimes. This capacity is based on supplies by AREVA accumulating very large experience both in manufacturing and in plant operation, which is demonstrated by: >manufacturing location in 4 countries including 9 fuel factories in USA, Germany, Belgium and France. Up to now about 120,000 fuel assemblies and 8,000 RCCA have been released to PWR nuclear countries, from AREVA European factories, >irradiation performed or in progress in about half of PWR world wide nuclear plants. Our optimum performances cover rod burn ups of to 82GWD/tU and fuel assemblies successfully operated under various world wide fuel management types. AREVA's experience, which is the largest in the world, has the extensive support of the well known fuel components such as the M5'TM'cladding, the MONOBLOC'TM'guide tube, the HTP'TM' and HMP'TM' structure components and the comprehensive services brought in engineering, irradiation and post irradiation fields. All of AREVA's fuel knowledge is devoted to extend the definition of fuel reliability to cover the whole scope of fuel vendor support. Our Top Reliability and Quality provide customers with continuous

  18. The optimization of an AP1000 fuel assembly for the transmutation of plutonium and minor actinides

    Science.gov (United States)

    Washington, Jeremy A.

    The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a near-term solution. The goal of this thesis is to examine the potential of light water reactors for plutonium and minor actinides transmutation as a near-term solution. This thesis screens the available nuclear isotope database to identify potential absorbers as coatings on a transmutation fuel in a light water reactor. A spectral shift absorber coating tunes the neutron energy spectrum experienced by the underlying target fuel. Eleven different spectral shift absorbers (B4C, CdO, Dy2O3, Er 2O3, Eu2O3, Gd2O3, HfO2, In2O3, Lu2O3, Sm2O3, and TaC) have been selected for further evaluation. A model developed using the NEWT module of SCALE 6.1 code provided performance data for the burnup of the target fuel rods. Irradiation of the target fuels occurs in a Westinghouse 17x17 XL Robust Fuel Assembly over a 1400 Effective Full Power Days (EFPD) interval. The fuels evaluated in this thesis include PuO2, Pu3Si2, PuN, MOX, PuZrH, PuZrHTh, PuZrO 2, and PuUZrH. MOX (5 wt% PuO2), Pu0.31ZrH 1.6Th1.08, and PuZrO2MgO (8 wt%) are selected for detailed analysis in a multi-pin transmutation assembly. A coupled model optimized the resulting transmutation fuel elements. The optimization considered three stages of fuel assemblies containing target fuel pins. The first stage optimized four target fuel pins adjacent to the central instrumentation channel. The second stage evaluated a variety of assemblies with multiple target fuel pins and the third stage re-optimized target fuel pins in the second-stage assembly. A PuZrO2MgO (8 wt%) target fuel with a coating of Lu 2O3 resulted in the greatest reduction in curium-244

  19. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  20. Method and jig for dismantling nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Megumi; Watahiki, Minoru.

    1989-08-30

    The object of the present inention is to extract a fuel element from a lower tie plate safely and at high efficiency by a remote control operation. That is, a forked top end of a lever of a dismantling jig is inserted between the tapered portion of a lower end plug and a lower tie plate. Then, a load is applied to the counter-lower end side of the lever by a motor. This exerts an elevating force to the fuel elements to easily release fixture between the lower end plug and the lower tie plate. Since the fuel can of fuel elements is not applied with a force by this mehtod, operation safety can be improved. (I.J.).

  1. Post-processor for simulations of the ORIGEN program and calculation of the composition of the activity of a burnt fuel core by a BWR type reactor; Post-procesador para simulaciones del programa ORIGEN y calculo de la composicion de la actividad de un nucleo de combustible quemado por un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval V, S. [IIE, Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)]. e-mail: sandoval@iie.org.mx

    2006-07-01

    The composition calculation and the activity of nuclear materials subject to processes of burnt, irradiation and decay periods are of utility for diverse activities inside the nuclear industry, as they are it: the processes design and operations that manage radioactive material, the calculation of the inventory and activity of a core of burnt nuclear fuel, for studies of type Probabilistic Safety Analysis (APS), as well as for regulation processes and licensing of nuclear facilities. ORIGEN is a program for computer that calculates the composition and the activity of nuclear materials subject to periods of burnt, irradiation and decay. ORIGEN generates a great quantity of information whose processing and analysis are laborious, and it requires thoroughness to avoid errors. The automation of the extraction, conditioning and classification of that information is of great utility for the analyst. By means of the use of the post-processor presented in this work it is facilitated, it speeds up and wide the capacity of analysis of results, since diverse consultations with several classification options and filtrate of results can be made. As illustration of the utility of the post-processor, and as an analysis of interest for itself, it is also presented in this work the composition of the activity of a burned core in a BWR type reactor according to the following classification criteria: by type of radioisotope (fission products, activation products and actinides), by specie type (gassy, volatile, semi-volatile and not volatile), by element and by chemical group. The results show that the total activity of the studied core is dominated by the fission products and for the actinides, in proportion four to one, and that the gassy and volatile species conform a fifth part of the total activity of the core. (Author)

  2. COXPRO-II: a computer program for calculating radiation and conduction heat transfer in irradiated fuel assemblies

    International Nuclear Information System (INIS)

    This report describes the computer program COXPRO-II, which was written for performing thermal analyses of irradiated fuel assemblies in a gaseous environment with no forced cooling. The heat transfer modes within the fuel pin bundle are radiation exchange among fuel pin surfaces and conduction by the stagnant gas. The array of parallel cylindrical fuel pins may be enclosed by a metal wrapper or shroud. Heat is dissipated from the outer surface of the fuel pin assembly by radiation and convection. Both equilateral triangle and square fuel pin arrays can be analyzed. Steady-state and unsteady-state conditions are included. Temperatures predicted by the COXPRO-II code have been validated by comparing them with experimental measurements. Temperature predictions compare favorably to temperature measurements in pressurized water reactor (PWR) and liquid-metal fast breeder reactor (LMFBR) simulated, electrically heated fuel assemblies. Also, temperature comparisons are made on an actual irradiated Fast-Flux Test Facility (FFTF) LMFBR fuel assembly

  3. Welding machine and welding process for nuclear fuel assembly structures

    International Nuclear Information System (INIS)

    The welding device comprises a mounting jig which receives the guide tubes and the assembly supporting structures in the desired spatial orientation. It also comprises a welding head which can travel on rails along the length of the guide tubes and has at least a welding spring chuck movable in two axes and rotatable relative to the welding machine; the spring chuck can pass between two adjacent tube rows and takes a tubes where a weld is necessary. The welding spring chuck can apply spot-welding pulses. This is used for the assembly of guide tubes and bundles for water-cooled nuclear reactors

  4. HEXBU-3D, a three-dimensional PWR-simulator program for hexagonal fuel assemblies

    International Nuclear Information System (INIS)

    HEXBU-3D is a three-dimensional nodal simulator program for PWR reactors. It is designed for a reactor core that consists of hexagonal fuel assemblies and of big follower-type control assemblies. The program solves two-group diffusion equations in homogenized fuel assembly geometry by a sophisticated nodal method. The treatment of feedback effects from xenon-poisoning, fuel temperature, moderator temperature and density and soluble boron concentration are included in the program. The nodal equations are solved by a fast two-level iteration technique and the eigenvalue can be either the effective multiplication factor or the boron concentration of the moderator. Burnup calculations are performed by tabulated sets of burnup-dependent cross sections evaluated by a cell burnup program. HEXBY-3D has been originally programmed in FORTRAN V for the UNIVAC 1108 computer, but there is also another version which is operable on the CDC CYBER 170 computer. (author)

  5. Design and performance verification of fuel assembly and steam generator simulators for SMART reactor

    International Nuclear Information System (INIS)

    The SMART reactor has been developed at KAERI, for the generation of electric power and also for seawater desalination. In order to verify the performance of the SMART design with respect to flow and pressure distribution, an experimental test facility named SCOP has been developed. For the purpose of preserving the flow distribution characteristics, SCOP is linearly reduced with a scaling ratio of 1/5. A CFD analysis was carried out to draw basic design parameters of the venturi tube and the perforated plates in a fuel assembly simulator. A CALIP, which is a flow and pressure drop calibration test facility, has been constructed to evaluate the pressure drop characteristic of fuel assembly and steam generator simulators. This paper shows the results of the actual performance verification and evaluation of fuel assembly and steam generator simulator, were evaluated using a CALIP. (author)

  6. Experience in generalizing the data on the rod fuel assembly burnout by the method of cells

    International Nuclear Information System (INIS)

    The comparative analysis of results of calculations on the rod fuel assembly burnout by the method of cells is conducted. The method of cells is based on determining local parameters of coolant flow in the assembly cross section. The channel cross section is conditionally subdivided into elementary cells communicating with each other. For such system of interacting cells the equations of thermohydraulics are solved. Local values of enthalpy and mass rate obtained are used for fuel burnout calculation. The analysis performed has shown that generalizing the empirical data for a given set of experiments on the basis of local parameters of flow in the cells already nowadays assures in most cases accuracy of burnout conditions prediction which is not less than the traditional dependences based on one-dimensional description of the flow. The conclusion is drawn on the prospects of using the method of cells for calculating the burnout in rod fuel assemblies and necessity of its subsequent development

  7. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    International Nuclear Information System (INIS)

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  8. Development of mechanical test techniques for structural components of irradiated PWR fuel assembly

    International Nuclear Information System (INIS)

    An increase of fuel burnup and duration of fuel life remains one of the main methods for a nuclear power engineering enhancement. Properties of structural materials providing corrosion resistance, mechanical strength, and dimensional instability of the components of a fuel assembly (FA) are of great importance for fuel operational reliability in such fuel life cycles. Generally, PWR fuel assemblies consist of a top nozzle, spacer grid, bottom nozzle, and guide/instrumentation tubes. The top and bottom nozzle are fixed to the guide tubes using a screw or bulge method. The spacer grid fixed to the guide/instrumentation tubes using a spot weld or bulge method. To understand the in-reactor performance of PWR FA, several devices and test techniques have been developed for mechanical property tests. Among the structural components of PWR FA, a spacer grid, a hold down spring of a top nozzle and a connecting part of FA were considered. Experimental works were carried out for the unirradiated and irradiated components of advanced nuclear fuel assemblies for KSNPs and Westinghouse type PWRs at IMEF (Irradiated Materials Examination Facility) at KAERI. The developed techniques were verified through a hot cell tests. (author)

  9. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  10. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO2 powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO2 powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule

  11. Acceptance of failed SNF [spent nuclear fuel] assemblies by the Federal Waste Management System

    International Nuclear Information System (INIS)

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for delivery; and defense and commercial high-level waste packages. This document discusses acceptance of failed spent fuel assemblies by the Federal Waste Management System. 18 refs., 7 figs., 25 tabs

  12. Development of mechanical test techniques on the irradiated grid elements in PWR fuel assembly

    International Nuclear Information System (INIS)

    The mechanical properties of the parts of a nuclear fuel assembly are degraded during the operation of the reactor, through the mechanism of irradiation damage. The properties changes of the parts of the fuel assembly should be quantitatively estimated to ensure the safety of the fuel assembly and rod during the operation. The test techniques developed in this paper are used to produce the irradiation data of the grid 1x1 cell springs, the grid 1x1 cell, the spring on one face of the 1x1 cell, the inner/outer strip of the grid and the welded part. The specimens were irradiated in the CT test hole of HANARO of a 30 MW thermal output at 300degC. From the spring tests of mid grid 1x1 cell and grid plate, the irradiation effects can be examined. The irradiation effects on the irradiation growth also were occurred. The buckling load of mid grid 1x1 cell does not change with a neutron irradiation. From the tensile tests, the strengths increased but the elongations decreased due to an irradiation. The tensile test and microstructure examination of the spot and fillet welded parts are performed for the evaluation of an irradiation effects. Through these tests of components, the essential data on the fuel assembly design could be obtained. These results will be used to update the irradiation behavior databases, to improve the performance of fuel assembly, and to predict the service life of the fuel assembly in a reactor. (author)

  13. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  14. Study on seismic response characteristics of reactor vessel internals and fuel assembly for OBE elimination

    International Nuclear Information System (INIS)

    To resolve a general argument about OBE elimination for the future nuclear power plant design, seismic responses of reactor vessel internals and fuel assembly for Ulchin nuclear power plant units 3 and 4 in Korea are investigated as an example. Dynamic analyses of the coupled internals and core are performed for the seismic excitations using the reactor vessel motions. By investigating the response relations between OBE and SSE and their response characteristics, the critical components for OBE loading are addressed. Also the fuel assembly responses are calculated using the core plate motions and their behavior is found to be insignificant for OBE elimination. (author)

  15. Dynamics of nuclear fuel assemblies in vertical flow channels: computer modelling and associated studies

    International Nuclear Information System (INIS)

    A computer model, designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow, is described in this report. The numerical methods used to construct and solve the matrix equations of motion in the model are discussed together with an outline of the method used to interpret the fuel assembly stability data. The mathematics developed for forced response calculations are described in detail. Certain structural and hydrodynamic modelling parameters must be determined by experiment. These parameters are identified and the methods used for their evaluation are briefly described. Examples of typical applications of the dynamic model are presented towards the end of the report. (author)

  16. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket

    Science.gov (United States)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac

    1991-01-01

    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.

  17. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO{sub 2} assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the {sup 239}Pu and {ge}90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  18. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    International Nuclear Information System (INIS)

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% totalPu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products

  19. Passive gamma analysis of the boiling-water-reactor assemblies

    Science.gov (United States)

    Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  20. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.; Bounds, J.A.; Kimpland, R.H.; Damjanovich, R.P.; Jaegers, P.J.

    1997-08-01

    Experiments were performed to measure a variety of parameters for SHEBA: behavior of the facility during transient and steady-state operation; characteristics of the SHEBA fuel; delayed-critical solution height vs solution temperature; initial reactor period and reactivity vs solution height; calibration of power level vs reactor power instrumentation readings; flux profile in SHEBA; radiation levels and neutron spectra outside the assembly for code verification and criticality alarm and dosimetry purposes; and effect on reactivity of voids in the fuel.

  1. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  2. Melt-dilute treatment of spent nuclear fuel assemblies from research and test reactors

    International Nuclear Information System (INIS)

    The Savannah River Site is the U.S. Department of Energy's preferred site for return and treatment of all aluminum-base, spent, research and test reactor fuel assemblies. There are over 20,000 spent fuel assemblies now stored in different countries around the world, and by 2035 many will be returned to SRS for treatment and interim storage, in preparation for disposal in a geologic repository. The early fuel assemblies for research and test reactors were made using aluminum clad plates that were fabricated from highly enriched (93%) uranium-aluminum alloy. Later, powder metallurgical fabrication methods were developed to produce plate fuels with higher uranium contents using either uranium aluminide, uranium oxide or uranium silicide powders mixed with aluminum. Silicide fuel elements generally are fabricated with low enriched uranium containing less than 20% 2'35U. Following irradiation, the spent fuel assemblies are discharged from the reactor, and most assemblies have been stored in underwater pools, some since the early 1950's. A number of disposition options including direct/co-disposal and melt-dilute treatment were evaluated recently. The melt-dilute technique was identified as the preferred method for treatment of aluminum-base spent fuel. The technique consists of melting the spent fuel assembly and adding depleted uranium to the melt for isotopic dilution to 2'35U. Aluminum is added, if necessary, to produce a predetermined alloy composition. Additionally, neutron poisons may be added to the melt where they form solid solution phases or compounds with uranium and/or aluminum. Lowering the enrichment reduces both criticality and proliferation concerns for storage. Consolidation by melting also reduces the number of storage canisters. Laboratory and small-scale process demonstration using irradiated fuel is underway. Tests of the off gas absorption system have been initiated using both surrogate and irradiated RERTR mini fuel plates. An experimental L

  3. Report of lower endplug welding, and testing and inspecting result for MONJU 1th reload core fuel assembly

    International Nuclear Information System (INIS)

    The procedure and result of lower endplugwelding, Test and Inspection and Shipment of the 1th reload core fuel assembly (80 Fuel Assemblies) for the fast breeder reactor MONJU are reported, which had been examined and inspected in Tamatsukuri Branch, Material Insurance Office, Quality Assurance Section, Technical Administration Division, Plutonium Fuel Center (before: Inspection Section, Plutonium Fuel Division), from June 1994 to January 1996. The number of cladding tubes welded to the endplug were totally 13,804: 7,418 for Core - Inside of 43 fuel Assemblies and 6,836 for Core-Outside of 37 fuel Assemblies. 13,794 of them, 7,414 Core-Inside and 6,379 Core-Outside, were approved by the test and sent to Plutonium Fuel Center. 10 of them weren't approved mainly because of default welding. Disapproval rating was 0.07%. (author)

  4. Analysis of a German BWR core with TRACE/PARCS using different cross section sets

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, C., E-mail: Christoph.Hartmann@kit.edu [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Westinghouse Electric Germany GmbH, Mannheim (Germany); Sanchez, V.H. [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Tietsch, W. [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2011-07-01

    'Full text:' Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools as well as appropriate cross sections (XS) libraries depending on the individual thermal hydraulic state parameters. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running and user-friendly lattice codes such as Casco and Helios. At research institutions and universities, alternative tools to the commercial ones with full access to the source code as well as moderate cost are urgently needed. The Scale system is being developed and improved for lattice physics calculations of real core loading of Light Water Reactors (LWR). It represents a promising alternative to the commercial lattice codes. At Karlsruhe Institute of Technology (Kit) a computational route based on Scale/Triton/Newt for BWR core loading is under development. The generated XS-data sets have to be transformed in PMAXS-format for use in the reactor dynamic code PARCS. This task is performed by the module GenPMAXS being developed and tested at the Michigan University. To verify the computational route, a BWR fuel assembly depletion problem was calculated by PARCS and compared to the CASMO results. Since the SCALE/TRITON XS-file does actually not contain all required neutronic data, FORTRAN routines have been developed to incorporate the missing data e.g. the yields of Iodine, Xenon and Promethium into the XS-data sets in the PMAXS-format. The comparison of the results obtained with PARCS (using the corrected PMAXS file) and CASMO for the depletion problem exhibited a good agreement. Consequently, this approach was followed for the generation of a complete XS-set for a real BWR core to be used in subsequent transient analysis. Then 3D neutronic and thermal hydraulic core model were elaborated for a TRACE/PARCS analysis. The thermal hydraulic model is based on the 3D VESSEL

  5. Analysis of a German BWR core with TRACE/PARCS using different cross section sets

    International Nuclear Information System (INIS)

    'Full text:' Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools as well as appropriate cross sections (XS) libraries depending on the individual thermal hydraulic state parameters. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running and user-friendly lattice codes such as Casco and Helios. At research institutions and universities, alternative tools to the commercial ones with full access to the source code as well as moderate cost are urgently needed. The Scale system is being developed and improved for lattice physics calculations of real core loading of Light Water Reactors (LWR). It represents a promising alternative to the commercial lattice codes. At Karlsruhe Institute of Technology (Kit) a computational route based on Scale/Triton/Newt for BWR core loading is under development. The generated XS-data sets have to be transformed in PMAXS-format for use in the reactor dynamic code PARCS. This task is performed by the module GenPMAXS being developed and tested at the Michigan University. To verify the computational route, a BWR fuel assembly depletion problem was calculated by PARCS and compared to the CASMO results. Since the SCALE/TRITON XS-file does actually not contain all required neutronic data, FORTRAN routines have been developed to incorporate the missing data e.g. the yields of Iodine, Xenon and Promethium into the XS-data sets in the PMAXS-format. The comparison of the results obtained with PARCS (using the corrected PMAXS file) and CASMO for the depletion problem exhibited a good agreement. Consequently, this approach was followed for the generation of a complete XS-set for a real BWR core to be used in subsequent transient analysis. Then 3D neutronic and thermal hydraulic core model were elaborated for a TRACE/PARCS analysis. The thermal hydraulic model is based on the 3D VESSEL

  6. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation: Appendix 2E, Physical descriptions of LWR nonfuel assembly hardware, Appendix 2F, User's guide to the LWR nonfuel assembly data base

    International Nuclear Information System (INIS)

    This appendix includes a two to three page Physical Description report for each Non-fuel Assembly (NFA) Hardware item identified from the current data. Information was obtained via subcontracts with these NFA hardware vendors: Babcock and Wildox, Combustion Engineering and Westinghouse. Data for some NFA hardware are not available. For such hardware, the information shown in this report was obtained from the open literature. Efforts to obtain additional information are continuing. NFA hardware can be grouped into six categories: BWR Channels, Control Elements, Guide Tube Plugs/Orifice Rods, Instrumentation, Neutron Poisons, and Neutron Sources. This appendix lists Physical Description reports alphabetically by vendor within each category. Individual Physical Description reports can be generated interactively through the menu-driven LWR Non-Fuel Assembly Hardware Data Base system. These reports can be viewed on the screen, directed to a printer, or saved in a text file for later use. Special reports and compilations of specific data items can be produced on request

  7. Fuel cell system including a unit for electrical isolation of a fuel cell stack from a manifold assembly and method therefor

    Science.gov (United States)

    Kelley; Dana A. , Farooque; Mohammad , Davis; Keith

    2007-10-02

    A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.

  8. Assembly of laboratory line for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    The dismantling of a laboratory line for spent fuel reprocessing after the termination of the research programme and the procedures for hot and semi-hot cell decontamination are described. The equipment was mostly disassembled in smaller parts which were then decontaminated by wiping them with cotton wool soaked in detergent and citric acid, varnished with two-component epoxi varnish, wrapped into multiple polyethylene foils, sealed in PVC bags and thus ready for transport. (B.S.)

  9. Controlled beta-quenching of fuel channels using inert gas

    International Nuclear Information System (INIS)

    The trend towards higher fuel assembly discharge burnups poses new challenges for fuel channels in terms of their dimensional behavior and corrosion resistance. This led AREVA NP to develop a new technique for beta quenching of fuel channels that combines the effect of beta-quenching with the optimization of the microstructure. The first set of fuel channels with these optimized material properties have been placed in the core of a German boiling water reactor (BWR) nuclear power plant in spring of 2004. Some more channels have been sited in the core of a Scandinavian BWR in fall of 2007 to broaden the in-pile experience with these channels. Dimensional stability is the major requirement that is applied to fuel channels. High corrosion resistance and low hydrogen pickup are certainly required as well. However, corrosion and hydrogen pickup are usually not life limiting factors due to the large wall thickness of the material. Since thick layers of oxide may spall off extensively at high burnup and cause increase of the dose rate for the personnel, high corrosion resistance of fuel channels is mandatory. The fuel channels which surround BWR fuel assemblies are exposed to neutron irradiation as well as to loads induced by the reactor coolant flowing through them. These service conditions induce material growth and creep which cause permanent changes in the dimensions of the channels. Especially, fuel channel bow is of certain interest as increased channel bow may lead to some friction with control blades. Fuel channel bow is mainly induced by fluence gradients. However, there may be additional influences such as oxidation and hydrogen uptake to cause increased channel bow. The effect of hydrogen is currently discussed in the nuclear community to explain the unexpected high fuel channel bow that has been observed in some nuclear power plants. (orig.)

  10. Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly

    DEFF Research Database (Denmark)

    Min, Booki; Poulsen, Finn Willy; Thygesen, Anders;

    2012-01-01

    Membrane electrode assemblies (MEAs) were incorporated into the cathode chamber of a submersible microbial fuel cell (SMFC). A close contact of the electrodes could produce high power output from SMFC in which anode and cathode electrodes were connected in parallel. In polarization test, the maxi...

  11. Study of a fuel assembly for the nuclear reactor of IV generation cooled with supercritical water; Estudio de un ensamble de combustible para el reactor nuclear de generacion IV enfriado con agua supercritica

    Energy Technology Data Exchange (ETDEWEB)

    Barragan M, A.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Espinosa P, G., E-mail: albrm29@yahoo.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (MX)

    2011-11-15

    In this work a neutron study is presented about a square assembly design of double line of fuel rods, with moderator box to the center of the arrangement, for a nuclear reactor cooled with supercritical water (SCWR). The SCWR reactor was chosen by the characteristics of its design, mainly because is based in light water reactors (PWR and BWR), and the operational experience that has of them allow to use models and similar programs to simulate the fuel and the nucleus of this type of reactors. To develop the necessary models and to carry out the design and analysis of the SCWR reactor, the neutron codes MCNPX and Helios were used. The reason of using both codes, is because the code MCNPX used thoroughly in the neutron simulation of these reactors, it has been our reference code to analyze the results obtained with the Helios code which results are more efficient because its calculation times are minors. In the nucleus design the same parameters for both codes were considered. The results show that the design with Helios is a viable option to simulate these reactors since their values of the neutrons multiplication factor are very similar to those obtained with MCNPX. On the other hand, it could be corroborated that the CASMO-4 code is inadequate to simulate the fuel to the temperature conditions and water pressure in the SCWR. (Author)

  12. Statistical analysis in the design of nuclear fuel cells and training of a neural network to predict safety parameters for reactors BWR

    International Nuclear Information System (INIS)

    In this work the obtained results for a statistical analysis are shown, with the purpose of studying the performance of the fuel lattice, taking into account the frequency of the pins that were used. For this objective, different statistical distributions were used; one approximately to normal, another type X2 but in an inverse form and a random distribution. Also, the prediction of some parameters of the nuclear reactor in a fuel reload was made through a neuronal network, which was trained. The statistical analysis was made using the parameters of the fuel lattice, which was generated through three heuristic techniques: Ant Colony Optimization System, Neuronal Networks and a hybrid among Scatter Search and Path Re linking. The behavior of the local power peak factor was revised in the fuel lattice with the use of different frequencies of enrichment uranium pines, using the three techniques mentioned before, in the same way the infinite multiplication factor of neutrons was analyzed (k..), to determine within what range this factor in the reactor is. Taking into account all the information, which was obtained through the statistical analysis, a neuronal network was trained; that will help to predict the behavior of some parameters of the nuclear reactor, considering a fixed fuel reload with their respective control rods pattern. In the same way, the quality of the training was evaluated using different fuel lattices. The neuronal network learned to predict the next parameters: Shutdown Margin (SDM), the pin burn peaks for two different fuel batches, Thermal Limits and the Effective Neutron Multiplication Factor (keff). The results show that the fuel lattices in which the frequency, which the inverted form of the X2 distribution, was used revealed the best values of local power peak factor. Additionally it is shown that the performance of a fuel lattice could be enhanced controlling the frequency of the uranium enrichment rods and the variety of the gadolinium rods

  13. BWR type reactor

    International Nuclear Information System (INIS)

    In a coolant circulation in BWR type reactors, since the mixed stream of steam fluid undergoes a great resistance, the pressure loss due to the flow rate distribution when the coolants flow from the upper plenum into the stand pipe is increased upon passing stand pipe. Also in the spontaneous recycling reactor, pressure loss is still left upon passing the swirling blade of a gas-liquid separator. In view of the above, a plurality of vertical members each having a lower end opened to a gas-liquid two phase boundary and an upper end directly suspended from a steam dryer to the gas-liquid separator. The liquid droplets from the 2-phase boundary heated in the reactor core and formed into a mixed gas-liquid 2-phase stream is directed in the vertical direction accompanied with the steam. The liquid droplets spontaneously fallen by gravity from greater ones successively and the droplets in the steam abutted against the vertical member are fallen as a liquid membrane. Thus, the gas-liquid separation is conducted, the dry steam is directly flown into the steam dryer, thereby capable of providing a gas-liquid separator having gas-liquid separation performance with lower loss than usual. (N.H.)

  14. BWR type nuclear reactor

    International Nuclear Information System (INIS)

    Purpose: To simplify the structure of an emergency core cooling system while suppressing the flow out of coolants upon rapture accidents in a coolant recycling device of BWR type reactors. Constitution: Recirculation pumps are located at a position higher than the reactor core in a pressure vessel, and the lower plenum is bisected vertically by a partition plate. Further, a gas-liquid separator is surrounded with a wall and the water level at the outer side of the wall is made higher than the water level in the inside of the wall. In this structure, coolants are introduced from the upper chamber in the lower plenum into the reactor core, and the steams generated in the reactor core are separated in the gas-liquid separator, whereby the separated liquid is introduced as coolants by way of the inner chamber into the lower chamber of the lower plenum and further sent by way of the outer chamber into the reactor core. Consequently, idle rotation of the recycling pumps due to the flow-in of saturated water is prevented and loss of coolants in the reactor core can also be prevented upon raptures in the pipeway and the driving section of the pump connected to the pressure vessel and in the bottom of the pressure vessel. (Horiuchi, T.)

  15. Nuclear fuel assembly with a shock absorber system especially for seismic shocks

    International Nuclear Information System (INIS)

    Hydraulic system for absorbing impacts imparted to fuel assemblies. Internal buffers that brace the fuel assemblies so as to restrain their longitudinal displacement, rest against mobile spring buffers. Some of these spring buffers have plungers sliding in hollow tubular guide uprights provided with longitudinal slots. The end of each upright is closed by a plate fitted with an orifice. When an earthquake forces the plunger and spring buffer assemblies to move, the water under pressure in the upright guide tubes stop this movement. This water, which gushes from the holes in the plates, enables the displacement to take place at a controlled rate at which the forces applied are absorbed in complete safety. The plungers gradually close up the slots in the guide uprights, thereby progressively reducing the section through which the water inside the guide upright can flow out. The resistance increases progressively and protects the structure of the reactor core

  16. Spent fuel dry storage technology development: thermal evaluation of isolated drywell containing spent fuel (1.25 kW PWR spent fuel assembly)

    International Nuclear Information System (INIS)

    A spent fuel Isolated Drywell Test was conducted at the Engine-Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site utilizing a pressurized water reactor spent fuel assembly having a decay heat level of approximately 1.25 kW. The fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in an instrumented near-surface drywell is located 50 feet from an adjacent drywell. Instrumentation provided to measure canister, liner and soil temperatures consisted of thermocouples which were inserted into tubes on the outside of the canister and drywell liner and thermocouples which were attached to plastic pipe and grouted into holes in the soil. Temperatures from the isolated drywell and the adjacent soil were recorded throughout the nine month Isolated Drywell Test. Canister and drywell liner temperatures reached their peak values (3230F and 2620F, respectively) during October, 1980. Thereafter, all temperatures began to decrease in response to the decay heat and seasonal atmospheric temperature changes. This thermal response is comparable to that of the approximately 1.0 kW spent fuel assemblies previously tested at E-MAD where peak canister and liner temperatures of 2540F and 2030F were recorded. A previously developed computer model was utilized to predict the thermal response of the surrounding soil are presented and are compared with the test data

  17. A parametric study of assembly pressure, thermal expansion, and membrane swelling in PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2016-01-01

    Full Text Available Proton Exchange membrane (PEM fuel cells are still undergoing intense development, and the combination of new and optimized materials, improved product development, novel architectures, more efficient transport processes, and design optimization and integration are expected to lead to major gains in performance, efficiency, durability, reliability, manufacturability and cost-effectiveness. PEM fuel cell assembly pressure is known to cause large strains in the cell components. All components compression occurs during the assembly process of the cell, but also during fuel cell operation due to membrane swelling when absorbs water and cell materials expansion due to heat generating in catalyst layers. Additionally, the repetitive channel-rib pattern of the bipolar plates results in a highly inhomogeneous compressive load, so that while large strains are produced under the rib, the region under the channels remains approximately at its initial uncompressed state. This leads to significant spatial variations in GDL thickness and porosity distributions, as well as in electrical and thermal bulk conductivities and contact resistances (both at the ribe-GDL and membrane-GDL interfaces. These changes affect the rates of mass, charge, and heat transport through the GDL, thus impacting fuel cell performance and lifetime. In this paper, computational fluid dynamics (CFD model of a PEM fuel cell has been developed to simulate the pressure distribution inside the cell, which are occurring during fuel cell assembly (bolt assembling, and membrane swelling and cell materials expansion during fuel cell running due to the changes of temperature and relative humidity. The PEM fuel cell model simulated includes the following components; two bi-polar plates, two GDLs, and, an MEA (membrane plus two CLs. This model is used to study and analyses the effect of assembling and operating parameters on the mechanical behaviour of PEM. The analysis helped identifying critical

  18. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, F.D. Jr.; James, B.D. [Directed Technologies, Inc., Arlington, VA (United States); Mooradian, R.P. [Ford Motor Co., Dearborn, MI (United States)

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  19. The development of a package for the transport of new mixed oxide fuel assemblies within Europe

    International Nuclear Information System (INIS)

    The use of mixed oxide (MOX) fuels in commercial reactors has increased significantly over the past 10 years as an effective way of using stocks of plutonium produced from reprocessing uranium fuels. Now, with advances in fuel design MOX can give performance approaching that of enriched uranium fuel. To meet demand from European and Japanese utilities, British Nuclear Fuels are currently building a large scale plant at Sellafield to assemble MOX fuels. This required a new transport package to be developed capable of carrying high specification fuels to customers in Europe whilst complying with the latest 1996 IAEA ST-1 Transport Regulations. This package is known as Euromox and currently under development to enter service in 2003. Relatively few packages exist for the transport of MOX fuels and Euromox is the first designed by BNFL for shipments to Europe. Euromox has provided several technical challenges in its development arguably exceeding those typically encountered during the development of new packages for irradiated fuel transports. (author)

  20. Structural behaviour of fuel assemblies for water cooled reactors. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    At the invitation of the Government of France and in response to a proposal of the IAEA Technical Working Group on Water Reactor Fuel Performance and Technology (TWGFPT), the IAEA convened a Technical Meeting on Fuel Assembly Structural Behaviour in Cadarache, France, from 22 to 26 November 2004. The meeting was hosted by the CEA Cadarache Centre, AREVA Framatome-ANP and Electricite de France. The meeting aimed to provide in depth technical exchanges on PWR and WWER operational experience in the field of fuel assembly mechanical behaviour and the potential impact of future high burnup fuel management on fuel reliability. It addressed in-service experience and remedial solutions, loop testing experience, qualification and damage assessment methods (analytic or experimental ones), mechanical behaviour of the fuel assembly including dynamic and fluid structure interaction aspects, modelling and numerical analysis methods, and impact of the in-service evolution of the structural materials. Sixty-seven participants from 17 countries presented 30 papers in the course of four sessions. The topics covered included the impact of hydraulic loadings on fuel assembly (FA)performance, FA bow and control rod (CR) drop kinetics, vibrations and rod-to-grid wear and fretting, and, finally, evaluation and modelling of accident conditions, mainly from seismic causes. FA bow, CR drop kinetics and hydraulics are of great importance under conditions of higher fuel duties including burnup increase, thermal uprates and longer fuel cycles. Vibrations and rod-to-grid wear and fretting have been identified as a key cause of fuel failure at PWRs during the past several years. The meeting demonstrated that full-scale hydraulic tests and modelling provide sufficient information to develop remedies to increase FA skeleton resistance to hydraulic loads, including seismic ones, vibrations and wear. These proceedings are presented as a book with an attached CD-ROM. The first part of the CD

  1. High burnup fuel development program in Japan

    International Nuclear Information System (INIS)

    A step wise burnup extension program has been progressing in Japan to reduce the LWR fuel cycle cost. At present, the maximum assembly burnup limit of BWR 8 Χ 8 type fuel (B. Step II fuel) is 50GWd/t and a limited numbers of 9 Χ 9 type fuel (B. Step III fuel) with 55GWd/t maximum assembly burnup has been licensed by regulatory agencies recently. Though present maximum assembly burnup limit for PWR fuel is 48GWd/t (P. Step I fuel), the licensing work has been progressing for irradiation testing on a limited number of fuel assemblies with extended burnup of up to 55GWd/t (p. Step II fuel) Design of high burnup fuel and fabrication test are carried out by vendors, and subsequent irradiation test of fuel rods is conducted jointly by utilities and vendors to prepare for licensing. It is usual to make an irradiation test for vectarion, using lead use assemblies by government to confirm fuel integrity and reliability and win the public confidence. Nuclear Power Engineering Corporation (NUPE C) is responsible for verification test. The fuel are subjected to post irradiation examination (PIE) and no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors. Burnup extension is an urgent task for LWR fuel in Japan in order to establish the domestic fuel cycle. It is conducted in joint efforts of industries, government and institutes. However, watching a situation of burnup extension in the world, we are not going ahead of other countries in the achievement of burnup extension. It is due to a conservative policy in the nuclear safety of the country. This is the reason why the burnup extension program in Japan is progressing 'slow and steady' As for the data obtained, no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors until now

  2. Verification of plutonium content in spent fuel assemblies using neutron self-interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard O [Los Alamos National Laboratory; Menlove, Apencer H [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory

    2009-01-01

    The large amounts of plutonium in reactor spent fuel assemblies has led to increased research directed toward the measurement of the plutonium for safeguards verification. The high levels of fission product gamma-ray activity and curium neutron backgrounds have made the plutonium measurement difficult. We have developed a new technique that can directly measure both the {sup 235}U concentration and the plutonium fissile concentration using the intrinsic neutron emission fronl the curium in the fuel assembly. The passive neutron albedo reactivity (PNAR) method has been described previously where the curium neutrons are moderated in the surrounding water and reflect back into the fuel assembly to induce fissions in the fissile material in the assembly. The cadmium (Cd) ratio is used to separate the spontaneous fission source neutrons from the reflected thermal neutron fission reactions. This method can measure the sum of the {sup 235}U and the plutonium fissile mass, but not the separate components. Our new differential die-away self-interrogation method (DDSI) can be used to separate the {sup 235}U from the {sup 239}Pu. The method has been applied to both fuel rods and full assemblies. For fuel rods the epi-thermal neutron reflection method filters the reflected neutrons through thin Cd filters so that the reflected neutrons are from the epi-cadmium energy region. The neutron fission energy response in the epi-cadmium region is distinctly different for {sup 235}U and {sup 239}Pu. We are able to measure the difference between {sup 235}U and {sup 239}Pu by sampling the neutron induced fission rate as a function of time and multiplicity after the initial fission neutron is detected. We measure the neutron fission rate using list-mode data collection that stores the time correlations between all of the counts. The computer software can select from the data base the time correlations that include singles, doubles, and triples. The die-away time for the doubles

  3. Thermal simulation experiments with a UO2 fuel rod assembly

    International Nuclear Information System (INIS)

    Evidence is presented which shows that columnar grains can be induced to grow in high-density sintered uranium dioxide specimens by applying a steep temperature gradient at temperatures above 1700oC but below the melting point of 2800oC. Columnar growth apparently is a result of the migration of large transverse voids, whose individual widths define the cross sections of the grains, up a temperature gradient by a sublimation process. The grains grown by this process have a (iii) preferred orientation along their columnar axis. A consequence of such void migration in operating fuel elements containing solid UO2 pellets is the formation of a central void bounded by a region of oxide exhibiting columnar growth. (author)

  4. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.L.

    1991-11-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97{degrees}C and whether the cladding of the stored spent fuel ever exceeds 350{degrees}C. Limiting the borehole to temperatures of 97{degrees}C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350{degrees}C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 {times} 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97{degrees}C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350{degrees}C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft {times} 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40{degrees}C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation.

  5. Application of neutron well coincidence counting for plutonium determination in mixed oxide fuel fabrication plant

    International Nuclear Information System (INIS)

    Mixed oxide (MOX) fuel is an alternative to conventional enriched uranium oxide fuel in thermal reactors. Indian interest in plutonium recycle in thermal reactors is primarily due to the need to develop alternative indigenous fuel for two boiling water reactors (BWR) at Tarapur, which are designed to use imported light enriched uranium fuel. A few MOX assemblies have been fabricated and loaded into the reactors. Neutron well coincidence counting (NWCC) system has been successfully employed to check the enrichments of PuO2 in MOX blends. NWCC has also been successfully applied in developing dry recycling process of clean rejected oxide (CRO) and dirty rejected oxide (DRO). (author)

  6. Operation tests of parameters and new methods of the fuel rod production

    International Nuclear Information System (INIS)

    From 1974 to 1977 510 pathfinder fuel rods were inserted into the pressurized water reactor of Obrigheim (KWO) as part of several fuel reloads. They were irradiated for one to three reactor periods without indications of defects. The maximum burnup reached is about 36000 MWd/tU. In addition 80 fuel rods of the first core of the BWR power plant Isar (KKI, new fuel assembly type 8x8) were exactly precharacterized in 1977, to provide a good basis for post-irradiation examinations. (orig.) 891 HP/orig. 892 MKO

  7. Water confinement effects in response of fuel assembly to faulted condition loads

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.J.; Brenneman, B.; Williams, G.T.; Strumpel, J.H. [Framatome-ANP, Lynchburg (United States)

    2004-07-01

    It has been established by other authors that the accelerations of the water confined by the reactor core baffle plates has a significant effect on the responses of all the fuel assemblies during LOCA (loss of coolant accident) or seismic transients. This particular effect is a consequence of the water being essentially incompressible, and thus experiencing the same horizontal accelerations as the imposed baffle plate motions. These horizontal accelerations of the fluid induce lateral pressure gradients that cause horizontal buoyancy forces on any submerged structures. These forces are in the same direction as the baffle accelerations and, for certain frequencies at least, tend to reduce the relative displacements between the fuel and baffle plates. But there is another confinement effect: the imposed baffle plate velocities must also be transmitted to the water. If the fuel assembly grid strips are treated as simple hydro-foils, these horizontal velocity components change the fluid angle of attack on each strip, and thus may induce large horizontal lift forces on each grid in the same direction as the baffle plate velocity. There is a similar horizontal lift due to inclined flow over the rods when axial flow is present. These combined forces appear to reduce the relative displacements between the fuel and baffle plates for any significant axial flow velocity. Modeling this effect is very simple. It was shown in previous papers that the mechanism for the large fuel assembly damping due to axial flow may be the hydrodynamic forces on the grid strips, and that this is very well represented by discrete viscous dampers at each grid elevation. To include the imposed horizontal water velocity effects, on both the grids and rods, these dampers are simply attached to the baffle plate rather than 'ground'. The large flow-induced damping really acts in a relative reference frame rather than an inertial reference frame, and thus it becomes a flow-induced coupling

  8. Acceptance of non-fuel assembly hardware by the Federal Waste Management System

    International Nuclear Information System (INIS)

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high-priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high-level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for delivery; and defense and commercial high-level waste packages. 14 refs., 12 figs., 43 tabs

  9. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    International Nuclear Information System (INIS)

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e’n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides 232Th, 238U and 237Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program

  10. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio [Universidad Simón Bolívar, Nuclear Physics Laboratory, Apdo 89000, Caracas 1080A (Venezuela, Bolivarian Republic of); Davila, Jesus [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e’n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides {sup 232}Th, {sup 238}U and {sup 237}Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  11. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    Science.gov (United States)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Davila, Jesus; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio

    2015-07-01

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e'n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides 232Th, 238U and 237Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  12. An advanced frequency-domain code for boiling water reactor (BWR) stability analysis and design

    International Nuclear Information System (INIS)

    for a large reactor could reach 20 gigabytes) that it is not possible to load into RAM memory of an operating system with 32 bit architecture. A special procedure has been developed within the MATLAB environment to remove this memory limitation, and to invert such large matrices and finally obtain the reactor transfer functions that enable the study of system stability. Various applications of the present frequency-domain code to a typical BWR fuel assembly, a BWR core, and to a chemical reactor showed a good agreement with reference results. (author)

  13. Predicting fissile content of spent nuclear fuel assemblies with the Passive Neutron Albedo Reactivity technique and Monte Carlo code emulation

    International Nuclear Information System (INIS)

    There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed. (author)

  14. Predicting fissile content of spent nuclear fuel assemblies with the passive neutron Albedo reactivity technique and Monte Carlo code emulation

    International Nuclear Information System (INIS)

    There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed.

  15. Influence of Metal Shells around Fuel Assemblies on Criticality Calculations for a Fuel Storage Pool

    OpenAIRE

    Babichev, L.; Khmialeuski, A.

    2012-01-01

    Influence of metal shells and size of cells in a fuel storage pool on the value of the effective neutron multiplication factor was studied. Monte Carlo code MCU-FREE was used in the criticality calculations. A criticality analysis of spent fuel storage pools for different degrees of packing of cells in the rack was performed.

  16. A coating to protect spent aluminium-clad research reactor fuel assemblies during extended wet storage

    International Nuclear Information System (INIS)

    Pitting corrosion of aluminium (Al) alloy clad research reactor (RR) fuel in wet storage facilities can be reduced to a large extent by maintaining water parameters within specified limits. However, factors like bimetallic contact, settled solids and synergistic effects of many storage basin water parameters provoke cladding corrosion. Increase in corrosion resistance of spent Al-clad RR fuels can be achieved through the use of conversion coatings. This paper presents: (a) details about the formation of cerium dioxide as a conversion coating on Al alloys used as RR fuel cladding; (b) the corrosion resistance of cerium dioxide coated Al alloy specimens exposed to NaCl solutions. Marked improvements in corrosion resistance of cerium dioxide coated Al specimens were observed. This paper also presents details of a Latin American Project to develop conversion coatings for long term safe wet storage of spent Al-clad RR spent fuel assemblies. (author)

  17. Comparison of hydrogen generation for TVSM and TVSA fuel assemblies for water water energy reactor (VVER)-1000

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, A.E. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)], E-mail: antoanet@inrne.bas.bg; Groudev, P.P. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)], E-mail: pavlinpg@inrne.bas.bg; Atanasova, B.P. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)], E-mail: b_atanasova@inrne.bas.bg

    2009-01-15

    This paper presents the results received during investigation of hydrogen generation for both types fuel assemblies-the old modernistic type of fuel assemblies (TVSM) and recently installed new one alternative type of fuel assemblies (TVSA) in case of severe accident. There are some differences between both types FAs. They have different geometry as well as different burnable poisons. To investigate behavior of new fuel assemblies during the severe conditions it have been performed comparison of fuel behavior of old type TVSM fuel assembly to new one TVSA. To perform this investigation it has been used MELCOR 'input model' for Kozloduy Nuclear Power Plant (KNPP) VVER 1000. The model was developed by Institute for Nuclear Research and Nuclear Energy-Bulgarian Academy of Sciences (INRNE-BAS) for investigation of severe accident scenarios and Probabilistic Safety Analyses (PSA) level 2. The model provides a significant analytical capability for the Bulgarian technical specialists, working in the field of the NPP safety, for analysis of core and containment damaged states and the estimation of radionuclides release outside fuel cladding. It was accepted criteria for vessel integrity about hydrogen concentration to be 8%. This criterion was based on the decision of RSK (Germany commission for reactor safety). Generally based on the received results it was made conclusion that using both types of fuel assemblies it was not disturbance safety conditions of NPP.

  18. Computed isotopic inventory and dose assessment for SRS fuel and target assemblies

    International Nuclear Information System (INIS)

    Past studies have identified and evaluated important radionuclide contributors to dose from reprocessed spent fuel sent to waste for Mark 16B and 22 fuel assemblies and for Mark 31 A and 31B target assemblies. Fission-product distributions after a 5- and 15-year decay time were calculated for a ''representative'' set of irradiation conditions (i.e., reactor power, irradiation time, and exposure) for each type of assembly. The numerical calculations were performed using the SHIELD/GLASS system of codes. The sludge and supernate source terms for dose were studied separately with the significant radionuclide contributors for each identified and evaluated. Dose analysis considered both inhalation and ingestion pathways: The inhalation pathway was analyzed for both evaporative and volatile releases. Analysis of evaporative releases utilized release fractions for the individual radionuclides as defined in the ICRP-30 by DOE guidance. A release fraction of unity was assumed for each radionuclide under volatile-type releases, which would encompass internally initiated events (e.g., fires, explosions), process-initiated events, and externally initiated events. Radionuclides which contributed at least 1% to the overall dose were designated as significant contributors. The present analysis extends and complements the past analyses through considering a broader spectrum of fuel types and a wider range of irradiation conditions. The results provide for a more thorough understanding of the influences of fuel composition and irradiation parameters on fission product distributions (at 2 years or more). Additionally, the present work allows for a more comprehensive evaluation of radionuclide contributions to dose and an estimation of the variability in the radionuclide composition of the dose source term that results from the spent fuel sent to waste encompassing a broad spectrum of fuel compositions and irradiation conditions

  19. Characterization of spent fuel disassembly hardware and nonfuel bearing components and their relationship to 10 CFR 61

    International Nuclear Information System (INIS)

    There are a variety of wastes that will be disposed of by the federal waste management system under the Nuclear Waste Policy Act of 1982. The primary waste form is spent nuclear fuel. Currently, this is in the form of fuel assemblies. If the fuel pins are removed from the fuel assembly, as in consolidation, then the fuel pins and the structural portion of the fuel assembly must be considered as separate waste streams. The structural hardware consists of end fittings, grid spacers, water rods (BWR 8 x 8 only), control rod guide tubes (PWR only) and various nuts, washers, springs, etc. These are referred to as spent fuel disassembly (SFD) hardware. There will also be a number of other components which are defined in Appendix E of 10 CFR 961, the standard utility contract. These are referred to as nonfuel-bearing (NFB) components, and include fuel channels (BWR), control rods, fission chambers, neutron sources, thimble plugs, and other components. This paper characterizes spent fuel disassembly (SFD) hardware, and nonfuel-bearing (NFB) components for the most abundant fuel types. The descriptions and figures given are representative for the items described. Many subvariants exist due to design evaluation, which are not covered. This paper also discusses the relationship of these wastes to 10 CFR 61 waste classification

  20. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G. [and others

    1997-10-01

    The Solution High-Energy Burst Assembly (SHEBA) was originally constructed during 1980 and was designed to be a clean free-field geometry, right-circular, cylindrically symmetric critical assembly employing U(5%)O{sub 2}F{sub 2} solution as fuel. A second version of SHEBA, employing the same fuel but equipped with a fuel pump and shielding pit, was commissioned in 1993. This report includes data and operating experience for the 1993 SHEBA only. Solution-fueled benchmark work focused on the development of experimental measurements of the characterization of SHEBA; a summary of the results are given. A description of the system and the experimental results are given in some detail in the report. Experiments were designed to: (1) study the behavior of nuclear excursions in a low-enrichment solution, (2) evaluate accidental criticality alarm detectors for fuel-processing facilities, (3) provide radiation spectra and dose measurements to benchmark radiation transport calculations on a low-enrichment solution system similar to centrifuge enrichment plants, and (4) provide radiation fields to calibrate personnel dosimetry. 15 refs., 37 figs., 10 tabs.

  1. The influence of ribbon holes on fuel assembly thermal hydraulic performance

    International Nuclear Information System (INIS)

    Two kinds of PWR space grids, structure mixing grid (MG) and mid span mixing grid (MSMG) exist in fuel assembly. There are spring, dimple, ribbon and mixing vanes in Structure mixing grid. The ribbon with hole or without hole will influence the fuel assembly thermal-hydraulic performance. Two 5×5 rod bundle with two space girds, one is structure mixing grid, another is mid span mixing grid are analyzed using CFD method. The two calculations are different in structure mixing grid, one with holes on ribbon, the other one without holes on ribbon. The fuel rods are heated. The whole meshes are about 20 million. The result shows that the ribbon with holes increases pressure loss in space grid area. The holes’ influence on temperature field and flow field are mainly observed at structure space grid downstream, near the mid span mixing grid. Though the ribbon with holes shows limit influence on temperature field, it makes the low pressure area appears around peripheral fuel rods, and the swirl near the ribbon somewhere disappear, thus bubbles are more possible to cluster near the peripheral fuel rods. For further research, two phase CFD could be used to analyze the bubble behaviors. (author)

  2. CERCA LEU fuel assemblies testing in Maria Reactor - safety analysis summary and testing program scope.

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, K.; Mieleszczenko, W.; Lechniak, J.; Moldysz, A.; Andrzejewski, K.; Kulikowska, T.; Marcinkowska, A.; Garner, P. L.; Hanan, N. A.; Nuclear Engineering Division; Institute of Atomic Energy (Poland)

    2010-03-01

    The presented paper contains neutronic and thermal-hydraulic (for steady and unsteady states) calculation results prepared to support annex to Safety Analysis Report for MARIA reactor in order to obtain approval for program of testing low-enriched uranium (LEU) lead test fuel assemblies (LTFA) manufactured by CERCA. This includes presentation of the limits and operational constraints to be in effect during the fuel testing investigations. Also, the scope of testing program (which began in August 2009), including additional measurements and monitoring procedures, is described.

  3. On the evaluation of a fuel assembly design by means of uncertainty and sensitivity measures

    International Nuclear Information System (INIS)

    This paper will provide results of an uncertainty and sensitivity study in order to calculate parameters of safety related importance like the fuel centerline temperature, the cladding temperature and the fuel assembly pressure drop of a lead-alloy cooled fast system. Applying best practice guidelines, a list of uncertain parameters has been identified. The considered parameter variations are based on the experience gained during fabrication and operation of former and existing liquid metal cooled fast systems as well as on experimental results and on engineering judgment. (orig.)

  4. COBRA-SFS predictions of single assembly spent fuel heat transfer data

    International Nuclear Information System (INIS)

    The study reported here is one of several efforts to evaluate and qualify the COBRA-SFS computer code for use in spent fuel storage system thermal analysis. The ability of COBRA-SFS to predict the thermal response of two single assembly spent fuel heat transfer tests was investigated through comparisons of predictions with experimental test data. From these comparisons, conclusions regarding the computational treatment of the physical phenomena occurring within a storage system can be made. This objective was successfully accomplished as reasonable agreement between predictions and data were obtained for the 21 individual test cases of the two experiments

  5. Evaluation of CASMO-3 and HELIOS for Fuel Assembly Analysis from Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyung Jin; Song, Jae Seung; Lee, Chung Chan

    2007-05-15

    This report presents a study comparing deterministic lattice physics calculations with Monte Carlo calculations for LWR fuel pin and assembly problems. The study has focused on comparing results from the lattice physics code CASMO-3 and HELIOS against those from the continuous-energy Monte Carlo code McCARD. The comparisons include k{sub inf}, isotopic number densities, and pin power distributions. The CASMO-3 and HELIOS calculations for the k{sub inf}'s of the LWR fuel pin problems show good agreement with McCARD within 956pcm and 658pcm, respectively. For the assembly problems with Gadolinia burnable poison rods, the largest difference between the k{sub inf}'s is 1463pcm with CASMO-3 and 1141pcm with HELIOS. RMS errors for the pin power distributions of CASMO-3 and HELIOS are within 1.3% and 1.5%, respectively.

  6. Parametric study on parallel flow induced damping of PWR fuel assembly

    International Nuclear Information System (INIS)

    This paper reports on a mechanism of parallel flow-induced changes in vibrational characteristics of PWR fuel assemblies that has been studied through a series of hydraulic tests using reduced-and full-scale prototype mockups. Measured data and analytical evaluations showed the phenomenon stands on essentially the same basis as the dynamics and stability of flexible cylinders subjected to a parallel flow. In the mathematical model, the effects of rod bundle geometries and boundaries formed by walls or adjacent bundles can be exactly incorporated in the form of added mass coefficients, velocity coupling coefficients and other fluid forces. From a full scale test, it has been shown that coolant temperature has little effect up to reactor operating conditions. The updated FEM model has been verified to be applicable in describing the vibrational characteristics of from an isolated cylinder to a full scale fuel assembly in terms of the consistent properties

  7. Two dimensional, two fluid model for sodium boiling in LMFBR fuel assemblies

    International Nuclear Information System (INIS)

    A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms. Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model. Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions

  8. Blockages in LMFBR fuel assemblies: a review of experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Han, J. T.

    1977-08-08

    This is a state-of-the-art report on the thermal-hydraulic effects of flow-channel blockages in liquid-metal fast breeder reactor (LMFBR) pin bundles. Most of the experimental and theoretical studies for simulating blockages in various prototype LMFBR fuel assemblies done in the United States and abroad through 1976 are presented and summarized. A brief summary on blockage detection is included.

  9. A thermal-hydraulic test rig for advanced fast reactor fuel assemblies

    International Nuclear Information System (INIS)

    A new design of fast reactor fuel assemblies has been proposed in which the pins are supported in grids attached to the wrapper by flexible skirts. Coolant mixing is enhanced by the skirts diverting flow into the cluster of pins at each grid. There are insufficient empirical data available for the detailed design of the skirt or for the input to computer calculations of flow and heat transfer. A test rig to provide these data has been designed and built. (author)

  10. Quality assurance in the procurement, design and manufacture of nuclear fuel assemblies

    International Nuclear Information System (INIS)

    This Safety Guide provides requirements and recommendations for quality assurance programmes that are relevant for the unique features of the procurement, design, manufacture, inspection, testing, packaging, shipping, storage, and receiving inspection of fuel assemblies for nuclear power plants. The generic quality assurance requirements of the Code and related Safety Guides are referred to where applicable, and are duplicated in this document where increased emphasis is desirable

  11. Castor transport and storage casks for VVER and RBMK fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Gartz, R.; Gobler, A.; John, R.; Diersch, R. [GNB Gesellschaft fur Nuklear-Behalter mbH, Essen (Germany); Nemec, P. [Skoda Nuclear Machinery Plzen (Czech Republic)

    1998-12-31

    CASTOR casks have been successfully developed, manufactured and delivered for Russian type reactor fuel assemblies. These casks fulfill both the requirements for type B packages according to IAEA regulations and the requirements covering different accident situations to be assumed at the storage site. In the following, the CASTOR casks CASTOR 440/84, CASTOR RBMK and CASTOR VVER 1000 are described, the nuclear content is characterized and an overview about the status of licensing, manufacturing and delivery is given. (authors) 3 refs.

  12. Analysis of burnup credit on spent fuel transport / storage casks - estimation of reactivity bias

    International Nuclear Information System (INIS)

    Chemical analyses of high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins were carried out. Measured data of nuclides' composition from U234 to P 242 were used for evaluation of ORIGEN-2/82 code and a nuclear fuel design code (NULIF). Critically calculations were executed for transport and storage casks for 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for axial and horizontal profiles of burnup, and historical void fraction (BWR), operational histories such as control rod insertion history, BPR insertion history and others, and calculational accuracy of ORIGEN-2/82 on nuclides' composition. This study shows that introduction of burnup credit has a large merit in criticality safety analysis of casks, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for the present reactivity bias evaluation and showed the possibility of simplifying the reactivity bias evaluation in burnup credit. (authors)

  13. Development of image processing system for innovative laser welding of nuclear fuel assembly

    International Nuclear Information System (INIS)

    Laser welding technique has been rapidly developed with respect to high power lasers such as CO2 laser, Nd:YAG laser, and etc. Laser welding has advantages to weld materials more precisely due to precise focusing of the laser beam and a little heat affected zone(HAZ). Nowadays, Nd:YAG lasers are used for manufacturing spacer grid assembly of nuclear fuel. The correct positioning is very important factor in laser welding of space grid. We have developed an image processing system and optical assembly for correcting weld positions of space grid assembly in laser welding process. In this paper, the development of optical design and image processing system for a new innovative laser welding system is described

  14. Total evaluation of in bundle void fraction measurement test of PWR fuel assembly

    International Nuclear Information System (INIS)

    Nuclear Power Engineering Corporation is performing the various proof or verification tests on safety and reliability of nuclear power plants under the sponsorship of the Ministry of International Trade and Industry. As one program of these Japanese national projects, an in bundle void fraction measurement test of a pressurized water reactor (PWR) fuel assembly was started in 1987 and finished at the end of 1994. The experiments were performed using the 5 x 5 square array rod bundle test sections. The rod bundle test section simulates the partial section and full length of a 17 x 17 type Japanese PWR fuel assembly. A distribution of subchannel averaged void fraction in a rod bundle test section was measured by the gamma-ray attenuation method using the stationary multi beam systems. The additional single channel test was performed to obtain the required information for the calibration of the rod bundle test data and the assessment of the void prediction method. Three test rod bundles were prepared to analyze an axial power distribution effect, an unheated rod effect, and a grid spacer effect. And, the obtained data were used for the assessment of the void prediction method relevant to the subchannel averaged void fraction of PWR fuel assemblies. This paper describes the outline of the experiments, the evaluation of the experimental data and the assessment of void prediction method

  15. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  16. An alternative solution for heavy liquid metal cooled reactors fuel assemblies

    International Nuclear Information System (INIS)

    Highlights: • A new fuel assembly locking system for heavy metal cooled reactor is proposed. • Neutronic, mechanical and thermal-hydraulic evaluations of the system behavior have been performed. • A comparison with other solutions has been presented. - Abstract: In the coming future, the electric energy production from nuclear power plants will be provided by both thermal reactors and fast reactors. In order to have a sustainable energy production through fission reactors, fast reactors should provide an increasing contribution to the total electricity production from nuclear power plants. Fast reactors have to achieve economic and technical targets of Generation IV. Among these reactors, Sodium cooled Fast Reactors (SFRs) and Lead cooled Fast Reactors (LFRs) have the greatest possibility to be developed as industrial power plants within few decades. Both SFRs and LFRs require a great R and D effort to overcome some open issues which affect the present designs (e.g. sodium-water reaction for the SFRs, erosion/corrosion for LFRs, etc.). The present paper is mainly focused on LFR fuel assembly (FA) design: issues linked with the high coolant density of lead or lead–bismuth eutectic cooled reactors have been investigated and an innovative solution for the core mechanical design is here proposed and analyzed. The solution, which foresees cylindrical fuel assemblies and exploits the buoyancy force due to the lead high density, allows to simplify the FAs locking system, to reduce their length and could lead to a more uniform neutron flux distribution

  17. Iterative ct reconstruction from few projections for the nondestructive post irradiation examination of nuclear fuel assemblies

    Science.gov (United States)

    Abir, Muhammad Imran Khan

    The core components (e.g. fuel assemblies, spacer grids, control rods) of the nuclear reactors encounter harsh environment due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of the nuclear power plants. The Post Irradiation Examination (PIE) can reveal information about the integrity of the elements during normal operations and off?normal events. Computed tomography (CT) is a tool for evaluating the structural integrity of elements non-destructively. CT requires many projections to be acquired from different view angles after which a mathematical algorithm is adopted for reconstruction. Obtaining many projections is laborious and expensive in nuclear industries. Reconstructions from a small number of projections are explored to achieve faster and cost-efficient PIE. Classical reconstruction algorithms (e.g. filtered back projection) cannot offer stable reconstructions from few projections and create severe streaking artifacts. In this thesis, conventional algorithms are reviewed, and new algorithms are developed for reconstructions of the nuclear fuel assemblies using few projections. CT reconstruction from few projections falls into two categories: the sparse-view CT and the limited-angle CT or tomosynthesis. Iterative reconstruction algorithms are developed for both cases in the field of compressed sensing (CS). The performance of the algorithms is assessed using simulated projections and validated through real projections. The thesis also describes the systematic strategy towards establishing the conditions of reconstructions and finds the optimal imaging parameters for reconstructions of the fuel assemblies from few projections.

  18. An alternative solution for heavy liquid metal cooled reactors fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Di Maio, Damiano, E-mail: damiano.vitaledimaio@uniroma1.it [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Cretara, Luca; Giannetti, Fabio [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Peluso, Vincenzo [“ENEA”, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Gandini, Augusto [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Manni, Fabio [“SRS Engineering Design S.r.l.”, Vicolo delle Palle 25-25/b, 00186 Rome (Italy); Caruso, Gianfranco [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy)

    2014-10-15

    Highlights: • A new fuel assembly locking system for heavy metal cooled reactor is proposed. • Neutronic, mechanical and thermal-hydraulic evaluations of the system behavior have been performed. • A comparison with other solutions has been presented. - Abstract: In the coming future, the electric energy production from nuclear power plants will be provided by both thermal reactors and fast reactors. In order to have a sustainable energy production through fission reactors, fast reactors should provide an increasing contribution to the total electricity production from nuclear power plants. Fast reactors have to achieve economic and technical targets of Generation IV. Among these reactors, Sodium cooled Fast Reactors (SFRs) and Lead cooled Fast Reactors (LFRs) have the greatest possibility to be developed as industrial power plants within few decades. Both SFRs and LFRs require a great R and D effort to overcome some open issues which affect the present designs (e.g. sodium-water reaction for the SFRs, erosion/corrosion for LFRs, etc.). The present paper is mainly focused on LFR fuel assembly (FA) design: issues linked with the high coolant density of lead or lead–bismuth eutectic cooled reactors have been investigated and an innovative solution for the core mechanical design is here proposed and analyzed. The solution, which foresees cylindrical fuel assemblies and exploits the buoyancy force due to the lead high density, allows to simplify the FAs locking system, to reduce their length and could lead to a more uniform neutron flux distribution.

  19. Benchmark physics experiment of metallic-fueled LMFBR at FCA. 2; Experiments of FCA assembly XVI-1 and their analyses

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, Susumu; Oigawa, Hiroyuki; Ohno, Akio; Sakurai, Takeshi; Nemoto, Tatsuo; Osugi, Toshitaka; Satoh, Kunio; Hayasaka, Katsuhisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Bando, Masaru

    1993-10-01

    An availability of data and method for a design of metallic-fueled LMFBR is examined by using the experiment results of FCA assembly XVI-1. Experiment included criticality and reactivity coefficients such as Doppler, sodium void, fuel shifting and fuel expansion. Reaction rate ratios, sample worth and control rod worth were also measured. Analysis was made by using three-dimensional diffusion calculations and JENDL-2 cross sections. Predictions of assembly XVI-1 reactor physics parameters agree reasonably well with the measured values, but for some reactivity coefficients such as Doppler, large zone sodium void and fuel shifting further improvement of calculation method was need. (author).

  20. Structural integrity assessment and stress measurement of CHASNUPP-1 fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Waseem,, E-mail: wazim_me@hotmail.com; Murtaza, Ghulam; Elahi, Nadeem

    2014-12-15

    Highlights: • Finite element model of CHASNUPP-1 fuel assembly produced, using Shell181 elements. • Non-linear contact and buckling analysis have been performed. • Structural integrity and stress measurement of fuel assembly is calculated. • Calculated stresses and deformations, are compared with test results. • Results of both studies are comparable, which validate finite element methodology. - Abstract: Fuel assembly of the PWR nuclear power plant is a long and flexible structure. This study has been made in an attempt to find the structural integrity of the fuel assembly (FA) of Chashma Nuclear Power Plant-1 (CHASNUPP-1) at room temperature in air. Non-linear contact and buckling analyses have been performed using ANSYS 13.0, in-order to determine the FA's deformation behaviour as well as the location/values of the maximum stress intensity and stresses developed in axial direction under applied compression load of 7350 N or 1.6 g being the FA's handling load (Zhang et al., 1994). The finite element (FE) model comprises spacer grids, fuel rods, flexible contact between the fuel rods and grids’ supports system (springs and dimples) and guide thimbles with dash-pots and flow holes, in addition to the spot welds between spacer grids and guide thimbles, has been developed using Shell181, Conta174 and Targe170 elements. FA is a non-straight structure. The actual behaviour of the geometry is non-linear. The value of the perturbation force is related to the geometry of the model and/or the tolerance defined for the geometry. Therefore, a sensitivity study has been made to determine the appropriate value of an arbitrary perturbation load. It has been observed that FA deformation values obtained through FE analysis and experiment (SNERDI Tech Doc, 1994) under applied compression load are comparable and show linear behaviours. Therefore, it is confirmed that buckling of FA will not occur at the specified load. Moreover, the values of stresses obtained

  1. Structural integrity assessment and stress measurement of CHASNUPP-1 fuel assembly

    International Nuclear Information System (INIS)

    Highlights: • Finite element model of CHASNUPP-1 fuel assembly produced, using Shell181 elements. • Non-linear contact and buckling analysis have been performed. • Structural integrity and stress measurement of fuel assembly is calculated. • Calculated stresses and deformations, are compared with test results. • Results of both studies are comparable, which validate finite element methodology. - Abstract: Fuel assembly of the PWR nuclear power plant is a long and flexible structure. This study has been made in an attempt to find the structural integrity of the fuel assembly (FA) of Chashma Nuclear Power Plant-1 (CHASNUPP-1) at room temperature in air. Non-linear contact and buckling analyses have been performed using ANSYS 13.0, in-order to determine the FA's deformation behaviour as well as the location/values of the maximum stress intensity and stresses developed in axial direction under applied compression load of 7350 N or 1.6 g being the FA's handling load (Zhang et al., 1994). The finite element (FE) model comprises spacer grids, fuel rods, flexible contact between the fuel rods and grids’ supports system (springs and dimples) and guide thimbles with dash-pots and flow holes, in addition to the spot welds between spacer grids and guide thimbles, has been developed using Shell181, Conta174 and Targe170 elements. FA is a non-straight structure. The actual behaviour of the geometry is non-linear. The value of the perturbation force is related to the geometry of the model and/or the tolerance defined for the geometry. Therefore, a sensitivity study has been made to determine the appropriate value of an arbitrary perturbation load. It has been observed that FA deformation values obtained through FE analysis and experiment (SNERDI Tech Doc, 1994) under applied compression load are comparable and show linear behaviours. Therefore, it is confirmed that buckling of FA will not occur at the specified load. Moreover, the values of stresses obtained

  2. Structural evaluation of Siemens advanced fuel channel under accident loadings

    International Nuclear Information System (INIS)

    As a part of an effort to develop an advanced BWR fuel channel design, Siemens Power Corporation (SPC) and the Siemens AG Power Generation Group (KWU) performed structural analyses to verify the acceptability of the fuel channel design under combined seismic/LOCA (Loss Of. Coolant Accident) loadings. The results of the analyses give some interesting insights into the problem: 1) fluid-structure interaction (FSI) effects are significant and should be considered, 2) the problem may simplified by using a linear analysis despite non-linear features (gaps) between interfacing components, and 3) sufficient accuracy may be obtained by using only the first mode of vibration. The channeled fuel assembly can be considered to be a beam where the flexural stiffness is primarily determined by the fuel channel and the mass is given by the fuel assembly. The results from the analyses show the advanced fuel channel design meets applicable design criteria with adequate margins while at the same time exhibiting superior nuclear performance compared to a conventional BWR fuel channel. (author)

  3. Coupled computational fluid dynamics and MOC neutronic simulations of Westinghouse PWR fuel assemblies with grid spacers

    International Nuclear Information System (INIS)

    Neutronic coupling with Computational Fluid Dynamics (CFD) has been under development within the US DOE sponsored “Nuclear Simulation Hub”. The method of characteristics (MOC) neutronics code DeCART ([Joo, 2004], [Kochunas, 2009]) under development at the University of Michigan was coupled with the CFD code STAR-CCM+ to achieve more accurate predictions of fuel assembly performance. At Westinghouse, lower order, neutronic codes such as the nodal code ANC have been coupled to thermal-hydraulics codes such the subchannel code VIPRE to predict the heat flux and fuel nuclear behavior. However, a more detailed neutronics and temperature / fluid field simulation of fuel assembly models which includes explicit representation of spacer grids would considerably improve the design and assessment of new fuel assembly designs. Coupled STAR-CCM+ / DeCART calculations have been performed for various representative three-dimensional models with explicit representation of spacer grids with mixing vanes. The high fidelity results have been compared to lower order simulations. The coupled CFD/MOC solution has provided a more truthful model which includes a more accurate representation of all the important physics such as fission energy, heat convection, heat conduction, and turbulence. Of particular significance is the ability to assess the effects of the mixing grid on the coolant temperature and density distribution using coupled thermal/fluids and neutronic solutions. A more precise cladding temperature can be derived by this approach which will also enable more accurate prediction of departure from nucleate boiling (DNB), as well as a better understanding of DNB margin and crud build up on the fuel rod. (author)

  4. Human factors and safety issues associated with actinide retrieval from spent light water reactor fuel assemblies

    International Nuclear Information System (INIS)

    A major problem in environmental restoration and waste management is the disposition of used fuel assemblies from the many light water reactors in the United States, which present a radiation hazard to those whose job is to dispose of them, with a similar threat to the general environment associated with long-term storage in fuel repositories around the country. Actinides resident in the fuel pins as a result of their use in reactor cores constitute a significant component of this hazard. Recently, the Department of Energy has initiated an Actinide Recycle Program to study the feasibility of using pyrochemical (molten salt) processes to recover actinides from the spent fuel assemblies of commercial reactors. This project concerns the application of robotics technology to the operation and maintenance functions of a plant whose objective is to recover actinides from spent fuel assemblies, and to dispose of the resulting hardware and chemical components from this process. Such a procedure involves a number of safety and human factors issues. The purpose of the project is to explore the use of robotics and artificial intelligence to facilitate accomplishment of the program goals while maintaining the safety of the humans doing the work and the integrity of the environment. This project will result in a graphic simulation on a Silicon Graphics workstation as a proof of principle demonstration of the feasibility of using robotics along with an intelligent operator interface. A major component of the operator-system interface is a hybrid artificial intelligence system developed at Oak Ridge National Laboratory, which combines artificial neural networks and an expert system into a hybrid, self-improving computer-based system interface. 10 refs

  5. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  6. Experimental investigations of heat transfer during sodium boiling in fuel assembly model in justification of advanced fast reactor safety

    International Nuclear Information System (INIS)

    The experimental facility is built up and investigation of heat exchange during sodium boiling in simulated fast reactor core assembly in conditions of natural and forced circulation with sodium plenum and upper end shield model are conducted. It is shown that in the presence of sodium plenum there is possibility to provide long-term cooling of fuel assembly when heat flux density on the surface of fuel element simulator up to 140 and 170 kW/m2 in conditions of natural and forced circulation, respectively. The obtained data is used for improving calculational model of sodium boiling process in fuel assembly and calculational code COREMELT verification. It is pointed out that heat transfer coefficients in the case of liquid metal boiling in fuel assemblies are slightly over the ones in the case of liquid metals boiling in pipes and pool boiling

  7. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    International Nuclear Information System (INIS)

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO2 fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  8. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  9. FEM analysis of the top nozzle with welding parts of 16NGF fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, Carlos Frederico Mattos; Brittes, Luiz Henrique Alves; Silva, Marcio Adriano Coelho da [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil)]. E-mails: carlosschettino@inb.gov.br; brittes@inb.gov.br; marcio.adriano@inb.gov.br

    2007-07-01

    The present work aims to evaluate structurally the welded Top Nozzle (previously casting) used in the fuel assembly type 16 x 16 used in the Nuclear Power Plant Angra I. The full solid model of this component was generated with SOLIDWORKS program and later imported to ANSYS 10.0 program. For the Finite Element model were used elements SOLID-92 and BEAM3. The validation of the analysis was lead comparing the results got from simulation using ANSYS to physical tests already performed previously in the Westinghouse Electric Company (U.S.A.). The analysis covered specific loads simulating the conditions found during the shipping and handling of the Fuel Element (static loads corresponding to 4g - four times the Fuel Element weight) as well as simulating the conditions found during the operation of the nuclear power plant (Conditions I, II, III and IV). The structural integrity of the Top Nozzle is assured when the design criteria, defined in the ASME Code Section III (Boilers and Pressures Vessels), are satisfied. The results of these analysis were used to prove that the welded Top Nozzle is capable to keep the dimensional stability for which it was designed when submitted to loads that correspond to required stresses for its use in Nuclear Fuel Assemblies. The performed analysis provided INB to get more information of extreme importance for the continuity of the development of the welded Top Nozzle and its later production. (author)

  10. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  11. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Science.gov (United States)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-01

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  12. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study

  13. Effect of moderator density distribution of annular flow on fuel assembly neutronic characteristics in boiling water reactor cores

    International Nuclear Information System (INIS)

    The effect of the moderator density distribution of annular flow on the fuel assembly neutronic characteristics in a boiling water nuclear reactor was investigated using the SRAC95 code system. For the investigation, a model of annular flow for fuel assembly calculation was utilized. The results of the assembly calculation with the model (Method 1) and those of the fuel assembly calculation with the uniform void fraction distribution (Method 2) were compared. It was found that Method 2 underestimates the infinite multiplication factor in the fuel assembly including the gadolinia rod (type 1 assembly). This phenomenon is explained by the fact that the capture rate in the thermal energy region in gadolinia fuel is estimated to be smaller when the liquid film of annular flow at the fuel rod surface is considered. A burnup calculation was performed under the condition of a void fraction of 65% and a volumetric fraction of the liquid film in liquid phase of 1. It is found that Method 2 underestimates the infinite multiplication factor in comparison to Method 1 in the early stage of burnup, and that Method 2 becomes to overestimate the factor after a certain degree of burnup. This is because Method 2 overestimates the depletion rate of the gadolinia. (author)

  14. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly

    Science.gov (United States)

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-01-01

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation. PMID:27110782

  15. Impedance Analysis of the Conditioning of PBI–Based Electrode Membrane Assemblies for High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Vang, Jakob Rabjerg; Andreasen, Søren Juhl;

    2013-01-01

    This work analyses the conditioning of single fuel cell assemblies based on different membrane electrode assembly (MEA) types, produced by different methods. The analysis was done by means of electrochemical impedance spectroscopy, and the changes in the fitted resistances of the all the tested...

  16. Studies on supercritical water reactor fuel assemblies using the sub-channel code COBRA-EN

    Energy Technology Data Exchange (ETDEWEB)

    Ammirabile, Luca, E-mail: luca.ammirabile@ec.europa.e [European Commission, JRC, Institute for Energy, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2010-10-15

    In the Generation IV International Forum (GIF) program, the supercritical water reactor (SCWR) concept is among the six innovative reactor types selected for development in the near future. In principle the higher efficiency and better economics make the SCWR concept competitive with the current reactor design. Due to different technical challenges that, however exist, fuel assembly design represents a crucial aspect for the success of this concept. In particular large density variations, low moderation, heat transfer enhancement and deterioration have a strong effect on the core design parameters. Only a few computational tools are currently able to perform sub-channel thermal-hydraulic analysis under supercritical water conditions. At JRC-IE the existing sub-channel code COBRA-EN has been improved to work above the critical pressure of water. The water properties package of the IAPWS Industrial Formulation 1997 was integrated in COBRA-EN to compute the Thermodynamic Properties of Water and Steam. New heat transfer and pressure drop correlations more indicated for the supercritical region of water have also been incorporated in the code. As part of the efforts to appraise the new code capabilities, a code assessment was carried out on the hexagonal fuel assembly of a fast supercritical water reactor. COBRA-EN was also applied in combination with the neutronic code MCNP to investigate on the use of hydride fuel in the HPLWR supercritical water fuel assembly. The results showed that COBRA-EN was able to reproduce the results of similar studies with acceptable accuracy. Future activities will focus on the validation of the code against experimental data and the implementation of new features (counter-current moderator channel, wall, and wire-wrap models).

  17. Irradiation experiments of 3rd, 4th and 5th fuel assemblies by an in-pile gas loop, OGL-1

    International Nuclear Information System (INIS)

    Three irradiation experiments for 3rd, 4th and 5th fuel assemblies which had been composed of VHTR reference coated particle fuels and graphite components were carried out by an in-pile gas loop, OGL-1 during 1979 and 1982. The main purposes of these experiments were to study on bowing of the fuel rod by irradiation for the 3rd fuel assembly, to study on fuel behavior under relatively low burnup irradiation for the 4th fuel assembly, and to study on fuel behavior up to full burnup of VHTR design for the 5th fuel assembly. For understanding in-pile fuel behavior, fractional releases of fission gases from each fuel assembly were estimated by measuring the fission gas concentrations in the primary loop of OGL-1. The post-irradiation examination (PIE) was carried out extensively on the fuel block, the fuel rods and the fuel compacts in Tokai Hot Laboratory. Also, made were the measurements of metallic fission product distributions in the fuel assemblies and the fuel rods. The results in these experiments were given as follows ; bowing of the fuel rod in the 3rd fuel assembly was 0.7 mm, but integrity of the rod was kept under irradiation. Fractional release of the fission gas from the 4th fuel assembly remained in the order of 10-7 during irradiation, suggesting that the fuel performance was excellent. The fractional release from the 5th fuel assembly, on the other hand, was in the order of 10-5 which was the same level in the VHTR design. (author)

  18. Depleting a CANDU-6 fuel assembly using detailed burnup data and reactionwise energy release

    International Nuclear Information System (INIS)

    Temporal behavior of reactor fuel assembly due to neutron exposure is an integral part of lattice analysis. It is important to estimate the production of actinides and fission products as a function of burnup so as to decide the quality of fuel for further energy production. It is also important from the point of view of post irradiation behavior of fuel. The information on heat production during and after irradiation helps in determining the amount of time a fuel assembly needs to be cooled before taking it up for storage or reprocessing. In the present study we have considered the CANDU-6 fuel assembly as reference. Lattice analysis has been performed using development version of code DRAGON. A total of 192 nuclides have been selected as part of the analysis, of which 19 are actinides, 151 are fission products and the rest are structural elements. The fission products have been treated explicitly. There is no pseudo fission product. Using DRAGR module, a multigroup microscopic cross section library in DRAGLIB format has been generated. An important aspect of this library is the explicit treatment of most neutron induced reactions. We have for the first time attempted to perform power normalization due to energy from various neutron induced reactions including (n, γ), (n, f), (n, 2n), (n, 3n), (n, 4n), (n, α), (n, p), (n, 2α), (n, np), (n, d), (n, t). Energy due to decay has also been considered explicitly. Even though the decay energy contributes very little relative to the neutron induced reactions, the information will be very useful for post irradiation behavior of fuel. It was observed that the maximum contributing reactions for the power normalization are (n, f), (n, γ) and (n, 2n). We have assessed the contribution of fission products and actinides towards power normalization as a function of burnup. We have also studied the pinwise contribution towards power normalization in each ring of CANDU-6 fuel. We have attempted to compare the effect of

  19. Mechanical behaviour of membrane electrode assembly (MEA during cold start of PEM fuel cell from subzero environment temperature

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Full Text Available Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. Cold start capability and survivability of proton exchange membrane fuel cells (PEM in a subzero environment temperature remain a challenge for automotive applications. A key component of increasing the durability of PEM fuel cells is studying the behaviour of the membrane electrode assembly (MEA at the heart of the fuel cell. The present work investigates how the mechanical behaviour of MEA are influenced during cold start of the PEM fuel cell from subzero environment temperatures. Full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling, and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data.

  20. Distribution of fission products in graphite sleeves and blocks of the eleventh and twelfth OGL-1 fuel assemblies

    International Nuclear Information System (INIS)

    The 11th and 12th fuel assemblies were irradiated in an in-pile gas loop, OGL-1, installed in the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Research Institute (JAERI). Distribution of fission products in the graphite sleeves and blocks of the assemblies was measured by gamma-ray spectrometry. The 11th fuel assembly was aimed at testing the irradiation performance of mass product fuels in trial manufacturing of the first charge fuel for the High Temperature Engineering Test Reactor (HTTR) in relatively short irradiation, and the 12th assembly in long-term irradiation. The 12th assembly attained a burnup approximately as high as that of the HTTR driver fuel design. In the graphite sleeve of the 11th assembly, high concentration peaks of fission products were found in the axial distribution. Exposure of failed fuel particles was not detected on the surface of fuel compacts, while fissures of graphite matrix at overcoat boundaries were observed on the surface. These results led to a presumption that fission products, which were released from failed particles located inside of the fuel compact, was easily transported through the fissures of the matrix to the inner surface of the sleeve. In the graphite sleeve of the 12th assembly, 110mAg was detected together with other fission products of 137Cs, 134Cs etc. Silver-110m showed characteristic distribution: this nuclides was less concentrated at the region with highly concentrated 60Co which is presumed to have been transported from melted sheath material of thermocouples to the graphite sleeve. It was inferred from the distribution that the transport behavior of 110mAg had been influenced by co-sorption or by pore structure change in the graphite material of the sleeve, which had been induced by metallic elements including cobalt. (author)

  1. Distribution of fission products in graphite sleeves and blocks of the eleventh and twelfth OGL-1 fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kimio; Fukuda, Kousaku; Kikuchi, Teruo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tsuruta, Harumichi

    1994-06-01

    The 11th and 12th fuel assemblies were irradiated in an in-pile gas loop, OGL-1, installed in the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Research Institute (JAERI). Distribution of fission products in the graphite sleeves and blocks of the assemblies was measured by gamma-ray spectrometry. The 11th fuel assembly was aimed at testing the irradiation performance of mass product fuels in trial manufacturing of the first charge fuel for the High Temperature Engineering Test Reactor (HTTR) in relatively short irradiation, and the 12th assembly in long-term irradiation. The 12th assembly attained a burnup approximately as high as that of the HTTR driver fuel design. In the graphite sleeve of the 11th assembly, high concentration peaks of fission products were found in the axial distribution. Exposure of failed fuel particles was not detected on the surface of fuel compacts, while fissures of graphite matrix at overcoat boundaries were observed on the surface. These results led to a presumption that fission products, which were released from failed particles located inside of the fuel compact, was easily transported through the fissures of the matrix to the inner surface of the sleeve. In the graphite sleeve of the 12th assembly, {sup 110m}Ag was detected together with other fission products of {sup 137}Cs, {sup 134}Cs etc. Silver-110m showed characteristic distribution: this nuclides was less concentrated at the region with highly concentrated {sup 60}Co which is presumed to have been transported from melted sheath material of thermocouples to the graphite sleeve. It was inferred from the distribution that the transport behavior of {sup 110m}Ag had been influenced by co-sorption or by pore structure change in the graphite material of the sleeve, which had been induced by metallic elements including cobalt. (author).

  2. Thermal analysis model for the temperature distribution of the CANDU spent fuel assembly

    International Nuclear Information System (INIS)

    The purpose of this technical is to introduce the methodology and experimental process for the experimental research work with the mock-up test performed to verify and validate the MAXROT code which is a thermal analysis method for Wolsong (CANDU) spent fuel dry storage canister. The experiment was conducted simulating the heat transfer characteristics of combinations of equilateral triangular and square pitch arrays of heater rods, similar to a CANDU spent fuel bundle. After assembly of the heater rod bundle into the containment vessel, the experimental apparatus was operated under the same operating and boundary conditions as an interim dry storage condition at the nuclear power plant site. The reduced data from this experiment has been utilized to verity a model developed to predict the maximum fuel rod surface temperature in a fuel bundle. These test procedures and the experiment can be utilized to establish the fine thermal analysis method applicable to dry storage system for the spent fuel. 12 figs., 5 tabs., 36 refs. (Author) .new

  3. Swelling and creep observed in AISI 304 fuel pin cladding from three MOX fuel assemblies irradiated in EBR-II

    Science.gov (United States)

    Garner, F. A.; Makenas, B. J.; Chastain, S. A.

    2011-06-01

    Three 37-pin MOX-fueled experimental subassemblies were irradiated in EBR-II with fuel pin cladding constructed from annealed AISI 304 stainless steel. Analysis of the swelling and irradiation creep of the cladding showed that the terminal swelling rate of AISI 304 stainless steel appears to be ˜1%/dpa and that swelling is very reproducible for identical irradiation conditions. The swelling at a given neutron fluence is rather sensitive to both irradiation temperature and especially to the neutron flux, however, with the primary influence residing in the transient regime. As the neutron flux increases the duration of the transient regime is increased in agreement with other recent studies. The duration of the transient regime is also decreased by increasing irradiation temperature. In these assemblies swelling reached high levels rather quickly, reducing the opportunity for fuel pin cladding interaction and thereby reducing the contribution of irradiation creep to the total deformation. It also appears that in this swelling-before-creep scenario that the well-known "creep disappearance" phenomenon was operating strongly.

  4. The coolant quality effect on Zr fuel assembly reliability in NPP with RBMK-1000

    Energy Technology Data Exchange (ETDEWEB)

    Berezina, I.G.; Kritski, V.G.; Styazhkin, P.S. [All-Russian Design and Scientific Research Inst. of Complex Power Technology (VNIPIET), St. Petersburg (Russian Federation)

    2002-07-01

    1. A model was developed to describe the joint effect of physical and chemical parameters on corrosion of cladding zirconium alloys under LWR operation conditions. For the first time the influence of alloying components content, coolant impurities and the vapour content is taken into account. Verification of the model was carried out on the base of experimental and operation data on corrosion of zirconium claddings of fuel elements in research loops and at the NPP. 2. The chemical part of the model is based on the influence of temperature, pH{sub T} values and the concentration of hydrogen peroxide on solubility of corrosion products of zirconium alloys. The model describes corrosion of zirconium alloy during the entire fuel cycle at the NPP (under normal operation of fuel assemblies in the core and under of spent fuel storage in water ponds) and may be used to predict the influence of changing of the water chemistry quality on corrosion. 3. The model of defect formation accounting for the debris-effect and CILC effects was developed. Calculations showed that to achieve reliable operation of fuel assemblies of the RBMK (with cladding failures 2-3 pc/block in a year) at burn-up 32 MW.day/kg U, it is necessary to make standards for water chemistry more stringent. Limitation of the number of large particles and corrosion products causing the debris-effect is realized into proposed standards indirectly, through controlling the quality indices: X{sub 25}, Cl{sup -}, SiO{sub 3}{sup 2-}, Fe, Na, hardness. (author)

  5. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program

  6. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  7. Preliminary study on new configuration with LEU fuel assemblies for the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configuration with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)

  8. Fuel rod

    International Nuclear Information System (INIS)

    The present invention provide a fuel rod used in a BWR type reactor, preventing the occurrence of defects of weld portions and improving the operationability of test and assembling operation to improve the