WorldWideScience

Sample records for butyric acids

  1. Biogas Production on Demand Regulated by Butyric Acid Addition

    Science.gov (United States)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  2. Solid–liquid equilibria measurements for binary systems comprising (butyric acid + propionic or pentanoic acid) and (heptanoic acid + propionic or butyric or pentanoic or hexanoic acid)

    International Nuclear Information System (INIS)

    Highlights: ► Binary SLE measurement for butyric acid + {propionic or pentanoic acid}. ► Binary SLE measurements for heptanoic acid + {propionic or butyric or pentanoic or hexanoic acid}. ► Measurements undertaken using a synthetic method using two new apparati. - Abstract: Solid–liquid equilibria (SLE) measurements have been undertaken for carboxylic acid systems comprising (butyric acid + propionic or pentanoic acid) and (heptanoic acid + propionic or butyric or pentanoic or hexanoic acid) via a synthetic method using two complementary pieces of equipment. The measurements have been obtained at atmospheric pressure and over the temperature range of (225.6 to 270.7) K. All the acid mixtures exhibit a eutectic point in their respective phase diagrams, which have been determined experimentally. The estimated maximum uncertainties in the reported temperatures and compositions are ±1 K and ±0.0006 mole fraction, respectively. The experimental data have been satisfactorily correlated with the Wilson and NRTL activity coefficient models.

  3. Photoactivation of butyric acid from 6-aminobenzocoumarin cages

    OpenAIRE

    Soares, Ana M. S.; Hungerford, Graham; Susana P. G. Costa; Gonçalves, M. Sameiro T.

    2015-01-01

    A new benzocoumarin bearing an amino group is proposed as a photocleavable protecting group for carboxylic acids. The novel heterocycle, 6-amino-4-chloromethyl-2-oxo-2H-naphtho[1,2-b]pyran was used in the preparation of ester conjugates of butyric acid, and of the corresponding mono- and di-methylated or ethylated derivatives. The photolability of the ester conjugates was studied by irradiation at selected wavelengths in methanol/HEPES buffer (80:20) solutions, and the release of butyric acid...

  4. Comparison of Butyric acid concentrations in ordinary and probiotic yogurt samples in Iran

    OpenAIRE

    Narges Vaseji; Naheed Mojgani; Cyrus Amirinia; Iranmanesh, M

    2012-01-01

    Background and objectives: Butyric acid has many applications in chemical, food and pharmaceutical industries. Applications of butyric acid are as an additive to food, flavorings, varnishes, perfumes, pharmaceuticals and disinfectants. Butyric acid concentrations have positive impact on the quality control of milk, yogurt and other probiotic dairy products. The present investigation was undertaken to determine and compare the concentrations of butyric acid (C4) in the ordinary and probiotic y...

  5. Butyric acid tolerance of rice mutant M4 families

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2007-01-01

    Full Text Available Hydromorphic soils have a low drainage capacity and are used mainly for the cultivation of irrigated rice.This condition favors the development of anaerobic microorganisms that produce phytotoxic substances. The objective of thisstudy was to evaluate the response of rice mutants to the phytotoxicity caused by butyric acid under anaerobic conditions. Theexperiment consisted of four treatments arranged in a randomized block design. Plants of 40 families were grown in ahydroponic system and the measured variables were root length and length of aerial part (LAP, number of roots (NR androot dry matter (RDM and aerial part dry matter (DMAP. The analysis of variance was performed, the relative performancecalculated and linear regressions were fitted. Only the treatment effect for NR and effect of interaction for LAP were notsignificant. Root length was most affected by the acid and the regressions expressed positive as well as negative effects for acidtolerance in the mutant families.

  6. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor.

    Science.gov (United States)

    Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A

    2016-08-01

    Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. PMID:27288853

  7. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production

    OpenAIRE

    Edgar C. Clausen; Jamie A. Hestekin; Beitle, Robert R.; Nicole Lorenz; Amy McGraw; Jianjun Du

    2012-01-01

    In making alternative fuels from biomass feedstocks, the production of butyric acid is a key intermediate in the two-step production of butanol. The fermentation of glucose via Clostridium tyrobutyricum to butyric acid produces undesirable byproducts, including lactic acid and acetic acid, which significantly affect the butyric acid yield and productivity. This paper focuses on the production of butyric acid using Clostridium tyrobutyricum in a partia...

  8. Conversion regular patterns of acetic acid,propionic acid and butyric acid in UASB reactor

    Institute of Scientific and Technical Information of China (English)

    LIU Min; REN Nan-qi; CHEN Ying; ZHU Wen-fang; DING Jie

    2004-01-01

    On the basis of continuous tests and batch tests, conversion regular patterns of acetate, propionate and butyrate in activated sludge at different heights of the UASB reactor were conducted. Results indicated that the conversion capacity of the microbial is decided by the substrate characteristic when sole VFA is used as the only substrate. But when mixed substrates are used,the conversion regulations would have changed accordingly. Relationships of different substrates vary according to their locations. In the whole reactor, propionate's conversion is restrained by acetate and butyrate of high concentration. On the top and at the bottom of the reactor, conversion of acetate, but butyrate, is restrained by propionate. And in the midst, acetate's conversion is accelerated by propionate while that of butyrate is restrained. It is proved, based on the analysis of specific conversion rate, that the space distribution of the microbe is the main factor that affects substrates' conversion. The ethanol-type fermentation of the acidogenic-phase is the optimal acid-type fermentation for the two-phase anaerobic process.

  9. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    Institute of Scientific and Technical Information of China (English)

    HE Guo-qing; KONG Qing; CHEN Qi-he; RUAN Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB.

  10. Cortical and subcortical gamma amino acid butyric acid deficits in anxiety and stress disorders: Clinical implications

    OpenAIRE

    Goddard, Andrew W

    2016-01-01

    Anxiety and stress disorders are a major public health issue. However, their pathophysiology is still unclear. The gamma amino acid butyric acid (GABA) neurochemical system has been strongly implicated in their pathogenesis and treatment by numerous preclinical and clinical studies, the most recent of which have been highlighted and critical review in this paper. Changes in cortical GABA appear related to normal personality styles and responses to stress. While there is accumulating animal an...

  11. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Science.gov (United States)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of DCA and...

  12. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes

    OpenAIRE

    Rumberger, John M.; Jonathan R.S. Arch; Allan Green

    2014-01-01

    We determined the effect of butyrate and other short-chain fatty acids (SCFA) on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM) increased the rate of lipolysis approximately 2–3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC) inhibitors. Consistent with this, the HDAC inhibitor trichostatin...

  13. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. PMID:26779817

  14. Induction of cellular deoxyribonucleic acid synthesis in butyrate-treated cells by simian virus 40 deoxyribonucleic acid.

    OpenAIRE

    Kawasaki, S; Diamond, L; Baserga, R

    1981-01-01

    Sodium butyrate (3 mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G1 and S-ph...

  15. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  16. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  17. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses.

    Science.gov (United States)

    Jiang, Ling; Wang, Jufang; Liang, Shizhong; Wang, Xiaoning; Cen, Peilin; Xu, Zhinan

    2009-07-01

    Butyrate fermentation by immobilized Clostridium tyrobutyricum was successfully carried out in a fibrous bed bioreactor using cane molasses. Batch fermentations were conducted to investigate the influence of pH on the metabolism of the strain, and the results showed that the fermentation gave a highest butyrate production of 26.2 g l(-1) with yield of 0.47 g g(-1) and reactor productivity up to 4.13 g l(-1)h(-1) at pH 6.0. When repeated-batch fermentation was carried out, long-term operation with high butyrate yield, volumetric productivity was achieved. Several cane molasses pretreatment techniques were investigated, and it was found that sulfuric acid treatment gave better results regarding butyrate concentration (34.6+/-0.8 g l(-1)), yield (0.58+/-0.01 g g(-1)), and sugar utilization (90.8+/-0.9%). Also, fed-batch fermentation from cane molasses pretreated with sulfuric acid was performed to further increase the concentration of butyrate up to 55.2 g l(-1). PMID:19297150

  18. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    Science.gov (United States)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  19. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    OpenAIRE

    Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu

    2013-01-01

    Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically c...

  20. Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, te M.C.; Jong, de P.; Lankveld, J.M.G.

    2006-01-01

    Control of contamination of farm tank milk (FTM) with the spore-forming butyric acid bacteria (BAB) is important to prevent the late-blowing defect in semi-hard cheeses. The risk of late blowing can be decreased via control of the contamination level of FTM with BAB. A modeling approach was applied

  1. Minimizing the level of butyric acid bacteria spores in farm tank milk

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, M.C.T.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    A year-long survey of 24 dairy farms was conducted to determine the effects of farm management on the concentrations of butyric acid bacteria (BAB) spores in farm tank milk (FTM). The results were used to validate a control strategy derived from model simulations. The BAB spore concentrations were m

  2. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.

    Science.gov (United States)

    Schilderink, Ronald; Verseijden, Caroline; Seppen, Jurgen; Muncan, Vanesa; van den Brink, Gijs R; Lambers, Tim T; van Tol, Eric A; de Jonge, Wouter J

    2016-06-01

    In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production. PMID:27151945

  3. Butyric acid fermentation from pretreated and hydrolyzed wheat straw by C.tyrobutyricum

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Westermann, Peter; Gavala, Hariklia N.

    xylose at a concentration of 71,6±0,2 g/l and 55,4±0,2 g/l respectively, with TS content 20,87% (g/g). From an economical point of view, the conversion of both sugars is very important. In fact C.tyrobutyricum has the capability to convert both hexose and pentose sugars. Results from batch experiments......Butyric acid fermentation has long been discussed in the last decade due to the wide application of butyric acid in chemical, pharmaceutical and food industries. Among other microbial strains, C.tyrobutyricum was found interesting due to its higher yield (more than 93% of the theoretical yield) and...

  4. Identification and Characterization of Arabidopsis Indole-3-Butyric Acid Response Mutants Defective in Novel Peroxisomal Enzymes

    OpenAIRE

    Zolman, Bethany K.; Martinez, Naxhiely; Millius, Arthur; Adham, A. Raquel; Bartel, Bonnie

    2008-01-01

    Genetic evidence suggests that indole-3-butyric acid (IBA) is converted to the active auxin indole-3-acetic acid (IAA) by removal of two side-chain methylene units in a process similar to fatty acid β-oxidation. Previous studies implicate peroxisomes as the site of IBA metabolism, although the enzymes that act in this process are still being identified. Here, we describe two IBA-response mutants, ibr1 and ibr10. Like the previously described ibr3 mutant, which disrupts a putative peroxisomal ...

  5. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    OpenAIRE

    Shifeng Li; Yanming Shen; Min Xiao; Dongbin Liu; Lihui Fan; Zhigang Zhang

    2014-01-01

    Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA) and indole-3-butyric acid (IBA) simultaneous intercalated MgAl-layered double hydroxides (LDHs) was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilaye...

  6. Liquid - liquid equilibria of the water + butyric acid + decanol ternary system

    Directory of Open Access Journals (Sweden)

    S.I. Kirbaslar

    2006-09-01

    Full Text Available Liquid-liquid equilibrium (LLE data for the water + butyric acid + decanol ternary system were determined experimentally at temperatures of 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining the solubility curve and the tie lines. The reliability of the experimental tie line data was confirmed with the Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium of the system using the interaction parameters for groups CH3, CH2, COOH, OH and H2O determined experimentally. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  7. Phase equilibria in water-pyridine-butyric acid systems at 25.0°C

    Science.gov (United States)

    Cherkasov, D. G.; Chepurina, Z. V.; Il'in, K. K.

    2014-04-01

    The solubility of the components of the ternary water-pyridine-butyric acid system is studied by means of isothermal titration at 25.0°C under normal pressure. Nine nodes are plotted over the area of delayering using the Mertslin section method, and the compositions of the equilibrium liquid phases are determined graphically. It was found that there is a closed binodal curve with two critical points on the solubility diagram of the system; the distribution curve of pyridine between the equilibrium liquid phases demonstrates its preferential distribution into the organic phase.

  8. Transport and Metabolism of the Endogenous Auxin Precursor lndole-3-Butyric Acid

    Institute of Scientific and Technical Information of China (English)

    Lucia C. Strader; Bonnie Bartel

    2011-01-01

    T Plant growth and morphogenesis depend on the levels and distribution of the plant hormone auxin. Plants tightly regulate cellular levels of the active auxin indole-3-acetic acid (IAA) through synthesis, inactivation, and transport. Although the transporters that move IAA into and out of cells are well characterized and play important roles in development, little is known about the transport of IAA precursors. In this review, we discuss the accumulating evidence suggesting that the IAA precursor indole-3-butyric acid (IBA) is transported independently of the characterized IAA transport machinery along with the recent identification of specific IBA efflux carriers and enzymes suggested to metabolize IBA. These studies have revealed important roles for IBA in maintaining IAA levels and distribution within the plant to support normal development.

  9. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production

    Directory of Open Access Journals (Sweden)

    Edgar C. Clausen

    2012-08-01

    Full Text Available In making alternative fuels from biomass feedstocks, the production of butyric acid is a key intermediate in the two-step production of butanol. The fermentation of glucose via Clostridium tyrobutyricum to butyric acid produces undesirable byproducts, including lactic acid and acetic acid, which significantly affect the butyric acid yield and productivity. This paper focuses on the production of butyric acid using Clostridium tyrobutyricum in a partial cell recycle mode to improve fermenter yield and productivity. Experiments with fermentation in batch, continuous culture and continuous culture with partial cell recycle by ultrafiltration were conducted. The results show that a continuous fermentation can be sustained for more than 120 days, which is the first reported long-term production of butyric acid in a continuous operation. Further, the results also show that partial cell recycle via membrane ultrafiltration has a great influence on the selectivity and productivity of butyric acid, with an increase in selectivity from ≈9% to 95% butyric acid with productivities as high as 1.13 g/Lh. Continuous fermentation with low dilution rate and high cell recycle ratio has been found to be desirable for optimum productivity and selectivity toward butyric acid and a comprehensive model explaining this phenomenon is given.

  10. Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Żuk, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-07-01

    The FT-IR and FT-Raman studies have been performed on commercial 3-hydroxy-butyric acid, commercial poly-3-hydroxy butyric acid as well as poly-3-hydroxy butyric acid (PHB) produced by bacteria. The data were compared to those obtained for poly-3-hydroxy butyric acid extracted from natural and genetically modified flax. Genetically modified flax was generated by expression of three bacterial genes coding for synthesis of poly-3-hydroxy butyric acid. Thus transgenic flaxes were enhanced with different amount of the PHB. The discussion of polymer structure and vibrational properties has been done in order to get insight into differences among these materials. The interaction between the cellulose of flax fibers and embedded poly-3-hydroxybutyric acid has been also discussed. The spectroscopic data provide evidences for structural changes in cellulose and in PHB when synthesized in fibers. Based on this data it is suggesting that cellulose and PHB interact by hydrogen and ester bonds.

  11. Effect of ionizing radiation and indole butyric acid on rooting of olive cuttings

    International Nuclear Information System (INIS)

    This study was performed to investigate the effects of indole butyric acid (IBA) (2000 and 4000 ppm), low doses of gamma irradiation (2,4, and 6 Gy), combined treatment of IBA followed by irradiation, and irradiation followed by IBA on olive cuttings (Variety Khodairi). Rooting percentage, callus formation, vegetative growth root number, and the length of the roots were measured after 100 days of planting. The results indicated that IBA treatments in both concentrations increased the callus formation, rooting, vegetative growth, and the number and length of the roots. Low doses of gamma irradiation had no effects on rooting percentage in comparison with the hormonal treatments. Callus formation, rooting, vegetative growth, and length of the root of cuttings produced in 1990 were better than those produced in 1991, and cuttings produced in January were better than those produced in March and October. (author). 16 refs., 15 tabs

  12. (Liquid + liquid) equilibria of (water + butyric acid + isoamyl alcohol) ternary system

    International Nuclear Information System (INIS)

    (Liquid + liquid) equilibrium (LLE) data for the ternary system (water + butyric acid + isoamyl alcohol) have been determined experimentally at T (298.15, 308.15 and 318.15) K. Complete phase diagrams were obtained by determining solubility and the tie-line data. Tie-line compositions were correlated by Othmer-Tobias method. The UNIFAC method was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between groups CH3, CH2, CH, COOH, OH and H2O. It is found that UNIFAC group interaction parameters used for LLE could not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region

  13. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    Science.gov (United States)

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. PMID:26672465

  14. Research Progress of Physiological Function of Butyric Acid%丁酸的生理功能研究进展

    Institute of Scientific and Technical Information of China (English)

    卢忆; 张晓阳; 马艳莉; 李里特

    2013-01-01

    丁酸是一种重要的短链脂肪酸,是结肠细胞重要的能量来源,可控制细胞增殖,具有多种生理功能.近年来大量研究表明,丁酸有促进肠道发育、维持肠道功能与健康、增强机体免疫性能、抗肿瘤、抗氧化等功能,但目前对于丁酸生理功能的研究多停留在利用动物模型或细胞进行单独研究的阶段.本文从肠道组织功能与健康、物质代谢、免疫功能、肿瘤细胞等几个方面综述了丁酸功能的研究进展,并进行了展望,旨在为丁酸的进一步研究与应用提供思路.%Butyric acid, as one of the most important kinds of short chain fatty acids, can provide energy source for colon cells and control cell proliferation. As shown by recent researches, butyric acid has many physiological functions including promoting intestinal development, maintaining intestinal health and function, enhancing immune performance, anti-tumor, anti-oxidation and so on. But researches on butyric acid have mostly been limited to the stage of using animal models and separate cells to study single function. This paper reviewed the influence of butyric acid on intestinal tissue, metabolism, immune system, tumour cells and so on, aiming at providing references for further exploitation of butyric acid.

  15. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  16. Subclinical ketosis on dairy cows in transition period in farms with contrasting butyric acid contents in silages.

    Science.gov (United States)

    Vicente, Fernando; Rodríguez, María Luisa; Martínez-Fernández, Adela; Soldado, Ana; Argamentería, Alejandro; Peláez, Mario; de la Roza-Delgado, Begoña

    2014-01-01

    This study examines the relationship between subclinical ketosis (SCK) in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; Pdairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake). PMID:25525616

  17. Subclinical Ketosis on Dairy Cows in Transition Period in Farms with Contrasting Butyric Acid Contents in Silages

    Directory of Open Access Journals (Sweden)

    Fernando Vicente

    2014-01-01

    Full Text Available This study examines the relationship between subclinical ketosis (SCK in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; P<0.05. As the metabolizable energy content of the feed was similar, no relationship was observed between the proportion of cows with SCK and the energy content of the feed. In our study, the probability of dairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake.

  18. ROOTING OF GUANANDI (Calophyllum brasiliense CAMBESS CUTTINGS USING INDOLE-BUTYRIC ACID

    Directory of Open Access Journals (Sweden)

    Eduardo Ciriello

    2015-12-01

    Full Text Available Commercial reforestation of Brazilian native species to produce hardwood for sawmills has been recently intensified in the country. Among the potential species planted by the logging industry is guanandi (Calophyllum brasiliense Cambess because it is widely distributed in the country, highly adapted to different soil and climate conditions, good bole form and high quality timber. The development of genetic improvement programs should prioritize gains in productivity and yields in the medium and long term. For such programs to be successful, the study of vegetative propagation techniques to abbreviate steps in forest improvement and allow its mass production is fundamental. To assess the viability of vegetative propagation of the species, two successive experiments were carried out during two years testing the best type of cutting, hormone concentration and management. Different cuttings types submitted to increasing doses of indole-butyric acid (IBA were tested to evaluate survival, sprouting, rooting and callus formation. Results indicate that the species is viable for vegetative propagation with 85 to 90% rooting of cuttings from seedlings in the IBA concentrations of 3000 to 7000 mg.L-1. For the cuttings, sprouting from the base of adult trees 3000 mg.L-1 was the best concentration of IBA.

  19. Electronic Structures and Optical Properties of Phenyl C71 Butyric Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Cai-Rong Zhang

    2013-01-01

    Full Text Available Phenyl C71 butyric acid methyl ester (PC71BM has been adopted as electron acceptor materials in bulk heterojunction solar cells with relatively higher power conversion efficiency. The understanding of the mechanism and performance for the devices based upon PC71BM requires the information of conformations, electronic structures, optical properties, and so forth. Here, the geometries, IR and Raman, electronic structures, polarizabilities, and hyperpolarizabilities of PC71BM isomers are studied by using density functional theory (DFT; the absorption and excitation properties are investigated via time-dependent DFT with B3LYP, PBE0, and CAM-B3LYP functionals. The calculated results show that [6,6]PC71BM is more stable than [5,6]PC71BM due to the lower total energy. The vibrational modes of the isomers at IR and Raman peaks are quite similar. As to absorption properties, CAM-B3LYP functional is the suitable functional for describing the excitations of PC71BM because the calculated results with CAM-B3LYP functional agree well with that of the experiment. The analysis of transition configurations and molecular orbitals demonstrated that the transitions at the absorption maxima in UV/Vis region are localized π-π* transitions in fullerenes cages. Furthermore, the larger isotropic polarizability of PC71BM indicates that the response of PC71BM to applied external electric field is stronger than that of PC61BM, and therefore resulting into better nonlinear optical properties.

  20. Rhizogenic behavior of black pepper cultivars to indole-3-butyric acid

    Directory of Open Access Journals (Sweden)

    Welington Secundino

    2014-07-01

    Full Text Available Little information is available regarding vegetative propagation of the species Piper nigrum L. to generate technical recommendations for the production of seedlings on a commercial scale. The purpose of this study was to investigate the rhizogenic behavior of cultivars of this species regarding indol-3-butyric acid (IBA. The experiment was performed at a vegetation house equipped with an intermittent nebulization irrigation system. The experimental site was located in the University Center of Northern Espírito Santo (CEUNES of the Federal University of Espírito Santo (UFES, Brazil. The experimental design consisted of randomized blocks arranged in a 3 x 5 factorial scheme: three cultivars (Bragantina, Iaçará and Guajarina x five IBA concentrations (0; 1,500; 3,000; 4,500 and 6,000 mg kg-1, with four repetitions of 16 cuttings each. Total immersion of the cuttings in IBA is recommended for the Iaçará and Guajarina cultivars, and immersion of only the basal region is recommended for cv. Bragantina. The recommended IBA concentration for these cultivars is 4,000 mg kg-1.

  1. Negative polarity of phenyl-C61 butyric acid methyl ester adjacent to donor macromolecule domains

    International Nuclear Information System (INIS)

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (Voc) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the Voc, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C61 butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased Voc, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions

  2. Electron Paramagnetic Resonance Study of Gamma Irradiated N-CARBAMYL-DL-ALPHA AMINO-N-BUTYRIC Acid

    International Nuclear Information System (INIS)

    The electron paramagnetic resonance (EPR) of gamma irradiated powders of N- carbamyl-DL-alpha amino-n-butyric acid were investigated at room temperature. The radiation damage centers produced in the N-carbamyl-DL-alpha amino-n-butyric acid were attributed to the HNCCH2CH3 radical. The EPR spectra were computer simulated and the g values of the radicals and the hyperfine structure constants of the unpaired electron with the environmental protons and 14N nucleus were determined. These results were found to be in good agreement with the existing literature data. The EPR spectra were recorded with a Varian model X-band E-109C EPR spectrometer at room temperature. The g factors were determined by comparison with the signal of a diphenylpicrylhydrazyl (DPPH) sample with of g = 2.0036

  3. Lipid alterations in human colon epithelial cells induced to differentiation and/or apoptosis by butyrate and polyunsaturated fatty acids

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Ciganek, M.; Slavík, J.; Kozubík, Alois; Stixová, Lenka; Vaculová, Alena; Dušek, L.; Machala, M.

    2012-01-01

    Roč. 23, č. 6 (2012), s. 539-548. ISSN 0955-2863 R&D Projects: GA ČR(CZ) GA524/07/1178; GA ČR(CZ) GAP301/11/1730 Institutional research plan: CEZ:AV0Z50040507 Institutional support: RVO:68081707 Keywords : Colon cancer * Polyunsaturated fatty acids * Butyrate Subject RIV: BO - Biophysics Impact factor: 4.552, year: 2012

  4. A survey on anticancer effects of artemisinin, iron, miconazole, and butyric acid on 5637 (bladder cancer and 4T1 (Breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Amir Ali Shahbazfar

    2014-01-01

    The groups treated with miconazole showed identical changes, with less severity compared to combination therapy groups. In butyric acid-treated groups, the only detectable changes were, mild cell swelling, few apoptosis, and rare necrosis. Conclusions: A combination therapy with artemisinin can be more effective against cancer cells than monotherapy with that. Butyric acid was not effective on cancer cells. Miconazole deviated the nature of cell death from apoptosis to necrosis and it must be used under caution.

  5. Effect of Indole Butyric Acid on the Transportation of Stored Calcium in Malus hupehensis Rhed. Seedling

    Institute of Scientific and Technical Information of China (English)

    LI Jia; YANG Hong-qiang; YAN Tian-li; SHU Huai-rui

    2006-01-01

    Calcium (Ca) plays an important role in the metabolism of higher plants. Recently, research on Ca2+ in plants has been focused especially at the cellular and molecular levels. Uptake, transport, and distribution are also very important for Ca to accomplish its function at the whole-plant level. In this experiment, one-year-old apple seedlings (M. hupehensis Rehd.) were investigated to determine the distribution of stored Ca, the different forms of Ca, and Ca2+-ATPase activity after treatment with indole butyric acid (IBA). The results showed that the total Ca measured in mature leaves and Ca2+-ATPase activity in tender leaves were higher compared with those in the control (CK). Calcium nitrate and calcium chloride (ALe-Ca) and calcium phosphate and calcium carbonate (HAC-Ca) decreased in both mature leaves and shoots,whereas water-soluble calcium (H2O-Ca), calcium pectate (NaCl-Ca), and calcium oxalate (HCl-Ca) increased. The percentage of active calcium, calcium pectate, and water-soluble calcium increased, whereas the percentage of calcium phosphate and calcium carbonate decreased. When treated with IBA, calcium fractions and percentage of the different forms of Ca was enhanced in 40 part per million (ppm) IBA compared with 20 ppm IBA and water. The results indicated that IBA increased the percentage of both active calcium (NaCl-Ca and H2O-Ca) in tender shoots and boosted the transportation of stored Ca in plants. IBA promoted Ca2+-ATPase activity and Ca2+ uptake in tender shoots of M. hupehensis. It can improve the total Ca contents and the relative percentage of Ca.

  6. The Long and Winding Road to Gamma-Amino-Butyric Acid as Neurotransmitter.

    Science.gov (United States)

    Avoli, Massimo; Krnjević, Krešimir

    2016-03-01

    This review centers on the discoveries made during more than six decades of neuroscience research on the role of gamma-amino-butyric acid (GABA) as neurotransmitter. In doing so, special emphasis is directed to the significant involvement of Canadian scientists in these advances. Starting with the early studies that established GABA as an inhibitory neurotransmitter at central synapses, we summarize the results pointing at the GABA receptor as a drug target as well as more recent evidence showing that GABAA receptor signaling plays a surprisingly active role in neuronal network synchronization, both during development and in the adult brain. Finally, we briefly address the involvement of GABA in neurological conditions that encompass epileptic disorders and mental retardation. RESUMÉ: Le chemin long et sinueux pour que le GABA soit reconnu comme un neurotransmetteur. Cette revue est axée sur les découvertes réalisées durant plus de six décennies de recherche en neurosciences sur l'acide gamma-aminobutyrique (GABA) comme neurotransmetteur. À cet effet, nous mettons une emphase particulière sur le rôle significatif de chercheurs canadiens dans ce domaine de recherche. En prenant comme point de départ les premières études qui ont établi que le GABA était un neurotransmetteur au niveau de synapses centrales, nous faisons le sommaire des résultats identifiant le récepteur GABA comme étant une cible thérapeutique ainsi que des données plus récentes montrant que la signalisation du récepteur GABAA joue, de façon surprenante, un rôle actif dans la synchronisation du réseau neuronal, tant au cours du développement que dans le cerveau adulte. Finalement, nous traitons brièvement du rôle de GABA dans les maladies neurologiques incluant les troubles épileptiques et l'arriération mentale. PMID:26763167

  7. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T

    International Nuclear Information System (INIS)

    The short fatty acid, butyrate, which is produced by intestinal anaerobic bacteria in the colon, has inhibitory activity on histone deacetylases (HDACs). Treatment of the human colon cancer cell line, LS174T, with 1-2 mM sodium butyrate stimulated MUC2 mucin production, as determined by histological PAS staining of carbohydrate chains of mucin, and confirmed at the protein and mRNA levels by immunoblotting with anti-MUC2 antibody and real-time RT-PCR, respectively. Increases in acetylated histone H3 in the LS174T cells treated with butyrate suggest inhibition of HDACs in these cells. Butyrate-stimulated MUC2 production in the LS174T cells was inhibited by the MEK inhibitor, U0126, implicating the involvement of extracellular signal-regulated kinase (ERK) cascades in this process. Proliferation of the LS174T cells was inhibited by butyrate treatment. Although apoptotic nuclear DNA fragmentation could not be detected, cell-cycle arrest at the G0/G1 phase in the butyrate-treated cells was demonstrated by flow cytometry. Thus butyrate, an HDAC inhibitor, inhibits proliferation of LS174T cells but stimulates MUC2 production in individual cells

  8. Effect of different doses of coated butyric acid on growth performance and energy utilization in broilers.

    Science.gov (United States)

    Kaczmarek, S A; Barri, A; Hejdysz, M; Rutkowski, A

    2016-04-01

    We recently applied four dietary treatments in experiments I and II to determine the effect of protected calcium butyrate (BP) on growth performance and nutrient digestibility in broiler chickens. A group of one-day-old male Ross 308 broiler chicks (total 960, 480 per trial) were used in the study. In experiment I, the basal diets were fed with protected BP inclusion (0.2, 0.3, or 0.4 g/kg of finished feed) (BP) or without (C). In experiment II, 4 different diets were tested: 1) basal diet with no supplementation (C), 2) basal diet supplemented with protected BP (0.3 g/kg) (BP), 3) basal diet supplemented with avilamycin (6 mg/kg, active substance) a common antibiotic growth promoter (AGP) (Av), and 4) basal diet supplemented with the combination of both avilaymicin and BP. In experiment I, considering the entire study period, the use of BP improved feed conversion ratio (Penergy corrected for nitrogen (AMEN) were improved after BP supplementation (P<0.05). In experiment II, A or AB diets improved (P<0.05) body weight gain compared to the control treatment. The diets Av, BP, and AvB improved (P<0.05) feed conversion ratio compared to the control treatment. Birds from the treatment diet were characterized by having the thickest mucosa (P<0.05). On days 14, 35, and 42, the use of AB diets improved AMENcontent compared to the control treatment (P<0.05). The apparent ileal digestibility of amino acid data showed that Av or AvB treated birds were characterized by higher Asp, Glu, Cys, Gly, and Ala ileal digestibility than the control animals (P<0.05). The use of Av, BP, or AvB increased ileal digestibility of Thr, Ser, and Pro (P<0.05). There is an indication that BP, alone or in combination with avilamycin, improve the digestion and absorptive processes and consequently birds performance results. PMID:26740137

  9. Bioprotective carnitinoids: lipoic acid, butyrate, and mitochondria-targeting to treat radiation injury: mitochondrial drugs come of age.

    Science.gov (United States)

    Steliou, Kosta; Faller, Douglas V; Pinkert, Carl A; Irwin, Michael H; Moos, Walter H

    2015-06-01

    Preclinical Research Given nuclear-power-plant incidents such as the 2011 Japanese Fukushima-Daiichi disaster, an urgent need for effective medicines to protect against and treat the harmful biological effects of radiation is evident. To address such a challenge, we describe potential strategies herein including mitochondrial and epigenetic-driven methods using lipoic and butyric acid ester conjugates of carnitine. The antioxidant and other therapeutically beneficial properties of this class of agents may protect against ionizing radiation and resultant mitochondrial dysfunction. Recent studies of the compounds described herein reveal the potential-although further research and development is required to prove the effectiveness of this approach-to provide field-ready radiation-protective drugs. PMID:26109467

  10. Organic memory using [6,6]-phenyl-C61 butyric acid methyl ester: morphology, thickness and concentration dependence studies

    International Nuclear Information System (INIS)

    We report a simple memory device in which the fullerene-derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) mixed with inert polystyrene (PS) matrix is sandwiched between two aluminum (Al) electrodes. Transmission electron microscopy (TEM) images of PCBM:PS films showed well controlled morphology without forming any aggregates at low weight percentages (th) for switching from the high-impedance state to the low-impedance state, the voltage at maximum current density (Vmax) and the voltage at minimum current density (Vmin) in the NDR regime are constant within this thickness range. The current density ratio at Vmax and Vmin is more than or equal to 10, increasing with thickness. Furthermore, the current density is exponentially dependent on the longest tunneling jump between two PCBM molecules, suggesting a tunneling mechanism between individual PCBM molecules. This is further supported with temperature independent NDR down to 240 K

  11. Photovoltaic Properties of Poly (3-Hexylthiophene: [6, 6]-Phenyl C61-Butyric Acid 3-Ethylthiophene Thin Films

    Directory of Open Access Journals (Sweden)

    B.M. Omer

    2013-07-01

    Full Text Available We fabricated and studied the electrical and photovoltaic properties of organic solar cell based on poly (3-hexylthiophene (P3HT as an electron donor blended with the acceptor [6, 6]-Phenyl C61-Butyric Acid 3-Ethylthiophene Ester (modified fullerene. The active layer composed of (3:1, w/w mixture of P3HT and the modified fullerene was sandwiched between indium tin oxide (ITO and aluminum (Al. The ideality factor n and barrier hight b values were determined from the dark current density-voltage characteristics and found as 2.45 and 0.78 eV, respectively. The device shows photovoltaic behavior with an open circuit voltage of 400 mV, short circuit current of 22.9 A/cm2 and fill factor 0.32 under 2.8 mW/cm2 light intensity.

  12. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter; Gavala, Hariklia N.

    fermentation coupled with Reverse Enhanced Electro-Dialysis (REED) at D=0.0417 h-1 (1 day HRT) in experiments with a mixture of glucose and xylose in synthetic growth medium as well as with increasing concentrations of PHWS (up to 100%). Data obtained from experiments with synthetic medium showed that...... disconnection of the REED system resulted to much lower (48 and 83% for glucose and xylose, respectively) sugars consumption rates and consequently lower butyric acid production rates. It was also noticeable that continuous operation, even without the REED system, resulted to higher glucose consumption rates...... development, and process improvement for higher yield, productivity and selectivity. Compared with other microbial strains Clostridium tyrobutyricum has been well characterised, exhibits higher yield and selectivity and can utilize glucose and xylose simultaneously. However, a prerequisite for cost effective...

  13. Morphology characterization of phenyl-C61-butyric acid methyl ester films via an electrohydrodynamic spraying route

    International Nuclear Information System (INIS)

    In this study, we fabricated a thin film layer of phenyl-C61-butyric acid methyl ester (PCBM) fine particles using electrohydrodynamic (EHD) spray and evaluated the effects of the process parameters on the film morphology. After the PCBM was dissolved in dichloromethane, the solution was sprayed onto a substrate using the stable cone-jet mode of EHD spraying at various flow rates ranging from 5 to 15 μl/min and electric potentials ranging from 3 to 5 kV. The effects of the liquid flow rate, nozzle-plate distance, solute fraction, and electrical conductivity on the spray characteristics were investigated. The sizes of the PCBM particles deposited on the substrate were calculated using a scaling law and a mass balance equation, the results of which were in agreement with those obtained by scanning electron microscopy. A thin film was obtained with the structure of PCBM particles deposited without any void or agglomeration from the EHD spraying technique. The electrical conductivity of the PCBM solution was the dominant parameter in controlling the size of the PCBM particles. As the conductivity was increased to 2.4 × 10−3 S/m from 4.3 × 10−9 S/m, the particle size decreased from 6.7 μm to 320 nm. The size distribution measured using a scanning mobility particle sizer also supported the generation of nano-scale PCBM particles. The decrease of the particle size with increasing electrical conductivity may lead to a better morphology of PCBM films. - Highlights: • The phenyl-C61-butyric acid methyl ester thin film was obtained by electrospray. • The morphology of film consisting of microparticles was investigated. • The particle size was controlled by adjusting experimental parameters. • The nanoparticle was obtained by increasing the solution conductivity. • The particle size distribution was studied using a scanning mobility particle sizer

  14. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer.

    Directory of Open Access Journals (Sweden)

    Shien Hu

    Full Text Available Colonic microbiota ferment non-absorbed dietary fiber to produce prodigious amounts of short chain fatty acids (SCFAs that benefit the host through a myriad of metabolic, trophic, and chemopreventative effects. The chemopreventative effects of the SCFA butyrate are, in part, mediated through induction of p21 gene expression. In this study, we assessed the role of microRNA(miRNA in butyrate's induction of p21 expression. The expression profiles of miRNAs in HCT-116 cells and in human sporadic colon cancers were assessed by microarray and quantitative PCR. Regulation of p21 gene expression by miR-106b was assessed by 3' UTR luciferase reporter assays and transfection of specific miRNA mimics. Butyrate changed the expression of 44 miRNAs in HCT-116 cells, many of which were aberrantly expressed in colon cancer tissues. Members of the miR-106b family were decreased in the former and increased in the latter. Butyrate-induced p21 protein expression was dampened by treatment with a miR-106b mimic. Mutated p21 3'UTR-reporter constructs expressed in HCT-116 cells confirmed direct miR-106b targeting. Butyrate decreased HCT-116 proliferation, an effect reversed with the addition of the miR-106b mimic. We conclude that microbe-derived SCFAs regulate host gene expression involved in intestinal homeostasis as well as carcinogenesis through modulation of miRNAs.

  15. Demonstration of in situ product recovery of butyric acid via CO2 -facilitated pH swings and medium development in two-phase partitioning bioreactors.

    Science.gov (United States)

    Peterson, Eric C; Daugulis, Andrew J

    2014-03-01

    Production of organic acids in solid-liquid two-phase partitioning bioreactors (TPPBs) is challenging, and highly pH-dependent, as cell growth occurs near neutral pH, while acid sorption occurs only at low pH conditions. CO2 sparging was used to achieve acidic pH swings, facilitating undissociated organic acid uptake without generating osmotic stress inherent in traditional acid/base pH control. A modified cultivation medium was formulated to permit greater pH reduction by CO2 sparging (pH 4.8) compared to typical media (pH 5.3), while still possessing adequate nutrients for extensive cell growth. In situ product recovery (ISPR) of butyric acid (pKa = 4.8) produced by Clostridium tyrobutyricum was achieved through intermittent CO2 sparging while recycling reactor contents through a column packed with absorptive polymer Hytrel® 3078. This polymer was selected on the basis of its composition as a polyether copolymer, and the use of solubility parameters for predicting solute polymer affinity, and was found to have a partition coefficient for butyric acid of 3. Total polymeric extraction of 3.2 g butyric acid with no CO2 mediated pH swings was increased to 4.5 g via CO2 -facilitated pH shifting, despite the buffering capacity of butyric acid, which resists pH shifting. This work shows that CO2 -mediated pH swings have an observable positive effect on organic acid extraction, with improvements well over 150% under optimal conditions in early stage fermentation compared to CO2 -free controls, and this technique can be applied other organic acid fermentations to achieve or improve ISPR. PMID:23996152

  16. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET

    International Nuclear Information System (INIS)

    The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profiles. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in six female baboons over 90 min. The carbon-11 labeled carboxylic acids were prepared by using 11CO2 and the appropriate Grignard reagents. [11C]BA was metabolized rapidly (only 20% of the total carbon-11 in plasma was parent compound at 5 min post injection) whereas for VPA and PBA 98% and 85% of the radioactivity were the unmetabolized compound at 30 min after their administration respectively. The brain uptake of all three carboxylic acids was very low ( VPA > PBA), which is consistent with the need for very high doses for therapeutic efficacy. Most of the radioactivity was excreted through the kidneys and accumulated in the bladder. However, the organ biodistribution between the drugs differed. [11C]BA showed relatively high uptake in spleen and pancreas whereas [11C]PBA showed high uptake in liver and heart. Notably, [11C]VPA showed exceptionally high heart uptake possibly due to its involvement in lipid metabolism. The unique biodistribution of each of these drugs may be of relevance in understanding their therapeutic and side effect profile including their teratogenic effects

  17. Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells - Possible Relevance to Autism Spectrum Disorders

    OpenAIRE

    Nankova, Bistra B; Agarwal, Raj; MacFabe, Derrick F.; La Gamma, Edmund F.

    2014-01-01

    Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA ad...

  18. The effect of short-chain fatty acids butyrate, propionate, and acetate on urothelial cell kinetics in vitro: potential therapy in augmentation cystoplasty.

    Science.gov (United States)

    Dyer, J P; Featherstone, J M; Solomon, L Z; Crook, T J; Cooper, A J; Malone, P S

    2005-07-01

    The intestinal element of enterocystoplasty is affected by chronic inflammatory changes, which lead to excess mucus production, urinary tract infections, and stone formation. There is also an increased risk of malignancy. These inflammatory changes may be due to diversion colitis, which affects colonic segments excluded from the faecal stream and likewise may respond to intraluminal short-chain fatty acid (SCFA) therapy. The SCFAs have interesting antiproliferative, differentiating, and pro-apoptotic effects, which are protective against colorectal cancer and may influence the risk of malignancy in enterocystoplasty. Before intravesical therapy can be considered, the effect on normal urothelium must be investigated. Primary urothelial cells cultured from biopsy specimens and transformed urothelial (RT112 and MGH-U1) and intestinal cell lines (HT29 and CaCo-2) were incubated with SCFAs. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure the residual viable biomass to assess cell proliferation. Proliferation of primary and transformed urothelial cells in culture was inhibited by all SCFAs in a similar time- and dose-dependent manner. The concentration of SCFA required to inhibit growth of primary cells by 50% (IC50) was 20 mM of butyrate, 120 mM of propionate, and 240 mM of acetate after incubation for 1 h. After 72 h the IC50 was 2 mM of butyrate, 4 mM of propionate, and 20 mM of acetate. Transformed urothelial and colon cancer cell lines demonstrated similar growth inhibition. Butyrate was the most potent inhibitor of cell proliferation, followed by propionate and then acetate. Growth inhibition is not an immediate cytotoxic effect, and urothelial cells show a degree of adaptation to butyrate and growth recovery after incubation with butyrate. In conclusion, butyrate- and propionate-induced growth inhibition is potentially clinically significant and may have therapeutically beneficial implications in vivo. PMID:15864601

  19. Effects of dietary humic and butyric acid on growth performance and response to lipopolysaccharide in young pigs.

    Science.gov (United States)

    Weber, T E; van Sambeek, D M; Gabler, N K; Kerr, B J; Moreland, S; Johal, S; Edmonds, M S

    2014-09-01

    Humic acid (MFG) and fat-protected butyric acid (BA) has been shown to modulate energy metabolism and inflammation. Therefore, the objectives of this study were to determine the effects of MFG and BA, alone and in combination, on growth performance and response to lipopolysaccharide (LPS)-induced inflammation in young pigs. An experiment was conducted using 448 crossbred weanling pigs, which were stratified by gender and BW and were randomly assigned to 1 of 4 dietary treatments in a 2 × 2 factorial arrangement consisting of control and MFG with or without BA. The pigs were housed at a density of 8 pigs/pen and with 14 pens/dietary treatment. Growth performance and feed intake were assessed for 35 d. To assess the inflammation-related properties of MFG and BA, on d 36 a subset of 48 pigs from each treatment was intramuscular injected with either sterile saline or Escherichia coli LPS (20 μg/kg BW; E. coli serotype O55:B5) for 4 h in a 2 × 2 × 2 factorial arrangement (± LPS, ± MFG and ± BA; n = 6 pigs/treatment group) to assess their febrile response as well as serum, liver, and muscle cytokine responses. Results from this study showed that neither BA nor MFG alone or in combination altered pig ADG, ADFI, and G:F. Moreover, in the presence of LPS, the combination of MFG and BA resulted in a 62% decrease (P = 0.08) in serum cortisol compared to when neither compound was added to the diet. In contrast, serum IGF-I was increased (P pigs subjected to LPS. However, both MFG and BA inclusion appear to have a complex role in modulating different aspects of the immune response to LPS, particularly when both are fed in combination. Humic acid also appeared to play a role in decreasing oxidative stress. PMID:25023805

  20. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Long-Zhu Li; Hong-Xia Deng; Wen-Zhu Lou; Xue-Yan Sun; Meng-Wan Song; Jing Tao; Bing-Xiu Xiao; Jun-Ming Guo

    2012-01-01

    AIM: To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. METHODS: Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. RESULTS: The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G0/G1 phase, whereas cells treated with high concentrations of PBA were arrested at the G2/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G0/G1 phase, cells treated with high concentrations of PBA were arrested at the S phase. CONCLUSION: The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and G2/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and S phases.

  1. Measurement and correlation of phase equilibrium data of the mixtures consisting of butyric acid, water, cyclohexanone at different temperatures

    International Nuclear Information System (INIS)

    Highlights: ► Liquid phase equilibria of (water + BA + cyclohexanone) system were investigated. ► Experimental LLE data were correlated with NRTL and UNIQUAC models. ► Distribution coefficients and separation factors were evaluated. - Abstract: In this work, experimental solubility and tie-line data for the (water + butyric acid + cyclohexanone) system were obtained at T = (298.2, 308.2, and 318.2) K and atmospheric pressure. The ternary system investigated exhibits type-1 behavior of LLE. The experimental tie-line data were compared with those correlated by the UNIQUAC and NRTL models. The consistency of the experimental tie-line data was determined through the Othmer Tobias and Hand correlation equations. Distribution coefficients and separation factors were evaluated over the immiscibility regions. A comparison of the extracting capability of the solvent at different temperatures was made with respect to separation factors. The Katritzky and Kamlet–Abboud–Taft multiparameter scales were applied to correlate distribution coefficients and separation factors in this ternary system. The LSER models values were interpreted in terms of intermolecular interactions.

  2. The effect of indole-butyric acid and kinetin on rooting of rose cuttings in winter and summer

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2013-12-01

    Full Text Available The effect of indole-butyric acid, both alone and with a low concentration of kinetin, on the rooting of rose cuttings in winter and summer, is presented in this paper. The experiments were conducted using 500 and 1000 mg/l IBA with or without the addition of 5 mg/l kinetin. The growth regulators were applied by dipping the base of a cutting for 5 s in an aqueous solution of these substances. Cuttings 5-6 cm in length were made from the mid-part of a stem of a rose grown in a greenhouse. The experiments were carried out using 'Queen of Bermuda' and 'Baccara' cuttings. The investigations showed that treating rose cuttings rooted in winter with an IBA solution had a significant promotive effect on the quantity of rooted cuttings, number of formed roots on the cutting, as well as on the length of the longest root. A distinctive increase in the number of breaking buds was also seen on the cuttings treated with IBA. The IBA solution applied to cuttings rooted in the summer significantly decreased the number of rooted cuttings and breaking buds. However, no significant influence on the number and length of formed roots was found. Addition of kinetin to the IBA solutions did not have any effect on the rooting of rose cuttings either in winter or summer.

  3. Polyunsaturated fatty acids sensitise colon cells to the apoptotic effects of sodium butyrate

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Kozubík, Alois

    Elsevier. Roč. 2, č. 1 (2004), s. 44. ISSN 1359-6349. [Controversies in Tumor Prevention and Genetics: International Conference /3./ and Annual Meeting of the International Society of Cancer Chemoprevention /9./. 12.02.2004-14.02.2004, St. Gallen] R&D Projects: GA ČR GA524/04/0895; GA AV ČR IBS5004009 Keywords : fatty acids * colon cancer * apoptosis Subject RIV: BO - Biophysics

  4. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    Science.gov (United States)

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences. PMID:27497013

  5. Biochemical changes in barberries during adventitious root formation: the role of indole-3-butyric acid and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ali Tehranifar

    2014-03-01

    Full Text Available Peroxidase, polyphenol oxidase (PPO, phenolic compounds and total sugars (TS were investigated during root formation in cuttings of Berberis vulgaris var. asperma (BVA and Berberis thunbergii var. atropurpurea (BTA treated with indole-3-butyric acid (IBA and IBA+H2O2. Rooting was observed on BTA cuttings but not on BVA cuttings. The BTA cuttings treated with IBA and IBA+H2O2 showed higher rooting percentages, number of roots, and root length over the control. Those treated with IBA+H2O2 recorded the lowest peroxidase activity after planting. BTA cuttings treated with IBA+H2O2 showed the highest peroxidase activity at 50 d after planting; BVA cuttings under different treatments showed no significant difference for peroxidase activity at planting time or up to 80 d after planting. PPO activity for the BTA cuttings in the control treatment was lower than for other treatments during root formation. The cuttings in the IBA and IBA+H2O2 treatments showed increased PPO activity from 0 to 50 d after planting and a slight decrease in PPO activity from 60 to 80 d after planting. PPO activity for the BVA cuttings was significantly lower than for BTA during root formation. The BTA cuttings treated with IBA and IBA+H2O2 showed the highest phenolic compound content during root formation. The BVA cuttings displayed higher TS than BTA during the initial stage of root formation. A comparison of the anatomical structure of easy-to-root and difficult-to-root cuttings indicated that physical inhibitors did not affect the rooting capacity of BVA.

  6. Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6,6]-phenyl-C61-butyric acid methyl ester composite

    International Nuclear Information System (INIS)

    A series of low band gap poly(3-dodecylthienylenevinylene) (PTV) with controlled morphological order have been synthesized and blended with the electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) for organic photovoltaic devices. Two polymers with the most and least side chain regioregularity were chosen in this work, namely the PTV010 and PTV55, respectively. Using photoluminescence, photo-induced absorption spectroscopy, and atomic force microscopy, we find no direct evidence of photoinduced charge transfer between the two constituents, independent of the bulk-heterojunction morphology of the film, although the possibility of formation of P+/C60- charge transfer complex was not completely ruled out. The large exciton binding energy (Eb = 0.6 eV) in PTV inhibits the photoinduced electron transfer from PTV to PCBM. In addition, excitons formed on polymer chains suffer ultrafast (g state in both PTV010 and PTV55 cases, whereas excitons generated on PCBM molecules undergo energy transfer only to PTV55 in the blend film. Thus, the addition of PCBM increases the photoluminescence yield with respect to neat polymer yield. The efficiency of the energy transfer process is shown to depend on the degree of polymer and PCBM intermixing within the film, which in turn is governed by the polymer chain orders. The effect of such intermixing on the resulting kinetics of photo-induced excitations is also discussed. Our results show limited effect of polymer crystallinity of PTV to its excitonic properties, much the contrary of the case with poly (3-hexylthiophene) which has similar chemical structure with PTV.

  7. Indole-3-butyric acid synthesis in ecotypes and mutants of Arabidopsis thaliana under different growth conditions.

    Science.gov (United States)

    Ludwig-Müller, Jutta

    2007-01-01

    Although IBA is a naturally occurring auxin, its role in plant development is still under debate. In this study a set of Arabidopsis mutants was used to analyze the biosynthesis of IBA in vitro. The mutants chosen for this study can be classified as: (1) involvement in auxin metabolism, transport or synthesis (amt1, aux1, ilr1, nit1, rib1, sur1, trp1-100); (2) other hormones possibly involved in the regulation of IBA synthesis (aba1, aba3, eto2, fae1, hls1, jar1); (3) photomorphogenesis (det1, det2, det3); and (4) root architecture (cob1, cob2, scr1). In addition, two transgenic lines overexpressing the IAA glucose synthase (iaglu) gene from maize were analyzed. The ecotypes No-0 and Wassilewskija showed the highest IBA synthetase activity under control conditions, followed by Columbia, Enkheim and Landsberg erecta. In the mutant lines IBA synthetase activity differed in most cases from the wild type, however no particular pattern of up- or down-regulation, which could be correlated to their possible function, was found. For rib1 mutant seedlings it was tested whether reduced IBA synthetase activity correlates with the endogenous IBA levels. Free IBA differed only depending on the culture conditions, but gave no clear correlation with IBA synthetase activity compared to the wild type. Since drought and osmotic stress as well as abscisic acid (ABA) application enhanced IBA synthesis in maize, it was tested whether IBA synthetase from Arabidopsis is also inducible by drought stress conditions. This was confirmed for the two ecotypes Col and Ler which showed different IBA synthetase activity when cultivated with various degrees of drought stress. IBA synthetase was also determined in photomorphogenic mutants under different light regimes. Induction of IBA synthetase in det1 and det3 plants was found under short day plus a red light pulse or in the dark, respectively. The results are discussed with respect to the functions of the mutated genes. PMID:16325963

  8. 4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification.

    Science.gov (United States)

    Yin, Xue-Bo; Qi, Bin; Sun, Xuping; Yang, Xiurong; Wang, Erkang

    2005-06-01

    4-(Dimethylamino)butyric acid (DMBA) labeling combined with gold nanoparticle amplification for electrochemiluminescence (ECL) determination of a biological substance (bovine serum albumin (BSA) and immunoglobulin G (IgG) as models) was presented. After DMBA, an analogue of tripropylamine, was tagged on the (anti)analytes, an ECL signal related to the content of the analytes was generated when the analyte tagged with DMBA was in contact with tris(2,2'-bipyridine)ruthenium (Ru(bpy)(3)2+) solution and a potential was applied. To improve the adsorption capacity, a gold nanoparticle layer was first combined into the surface of the 2-mm-diameter gold electrode. For the determination of BSA, avidin was covalently conjugated to a self-assembled monolayer of 3-mercaptopropanoic acid on the gold nanoparticle layer. Biotinylated BSA-DMBA was then immobilized on the gold nanoparticle layer of the gold electrode via the avidin-biotin reaction. IgG was tested via a typical sandwich-type immobilization method. ECL signals were generated from the electrodes immobilized with BSA or IgG by immersing them in a 1 mmol L-1 Ru(bpy)(3)2+ solution and scanning from 0.5 to 1.3 V versus Ag/AgCl. With gold nanoparticle amplification, the ECL peak intensity was proportional to the concentration over the range 1-80 and 5-100 microg/mL for BSA and IgG consuming 50 microL of sample, respectively. A 10- and 6-fold sensitivity enhancement was obtained for BSA and IgG over their direct immobilization on an electrode using DMBA labeling. The relative standard deviations of five replicate determinations of 10 microg/mL BSA and 20 microg/mL IgG were 8.4 and 10.2%, respectively. High biocompatibility and low cost were the main advantages of the present DMBA labeling technique over the traditional Ru(bpy)(3)2+ labeling. PMID:15924384

  9. Interaction of polyunsaturated fatty acids and sodium butyrate during apoptosis in HT-29 human colon adenocarcinoma cells

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Lojek, Antonín; Kozubík, Alois

    2005-01-01

    Roč. 44, č. 1 (2005), s. 40-51. ISSN 1436-6207 R&D Projects: GA ČR(CZ) GA525/01/0419 Institutional research plan: CEZ:AV0Z50040507 Keywords : colon cancer * diet * butyrate Subject RIV: BO - Biophysics Impact factor: 2.257, year: 2005

  10. Effects of Exogenous Indole Butyric Acid and Callus Formation on the Anti-oxidant Activity, Total Phenolic, and Anthocyanin Constituents of Mulberry Cuttings

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to evaluate the effects of exogenous indole butyric acid (IBA) and callus formation on the antioxidant activity, total phenolics, and anthocyanin constituents of Morus nigra L. and M. alba L. cuttings, we investigated the variations before and after the treatment. The results indicate that anti-oxidant ability, total phenolic, and anthocyanin constituents of the callus stems of both Morus species were higher than those of non-callus forming species. There were also increases observed in anti-oxidant ability, total phenolic,and anthocyanin constituents of calli treated with IBA (1 000-3 000 mg/L).

  11. Bi-functional prodrugs of 5-aminolevulinic acid and butyric acid increase erythropoiesis in anemic mice in an erythropoietin-independent manner.

    Science.gov (United States)

    Rephaeli, Ada; Tarasenko, Nataly; Fibach, Eitan; Rozic, Gabriela; Lubin, Ido; Lipovetsky, Julia; Furman, Svetlana; Malik, Zvi; Nudelman, Abraham

    2016-08-25

    Anemia is a major cause of morbidity and mortality worldwide resulting from a wide variety of pathological conditions. In severe cases it is treated by blood transfusions or injection of erythroid stimulating agents, e.g., erythropoietin (Epo), which can be associated with serious adverse effects. Therefore, there is a need to develop new treatment modalities. We recently reported that treatment of erythroleukemic cells with the novel the bi-functional prodrugs of 5-aminolevulinic acid (ALA) and butyric acid (BA), AN233 and AN908, enhanced hemoglobin (Hb) synthesis to a substantially higher level than did ALA and BA individually or their mixture. Herein, we describe that these prodrugs when given orally to mice induced histone deacetylase inhibition in the kidneys, bone marrow and spleen, thus, indicating good penetrability to the tissues. In mice where anemia was chemically induced, treatment with the prodrugs increased the Hb, the number of red blood cells (RBCs) and the percentage of reticulocytes to normal levels. The prodrugs had no adverse effects even after repeated treatment at 100-200mg/kg for 50days. The lack of increased levels of Epo in the blood of mice that were treated with the prodrugs suggests that AN233 and AN908 affected the Hb and RBC levels in an Epo-independent manner. Taken together with our previous studies, we propose that the prodrugs increase globin expression by BA inhibition of histone deacetylase and elevation heme synthesis by ALA. These results support an Epo-independent approach for treating anemia with these prodrugs. PMID:27283485

  12. Determination of 4-(methylnitrosamino)-4-(3-pyridyl)-butyric acid in tobacco, tobacco smoke and the urine of rats and smokers.

    Science.gov (United States)

    Pachinger, A; Begutter, H; Ultsch, I; Klus, H

    1993-10-22

    The potential endogenous nitrosation of nicotine and/or nicotine metabolites has led to speculation on the possible formation of 4-(methylnitrosamino)-4-(3-pyridyl)butyric acid (iso-NNAC) in smokers. A gas chromatographic method with thermal energy analytical detection is described for the determination of iso-NNAC in tobacco, tobacco smoke and urine. Sample pre-concentration is performed using C18 extraction cartridges prior to esterification of iso-NNAC using ethereal diazomethane solution. Sample clean-up includes chromatography on aluminum and silica, and fractionation using high-performance liquid chromatography. The detection limits for iso-NNAC in tobacco, tobacco smoke and urine are 2 ng/g tobacco, 0.1 ng/cigarette and 20 ng/l urine, respectively. PMID:8106592

  13. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    Science.gov (United States)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  14. Modeling of Open-Circuit Voltage of Phenyl-C61-Butyric Acid Methyl Ester-Like Based Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Ferreira, Rodrigo M; Batagin-Neto, Augusto; Lavarda, Francisco C

    2015-12-01

    New materials are currently being sought for use in active layers of bulk-heterojunction organic solar cells, and computational modeling plays an important role in this search. Although open circuit voltage (V(oc)) is one of the fundamental quantities that determine the efficiency of a solar cell, there is no consensus on the best way to estimate this magnitude for new materials from calculations of the electronic structure. In this paper, we compare ways of predicting V(oc) values employing a diverse group of blends and conclude that it is possible to have a good prediction tool for organic solar cells based on phenyl-C61-butyric acid methyl ester (PCBM) acceptor molecules. PMID:26682440

  15. On the Inapplicability of Electron-Hopping Models for the Organic Semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM).

    Science.gov (United States)

    Gajdos, Fruzsina; Oberhofer, Harald; Dupuis, Michel; Blumberger, Jochen

    2013-03-21

    Phenyl-C61-butyric acid methyl ester (PCBM) is one of the most popular semiconductors in organic photovoltaic cells, but the electron-transport mechanism in the microcrystalline domains of this material as well as its preferred packing structure remain unclear. Here we use density functional theory to calculate electronic-coupling matrix elements, reorganization energies, and activation energies for available experimental and model crystal structures. We find that the picture of an excess electron hopping from one fullerene to another does not apply for any of the crystalline phases, rendering traditional rate equations inappropriate. We also find that the cohesive energy increases in the order body-centered-cubic < hexagonal < simple cubic < monoclinic < triclinic, independently of the type of dispersion correction used. Our results indicate that the coupled electron-ion dynamics needs to be solved explicitly to obtain a realistic description of charge transfer in this material. PMID:26291369

  16. Dependence of protein binding capacity of dimethylamino-γ-butyric-acid (DMGABA)-immobilized porous membrane on composition of solvent used for DMGABA immobilization

    Science.gov (United States)

    Iwanade, Akio; Umeno, Daisuke; Saito, Kyoichi; Sugo, Takanobu

    2013-06-01

    Dimethylamino-γ-butyric acid (DMGABA) as an ampholite was reacted with the epoxy group of the poly-glycidyl methacrylate chain grafted onto the pore surface of a porous hollow-fiber polyethylene membrane by radiation-induced graft polymerization. DMGABA was dissolved in a mixture of dioxane and water at various dioxane volume fractions, defined by dividing the dioxane volume by the total volume. The equilibrium binding capacity (EBC) of the DMGABA-immobilized porous hollow-fiber membrane for lysozyme was evaluated in the permeation mode. The EBC was varied from a 1/50-fold monolayer binding capacity to a 10-fold monolayer binding capacity by controlling the composition of the solvent used for DMGABA immobilization and the molar conversion of the epoxy group into the DMGABA group.

  17. Optical Properties of MEH-PPV and MEH-PPV/ [6,6]-Phenyl C61-butyric Acid 3-ethylthiophene Ester Thin Films

    Directory of Open Access Journals (Sweden)

    B.M. Omer

    2012-12-01

    Full Text Available Thin films of Poly [2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV were prepared from chloroform, 1,2-dichlorobenzene and toluene solutions by spin coating technique on quartz substrates. Absorption and photoluminescence (PL spectra of the polymer thin films prepared from different solvents were measured. It was concluded from the UV-Vis absorption and PL spectra that the optical properties of MEH-PPV films strongly affected by solvents used for spin coating. A strong photoluminescence quenching was observed in (1:4 MEH-PPV: [6,6]-Phenyl C61-butyric Acid 3-ethylthiophene Ester (Modified Fullerene composite which provides evidence of photoinduced charge transfer. Further, with Atomic Force Microscope (AFM it has been demonstrated that the surface morphology of the MEH-PPV: Modified fullerene thin films are strongly dependent on the preparation condition (solvents.

  18. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C71 butyric acid methyl ester polymer solar cells

    International Nuclear Information System (INIS)

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C71 butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport

  19. Gas chromatographic detection of D-(-)-2,3-butanediol and butyric acid produced by sporeformers in cream-style corn and canned beef noodle soup: collaborative study.

    Science.gov (United States)

    Schafer, M L; Peeler, J T; Bradshaw, J G; Hamilton, C H; Carver, R B

    1985-01-01

    A gas chromatographic method that identifies sporeformers as the cause of spoilage in swollen cans of low-acid foods was collaboratively studied in 2 stages. Two organic compounds produced by sporeformers, D-(-)-2,3-butanediol and butyric acid, are measured in the upper phase after centrifugation of the liquid portion of the can contents. Each sample is assayed on 2 packed columns designed for the assay of aqueous solutions of volatile fatty acids, using flame ionization detectors. For study 1, 16 duplicate inoculated cans of cream-style corn and beef noodle soup were sent to 9 collaborators. For study 2, 7 collaborators received 11 duplicate inoculated cans of the 2 foods. Duplicate uninoculated cans of each food served as negative controls. The inocula were 6 sporeforming organisms (4 Clostridium and 2 gas-forming Bacillus species) and 2 nonsporeformers. After the deletion of marginal samples, the percentages of correctly identified sporeformers and nonsporeformers in beef noodle soup were 83 (110/132) and 90 (54/60), respectively; corresponding percentages for cream-style corn were 80 (98/123) and 100 (35/35). The method has been adopted official first action. PMID:4030630

  20. Synthesis, molecular modeling and biological evaluation of novel 2-allyl amino 4-methyl sulfanyl butyric acid as α-amylase and α-glucosidase inhibitor

    Science.gov (United States)

    Balan, Kannan; Perumal, Perumal; Sundarabaalaji, Narayanan; Palvannan, Thayumanavan

    2015-02-01

    In the present study 2-allyl amino 4-methyl sulfanyl butyric acid (AMSB) was synthesized in good yield. AMSB was characterized by Fourier transforms infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR) (1H and 13C) and Liquid chromatography mass spectrometry (LCMS). The radical scavenging activity and reducing power assay of AMSB was assessed using 1-1-diphenyl 2-picryl hydrazyl (DPPH), 2,2‧-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power assay (FRAP) and was found to be 44.1, 34.71 and 41.7 μg/ml respectively. The compound showed effective inhibition against α-amylase and α-glucosidase. AMSB was identified to be a reversible mixed noncompetitive inhibitor of α-amylase and α-glucosidase. The molecular docking study was carried out to evaluate the specific groove binding properties and affords valuable information of AMSB binding mode in the active site of α-glucosidase the study may lead to the which leads to the rational design of new class of antidiabetic drugs targeting α-glucosidase based on AMSB in near future.

  1. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases

    Directory of Open Access Journals (Sweden)

    Roberto Berni Canani, Margherita Di Costanzo, Ludovica Leone, Monica Pedata, Rosaria Meli, Antonio Calignano

    2011-03-01

    Full Text Available The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from non-absorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport, ameliorates mucosal inflammation and oxidative status, reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition, a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases, hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different; many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine.

  2. Evaluation of 4-(N-methylnitrosamino)-4-(3-pyridyl)butyric acid as a potential monitor of endogenous nitrosation of nicotine and its metabolites.

    Science.gov (United States)

    Tricker, A R; Scherer, G; Conze, C; Adlkofer, F; Pachinger, A; Klus, H

    1993-07-01

    The potential endogenous nitrosation of nicotine and cotinine to yield 4-(N-methylnitrosamino)-4-(3-pyridyl)butyric acid (Iso-NNAC) has been studied in smokers and non-smokers. Following i.v. administration of 100 micrograms Iso-NNAC to rats, excretion in urine (67.4 +/- 25.4%) and feces (6.1 +/- 1.6%) occurred within 24 h. The urinary excretion of nitrate, nicotine, cotinine and Iso-NNAC were determined in 24 h urine samples from 19 smokers and 10 non-smokers. Iso-NNAC excretion was found on four occasions (44, 65, 74 and 163 ng/day) in smokers; non-smokers did not excrete Iso-NNAC. Oral administration of nicotine (n = 8; 12-40 mg) and cotinine (n = 3; 40-60 mg) to abstinent smokers did not result in Iso-NNAC excretion, even after oral nitrate (150 mg) supplementation. However, Iso-NNAC was found in cigarette tobacco (10-330 ng/g) and mainstream cigarette smoke (1.1-5.5 ng/cig.). Our studies suggest that the occasional presence of Iso-NNAC in smokers' urine results from exogenous exposure to the preformed compound in mainstream cigarette smoke and not from endogenous nitrosation of nicotine and its metabolites. PMID:8330358

  3. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Lazzerini, Giovanni Mattia; Yacoot, Andrew [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Treat, Neil; Stingelin, Natalie [Department of Materials Science, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  4. Dipyrrolidinyl-substituted perylene diimide as additive for poly(3-hexylthiophene): [6,6]-Phenyl C61 butyric acid methylester bulk-heterojunction blends

    International Nuclear Information System (INIS)

    The effects of the addition of 1,7-dipyrrolidinyl-substituted perylene diimide (1,7-PyPDI) to a traditional poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methylester (PCBM) bulk-heterojunction blend on the performance of organic solar cells, are described. When the 1,7-PyPDI amount in the mixture is accurately tuned, the power conversion efficiency (η) of the 1,7-PyPDI-doped cells is enhanced compared to a reference non-doped device. Cells fabricated by spin-coating blends from chloroform solution with P3HT (monomer):PCBM:1,7-PyPDI molar ratio of 6.85:1:0.03 resulted in 39.6% higher power conversion efficiency than P3HT:PCBM blend. The efficiency improvement is attributed to possible photochemical interactions between the three components of the blend, which contribute to enhance the charge separation, and minimize the charge recombination processes. Moreover, the increased absorption and the microstructural implications induced by the introduction of 1,7-PyPDI contribute to explain the enhancement of the solar cell performance. - Highlights: • The solar cell active layer is doped with perylene derivative in different ratios. • The addition of the dopant significantly enhances the solar cell efficiency. • The possible role of the dopant in the heart of the solar cell is discussed

  5. Side chain effect on electronic structure of spin-coated films of [6,6]-phenyl-C61-butyric acid methyl ester and its bis-adduct

    International Nuclear Information System (INIS)

    Highlights: ► Electronic structure of spin-coated films of PCBM and bis-PCBM was investigated. ► Ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. ► Electron donation from the side chain to C60-backbone raises the HOMO and LUMO. ► Open circuit voltages of PCBM-based solar cells relates to electron affinities. - Abstract: We investigated the electronic structure of spin-coated films of two soluble fullerenes; [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and its bis-adduct (bis-PCBM) using ultraviolet photoelectron spectroscopy, inverse photoemission spectroscopy and molecular orbital calculations. The ionization energy and electron affinity of spin-coated films of bis-PCBM were determined to be 6.01 eV and 3.4 eV, respectively. Analysis of electron density suggested the stronger electron donation from the two side chains to fullerene-backbone in a bis-PCBM molecule, compared with PCBM. The electron donation raises the energies of the frontier orbitals of bis-PCBM, which mainly consist of π-orbitals of fullerene-backbone. As a result, the ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. Moreover, we also concluded that the larger open circuit voltage observed for bis-PCBM based organic photovoltaics was explained by the higher-lying unoccupied molecular orbital of bis-PCBM

  6. Influence of indole-butyric acid and electro-pulse on in vitro rooting and development of olive (Olea europea L.) microshoots.

    Science.gov (United States)

    Padilla, Isabel Maria Gonzalez; Vidoy, I; Encina, C L

    2009-09-01

    The effects of indole-butyric acid (IBA) and electro-pulses on rooting and shoot growth were studied in vitro, using olive shoot cultures. Tested shoots were obtained from seedlings belonging to three Spanish cultivars, 'Arbequina', 'Manzanilla de Sevilla' and 'Gordal Sevillana', which have easy-, medium- and difficult-to-root rooting abilities, respectively. The standard two-step rooting method (SRM), consisting of root induction in olive rooting medium supplemented with 0, 0.1 or 1 mg/l IBA followed by root elongation in the same rooting medium without IBA, was compared with a novel one-step method consisting of shoot electro-pulses of 250, 1,250 or 2,500 V in a solution of IBA (0, 0.1 or 1 mg/l) and direct transferral to root elongation medium. The rooting percentage of the seedling-derived shoots obtained with the SRM was 76% for 'Arbequina' and 'Gordal Sevillana' cultivars and 100% for 'Manzanilla de Sevilla' cultivar, whereas with the electro-pulse method, the rooting percentages were 68, 64 and 88%, respectively. IBA dipping without pulse produced 0% rooting in 'Arbequina' seedling-derived shoots. The electroporation in IBA not only had an effect on shoot rooting but also on shoot growth and development, with longer shoots and higher axillary shoot sprouting and growth after some of the treatments. These effects were cultivar-dependent. The electro-pulse per se could explain some of these effects on shoot development. PMID:19655148

  7. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    International Nuclear Information System (INIS)

    We fabricate a pentacene/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO2 gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time

  8. Dependence of protein binding capacity of dimethylamino-γ-butyric-acid (DMGABA)-immobilized porous membrane on composition of solvent used for DMGABA immobilization

    International Nuclear Information System (INIS)

    Dimethylamino-γ-butyric acid (DMGABA) as an ampholite was reacted with the epoxy group of the poly-glycidyl methacrylate chain grafted onto the pore surface of a porous hollow-fiber polyethylene membrane by radiation-induced graft polymerization. DMGABA was dissolved in a mixture of dioxane and water at various dioxane volume fractions, defined by dividing the dioxane volume by the total volume. The equilibrium binding capacity (EBC) of the DMGABA-immobilized porous hollow-fiber membrane for lysozyme was evaluated in the permeation mode. The EBC was varied from a 1/50-fold monolayer binding capacity to a 10-fold monolayer binding capacity by controlling the composition of the solvent used for DMGABA immobilization and the molar conversion of the epoxy group into the DMGABA group. - Highlights: ► A DMGABA membrane was immobilized by irradiation induced graft polymerization. ► The DMGABA was immobilized in a mixture of dioxane and water of various compositions. ► Lysozyme adsorptivity of DMGABA-immobilized membranes evaluated in the permeation mode. ► The composition of the DMGABA immobilized solvent can control adsorptivity

  9. Dipyrrolidinyl-substituted perylene diimide as additive for poly(3-hexylthiophene): [6,6]-Phenyl C61 butyric acid methylester bulk-heterojunction blends

    Energy Technology Data Exchange (ETDEWEB)

    Vivo, Paola, E-mail: paola.vivo@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Dubey, Rajeev; Lehtonen, Elina; Kivistö, Hannele [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Vuorinen, Tommi [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Lemmetyinen, Helge [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland)

    2013-12-02

    The effects of the addition of 1,7-dipyrrolidinyl-substituted perylene diimide (1,7-PyPDI) to a traditional poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methylester (PCBM) bulk-heterojunction blend on the performance of organic solar cells, are described. When the 1,7-PyPDI amount in the mixture is accurately tuned, the power conversion efficiency (η) of the 1,7-PyPDI-doped cells is enhanced compared to a reference non-doped device. Cells fabricated by spin-coating blends from chloroform solution with P3HT (monomer):PCBM:1,7-PyPDI molar ratio of 6.85:1:0.03 resulted in 39.6% higher power conversion efficiency than P3HT:PCBM blend. The efficiency improvement is attributed to possible photochemical interactions between the three components of the blend, which contribute to enhance the charge separation, and minimize the charge recombination processes. Moreover, the increased absorption and the microstructural implications induced by the introduction of 1,7-PyPDI contribute to explain the enhancement of the solar cell performance. - Highlights: • The solar cell active layer is doped with perylene derivative in different ratios. • The addition of the dopant significantly enhances the solar cell efficiency. • The possible role of the dopant in the heart of the solar cell is discussed.

  10. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    International Nuclear Information System (INIS)

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction

  11. Apoptosis versus differentiation induced by interaction of butyrate and unsaturated fatty acids in normal and transformed colonic epithelial cells

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Hýžďalová, Martina; Koubková, Zuzana; Netíková, Jaromíra; Kozubík, Alois

    Chia, Sardinia, 2006. P-103-P-103. [14th Euroconference on Apoptosis "Death or Survival? Fate in Sardinia". 29.09.2006-04.10.2006, Chia, Sardinia] R&D Projects: GA ČR(CZ) GA524/04/0895; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507 Keywords : colon cancer * fatty acide * apoptosis Subject RIV: BO - Biophysics

  12. Gamma Amino Butyric Acid Attenuates Liver and Kidney Damage Associated with Insulin Alteration in γ-Irradiated and Streptozotocin-Treated Rats

    International Nuclear Information System (INIS)

    Gamma aminobutyric acid (GABA) is one of the inhibitory neurotransmitters that may have the ability to relive the intensity of stress. The aim of the current study was to evaluate the role of γ-amino butyric acid (GABA) in modulating insulin disturbance associated with liver and kidney damage in γ-irradiated and streptozotocin-treated rats. Irradiation was performed by whole body exposure to 6 Gy from a Cs-137 source. Streptozotocin (STZ) was administered in a single intraperitoneal dose (60 mg/kg body weight). GABA (200 mg/Kg body weight/day) was administered daily via gavages during 3 weeks to γ-irradiated and STZ-treated-rats. The results obtained showed that γ-irradiation induced hyperglycemia, hyperinsulinaemia and insulin resistance (similar to type 2 Diabetes), while STZ-treatment produced hyperglycemia, insulin deficiency with no insulin resistance detected (similar to type 1 Diabetes). In both cases, significant increases of alanine amino transferase (ALT) and aspartate amino transferase (AST) activities, urea and creatinine levels were recorded in the serum. These changes were associated with oxidative damage to the liver and kidney tissues notified by significant decreases of superoxide dismutase (SOD ), catalase and glutathione peroxidase ( GSH-Px) activities in parallel to significant increases of malondialdehyde (MDA) and advanced oxidation protein products ( AOPP) levels. The administration of GABA to irradiated as well as STZ-treated rats regulated insulin and glucose levels, minimized oxidative stress and reduced the severity of liver and kidney damage. It could be concluded that GABA could be a useful adjunct to reduce some metabolic complications associated with insulin deficiency and insulin resistance

  13. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  14. Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice.

    Science.gov (United States)

    Subramanian, Umadevi; Kumar, Prerna; Mani, Indra; Chen, David; Kessler, Isaac; Periyasamy, Ramu; Raghavaraju, Giri; Pandey, Kailash N

    2016-07-01

    The objective of the present study was to examine the genetically determined differences in the natriuretic peptide receptor-A (NPRA) gene (Npr1) copies affecting the expression of cardiac hypertrophic markers, proinflammatory mediators, and matrix metalloproteinases (MMPs) in a gene-dose-dependent manner. We determined whether stimulation of Npr1 by all-trans retinoic acid (RA) and histone deacetylase (HDAC) inhibitor sodium butyric acid (SB) suppress the expression of cardiac disease markers. In the present study, we utilized Npr1 gene-disrupted heterozygous (Npr1(+/-), 1-copy), wild-type (Npr1(+/+), 2-copy), gene-duplicated (Npr1(++/+), 3-copy) mice, which were treated intraperitoneally with RA, SB, and a combination of RA/SB, a hybrid drug (HB) for 2 wk. Untreated 1-copy mice showed significantly increased heart weight-body weight (HW/BW) ratio, blood pressure, hypertrophic markers, including beta-myosin heavy chain (β-MHC) and proto-oncogenes (c-fos and c-jun), proinflammatory mediator nuclear factor kappa B (NF-κB), and MMPs (MMP-2, MMP-9) compared with 2-copy and 3-copy mice. The heterozygous (haplotype) 1-copy mice treated with RA, SB, or HB, exhibited significant reduction in the expression of β-MHC, c-fos, c-jun, NF-κB, MMP-2, and MMP-9. In drug-treated animals, the activity and expression levels of HDAC were significantly reduced and histone acetyltransferase activity and expression levels were increased. The drug treatments significantly increased the fractional shortening and reduced the systolic and diastolic parameters of the Npr1(+/-) mice hearts. Together, the present results demonstrate that a decreased Npr1 copy number enhanced the expression of hypertrophic markers, proinflammatory mediators, and MMPs, whereas an increased Npr1 repressed the cardiac disease markers in a gene-dose-dependent manner. PMID:27199456

  15. Promotion and Inhibition of Ruminal Epithelium Growth by Butyric Acid and Insulin-Like Growth Factor-1 (IGF-1) in Dairy Goats

    Institute of Scientific and Technical Information of China (English)

    LIU Da-cheng; ZHOU Xiang-li; LIU Guo-juan; GAO Min; HU Hong-lian

    2014-01-01

    Isolated ruminal epithelia from caudal blind sacs of dairy goats were incubated with butyrate and insulin-like growth factor-1 (IGF-1) at different concentrations. Proportions of ruminal epithelium in different phases of the cell division cycle were determined by lfow cytometric analysis. The proportion of epithelial cells in S phase and G2-M phase (PS&G2-M) increased signiifcantly (P<0.01) whereas the proportion of epithelial cells in G0-G1 phase (PG0-G1) decreased after incubation with IGF-1. PS&G2-M decreased whereas PG0-G1increased markedly (P<0.01) after incubation with sodium butyrate. PS&G2-M incubated with IGF-1 and butyrate sodium together increased more than that incubated with IGF-1 alone; PG0-G1, however, decreased signiifcantly (P<0.01). Our results indicate that IGF-1 enhances whereas sodium butyrate inhibits the proliferation of rumen epithelial cells. Furthermore, butyrate and IGF-1, together, have a synergic effect on the proliferation of rumen epithelium.

  16. Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek.

    Science.gov (United States)

    Jisha, K C; Puthur, Jos T

    2016-03-01

    The effects of β-amino butyric acid (BABA) on abiotic stress tolerance potential of three Vigna radiata varieties were studied. The reduction in the growth of seedlings subjected to NaCl/polyethylene glycol (PEG) stress is alleviated by BABA seed priming, which also enhanced photosynthetic pigment content and photosynthetic and mitochondrial activities, and also modified the chlorophyll a fluorescence-related parameters. Moreover, BABA seed priming reduced malondialdehyde content in the seedlings and enhanced the accumulation of proline, total protein, total carbohydrate, nitrate reductase activity, and activities of antioxidant enzymes like guaiacol peroxidase and superoxide dismutase. Most of these positive features of BABA priming were predominantly exhibited when the plants were encountered with stress (NaCl/PEG). The BABA content in the BABA-treated green gram seeds and seedlings was also detected and quantified with high-performance thin layer chromatography (HPTLC), and it revealed that the priming effect of BABA initiated in seeds and further gets carried over to the seedlings. It was concluded that BABA seed priming improved the drought and salinity stress tolerance potential of all the three green gram varieties, and it was evident in the NaCl-tolerant variety Pusa Vishal as compared to Pusa Ratna (abiotic stress sensitive) and Pusa 9531(drought tolerant). Dual mode in cost effectiveness of BABA priming is evident from: (1) the positive features of priming are being exhibited more during the exposure of plants to stress, and (2) priming of seedlings can be carried out by BABA application to seeds at very low concentration and volume. PMID:25837010

  17. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C61-butyric acid methyl ester interface

    KAUST Repository

    El-Ballouli, AlA'A O.

    2014-05-14

    Quantum dot (QD) solar cells have emerged as promising low-cost alternatives to existing photovoltaic technologies. Here, we investigate charge transfer and separation at PbS QDs and phenyl-C61-butyric acid methyl ester (PCBM) interfaces using a combination of femtosecond broadband transient absorption (TA) spectroscopy and steady-state photoluminescence quenching measurements. We analyzed ultrafast electron injection and charge separation at PbS QD/PCBM interfaces for four different QD sizes and as a function of PCBM concentration. The results reveal that the energy band alignment, tuned by the quantum size effect, is the key element for efficient electron injection and charge separation processes. More specifically, the steady-state and time-resolved data demonstrate that only small-sized PbS QDs with a bandgap larger than 1 eV can transfer electrons to PCBM upon light absorption. We show that these trends result from the formation of a type-II interface band alignment, as a consequence of the size distribution of the QDs. Transient absorption data indicate that electron injection from photoexcited PbS QDs to PCBM occurs within our temporal resolution of 120 fs for QDs with bandgaps that achieve type-II alignment, while virtually all signals observed in smaller bandgap QD samples result from large bandgap outliers in the size distribution. Taken together, our results clearly demonstrate that charge transfer rates at QD interfaces can be tuned by several orders of magnitude by engineering the QD size distribution. The work presented here will advance both the design and the understanding of QD interfaces for solar energy conversion. © 2014 American Chemical Society.

  18. 4-(dimethylamino)butyric acid@PtNPs as enhancer for solid-state electrochemiluminescence aptasensor based on target-induced strand displacement.

    Science.gov (United States)

    Gan, Xianxue; Yuan, Ruo; Chai, Yaqin; Yuan, Yali; Mao, Li; Cao, Yaling; Liao, Yuhong

    2012-04-15

    A solid-state electrochemiluminescence (ECL) aptasensor based on target-induced aptamer displacement for highly sensitive detection of thrombin was developed successfully using 4-(dimethylamino)butyric acid (DMBA)@PtNPs labeling as enhancer. Such a special aptasensor included three main parts: ECL substrate, ECL intensity amplification and target-induced aptamer displacement. The ECL substrate was made by modifying the complex of Pt nanoparticles (PtNPs) and tris(2,2-bipyridyl) ruthenium (II) (Ru(bpy)(3)(2+)) (Ru-PtNPs) onto nafion@multi-walled carbon nanotubes (nafion@MWCNTs) modified electrode surface. A complementary thrombin aptamer labeled by DMBA@PtNPs (Aptamer II) acted as the ECL intensity amplification. The thrombin aptamer (TBA) was applied to hybridize with the labeled complementary thrombin aptamer, yielding a duplex complex of TBA-Aptamer II on the electrode surface. The introduction of thrombin triggered the displacement of Aptamer II from the self-assembled duplex into the solution and the association of inert protein thrombin on the electrode surface, decreasing the amount of DMBA@PtNPs and increasing the electron transfer resistance of the aptasensor and thus resulting large decrease in ECL signal. With the synergistic amplification of DMBA and PtNPs to Ru(bpy)(3)(2+) ECL, the aptasensor showed an enlarged ECL intensity change before and after the detection of thrombin. As a result, the change of ECL intensity has a direct relationship with the logarithm of thrombin concentration in the range of 0.001-30 nM. The detection limit of the proposed aptasensor is 0.4 pM. Thus, the approach is expected to open new opportunities for protein diagnostics in clinical as well as bioanalysis in general. PMID:22387036

  19. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    Science.gov (United States)

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. PMID:24446756

  20. γ-Amino-butyric acid (GABA) receptor subunit and transporter expression in the gonad and liver of the fathead minnow (Pimephales promelas).

    Science.gov (United States)

    Biggs, Katie; Seidel, Jason S; Wilson, Alex; Martyniuk, Christopher J

    2013-09-01

    γ-Amino-butyric acid (GABA) is the major inhibitory neurotransmitter in the vertebrate central nervous system. GABA receptors and synthesizing enzymes have also been localized to peripheral tissues including the liver, oviduct, uterus and ovary of mammals but the distribution and role of GABA in peripheral tissues of fish has not been fully investigated. The objectives of this study were to (1) determine if mRNA encoding GABA synthesizing enzymes (glutamic acid decarboxylase 65 and 67; gad65 and gad67), GABA transporters, and GABAA receptor subunits are localized to liver and gonad of fathead minnow (Pimephales promelas) (FHM) (2) investigate the effects of GABA on ovarian 17β-estradiol (E2) production, and (3) measure transcript responses in the ovary after in vitro incubation to GABA. Real-time PCR assays were developed for gad65, gad67, vesicular GABA transporter (vgat) and GABA transporter 1 (gat1), and select GABAA receptor subunits (gabra1, gabra5, gabrb1, gabrb2, gabrg1, gabrg2). All transcripts were localized to the brain as expected; however transcripts were also detected in the liver, ovary, and testis of FHMs. In the female liver, gad65 mRNA was significantly higher in expression compared to the male liver. Transcripts for gad67 were the highest in the brain>gonad>liver and in the gonads, gad67 was significantly higher in expression than gad65 mRNA. In the liver and gonad, the relative abundance of the subunits followed a general trend of gabrb1>gabrb2=gabrg1=gabrg2>gabra1=gabra5. To explore the effects of GABA in the ovary, tissue explants from reproductive female FHMs were treated with GABA (10(-10), 10(-8) and 10(-6)M) for 12h. GABA had no significant effect on 17β-estradiol production or on mRNA abundance for genes involved in ovarian steroidogenesis (e.g., 11βhsd, cyp17, cyp19a). There was a significant decrease in estrogen receptor 2a (esr2a) mRNA with 10(-10)M GABA. This study begins to investigate the GABA system in non-neural tissues of

  1. Effects of ruminal ammonia and butyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acid absorption kinetics under washed reticulorumen conditions in lactating dairy cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Hanigan, M.D.; Kristensen, Niels Bastian

    2011-01-01

    mesenteric, right ruminal, and hepatic portal veins. The experiment was designed with 2 groups of cows: 4 cows adapted to high crude protein (CP) and 4 to low CP. All cows were subjected to 3 buffers: butyric, ammonia, and control in a randomized replicated 3 × 3 incomplete Latin square design. The buffers...

  2. The Tinkerbell (Tink) Mutation Identifies the Dual-Specificity MAPK Phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) as a Novel Regulator of Organ Size in Arabidopsis

    OpenAIRE

    Johnson, Kim L.; Ramm, Sascha; Kappel, Christian; Ward, Sally; Leyser, Ottoline; Sakamoto, Tomoaki; Kurata, Tetsuya; Bevan, Michael W.; Lenhard, Michael

    2015-01-01

    Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that c...

  3. Enhanced power conversion efficiency in bulk heterojunction solar cell based on new polyazomethine with vinylene moieties and [6,6]-phenyl C61 butyric acid methyl ester by adding 10-camphorsulfonic acid

    International Nuclear Information System (INIS)

    A polyazomethine (PPV-PAZ-DMB) containing vinylene and aliphatic side chains was synthesized by polycondensation method. The structure of polymer was characterized by means Fourier transform infrared (ATR-FTIR), proton and carbon nuclear magnetic resonance (1H, 13C NMR) spectroscopy and the results show an agreement with the proposed structure. Photovoltaic properties of PPV-PAZ-DMB were studied by constructing bulk heterojunction (BHJ) solar cells with the architecture ITO/PEDOT:PSS/PPV-PAZ-DMB:PCBM/Al, where ITO: indium tin oxide, PEDOT:PSS: poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Photovoltaic parameters were analyzed taking into account amount of [6,6]-phenyl C61 butyric acid methyl ester (PCBM) added to PPV-PAZ-DMB and presence of 10-camphorsulfonic acid (CSA) in active layer. With the weight ratio PPV-PAZ-DMB:PCBM of 1:3 and the presence of CSA, the power conversion efficiency (PCE) of the device reached 0.32% with open circuit voltage Voc = 0.47 V, short circuit current density Jsc = 2.91 mA/cm2 and fill factor (FF) 0.25 under simulated 100 mW/cm2 AM 1.5 G irradiation. It is showed that the PCE of device with CSA was 40 times higher than that of the device without CSA. Devices were additionally tested by electrochemical impedance spectroscopy. An influence of CSA as a dopant on absorption wavelengths, energy gap and HOMO-LUMO levels was investigated

  4. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification.

    Science.gov (United States)

    Xin, Fengxue; Basu, Anindya; Yang, Kun-Lin; He, Jianzhong

    2016-02-01

    In this study, a fermentation process for production of butanol and butyl-butyrate by using Clostridium sp. strain BOH3 is developed. This strain is able to produce butyric acid and butanol when it ferments 60 g/L xylose. Meanwhile, it also excreted indigenous lipases (induced by olive oil) which naturally convert butyric acid and butanol into 1.2 g/L of butyl-butyrate. When Bio-OSR was used as both an inducer for lipase and extractant for butyl-butyrate, the butyl-butyrate concentration can reach 6.3 g/L. To further increase the yield, additional lipases and butyric acid are added to the fermentation system. Moreover, kerosene was used as an extractant to remove butyl-butyrate in situ. When all strategies are combined, 22.4 g/L butyl-butyrate can be produced in a fed-batch reactor spiked with 70 g/L xylose and 7.9 g/L butyric acid, which is 4.5-fold of that in a similar system (5 g/L) with hexadecane as the extractant. PMID:26710347

  5. Barley malt increases hindgut and portal butyric acid, modulates gene expression of gut tight junction proteins and Toll-like receptors in rats fed high-fat diets, but high advanced glycation end-products partially attenuate the effects.

    Science.gov (United States)

    Zhong, Yadong; Teixeira, Cristina; Marungruang, Nittaya; Sae-Lim, Watina; Tareke, Eden; Andersson, Roger; Fåk, Frida; Nyman, Margareta

    2015-09-01

    Barley malt, a product of controlled germination, has been shown to produce high levels of butyric acid in the cecum and portal serum of rats and may therefore have anti-inflammatory effects. The aim of the study was to investigate how four barley malts, caramelized and colored malts, 50-malt and 350-malt, differing in functional characteristics concerning beta-glucan content and color, affect short-chain fatty acids (SCFA), barrier function and inflammation in the hindgut of rats fed high-fat diets. Male Wistar rats were given malt-supplemented high-fat diets for four weeks. Low and high-fat diets containing microcrystalline cellulose were incorporated as controls. All diets contained 70 g kg(-1) dietary fiber. The malt-fed groups were found to have had induced higher amounts of butyric and propionic acids in the hindgut and portal serum compared with controls, while cecal succinic acid only increased to a small extent. Fat increased the mRNA expression of tight junction proteins and Toll-like receptors (TLR) in the small intestine and distal colon of the rats, as well as the concentration of some amino acids in the portal plasma, but malt seemed to counteract these adverse effects to some extent. However, the high content of advanced glycation end-products (AGE) in caramelized malt tended to prohibit the positive effects on occludin in the small intestine and plasma amino acids seen with the other malt products. In conclusion, malting seems to be an interesting process for producing foods with positive health effects, but part of these effects may be destroyed if the malt contains a high content of AGE. PMID:26227569

  6. Rice genotypes evaluate under the interactive phytotoxic effect of acetic, propionic and butyric acids
    Avaliação de genótipos de arroz sob o efeito fitotóxico interativo dos ácidos acético, propiônico e butírico

    OpenAIRE

    Antonio Costa de Oliveira; Rogério Oliveira de Sousa; Jefferson Luiz Meirelles Coimbra; Viviane Kopp da Luz; Maurício Marini Köpp

    2012-01-01

    The objective of this work was to evaluate the development of 20 rice genotypes to acetic, pripionic and butyric acid, a phytotoxic compounds produced in low drainage soils with high organic matter content. This work was performed in hydroponics with four acid doses (0; 3; 6 e 9 mM) and 6:3:1 relationship acetic, propionic and butyric respectively. A factorial random block design with three replications were performed. The variables measured were root (CR) and shoot (CPA) length, number of ro...

  7. The Volumetric Properties of Some α-Amino Acids in Aqueous Sodium Butyrate Solutions at 308.15 K%α-氨基酸在丁酸钠水溶液中的体积性质(308.15K)

    Institute of Scientific and Technical Information of China (English)

    颜振宁; 成庆堂; 王键吉; 刘大壮

    1999-01-01

    Density data have been reported for glycine,DL-α-alanine,DL-α-amino-n-butyric acid,DL-valine and DL-leucine in aqueous solutions of 0.5,1.0,1.5 and 2.0 mol.kg-1 sodium butyrate at 308.15 K.The apparent molar volumes V2,φand standard partial molar volumes for the amino acids in aqueous sodium butyrate solutions have been calculated.The linear correlation between and the number of carbon atoms in the alkyl chain of the amino acids has been observed and utilized to estimate the contributions of the charged end groups ,CH2 group and other alkyl chains of the amino acids to .The results show that values for increase,while those for CH2 decrease,with sodium butyrate concentration.The hydration number of the amino acids decreases with increasing electrolyte concentrations.These phenomena are discussed by means of the dehydration effect of electrolyte on the amino acids.

  8. Optical Properties of Poly (3-hexylthiophene-2,5-diyl and Poly (3-hexylthiophene-2,5-diyl / [6,6]-Phenyl C61-butyric Acid 3-ethylthiophene Ester Thin Films

    Directory of Open Access Journals (Sweden)

    B.M. Omer

    2013-07-01

    Full Text Available Thin films of Poly(3-hexylthiophene-2,5-diyl (P3HT were prepared from chloroform, 1,2 dichlorobenzene and toluene solutions by spin coating technique on quartz substrates. The absorption and photoluminescence (PL measurements were performed on the P3HT films to investigate the influence of solvent on the optical properties of the films. The results shows that the UV-vis absorption of P3HT film spin-coated from toluene is red shifted compared to the spectra of the films spin-coated from either chloroform or 1,2 dichlorobenzene. The surface morphology of P3HT: [6, 6]-Phenyl C61-butyric Acid 3-ethylthiophene Ester (Modified Fullerene thin films spin-coated from different solvents were studied using Atomic Force Microscope (AFM, the thin film spin-coated from 1,2 dichlorobenzene show the smoother surface.

  9. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, A. K., E-mail: akchau@barc.gov.in, E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  10. Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice

    OpenAIRE

    Gao, Zhanguo; Yin, Jun; Zhang, Jin; Ward, Robert E.; Martin, Roy J; Lefevre, Michael; Cefalu, William T.; Ye, Jianping

    2009-01-01

    OBJECTIVE We examined the role of butyric acid, a short-chain fatty acid formed by fermentation in the large intestine, in the regulation of insulin sensitivity in mice fed a high-fat diet. RESEARCH DESIGN AND METHODS In dietary-obese C57BL/6J mice, sodium butyrate was administrated through diet supplementation at 5% wt/wt in the high-fat diet. Insulin sensitivity was examined with insulin tolerance testing and homeostasis model assessment for insulin resistance. Energy metabolism was monitor...

  11. Effects of β-hydroxy β-methyl butyrate supplementation to sows in late gestation on absorption and hepatic metabolism of glucose and amino acids during transition

    DEFF Research Database (Denmark)

    Flummer, Christine; Lyby, H; Storli, K S;

    2012-01-01

    A multicatheter sow model was established to study the effects of dietary β-hydroxy β-methyl butyrate (HMB) supplementation on net portal flux (NPF) and net hepatic flux (NHF) of HMB, glucose, and the AA Ala, Gly, Ile, Leu, Phe, Tyr, and Val. Eight second parity sows were fitted with permanent...... experiment, and 4 HMB sows were fed the control diet supplemented with 15 mg Ca(HMB)2/kg BW mixed in one third of the morning meal from day –10 until parturition. Net portal flux of HMB was affected by treatment (Trt; P < 0.01) and peaked in the HMB sows at 6.9 mmol/h 30 min after the morning meal and then...... decreased towards preprandial level (0.0 mmol/h) 3.5 h after the meal, revealing that dietary HMB was rapidly absorbed from the intestine. The NHF of HMB tended to be affected by Trt (P = 0.06) showing a small hepatic uptake of HMB (1.1 mmol/h) in HMB sows. Net portal flux of glucose and all measured AA...

  12. Biosynthesis of heparin. Effects of n-butyrate on cultured mast cells

    International Nuclear Information System (INIS)

    Murine mastocytoma cells were incubated in vitro with inorganic [35S]sulfate, in the absence or presence of 2.5 mM n-butyrate, and labeled heparin was isolated. The polysaccharide produced in the presence of butyrate showed a lower charge density on anion exchange chromatography than did the control material and a 3-fold increased proportion of components with high affinity for antithrombin. Structural analysis of heparin labeled with [3H] glucosamine in the presence of butyrate showed that approximately 35% of the glucosamine units were N-acetylated, as compared to approximately 10% in the control material; the nonacetylated glucosamine residues were N-sulfated. The presence of butyrate thus leads to an inhibition of the N-deacetylation/N-sulfation process in heparin biosynthesis, along with an augmented formation of molecules with high affinity for antithrombin. Preincubation of the mastocytoma cells with butyrate was required for manifestation of either effect; when the preincubation period was reduced from 24 to 10 h the effects of butyrate were no longer observed. A polysaccharide formed on incubating mastocytoma microsomal fraction with UDP-[3H]glucuronic acid, UDP-N-acetylglucosamine, and 3'-phosphoadenylylsulfate in the presence of 5 mM butyrate showed the same N-acetyl/N-sulfate ratio as did the corresponding control polysaccharide, produced in the absence of butyrate. These findings suggest that the effect of butyrate on heparin biosynthesis depends on the integrity of the cell

  13. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon

    OpenAIRE

    Thangaraju, Muthusamy; Cresci, Gail A.; Liu, Kebin; Ananth, Sudha; Gnanaprakasam, Jaya P.; Browning, Darren D.; Mellinger, John D.; Smith, Sylvia B.; Digby, Gregory J.; Lambert, Nevin A.; Prasad, Puttur D.; Ganapathy, Vadivel

    2009-01-01

    Short-chain fatty acids, generated in colon by bacterial fermentation of dietary fiber, protect against colorectal cancer and inflammatory bowel disease. Among these bacterial metabolites, butyrate is biologically most relevant. GPR109A is a G-protein-coupled receptor for nicotinate, but recognizes butyrate with low affinity. Millimolar concentrations of butyrate are needed to activate the receptor. Although concentrations of butyrate in colonic lumen are sufficient to activate the receptor m...

  14. Destructive effects of butyrate on the cell envelope of Helicobacter pylori.

    Science.gov (United States)

    Yonezawa, Hideo; Osaki, Takako; Hanawa, Tomoko; Kurata, Satoshi; Zaman, Cynthia; Woo, Timothy Derk Hoong; Takahashi, Motomichi; Matsubara, Sachie; Kawakami, Hayato; Ochiai, Kuniyasu; Kamiya, Shigeru

    2012-04-01

    Helicobacter pylori can be found in the oral cavity and is mostly detected by the use of PCR techniques. Growth of H. pylori is influenced by various factors in the mouth, such as the oral microflora, saliva and other antimicrobial substances, all of which make colonization of the oral cavity by H. pylori difficult. In the present study, we analysed the effect of the cell supernatant of a representative periodontal bacterium Porphyromonas gingivalis on H. pylori and found that the cell supernatant destroyed the H. pylori cell envelope. As P. gingivalis produces butyric acid, we focused our research on the effects of butyrate and found that it significantly inhibited the growth of H. pylori. H. pylori cytoplasmic proteins and DNA were detected in the extracellular environment after treatment with butyrate, suggesting that the integrity of the cell envelope was compromised and indicating that butyrate has a bactericidal effect on H. pylori. In addition, levels of extracellular H. pylori DNA increased following treatment with the cell supernatant of butyric acid-producing bacteria, indicating that the cell supernatant also has a bactericidal effect and that this may be due to its butyric acid content. In conclusion, butyric acid-producing bacteria may play a role in affecting H. pylori colonization of the oral cavity. PMID:22194341

  15. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells.

    Science.gov (United States)

    Han, Anna; Bennett, Natalie; MacDonald, Amber; Johnstone, Megan; Whelan, Jay; Donohoe, Dallas R

    2016-08-01

    Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661480

  16. Synergetic Enhancement of Device Efficiency in Poly(3-hexylthiophene-2,5-diyl/[6,6]-phenyl C61 Butyric Acid Methyl Ester Bulk Heterojunction Solar Cells by Glycerol Addition in the Active Layer

    Directory of Open Access Journals (Sweden)

    Bobins Augustine

    2015-01-01

    Full Text Available Poly(3-hexylthiophene-2,5-diyl(P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM is the widely used active layer for the bulk heterojunction solar cells. Annealing is essential for P3HT:PC60BM active layer, since it facilitates the creation of better network for the transfer of the charge carriers. However, the PC60BM in the active layer can crystallize excessively during annealing treatments and disrupt the favorable morphology by forming crystallites in micrometer ranges, thus reducing device efficiency. In this paper we used glycerol as an additive in the active layer. Due to high boiling point of glycerol, it makes slow drying of the active layer possible during the annealing. It thus gives enough time to both electron donor (P3HT and electron acceptor (PC60BM components of the active layer to self-organize and also restrict the crystal overgrowth of PC60BM. Further, the glycerol additive makes the active layer smoother, which may also improve adhesion between the electrode and the active layer. The devices with the pristine active layer showed a power conversion efficiency (PCE of about 2.1% and, with the addition of 30 vol% of glycerol in the active layer, the PCE value increased to 3%.

  17. Combinatorial chemopreventive effect of butyric acid, nicotinamide and calcium glucarate against the 7,12-dimethylbenz(a)anthracene induced mouse skin tumorigenesis attained by enhancing the induction of intrinsic apoptotic events.

    Science.gov (United States)

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2015-01-25

    We explored the basis of the combinatorial chemopreventive effect of butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) on mouse skin exposed to 7,12-dimethylbenz(a)anthracene (DMBA). We studied the effects of topical application of DMBA in the presence or absence of BA, NA and CAG on the regulators of apoptosis. DMBA treatment suppressed Bax, Bax/Bcl-2 ratio, release of cyt c, Apaf1, caspase-9, -3 mediated apoptosis. Downregulation of p21 and upregulation of Bcl-2, mut p53 were also observed in only DMBA treated mice. Simultaneous application of BA, NA and CAG induced a mitochondria-mediated apoptosis, characterized by a rise in the Bax, Bax/Bcl-2 ratio, release of cyt c, upregulation of Apaf1 with down-stream activation of caspase-9, -3. Furthermore treatment with BA, NA and CAG demonstrated an upregulation of p21 and downregulation of Bcl-2, mut p53. But this effect was enhanced in the presence of all the three compounds together in combination. Chemoprevention by a combination of BA, NA and CAG by inducing the apoptosis, the natural cell death, suggest the importance of the potential combinational strategies capable of preventing skin tumor development. PMID:25478867

  18. Butyrate and propionate: important components of toxic dental plaque extracts.

    OpenAIRE

    Singer, R E; Buckner, B A

    1981-01-01

    Extracts of in vitro-cultured human dental plaque contain factors toxic to mammalian cells. Previous studies demonstrated that those toxic factors most readily released from cultured plaque had very low molecular weights and were heat stable. Studies reported here demonstrate that metabolic end products including short-chain fatty acids were present in fractions containing the low-molecular-weight, heat-stable factors. The salts of two of these acids, butyrate and propionate, inhibited prolif...

  19. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells.

    Directory of Open Access Journals (Sweden)

    Hui Yan

    Full Text Available Short chain fatty acids (SCFA, products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity.

  20. Design, synthesis and antitumor activity of n-butyric acid salicylanilide esters%正丁酸水杨酰芳胺酯类化合物的设计、合成及抗肿瘤活性

    Institute of Scientific and Technical Information of China (English)

    王杰; 袁明; 李家明; 同鹏; 叶文峰; 张恩立

    2013-01-01

    Objective:To design and synthesize a series of n-butyric acid salicylanilide esters,and to determine their anti-tumor activity.Methods:Different salicylic acids and aromatic amines were used as starting materials to synthesize target compounds through 3 steps.Anti-tumor activities of these compounds in K562,A549,A431 cells in vitro were investigated by MTT assay and SRB assay.Results and Conclusion:Twelve compounds were synthesized.Their structures were confirmed by IR,1H-NMR,13C-NMR and MS.The target compounds exhibited antitumor activities in these cells lines,and compounds 6c,6f,6l were found to have stronger cell growth inhibitory than gefitinib,and comparable to niclosamide.%目的:设计合成一系列正丁酸水杨酰芳胺酯类化合物并考察其体外抗肿瘤活性.方法:以不同的水杨酸与芳胺为原料经3步反应得到目标化合物;以K562,A549,A431细胞为靶细胞,MTT法与SRB法进行初步的体外抗肿瘤活性研究.结果与结论:合成了12个目标化合物,其结构经IR,1H-NMR,13C-NMR及MS确证.目标化合物对3种细胞株均具有不同程度的抑制活性,其中化合物6c,6f,6l抑制活性强于阳性对照药吉非替尼,与原药氯硝柳胺相当.

  1. Butyrate regulates the expression of inflammatory and chemotactic cytokines in human acute leukemic cells during apoptosis.

    Science.gov (United States)

    Pulliam, Stephanie R; Pellom, Samuel T; Shanker, Anil; Adunyah, Samuel E

    2016-08-01

    Butyrate is a histone deacetylase inhibitor implicated in many studies as a potential therapy for various forms of cancer. High concentrations of butyrate (>1.5mM) have been shown to activate apoptosis in several cancer cell lines including prostate, breast, and leukemia. Butyrate is also known to influence multiple signaling pathways that are mediators of cytokine production. The purpose of this study was to evaluate the impact of high concentrations of butyrate on the cancer microenvironment vis-à-vis apoptosis, cellular migration, and capacity to modulate cytokine expression in cancer cells. The results indicate that high concentrations of butyrate induced a 2-fold activation of caspase-3 and reduced cell viability by 60% in U937 leukemia cells. Within 24h, butyrate significantly decreased the levels of chemokines CCL2 and CCL5 in HL-60 and U937 cells, and decreased CCL5 in THP-1 leukemia cells. Differential effects were observed in treatments with valproic acid for CCL2 and CCL5 indicating butyrate-specificity. Many of the biological effects examined in this study are linked to activation of the AKT and MAPK signaling pathways; therefore, we investigated whether butyrate alters the levels of phosphorylated forms of these signaling proteins and how it correlated with the expression of chemokines. The results show that butyrate may partially regulate CCL5 production via p38 MAPK. The decrease in p-ERK1/2 and p-AKT levels correlated with the decrease in CCL2 production. These data suggest that while promoting apoptosis, butyrate has the potential to influence the cancer microenvironment by inducing differential expression of cytokines. PMID:27253488

  2. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  3. Proliferative effects of gamma-amino butyric acid on oral squamous cell carcinoma cells are associated with mitogen-activated protein kinase signaling pathways.

    Science.gov (United States)

    Ma, Jing; Zhang, Yan; Wang, Jun; Zhao, Tianyu; Ji, Ping; Song, Jinlin; Zhang, Hongmei; Luo, Wenping

    2016-07-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult mammalian central nervous system, has been reported to play an important physiological role in peripheral non-neuronal tissues, such as tumors. However, whether deregulated GABA is associated with oral squamous cell carcinoma (OSCC) is currently unknown. In this study, we investigated the effects of GABA on the proliferation of the OSCC cell line, Tca8113. Immunohistochemical analyses were performed to examine the expression of GABA A type receptor pi subunit (GABRP) in human OSCC tissues, and reverse transcription polymerase chain reaction, immunofluorescence staining and western blot analysis were performed to examine the expression of GABRP in Tca8113 cells. The proliferative effects of GABA on Tca8113 cells were analyzed by CCK-8 assay and flow cytometry. The activation status of mitogen-activated protein kinases (MAPKs) was examined by western blot analysis. GABRP expression was observed in the cytoplasm with a higher level in poorly differentiated OSCC tissues. The mRNA and protein expression levels of GABRP were detected in the Tca8113 cells. The addition of GABA and the GABA A type receptor agonist, Muscimol, promoted cell proliferation and inhibited cell apoptosis through the activation of the p38 MAPK and the inhibition of the JNK MAPK signaling pathways. These results imply a novel role of GABA in OSCC. PMID:27222045

  4. 2,2-二羟甲基丁酸合成工艺研究%Study on the synthesis of 2,2-bis(hydroxymethyl)butyric acid

    Institute of Scientific and Technical Information of China (English)

    贾卫斌; 潘劲松; 张晓谦

    2009-01-01

    2,2-Bis( hydroxymethyl) butyric acid(DMBA) was synthesized from re-butyl aldehyde, an aqueous solution of formaldehyde and an aqueous solution of hydrogen peroxide through aldol condensation reaction and oxidation reaction. The aldol condensation reaction and the oxidation reaction were discussed. The results showed the optimum condensation reaction conditions were as follows;the condensation reaction temperature about 35℃ , re ( re-butyl aldehyde ) :n ( formaldehyde ) : n ( hydrogen peroxide ) = 1:2.4:1.4,the condensation reaction time 6 h;the oxidation reaction temperature about 80℃ ,the oxidation reaction time 6 h.The product were isolated from the crude reaction solution of DMBA by ion-exchange,vacuum concentration,crystallization and recrystallization. The total yield of DMBA was over 40%.%以正丁醛、甲醛和双氧水为主要原料,经羟醛缩合、氧化反应制备2,2-二羟甲基丁酸,考察了缩合、氧化反应条件.结果表明,最佳缩合反应条件为:正丁醛∶甲醛∶双氧水=1∶2.4∶1.4(摩尔比),缩合反应温度35 ℃左右,缩合反应时间6 h;氧化反应条件为:温度80 ℃左右,反应时间6 h.反应液采用离子交换→真空浓缩→溶剂结晶→重结晶工艺处理,2,2-二羟甲基丁酸产品总收率大于40%.

  5. Ondansetron reverses anti-hypersensitivity from clonidine in rats following peripheral nerve injury: Role of γ-amino butyric acid in α2-adrenoceptor and 5-HT3 serotonin receptor analgesia

    Science.gov (United States)

    Hayashida, Ken-ichiro; Kimura, Masafumi; Yoshizumi, Masaru; Hobo, Shotaro; Obata, Hideaki; Eisenach, James C.

    2012-01-01

    Introduction Monoaminergic pathways, impinging an α2-adrenoceptors and 5-HT3 serotonin receptors, modulate nociceptive transmission, but their mechanisms and interactions after neuropathic injury are unknown. Here we examine these interactions in rodents after nerve injury. Methods Male Sprague-Dawley rats following L5-L6 spinal nerve ligation (SNL) were used for either behavioral testing, in vivo microdialysis for γ-amino butyric acid (GABA) and acetylcholine release, or synaptosome preparation for GABA release. Results Intrathecal administration of the α2-adrenoceptor agonist (clonidine) and 5-HT3 receptor agonist (chlorophenylbiguanide) reduced hypersensitivity in SNL rats via GABA receptor-mediated mechanisms. Clonidine increased GABA and acetylcholine release in vivo in the spinal cord of SNL rats but not in normal rats. Clonidine-induced spinal GABA release in SNL rats was blocked by α2-adrenergic and nicotinic cholinergic antagonists. The 5-HT3 receptor antagonist ondansetron decreased and chlorophenylbiguanide increased spinal GABA release in both normal and SNL rats. In synaptosomes from the spinal dorsal horn of SNL rats, pre-synaptic GABA release was increased by nicotinic agonists and decreased by muscarinic and α2-adrenergic agonists. Spinally administered ondansetron significantly reduced clonidine-induced anti-hypersensitivity and spinal GABA release in SNL rats. Conclusion These results suggest that spinal GABA contributes to anti-hypersensitivity from intrathecal α2-adrenergic and 5-HT3 receptor agonists in the neuropathic pain state, that cholinergic neuroplasticity after nerve injury is critical for α2-adrenoceptor-mediated GABA release, and that blockade of spinal 5-HT3 receptors reduces α2-adrenoceptor-mediated anti-hypersensitivity via reducing total GABA release. PMID:22722575

  6. Morphological and spectroscopic characterizations of inkjet-printed poly(3-hexylthiophene-2,5-diyl): Phenyl-C61-butyric acid methyl ester blends for organic solar cell applications

    International Nuclear Information System (INIS)

    The most exploited active material for photovoltaic devices is the regioregular poly(3-hexylthiophene) (P3HT), p-type conjugated polymer, blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), n-type material. The deposition methods and the induced morphology strongly influence the functionality of the active material and in turn the final charge generation performances of a photoactive layer. In the present work, we studied the influence of PCBM concentration on the morphological and spectroscopic properties of the inkjet printed P3HT:PCBM blends through atomic force microscopy (AFM), Raman spectroscopy and transient absorption spectroscopy. The aim is to value the charge formation yield in the blends, prepared by inkjet technology, as function of the acceptor concentrations in correlation with morphology and intermixing of the two components. For the inkjet printed samples the blends composition that corresponds to the best intermixing between P3HT and PCBM and the higher charges formation yield should be between 20% and 45% in weight (wt)., differently for what has been found previously for spin-coated samples. Indeed, for inkjet prepared film, the 45 wt.% blend ratio leads to much bigger domains with respect to the spin-coated samples as shown from the AFM measurements. - Highlights: • Inkjet-printed P3HT:PCBM blends for organic solar cell applications • Coarser morphology of inkjet P3HT:PCBM films with respect to the spin-coated film • Inkjet P3HT:PCBM films showed charge formation maximum for PCBM wt.% lower than 45

  7. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    Science.gov (United States)

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management. PMID:26655363

  8. Restricted Distribution of the Butyrate Kinase Pathway among Butyrate-Producing Bacteria from the Human Colon

    Science.gov (United States)

    Louis, Petra; Duncan, Sylvia H.; McCrae, Sheila I.; Millar, Jacqueline; Jackson, Michelle S.; Flint, Harry J.

    2004-01-01

    The final steps in butyrate synthesis by anaerobic bacteria can occur via butyrate kinase and phosphotransbutyrylase or via butyryl-coenzyme A (CoA):acetate CoA-transferase. Degenerate PCR and enzymatic assays were used to assess the presence of butyrate kinase among 38 anaerobic butyrate-producing bacterial isolates from human feces that represent three different clostridial clusters (IV, XIVa, and XVI). Only four strains were found to possess detectable butyrate kinase activity. These were also the only strains to give PCR products (verifiable by sequencing) with degenerate primer pairs designed within the butyrate kinase gene or between the linked butyrate kinase/phosphotransbutyrylase genes. Further analysis of the butyrate kinase/phosphotransbutyrylase genes of one isolate, L2-50, revealed similar organization to that described previously from different groups of clostridia, along with differences in flanking sequences and phylogenetic relationships. Butyryl-CoA:acetate CoA-transferase activity was detected in all 38 strains examined, suggesting that it, rather than butyrate kinase, provides the dominant route for butyrate formation in the human colonic ecosystem that contains a constantly high concentration of acetate. PMID:15028695

  9. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    International Nuclear Information System (INIS)

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-α transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling

  10. Avaliação de genótipos de arroz sob efeito do ácido butírico Rice genotype evaluation under butyric acid effect

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2010-06-01

    Full Text Available Solos do tipo hidromórfico apresentam uma reduzida capacidade de drenagem, sendo utilizados principalmente para cultivo de arroz irrigado. Esta condição favorece o desenvolvimento de microrganismos anaeróbios que produzem substâncias fitotóxicas. O objetivo do trabalho foi avaliar a resposta de 25 genótipos de arroz ao ácido butírico, um composto produzido em solos de deficiente drenagem e alto teor de matéria orgânica. O trabalho foi executado em sistema de hidroponia com 4 doses do ácido e o delineamento utilizado foi blocos casualizados com 3 repetições em um esquema fatorial. As variáveis mensuradas foram comprimento de raízes (CR e de parte aérea (CPA, número de raízes (NR e matéria seca de raízes (MSR e parte aérea (MSPA. Foram procedidas análise de variância, desempenho relativo e ajuste de regressões. Os efeitos para genótipos e doses de ácido butírico foram todos significativos. Apenas os efeitos de interação entre doses x genótipos para as variáveis CR e MSR revelaram significância. A variável CR foi a mais afetada pelo ácido e as regressões estabelecidas para essa variável revelaram 9 genótipos tolerantes e 16 sensíveis ao efeito fitototoxico do ácido butírico. Genótipos desenvolvidos para sistema de irrigação por inundação se mostraram mais tolerantes ao ácido.Hydromorphic soils have low drainage capacity and are used mainly for growing irrigated rice.. This condition favors the development of anaerobic microorganisms that produce phytotoxic substances. The objective of this work was to evaluate the response of 25 rice genotypes to butyric acid, a phytotoxic compound produced in low-drainage soils with high organic matter content. This work was performed by hydroponics with four acid doses as treatments using a random block design with three replications. The variables measured were root (CR and shoot (CPA length, number of roots (NR and root (MSR and shoot (MSPA dry matter. Analysis of

  11. Perturbation dynamics of the rumen microbiota in response to exogenous butyrate.

    Directory of Open Access Journals (Sweden)

    Robert W Li

    Full Text Available The capacity of the rumen microbiota to produce volatile fatty acids (VFAs has important implications in animal well-being and production. We investigated temporal changes of the rumen microbiota in response to butyrate infusion using pyrosequencing of the 16S rRNA gene. Twenty one phyla were identified in the rumen microbiota of dairy cows. The rumen microbiota harbored 54.5±6.1 genera (mean ± SD and 127.3±4.4 operational taxonomic units (OTUs, respectively. However, the core microbiome comprised of 26 genera and 82 OTUs. Butyrate infusion altered molar percentages of 3 major VFAs. Butyrate perturbation had a profound impact on the rumen microbial composition. A 72 h-infusion led to a significant change in the numbers of sequence reads derived from 4 phyla, including 2 most abundant phyla, Bacteroidetes and Firmicutes. As many as 19 genera and 43 OTUs were significantly impacted by butyrate infusion. Elevated butyrate levels in the rumen seemingly had a stimulating effect on butyrate-producing bacteria populations. The resilience of the rumen microbial ecosystem was evident as the abundance of the microorganisms returned to their pre-disturbed status after infusion withdrawal. Our findings provide insight into perturbation dynamics of the rumen microbial ecosystem and should guide efforts in formulating optimal uses of probiotic bacteria treating human diseases.

  12. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression.

    Science.gov (United States)

    Sunkara, Lakshmi T; Achanta, Mallika; Schreiber, Nicole B; Bommineni, Yugendar R; Dai, Gan; Jiang, Weiyu; Lamont, Susan; Lillehoj, Hyun S; Beker, Ali; Teeter, Robert G; Zhang, Guolong

    2011-01-01

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance. PMID:22073293

  13. Butyrate-mediated acquisition of chemoresistance by human colon cancer cells.

    Science.gov (United States)

    Kang, Hyang Ri; Choi, Hyeon Gyeom; Jeon, Chae Kyung; Lim, Soo-Jeong; Kim, So Hee

    2016-08-01

    Butyrate is a short-chain fatty acid produced by the intestinal microflora and it not only induces apoptosis but also inhibits the proliferation of cancer cells. Recently, it has been reported that butyrate may cause resistance in colon cancer cells. Therefore, we investigated the effects of increased resistance to butyrate in HCT116 colon cancer cells. We established HCT116 cells resistant to butyrate (HCT116/BR) by treating HCT116 parental cells (HCT116/PT) with increasing concentrations of butyrate to a maximum of 1.6 mM for 3 months. The butyrate concentrations that inhibited cell growth by 50% (IC50) were 0.508 and 5.50 mM in HCT116/PT and HCT116/BR cells. The values after treatment with paclitaxel, 5-fluorouracil (5-FU), doxorubicin and trichostatin A (TSA) were 2.42, 2.36, 4.31 and 11.3-fold higher, respectively, in HCT116/BR cells compared with HCT116/PT cells. The protein expression of drug efflux pumps, such as P-glycoprotein (P-gp), breast cancer-resistant protein (BCRP) and the multidrug resistance associated protein 1 (MRP1), did not differ between HCT116/PT and HCT116/BR cells. The expression level of the anti-apoptotic Bcl-xL protein was increased while those of pro-apoptotic Bax and Bim proteins were reduced in HCT116/BR cells. There were no significant differences in cell motility and invasion. This study suggests that exposure of colon cancer cells to butyrate results in development of resistance to butyrate, which may play a role in the acquisition of chemoresistance in colon cancer. PMID:27277338

  14. The thickness of the intestinal mucous layer in the colon of rats fed various sources of non-digestible carbohydrates is positively correlated with the pool of SCFA but negatively correlated with the proportion of butyric acid in digesta

    DEFF Research Database (Denmark)

    Hedemann, Mette S; Theil, Peter K; Bach Knudsen, K E

    2009-01-01

    The present experiment aimed to study the influence of six sources of non-digestible carbohydrates (NDC) on the mucous layer in the colon of rats. The NDC sources used were as follows: cellulose (C); pectin (P); inulin; resistant starch (RS); barley hulls. The diets contained 108-140g NDC/kg DM. A...... hindgut and, within compartments, the MUC genes may be regulated differently. In conclusion, a diet providing a large pool of SCFA with a low proportion of butyrate in the colon stimulates the formation of a thick mucous layer, which probably benefits intestinal health....

  15. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon

    Institute of Scientific and Technical Information of China (English)

    Aldo Roda; Patrizia Simoni; Maria Magliulo; Paolo Nanni; Mario Baraldini; Giulia Roda; Enrico Roda

    2007-01-01

    AIM:To develop a new formulation with hydroxy propyl methyl cellulose and Shellac coating for extended and selective delivery of butyrate in the ileo-caecal region and colon.METHODS:One-gram sodium butyrate coated tablets containing 13C-butyrate were orally administered to 12 healthy subjects and 12 Crohn's disease patients and the rate of 13C-butyrate absorption was evaluated by 13CO2 breath test analysis for eight hours.Tauroursodeoxycholic acid(500 mg)was co-administered as a biomarker of oro-ileal transit time to determine also the site of release and absorption of butyrate by the time of its serum maximum concentration.RESULTS:The coated formulation delayed the 13C-butyrate release by 2-3 h with respect to the uncoated tablets.Sodium butyrate was delivered in the intestine of all subjects and a more variable transit time was found in Crohn's disease patients than in healthy subjects.The variability of the peak 13CO2 in the kinetic release of butyrate was explained by the inter-subject variability in transit time.However,the coating chosen ensured an efficient release of the active compound even in patients with a short transit time.CONCLUSION:Simultaneous evaluation of breath 13CO2 and tauroursodeoxycholic acid concentrationtime curves has shown that the new oral formulation consistently releases sodium butyrate in the ileo-cecal region and colon both in healthy subjects and Crohn's disease patients with variable intestinal transit time.This formulation may be of therapeutic value in inflammatory bowel disease patients due to the appropriate release of the active compound.

  16. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43.

    Directory of Open Access Journals (Sweden)

    Maria Consolata Miletta

    Full Text Available Butyrate is a short-chain fatty acid (SCFA closely related to the ketone body ß-hydroxybutyrate (BHB, which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR, GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

  17. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Nepelska

    Full Text Available The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect of culture supernatant from 49 commensal strains. We observed that several bacteria were able to activate the AP-1 pathway and this was correlated to the amount of short chain fatty acids (SCFAs produced. Besides being a major source of energy for epithelial cells, SCFAs have been shown to regulate several signaling pathways in these cells. We show that propionate and butyrate are potent activators of the AP-1 pathway, butyrate being the more efficient of the two. We also observed a strong synergistic activation of AP-1 pathway when using butyrate with PMA, a PKC activator. Moreover, butyrate enhanced the PMA-induced expression of c-fos and ERK1/2 phosphorylation, but not p38 and JNK. In conclusion, we showed that SCFAs especially butyrate regulate the AP-1 signaling pathway, a feature that may contribute to the physiological impact of the gut microbiota on the host. Our results provide support for the involvement of butyrate in modulating the action of PKC in colon cancer cells.

  18. Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health

    Directory of Open Access Journals (Sweden)

    Lonneke eOnrust

    2015-12-01

    Full Text Available The ban on antimicrobial growth promoters and efforts to reduce therapeutic antibiotic usage has led to major problems of gastrointestinal dysbiosis in livestock production in Europe. Control of dysbiosis without the use of antibiotics requires a thorough understanding of the interaction between the microbiota and the host mucosa. The gut microbiota of the healthy chicken is highly diverse, producing various metabolic end products, including gases and fermentation acids. The distal gut knows an abundance of bacteria from within the Firmicutes Clostridium clusters IV and XIVa that produce butyric acid, which is one of the metabolites that is sensed by the host as a signal. The host responds by strengthening the epithelial barrier, reducing inflammation, and increasing the production of mucins and antimicrobial peptides. Stimulating the colonization and growth of butyrate producing bacteria thus may help optimizing gut health. Various strategies are available to stimulate butyrate production in the distal gut. These include delivery of prebiotic substrates that are broken down by bacteria into smaller molecules which are then used by butyrate producers, a concept called cross-feeding. Xylo-oligosaccharides (XOS are such compounds as they can be converted to lactate which is further metabolized to butyrate. Probiotic lactic acid producers can be supplied to support the cross-feeding reactions. Direct feeding of butyrate producing Clostridium cluster IV and XIVa strains are a future tool provided that large scale production of strictly anaerobic bacteria can be optimized. Current results of strategies that promote butyrate production in the gut are promising. Nevertheless, our current understanding of the intestinal ecosystem is still insufficient, and further research efforts are needed to fully exploit the capacity of these strategies.

  19. 亚甲基富勒烯衍生物[6,6]-苯基-C61丁酸甲酯的密度泛函研究%DFT Study on Methanofullerene Derivative[6,6]-Phenyl-C61 Butyric Acid Metllyl Ester

    Institute of Scientific and Technical Information of China (English)

    张材荣; 陈宏善; 陈玉红; 魏智强; 蒲忠胜

    2008-01-01

    Density functional theory(DFr)and time-dependent density functional theory(TDDFT)with hybrid functional B3LYP were used to investigate several physical and chemical properties of[6,6]-phenyl-C61 butyric acid methyl ester(PCBM),including the geometry,electron structure,charge population,bond properties,as well as IR,Raman and electronic absorption spectra.The analysis of the natural bond orbital(NBO)suggested that there were about 0.11 electrons transferred from the moiety phenyl and butyric acid methyl ester group of PCBM to fullerene cage.The strongest IR and Raman peaks came from different modes with the frequencies of 1773 and 1492 cm-1,respectively.The calculated isotropic polarizability,polarizability anisou'opy invariant,and hyperpolarizability were 577.7,96.9,and-22.8 a.u.,respectively.Based on TDDFT,the electronic absorption spectra of PCBM were calculated and analyzed.The calculated absorption band near 349 nm agreed well with the experimental measurement.%运用密度泛函理论和含时密度泛函理论研究了亚甲基富勒烯衍生物[6.6]-苯基-C61丁酸甲酯(PCBM)的几种物理化学性质,包括几何结构、电子结构、电荷布居与成键,以及IR、Raman和电子吸收光谱.自然键轨道方法的结果表明,大约有0.11个电子通过成键由分子的一部分苯基和丁酸甲酯基团(电子给体)转移到富勒烯笼(电子受体).最强的IR和Raman谱峰来自于不同的振动模式,分别位于1773和1492 cm-1处.计算的各向同性极化率、极化率各向异性不变量以及超极化率分别是577.7、96.9、-22.8 a.u..基于含时密度泛函理论计算并分析了PCBM的电子吸收谱,在349 nm处的吸收峰与实验结果符合很好.

  20. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscapes alteration in bovine cells

    Science.gov (United States)

    Volatile short-chain fatty acids (VFAs, acetate, propionate, and butyrate) are nutrients especially critical to ruminants. Beyond their nutritional impact, clear evidence is beginning to link modifications in chromatin structure induced by butyrate to cell cycle progression, DNA replication and over...

  1. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    International Nuclear Information System (INIS)

    HeLa S3 cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-[35S]methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S3 cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S3 cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product

  2. Influence of poly(2-methoxy-5-(2’-ethyl)-hexyloxy-p-phenylene vinylene):(6,6)-phenyl C61 butyric acid methyl ester blend ratio on the performance of inverted type organic solar cells based on Eosin-Y-coated ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ginting, Riski Titian [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yap, Chi Chin, E-mail: ccyap@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2013-06-01

    The influence of poly(2-methoxy-5-(2’-ethyl)-hexyloxy-p-phenylene vinylene) (MEH-PPV) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) weight ratio on the photovoltaic performance of inverted type organic solar cell based on Eosin-Y-coated ZnO nanorods has been investigated. Experimental results showed that the photovoltaic performance improved with weight ratio of MEH-PPV:PCBM from 1:1 to 1:3 due to better percolation pathway for electron transport and enhanced infiltration of polymer blend into interspace of Eosin-Y-coated ZnO nanorods. However, the overall performance started to decrease at weight ratio of 1:4 due to the aggregation of PCBM clusters which results in poor polymer blend infiltration. The optimum device at weight ratio of 1:3 exhibited short circuit current density of 3.95 ± 0.10 mA cm{sup −2}, open circuit voltage of 0.53 ± 0.03 V, fill factor of 0.50 ± 0.03, and power conversion efficiency of 1.02 ± 0.07 %. - Highlights: • The device performance increased with donor:acceptor weight ratio up to 1:3. • Aggregation of fullerene-derivative led to poor infiltration at weight ratio of 1:4. • The optimum weight ratio was different from that of conventional device.

  3. Performance of spray deposited poly [N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]/[6,6]-phenyl-C61-butyric acid methyl ester blend active layer based bulk heterojunction organic solar cell devices

    International Nuclear Information System (INIS)

    Bulk heterojunction organic solar cell devices were fabricated using the spray deposited poly [N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]/[6,6]-phenyl-C61-butyric acid methyl ester blend active layer. The spray coating parameters such as spraying time, substrate-nozzle distance for the deposition of active layers were analyzed. Optical absorption of the active layers was analyzed using UV–visible spectral studies in the wavelength range from 300 to 800 nm. The surface morphology of the active layers deposited with different parameters was examined using atomic force microscopy. Surface morphology of the active layers deposited with the substrate-nozzle distance of 20 cm and for 20 s shows smooth morphology with peak-valley value of 4 nm. The devices fabricated using the selected active layer show overall power conversion efficiency of 1.08%. - Graphical abstract: Current–voltage (J–V) characteristics of spray deposited PCDTBT:PC61BM active layer based solar cell device under illumination of AM 1.5 G, 100 mW/cm2. Highlights: ► Organic solar cells were fabricated using a spray deposited PCDTBT:PC61BM active layer. ► The active layers deposited with spray conditions show flat morphology. ► Using the selected active layers power conversion efficiency of 1.08% is obtained.

  4. Enraizamento de estacas de Pau-Brasil (Caesalpinia echinata Lam. tratadas com ácido indol butírico e ácido naftaleno acético Rooting cuttings of Pau-Brasil (Caesalpinia echinata Lam. treated with indole butyric acid and naphthalene acetic acid

    Directory of Open Access Journals (Sweden)

    Laurício Endres

    2007-06-01

    Full Text Available O pau-brasil (Caesalpinia echinata Lam. tem grande valor cultural no Brasil e a sua propagação por sementes é dificultada pela rápida perda do poder germinativo delas. A estaquia pode ser usada para a produção de mudas de espécies florestais, principalmente quando existem algumas dificuldades de propagação por sementes. Este trabalho teve como objetivo caracterizar o efeito de concentrações e fontes de auxinas sobre o enraizamento de estacas de pau-brasil. Estacas com cerca de 12cm de comprimento e de um a dois pares de folhas foram tratadas na base com ácido indol butírico (AIB, ácido naftaleno acético (ANA na forma líquida ou na forma de pó nas concentrações de 0, 1.250, 2.500, 5.000, 10.000mg L-1 ou mg Kg-1, respectivamente. As estacas foram transferidas para substrato contendo areia e mantidas sob nebulização (90-95% UR. Aos 120 dias de estaquia, foram avaliados a mortalidade, a retenção foliar, a formação de calo e a percentagem de estacas enraizadas. As estacas apresentaram índices de sobrevivência de até 70%. A formação de calos não foi relacionada com a concentração de auxinas utilizadas. O maior índice de enraizamento de estacas de pau-brasil, em torno de 16%, foi resgistrada com a utilização do ácido indolbutírico (AIB e do ácido naftalenoacético (ANA na concentração 2.500mg L-1. Os altos índices de sobrevivência e os baixos índices de enraizamento sugerem que as estacas devem permanecer por mais tempo sob nebulização, a fim de induzir o seu processo de enraizamento.The 'pau-brasil' tree (Caesalpinia echinata Lam. have a high cultural value in Brazil and its seed propagation is very difficult because of its rapid losses of germination potential. Cuttings propagation has been considered as alternative method to propagate forest species that seed propagation is poor. The objectives of this study were to determine the effects of indole-3-butyric acid (IBA and naphthalene acetic (NAA acid on

  5. Alternative splicing regulated by butyrate in bovine epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sitao Wu

    Full Text Available As a signaling molecule and an inhibitor of histone deacetylases (HDACs, butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT and control (CT groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001 at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor and Exon#11 (Acceptor in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC

  6. ALA-Butyrate prodrugs for Photo-Dynamic Therapy

    Science.gov (United States)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2010-05-01

    The use of 5-aminolevulinic acid (ALA) administration has led to many applications of photodynamic therapy (PDT) in cancer. However, the hydrophilic nature of ALA limits its ability to penetrate the cells and tissues, and therefore the need for ALA derivatives became an urgent research target. In this study we investigated the activity of novel multifunctional acyloxyalkyl ester prodrugs of ALA that upon metabolic hydrolysis release active components such as, formaldehyde, and the histone deacetylase inhibitory moiety, butyric acid. Evaluation of these prodrugs under photo-irradiation conditions showed that butyryloxyethyl 5-amino-4-oxopentanoate (ALA-BAC) generated the most efficient photodynamic destruction compared to ALA. ALA-BAC stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells which resulted in generation of intracellular ROS, reduction of mitochondrial activity, leading to apoptotic and necrotic death of the cells. The apoptotic cell death induced by ALA / ALA-BAC followed by PDT equally activate intrinsic and extrinsic apoptotic signals and both pathways may occur simultaneously. The main advantage of ALA-BAC over ALA stems from its ability to induce photo-damage at a significantly lower dose than ALA.

  7. Rice genotypes evaluate under the interactive phytotoxic effect of acetic, propionic and butyric acidsAvaliação de genótipos de arroz sob o efeito fitotóxico interativo dos ácidos acético, propiônico e butírico

    Directory of Open Access Journals (Sweden)

    Antonio Costa de Oliveira

    2012-05-01

    Full Text Available The objective of this work was to evaluate the development of 20 rice genotypes to acetic, pripionic and butyric acid, a phytotoxic compounds produced in low drainage soils with high organic matter content. This work was performed in hydroponics with four acid doses (0; 3; 6 e 9 mM and 6:3:1 relationship acetic, propionic and butyric respectively. A factorial random block design with three replications were performed. The variables measured were root (CR and shoot (CPA length, number of roots (NR and root (MSR and shoot (MSPA dry matter. The data relative to the measured variables were subjected to an analysis of variance in a factorial model (4x20 and regression fitting, considering dose and genotype as fixed factors. Significance for the interaction (genotype vs. dose was found only for CR and CPA. The variable CR was the most influenced by the acid and the regression stablished for the variables CR and CPA revealed 2 genotypes with root length stability and 3 with shoot length stability front to organic acid stress. Genotypes with higher rusticity and developed for irrigated systems were more tolerant. O objetivo do trabalho foi avaliar o desenvolvimento de 20 genótipos de arroz aos ácidos acético, propiônico e butírico, compostos fitotóxicos produzidos em solos de deficiente drenagem e alto teor de matéria orgânica. O trabalho foi executado em sistema de hidroponia com 4 doses (0; 3; 6 e 9 mM dos ácidos na relação 6:3:1 acético, propiônico e butírico respectivamente. O delineamento utilizado foi blocos casualizados com 3 repetições num esquema fatorial. As variáveis mensuradas foram comprimento de raízes (CR e parte aérea (CPA, número de raízes (NR e massa seca de raízes (MSR e parte aérea (MSPA. Os dados relativos às variáveis mensuradas foram submetidos à análise de variância em um modelo fatorial (4x20, considerando dose e genótipo como fatores fixos e ajuste de regressões. A variável CR foi a mais afetada

  8. Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells.

    Science.gov (United States)

    Rosignoli, P; Fabiani, R; De Bartolomeo, A; Spinozzi, F; Agea, E; Pelli, M A; Morozzi, G

    2001-10-01

    Epidemiological studies support the involvement of short-chain fatty acids (SCFA) in colon physiology and the protective role of butyrate on colon carcinogenesis. Among the possible mechanisms by which butyrate may exert its anti-carcinogenicity an antioxidant activity has been recently suggested. We investigated the effects of butyrate and mixtures of SCFA (butyrate, propionate and acetate) on DNA damage induced by H(2)O(2) in isolated human colonocytes and in two human colon tumour cell lines (HT29 and HT29 19A). Human colonocytes were isolated from endoscopically obtained samples and the DNA damage was assessed by the comet assay. H(2)O(2) induced DNA damage in normal colonocytes in a dose-dependent manner which was statistically significant at concentrations over 10 microM. At 15 microM H(2)O(2) DNA damage in HT29 and HT29 19A cells was significantly lower than that observed in normal colonocytes (P < 0.01). Pre-incubation of the cells with physiological concentrations of butyrate (6.25 and 12.5 mM) reduced H(2)O(2) (15 microM) induced damage by 33 and 51% in human colonocytes, 45 and 75% in HT29 and 30 and 80% in HT29 19A, respectively. Treatment of cells with a mixture of 25 mM acetate + 10.4 mM propionate + 6.25 mM butyrate did not induce DNA damage, while a mixture of 50 mM acetate + 20.8 mM propionate + 12.5 mM butyrate was weakly genotoxic only towards normal colonocytes. However, both mixtures were able to reduce the H(2)O(2)-induced DNA damage by about 50% in all cell types. The reported protective effect of butyrate might be important in pathogenetic mechanisms mediated by reactive oxygen species, and aids understanding of the apparent protection toward colorectal cancer exerted by dietary fibres, which enhance the butyrate bioavailability in the colonic mucosa. PMID:11577008

  9. Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring

    Directory of Open Access Journals (Sweden)

    Hadiza Altine Adamu

    2016-02-01

    Full Text Available Background: Evidence suggests perinatal environments influence the risk of developing insulin resistance. Objective: The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR and GBR-derived gamma (γ aminobutyric acid (GABA extract on epigenetically mediated high fat diet–induced insulin resistance. Design: Pregnant Sprague Dawley rats were fed high-fat diet (HFD, HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4 were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated. Results: Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels. Conclusions: These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis.

  10. Microbial metabolite butyrate facilitates M2 macrophage polarization and function

    OpenAIRE

    Jian Ji; Dingming Shu; Mingzhu Zheng; Jie Wang; Chenglong Luo; Yan Wang; Fuyou Guo; Xian Zou; Xiaohui Lv; Ying Li; Tianfei Liu; Hao Qu

    2016-01-01

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. ...

  11. Comparison of desoximetasone and hydrocortisone butyrate in psoriasis.

    Science.gov (United States)

    Zachariae, H

    1976-01-01

    Thirty psoriatics were treated for 2 weeks on a double-blind controlled basis with desoximetasone (0.25%) and with hydrocortisone butyrate (0.1%). It was a randomised left-right comparative trial. Thirteen out of 27 patients preferred desoximetasone, 3 patients preferred hydrocortisone butyrate. There was also a significantly better effect of desoximetasone as judged by the observer after the second week of treatment. PMID:60029

  12. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang;

    2013-01-01

    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate ...

  13. Colonic mucin synthesis is increased by sodium butyrate.

    Science.gov (United States)

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis. PMID:7890244

  14. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    F.O. Andrade

    2012-09-01

    Full Text Available The combined treatment with histone deacetylase inhibitors (HDACi and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10(4 cells/mL and treated with butyrate (1 mM alone or combined with vitamin A (10 µM for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot, but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot and of RARβ by 2.0-fold (quantitative real-time PCR. Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  15. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.O. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Nagamine, M.K. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); De Conti, A. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Chaible, L.M. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Fontelles, C.C. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Jordão Junior, A.A.; Vannucchi, H. [Divisão de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Dagli, M.L.Z. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Bassoli, B.K.; Moreno, F.S.; Ong, T.P. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-22

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10{sup 4} cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21{sup WAF1} by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  16. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 104 cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered

  17. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    Science.gov (United States)

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10. PMID:26921420

  18. Vancomycin treatment and butyrate supplementation modulate gut microbe composition and severity of neointimal hyperplasia after arterial injury

    OpenAIRE

    Ho, Karen J.; Xiong, Liqun; Hubert, Nathaniel J.; Nadimpalli, Anuradha; Wun, Kelly; Chang, Eugene B; Kibbe, Melina R.

    2015-01-01

    Abstract Gut microbial metabolites are increasingly recognized as determinants of health and disease. However, whether host–microbe crosstalk influences peripheral arteries is not understood. Neointimal hyperplasia, a proliferative and inflammatory response to arterial injury, frequently limits the long‐term benefits of cardiovascular interventions such as angioplasty, stenting, and bypass surgery. Our goal is to assess the effect of butyrate, one of the principal short chain fatty acids prod...

  19. Effect of 4-phenyl Butyric Acid on Hepatic Lipid Deposition and Oxidative Stress Induced by High-fructose Feed-ing in Mice%4-苯基丁酸对高果糖喂养大鼠肝脏脂质沉积及氧化应激的影响

    Institute of Scientific and Technical Information of China (English)

    任路平; 张璞; 张雪梅; 宋光耀; 陈树春

    2016-01-01

    Objective To observe the effect of 4-phenyl butyric acid [4-PBA, an endoplasmic reticulum stress ( ERS) inhibitor] on hepatic oxidative stress induced by high-fructose feeding in mice and to investigate the effect of ERS mediation and its relationship with oxidative stress. Methods A total of 46 male Wistar rats were divided into control group (n=15), high-fructose feeding group (n=15) and 4-PBA intervention group (n=16) [0. 35 g/(kgod)4-PBA intervention was initiated in 4th week of high-fructose feeding]. After 8 weeks of feeding, all rats were sacrificed, and he-patic triglyceride ( TG) contents were detected. The expression of glucose regulated protein 78 ( GRP78 ) was detected with polymerase chain reaction ( PCR) method. Activities of superoxide dismutase ( SOD) , catalase ( CAT) and gluta-thione peroxidase (GSH-Px) and malondialdehyde (MDA) contents were detected. The expression of C/EBP homolo-gous protein ( CHOP) was detected with Western blot method. Results In high-fructose feeding group, the values of TG content and GRP78 and CHOP expressions were significantly increased compared with those in control group (P<0. 01);while the above values were significantly decreased in 4-PBA intervention group compared with those in high-fructose feeding group (P<0. 01). In high-fructose feeding group, the values of SOD, GSH-Px and CAT activities were signifi-cantly decreased, while MDA content was increased more than those in the control group (P<0. 01);in 4-PBA interven-tion group, the values of SOD, GSH-Px and CAT activities were significantly higher, while MDA content was lower than those in high-fructose feeding group (P<0. 01). Conclusion Long-term high-fructose feeding can induce hepatic ERS and oxidative stress, and 4-phenyl butyric acid can improve hepatic oxidative stress induced by high-fructose feeding.%目的:观察内质网应激(ERS)抑制剂4-苯基丁酸(4-PBA)对高果糖饮食喂养大鼠肝脏氧化应激的影响,以探讨ERS在高果糖喂养

  20. Postnatal development of the myenteric glial network and its modulation by butyrate.

    Science.gov (United States)

    Cossais, François; Durand, Tony; Chevalier, Julien; Boudaud, Marie; Kermarrec, Laetitia; Aubert, Philippe; Neveu, Isabelle; Naveilhan, Philippe; Neunlist, Michel

    2016-06-01

    The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined. We thus characterized the postnatal evolution of EGC phenotype in the colon of rat pups and studied the effect of short-chain fatty acids on their maturation. We showed an increased expression of the glial markers GFAP and S100β during the first postnatal week. As demonstrated by immunohistochemistry, a structured myenteric glial network was observed at 36 days in the rat colons. Butyrate inhibited EGC proliferation in vivo and in vitro but had no effect on glial marker expression. These results indicate that the EGC myenteric network continues to develop after birth, and luminal factors such as butyrate endogenously produced in the colon may affect this development. PMID:27056724

  1. From the gut to the peripheral tissues: the multiple effects of butyrate

    OpenAIRE

    Guilloteau, P.; Martin, L; Eeckhaut, Venessa; Ducatelle, Richard; Zabielski, R.; Van Immerseel, Filip

    2010-01-01

    Butyrate is a natural substance present in biological liquids and tissues. The present paper aims to give an update on the biological role of butyrate in mammals, when it is naturally produced by the gastrointestinal microbiota or orally ingested as a feed additive. Recent data concerning butyrate production delivery as well as absorption by the colonocytes are reported. Butyrate cannot be detected in the peripheral blood, which indicates fast metabolism in the gut wall and/or in the liver. I...

  2. Diet-dependent shifts in ruminal butyrate producing bacteria

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jakub; Tepšič, K.; Avguštin, G.; Kopečný, Jan

    2006-01-01

    Roč. 51, č. 4 (2006), s. 294-298. ISSN 0015-5632 R&D Projects: GA AV ČR IBS5045112 Institutional research plan: CEZ:AV0Z50450515 Keywords : butyrate-producing bacteria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 0.963, year: 2006

  3. The Synergistic Effects of Probiotic Microorganisms on the Microbial Production of Butyrate In Vitro

    Directory of Open Access Journals (Sweden)

    Abbas, Khadija A.

    2009-01-01

    Full Text Available Butyrate producing microbiota perform a number of activities important in supporting the normal function of the human gastrointestinal tract. The goal of this study was to determine the synergistic effects of lactate- and butyrate-producing bacteria on butyrate production in vitro co-culture. PCR was used to detect the genes butyrate kinase and butyryl-CoA transferase that contribute to butyrate production, in a panel of representative gut microbiota. Preliminary data suggested that two Clostridium sp. (ASF 500 and ASF 502 and one Eubacterium sp. (ASF492 possessed at least one of these genes for butyrate production. Co-culture experiments mixing a lactate-producer with a butyrate-producer showed an increase in butyrate production. Real-time quantitative PCR was used to estimate the number of bacteria in co-culture by targeting the 16S rDNA gene. Butyrate levels in the mixing experiment were analyzed using GC/MS. Preliminary results showed that butyrate genes are present in Clostridium sp. ASF 500 and ASF 502, however, assessment of butyrate production showed the butyrate levels do not correlate with the results from qPCR.

  4. Rhizogenic Induction in Adult Juglans regia L. cv. Serr Tissue Induced by Indole Butyric Acid and Agrobacterium rhizogenes Inducción Rizogénica en Tejido Adulto de Juglans regia L. cv. Serr Mediada por Ácido Indol Butírico y Agrobacterium rhizogenes

    Directory of Open Access Journals (Sweden)

    Manuel Sánchez-Olate

    2009-06-01

    Full Text Available The in vitro introduction of adult walnut (Juglans regia L. tissue represents an opportunity to clone elite genotypes whose selection occurs in advanced ontogenic states. With the purpose of developing a protocol to allow mass propagation of valuable genotypes from adult material, a comparison was made between two root induction systems of walnut microshoots of the fourth subculture of adult walnut tissue of an in vitro introduction program previously reinvigorated through traditional grafting. Rhizogenic induction by indole-3-butyric acid (IBA and Agrobacterium rhizogenes was used. The rhizogenic process was analyzed in two phases for both auxinic (T1: 3 mg L-1 IBA; T2: 5 mg L-1 IBA and A. rhizogenes inductions (T3: A-477; T4: A-478. The first phase of root induction was during 3 days in the dark while the second phase, root manifestation, was 27 days. Rooting percentage was evaluated and the induced root systems characterized (number, length, diameter, and root insertion zone in all the procedures. The best rooting results were obtained in T2, although the response obtained with A. rhizogenes didn’t differ from the T1 response. This appears to be an increasingly interesting methodology for adventitious rhizogenesis in this species.La introducción in vitro de tejido adulto de nogal (Juglans regia L. representa una oportunidad de clonación de genotipos elite, cuya selección ocurre en estados ontogénicos avanzados. Así, con el objeto de desarrollar un protocolo que permita la propagación masiva de genotipos valiosos a partir de material adulto, se compararon dos sistemas de inducción rizogénica de microtallos de nogal provenientes del cuarto subcultivo de un programa de introducción in vitro de tejido adulto de nogal, previamente revigorizado mediante injerto tradicional. Se utilizó la inducción rizogénica por ácido indol-3-butírico (AIB y Agrobacterium rhizogenes. El proceso rizogénico se analizó tanto para inducción aux

  5. 富勒烯衍生物苯基C71-丁酸甲酯的结构和电学性质第一性原理研究%First principles calculations of structure and the electronic properties of fullerene derivative phenyl-C71-butyric acid methyl ester

    Institute of Scientific and Technical Information of China (English)

    张竹霞; 赵彦亮; 闫新; 韩培德; 刘旭光; 郝玉英; 许并社

    2009-01-01

    Phenyl-C71-butyric acid methyl ester ([70]PCBM) clusters are investigated by using the B3LYP method with 6-31G(d) basis set. The optimized results indicate that the addition of PCBM into the [6,6]-junction produces a closed methanofullerene which is thermodynamically stable product; and the addition into the [5,6]-junction results in an enlarged fullerene (an open fulleroid) which is a kinetically controlled product. The first adiabatic electron affinity for [70]PCBM is similar to that for C70. The energy gaps of [70]PCBM are reduced compared with those of C70. PCBM derivatives and show increased level of the lowest unoccupied molecular orbital of fullerenes. From the natural charge populations, it is found that adding PCBM unit onto the C70 cages does not change the charge populations remarkably; attaching a PCBM has no effect on the electronic structures of C70. The results of theoretical calculation suggest that PCBM is not involved in the process of photoelectric conversion but it plays a key role in adjusting the level of HOMO-LUMO for increasing photoelectric conversion efficiencies.%使用B3LYP/6-31G(d)方法对有机太阳电池中作为电子受体材料的富勒烯衍生物苯基C71-丁酸甲酯([70]PCBM)的同分异构体进行了计算.PCBM与C70通过六元环和六元环共用的CC双键加成得到的产物是热力学控制产物;通过五元环和六元环共用的C-C键加成得到的产物则是动力学控制产物.[70]PCBM与C70的第一绝热电子亲和势很接近.PCBM对前线轨道贡献很小,[70]PCBM的最高占据分子轨道和最低未占据分子轨道(LUMO)的电子云主要分布在C70笼上.PCBM提升了C70的LUMO能级水平,有利于提高太阳电池的光电转换效率.自然布居分析表明,PCBM与C70之间没有发生显著的电荷转移.所有的性质研究表明,PCBM基团并不涉及电池光电转换过程,但在调整C70能级水平提高光电转换效率中发挥了重要作用.

  6. Pré-tratamento com água e doses de ácido indolbutírico para estaquia herbácea de pitangueiras Pre-treatments with water and indole butyric acid dosis for herbaceous cuttings of Surinam cherry

    Directory of Open Access Journals (Sweden)

    Daiane Silva Lattuada

    2011-12-01

    . In this context, a study for the multiplication of Surinam cherry was conduced with herbaceous cuttings, taken from young and adult mother plants, immersed in indole butyric acid doses (0, 2000, 4000 and 6000mg L-1, in three different water periods (0, 24 or 48 hours. Survival rate (%, leaf retention and emission (No. leaves /cutting, callus rate (% and rooting (% were evaluated. At the end of the experiment, were also evaluated fresh and dry weight of shoot and root, leaf number and leaf area. The experiment has a completely randomized design with three replications of ten plants per treatment for nom destructive and three replications of five plants per treatment for the destrutive parameters. The herbaceous cuttings were efficient to produce seedlings of Surinam cherry, particularly when using cuttings derived from seedlings in the absence of the immersion in water and exogenous auxin.

  7. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?

    Science.gov (United States)

    Bourassa, Megan W; Alim, Ishraq; Bultman, Scott J; Ratan, Rajiv R

    2016-06-20

    As interest in the gut microbiome has grown in recent years, attention has turned to the impact of our diet on our brain. The benefits of a high fiber diet in the colon have been well documented in epidemiological studies, but its potential impact on the brain has largely been understudied. Here, we will review evidence that butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, can improve brain health. Butyrate has been extensively studied as a histone deacetylase (HDAC) inhibitor but also functions as a ligand for a subset of G protein-coupled receptors and as an energy metabolite. These diverse modes of action make it well suited for solving the wide array of imbalances frequently encountered in neurological disorders. In this review, we will integrate evidence from the disparate fields of gastroenterology and neuroscience to hypothesize that the metabolism of a high fiber diet in the gut can alter gene expression in the brain to prevent neurodegeneration and promote regeneration. PMID:26868600

  8. Synthesis of Clevidipine Butyrate%氯维地平的合成

    Institute of Scientific and Technical Information of China (English)

    张婧; 纪宪勇; 孙翔; 王杰

    2011-01-01

    Clevidipine butyrate, an antihypertensive agent, was synthesized from 2-cyanoethyl acetoacetate (2), 2,3-dichlorobenzaldehyde and methyl 3-aminocrotonate by Hantzsch cyclocondensation and followed by selective hydrolysis with sodium sulfide at room temperature to give 4-(2,3-dichlorophenyl)-l,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylic acid monomethyl ester, which was then subjected to reaction with chloromethyl butyrate with an overall yield of about 59% (based on 2).%3-羟基丙腈和双乙烯酮在三乙胺作用下制得乙酰乙酸(2ˉ氰基乙基)酯(2),再与2,3-二氯苯甲醛和3ˉ氨基巴豆酸甲酯经Hantzsch缩合闭环,接着用硫化钠在常温下选择性水解得4-(2,3-二氯苯基)-1-4-二氢-2,6-二甲基-3,5-吡啶二羧酸单甲酯,最后与正丁酸氯甲酯反应即得抗高血压药氯维地平,总收率约59%(以2计).

  9. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  10. Importance of release location on the mode of action of butyrate derivatives in the avian gastrointestinal tract

    NARCIS (Netherlands)

    Moquet, P.C.A.; Onrust, L.; Immerseel, Van F.; Ducatelle, R.; Hendriks, W.H.; Kwakkel, R.P.

    2016-01-01

    In the field of animal nutrition, butyrate is used as a zootechnical ingredient and can be used as an unprotected salt or in the form of protected derivatives such as butyrate glycerides or butyrate-loaded matrices. Dietary butyrate supplementation has been shown to improve growth performance and

  11. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut

    Science.gov (United States)

    Rivière, Audrey; Selak, Marija; Lantin, David; Leroy, Frédéric; De Vuyst, Luc

    2016-01-01

    With the increasing amount of evidence linking certain disorders of the human body to a disturbed gut microbiota, there is a growing interest for compounds that positively influence its composition and activity through diet. Besides the consumption of probiotics to stimulate favorable bacterial communities in the human gastrointestinal tract, prebiotics such as inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) can be consumed to increase the number of bifidobacteria in the colon. Several functions have been attributed to bifidobacteria, encompassing degradation of non-digestible carbohydrates, protection against pathogens, production of vitamin B, antioxidants, and conjugated linoleic acids, and stimulation of the immune system. During life, the numbers of bifidobacteria decrease from up to 90% of the total colon microbiota in vaginally delivered breast-fed infants to production. Butyrate is an essential metabolite in the human colon, as it is the preferred energy source for the colon epithelial cells, contributes to the maintenance of the gut barrier functions, and has immunomodulatory and anti-inflammatory properties. It has been shown that the butyrogenic effects of ITF and AXOS are the result of cross-feeding interactions between bifidobacteria and butyrate-producing colon bacteria, such as Faecalibacterium prausnitzii (clostridial cluster IV) and Anaerostipes, Eubacterium, and Roseburia species (clostridial cluster XIVa). These kinds of interactions possibly favor the co-existence of bifidobacterial strains with other bifidobacteria and with butyrate-producing colon bacteria in the human colon. PMID:27446020

  12. Síntese do butirato de n-butila empregando lipase microbiana imobilizada em copolímero de estireno-divinilbenzeno Synthesis of butyl butyrate by microbial lipase immobilized onto styrene-divinylbenzene copolymer

    Directory of Open Access Journals (Sweden)

    Pedro Carlos de Oliveira

    2000-10-01

    Full Text Available This work investigates the reaction parameters of an immobilized lipase in the esterification reaction of n-butanol and butyric acid. Microbial lipase from Candida rugosa was immobilized onto styrene-divinylbenzene copolymer (STY-DVB and subsequently introduced in an organic medium containing substrates in appropriate concentrations. Heptane was selected as solvent on the basis of its compatibility with the resin and the enzyme. The influence of molar ratio of acid to alcohol, amount of immobilized lipase and temperature on the butyl butyrate formation was determined. The results were compared with those achieved with free lipase and Lipozyme (commercially immobilized lipase under the same operational conditions.

  13. Enraizamento de estacas, crescimento e respostas anatômicas de mudas clonais de cacaueiro ao ácido indol-3-butírico Stem cutting rooting, growth and anatomical responses of cacao tree clonal changes to the indole-3-butyric acid

    Directory of Open Access Journals (Sweden)

    Alberto José dos Santos Júnior

    2008-12-01

    Full Text Available Avaliaram-se os efeitos do ácido indol-3-butírico (AIB no crescimento e na morfologia interna de quatro clones de Theobroma cacao (CCN-10, CP-53, PS-1319 e CA-1.4. O AIB foi aplicado na base da estaca de caule, em talco inerte, nas concentrações de 2; 4; 6 e 8 g kg-1, juntamente com o controle (sem AIB. A avaliação do crescimento de raízes, caule e folhas dos quatro clones foi realizada aos 160 dias após o estaqueamento (DAE para todas as concentrações de AIB, período também em que se realizou a coleta de material para os estudos anatômicos dos diversos órgãos, mas somente para a concentração de 4g kg-1 AIB e o controle. O clone CA-1.4 apresentou incremento na biomassa seca de raiz (BSR com o aumento das concentrações de AIB, ao passo que, nos demais clones, houve diminuições de BSR a partir dos 4 g kg-1 AIB. O mesmo fato foi observado para a biomassa seca de caule (BSC e de folha (BSF, exceto para a BSC do CCN-10 que não respondeu ao incremento das concentrações de AIB. Houve aumento de área foliar total para os clones CP-53 e PS-1319 com o incremento de AIB até 4 g kg-1, enquanto o aumento do número de folhas ocorreu somente para os clones CA-1.4 e CP-53 até as concentrações 8 e 4 g kg-1 AIB, respectivamente. Houve diminuição do número de estacas mortas para os clones CA-1.4 e CCN-10 até 8 g kg-1 de AIB e para o CP-53 até 4 g kg-1 de AIB. As melhores concentrações de AIB para o enraizamento de estacas de ramos dos clones de cacaueiros CP-53, PS-1319 e CCN-10 foram de 4, 4 e 6 g kg-1 AIB, respectivamente, enquanto para o clone CA-1.4 foi de 8 g kg-1 AIB; o aumento da concentração de AIB promoveu mudanças anatômicas nos órgãos vegetativos de todos os clones, influenciando na atividade do câmbio vascular e induzindo a formação de um maior número de raízes adventícias nas estacas.The effects of indole-3-butyric acid (IBA on growth and internal morphology of four clones of Theobroma cacao (CCN-10, CP

  14. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► We investigate mechanisms responsible for butyrate resistance in colon cancer cells. ► Tcf3 modulates butyrate’s effects on Wnt activity and cell growth in resistant cells. ► Tcf3 modulation of butyrate’s effects differ by cell context. ► Cell cycle factors are overexpressed in the resistant cells. ► Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G1 to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  15. Vibrational Spectroscopic and Thermodynamic Investigation of Poly (vinyl butyral

    Directory of Open Access Journals (Sweden)

    Saiful Islam Ansari

    2016-03-01

    Full Text Available A detailed study was performed to investigate the normal modes of vibration and their dispersions in poly (vinyl butyral by using Urey-Bradley force field and Wilson’s GF matrix method as modified by Higgs. It provides detailed interpretation of FTIR. Characteristic feature of dispersion curves such as regions of high density–of–states, repulsion and character mixing of dispersion modes are discussed. Predictive values of heat capacity as a function of temperature between 0-350 K have been evaluated.

  16. Thermal decomposition of yttrium(III) propionate and butyrate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2013-01-01

    The thermal decompositions of yttrium(III) propionate monohydrate (Y(C2H5CO2)3·H2O) and yttrium(III) butyrate dihydrate (Y(C3H7CO2)3·2H2O) were studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage microscopy. These two...... compounds follow a similar decomposition path starting with dehydration, which is complete at 110°C. The dehydrated salts convert to a dioxycarbonate (Y2O2CO3) via an unstable intermediate product (probably Y2O(C2H5CO2)4 and Y2O(C3H7CO2)4 for the propionate and butyrate respectively), with the evolution of...... CO2 and a symmetrical ketone consisting of 3-pentanone and 4-heptanone respectively. Final conversion to Y2O3 takes pace with release of CO2. Elemental carbon that is left as a by-product is finally slowly burned by the residual oxygen present in the Ar atmosphere. Fusion is observed at ≈110°C in...

  17. The efficacy of Na-butyrate encapsulated in palm fat on performance of broilers infected with necrotic enteritis with gene expression analysis

    Directory of Open Access Journals (Sweden)

    M. G. Eshak

    2016-05-01

    Full Text Available Aim: To study the efficacy of Na-butyrate encapsulated in palm fat on performance of broiler chickens experimentally infected with necrotic enteritis (NE with the determination of its protective effect against the changes in the gene expression profiles and deoxyribonucleic acid (DNA fragmentation. Materials and Methods: A total of 800 one-day-old male Arbor Acres Plus broiler chickens were randomly allocated into four groups for 5 weeks. Na-butyrate was supplemented at dosages of 1 kg/ton for starter diet, 0.5 kg/ton for grower diet, and 0.25 kg/ton for finisher diet (presence or absence. Birds of groups 1 and 2 were inoculated by crop gavages with 4×108 CFU/ml/bird of Clostridium perfringens in phosphate buffered saline for 4 successive days, from 14 to 17 days of age to produce NE. Results: Addition of Na-butyrate, encapsulated in palm fat, to ration of experimentally infected broilers with NE resulted in increased final body weight, at 35 days of age, reduced total feed consumption, improved feed conversion ratio, reduced cumulative mortality, and increased production number. There were increased intestinal diameter, intestinal length, and significantly increased the weight of bursa of Fabricius(BF with higher hemagglutination inhibition titers against Newcastle disease (ND vaccination versus untreated infected and untreated negative control birds. The results showed increased expression levels of alpha-toxin and glyceraldehyde-3-phosphate dehydrogenase in the bursa tissues of broilers infected with C. perfringens. However, the expression levels of these genes in broilers treated with Na-butyrate were similar to the non-infected control group. Supplementation of broilers with Na-butyrate increased the expression level of insulin-like growth factor-1 (IGF-1 and decreased the DNA fragmentation induced by C. perfringens. Conclusion: Na-butyrate significantly improved chicken broiler body weights, increased relative weights of BF, increased

  18. Differential Cellular and Molecular Effects of Butyrate and Trichostatin A on Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Kasturi Ranganna

    2012-09-01

    Full Text Available The histone deacetylase (HDAC inhibitors, butyrate and trichostatin A (TSA, are epigenetic histone modifiers and proliferation inhibitors by downregulating cyclin D1, a positive cell cycle regulator, and upregulating p21Cip1 and INK family of proteins, negative cell cycle regulators. Our recent study indicated cyclin D1 upregulation in vascular smooth muscle cells (VSMC that are proliferation-arrested by butyrate. Here we investigate whether cyclin D1 upregulation is a unique response of VSMC to butyrate or a general response to HDAC inhibitors (HDACi by evaluating the effects of butyrate and TSA on VSMC. While butyrate and TSA inhibit VSMC proliferation via cytostatic and cytotoxic effects, respectively, they downregulate cdk4, cdk6, and cdk2, and upregulate cyclin D3, p21Cip1 and p15INK4B, and cause similar effects on key histone H3 posttranslational modifications. Conversely, cyclin D1 is upregulated by butyrate and inhibited by TSA. Assessment of glycogen synthase 3-dependent phosphorylation, subcellular localization and transcription of cyclin D1 indicates that differential effects of butyrate and TSA on cyclin D1 levels are linked to disparity in cyclin D1 gene expression. Disparity in butyrate- and TSA-induced cyclin D1 may influence transcriptional regulation of genes that are associated with changes in cellular morphology/cellular effects that these HDACi confer on VSMC, as a transcriptional modulator.

  19. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    Science.gov (United States)

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  20. TRAPPING YELLOWJACKETS (HYMENOPTERA: VESPIDAE) WITH HEPTYL BUTYRATE EMITTED FROM CONTROLLED-RELEASE DISPENSERS

    Science.gov (United States)

    Numbers of workers of Vespula pensylvanica (Saussure) (western yellowjacket) and V. atropilosa (Sladen) trapped with heptyl butyrate in Washington increased with increased release of the attractant from vial dispensers, up to an estimated 2.3 milligrams heptyl butyrate per hour. Vespula germanica F...

  1. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function.

    Science.gov (United States)

    Kelly, Caleb J; Zheng, Leon; Campbell, Eric L; Saeedi, Bejan; Scholz, Carsten C; Bayless, Amanda J; Wilson, Kelly E; Glover, Louise E; Kominsky, Douglas J; Magnuson, Aaron; Weir, Tiffany L; Ehrentraut, Stefan F; Pickel, Christina; Kuhn, Kristine A; Lanis, Jordi M; Nguyen, Vu; Taylor, Cormac T; Colgan, Sean P

    2015-05-13

    Interactions between the microbiota and distal gut are fundamental determinants of human health. Such interactions are concentrated at the colonic mucosa and provide energy for the host epithelium through the production of the short-chain fatty acid butyrate. We sought to determine the role of epithelial butyrate metabolism in establishing the austere oxygenation profile of the distal gut. Bacteria-derived butyrate affects epithelial O2 consumption and results in stabilization of hypoxia-inducible factor (HIF), a transcription factor coordinating barrier protection. Antibiotic-mediated depletion of the microbiota reduces colonic butyrate and HIF expression, both of which are restored by butyrate supplementation. Additionally, germ-free mice exhibit diminished retention of O2-sensitive dyes and decreased stabilized HIF. Furthermore, the influences of butyrate are lost in cells lacking HIF, thus linking butyrate metabolism to stabilized HIF and barrier function. This work highlights a mechanism where host-microbe interactions augment barrier function in the distal gut. PMID:25865369

  2. MODULATION OF MDR-1 GENE IN HUMAN BREAST CANCER CELLS BY SODIUM BUTYRATE AND DMSO

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the regulation effect of MDR-1 gene inhuman breast cancer cell by the differentiating agents, sodium butyrate and dimethyl sulfoxide. Methods: 1. A sensitive assay, RT-PCR, was used to measure the mRNA level before and after the treatment of sodium butyrate, DMSO, using b -actin as control; 2. Evaluated the effect of sodium butyrate, DMSO on MDR-1 gene expression of human breast cancer at the protein level by immunoflow cytometry; 3. P-glycoprotein function was examined after accumulation of the fluorescent drug, Phodamine-123, by flow cytometry; 4. Chemosensitivity to doxorubicin was analyzed using the MTT assay. Results: Sodium butyrate and DMSO were found to increase the MDR characteristics on MDR-1 gene, MDR-1 expression levels, P-glycoprotein function and chemosensitivity to doxorubicin. Conclusion: sodium butyrate, DMSO can modulate the MDR-1 gene at gene level, protein level, protein function level and cell level.

  3. [Pharmacological study on hydrocortisone 17-butyrate 21-propionate (author's transl)].

    Science.gov (United States)

    Otomo, S; Higuchi, S; Nakaike, S; Takeshita, K; Tanaka, M; Gotoh, Y; Osada, Y; Tsuchida, K; Inoue, K; Kyogoku, K; Tarumoto, Y; Sasajima, M; Ohzeki, M

    1981-12-01

    The topical and systemic anti-inflammatory activities of hydrocortisone 17-butyrate 21-propionate (HBP) were studied. The systemic anti-inflammatory activities of HBP and reference steroids were examined for their effects on dinitrochlorobenzene dermatitis, carrageenin edema, cotton pellet granuloma and adjuvant arthritis in rats and by the delayed allergic edema test in mice. The topical anti-inflammatory activities of these steroids were examined for their effects on croton oil dermatitis, croton oil ear edema, carrageenin edema and cotton pellet granuloma in rats. Furthermore, effects of these steroids on liver glycogen deposition in mice, thymolysis, and decrease of serum corticosterone level in rats were examined. Systemically administered HBP was less potent than betamethasone 17-valerate (BV), but was almost equal to hydrocortisone 17-butyrate (HB) in anti-inflammatory activity, and its effects on liver glycogen deposition, thymolysis, and the decrease of serum corticosterone level. However, the topical anti-inflammatory activity of HBP was more potent than that of BV and HB, although in the same experiment, thymolytic activity of HBP was less potent than that of BV, but was almost equal to HB. The inhibitory effect of HBP on hypotonic induced hemolysis was weaker than that of BV, but was stronger than that of HB in vitro. The affinity of HBP was higher than that of BV and HB to polymorphonuclear leucocytes used as the inflammatory cells in vitro. On the other hand no marked difference was observed in the affinity to erythrocytes used as the non-inflammatory cells in vitro. These results suggest that HBP is a useful drug which has superior topical anti-inflammatory activity, but has a weak systemic effect. PMID:7333567

  4. Butyrate plays differential roles in cellular signaling in cancerous HCT116 and noncancerous NCM460 colon cells

    Science.gov (United States)

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects in colon. However, the mechanistic action of butyrate at the cellular level remains to be determined. We hypothesize that butyrate plays differential roles in cancerous and non-cancerous cells through si...

  5. Content Determination of Hydrocortisone Butyrate in Hydrocortisone Butyrate Gel by HPLC%HPLC法测定丁酸氢化可的松凝胶中丁酸氢化可的松的含量

    Institute of Scientific and Technical Information of China (English)

    王秋桐; 王伟; 侯海玲; 王玉华

    2013-01-01

    目的:建立测定丁酸氢化可的松凝胶中丁酸氢化可的松含量的方法.方法:采用高效液相色谱法.色谱柱为PhenomenC18柱,流动相为乙腈-0.5%醋酸水溶液(51:49,v/V),检测波长为240nm,流速为1.0 ml/min,柱温为25℃,进样量为20μl,灵敏度为1.0 AUFS.结果:丁酸氢化可的松的进样量在97.6~878.4 ng范围内与峰面积积分值呈良好的线性关系(r=0.9991);平均回收率为99.5%,RSD=0.45%(n=9).结论:该方法简便、灵敏、准确,可用于丁酸氢化可的松凝胶的质量控制.%OBJECTIVE: To develop a method for the content determination of hydrocortisone butyrate in Hydrocortisone butyrate gel. METHODS: HPLC method was adopted. The determination was performed on Phenomen C18 column with mobile phase consisted of acetonitrile-0.5% acetic acid (51:49) at flow rate of 1.0 ml/min. The column temperature was 25 ℃ and injection volume was 20 μl. The sensitivity of the sample was 1.0 AUFS. RESULTS: The linear range of hydrocortisone butyrate was 97.6-878.4 ng (r=0.999 1) with an average recovery of 99.5% (RSD=0.45% , n=9). CONCLUSION: The method is proven to be simple, accurate and precise for the quality control of Hydrocortisone butyrate gel.

  6. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate.

    Science.gov (United States)

    Bastiaansen, Jessica A M; Merritt, Matthew E; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) (13)C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-(13)C]pyruvate and [1-(13)C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [(13)C]bicarbonate (-48%), [1-(13)C]acetylcarnitine (+113%), and [5-(13)C]glutamate (-63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-(13)C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-(13)C]acetoacetate and [1-(13)C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-(13)C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (-82%). Combining HP (13)C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  7. Duodenal histology and carcass quality of feedlot cattle supplemented with calcium butyrate and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Thiago Simas de Oliveira Moreira

    2016-01-01

    Full Text Available The experiment was carried out at the Comigo Technology Center, in Rio Verde, State of Goiás, Brazil, with the objective of evaluating the effects of supplementation with calcium butyrate, as a growth promoting agent for the duodenal mucosa and Bacillus subtilis as a probiotic performance enhancer in feedlot cattle. Calcium butyrate (5 and 10 g per animal per day and Bacillus (10 g per animal per day were added to a basal diet. There were used 85 Nelore bulls, with average weight of 315 ± 7 kg. The experiment lasted 118 days, including the adaptation period, until slaughter at 30 months of age. Diets were distributed in a completely randomized design with four treatments, where: T1 = control (basal diet; T2 = basal diet + 5 g calcium butyrate; T3 = basal diet + 10 g calcium butyrate and T4 = basal diet + 10 g calcium butyrate + 10 g probiotic with four replications and five to six animals per replication. It was used a forage: concentrate ratio of 30:70, the roughage used was the corn silage. Height and width measurements of intestinal villi were taken, and carcass and meat quality were evaluated. The supplementation of calcium butyrate and Bacillus subtilis positively influenced (p < 0.05 the carcass marbling level and calcium butyrate increased the villus height in the small intestine.

  8. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.

    Science.gov (United States)

    Jones, Rhys Jon; Massanet-Nicolau, Jaime; Guwy, Alan; Premier, Giuliano C; Dinsdale, Richard M; Reilly, Matthew

    2015-08-01

    Hydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths. During 60 min of operation CED removed up to 99% of VFAs from model solutions, sucrose-fed and grass-fed hydrogen fermentation broths, containing up to 1200 mg l(-1) each of acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid, and n-valeric acid. CED's ability to remove VFAs from hydrogen fermentation broths suggests that this technology is capable of improving hydrogen yields from dark fermentation. PMID:25898090

  9. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    International Nuclear Information System (INIS)

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells

  10. Nanoparticle-Based Topical Ophthalmic Gel Formulation for Sustained Release of Hydrocortisone Butyrate.

    Science.gov (United States)

    Yang, Xiaoyan; Trinh, Hoang M; Agrahari, Vibhuti; Sheng, Ye; Pal, Dhananjay; Mitra, Ashim K

    2016-04-01

    This study was conducted to develop formulations of hydrocortisone butyrate (HB)-loaded poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NP) suspended in thermosensitive gel to improve ocular bioavailability of HB for the treatment of bacterial corneal keratitis. PLGA NP with different surfactants such as polyvinyl alcohol (PVA), pluronic F-108, and chitosan were prepared using oil-in-water (O/W) emulsion evaporation technique. NP were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential, and crystallinity. In vitro release of HB from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when nanoparticles were suspended in thermosensitive gels and zero-order release kinetics was observed. In HCEC cell line, chitosan-emulsified NP showed the highest cellular uptake efficiency over PVA- and pluronic-emulsified NP (59.09 ± 6.21%, 55.74 ± 6.26%, and 62.54 ± 3.30%, respectively) after 4 h. However, chitosan-emulsified NP indicated significant cytotoxicity of 200 and 500 μg/mL after 48 h, while PVA- and pluronic-emulsified NP exhibited no significant cytotoxicity. PLGA NP dispersed in thermosensitive gels can be considered as a promising drug delivery system for the treatment of anterior eye diseases. PMID:26085051

  11. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway.

    Science.gov (United States)

    Wang, Xukai; He, Gang; Peng, Yan; Zhong, Weitian; Wang, Yan; Zhang, Bo

    2015-01-01

    Insulin resistance (IR) is a common feature of Type II diabetes, metabolic disorders, hypertension and other vascular diseases. Recent studies showed that obesity-induced inflammation may be critical for IR. To investigate the anti-inflammatory effect of sodium butyrate (NaB) on obesity-induced inflammation, the db/db mice were intraperitoneally injected with NaB for 6 weeks. Glucose control was evaluated by glucose tolerance test (GTT) and insulin tolerance test (ITT). Adipose tissue was harvested for gene expression analysis. 3T3-L1 adipocytes were treated with Tnf-α to mimic the inflammatory state and gene expression was detected by realtime PCR and Western blotting. Our results showed that NaB treatment improved glucose control in db/db mice as determined by GTT and ITT tests. Gene expression analysis showed that NaB inhibited cytokines and immunological markers including CD68, Interferon-γ and Mcp in adipose tissues in db/db mice. Moreover, NaB inhibited cytokine releasing in 3T3-L1 adipocytes treated with TNF-α. Further analysis of inflammation pathway showed that NLRP3 was activated in db/db mice, which was efficiently inhibited by NaB treatment. Our data suggest that inhibition of obesity-induced inflammation alleviates IR, and NaB might be a potential anti-inflammatory agent for obesity. PMID:26234821

  12. Butyrate induces sLex synthesis by stimulation of selective glycosyltransferase genes

    OpenAIRE

    Radhakrishnan, Prakash; Beum, Paul V.; Tan, Shuhua; Cheng, Pi-Wan

    2007-01-01

    Sialyl Lewis x (sLex) is an important tumor-associated carbohydrate antigen present on the cell surface glycoconjugates involved in leukocyte migration and cancer metastasis. We report the formation of sLex epitope in butyrate-treated human pancreatic adenocarcinoma cells expressing MUC1 and core 2 N-acetylglucosaminyltransferase (C2GnT). Butyrate treatment stimulates not only the transgene but also a group of endogenous glycosyltransferase genes involved in the synthesis of sLex. Current fin...

  13. Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data

    OpenAIRE

    Vital, Marius; Howe, Adina Chuang; Tiedje, James M.

    2014-01-01

    ABSTRACT Butyrate-producing bacteria have recently gained attention, since they are important for a healthy colon and when altered contribute to emerging diseases, such as ulcerative colitis and type II diabetes. This guild is polyphyletic and cannot be accurately detected by 16S rRNA gene sequencing. Consequently, approaches targeting the terminal genes of the main butyrate-producing pathway have been developed. However, since additional pathways exist and alternative, newly recognized enzym...

  14. Short chain fatty acids exchange: Is the cirrhotic, dysfunctional liver still able to clear them?

    NARCIS (Netherlands)

    Bloemen, J.G.; Olde Damink, S.W.M.; Venema, K.; Buurman, W.A.; Jalan, R.; Dejong, C.H.C.

    2010-01-01

    Background & aims: Prebiotics are increasingly used to improve gut integrity. A presumed mechanism of their beneficial action is the synthesis of short chain fatty acids (SCFA: acetate, propionate and butyrate). High systemic concentrations of propionate and butyrate are toxic and can adversely affe

  15. Antagonistic Effects of Sodium Butyrate and N-(4-Hydroxyphenyl-retinamide on Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Rainer Kuefer

    2007-03-01

    Full Text Available Butyrates and retinoids are promising antineoplastic agents. Here we analyzed effects of sodium butyrate and N-(4-hydroxyphenyl-retinamide (4-HPR on prostate cancer cells as monotherapy or in combination in vitro and in vivo. Sodium butyrate and 4-HPR induced concentration-dependent growth inhibition in prostate cancer cells in vitro. The isobologram analysis revealed that sodium butyrate and 4-HPR administered together antagonize effects of each other. For the in vivo studies, a water-soluble complex (4-HPR with a cyclodextrin was created. A single dose of sodium butyrate and 4-HPR showed a peak level in chicken plasma within 30 minutes. Both compounds induced inhibition of proliferation and apoptosis in xenografts of the chicken chorioallantoic membrane. Analysis of the cytotoxic effects of the drugs used in combination demonstrated an antagonistic effect on inhibition of proliferation and on induction of apoptosis. Prolonged jun N-terminal kinase phosphorylation induced by sodium butyrate and 4-HPR was strongly attenuated when both compounds were used in combination. Both compounds induced inhibition of NF-κ,B. This effect was strongly antagonized in LNCaP cells when the compounds were used in combination. These results indicate that combinational therapies have to be carefully investigated due to potential antagonistic effects in the clinical setting despite promising results of a monotherapy.

  16. Activation of PPARγ is not involved in butyrate-induced epithelial cell differentiation

    International Nuclear Information System (INIS)

    Histone deacetylase-inhibitors affect growth and differentiation of intestinal epithelial cells by inducing expression of several transcription factors, e.g. Peroxisome proliferator-activated receptor γ (PPARγ) or vitamin D receptor (VDR). While activation of VDR by butyrate mainly seems to be responsible for cellular differentiation, the activation of PPARγ in intestinal cells remains to be elucidated. The aim of this study was to determine the role of PPARγ in butyrate-induced cell growth inhibition and differentiation induction in Caco-2 cells. Treatment with PPARγ ligands ciglitazone and BADGE (bisphenol A diglycidyl) enhanced butyrate-induced cell growth inhibition in a dose- and time-dependent manner, whereas cell differentiation was unaffected after treatment with PPARγ ligands rosiglitazone and MCC-555. Experiments were further performed in dominant-negative PPARγ mutant cells leading to an increase in cell growth whereas butyrate-induced cell differentiation was again unaffected. The present study clearly demonstrated that PPARγ is involved in butyrate-induced inhibition of cell growth, but seems not to play an essential role in butyrate-induced cell differentiation

  17. Butyrate-induced GPR41 Activation Inhibits Histone Acetylation and Cell Growth

    Institute of Scientific and Technical Information of China (English)

    Jin Wu; Zongli Zhou; Yinghe Hu; Suzhen Dong

    2012-01-01

    Butyrate has been recently identified as a natural ligand of the G-protein-coupled receptor 41 (GPR41).In addition,it is an inhibitor of histone deacetylase (HDAC).Butyrate treatment results in the hyperacetylation of histones,with resultant multiple biological effects including inhibition of proliferation,induction of cell cycle arrest,and apoptosis,in a variety of cultured mammalian cells.However,it is not clear whether GPR41 is actively involved in the above-mentioned processes.In this study,we generated a stable cell line expressing the hGPR41 receptor in order to investigate the involvement of GPR41 on butyrate-induced biochemical and physiologic processes.We found that GPR41 activation may be a compensatory mechanism to counter the increase in histone H3 acetylation levels induced by butyrate treatment.Moreover,GPR41 had an inhibitory effect on the anti-proliferative,pro-apoptotic effects of butyrate.GPR41 expression induced cell cycle arrest at the Gl-stage,while its activation by butyrate can cause more cells to pass the Gl checkpoint.These results indicated that GPR41 was associated with histone acetylation and might be involved in the acetylation-related regulation of cell processes including proliferation,apoptosis,and the cell cycle.

  18. Research on Particle Size of Organic Semiconductor Materials Poly(3-hexylthiophene) and [6,6]-Phenyl-C60-butyric Acid Methyl Ester in Chlorobenzene Solution%有机半导体材料聚(3-己基噻吩)及[6,6]-苯基-C60丁酸甲酯在氯苯溶液中粒径研究

    Institute of Scientific and Technical Information of China (English)

    李晨希; 董兵超; 李萌; 王金淼; 蔡雯君; 牛贺莹; 马恒

    2014-01-01

    The mixture of organic semiconductor electron donor poly(3-hexylthiophene) (P3HT) and acceptor [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) is dissolved in chlorobenzene for measuring the solute particle diameter. By comparing the performance of solar cells and the surface morphology of the active layer, the dispersion law of the mixed solutes in chlorobenzene is analyzed. The influence of temperature and concentration on particle size, furthermore, the impact of particle size on device performance are discussed. The results show that most of the particle sizes in the solution are populated at about 4000 nm, and both the concentration and the temperature of the solution have a significant effect on the particle size of the solution. For low concentration solution, the particle sizes are greatly influenced by temperature. On the contrary, the effect of temperature on the particle size in the solution concentration is less apparent when the concentration becomes higher. When the solution concentration reaches 12.67 mg/mL, it has a preferably dispersion and optimal fill factor. When the concentration reaches 19.00 mg/mL, the solar cell made by the solution shows a well property on power conversion efficiency and short-circuits current.%以聚(3-己基噻吩)(P3HT)为电子给体,[6,6]-苯基-C60丁酸甲酯(PCBM)为电子受体材料,制备了不同浓度活性层材料(P3HT:PCBM)的聚合物太阳能电池.通过对比电池性能参数,活性层表面形貌,进一步分析了氯苯溶剂中有机半导体材料的分散规律,并讨论了溶液温度和浓度对溶质粒径的影响,以及粒径大小对器件性能的影响.结果表明,溶液中溶质直径在4000 nm左右的粒子占有较大比例,溶液的浓度和温度对溶液中粒子的粒径有明显的影响,浓度较低时,溶质粒径受温度影响较大.相反,温度对高浓度溶液中的溶质粒径的影响作用减小.溶液浓度为12.67 mg/mL 时,分散效果最好,具有最

  19. Rapid Estimation of Enantioselectivity in Lipase-catalyzed Resolution of Glycidyl Butyrate Using pH Indicator

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; WANG Lei; WANG Li-cheng; LI Chun-yuan; WANG Ren; MIAO Qing-hua; YANG Ming; WANG Zhi

    2009-01-01

    A simple method for rapid estimation of the enantioselectivity of lipase in resolution of chiral esters is described. The enantioselectivity of lipase can be estimated rapidly through comparing the dif-ference of hydrolysis rates for the racemic ester and its slow reacting enantiomer under the same condition because the difference mainly depends on the enantioselective ratio(E values). The higher the enantiose-lectivity of enzyme, the larger the difference of hydrolysis rate. The bromothymol blue(BTB) can be used as pH indicator for microplate reader to monitor the formation of acid in lipase-catalyzed hydrolysis ofesters. This method has been successfully used to rapidly estimate the enantioselectivity of several lipases in the resolution of glycidyl butyrate.

  20. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  1. Propolis augments apoptosis induced by butyrate via targeting cell survival pathways.

    Directory of Open Access Journals (Sweden)

    Eric Drago

    Full Text Available Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC, and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors.

  2. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia

    OpenAIRE

    Vital, Marius; Gao, Jiarong; Rizzo, Mike; Harrison, Tara; Tiedje, James M.

    2014-01-01

    Butyrate-producing bacteria have an important role in maintaining host health. They are well studied in human and medically associated animal models; however, much less is known for other Vertebrata. We investigated the butyrate-producing community in hindgut-fermenting Mammalia (n=38), Aves (n=8) and Reptilia (n=8) using a gene-targeted pyrosequencing approach of the terminal genes of the main butyrate-synthesis pathways, namely butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (...

  3. BUTYRATE-MEDIATED GENOMIC CHANGES INVOLVED IN NON-SPECIFIC HOST DEFENSES, MATRIX REMODELING AND THE IMMUNE RESPONSE IN THE RUMEN EPITHELIUM OF COWS AFFLICTED WITH SUBACUTE RUMINAL ACIDOSIS

    Directory of Open Access Journals (Sweden)

    Louis Dionissopoulos

    2013-01-01

    Full Text Available Subacute Ruminal Acidosis (SARA is a disorder in cattle which can lead to chronic inflammation in the rumen epithelium, known as rumenitis. Butyrate has been shown to attenuate some of the detrimental effects of inflammatory gastroenteral disorders but the molecular mechanisms mediated by butyrate have not been defined. The objective of this study was to define the inflammatory-related genomic changes responsible for the beneficial effects of butyrate. Experimentally, 16 fistulated dairy cows at mid-lactation were fed a SARA-inducing (45% non-fiber carbohydrate diet beginning 2 days before the beginning of treatment and continuing throughout the experiment. Cows were then evenly divided into treatment groups where a carrier with (n = 8 or without (n = 8 supplemental butyrate (2.5% initial DM intake was deposited into the rumen daily for 7 days. The minimum rumen pH was higher in cows with supplemental butyrate (4.96±0.09 to 5.20±0.05, p = 0.040, but mean pH, maximum pH and the duration for which rumen pH was below 5.6 was unaffected. Free plasma Lipopolysaccharide (LPS concentration was unaffected by treatment as was the concentration of Serum Amyloid A (SAA, although the LPS Binding Protein (LBP concentration was increased by the addition of butyrate to the rumen (6.91±0.29 to 7.93±0.29 μg mL-1, p = 0.024. Of the rumen Short Chain Fatty Acids (SCFA tested, only butyrate showed a pronounced treatment effect, rising from 8.60±0.94 to 21.60±0.94 mM (p≤0.0001. Plasma Beta-Hydroxybutyrate (BHBA concentration also increased (799.50±265.24 to 3261.63±265.24 μM, p≤0.001. Butyrate infusion did not affect milk parameters (total fat, lactose, total protein and LOS; however, when related to dry matter intake, milk production efficiency was increased (p = 0.035. Microarray and qRT-PCR analyses of rumen papillae biopsies collected on day 7 found that butyrate administration affected (p≤0.05 the expression of genes

  4. SKW 6.4 cell differentiation induced by interleukin 6 is stimulated by butyrate.

    Science.gov (United States)

    Kawamoto, T; Gohda, E; Iji, H; Fujiwara, M; Yamamoto, I

    1998-08-01

    We investigated if sodium butyrate (NaBu), an inhibitor of histone deacetylase, and its analogs modulate cytokine-induced differentiation of the human B cell line SKW 6.4 transformed by the Epstein-Barr virus. NaBu markedly enhanced interleukin (IL)-6-induced IgM production with an accompanying increase in the level of histone H4 acetylation and augmented IgM production induced by IL-4 and phorbol 12-myristate 13-acetate. From both the enhancing effect of cell differentiation and the effect of inducing histone hyperacetylation in SKW 6.4 cells, other histone deacetylase inhibitors and NaBu analogs were divided into three groups: those that increased both IL-6-induced antibody production and histone acetylation, those that caused histone hyperacetylation, but failed to induce the differentiation, and those that were ineffective at inducing either activity. No agent that enhanced IgM production without inducing histone hyperacetylation was found among the inhibitors and analogs we tested. These results suggest that the increase in the histone acetylation is necessary, but it is insufficient to augment differentiation of SKW 6.4 cells. Thus another activity of NaBu in addition to the inhibition of histone deacetylase may be involved in promoting IL-6-induced differentiation. Our results also suggest that fatty acids that have a straight chain of four carbon atoms or are branched with four and five carbon atoms, which contain no hydrophilic substituents, or those with similar structures, show this other activity. PMID:9826026

  5. Transport of 3-hydroxy(3-/sup 14/C)butyrate by dissociated cells from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Tildon, J.T.; Roeder, L.M.

    1988-08-01

    Recent studies suggest that the utilization of oxidizable substrates by the brain may be regulated in part by transport across the plasma membrane. Dissociated brain cells obtained by mechanical disruption of rat brain were used to measure the uptake of 3-hydroxy(3-14C)butyrate. Total uptake revealed two mechanisms (diffusion and a carrier-mediated system). A Lineweaver-Burk plot of the latter component yielded an apparent Km of 1.47 mM and a maximal velocity (Vmax) of 5 nmol.min-1.mg protein-1. The rates of uptake were temperature dependent and were significantly higher at pH 6.2 than at pH 7.4 or 8.2. Preloading the cells and increasing the intracellular concentration of 3-hydroxybutyrate using 12.5 and 25 mM increased the rate of uptake 143 and 206%, respectively, indicative of an accelerative exchange mechanism. Uptake was inhibited approximately 50% by (in mM) 10 phenylpyruvate, 10 alpha-ketoisocaproate, 10 KCN, and 1.5 NaAsO/sub 2/. Uptake was also decreased by (in mM) 5 lactate, 5 methyl malonic acid, 1 alpha-cyano-4-hydroxycinnamate, and 1 mersalyl. Dissociated brain cells from 14- to 16-day-old rats accumulated 3-hydroxybutyrate at a rate more than two-fold greater than cells from either younger (2-day-old) or older (28-day-old and adult) animals. These data are consistent with the proposal that 3-hydroxybutyrate is taken up by the brain by both diffusion and a carrier-mediated transport system, and they support the hypothesis that transport at the cellular level contributes to the regulation of substrate utilization by the brain.

  6. Butyrate production from high-fiber diet protects against lymphoma tumor.

    Science.gov (United States)

    Wei, Wei; Sun, Wei; Yu, Shanshan; Yang, Yu; Ai, Limei

    2016-10-01

    Gut microbiota and dietary fiber are critical for protecting body from obesity, diabetes and cancer. Butyrate, produced in the gut by bacterial fermentation of dietary fibers, is demonstrated to be protective against the development of colorectal cancer as a histone deacetylase (HDAC) inhibitor. We report that high-fiber diet and butyrate significantly inhibited the growth lymphoma tumors. Butyrate induced apoptosis of lymphoma tumor cells and significantly up-regulated histone 3 acetylation (H3ac) level and target genes such as Fas, P21, P27. Our results unravel an instrumental role of fiber diet and their metabolites on lymphoma tumor and demonstrate an intervention potential on the prevention and therapy of lymphoma. PMID:26885564

  7. Deuterium kinetic isotope effect for oxidation of perdeuterated sodium butyrate with manganate in 3 M sodium hydrochloride solution

    International Nuclear Information System (INIS)

    Deuterium kinetic effect, D-KIE, for oxidation of perdeuterided sodium butyrate, CD3(CD2)2COONa, with manganate in the aqueous solution of 3M NaOH has been determined in the temperature range 323-373 K. The temperature dependent kH/kD ratios are in the range from 17.59 at 323 K to 11,25 at 373 K. The activation energy difference, δQ0 = Q0DD - Q0=HH δH0DD - δH0HH = 9.20 kJ mol-1, and the Arrhenius preexponential factors ratio A0DD/A0HH is equal to 1.76, corresponding to δS0DD - δS0HH = 4.70 k J-1 as deduced from the Arrhenius and Eyring diagrams. This is the main evidence of tunnelling in the transfer of methylene hydrogens of butyrate to the negatively charged oxygens of manganate in very basic solutions. The k0HH/k0DD ratios, corrected for the ionic strength, have been reproduced by multiplying the (k0HH/k0DD)KIE value, caused by zero point energy differences, by the Bell tunnel correction QtHH.QtDD. The half width of the energy barrier, as approximated by an inverted parabola, was found to be equal to 5x10-11 m. The physico-chemical origin of the energy barrier for the oxidation of n-chain aliphatic carboxylates with MnO42- ions in strongly alkaline solutions has been discussed. The mechanisms of the permanganate versus manganate oxidation i. e., in acidic versus alkaline media are compared. (author)

  8. Effects of Sodium Butyrate Treatment on Histone Modifications and the Expression of Genes Related to Epigenetic Regulatory Mechanisms and Immune Response in European Sea Bass (Dicentrarchus Labrax) Fed a Plant-Based Diet

    Science.gov (United States)

    Díaz, Noelia; Rimoldi, Simona; Ceccotti, Chiara; Gliozheni, Emi; Piferrer, Francesc

    2016-01-01

    Bacteria that inhabit the epithelium of the animals’ digestive tract provide the essential biochemical pathways for fermenting otherwise indigestible dietary fibers, leading to the production of short-chain fatty acids (SCFAs). Of the major SCFAs, butyrate has received particular attention due to its numerous positive effects on the health of the intestinal tract and peripheral tissues. The mechanisms of action of this four-carbon chain organic acid are different; many of these are related to its potent regulatory effect on gene expression since butyrate is a histone deacetylase inhibitor that play a predominant role in the epigenetic regulation of gene expression and cell function. In the present work, we investigated in the European sea bass (Dicentrarchus labrax) the effects of butyrate used as a feed additive on fish epigenetics as well as its regulatory role in mucosal protection and immune homeostasis through impact on gene expression. Seven target genes related to inflammatory response and reinforcement of the epithelial defense barrier [tnfα (tumor necrosis factor alpha) il1β, (interleukin 1beta), il-6, il-8, il-10, and muc2 (mucin 2)] and five target genes related to epigenetic modifications [dicer1(double-stranded RNA-specific endoribonuclease), ehmt2 (euchromatic histone-lysine-N-methyltransferase 2), pcgf2 (polycomb group ring finger 2), hdac11 (histone deacetylase-11), and jarid2a (jumonji)] were analyzed in fish intestine and liver. We also investigated the effect of dietary butyrate supplementation on histone acetylation, by performing an immunoblotting analysis on liver core histone extracts. Results of the eight-week-long feeding trial showed no significant differences in weight gain or SGR (specific growth rate) of sea bass that received 0.2% sodium butyrate supplementation in the diet in comparison to control fish that received a diet without Na-butyrate. Dietary butyrate led to a twofold increase in the acetylation level of histone H4 at

  9. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects.

    Directory of Open Access Journals (Sweden)

    Greta Jakobsdottir

    Full Text Available INTRODUCTION: Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs, particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation. OBJECTIVE: To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks. MATERIAL AND METHODS: Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin - acetic acid; guar gum - propionic acid; or a mixture - butyric acid. At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks. RESULTS AND DISCUSSION: Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet.

  10. Interakce vysoce nenasycených mastných kyselin a butyrátu při působení na buňky adenokarcinomu kolonu

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Kovaříková, Martina; Vaculová, Alena; Koubková, Zuzana; Netíková, Jaromíra; Kozubík, Alois

    Brno, 2006. s. 293-295. [XXX. Brněnské onkologické dny s XX. Konferencí pro sestry a laboranty. 11.05.2006-13.5.2006, Brno] R&D Projects: GA ČR(CZ) GA524/04/0895; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507 Keywords : colon cancer * polyunsaturated fatty acids * butyrate Subject RIV: BO - Biophysics

  11. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Science.gov (United States)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  12. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition.

    Directory of Open Access Journals (Sweden)

    Hongzhen Luo

    Full Text Available In this study, an efficient acetone-butanol-ethanol (ABE fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1 extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2 enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3 direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology.

  13. Study on the role of mitochondria in sodium butyrate-induced apoptosis of ovarian carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Tang Chunsheng; Rong Fengnian

    2005-01-01

    Objective:To investigate the role of mitochondria in sodium butyrate-induced apoptosis of ovarian carcinoma cells in vitro.Methods:Human ovarian epithelial cancer 3AO cells were cultured in vitro and treated with sodium butyrate of different concentration for different time. The characters of apoptosis were assessed through light microscopy and DNA ladder analysis. The morphological changes of mitochondria were detected through electron and epifluorescence microscopy. The functional changes of mitochondria and the expression of Bcl-2/Bax protein were analyzed by flow cytometry.Results:As the concentration of sodium butyrate rose to 4mmol/L, the morphologic characters of apoptosis were found by light microscopy, DNA ladder was observed. Under epifluorescence microscope the fluorescence of the control group was stronger than that of the experimental group. Under electron microscope swelled mitochondria was detected. Flow cytometry analysis showed mitochondria transmembrane potentials decreased and there were down-regulate of Bcl-2 protein and up-regulate of the Bax protein(P<0.05).Conclusion:Sodium butyrate can induce apoptosis of 3AO cells in a time-dose dependent manner. Mitochondrion may play a key role in the procedure of apoptosis of ovarian cancer cells.

  14. Proteome analysis of butyrate-treated chronic myelogenous leukemia K562 cells

    Czech Academy of Sciences Publication Activity Database

    Halada, Petr; Grebeňová, D.; Pešlová, G.; Havlíček, Vladimír; Hrkal, Z.

    Edinburgh, 2003, s. -. [International Mass Spectrometry Conference /16./. Edingurgh (GB), 31.08.2003-05.09.2003] R&D Projects: GA ČR GA303/01/1445; GA MZd NL7681 Institutional research plan: CEZ:AV0Z5020903 Keywords : butyrate-treated * leukemie k562 * cells Subject RIV: EE - Microbiology, Virology

  15. Protective effect of sodium butyrate on the cell culture model of Huntington disease

    Institute of Scientific and Technical Information of China (English)

    Zhang Baorong; Tian Jun; Yin Xinzhen; Luo Wei; Xia Kun

    2007-01-01

    This study aimed to develop a cell culture model of Huntington disease and observe the effect of sodium butyrate on this cell culture model. Exon 1 of both a wild type and a mutant IT15 gene from the genomic DNA of a healthy adult and a patient with Huntington disease was amplified and cloned into the eukaryotic expression vector pEGFP-C1. Human neuroblastoma SH-SYSY cells were transiently transfected with these recombinant plasmids in the absence and presence of sodium butyrate (0.1, 0.2, 0.5, 1.0 mmol/L). The MTT assay was used to measure cell viability. The results indicated that the N-terminal fragment of mutant huntingtin formed perinuclear and intranuclear aggregates and caused a decrease of SH-SY5Y cell viability. Sodium butyrate inhibited the decrease of SH-SYSY cell viability caused by the N-terminal fragment of mutant huntingtin. This suggests that sodium butyrate has a protective effect on this cell culture model of Huntington disease.

  16. Response of HT29 cells to butyrate treatment depends on time of exposure and glucose deprivation

    Czech Academy of Sciences Publication Activity Database

    Kučerová, Dana; Štokrová, Jitka; Korb, Jan; Šloncová, Eva; Tuháčková, Zdena; Sovová, Vlasta

    2002-01-01

    Roč. 10, č. 6 (2002), s. 779-784. ISSN 1107-3756 Institutional research plan: CEZ:AV0Z5052915 Keywords : colorectal carcinoma cells,butyrate treatment,glucose deprivation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.063, year: 2002

  17. Effects of 5-azacytidine and butyrate on differentiation and apoptosis of hepatic cancer cell lines.

    Science.gov (United States)

    Wang, X M; Wang, X; Li, J; Evers, B M

    1998-01-01

    OBJECTIVE: To determine the cellular effects of 5-azacytidine (5-azaC) and sodium butyrate on two human liver cancers, HepG2 and Hep3B. SUMMARY BACKGROUND DATA: Primary liver cancer is a significant health problem; treatment options are limited and prognosis is poor. Recent studies have focused on the role that programmed cell death (i.e., apoptosis) plays in both normal and neoplastic growth: certain genes can either suppress (e.g., Bcl-2, Bcl-xL) or promote (e.g., Bik, Bax, Bak) apoptosis. The identification of novel agents targeted to specific molecular pathways may be beneficial in the treatment of this disease. METHODS: Human liver cancer cell lines HepG2 and Hep3B were treated with 5-azaC alone, butyrate alone, or 5-azaC and butyrate. Morphologic and proliferative changes were assessed by light microscopy and 5-bromo-2'-deoxyuridine staining; flow cytometry was used to determine cell cycle characteristics. Apoptosis was assessed by DNA laddering and the in situ apoptosis detection assay using the TdT-mediated dUTP nick end labeling method. In addition, total RNA and protein were analyzed by ribonuclease protection and Western blot, respectively, to assess changes in the expression of apoptosis-related genes. RESULTS: Treatment with either 5-azaC or butyrate inhibited cell growth and induced apoptosis in both HepG2 and Hep3B cells; the combination of 5-azaC and butyrate was not more effective than either agent alone. 5-azaC alone resulted in a more differentiated-appearing morphology and G2 cell cycle arrest in both cell lines. Treatment with 5-azaC or butyrate affected the expression levels of proteins of the Bcl-2 family. CONCLUSIONS: Both 5-azaC and butyrate induced apoptosis in the HepG2 and Hep3B liver cancer cells; 5-azaC treatment alone produced G2 arrest in both cell lines. Proteins of the Bcl-2 family may play a role in the cellular changes that occur with treatment, but further studies are required to define this potential role. Products of the

  18. Degradation of Arginine and Other Amino Acids by Eubacterium nodatum ATCC 33099

    OpenAIRE

    Uematsu, H.; Hoshino, E.

    2011-01-01

    The utilisation of a total of 20 amino acids by Eubacterium nodatum, a predominant asaccharolytic anaerobe isolated from human periodontal pockets, was studied. Washed cells of the microorganism produced substantial amounts of acetate, butyrate and ammonia from lysine, and butyrate and ammonia from arginine as main products under anaerobic conditions. They also produced a small amount of formate from histidine. Metabolic products were not detected from any of the other 17 amino acids. These r...

  19. Use of butyrate or glutamine in enema solution reduces inflammation and fibrosis in experimental diversion colitis

    Institute of Scientific and Technical Information of China (English)

    Rodrigo Goulart Pacheco; Christiano Costa Esposito; Lucas CM Müller; Morgana TL Castelo-Branco; Leonardo Pereira Quintella; Vera Lucia A Chagas; Heitor Siffert P de Souza

    2012-01-01

    AIM:To investigate whether butyrate or glutamine enemas could diminish inflammation in experimental diversion colitis.METHODS:Wistar specific pathogen-free rats were submitted to a Hartmann's end colostomy and treated with enemas containing glutamine,butyrate,or saline.Enemas were administered twice a week in the excluded segment of the colon from 4 to 12 wk after the surgical procedure.Follow-up colonoscopy was performed every 4 wk for 12 wk.The effect of treatment was evaluated using video-endoscopic and histologic scores and measuring interleukin-1β,tumor necrosis factor-alpha,and transforming growth factor beta production in organ cultures by enzyme linked immunosorbent assay.RESULTS:Colonoscopies of the diverted segment showed mucosa with hyperemia,increased number of vessels,bleeding and mucus discharge.Treatment with either glutamine or butyrate induced significant reductions in both colonoscopic (P < 0.02) and histological scores (P < 0.01) and restored the densities of collagen fibers in tissue (P =0.015; P =0.001),the number of goblet cells (P =0.021; P =0.029),and the rate of apoptosis within the epithelium (P =0.043; P =0.011) to normal values.The high levels of cytokines in colon explants from rats with diversion colitis significantly decreased to normal values after treatment with butyrate or glutamine.CONCLUSION:The improvement of experimental diversion colitis following glutamine or butyrate enemas highlights the importance of specific luminal nutrients in the homeostasis of the colonic mucosa and supports their utilization for the treatment of human diversion colitis.

  20. Níveis de ácido indol butírico (AIB no enraizamento in vitro de microestacas de mamoeiro ‘Tainung 01’ = Indole butyric acid (IBA levels in the in vitro rooting of microcuttings of papaya tree ‘Tainung 01’

    Directory of Open Access Journals (Sweden)

    Edílson Romais Schmildt

    2010-01-01

    Full Text Available Este trabalho teve como objetivo avaliar níveis de AIB no enraizamento in vitro de microestacas de mamoeiro (Carica papaya L. ‘Tainung 01’. Ápices caulinares de plantas com 120 dias de idade foram estabelecidos e avaliados em meio MS, suplementado comcomplementos orgânicos constituídos de sacarose a 87,64 mM, mio-inositol a 555,06 μM, tiamina-HCl a 0,30 μM, piridoxina-HCl a 2,43 μM, ácido nicotínico a 4,06 μM e 0; 0,74; 1,48; 2,96 e 5,92 μM de AIB, em delineamento inteiramente casualizado, com quatro repetições e cinco tubos de ensaio por parcela. Após 30 dias, avaliou-se a percentagem de enraizamento, o crescimento das microestacas, o comprimento da maior folha e a massa de calo. Observou-se que o maior percentual estimado de enraizamento ocorreu com a adição de 5,92 μM no meio de cultivo. Apesar do maior crescimento das microestacas e da maior folha ocorrer em níveis de AIB superiores a 0,74 μM, ocorre, concomitantemente, maior formação de calos na base das microestacas e muitas das raízes são provenientes desses calos, as quais não possuem conexões com o sistema vascular dos ramos. The objective of this work was to test IBA levels in the in vitrorooting of microcuttings of papaya tree (Carica papaya L. 'Tainung 01'. Apical stems of plants at 120 days of age were established and evaluated onto MS supplemented medium with organic complements constituted of sucrose at 87.64 mM, myo-inositol at 555.06 μM, thiamin-HCl at 0.30 μM, pyridoxine-HCl at 2.43 μM, nicotinic acid at 4.06 μM and treated with 0, 0.74, 1.48, 2.96 and 5.92 μM of IBA, in a completely randomized design, with four replications. After 30 days, the percentage of rooted microcuttings, the development of microcuttings, the length of the largest leaf and callus mass were evaluated. It was observed that the largest percentage of rooting happens in the presence of IBA at 5.92 μM during of cultivation. In spite of the fact that larger growth of

  1. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia.

    Science.gov (United States)

    Vital, Marius; Gao, Jiarong; Rizzo, Mike; Harrison, Tara; Tiedje, James M

    2015-04-01

    Butyrate-producing bacteria have an important role in maintaining host health. They are well studied in human and medically associated animal models; however, much less is known for other Vertebrata. We investigated the butyrate-producing community in hindgut-fermenting Mammalia (n = 38), Aves (n = 8) and Reptilia (n = 8) using a gene-targeted pyrosequencing approach of the terminal genes of the main butyrate-synthesis pathways, namely butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (buk). Most animals exhibit high gene abundances, and clear diet-specific signatures were detected with but genes significantly enriched in omnivores and herbivores compared with carnivores. But dominated the butyrate-producing community in these two groups, whereas buk was more abundant in many carnivorous animals. Clustering of protein sequences (5% cutoff) of the combined communities (but and buk) placed carnivores apart from other diet groups, except for noncarnivorous Carnivora, which clustered together with carnivores. The majority of clusters (but: 5141 and buk: 2924) did not show close relation to any reference sequences from public databases (identity Ruminococcaceae bacterium D16 were specific for herbivores and omnivores. Whereas 16S rRNA gene analysis showed similar overall patterns, it was unable to reveal communities at the same depth and resolution as the functional gene-targeted approach. This study demonstrates that butyrate producers are abundant across vertebrates exhibiting great functional redundancy and that diet is the primary determinant governing the composition of the butyrate-producing guild. PMID:25343515

  2. The impact of a specific blend of essential oil components and sodium butyrate in feed on growth performance and Salmonella counts in experimentally challenged broilers.

    Science.gov (United States)

    Cerisuelo, A; Marín, C; Sánchez-Vizcaíno, F; Gómez, E A; de la Fuente, J M; Durán, R; Fernández, C

    2014-03-01

    Essential oils (EO) and short-chain fatty acids have potential antimicrobial activity in broilers. This study aimed to investigate the effect of a specific blend of EO and a combination of this blend of EO with sodium-butyrate on growth performance and Salmonella colonization in broilers. A total of 480 one-day-old male broilers were distributed into 5 treatments (8 pens per treatment and 12 birds per pen) and reared during 42 d in experimental conditions. Dietary treatments consisted of the addition of different doses of EO (0 mg/kg, control; 50 mg/kg, EO50 and 100 mg/kg, EO100) or a combination of EO with 1 g/kg of sodium-butyrate (B; EO50 + B, EOB50 and EO100 + B, EOB100) to a basal diet. All birds were orally infected with 10(8) cfu of Salmonella Enteritidis on d 7 of study. Individual BW and feed intake per pen were measured at arrival and on a weekly basis. The prevalence and enumeration of Salmonella in feces was determined per treatment at 72 h postinfection and on d 23 and 37 of study. At slaughter, cecal content and liver samples from 16 birds per treatment were cultured for Salmonella and cecal pH was measured. No differences were observed on growth performance among treatments. All fecal samples analyzed were positive for Salmonella from d 10 to the end of the rearing period. At slaughter, Salmonella contamination (positive samples) in cecum was lower in birds fed EOB50 compared with the other treatments (P < 0.05), whereas birds fed the control diet showed the highest colonization rates. The pH of the cecal content was not different among treatments. Thus, EO or its combination with sodium-butyrate did not affect growth performance. However, a clear effectiveness of these products was observed in Salmonella control, especially when low doses of EO were combined with sodium-butyrate (EOB50). PMID:24604853

  3. Butyrate ingestion improves hepatic glycogen storage in the re-fed rat

    Directory of Open Access Journals (Sweden)

    Rigalleau Vincent

    2008-10-01

    Full Text Available Abstract Background Butyrate naturally produced by intestinal fiber fermentation is the main nutrient for colonocytes, but the metabolic effect of the fraction reaching the liver is not totally known. After glycogen hepatic depletion in the 48-hour fasting rat, we monitored the effect of (butyrate 1.90 mg + glucose 14.0 mg/g body weight versus isocaloric (glucose 18.2 mg/g or isoglucidic (glucose 14.0 mg/g control force-feeding on in vivo changes in hepatic glycogen and ATP contents evaluated ex vivo by NMR in the isolated and perfused liver. Results The change in glycogen was biphasic with (i an initial linear period where presence of butyrate in the diet increased (P = 0.05 the net synthesis rate (0.20 ± 0.01 μmol/min.g-1 liver wet weight, n = 15 versus glucose 14.0 mg/g only (0.16 ± 0.01 μmol/min.g-1 liver ww, n = 14, and (ii a plateau of glycogen store followed by a depletion. Butyrate delayed the establishment of the equilibrium between glycogenosynthetic and glycogenolytic fluxes from the 6th to 8th hour post-feeding. The maximal glycogen content was then 97.27 ± 10.59 μmol/g liver ww (n = 7 at the 8th hour, which was significantly higher than with the isocaloric control diet (64.34 ± 8.49 μmol/g, n = 12, P = 0.03 and the isoglucidic control one (49.11 ± 6.35 μmol/g liver ww, n = 6, P = 0.003. After butyrate ingestion, ATP content increased from 0.95 ± 0.29 to a plateau of 2.14 ± 0.23 μmol/g liver ww at the 8th hour post-feeding (n = 8 [P = 0.04 versus isoglucidic control diet (1.45 ± 0.19 μmol/g, n = 8 but was not different from the isocaloric control diet (1.70 ± 0.18 μmol/g, n = 12]. Conclusion The main hepatic effect of butyrate is a sparing effect on glycogen storage explained (i by competition between butyrate and glucose oxidation, glucose being preferentially directed to glycogenosynthesis during the post-prandial state; and (ii by a likely reduced glycogenolysis from the newly synthesized glycogen. This first

  4. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs.

    Directory of Open Access Journals (Sweden)

    Xiangfang Zeng

    Full Text Available Dietary modulation of the synthesis of endogenous host defense peptides (HDPs represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections. However, HDP regulation by dietary compounds such as butyrate is species-dependent. To examine whether butyrate could induce HDP expression in pigs, we evaluated the expressions of a panel of porcine HDPs in IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and primary monocytes in response to sodium butyrate treatment by real-time PCR. We revealed that butyrate is a potent inducer of multiple, but not all, HDP genes. Porcine β-defensin 2 (pBD2, pBD3, epididymis protein 2 splicing variant C (pEP2C, and protegrins were induced markedly in response to butyrate, whereas pBD1 expression remained largely unaltered in any cell type. Additionally, a comparison of the HDP-inducing efficacy among saturated free fatty acids of different aliphatic chain lengths revealed that fatty acids containing 3-8 carbons showed an obvious induction of HDP expression in IPEC-J2 cells, with butyrate being the most potent and long-chain fatty acids having only a marginal effect. We further investigated a panel of butyrate analogs for their efficacy in HDP induction, and found glyceryl tributyrate, benzyl butyrate, and 4-phenylbutyrate to be comparable with butyrate. Identification of butyrate and several analogs with a strong capacity to induce HDP gene expression in pigs provides attractive candidates for further evaluation of their potential as novel alternatives to antibiotics in augmenting innate immunity and disease resistance of pigs.

  5. Use of sodium butyrate as an alternative to dietary fiber: effects on the embryonic development and anti-oxidative capacity of rats.

    Directory of Open Access Journals (Sweden)

    Yan Lin

    Full Text Available In this study, we evaluated the effect of replacing dietary fiber with sodium butyrate on reproductive performance and antioxidant defense in a high fat diet during pregnancy by using a rat model. Eighty virgin female Sprague Dawley rats were fed one of four diets--(1 control diet (C group, (2 high fat + high fiber diet (HF group, (3 high-fat +5% sodium butyrate diet (SB group, and (4 HF diet + α-cyano-4-hydroxy cinnamic acid (CHC group--intraperitoneally on days 8, 10, 12, 14, and 16 of gestation. SB and dietary fiber had similar effects on improving fetal number and reducing the abortion rate; however, the anti-oxidant capacity of maternal serum, placenta, and fetus was superior in the HF group than in the SB group. In comparison, CHC injection decreased reproductive performance and antioxidant defense. Both dietary fiber (DF and SB supplementation had a major but different effect on the expression of anti-oxidant related genes and nutrient transporters genes. In summary, our data indicate that SB and DF showed similar effect on reproductive performance, but SB cannot completely replace the DF towards with respect to redox regulation in high-fat diet; and SB might influence offspring metabolism and health differently to DF.

  6. Determination and Correlation of Solubility for D-Xylose in Volatile Fatty Acid Solvents

    Institute of Scientific and Technical Information of China (English)

    李涛; 陈飞雄; 江振西; 任保增

    2014-01-01

    The solubility of D-xylose in formic acid and binary solvents of formic acid with formic acid and acetic acid, propionic acid, n-butyric acid or isobutyric acid was measured in the temperature range from 300.35 to 325.05 K using the synthetic method by a laser monitoring technique at atmospheric pressure. The solid-liquid equilibrium data will provide essential support for industrial design and further theoretical study. The experimental data show that the solubility of D-xylose in formic acid and in the mixtures of formic acid+acetic acid (1︰1), formic acid+propionic acid (1︰1), formic acid+n-butyric acid (1︰1), and formic acid+isobutyric acid (1︰1) increases with temperature. The Apelblat equation, theλh model, and the ideal solution equation correlate the solubility data well.

  7. Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method

    NARCIS (Netherlands)

    Zhang, H.; Zhou, F.; Ji, B.; Nout, M.J.R.; Fang, Q.; Zhang, Z.

    2008-01-01

    An efficient method for analyzing ten organic acids in food, namely citric, pyruvic, malic, lactic, succinic, formic, acetic, adipic, propionic and butyric acids, using HPLC was developed. Boric acid was added into the mobile phase to separate lactic and succinic acids, and a post-column buffer solu

  8. ROOTING OF GUANANDI (Calophyllum brasiliense CAMBESS) CUTTINGS USING INDOLE-BUTYRIC ACID

    OpenAIRE

    Eduardo Ciriello; Edson Seizo Mori

    2015-01-01

    Commercial reforestation of Brazilian native species to produce hardwood for sawmills has been recently intensified in the country. Among the potential species planted by the logging industry is guanandi (Calophyllum brasiliense Cambess) because it is widely distributed in the country, highly adapted to different soil and climate conditions, good bole form and high quality timber. The development of genetic improvement programs should prioritize gains in productivity and yields in the medium ...

  9. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter;

    A major step towards the development of a sustainable industrial society is a shift from petroleum-based resources to renewable resources. An ongoing effort is focused on developing bio-refineries as an alternative way of producing fuels and chemical building-blocks from renewable resources. Thus...

  10. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter;

    sustainable industrial society is a shift from petroleum-based resources to the use of renewable resources. An ongoing effort is focused on developing bio-refineries as an alternative way of producing fuels and chemical building-blocks from renewable resources. Thus, today’s organic waste may become tomorrow...

  11. Effect of Indole-3-Butyric Acid on Clonal Propagation of Swietenia macrophylla through Branch Cutting

    Directory of Open Access Journals (Sweden)

    Md. Salim Azad

    2015-01-01

    Full Text Available The study discloses the scopes of clonal propagation Swietenia macrophylla through branch cutting treated with IBA. A total of four hundred cuttings were used with four replications to assess the rooting ability. The study exposed significant (p<0.5 difference of rooted cuttings among the treatments. The highest (62.51% rooting percent was observed in cutting with 0.4% IBA treatment. In addition, root number and its length per cutting were increased with increasing IBA concentration (p<0.5. The experiment showed significant (p<0.5 difference of sprouting among the treatments. The highest (67.27% percent of sprouting was observed in cuttings with 0.4% solution, which showed a similar fashion of percent of rooting. The study also showed significant (p<0.5 difference of shoot number per cutting, the length of the longest shoot, and number of leaves per cutting among the treatments. The overall survival of rooted cuttings after transfer to polybag significantly (p<0.5 differed among the cuttings treated with different IBA solution. The highest survival percentage (69.67% was observed in the cuttings rooted with 0.4% IBA treatment and the lowest (55.6% survival was found in cuttings treated with control. The use of 0.4% IBA treatment is suggested for rooting of juvenile leafy branch cutting of S. macrophylla.

  12. Microalgae biomass as fermentation substrate for hydrogen and butyric acid production by clostridium tyrobutyricum

    OpenAIRE

    Ortigueira, J.; Lúcio, M.; S. Rodrigues; Alves, Luís Manuel; L. de Gouveia; Moura, Patrícia

    2012-01-01

    Fossil fuels are a limited type of feedstock, increasingly expensive, and carrying strong polluting properties. The search for alternative sources which can replace fossil fuels without the severe disadvantages that its use conveys is therefore of paramount importance. Microalgae biomass represents an example of such non-food renewable biomass that can be regarded as a valid alternative to fossil fuels. As biomass, microalgae are highly desirable since they are photosynthetic organisms with a...

  13. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... million Alfalfa, forage 0.7 Alfalfa, hay 2.0 Cattle, meat byproducts 0.05 Clover, forage 0.2 Clover, hay 0.2 Goat, meat byproducts 0.05 Hog, meat byproducts 0.05 Horse, meat byproducts 0.05 Peanut 0.2 Peppermint, tops 0.2 Sheep, meat byproducts 0.05 Soybean, forage 0.7 Soybean, hay 2.0 Soybean, seed...

  14. Effect of Indole-3-Butyric Acid on Clonal Propagation of Swietenia macrophylla through Branch Cutting

    OpenAIRE

    Md. Salim Azad; Md. Abdul Matin

    2015-01-01

    The study discloses the scopes of clonal propagation Swietenia macrophylla through branch cutting treated with IBA. A total of four hundred cuttings were used with four replications to assess the rooting ability. The study exposed significant (p

  15. Regulation of the Metabolism of Polyunsaturated Fatty Acids and Butyrate in Colon Cancer Cells

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Kozubík, Alois

    2013-01-01

    Roč. 14, č. 3 (2013), s. 274-288. ISSN 1389-2010 R&D Projects: GA ČR(CZ) GA524/07/1178; GA ČR(CZ) GA301/07/1557; GA ČR(CZ) GAP301/11/1730 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : NF-KAPPA-B * HUMAN COLORECTAL-CANCER * INFLAMMATORY BOWEL DISEASES Subject RIV: BO - Biophysics Impact factor: 2.511, year: 2013

  16. Different response of normal and cancer colonic epithelial cells to butyrate and polyunsaturated fatty acids

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Hýžďalová, Martina; Koubková, Zuzana; Netíková, Jaromíra; Kozubík, Alois

    2006-01-01

    Roč. 18, č. 1 (2006), S51-S51. ISSN 1107-3756. [The 11th World Congress on Advances in Oncology and 9th International Symposium on Molecular Medicine. 12.10.2006-14.10.2006, Hersonissos] R&D Projects: GA ČR(CZ) GA524/04/0895; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507 Keywords : dietary lipids * colon cancer * cellular lipids Subject RIV: BO - Biophysics

  17. Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Mohamed El-Sakhawy

    2014-01-01

    Full Text Available Carboxymethyl cellulose acetate butyrate (CMCAB has gained increasing importance in several fields, particularly in coating technologies and pharmaceutical research. CMCAB is synthesized by esterification of CMC sodium salt with acetic and butyric anhydrides. CMCAB mixed esters are relatively high molecular weight (MW thermoplastic polymers with high glass transition temperatures (Tg. CMCAB ester is dispersible in water and soluble in a wide range of organic solvents, allowing varied opportunity to the solvent choice. It makes application of coatings more consistent and defect-free. Its ability to slow down the release rate of highly water-soluble compounds and to increase the dissolution of poorly soluble compounds makes CMCAB a unique and potentially valuable tool in pharmaceutical and amorphous solid dispersions (ASD formulations.

  18. An Acute Butyr-Fentanyl Fatality: A Case Report with Postmortem Concentrations.

    Science.gov (United States)

    McIntyre, Iain M; Trochta, Amber; Gary, Ray D; Wright, Jennifer; Mena, Othon

    2016-03-01

    In this case report, we present an evaluation of the distribution of postmortem concentrations of butyr-fentanyl in a fatality attributed principally to the drug. A man who had a history of intravenous drug abuse was found unresponsive on the bathroom floor of his home. Drug paraphernalia was located on the bathroom counter. Toxicology testing, which initially screened positive for fentanyl by enzyme-linked immunosorbent assay, subsequently confirmed butyr-fentanyl, which was then quantitated by gas chromatography-mass spectrometry-specific ion monitoring (GC-MS SIM) analysis following liquid-liquid extraction. The butyr-fentanyl peripheral blood concentration was quantitated at 58 ng/mL compared with the central blood concentration of 97 ng/mL. The liver concentration was 320 ng/g, the vitreous was 40 ng/mL, the urine was 670 ng/mL and the gastric contained 170 mg. Acetyl-fentanyl was also detected in all biological specimens tested. Peripheral blood concentration was quantitated at 38 ng/mL compared with the central blood concentration of 32 ng/mL. The liver concentration was 110 ng/g, the vitreous was 38 ng/mL, the urine was 540 ng/mL and the gastric contained <70 mg. The only other drug detected was a relatively low concentration of benzoylecgonine. The cause of death was certified as acute butyr-fentanyl, acetyl-fentanyl and cocaine intoxication, and the manner of death was certified as accident. PMID:26683128

  19. Combined treatment with sodium butyrate and PD153035 enhances keratinocyte differentiation

    OpenAIRE

    Carrion, Sandra Leon; Sutter, Carrie Hayes; Sutter, Thomas R.

    2014-01-01

    Epidermal growth factor (EGF) receptor (EGFR) signaling is a critical determinant of keratinocyte proliferation and differentiation in both normal and diseased skin. Here we explore the effects of combined treatment with the differentiation-promoting agent sodium butyrate (SB) and the EGFR inhibitor (EGFRI) PD153035 on terminal differentiation of normal human epidermal keratinocytes (NHEKs). Cells treated with SB showed increased expression of the levels of mRNA and protein of the differentia...

  20. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    Science.gov (United States)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  1. Monitoring the cold crystallization of poly(3-hydroxy butyrate) via dielectric spectroscopy

    OpenAIRE

    Napolitano, Simone; Wübbenhorst, Michael

    2007-01-01

    Dielectric spectroscopy has been used to monitor the cold crystallization kinetics of poly(3-hydroxy butyrate), PHB, just above the glass transition temperature of the amorphous chains. Although the polymer shows a relatively complex dielectric scenario, an easy and fast analysis of the crystallization kinetics was performed by choosing an appropriate temperature range in which the structural relaxation is the only process present in the spectra of the amorphous samples. It was possible to mo...

  2. Human fetal colon cells and colon cancer cells respond differently to butyrate and PUFAs

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Koubková, Zuzana; Hýžďalová, Martina; Kozubík, Alois

    2009-01-01

    Roč. 53, č. 1 (2009), S102-S113. ISSN 1613-4125 R&D Projects: GA ČR(CZ) GA524/07/1178; GA AV ČR(CZ) 1QS500040507; GA ČR(CZ) GA301/07/1557 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : apoptosis * butyrate * cell differentiation Subject RIV: BO - Biophysics Impact factor: 4.356, year: 2009

  3. Use of Chloro phenol Red Dyed Poly(vinyl alcohol) and Poly(vinyl butyral) Copolymer Films for Dosimetric Applications

    International Nuclear Information System (INIS)

    Poly (vinylalcohol) PVA, and poly(vinyl butyral co-polyvinyl alcohol co-vinyl acetate) (PVB-co-PVA/PVAC), containing acid base indicator dye (chloro phenol red) CPR, and a Cl-containing substance (chloral hydrate) may be useful for radiation dosimetry. Chloro phenol red in PVA films changes its color from purple to yellow by irradiation due to the lowering of the ph caused by the generated HCl from the radiolysis of chloral hydrate. The useful dose range extends up to 3.5 kGy. On the other hand, dyed copolymer films are bleached when exposed to gamma radiation with the useful dose range up to 8 kGy. Different concentrations of chloral hydrate were added to control the response dose range of application. The radiation chemical yield G(value) was calculated in presence and absence of chloral hydrate, where it increases with increase chloral hydrate concentration for both CPR/PVA and CPR/PVB copolymer films. Humidity during irradiation was also studied. The pre- and post-irradiation stability of the films was found to be satisfactory

  4. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Begum, Shamim A; Batista, Jacimaria R

    2014-01-01

    Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs. PMID:25189844

  5. Heritability estimates for octyl acetate and octyl butyrate in the mature fruit of the wild parsnip.

    Science.gov (United States)

    Carroll, M J; Zangerl, A R; Berenbaum, M R

    2000-01-01

    The aliphatic esters octyl acetate and octyl butyrate occur as major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). We determined phenotypic variation and narrow-sense heritabilities of these octyl esters in wild parsnip fruits from 30 maternal families. The mean octyl acetate content was 1.56 microg/mg dry fruit (0.08-5.51 microg/mg dry fruit) and the mean octyl butyrate content was 4.28 microg/mg dry fruit (1.28-14.22 microg/ mg dry fruit). Narrow-sense heritabilities for each ester's content were calculated by analysis of half-sib families (HS) and parent-offspring regression (OP). Heritabilities were 0.389 (HS) and 0.654 (OP) for octyl acetate and 0.670 (HS) and 0.626 (OP) for octyl butyrate. The amounts of the esters were phenotypically correlated with each other and with the linear furanocoumarins bergapten and xanthotoxin, phototoxic compounds that co-occur in the vittae with the esters. Ester amounts were not genetically correlated, indicating that these compounds could respond independently to selection pressures. These octyl esters may serve as carrier solvents that enhance penetration of these furanocoumarins into herbivore integuments and gut walls. PMID:10739131

  6. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei.

    Directory of Open Access Journals (Sweden)

    Alexander Schmidt

    Full Text Available In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT, a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224 was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF

  7. Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells

    Directory of Open Access Journals (Sweden)

    Doughty Martin L

    2011-05-01

    Full Text Available Abstract Background Histone deacetylases (HDACs are enzymes that modulate gene expression and cellular processes by deacetylating histones and non-histone proteins. While small molecule inhibitors of HDAC activity (HDACi are used clinically in the treatment of cancer, pre-clinical treatment models suggest they also exert neuroprotective effects and stimulate neurogenesis in neuropathological conditions. However, the direct effects of HDACi on cell cycle progression and proliferation, two properties required for continued neurogenesis, have not been fully characterized in adult neural stem cells (NSCs. In this study, we examined the effects of two broad class I and class II HDACi on adult mouse NSCs, the hydroxamate-based HDACi suberoylanilide hydroxamic acid (vorinostat, SAHA and the short chain fatty acid HDACi sodium butyrate. Results We show that both HDACi suppress the formation of neurospheres by adult mouse NSCs grown in proliferation culture conditions in vitro. DNA synthesis is significantly inhibited in adult mouse NSCs exposed to either SAHA or sodium butyrate and inhibition is associated with an arrest in the G1 phase of the cell cycle. HDACi exposure also resulted in transcriptional changes in adult mouse NSCs. Cdk inhibitor genes p21 and p27 transcript levels are increased and associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27. mRNA levels for notch effector Hes genes and Spry-box stem cell transcription factors are downregulated, whereas pro-neural transcription factors Neurog1 and Neurod1 are upregulated. Lastly, we show HDAC inhibition under proliferation culture conditions leads to long-term changes in cell fate in adult mouse NSCs induced to differentiate in vitro. Conclusion SAHA and sodium butyrate directly regulate cdk inhibitor transcription to control cell cycle progression in adult mouse NSCs. HDAC inhibition results in G1 arrest in adult mouse NSCs and transcriptional changes

  8. Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha

    OpenAIRE

    Yang, Yung-Hun; Brigham, Christopher J.; Budde, Charles F.; Boccazzi, Paolo; Willis, Laura B.; Hassan, Mohd Ali; Yusof, Zainal Abidin Mohd; Rha, ChoKyun; Sinskey, Anthony J.

    2010-01-01

    We employed systematic mixture analysis to determine optimal levels of acetate, propionate, and butyrate for cell growth and polyhydroxyalkanoate (PHA) production by Ralstonia eutropha H16. Butyrate was the preferred acid for robust cell growth and high PHA production. The 3-hydroxyvalerate content in the resulting PHA depended on the proportion of propionate initially present in the growth medium. The proportion of acetate dramatically affected the final pH of the growth medium. A model was ...

  9. Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves

    OpenAIRE

    Kato, Shin-ichi; Sato, Katsuyoshi; Chida, Haruka; Roh., Sang-gun; Ohwada, Shyuichi; SATO, Shusuke; Guilloteau, Paul

    2011-01-01

    Although the growth-promoting action of sodium-butyrate (Na-butyrate) used as a feed additive has been observed in calves and pigs, the precise mechanisms involved remain to be clarified. In this study, pre-weaning calves were given milk formula (MF) supplemented with butyrate for 6 weeks to investigate its effects on postprandial changes in the plasma concentrations of metabolic hormones, and, simultaneously, on growth performance, the weight of the digestive organs and rumen papilla develop...

  10. Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen.

    Science.gov (United States)

    Kopecný, Jan; Zorec, Masa; Mrázek, Jakub; Kobayashi, Yasuo; Marinsek-Logar, Romana

    2003-01-01

    Two novel Gram-negative, anaerobic, non-spore-forming, butyrate-producing bacterial species, strains Mz 5T and JK 615T, were isolated from the rumen fluid of cow and sheep. Both strains were curved rods that were motile by means of single polar or subpolar flagellum and common in the rumen microbial ecosystem. Strain Mz 5T produced high xylanase, proteinase, pectin hydrolase and DNase activities; 1,4-beta-endoglucanase was also detected in the culture medium. The bacterium utilized a wide range of carbohydrates. Glucose was fermented to formate, butyrate, lactate, succinate and ethanol. The DNA G + C content was 42.1 mol%. The complete 16S rDNA sequence was obtained and phylogenetic relationships were determined. Strain Mz 5T and related isolates were located in clostridial cluster XIVa and were closely related to Pseudobutyrivibrio ruminis, Butyrivibrio crossotus, Roseburia cecicola and Eubacterium rectale. The name proposed for this novel bacterium is Pseudobutyrivibrio xylanivorans; the type strain is Mz 5T (=DSM 14809T =ATCC BAA-455T). Strain JK 615T produced no fibrolytic activity, but utilized a wide range of carbohydrates. Glucose was fermented to formate, acetate, butyrate and ethanol. The DNA G + C content was 44-8 mol%. The complete 16S rDNA sequence was obtained and phylogenetic relationships were determined. Strain JK 615T was located in clostridial cluster XIVa and was closely related to Clostridium proteoclasticum, Butyrivibrio fibrisolvens and Eubacterium halii. The name proposed for this novel bacterium is Butyrivibrio hungatei; the type strain is JK 615T (=DSM 14810T =ATCC BAA-456T). PMID:12656174

  11. Vliv butyrátu a kyseliny dokosahexaenové na epiteliální buňky kolonu v závislosti na stupni nádorové transformace

    Czech Academy of Sciences Publication Activity Database

    Stixová, Lenka; Koubková, Zuzana; Netíková, Jaromíra; Hofmanová, Jiřina; Kozubík, Alois

    Brno, 2008. s. 33-34. [XXXII. Brněnské onkologické dny a XXII. Konference pro nelékařské zdravotnické pracovníky. 17.04.2008-19.04.2008, Brno] R&D Projects: GA ČR(CZ) GA524/07/1178; GA ČR(CZ) GA301/07/1557; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : sodium butyrate * docosahexaenoic acid * colon epithelial cells Subject RIV: BO - Biophysics

  12. Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, T; Nevin, KP; Woodard, TL; Lovley, DR

    2014-08-26

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H-2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. IMPORTANCE The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  13. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.

    Science.gov (United States)

    Ueki, Toshiyuki; Nevin, Kelly P; Woodard, Trevor L; Lovley, Derek R

    2014-01-01

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. Importance: The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  14. Preparation of poly(3-hydroxybutyrate)/carboxymethyl cellulose acetate butyrate blends using gel formation

    International Nuclear Information System (INIS)

    This study investigates poly(3-hydroxybutyrate) (PHB) gel formation with a binary combination of solvents and its use on the preparation of PHB and carboxymethyl cellulose acetate butyrate (CMCAB) blends. The gel preparation method was compared to a precipitation method followed by hot pressing. The results from DSC and X-ray diffractions showed that both methodologies produced blends with very similar thermal properties and crystallization behavior. Scanning electron microscopy indicated better homogeneity in gel formation blends. Apart from this, the gel formation methodology provided new ways to prepare immiscible blends with the advantage of using friendlier solvents. (author)

  15. Effect of different butyrate supplementations on growth and health of weaning pigs challenged or not with E. coli K88

    Directory of Open Access Journals (Sweden)

    Paolo Trevisi

    2010-01-01

    Full Text Available In a full factorial design (4 diets X challenge, Yes/No, 72 weaning pigs were assigned to one of the diets: Control; experimental diets, obtained with the addition of 2 g/kg free sodium butyrate (fNaB, or 0.6 g/kg fat-protected sodium butyrate (pNaB, or 2 g/kg INVE-NutriAd commercial mixture (Mix, based on 75 g/kg protected butyrate. Oral challenge with Escherichia coli K88 was done on 2/3 of pigs on d 7. Pigs were slaughtered on d 13. The mortality in challenged pigs, tended to be higher in control group (50.0% than in the three supplemented groups (23.5%. Growth tended to be increased averagely by the supplements (p=0.100 after the challenge, that also significantly reduced growth. In general the diet did not affect the fecal shedding of Escherichia coli and Lactobacilli, the K88-specific IgA activity in blood, the morphology of oxyntic mucosa and the expression of H+/K+-ATPase gene. The supplementations tended to increase villous length of jejunum (p=0.101. On the whole, growth, villous height and surviving rate can be positively affected either when the supplementation is done by free butyrate, by protected butyrate or by the special Inve Nutri-Ad product and these effects are distributed both on pigs infected or not with Escherichia coli K88.

  16. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium.

    Science.gov (United States)

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-01-01

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn't induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates. PMID:27264309

  17. Effects of sodium butyrate and 3-aminobenzamide on survival of Chinese hamster HA-1 cells after X irradiation

    International Nuclear Information System (INIS)

    HA-1 cells were grown in medium containing 2 mM sodium butyrate and then exposed to graded doses of 250 kVp X rays. After irradiation, some of the butyrate-treated cultures were treated with either 10 or 20 mM 3-aminobenzamide for 2 h at 37 degrees C. The butyrate treatment produced a small degree of radiation sensitization as indicated by an increase in the alpha parameter using a linear-quadratic description of survival responses. The dose-modifying factor at the 10% survival level (DMF10) was 1.15. Similarly, both 10 and 20 mM 3-aminobenzamide treatments produced concentration-dependent increases in radiosensitization, again as indicated by an increase in the value of the alpha constant, with DMF10 values of 1.22 and 1.40, respectively. However, the combination of the 2 mM sodium butyrate + 10 mM 3-aminobenzamide treatments produced a supraadditive response in terms of increased cell killing (DMF10 = 1.76). We interpret this to mean that 3-aminobenzamide inhibits a sodium butyrate associated increase in poly(ADP-ribose) which then predisposes hyperacetylated chromatin to attack by endogenous nucleases leading to increased cytotoxicity

  18. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  19. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation.

    Science.gov (United States)

    Blottière, Hervé M; Buecher, Bruno; Galmiche, Jean-Paul; Cherbut, Christine

    2003-02-01

    Short-chain fatty acids (SCFA), particularly butyrate, were shown to regulate cell proliferation in vitro and in vivo. Indeed, butyrate is the major fuel for colonic epithelial cells, and it can influence cell proliferation through the release of growth factors or gastrointestinal peptides such as gastrin, or through modulation of mucosal blood flow. Lastly, SCFA can act directly on genes regulating cell proliferation, and butyrate is the main SCFA to display such an effect. Butyrate inhibits histone deacetylase, which will allow histone hyperacetylation. Such hyperacetylation leads to transcription of several genes, including p21/Cip1. Moreover, it will allow cyclin D3 hyper-expression by inhibiting its degradation. The induction of the cyclin-dependent kinase inhibitory protein p21/Cip1 accounts for cell arrest in the G1 phase of the cell cycle. However, in the absence of p21 other mechanisms are initiated, leading to inhibition of cell proliferation. PMID:12740064

  20. Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella.

    Science.gov (United States)

    Rivera-Chávez, Fabian; Zhang, Lillian F; Faber, Franziska; Lopez, Christopher A; Byndloss, Mariana X; Olsan, Erin E; Xu, Gege; Velazquez, Eric M; Lebrilla, Carlito B; Winter, Sebastian E; Bäumler, Andreas J

    2016-04-13

    The mammalian intestine is host to a microbial community that prevents pathogen expansion through unknown mechanisms, while antibiotic treatment can increase susceptibility to enteric pathogens. Here we show that streptomycin treatment depleted commensal, butyrate-producing Clostridia from the mouse intestinal lumen, leading to decreased butyrate levels, increased epithelial oxygenation, and aerobic expansion of Salmonella enterica serovar Typhimurium. Epithelial hypoxia and Salmonella restriction could be restored by tributyrin treatment. Clostridia depletion and aerobic Salmonella expansion were also observed in the absence of streptomycin treatment in genetically resistant mice but proceeded with slower kinetics and required the presence of functional Salmonella type III secretion systems. The Salmonella cytochrome bd-II oxidase synergized with nitrate reductases to drive luminal expansion, and both were required for fecal-oral transmission. We conclude that Salmonella virulence factors and antibiotic treatment promote pathogen expansion through the same mechanism: depletion of butyrate-producing Clostridia to elevate epithelial oxygenation, allowing aerobic Salmonella growth. PMID:27078066

  1. Dietary toxicity of calcium beta-hydroxy-beta-methyl butyrate (CaHMB).

    Science.gov (United States)

    Baxter, J H; Carlos, J L; Thurmond, J; Rehani, R N; Bultman, J; Frost, D

    2005-12-01

    HMB, 3-hydroxy-3-methyl butyrate, is of interest as a dietary supplement and a possible component of functional and medical foods. The purpose of this study was to evaluate the toxicity of the calcium salt of HMB, calcium 3-hydroxy-3-methyl butyrate (CaHMB, monohydrate, food grade), when administered daily in the diet of rats for at least 90 days. Male and female Crl:CD (SD)IGS BR animals were assigned to four groups. Each group received diets containing the carrier or 1%, 2%, or 5% of CaHMB mixed with diet. Assessment of toxicity was based on mortality, clinical observations, body weights, food consumption, and clinical and anatomic pathology evaluations. Administration of CaHMB in basal diet for 91 days was tolerated well. There were no unscheduled sacrifices or deaths. There were no CaHMB-related adverse effects on clinical observations, body weights, food consumption, clinical chemistry, hematology, absolute or relative organ weights, or macroscopic or microscopic observations. A statistically significant increase in inorganic phosphorous was observed in male animals in the 5% feeding group; however, this effect was not considered adverse. Based on the results of this study, the no-observed-adverse-effect level (NOAEL) was considered to be 5% of CaHMB mixed with diet (3.49 g/kg BW for males and 4.16 g/kg BW for females). PMID:16006030

  2. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate

    Directory of Open Access Journals (Sweden)

    Jiaming Liu

    2015-01-01

    Full Text Available Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD.

  3. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro.

    Science.gov (United States)

    Scott, Karen P; Martin, Jennifer C; Duncan, Sylvia H; Flint, Harry J

    2014-01-01

    Dietary macronutrients affect the composition of the gut microbiota, and prebiotics are used to improve and maintain a healthy gut. The impact of prebiotics on dominant gut bacteria other than bifidobacteria, however, is under-researched. Here, we report carbohydrate utilisation patterns for representative butyrate-producing anaerobes, belonging to the Gram-positive Firmicutes families Lachnospiraceae and Ruminococcaceae, by comparison with selected Bacteroides and Bifidobacterium species. Growth assessments using anaerobic Hungate tubes and a new rapid microtitre plate assay were generally in good agreement. The Bacteroides strains tested showed some growth on basal medium with no added carbohydrates, utilising peptides in the growth medium. The butyrate-producing strains exhibited different growth profiles on the substrates, which included starch, inulin, fructooligosaccharides (FOS), galactooligosaccharides (GOS) and xylooligosaccharides (XOS). Eleven were able to grow on short-chain FOS, but this number decreased as the chain length of the fructan substrates increased. Long-chain inulin was utilised by Roseburia inulinivorans, but by none of the Bifidobacterium species examined here. XOS was a more selective growth substrate than FOS, with only six of the 11 Firmicutes strains able to use XOS for growth. These results illustrate the selectivity of different prebiotics and help to explain why some are butyrogenic. PMID:23909466

  4. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis.

    Directory of Open Access Journals (Sweden)

    Hitoshi Endo

    Full Text Available Nonalcoholic fatty liver disease (NAFLD includes simple steatosis, nonalcoholic steatohepatitis (NASH, fibrosis, cirrhosis, and hepatocellular carcinoma. The gut-derived endotoxin plays an essential role in the pathophysiological development and progression of NAFLD. By using rat models of choline-deficient/L-amino acid-defined (CDAA-diet-induced NAFLD, we examined whether MIYAIRI 588--a butyrate-producing probiotic--prevents the progression of pathophysiological changes from steatosis to hepatocarcinogenesis. In vivo experiments showed that treatment with MIYAIRI 588 reduced CDAA-diet-induced hepatic lipid deposition and significantly improved the triglyceride content, insulin resistance, serum endotoxin levels, and hepatic inflammatory indexes. We also found that MIYAIRI 588 substantially increased the activation of hepatic adenosine 5'-monophosphate-activated protein kinase (AMPK and AKT and the expression of lipogenesis- or lipolysis-related proteins. MIYAIRI 588 also improved CDAA-diet-induced delocalization and substantially decreased the expression of the tight-junction proteins intestinal zonula occluden-1 and occludin in CDAA-diet-fed rats. Further, the MIYAIRI 588-treated rats also showed remarkable induction of nuclear factor erythoid 2-related factor 2 (Nrf2 and its targeted antioxidative enzymes, which suppressed hepatic oxidative stress. In vitro studies revealed that treatment with sodium butyrate (NaB also activated AMPK and AKT and enhanced Nrf2 expression by precluding ubiquitination, thereby increasing the half-life of the Nrf2 protein. Pharmacological studies and siRNA knockdown experiments showed that NaB-mediated AMPK activation induced the phosphorylation and nuclear translocation of Sirtuin 1, leading to the increased assembly of mammalian TOR complex 2 and phosphorylation of AKT at Ser473 and subsequent induction of Nrf2 expression and activation. These favorable changes caused an obvious decrease in hepatic fibrous

  5. Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery.

    Science.gov (United States)

    Russo, Ilaria; Luciani, Alessandro; De Cicco, Paola; Troncone, Edoardo; Ciacci, Carolina

    2012-01-01

    Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa. PMID:22412931

  6. Molar extinction coefficients of some fatty acids

    DEFF Research Database (Denmark)

    Sandhu, G.K.; Singh, K.; Lark, B.S.;

    2002-01-01

    ) and stearic acid (C18H36O2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good......The attenuation of gamma rays in some fatty acids, viz. formic acid (CH2O2), acetic acid (C2H4O2), propionic acid (C3H6O2), butyric acid (C4H8O2), n-hexanoic acid (C6H12O2), n-caprylic acid (C8H16O2), lauric acid (C12H24O2), myristic acid (C14H28O2), palmitic acid (C16H32O2), oleic acid (C18H34O2...

  7. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets

    DEFF Research Database (Denmark)

    Bartholome, Anne L; Albin, David M; Baker, David H;

    2004-01-01

    decreasing apoptosis within 4 hours postresection. The intestinotrophic mechanism(s) underlying butyrate's effects may involve GLP-2. Ultimately, butyrate administration may enable an infant with short-bowel syndrome to successfully transition to enteral feedings by maximizing their absorptive area....

  8. The response of gastrointestinal microbiota to avilamycin, butyrate, and plant extracts in early-weaned pigs.

    Science.gov (United States)

    Castillo, M; Martín-Orúe, S M; Roca, M; Manzanilla, E G; Badiola, I; Perez, J F; Gasa, J

    2006-10-01

    An experiment was designed to evaluate the effects of 3 different additives on the gastrointestinal microbiota of early-weaned pigs. Early-weaned (18 to 22 d; n = 32) pigs (6.0 +/- 0.10 kg of BW) from 8 litters were randomly distributed into 8 pens. Each pen was assigned 1 of 4 dietary treatments: a prestarter or control diet, the control diet with 0.04% avilamycin (AB), with 0.3% sodium butyrate, or with 0.03% plant extract mixture (XT; standardized mixture with 5% (wt/wt) carvacrol extracted from Origanum spp., 3% cinnamaldehyde extracted from Cinnamonum spp., and 2% capsicum oleoresin from Capsicum annum). At the end of the experimental period, 8 pigs per treatment were killed, and samples of their intestinal content were taken. The total bacterial load along the gastrointestinal tract (GIT; stomach, jejunum, cecum, and distal colon) and the lactobacilli and enterobacteria in the jejunum and cecum were measured by quantitative PCR. The total microbial counts along the GIT did not differ among the diets, but there was an increase in the lactobacilli:enterobacteria ratio in the cecum of the piglets on the XT diet (P = 0.003). Restriction fragment length polymorphism of the PCR-amplified V3, V4, and V5 regions of the 16S rDNA gene showed changes in the structure of the microbial community in the jejunum. Dendrograms grouped animals by diets; control with 0.3% sodium butyrate was the treatment that promoted the biggest changes in the microbial ecosystem, followed by AB and then XT. Biodiversity increased when using additives compared with the control diet (P = 0.002). Microbial metabolic activity along the hindgut was studied using the concentration of purine bases and carbohydrase activities. Different patterns for purine bases were observed between diets (diet x intestinal section, P = 0.01). The control diet reached a maximum purine base concentration at the end of the colon, whereas that of the AB diet was reached at the cecum. We could not detect any cellulase

  9. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence

    NARCIS (Netherlands)

    D.H. Park; R. Mirabella; P.A. Bronstein; G.M. Preston; M.A. Haring; C.K. Lim; A. Collmer; R.C. Schuurink

    2010-01-01

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome h

  10. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells

    Science.gov (United States)

    This report presents a study utilizing next-generation sequencing technology, combined with chromatin immunoprecipitation (ChIP-seq) technology to analyze histone modification induced by butyrate and to construct a high-definition map of the epigenomic landscape with normal histone H3, H4, and their...

  11. Preparation, release and physicochemical characterisation of ethyl butyrate and hexanal inclusion complexes with β- and γ-cyclodextrin.

    Science.gov (United States)

    Zhang, Yang; Zhou, Yibin; Cao, Shengnan; Li, Songnan; Jin, Shanshan; Zhang, Shu

    2015-01-01

    Complexes of ethyl butyrate and hexanal encapsulated by β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) were prepared by coprecipitation, and gas chromatography was used to quantity the flavour compounds in the complexes. The ethyl butyrate-γ-CD complex had the highest inclusion ratio (12.20%) followed by the ethyl butyrate-β-CD, hexanal-β-CD and hexanal-γ-CD complexes (11.29, 4.41 and 3.33%, respectively). Release experiments were performed under different relative humidities (RH 93, 75 and 52%) and temperatures (4 and 25 °C). The flavour release behaviours of the complexes were described by the Avrami equation. The rate of flavour release was enhanced with both increasing temperature and RH, although the effect of RH was stronger. Physicochemical characterisation using FT-IR, XRD, DSC and SEM analyses demonstrated that crystalline complexes were formed. Both β-CD and γ-CD were able to encapsulate ethyl butyrate and hexanal, and lower RH and temperature were more suitable for the storage of these complexes. PMID:26471403

  12. Response of HT115, a highly invasive human colorectal adenocarcinoma cell line, to sodium butyrate treatment and glucose deprivation

    Czech Academy of Sciences Publication Activity Database

    Štokrová, Jitka; Sovová, Vlasta; Šloncová, Eva; Kučerová, Dana; Tuháčková, Zdena; Korb, Jan

    2005-01-01

    Roč. 26, č. 3 (2005), s. 793-799. ISSN 1019-6439 R&D Projects: GA AV ČR(CZ) KSK5020115 Keywords : HT115 cells * sodium butyrate * glucose deprivation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.681, year: 2005

  13. Synergistic Effect of Probiotics, Butyrate and l-Carnitine in Treatment of IBD

    Directory of Open Access Journals (Sweden)

    Mahsa Moeinian

    2013-07-01

    Full Text Available Genetic, environmental factors, dysregulation of immune system, intestinal microbes and oxidative stress are the most important factors that play the role in the pathogenesis of inflammatory bowel disease (IBD. Current treatments do not always result in complete remission and usually accompanied with several adverse effects. Recent studies showed that nuclear factor-kappa B (NF-κB, tumor necrosis factor-α (TNF-α and oxidative stress play the pivotal role in the induction of inflammation. Butyrate, l-Carnitine, and probiotics have the potential to control inflammation by reduction of main inflammatory cytokines, including NF-κB and TNF-α. They also stimulate antioxidant enzymes and inhibit IκB kinase (IKK. Regarding the beneficial effects of these three compounds in inflammation via several mechanisms, we hypothesize that the mixture of these compounds would be synergistically effective in reduction of inflammation and alleviation of IBD. Further experimental investigations are needed, to evaluate the hypothesis.

  14. Effects of amphiphilic agent on thermal conductivity of boron nitride/poly(vinyl butyral) composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hong Jun [Department of Materials Engineering, Kyonggi University, Suwon (Korea, Republic of); Cha, Sang-Ho [Department of Chemical Engineering, Kyonggi University, Suwon (Korea, Republic of); Lee, Woo Sung [Electronic Materials and Device Research Center, Korea Electronics Technology Institute, Seongnam (Korea, Republic of); Kim, Eung Soo, E-mail: eskim@kyonggi.ac.kr [Department of Materials Engineering, Kyonggi University, Suwon (Korea, Republic of)

    2014-09-10

    Highlights: • The platelet BN particles were oriented in poly(vinyl butyral) (PVB) matrix by tape-casting process. • The degree of BN orientation was estimated from XRD patterns of BN/PVB composites. • Surface treatment of BN with amphiphilic agent was confirmed by FT-IR and elemental analysis. • The BN/PVB composites with in-plane oriented 8-μm-sized BN particles showed a higher thermal conductivity than the other composites. - Abstract: Dependence of thermal conductivity of boron nitride (BN)/poly(vinyl butyral) (PVB) composites on the orientation and particle size of BN with an amphiphilic agent was investigated. The platelet BN particles were oriented in the polymer matrix by physical processes such as tape-casting process. A comparison of the thermal conductivity of the specimens with that of pristine BN showed that the BN/PVB composite treated with amphiphilic agents such as C{sub 14}H{sub 6}O{sub 8} and C{sub 27}H{sub 27}N{sub 3}O{sub 2} showed a higher thermal conductivity than the PVB composite with pristine BN. It was also found that the thermal conductivity of the C{sub 14}H{sub 6}O{sub 8}-treated BN/PVB composite was higher than that of the C{sub 27}H{sub 27}N{sub 3}O{sub 2}-treated composite due to the good dispersion and interfacial adhesion with C{sub 14}H{sub 6}O{sub 8}. Also, the thermal conductivity of the composite with an in-plane orientation of 8-μm-sized BN was higher than that of the composites with different particles sizes because of the improvement in the high degree of orientation.

  15. Effects of Early Intervention with Sodium Butyrate on Gut Microbiota and the Expression of Inflammatory Cytokines in Neonatal Piglets.

    Science.gov (United States)

    Xu, Jumei; Chen, Xue; Yu, Shuiqing; Su, Yong; Zhu, Weiyun

    2016-01-01

    Butyrate in the gut of animals has potential properties including regulating the innate immune, modulating the lipid metabolism, and protecting gut healthy. So far, only limited information on the impact of butyrate on the neonatal is available. This study aimed to investigate effects of oral administration of sodium butyrate (SB) on gut microbiota and the expression of inflammatory cytokine in neonatal piglets. Ten litters of crossbred newborn piglets were randomly allocated to the SB and control (CO) groups, each group consisted of five litters (replicates). Piglets in the SB group were orally administrated with 7 to 13 ml sodium butyrate solution (150 mmol/l) per day from the age of 1 to 7 days, respectively; piglets in the CO group were treated with the same dose of physiological saline. On days 8 and 21 (of age), gut digesta and tissues were collected for the analysis of microbiota, butyrate concentration and gene expression of inflammatory cytokine. Results showed that there was no difference in the butyrate concentration in the gut of piglets on days 8 and 21 between two groups. Real-time PCR assay showed that SB had no effect on the numbers of total bacteria in the stomach, ileum, and colon. MiSeq sequencing of the V3-V4 region of the 16S rRNA gene revealed that SB increased the richness in the stomach and colon, and the diversity of colonic microbiota on day 8 (P < 0.05). Genera Acinetobacter, Actinobacillus, Facklamia, Globicatella, Kocuria, Rothia, unclassified Leptotrichiaceae, unclassified Neisseriaceae, and unclassified Prevotellaceae in the stomach were increased in relative abundance by SB treatment, whereas the abundances of Lactobacillus decreased on day 8 (P < 0.05). At the genus and operational taxonomic unit (OTU) levels, SB had low impact on bacterial community in the ileum and colon on days 8 and 21. SB treatment decreased the expression of IL-6, IL-8, IFN-γ, IL-10, TGF-β, and histone deacetylase 1 (HDAC1) in the ileum of piglets on day 8

  16. Growth of Chlorella sorokiniana on a mixture of volatile fatty acids: The effects of light and temperature.

    Science.gov (United States)

    Turon, V; Trably, E; Fouilland, E; Steyer, J-P

    2015-12-01

    This study investigated the influence of light and temperature on Chlorella sorokiniana grown on a mixture of acetate and butyrate, two of the volatile fatty acids produced by dark fermentation. Exposure to light caused autotrophic biomass production (56% of the final biomass) and reduced the time to reach butyrate exhaustion to 7 days at 25°C from 10 days in the dark. For growth on acetate at the optimum temperature (35°C), the presence of butyrate reduced the growth rate (by 46%) and the carbon yield (by 36%). For successful microalgae growth on dark fermentation effluent, butyrate inhibition may be reduced by setting the temperature to 30°C and providing light. PMID:26461792

  17. Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters.

    Science.gov (United States)

    Jung, Jong-Min; Cho, Jinwoo; Kim, Ki-Hyun; Kwon, Eilhann E

    2016-03-01

    Instead of anaerobic digestion of biodegradable wastes for producing methane, this work introduced the transformation of acidogenesis products (VFAs) into fatty acid methyl esters (FAMEs) to validate the feasible production of short-chained fatty alcohols via hydrogenation of FAMEs. In particular, among VFAs, this work mainly described the mechanistic explanations for transforming butyric acid into butyric acid methyl ester as a case study. Unlike the conventional esterification process (conversion efficiency of ∼94%), the newly introduced esterification under the presence of porous materials via the thermo-chemical process reached up to ∼99.5%. Furthermore, the newly introduced esterification via the thermo-chemical pathway in this work showed extremely high tolerance of impurities: the conversion efficiency under the presence of impurities reached up to ∼99±0.3%; thus, the inhibition behaviors attributed from the impurities used for the experimental work were negligible. PMID:26720136

  18. Capturing One of the Human Gut Microbiome’s Most Wanted: Reconstructing the Genome of a Novel Butyrate-Producing, Clostridial Scavenger from Metagenomic Sequence Data

    Science.gov (United States)

    Jeraldo, Patricio; Hernandez, Alvaro; Nielsen, Henrik B.; Chen, Xianfeng; White, Bryan A.; Goldenfeld, Nigel; Nelson, Heidi; Alhquist, David; Boardman, Lisa; Chia, Nicholas

    2016-01-01

    The role of the microbiome in health and disease is attracting great attention, yet we still know little about some of the most prevalent microorganisms inside our bodies. Several years ago, Human Microbiome Project (HMP) researchers generated a list of “most wanted” taxa: bacteria both prevalent among healthy volunteers and distantly related to any sequenced organisms. Unfortunately, the challenge of assembling high-quality genomes from a tangle of metagenomic reads has slowed progress in learning about these uncultured bacteria. Here, we describe how recent advances in sequencing and analysis allowed us to assemble “most wanted” genomes from metagenomic data collected from four stool samples. Using a combination of both de novo and guided assembly methods, we assembled and binned over 100 genomes from an initial data set of over 1,300 Gbp. One of these genome bins, which met HMP’s criteria for a “most wanted” taxa, contained three essentially complete genomes belonging to a previously uncultivated species. This species is most closely related to Eubacterium desmolans and the clostridial cluster IV/Clostridium leptum subgroup species Butyricicoccus pullicaecorum (71–76% average nucleotide identity). Gene function analysis indicates that the species is an obligate anaerobe, forms spores, and produces the anti-inflammatory short-chain fatty acids acetate and butyrate. It also appears to take up metabolically costly molecules such as cobalamin, methionine, and branch-chained amino acids from the environment, and to lack virulence genes. Thus, the evidence is consistent with a secondary degrader that occupies a host-dependent, nutrient-scavenging niche within the gut; its ability to produce butyrate, which is thought to play an anti-inflammatory role, makes it intriguing for the study of diseases such as colon cancer and inflammatory bowel disease. In conclusion, we have assembled essentially complete genomes from stool metagenomic data, yielding

  19. Effects of sodium n-butyrate on entry into S phase in resting rat 3Y1 cells infected with simian virus 40.

    OpenAIRE

    Mitsudomi, T.; Kimura, G

    1985-01-01

    In quiescent rat 3Y1 fibroblasts infected with simian virus 40 (SV40), sodium butyrate elongated the time lag before entry into S phase in a concentration-dependent fashion. In spite of the elongated time lags, SV40-infected cells entered S phase in a very synchronous mode, irrespective of the butyrate concentrations. The elongated time lag seemed to be at least partially due to a delayed synthesis and a delayed accumulation of large T antigen caused by butyrate. The entry into S phase was al...

  20. Inhibition of glycolysis and growth of colon cancer cells by 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3PO in combination with butyrate, 2-deoxy glucose, 3-bromopyruvate or biguanides

    Directory of Open Access Journals (Sweden)

    Lea MA

    2015-09-01

    Full Text Available Introduction: Glycolysis shows a positive correlation with growth of human colon cancer cells. PFKFB3 is an important enzyme regulating glycolysis in many tumor cells and presents a target for cancer chemotherapy. We studied the action of an inhibitor of PFKFB3, 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3PO, as a single agent and in combination with other molecules that affect glycolysis. Materials and methods: Effects on growth were studied in four human colon cancer cell lines. Glucose metabolism was monitored by uptake from the incubation medium and lactic acid production was judged by acidification of the medium. Induction of alkaline phosphatase served as a marker of differentiation. Results: Growth of colon cancer cells was inhibited by 3PO and butyrate but only butyrate induced activation of alkaline phosphatase. Although metformin and phenformin can increase glucose metabolism, they inhibit colon cancer cell growth and can exert additive inhibitory effects in combination with 3PO. Additive growth inhibitory effects with 3PO were also observed with two compounds that inhibit glycolysis: 2-deoxyglucose and 3-bromopyruvate. Conclusion: 3PO was an inhibitor of growth of colon cancer cells and may be a useful agent in combination with other drugs that inhibit colon cancer cell proliferation.

  1. Effect of Whole-Body X-Irradiation of the Synthesis of Individual Fatty Acids in Liver Slices from Normal and Fasted Rats

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Hansen, Lisbeth Grænge; Faber, M.

    1965-01-01

    (1) Using (2-14C) acetate and (1-14C) butyrate as precursors, rat-liver fatty acids were synthesized in vitro and assayed by paper chromatography. (2) Whole-body x-irradiation induced a change in the synthetic pattern of hepatic fatty acids towards a relatively enhanced synthesis of palmitic acid...

  2. A search for synbiotics: effects of enzymatically modified arabinoxylan and Butyrivibrio fibrisolvens on short-chain fatty acids in the cecum content and plasma of rats

    DEFF Research Database (Denmark)

    Nielsen, Tina Skau; Jensen, Bent Borg; Purup, Stig;

    2016-01-01

    ) versus a Western-style control diet (WSD) low in dietary fiber with or without orally administrated Butyrivibrio fibrisolvens, a butyrate producer, on the SCFA pool in the cecal content and feces and the SCFA concentration in the blood of rats. The pool of acetate, butyrate and total SCFA was more than......Identification of dietary strategies to increase large intestinal production and absorption of short-chain fatty acids (SCFAs), especially butyrate, is of great interest due to the possible health promoting effects. We explored the effect of an enzymatically modified arabinoxylan-rich diet (EAXD...

  3. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, H.; Miwa, A. (Josai Univ., Saitama (Japan))

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  4. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    Science.gov (United States)

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth. PMID:21452895

  5. Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Shang, Wenting; Yang, Xiaoxi; Zhang, Shujuan; Zhang, Xiaogang; Chen, Jiawei [Renmin Univ. of China, Beijing (China)

    2013-09-15

    The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

  6. Experience on clinical application of positron emission tomography with a new radiopharmaceutical preparation Sodium 11C-butyrate in differential diagnosis of pathological volume brain formation

    International Nuclear Information System (INIS)

    Possibilities of the application of new radiopharmaceutical - sodium butyrate, [1-11C] (11C-Butyrate) for differential diagnosis of pathological volume brain formation were studied. Positron emission tomography (PET) of the brain was performed in 24 patients. In addition PET with 18F-FDG was performed in all patients. In 15 out of 24 patients the brain malignant tumor has been discovered, in 4 patients - benign tumors, in 5 - postoperative cysts. Results of the studies showed that the ratio tumor/normal tissue in case of 11C-Butyrate and 18F-FDG application proved to be comparable for all studied histological types of tumors. Malignant tumors in these cases had been visualized as a hot spots of increased uptake 11C-Butyrate (ratio ≥ 1). The obtained data testify to the diagnosis of the pathological volume brain formation

  7. Application of new radiopharmaceutical Sodium 1'1C-Butyrate and positron emission tomography in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Diagnostic value of Sodium 11C-Butyrate (11C-Butyrate) in assessing perfusion and oxidative metabolism in patients with coronary artery disease (CAD) is studied. 41 Patients with CAD were investigated. PET-scans were performed twice: at 2-7 min and 25-31 min after i.v. injection of 250-400 MBq 11C-Butyrate. Regional perfusion was evaluated by the uptake of radioactivity in the myocardium at the first scan, intensity of beta-oxidation - by decreasing the uptake level at the second scan. It is shown that the application of PET with 11C-Butyrate in patients with CAD allows to estimate hypoperfused segments, evaluate heart oxidative metabolism and provides differential diagnosis of scar and ischemia

  8. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    Science.gov (United States)

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-). PMID:22350013

  9. Densities, Viscosities, and Surface and Interfacial Tensions of the Ternary Mixture Water + Ethyl Butyrate + Methanol at 303.15 K

    OpenAIRE

    Kijevcanin, Mirjana Lj.; Ribeiro, Inês S. A.; Ferreira, Abel G. M.; Fonseca, Isabel M. A.

    2003-01-01

    The excess molar volumes, VE, viscosity deviations, Δη, and excess surface tensions were calculated from the measured density, viscosity, and surface tension values, σ, over the whole miscibility composition range for the ternary system water + ethyl butyrate + methanol and their constituent binaries, at 303.15 K and atmospheric pressure. The liquid interfacial tension was measured in the liquid−liquid equilibrium range at the same conditions of temperature and pressure. A Redlich−Kister type...

  10. Effects of different polypyrrole/TiO2 nanocomposite morphologies in polyvinyl butyral coatings for preventing the corrosion of mild steel

    Science.gov (United States)

    Mahmoudian, M. R.; Alias, Y.; Basirun, W. J.; Ebadi, M.

    2013-03-01

    This study addresses the synthesis and comparison of the corrosion protective properties of two different polypyrrole/TiO2 nanocomposite (PPy/TiO2 NC) morphologies in a polyvinyl butyral coating on mild steel. The polymerization was performed via low-temperature in situ chemical oxidative polymerization in the presence of methyl orange (MO) and dodecyl benzene sulfonic acid (DBSA). The field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) results show two different spherical and tube shapes in the core-shell structure of the PPy/TiO2 NCs synthesized in the presence DBSA and MO, respectively. The TEM results indicate that a thinner polypyrrole (PPy) shell is synthesized on the PPy/TiO2 NCs in the presence of MO than that synthesized in the presence of DBSA. Thermogravimetric analysis (TGA) results indicate that the mass percentages of the TiO2 NPs in the PPy/TiO2 NCs synthesized in the presence of MO and DBSA are 29.71 and 33.84%, respectively. The PPy/TiO2 NCs synthesized in the presence of MO were found to yield better anti-corrosion performance than those synthesized in the presence of DBSA. This result is due to the effect of the PPy surface area, which has more influence over corrosion control than the percentage of TiO2 nanoparticles in the nanocomposites.

  11. Constitutive Investigation on Viscoelasticity of PolyVinyl Butyral: Experiments Based on Dynamic Mechanical Analysis Method

    Directory of Open Access Journals (Sweden)

    Bohan Liu

    2014-01-01

    Full Text Available PolyVinyl Butyral (PVB film is now widely used in automotive industry and architectures serving as the protective interlayer. The dynamic modulus of PVB is measured through systematic experiments based on Dynamic Mechanical Analysis (DMA method at various temperatures, heating rates, and vibration frequencies. Further, viscoelasticity of PVB influenced by time and temperature is systematically studied. Fitted empirical formulas describing the relationship between glass transition temperature and frequency, as well as the heating rate of PVB, are established. The master curve of PVB at 293 K is suggested based on the experiment data as to express the dynamic modulus variation at various frequencies in a wider range. Constitutive behavior of PVB is then analyzed based on Generalized Maxwell (GM model and Fractional Derivative (FD model, respectively. It is shown that PVB has higher efficiency of energy dissipation in its high energy absorption state, while both fifth-order GM model and FD model can characterize the viscoelasticity of PVB at glassy transition area. Results may offer useful fundamental experimental data and important constitutive characteristics of PVB and shed lights on further studies on viscoelasticity behavior of PVB and energy mitigation ability of laminated glass.

  12. Enhancement of Human Prolactin Synthesis by Sodium Butyrate Addition to Serum-Free CHO Cell Culture

    Directory of Open Access Journals (Sweden)

    Herbert Rodrigues Goulart

    2010-01-01

    Full Text Available Sodium butyrate (NaBu has been used as a productivity enhancer for the synthesis of recombinant proteins in Chinese hamster ovary (CHO cells. Thus, the influence of NaBu on the production of recombinant human prolactin (hPRL from CHO cells was investigated for the first time. CHO cell cultures were submitted to a treatment with different concentrations of NaBu (0.25 to 4 mM. Quantitative and qualitative analyses by reverse-phase high-performance liquid chromatography (RP-HPLC and Western blot or SDS-PAGE, carried out directly on CHO-conditioned medium, showed that the highest hPRL expression was obtained with 1 mM NaBu. In vitro biological assays based on noble rat lymphoma (Nb2 and mouse pro-B lymphoma (Ba/F3-LLP cells were carried out on purified hPRL. Its bioactivity in the presence of NaBu was not apparently different from that of the First International Reference Reagent of recombinant hPRL (WHO 97/714. Our results show that NaBu increased the synthesis of recombinant hPRL in CHO cells, apparently without compromising either its structure or function.

  13. Preparation and characterization of nanoparticles of carboxymethyl cellulose acetate butyrate containing acyclovir

    Science.gov (United States)

    Vedula, Venkata Bharadwaz; Chopra, Maulick; Joseph, Emil; Mazumder, Sonal

    2016-02-01

    Nanoparticles of carboxymethyl cellulose acetate butyrate complexed with the poorly soluble antiviral drug acyclovir (ACV) were produced by precipitation process and the formulation process and properties of nanoparticles were investigated. Two different particle synthesis methods were explored—a conventional precipitation method and a rapid precipitation in a multi-inlet vortex mixer. The particles were processed by rotavap followed by freeze-drying. Particle diameters as measured by dynamic light scattering were dependent on the synthesis method used. The conventional precipitation method did not show desired particle size distribution, whereas particles prepared by the mixer showed well-defined particle size ~125-450 nm before and after freeze-drying, respectively, with narrow polydispersity indices. Fourier transform infrared spectroscopy showed chemical stability and intactness of entrapped drug in the nanoparticles. Differential scanning calorimetry showed that the drug was in amorphous state in the polymer matrix. ACV drug loading was around 10 wt%. The release studies showed increase in solution concentration of drug from the nanoparticles compared to the as-received crystalline drug.

  14. Flexible thermoplastic composite of Polyvinyl Butyral (PVB and waste of rigid Polyurethane foam

    Directory of Open Access Journals (Sweden)

    Marilia Sônego

    2015-04-01

    Full Text Available This study reports the preparation and characterization of composites with recycled poly(vinyl butyral (PVB and residue of rigid polyurethane foam (PUr, with PUr contents of 20, 35 and 50 wt %, using an extruder equipped with a Maillefer single screw and injection molding. The components of the composites were thermally characterized using differential scanning calorimetry (DSC and thermogravimetry. The composites were evaluated by melt flow index (MFI, tensile and hardness mechanical tests and scanning electron microscopy (SEM. Tg determined by DSC of PVB sample (53 °C indicated the presence of plasticizer (Tg of pure PVB is 70 °C. MFI of the composites indicated a viscosity increase with the PUr content and, as the shear rate was held constant during injection molding, higher viscosities promoted higher shear stresses in the composites, thereby causing breaking or tearing of the PUr particles. The SEM micrographs showed low adhesion between PVB and PUr and the presence of voids, both inherent in the rigid foam and in the interphase PVB-PUr. The SEM micrographs also showed that PVB/PUr (50/50 composite exhibited the smallest particle size and a more homogeneous and compact structure with fewer voids in the interface. The stiffness of the composites increases with addition of the PUr particles, as evidenced in the mechanical tests.

  15. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    Science.gov (United States)

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-03-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut. PMID:26394008

  16. Transparent Blend of Poly(Methylmethacrylate/Cellulose Acetate Butyrate for the Protection from Ultraviolet

    Directory of Open Access Journals (Sweden)

    Raouf Mahmood Raouf

    2016-04-01

    Full Text Available The use of transparent polymers as an alternative to glass has become widespread. However, the direct exposure of these materials to climatic conditions of sunlight and heat decrease the lifetime cost of these products. The aim of this study was to minimize the harm caused by ultraviolet (UV radiation exposure to transparent poly(methylmethacrylate (PMMA, which usually leads to changes in the physical and chemical properties of these materials and reduced performance. This was achieved using environmentally friendly cellulose acetate butyrate (CAB. The optical, morphological, and thermal properties of CAB blended with transparent PMMA was studied using UV-VIS spectrophotometry, scanning electron microscopy, X-ray diffraction, dynamic mechanical analysis, and thermal gravimetric analysis. The results show that CAB was able to reduce the effects of UV radiation by making PMMA more transparent to UV light, thereby preventing the negative effects of trapped radiation within the compositional structure, while maintaining the amorphous structure of the blend. The results also show that CAB blended with PMMA led to some properties commensurate with the requirements of research in terms of a slight increase in the value of the modulus and the glass transition temperature for the PMMA/CAB blend.

  17. Possible mechanism for the regulation of glucose on proliferation, inhibition and apoptosis of colon cancer cells induced by sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To study the effect of glucose on sodium butyrateinduced proliferation inhibition and apoptosis in HT-29 cell line, and explored its possible mechanisms.METHODS: HT-29 cells were grown in RPMI-1640 medium supplemented with 10% fetal calf serum, and were allowed to adhere for 24 h, and then replaced with experimental medium. Cell survival rates were detected by MTT assay. Apoptosis was detected by TUNEL assay. Glucose transport protein 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) mRNA expression was detected by RT-PCR.RESULTS: Low concentration of glucose induced apoptosis and regulated proliferation in HT-29 cell line, and glucose can obviously inhibit the effect of proliferation inhibition and apoptosis induced by sodium butyrate. Glucose also down-regulated the expression of MCT1mRNA (0.28 ± 0.07 vs 0.19 ± 0.10, P < 0.05), and decreased the expression of GLUT1mRNA slightly (0.18 ± 0.04 vs 0.13 ± 0.03, P < 0.05).CONCLUSION: Glucose can regulate the effect of proliferation inhibition and apoptosis induced by sodium butyrate and this influence may be associated with the intracellular concentration of glucose and sodium butyrate.

  18. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments

    Science.gov (United States)

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  19. Fasting serum concentration of short-chain fatty acids in subjects with microscopic colitis and celiac disease

    DEFF Research Database (Denmark)

    Jakobsdottir, Greta; Bjerregaard, Jens Holst; Skovbjerg, Hanne;

    2013-01-01

    Short-chain fatty acids (SCFAs), particularly propionic and butyric acids, have been shown to have many positive health effects. The amount and type of SCFAs formed from dietary fibre by the colonic microbiota depends on the substrate available and is reflected in blood. The total intake and type...... of dietary fibre in people with gastrointestinal diseases differs considerably from healthy subjects....

  20. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guinovart, Tomàs [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Crespo, Gastón A. [Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva (Switzerland); Rius, F. Xavier [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Andrade, Francisco J., E-mail: franciscojavier.andrade@urv.cat [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain)

    2014-04-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec⁻¹ over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided.

  1. Neuroprotective Effect of Sodium Butyrate against Cerebral Ischemia/Reperfusion Injury in Mice

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2015-01-01

    Full Text Available Sodium butyrate (NaB is a dietary microbial fermentation product of fiber and serves as an important neuromodulator in the central nervous system. In this study, we further investigated that NaB attenuated cerebral ischemia/reperfusion (I/R injury in vivo and its possible mechanisms. NaB (5, 10 mg/kg was administered intragastrically 3 h after the onset of reperfusion in bilateral common carotid artery occlusion (BCCAO mice. After 24 h of reperfusion, neurological deficits scores were estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The levels of oxidative stress and inflammatory cytokines were assessed. Apoptotic neurons were measured by TUNEL; apoptosis-related protein caspase-3, Bcl-2, Bax, the phosphorylation Akt (p-Akt, and BDNF were assayed by western blot and immunohistochemistry. The results showed that 10 mg/kg NaB treatment significantly ameliorated neurological deficit and histopathology changes in cerebral I/R injury. Moreover, 10 mg/kg NaB treatment markedly restored the levels of MDA, SOD, IL-1β, TNF-α, and IL-8. 10 mg/kg NaB treatment also remarkably inhibited the apoptosis, decreasing the levels of caspase-3 and Bax and increasing the levels of Bcl-2, p-Akt, and BDNF. This study suggested that NaB exerts neuroprotective effects on cerebral I/R injury by antioxidant, anti-inflammatory, and antiapoptotic properties and BDNF-PI3K/Akt pathway is involved in antiapoptotic effect.

  2. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    International Nuclear Information System (INIS)

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. - Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec−1) over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided

  3. Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves.

    Science.gov (United States)

    Gorka, P; Kowalski, Z M; Pietrzak, P; Kotunia, A; Kiljanczyk, R; Flaga, J; Holst, J J; Guilloteau, P; Zabielski, R

    2009-10-01

    Rumen development is an important factor determining early solid feed intake and performance in cattle. A popular trend towards early weaning of newborn dairy calves necessitated looking for ways of accelerating the gastrointestinal tract (GIT) development. The present study aimed to determine the effect of sodium butyrate (NaB) supplementation in milk replacer and starter diet on rumen development in rearing calves. Fourteen bull calves (5-day-old) were randomly allocated to two groups: Control (C) and NaB. The later received 0.3 % NaB in milk replacer and starter diet. Animals were in experiment up to age of 26 days. Addition of NaB to milk replacer and starter diet had no effect on daily growth rate, but reduced the weight loss observed in C calves in first 11 days of age. Additionally, the NaB calves weighed more at the end of the study and tended to have higher growth rate in the whole trial period (Pweight (P=0.13) and higher reticulorumen weight expressed as a percent of whole stomach weight (P=0.02) as compared to control. Histometry analysis indicated larger rumen papillae length and width (P<0.01) in NaB group, and no change in muscle layer thickness, as compared to control. Plasma glucagon-like peptide-2 relative increase was higher in NaB group than in C group, and may be involved in rumen development. In conclusion, supplementation of the diet (milk replacer and starter diet) with NaB may enhance rumen development in neonatal calves. PMID:19996481

  4. Effect of short-chain fatty acids on triacylglycerol accumulation, lipid droplet formation and lipogenic gene expression in goat mammary epithelial cells.

    Science.gov (United States)

    Sun, Yuting; Luo, Jun; Zhu, Jiangjiang; Shi, Hengbo; Li, Jun; Qiu, Siyuan; Wang, Ping; Loor, Juan J

    2016-02-01

    Short-chain fatty acids (SCFAs) are the major energy sources for ruminants and are known to regulate various physiological functions in other species. However, their roles in ruminant milk fat metabolism are still unclear. In this study, goat mammary gland epithelial cells (GMECs) were treated with 3 mmol/L acetate, propionate or butyrate for 24 h to assess their effects on lipogenesis. Data revealed that the content of triacylglycerol (TAG) and lipid droplet formation were significantly stimulated by propionate and butyrate. The expression of FABP3, SCD1, PPARG, SREBP1, DGAT1, AGPAT6 and ADRP were upregulated by propionate and butyrate treatment. In contrast, the messenger RNA (mRNA) expression of FASN and LXRα was not affected by propionate, but reduced by butyrate. Acetate had no obvious effect on the content of TAG and lipid droplets but increased the mRNA expression of SCD1 and FABP3 in GMECs. Additionally, it was observed that propionate significantly increased the relative content of mono-unsaturated fatty acids (C18:1 and C16:1) at the expense of decreased saturated fatty acids (C16:0 and C18:0). Butyrate and acetate had no significant effect on fatty acid composition. Overall, the results from this work help enhance our understanding of the regulatory role of SCFAs on goat mammary cell lipid metabolism. PMID:26304676

  5. Association between butyrate and short-chain fatty acid concentrations in gut contents and faeces in weaning piglets

    DEFF Research Database (Denmark)

    Lærke, Helle Nygaard; Hedemann, Mette Skou; Bach Knudsen, Knud Erik;

    2007-01-01

    citrus pectin (soluble fibre) and barley hulls (insoluble fibre) and gastrointestinal contents were collected at euthanasia 9 days after weaning. In Trial 2, 120 pair-wise penned piglets were allocated to the same experimental diets as in Trial 1 (24 piglets per treatment), and fresh faecal samples were...

  6. Regulation of immune cell function by short-chain fatty acids

    OpenAIRE

    Corrêa-Oliveira, Renan; Fachi, José Luís; Vieira, Aline; Sato, Fabio Takeo; Vinolo, Marco Aurélio R

    2016-01-01

    Short-chain fatty acids (SCFAs) are bacterial fermentation products, which are chemically composed by a carboxylic acid moiety and a small hydrocarbon chain. Among them, acetic, propionic and butyric acids are the most studied, presenting, respectively, two, three and four carbons in their chemical structure. These metabolites are found in high concentrations in the intestinal tract, from where they are uptaken by intestinal epithelial cells (IECs). The SCFAs are partially used as a source of...

  7. Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids.

    Science.gov (United States)

    Lachmandas, Ekta; van den Heuvel, Corina N A M; Damen, Michelle S M A; Cleophas, Maartje C P; Netea, Mihai G; van Crevel, Reinout

    2016-01-01

    Type 2 diabetes mellitus confers a threefold increased risk for tuberculosis, but the underlying immunological mechanisms are still largely unknown. Possible mediators of this increased susceptibility are short-chain fatty acids, levels of which have been shown to be altered in individuals with diabetes. We examined the influence of physiological concentrations of butyrate on cytokine responses to Mycobacterium tuberculosis (Mtb) in human peripheral blood mononuclear cells (PBMCs). Butyrate decreased Mtb-induced proinflammatory cytokine responses, while it increased production of IL-10. This anti-inflammatory effect was independent of butyrate's well-characterised inhibition of HDAC activity and was not accompanied by changes in Toll-like receptor signalling pathways, the eicosanoid pathway, or cellular metabolism. In contrast blocking IL-10 activity reversed the effects of butyrate on Mtb-induced inflammation. Alteration of the gut microbiota, thereby increasing butyrate concentrations, can reduce insulin resistance and obesity, but further studies are needed to determine how this affects susceptibility to tuberculosis. PMID:27057552

  8. A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation.

    Science.gov (United States)

    Ghorbaniaghdam, Atefeh; Henry, Olivier; Jolicoeur, Mario

    2013-04-01

    A kinetic-metabolic model approach describing and simulating Chinese hamster ovary (CHO) cell behavior is presented. The model includes glycolysis, pentose phosphate pathway, TCA cycle, respiratory chain, redox state and energetic metabolism. Growth kinetic is defined as a function of the major precursors for the synthesis of cell building blocks. Michaelis-Menten type kinetic is used for metabolic intermediates as well as for regulatory functions from energy shuttles (ATP/ADP) and cofactors (NAD/H and NADP/H). Model structure and parameters were first calibrated using results from bioreactor cultures of CHO cells expressing recombinant t-PA. It is shown that the model can simulate experimental data for all available experimental data, such as extracellular glucose, glutamine, lactate and ammonium concentration time profiles, as well as cell energetic state. A sensitivity analysis allowed identifying the most sensitive parameters. The model was then shown to be readily adaptable for studying the effect of sodium butyrate on CHO cells metabolism, where it was applied to the cases with sodium butyrate addition either at mid-exponential growth phase (48 h) or at the early plateau phase (74 h). In both cases, a global optimization routine was used for the simultaneous estimation of the most sensitive parameters, while the insensitive parameters were considered as constants. Finally, confidence intervals for the estimated parameters were calculated. Results presented here further substantiate our previous findings that butyrate treatment at mid-exponential phase may cause a shift in cellular metabolism toward a sustained and increased efficiency of glucose utilization channeled through the TCA cycle. PMID:22976819

  9. The effect of short-chain fatty acids on human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Nastasi, Claudia; Candela, Marco; Bonefeld, Charlotte Menné;

    2015-01-01

    negligible effects, while both butyrate and propionate strongly modulated gene expression in both immature and mature human monocyte-derived DC. An Ingenuity pathway analysis based on the differentially expressed genes suggested that propionate and butyrate modulate leukocyte trafficking, as SCFA strongly......The gut microbiota is essential for human health and plays an important role in the pathogenesis of several diseases. Short-chain fatty acids (SCFA), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients that distribute systemically via the blood....... The aim of this study was to investigate the transcriptional response of immature and LPS-matured human monocyte-derived DC to SCFA. Our data revealed distinct effects exerted by each individual SCFA on gene expression in human monocyte-derived DC, especially in the mature ones. Acetate only exerted...

  10. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  11. Sodium butyrate enemas in the treatment of acute radiation-induced proctitis in patients with prostate cancer and the impact on late proctitis. A prospective evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hille, Andrea; Herrmann, Markus K.A.; Kertesz, Tereza; Christiansen, Hans; Hermann, Robert M.; Hess, Clemens F. [University Hospital, Goettingen (Germany). Department of Radiotherapy and Radiooncology; Pradier, Olivier [University Hospital, Brest (France). Department of Radiotherapy and Radiooncology; Schmidberger, Heinz [University Hospital, Mainz (Germany). Department of Radiotherapy and Radiooncology

    2008-12-15

    To evaluate prospectively the effect of sodium butyrate enemas on the treatment of acute and the potential influence on late radiation-induced proctitis. 31 patients had been treated with sodium butyrate enemas for radiation-induced acute grade II proctitis which had developed after 40 Gy in median. During irradiation the toxicity was evaluated weekly by the Common Toxicity Criteria (CTC) and subsequently yearly by the RTOG (Radiation Therapy Oncology Group) and LENT-SOMA scale. 23 of 31 patients (74%) experienced a decrease of CTC grade within 8 days on median. A statistical significant difference between the incidence and the severity of proctitis before start of treatment with sodium butyrate enemas compared to 14 days later and compared to the end of irradiation treatment course, respectively, was found. The median follow-up was 50 months. Twenty patients were recorded as suffering from no late proctitis symptom. Eleven patients suffered from grade I and 2 of these patients from grade II toxicity, too. No correlation was seen between the efficacy of butyrate enemas on acute proctitis and prevention or development of late toxicity, respectively. Sodium butyrate enemas are effective in the treatment of acute radiation-induced proctitis in patients with prostate cancer but have no impact on the incidence and severity of late proctitis. (orig.)

  12. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors.

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Yaobin; Holmes, Dawn E; Dang, Yan; Woodard, Trevor L; Nevin, Kelly P; Lovley, Derek R

    2016-06-01

    Promoting direct interspecies electron transfer (DIET) to enhance syntrophic metabolism may be a strategy for accelerating the conversion of organic wastes to methane, but microorganisms capable of metabolizing propionate and butyrate via DIET under methanogenic conditions have yet to be identified. In an attempt to establish methanogenic communities metabolizing propionate or butyrate with DIET, enrichments were initiated with up-flow anaerobic sludge blanket (UASB), similar to those that were previously reported to support communities that metabolized ethanol with DIET that relied on direct biological electrical connections. In the absence of any amendments, microbial communities enriched were dominated by microorganisms closely related to pure cultures that are known to metabolize propionate or butyrate to acetate with production of H2. When biochar was added to the reactors there was a substantial enrichment on the biochar surface of 16S rRNA gene sequences closely related to Geobacter and Methanosaeta species known to participate in DIET. PMID:26967338

  13. Effect of sodium butyrate treatment on the granule morphology, histamine level and elemental content of the bone marrow-derived mast cell

    International Nuclear Information System (INIS)

    Mast cells derived from the bone marrow of BALB/c mice (BMMC) were cultures and their growth ceased with sodium butyrate. Sodium butyrate treatment (1 mM, 4 days) caused maturation of the granules, and increased histamine content from approx. 1 pg/cell to 4 pg/cell. X-ray microanalysis revealed that maturation of the granules was accompanied by the increase in relative weight percent of sodium, phosphorus and sulphur, with concomitant decrease in chloride. The sulphur to potassium ratio increased three-fold in butyrate-treated mast cells. The existence of a different elemental composition during mast cell maturation may provide additional parameter for rapid discrimination of mast cell subpopulations. (author). 28 refs, 6 figs

  14. Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral

    International Nuclear Information System (INIS)

    In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at 25 .deg. C to 7.1% and 48 nW at 70 .deg. C, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change

  15. Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, KiSeob; Lee, JunYoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Park, JeaHeel; Ha, KiRyong [Keimyung University, Seoul (Korea, Republic of)

    2014-08-15

    In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at 25 .deg. C to 7.1% and 48 nW at 70 .deg. C, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change.

  16. Fractal Analysis of Lipase-Catalysed Synthesis of Butyl Butyrate in a Microbioreactor Under the Influence of Noise

    Science.gov (United States)

    Patnaik, Pratap R.

    2013-03-01

    Microbioreactors operated in real environments are often subject to noise from the environment. This is commonly manifested as fluctuations in the flow rates of the feed streams. Previous studies with larger bioreactors have shown that noise can seriously impair the performance. Given this possibility, the effects of noise on the performance of a microbioreactor have been analyzed for the trans-esterification of vinyl butyrate by 1-butanol by immobilized lipase B to produce butyl butyrate. As in previous work for macrobioreactors, the analysis was done with (i) no noise, (ii) unfiltered noise, and (iii) noise filtered by four different methods, and the fractal dimension of the product was used as an index of the performance. All fractal dimensions decreased with increasing dilution rates, and significant stochastic chaos was likely at low dilution rates. Of the four types of filters, the auto-associative neural filter (ANF) was the most effective in reducing chaos and restoring of smooth, nearly noise-free performance. The ANF also does not require a process model, which is a significant advantage for real systems. Simulations also revealed that even in the absence of noise, deterministic chaos is possible at low dilution rates; this underscores the importance of efficient filtering under such conditions when external noise too is present. The results thus establish the importance of noise in microbioreactor behavior and the usefulness of the fractal dimension in characterizing the effects.

  17. BUTYRATE SUPPLEMENTATION AFFECTS mRNA ABUNDANCE OF GENES INVOLVED IN GLYCOLYSIS, OXIDATIVE PHOSPHORYLATION AND LIPOGENESIS IN THE RUMEN EPITHELIUM OF HOLSTEIN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Anne Hermen Laarman

    2013-01-01

    Full Text Available Energy availability in epithelial cells is a crucial link for maintaining epithelial barrier integrity; energy depletion is linked to impaired barrier function in several epithelia. This study aimed to elucidate the effects of exogenous butyrate on mRNA abundance of genes indirectly involved in rumen epithelial barrier integrity. Sixteen mid-lactation Holstein cows fed a total mixed ration received a concentrate mix to induce Subacute Ruminal Acidosis (SARA. For 7 days, while being fed the concentrate mix, cows were assigned either a control treatment or a butyrate treatment, in which cows were fed butyrate at 2.5% daily dry matter intake in the form of a calcium salt. On days 6 and 7, rumen pH was measured continuously and on day 7, rumen biopsies took place. Rumen pH fell below 5.6 for more than 3 hours per day in both treatments, con-firming the occurrence of SARA. Microarray and pathway analysis, confirmed by real time PCR, showed that exogenous butyrate significantly increased the mRNA abundance of hexokinase 2 (fold change: 2.07, pyruvate kinase (1.19, cytochrome B-complex 3 (1.18 and ATP Synthase, F0 subunit (1.66, which en-code important glycolytic enzymes. Meanwhile, butyrate decreased mRNA abundance of pyruvate dehydrogenase kinase 2(-2.38, ATP citrate lyase (-2.00 and mitochondrial CoA transporter (-2.27, which en-code enzymes involved in lipogenesis. These data suggest exogenous butyrate induces a shift towards energy mobilization in the rumen epithelium, which may aid barrier function in the rumen epithelium during SARA.

  18. Effects of tachyplesin and n-sodium butyrate on proliferation and gene expression of human gastric adenocarcinoma cell line BGC-823

    Institute of Scientific and Technical Information of China (English)

    Song-Lin Shi; Yong-Ye Wang; Ying Liang; Qi-Fu Li

    2006-01-01

    AIM: To investigate the effects of tachyplesin and n-sodium butyrate on proliferation and gene expression of human gastric adenocarcinoma cell line BGC-823.METHODS: Effects of tachyplesin and n-sodium butyrate on proliferation of BGC-823 cells were determined with trypan blue dye exclusion test and HE staining. Effects of tachyplesin and n-sodium butyrate on cell cycle were detected by flow cytometry. Protein levels of c-erbB-2, c-myc, p53 and p16 were examined by immunocytochemistry.RESULTS: The inhibiting effects were similar after 2.0 mg/L tachyplesin and 2.0 mmol/L n-sodium butyrate treatment, the inhibitory rate of cellular growth was 62.66% and 60.19% respectively, and the respective maximum mitotic index was decreased by 49.35% and 51.69% respectively. Tachyplesin and n-sodium butyrate treatment could markedly increase the proportion of cells at G0/G1 phase and decrease the proportion at S phase.The expression levels of oncogene c-erbB-2, c-myc, and mtp53 proteins were down-regulated while the expression level of tumor suppressor gene p16 protein was up-regulated after the treatment with tachyplesin or n-sodium butyrate. The effects of 1.0 mg/L tachyplesin in combination with 1.0 mmol/L n-sodium butyrate were obviously superior to their individual treatment in changing cell cycle distribution and expression of c-erbB-2,c-myc, mtp53 and p16 protein. The inhibitory rate of cellular growth of BGC-823 cells after combination treatment was 62.29% and the maximum mitotic index was decreased by 51.95%.CONCLUSION: Tachyplesin as a differentiation inducer of tumor cells has similar effects as n-sodium butyrate on proliferation of tumor cells, expression of correlative oncogene and tumor suppressor gene. It also has a synergistic effect on differentiation of tumor cells.

  19. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows

    NARCIS (Netherlands)

    Morvay, Y.; Bannink, A.; France, J.; Kebreab, E.; Dijkstra, J.

    2011-01-01

    Volatile fatty acids (VFA), produced in the rumen by microbial fermentation, are the main energy source for ruminants. The VFA profile, particularly the nonglucogenic (acetate, Ac; butyrate, Bu) to glucogenic (propionate, Pr) VFA ratio (NGR), is associated with effects on methane production, milk co

  20. Interaction of Dietary Fatty Acids with Tumour Necrosis Factor Family Cytokines during Colon Inflammation and Cancer

    OpenAIRE

    Jiřina Hofmanová; Nicol Straková; Alena Hyršlová Vaculová; Zuzana Tylichová; Barbora Šafaříková; Belma Skender; Alois Kozubík

    2014-01-01

    Intestinal homeostasis is precisely regulated by a number of endogenous regulatory molecules but significantly influenced by dietary compounds. Malfunction of this system may result in chronic inflammation and cancer. Dietary essential n-3 polyunsaturated fatty acids (PUFAs) and short-chain fatty acid butyrate produced from fibre display anti-inflammatory and anticancer activities. Both compounds were shown to modulate the production and activities of TNF family cytokines. Cytokines from the ...

  1. Effects of short chain fatty acids on gut morphology and function.

    OpenAIRE

    Scheppach, W.

    1994-01-01

    Short chain fatty acids (SCFAs) are the products of colonic bacterial degradation of unabsorbed starch and non-starch polysaccharide (fibre). They are important anions in the colonic lumen, affecting both colonocyte morphology and function. The three main acids (acetate, propionate, and butyrate) stimulate colonic sodium and fluid absorption and exert proliferative effects on the colonocyte. Experimental animal studies have shown that they promote adaptive responses to small intestinal resect...

  2. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin

    Directory of Open Access Journals (Sweden)

    Eef Boets

    2015-10-01

    Full Text Available Short chain fatty acids (SCFA, including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [1-13C]acetate, [1-13C]propionate and [1-13C]butyrate (12, 1.2 and 0.6 μmol·kg−1·min−1, respectively was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 ± 4.8, 0.27 ± 0.09, and 0.28 ± 0.12 μmol·kg−1·min−1, respectively. Colonic inulin fermentation was estimated to be 137 ± 75 mmol acetate, 11 ± 9 mmol propionate, and 20 ± 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production.

  3. The Putative Role of the Non-Gastric H+/K+-ATPase ATP12A (ATP1AL1 as Anti-Apoptotic Ion Transporter: Effect of the H+/K+ ATPase Inhibitor SCH28080 on Butyrate-Stimulated Myelomonocytic HL-60 Cells

    Directory of Open Access Journals (Sweden)

    Martin Jakab

    2014-10-01

    Full Text Available Background/Aims: The ATP12A gene codes for a non-gastric H+/K+ ATPase, which is expressed in a wide variety of tissues. The aim of this study was to test for the molecular and functional expression of the non-gastric H+/K+ ATPase ATP12A/ATP1AL1 in unstimulated and butyrate-stimulated (1 and 10 mM human myelomonocytic HL-60 cells, to unravel its potential role as putative apoptosis-counteracting ion transporter as well as to test for the effect of the H+/K+ ATPase inhibitor SCH28080 in apoptosis. Methods: Real-time reverse-transcription PCR (qRT-PCR was used for amplification and cloning of ATP12A transcripts and to assess transcriptional regulation. BCECF microfluorimetry was used to assess changes of intracellular pH (pHi after acute intracellular acid load (NH4Cl prepulsing. Mean cell volumes (MCV and MCV-recovery after osmotic cell shrinkage (Regulatory Volume Increase, RVI were assessed by Coulter counting. Flow-cytometry was used to measure MCV (Coulter principle, to assess apoptosis (phosphatidylserine exposure to the outer leaflet of the cell membrane, caspase activity, 7AAD staining and differentiation (CD86 expression. Results: We found by RT-PCR, intracellular pH measurements, MCV measurements and flow cytometry that ATP12A is expressed in human myelomonocytic HL-60 cells. Treatment of HL-60 cells with 1 mM butyrate leads to monocyte-directed differentiation whereas higher concentrations (10 mM induce apoptosis as assessed by flow-cytometric determination of CD86 expression, caspase activity, phosphatidylserine exposure on the outer leaflet of the cell membrane and MCV measurements. Transcriptional up-regulation of ATP12A and CD86 is evident in 1 mM butyrate-treated HL-60 cells. The H+/K+ ATPase inhibitor SCH28080 (100 µM diminishes K+-dependent pHi recovery after intracellular acid load and blocks RVI after osmotic cell shrinkage. After seeding, HL-60 cells increase their MCV within the first 24 h in culture, and subsequently

  4. Study on the Effects of Increasing Production Rate of Ruminal Acetate and Butyrate on Their Absorption and Passage in Alimentary Tract of Sheep

    Institute of Scientific and Technical Information of China (English)

    DU Rui-ping; LU De-xun

    2011-01-01

    Six Inner Mongolian semifine-wool wethers (1.5 years old,29-31 kg BW) fitted with a ruminal and a duodenum cannula were used to study the effects of increasing production rate of ruminal acetate and butyrate on their absorption and passage in alimentary tract by simulating continuous feeding and pulsecontinuous infusion technology.The sheep were divided into two groups randomly and fed the same basal diet,one group was for acetate measuring and the other group was for butyrate measuring.Diet was formulated according to maintain requirement of Inner Mongolian sheep and consisted of hay 69.64%,corn 18.11%,soybean meal 15.57%,wheat bran 5.57%,and premix 1.11%,the diet contained DM 92.34%,CP9.74%,ME 8.47 MJ/kg,Ca 0.31%,P 0.21%(dry matter basis).Three infusion levels of acetate and butyrate were designed to reach 2.5,3.0 and 4.0 multiple on the basis of basal production rate.The rumen and duodenum fluid samples were collected for measuring pH,Co-EDTA,acetate and butyrate concentration.

  5. Study on the Effects of Increasing Production Rate of Ruminal Acetate and Butyrate on Their Absorption and Passage in Alimentary Tract of Sheep

    Institute of Scientific and Technical Information of China (English)

    DU Rui-ping; LU De-xun

    2011-01-01

    Six Inner Mongolian semifine-wool wethers(1.5 years old,29-31 kg BW) fitted with a ruminal and a duodenum cannula were used to study the effects of increasing production rate of ruminal acetate and butyrate on their absorption and passage in alimentary tract by simulating continuous feeding and pulse-continuous infusion technology.The sheep were

  6. Poly-(epsilon-caprolactone)(PCL) and poly(hydroxy-butyrate)(PHB) blends containing seaweed fibers: morphology and thermal-mechanical properties.

    Science.gov (United States)

    Massive quantities of marine seaweed, Ulva armoricana are washed onto shores of many European countries and accumulates as waste. Attempts were made to utilize this renewable resource in hybrid composites by blending the algal biomass with biodegradable polymers such as poly(hydroxy-butyrate) and po...

  7. Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves.

    Science.gov (United States)

    Kato, Shin-Ichi; Sato, Katsuyoshi; Chida, Haruka; Roh, Sang-Gun; Ohwada, Shyuichi; Sato, Shusuke; Guilloteau, Paul; Katoh, Kazuo

    2011-12-01

    Although the growth-promoting action of sodium-butyrate (Na-butyrate) used as a feed additive has been observed in calves and pigs, the precise mechanisms involved remain to be clarified. In this study, pre-weaning calves were given milk formula (MF) supplemented with butyrate for 6 weeks to investigate its effects on postprandial changes in the plasma concentrations of metabolic hormones, and, simultaneously, on growth performance, the weight of the digestive organs and rumen papilla development. Ingestion of MF increased (Pliver, spleen, and stomach were not changed. In addition, there was no difference in the expression of mRNA for sodium-dependent glucose transporter-1 in the small intestinal epithelial tissues. We conclude that the accelerated growth performance related to the intake of Na-butyrate used as a feed additive reported previously in several species is partly due to improved insulin sensitivity and a better digestive functional development. These data could be applicable to animal and human nutrition. PMID:21911440

  8. Draft Genome Sequence of Syntrophomonas wolfei subsp. methylbutyratica Strain 4J5T (JCM 14075), a Mesophilic Butyrate- and 2-Methylbutyrate-Degrading Syntroph

    Science.gov (United States)

    Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Liu, Wen-Tso

    2016-01-01

    Syntrophomonas wolfei subsp. methylbutyratica strain 4J5T (=JCM 14075T) is a mesophilic bacterium capable of degrading butyrate and 2-methylbutyrate through syntrophic cooperation with a partner methanogen. The draft genome sequence is 3.2 Mb, with a G+C content of 45.5%. PMID:26941138

  9. Experimental and theoretical study of excess molar volumes and enthalpies for the ternary mixture butyl butyrate + 1-octanol + decane at 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Garabal, Sandra; Jimenez, Eulogio; Segade, Luisa; Casas, Herminio; Franjo, Carlos; Legido, Jose L.; Paz Andrade, M. Inmaculada

    2003-10-14

    This paper reports measurements on excess thermodynamic properties for the ternary system: butyl butyrate+1-octanol+decane at the temperature 308.15 K and atmospheric pressure. The binary and ternary experimental data were correlated using the Redlich-Kister and Cibulka equation, respectively. Experimental values were compared with the predictions obtained by several contribution models and several empirical equations.

  10. Electrochemical Characterization of Cellulose Acetate Butyrate-Prmutit Composite Membrane in Aqueous Uni-Uni Valent Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    A.K. Tiwari

    2015-06-01

    Full Text Available Co-mixed cellulose acetate butyrate and permutit in a definite composition was prepared and coded as MRS-2. The membrane potential was measured with uni-uni valent electrolyte, NaCl solutions using saturated calomel electrodes (SCEs.The effective fixed charge density of the membrane was determined by TMS method and it showed dependence on the porosity, charge on the membrane matrix, charge and size of permeating ions. Other important electrochemical parameters were calculated. Conductance-time data were generated for the kinetic study of the permeating ions in terms of membrane permeability, flow and flux parameters. Donnan membrane equilibrium condition was examined. Membrane adsorbability showed concave dependence with external electrolyte solution and convex type dependence was showed by swelling and conductance parameters. This membrane had no characteristic of anomalous osmosis, indicates that there is no water flooding will take place during membrane operation.

  11. The changes in telomerase activity and telomere length in HeLa cells undergoing apop- tosis induced by sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The changes in telomerase activity and telomere length during apoptosis in HeLa cells as induced by sodium butyrate (SB) have been studied. After a 48 h SB treatment, HeLa cells demonstrated characteristic apoptotic hallmarks including chromatin condensation, formation of apoptotic bodies and DNA Laddering which were caused by the cleavage and degradation of DNA between nucleosomes. There were no significant changes in telomerase activity of apoptotic cells, while the telomere length shortened markedly. In the meanwhile, cells became more susceptible to apoptotic stimuli and telomere became more vulnerable to degradation after telomerase activity was inhibited. All the results suggest that the apoptosis induced by SB is closely related to telomere shortening, while telomerase enhances resistance of HeLa cells to apoptotic stimuli by protecting telomere.

  12. The Study of Organic Acids Changes with Different Lactic Acid Starters During Iranian White Brined Cheese Ripening

    Directory of Open Access Journals (Sweden)

    M.B. Habbibi

    2002-04-01

    Full Text Available For Iranian fermented cheese processing and ripening, different lactic acid bacteria (LAB that affect on the physicochemical properties and hence the organoleptic characteristics of the cheese is used. Determination of physicochemical changes of cheese, particularly, organic acids is of importance. In this study five cheese formulas with five different group of cheese starters were processed and ripened in 8% brine during two months at 12±1 °C. HPLC analysis of organic acids were accomplished, using SCR-101H column with U. V. detector at 214 nm and quantified with high purity standards concerning each organic acid recovery. Pyruvic, orotic, citric, propionic, lactic, butyric and acetic acids were analyzed after 1, 10, 20, 30, 40, 50 and 60 days of processing and storage. Each determined organic acid exhibited a specific profile changes during cheese ripening. Lactic acid was dominant organic acid in all samples. Total organic acids were increased significantly after 30 days of storage, but decreased up to the end of ripening. The profile changes of organic acids which was similar in all samples with different amounts related to dominant lactic acid with about 80-90% of the total organic acids. The aromatic mesophile group, CH-N-O1(including Lactococci and Leuconostocs and Lactobacillus casei and also the mixed mesophiles plus thermophile starters group, CH-1 (including Lactobacillus bulgaricus and Streptococcus salivarius ssp. thermophilus caused a significant decrease in citric acid and increase in acetic and propionic acid in related cheese samples compared with other cheeses (P < 0.01. But cheese containing only thermophiles or the mixed thermophile and mesophile (code 54 revealed a significant increase in butyric acid. In all samples the changes in pyruvic acid content was irregular. The ripening period of cheese samples were determined by the stepwise regression analysis in relation to their exact amount of organic acids.

  13. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken – a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mátis Gábor

    2013-01-01

    Full Text Available Abstract Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus

  14. CATALYTIC ESTERIFICATION OF CARBOXYLIC ACIDS WITH ALCOHOLS BY SULFO—POLYVINYL CHLORIDE

    Institute of Scientific and Technical Information of China (English)

    YuShanxin; ZHAOZongbao; 等

    1993-01-01

    Polyvinyl Chloride reacted with chlorosulfonic acid to from a polymer catalyst PVC-SO3H.This polymer catalyst was found to have high activity for resterification reaction between carboxylic acids and alcohols.This paper deals with the conditions in synthesis of n-butlyacetate catalyzed with PVC-SO3H.The PVC-SO3H was used as a catalyst for preparing 11 esters of acetic acid,propionic acid and butyric acid with the yields of 82-92%.

  15. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Alfredo D Guerron

    Full Text Available BACKGROUND: The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. CONCLUSIONS/SIGNIFICANCE: These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with

  16. Lipid alterations during differentiation and apoptosis induced by butyrate and PUFAs in human colon cell lines

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Stixová, Lenka; Netíková, Jaromíra; Cigánek, M.; Slavík, J.; Machala, M.; Kozubík, Alois

    Gothenburg, 2009. s. 75. [Frontier Lipidology: Lipidomics in Health and Disease. 10.05.2009-13.05.2009, Gothenburg] R&D Projects: GA ČR(CZ) GA524/07/1178; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : colon cancer * fatty acids * apoptosis Subject RIV: AQ - Safety, Health Protection, Human - Machine

  17. Analysis of aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography

    Institute of Scientific and Technical Information of China (English)

    Kazuaki ITO; Kazuhiko TANAKA; Jun SAKAMOTO; Kazuya NAGAOKA; Yohichi TAKAYAMA; Takashi KANAHORI; Hiroshi SUNAHARA; Tsuneo HAYASHI; Shinji SATO; Takeshi HIROKAWA

    2012-01-01

    The analysis of seven aliphatic carboxylic acids ( formic,acetic,propionic,iso-butyric,n-butyric,iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents (benzoic acid,perfluorobutyric acid (PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet (UV) detection.The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column ( TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column ( TSKgel Super IC-A/C ).Good separation was performed on the TSKgel SCX in shorter retention times.For the TSKgel Super IC-A/C,peak shape of the acids was sharp and symmetrical in spite of longer retention times.In addition,the mutual separation of the acids was good except for iso- and n-butyric acids.The better separation and good detection was achieved by using the two columns (TSKgel SCX and TSKgel Super IC-A/C connected in series),lower concentrations of PFBA and sulfuric acid as eluents,non-suppressed conductivity detection and UV detection at 210 nm.This analysis was applied to anaerobic digestion process waters.The chromatograms with conductivity detection were relatively simpler compared with those of UV detection.The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.

  18. The activation of the TLR2/p38 pathway by sodium butyrate in bovine mammary epithelial cells is involved in the reduction of Staphylococcus aureus internalization.

    Science.gov (United States)

    Alva-Murillo, Nayeli; Medina-Estrada, Ivan; Báez-Magaña, Marisol; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2015-12-01

    Staphylococcus aureus is an etiological agent of human and animal diseases, and it is able to internalize into non-professional phagocytic cells (i.e. bovine mammary epithelial cells, bMECs), which is an event that is related to chronic and recurrent infections. bMECs contribute to host innate immune responses (IIR) through TLR pathogen recognition, whereby TLR2 is the most relevant for S. aureus. In a previous report, we showed that sodium butyrate (NaB, 0.5mM), which is a short chain fatty acid (SCFA), reduced S. aureus internalization into bMECs by modulating their IIR. However, the molecular mechanism of this process has not been described, which was the aim of this study. The results showed that the TLR2 membrane abundance (MA) and mRNA expression were induced by 0.5mM NaB ∼1.6-fold and ∼1.7-fold, respectively. Additionally, 0.5mM NaB induced p38 phosphorylation, but not JNK1/2 or ERK1/2 phosphorylation in bMECs, which reached the baseline when the bMECs were S. aureus-challenged. Additionally, bMECs that were treated with 0.5mM NaB (24h) showed activation of 8 transcriptional factors (AP-1, E2F-1, FAST-1, MEF-1, EGR, PPAR, ER and CBF), which were partially reverted when the bMECs were S. aureus-challenged. Additionally, 0.5mM NaB (24h) up-regulated mRNA expression of the antimicrobial peptides, TAP (∼4.8-fold), BNBD5 (∼3.2-fold) and BNBD10 (∼2.6-fold). Notably, NaB-treated and S. aureus-challenged bMECs increased the mRNA expression of all of the antimicrobial peptides that were evaluated, and this was evident for LAP and BNBD5. In the NaB-treated bMECs, we did not detect significant expression changes for IL-1β and IL-6 and only TNF-α, IL-10 and IL-8 were induced. Interestingly, the NaB-treated and S. aureus-challenged bMECs maintained the anti-inflammatory response that was induced by this SCFA. In conclusion, our results suggest that 0.5mM NaB activates bMECs via TLR2/p38, which leads to improved antimicrobial defense before/after pathogen

  19. Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Pind, Peter Frode; Angelidaki, Irini

    2003-01-01

    parameter set occupied mutually exclusive parameter spaces, indicating that all were statistically different from each other. However, qualitatively, the influence on model outputs was similar, and the lumped set would be reasonable for mixed acid digestion. The main characteristic not represented by Monod...... in leucine (which produces i-valerate), and the modified model structure and stoichiometry as proposed here should be used. This requires no additional kinetic parameters and one additional dynamic concentration state variable (i-valerate) in addition to the variables in the base model. (C) 2003...

  20. Carboxylic acids in the hindgut of rats fed highly soluble inulin and Bifidobacterium lactis (Bb-12), Lactobacillus salivarius (UCC500) or Lactobacillus rhamnosus (GG)

    OpenAIRE

    Nilsson, Ulf; Nyman, Margareta

    2007-01-01

    Background: Propionic and butyric acids are important nutrients for the mucosal cells and may therefore increase the nutritional status and reduce the permeability of the colonic mucosa. These acids have also been suggested to counteract diseases in the colon, e.g. ulcerative colitis and colon cancer. Different substrates lead to different amounts and patterns of carboxylic acids (CAs). Objective: To study the effect of probiotics on CA formation in the hindgut of rats given inulin. Design: T...

  1. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets

    OpenAIRE

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors...

  2. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets

    OpenAIRE

    Trond eUlven

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84 and GPR120 made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane receptors free fatty...

  3. Effect of sodium butyrate on diet-induced obesity in the Sprague-Dawley rat%丁酸钠对饮食诱导肥胖大鼠的作用

    Institute of Scientific and Technical Information of China (English)

    朱涵; 谭莎莎; 杨虹; 王凌

    2015-01-01

    Summary Obesity has been reported as an increasingly prevalent and highly heritable health problem leading to increased risks for several common diseases . Human obesity can be induced by genetic factors such as loss‐of‐function mutations in individual genes . The products of these genes are essential for normal body mass regulation in both laboratory animals and humans . Nevertheless , the role of gene‐environment interactions in the etiology of obesity cannot be ignored . Diet is a major factor of our current obesogenic environment , and the interests have been aroused in rodent models of diet‐induced obesity (DIO) . The SD (Sprague‐Dawley) rat model of DIO was been reported to exhibit a clear segregation into susceptible and resistant subpopulations shortly after being transferred to a high energy diet . We established the obesity‐susceptible ( OS) and obesity‐resistant ( OR) rat model and examined the effect of butyric acid , a short chain fatty acid formed by fermentation in the large intestine , in the regulation of obesity in mice fed a high‐fat diet . Male SD rats were divided into OS rats and OR rats after being fed with high fat diet for three weeks . Then both of them were fed with high fat diet for another 12 weeks . Measurements of body mass , body length , Lee�s index , and body mass index (BMI) were performed . After the rats were sacrificed , body fat content , serum total cholesterol ( TC ) , triglyceride ( TG ) , high density lipoprotein ( HDL ) , low density lipoprotein ( LDL) and serum leptin were measured . The results showed that there were significant differences in body mass , BMI , body fat content , TC , TG , LDL and serum leptin between OS rats and control rats . But there were no significant differences between OR rats and control rats . In the OS rats , sodium butyrate was administrated in the high‐fat diet at the concentration of 8 mmol/L for 16 weeks . Body mass , body length , Lee�s index , BMI , body fat

  4. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs.

    Science.gov (United States)

    Manzanilla, E G; Nofrarías, M; Anguita, M; Castillo, M; Perez, J F; Martín-Orúe, S M; Kamel, C; Gasa, J

    2006-10-01

    We evaluated the effects of 3 additives, sodium butyrate (AC), avilamycin (AB), and a combination of plant extracts (XT), on the productive performance and the intestinal environment of the early-weaned pig. The XT was a standardized mixture with 5% (wt/wt) carvacrol (from Origanum spp.), 3% cinnamaldehyde (from Cinnamonum spp.), and 2% capsicum oleoresin (from Capsicum annum). Pigs (n = 32) weaned at 18 to 22 d of age with an initial BW of 6.0 +/- 0.10 kg were allocated to 8 pens that, in turn, were allocated to 4 treatments. The treatments included a basal diet (CT) or the basal diet supplemented with 0.3% of AC, 0.04% of AB, or 0.03% of XT. Productive performance was determined during the initial 14 d postweaning. On d 19 and 21 of the experiment, the pigs were killed to allow collection of digesta and intestinal tissue to evaluate variables indicative of aspects of the gastrointestinal environment. Treatments AB and AC improved G:F (P = 0.012 and 0.003, respectively) compared with the CT. Butyrate included in the diet was only detected in the stomach but not in cranial jejunum. When compared with CT, AC produced a lower ileal starch digestibility (P = 0.002) and a lower whole-tract OM and starch digestibility (P = 0.001 and 0.003, respectively), related to a lower VFA concentration in the cranial colon (P = 0.082) and a numerically reduced branched VFA percentage in the rectum. The AB treatment diminished propionate production in caudal colon (P = 0.002) and rectum (P = 0.012) compared with CT. The AC group exhibited deeper crypt depth in the jejunum without variations in villus height compared with CT (P = 0.042). The AC and AB groups also increased goblet cell presence in the colon (P = 0.001 and 0.032, respectively). On the other hand, AB and XT diminished intraepithelial lymphocytes in the jejunum (P = 0.003 and 0.034, respectively). The XT increased lymphocyte presence in the colon (P = 0.003). These results show the important influence of AB and AC on

  5. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    Science.gov (United States)

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences. PMID:15250416

  6. A new dyed poly (vinyl butyral) film for high-dose applications

    International Nuclear Information System (INIS)

    The polymer films under investigation are comprising a mixture of 2 dyes, namely, 2,6-dichlorophenol indophenol sodium salt (DCP), and bromo cresol green (BCG) indicator in presence of different concentrations of chloral hydrate. The color of this film changes from the blue to purple and finally to yellow, the bleaching reaction for DCP takes place in the beginning, giving the tinge of purple color, followed by the transformation of BCG to its acidic form due to the presence of chloral hydrate. The response of these films is affected by the change in chloral hydrate concentration and also the ratio of the 2 combined dyes. Accordingly, these films could be used as dosimeter in two steps color change indicators, in the dose range from 0.2 to 6 kGy. To examine their suitability for eventual application in different food radiation processing, the dosimetric parameters, e.g. dose response, effect of relative humidity during irradiation on response as well as pre-and post-irradiation stability of these film are investigated. Using the phenomenon of HCl generation from PVC under irradiation, ph-indicating dyes have been added to PVC. A chlorine-containing polymer is not necessary for this reaction to occur. A similar color change can be produced if chloro alkanes are present in the dye-containing matrix (Whittaker, 1990). Ueno (1988) developed a radiation dosimeter from acidity indicators by coating a high molecular weight polymer support (e.g. polyester film) with a composition containing a halogen-containing polymer (e.g. PVC), a pigment which changes color with the change of ph and a basic material (e.g. KOH in EtOH). For routine dose monitoring in radiation processing, the polymeric dyed flexible films are most commonly used as dosimeters and indicators for both electron beams and gamma rays (Ebraheem et al., 1999 and McLaughlin et al

  7. The effect of short-chain fatty acids on human monocyte-derived dendritic cells.

    Science.gov (United States)

    Nastasi, Claudia; Candela, Marco; Bonefeld, Charlotte Menné; Geisler, Carsten; Hansen, Morten; Krejsgaard, Thorbjørn; Biagi, Elena; Andersen, Mads Hald; Brigidi, Patrizia; Ødum, Niels; Litman, Thomas; Woetmann, Anders

    2015-01-01

    The gut microbiota is essential for human health and plays an important role in the pathogenesis of several diseases. Short-chain fatty acids (SCFA), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients that distribute systemically via the blood. The aim of this study was to investigate the transcriptional response of immature and LPS-matured human monocyte-derived DC to SCFA. Our data revealed distinct effects exerted by each individual SCFA on gene expression in human monocyte-derived DC, especially in the mature ones. Acetate only exerted negligible effects, while both butyrate and propionate strongly modulated gene expression in both immature and mature human monocyte-derived DC. An Ingenuity pathway analysis based on the differentially expressed genes suggested that propionate and butyrate modulate leukocyte trafficking, as SCFA strongly reduced the release of several pro-inflammatory chemokines including CCL3, CCL4, CCL5, CXCL9, CXCL10, and CXCL11. Additionally, butyrate and propionate inhibited the expression of lipopolysaccharide (LPS)-induced cytokines such as IL-6 and IL-12p40 showing a strong anti-inflammatory effect. This work illustrates that bacterial metabolites far from the site of their production can differentially modulate the inflammatory response and generally provides new insights into host-microbiome interactions. PMID:26541096

  8. Oxidation and degradation of short-chain aliphatic compounds by hyperazeotropic nitric acid

    International Nuclear Information System (INIS)

    To determine the ultimate fate of organic material present in nuclear fuel reprocessing solutions and the chemical nature of the last surviving residues, organic products of the hydrolysis/nitrolysis of tributyl phosphate were subjected to further degradation with boiling 20 M HNO3 (Iodox Process) and carbon balances were run. Except for methyl nitrate, nitrate esters were oxidized in refluxing 20 M HNO3, primarily to a mixture of carbon dioxide and the corresponding and shorter chain aliphatic acids. Typically, 40% or more of the carbon from the nitrate esters was converted to CO2. Except for formic acid, the straight-chain monobasic acids oxidized slowly. Compounds identified among those resulting from oxidation of butyric acid (e.g., from the oxidation of butyl nitrate) included succinic and oxalic acids, 3- and 4-hydroxy-butyric acids, nitrate esters of 3- and 4-hydroxybutyric acid, butyrolactone, and 3-nitrobutyric acid. The mechanisms for formation of these products are briefly discussed. Oxalic acid and the hydroxyaliphatic acids have some potential for complexing ceertain metallic fission products. These results show that traces of organic materials will always be present in actual fuel processing solutions unless special measures are taken to ensure their removal. This conclusion was reinforced by analysis of recycle acid from the Savannah River Plant. The possible implications to a reprocessing plant using 100% recycle are briefly discussed

  9. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    International Nuclear Information System (INIS)

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 3130K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 2980K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory

  10. The missing link in linear alkylbenzenesulfonate surfactant degradation : 4-sulfoacetophenone as a transient intermediate in the degradation of 3-(4-sulfophenyl) butyrate by comamonas testosteroni KF-1

    OpenAIRE

    Schleheck, David; Netzer, Frederick von; Fleischmann, Thomas; Rentsch, Daniel; Huhn, Thomas; Cook, Alasdair M.; Kohler, Hans-Peter E.

    2010-01-01

    Biodegradation of the laundry surfactant linear alkylbenzenesulfonate (LAS) involves complex bacterial communities. The known heterotrophic community has two tiers. First, all LAS congeners are oxygenated and oxidized to about 50 sulfophenylcarboxylates (SPC). Second, the SPCs are mineralized. Comamonas testosteroni KF-1 mineralizes 3-(4-sulfophenyl)butyrate (3-C4-SPC). During growth of strain KF-1 with 3-C4-SPC, two transient intermediates were detected in the culture medium. One intermediat...

  11. Effect of Sodium Butyrate on Lung Vascular TNFSF15 (TL1 A) Expression: Differential Expression Patterns in Pulmonary Artery and Microvascular Endothelial Cells

    OpenAIRE

    Safaya, Surinder; Klings, Elizabeth S.; Odhiambo, Adam; Li, Guihua; Farber, Harrison W.; Martin H Steinberg

    2009-01-01

    Vascular endothelial growth inhibitor TNFSF15 (TL1 A), a ligand for TNFRSF25 (DR3) and decoy receptor TNFRSF6B (DcR3), is expressed in human pulmonary arterial (HPAEC) and lung microvascular (HMVEC) endothelial cells where it might modulate inflammation and sickle vasculopathy. Pulmonary disease, endothelial abnormalities and inflammation are prominent features of sickle cell disease (SCD). Butyrate has opposing effects on endogenous TNFSF15 expression in pulmonary endothelium, acting as an i...

  12. Enhanced transfection efficiency and improved cell survival after electroporation of G2/M-synchronized cells and treatment with sodium butyrate.

    OpenAIRE

    Goldstein, S; Fordis, C M; Howard, B H

    1989-01-01

    To achieve high transfection efficiency in human fibroblasts with good preservation of proliferative capacity we developed an electroporation procedure that combines two distinct modalities: use of recipient cells synchronized in the late G2/mitotic phase of the cell cycle and treatment of cells post-electroporation with 5 mM butyrate. This combination enabled reduction of plasmid DNA concentration and electroporation voltage, both associated with cytotoxicity, while greatly enhancing transfe...

  13. Parâmetros reacionais para a síntese enzimática do butirato de butila em solventes orgânicos Reactional parameters for enzymatic synthesis of butyl butyrate in organic solvent

    Directory of Open Access Journals (Sweden)

    Heizir F. CASTRO

    1997-12-01

    Full Text Available A síntese orgânica catalisada por enzimas envolve um mecanismo complexo dependente do tipo de substrato, enzima, solvente orgânico e teor de água no meio reacional. Neste trabalho foi estudado a influência de alguns desses parâmetros no rendimento da esterificação do butanol com ácido butírico, utilizando uma preparação enzimática comercial de lipase. A polaridade e natureza do solvente, bem como a razão molar entre o butanol e ácido butírico, foram considerados os fatores que mais influenciaram o desenvolvimento dessa síntese enzimática.The organic synthesis catalyzed by enzymes is a complex function of substrate concentration, water concentration in the liquid phase, enzyme and organic solvent properties. In this work the influence of some parameters on the esterification of butanol with butyric acid was investigated, using a commercial lipase preparation. The polarity and nature of the solvent and also the substrate mole ratios played an important role in the performance of this enzymatic synthesis.

  14. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    Directory of Open Access Journals (Sweden)

    Jorge Pliego

    2015-01-01

    Full Text Available Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.

  15. Sodium butyrate exerts neuroprotective effects by restoring the blood-brain barrier in traumatic brain injury mice.

    Science.gov (United States)

    Li, Haixiao; Sun, Jing; Wang, Fangyan; Ding, Guoqiang; Chen, Wenqian; Fang, Renchi; Yao, Ye; Pang, Mengqi; Lu, Zhong-Qiu; Liu, Jiaming

    2016-07-01

    Sodium butyrate (SB) has been widely used to treat cerebral diseases. The aim of the present study is to examine the neuroprotective effects of SB on early TBI in mice and to explore the underlying mechanisms of these effects. TBI was induced using a modified weight-drop method. Neurological deficits were evaluated according to the neurological severity score (NSS), brain oedema was measured by brain water content, and blood-brain barrier (BBB) permeability was evaluated by Evans blue (EB) dye extravasation. Neuronal injury was assessed by hematoxylin and eosin (H&E) staining and Fluoro-Jade C staining. The expression of tight junction-associated proteins, such as occludin and zonula occludens-1 (ZO-1), was analysed by western blotting and immunofluorescence. Our results showed that mice subjected to TBI exhibited worsened NSS, brain oedema, neuronal damage and BBB permeability. However, these were all attenuated by SB. Moreover, SB reversed the decrease in occludin and ZO-1 expression induced by TBI. These findings suggest that SB might attenuate neurological deficits, brain oedema, neuronal change and BBB damage, as well as increase occludin and ZO-1 expression in the brain to protect against TBI. The protective effect of SB may be correlated with restoring the BBB following its impairment. PMID:27017959

  16. Efecto del consumo de la fibra dietética en la expresión cuantitativa del receptor de butirato GPR43 en colon de ratas Effect of dietary fiber in the quantitative expression of butyrate receptor GPR43 in rats colon

    Directory of Open Access Journals (Sweden)

    L. Y. Corte Osorio

    2011-10-01

    Full Text Available Introducción: Los ácidos grasos de cadena corta (AGCC acetato, propionato y butirato, son productos de fermentación de la fibra dietética (FD en el intestino grueso. Recientemente, el butirato ha sido estudiado ya que es considerado indispensable para el mantenimiento de las funciones del colon y por su relación con la protección del cáncer colorrectal. Esto se atribuye a la capacidad de butirato de regular la expresión génica por mecanismos como la inhibición de la enzima histona deacetilasa. Se ha reportado que el receptor de AGCC, GPR43 está involucrado en el proceso de transducción de señales intracelulares una vez que se unen a ligandos como butirato para generar los efectos fisiológicos del butirato en los colonocitos. Objetivo: Determinar si el consumo de FD de nopal (Opuntia ficus I tiene influencia directa sobre la expresión cuantitativa del receptor específico de butirato GPR43. Métodos: Ratas adultas Wistar se sometieron a cuatro diferentes dietas variando el contenido de FD en 0, 5, 15 y 25% de FD denopal, respectivamente. Resultados y discusión: Los resultados mostraron un aumento significativo de la expresión relativa de GPR43 (93,1% cuando se suministró a las ratas una dieta conteniendo 5% de FD de nopal, usando como gen de referencia β-actina. Los resultados de esta investigación aportarán nuevos datos a los estudios que determinan la relación de la dieta con la salud intestinal, con el fin de ampliar el conocimiento sobre los efectos del ácido butírico en las funciones colónicas.Introduction: Short chain fatty acids (SCFA acetate, propionate and butyrate are the major anions produced by the bacterial fermentation of dietary fiber (DF in colon. Recently, butyrate has been recently studied because is important to maintain colonic functions and because it has been related with a protective effect in colorectal cancer, which is mainly, explained by its potential to regulate gene expression by inhibiting

  17. Modulation of post-partum reproductive performance in dairy cows through supplementation of long- or short-chain fatty acids during transition period.

    Science.gov (United States)

    Ulfina, G G; Kimothi, S P; Oberoi, P S; Baithalu, R K; Kumaresan, A; Mohanty, T K; Imtiwati, P; Dang, A K

    2015-12-01

    Thirty-six cross-bred cows were used to study the effect of long-chain (flaxseed) or short-chain (butyric acid) fatty acid supplementation on metabolic status, ovarian function and reproduction performance during transition period. Control cows received a routine feed of transition diet, while the cows in two treatment groups were supplemented with either 750-g crushed flaxseed or 250 g butyric acid per cow per day. Ovarian activity was monitored by transrectal ultrasonography on 10th, 20th and 30th days post-partum. Blood samples were collected by jugular venipuncture into heparinized polystyrene tubes; plasma was prepared and stored under -20 °C until analysis. Results indicated that cows in flaxseed group were in positive energy balance as indicated by lower NEFA and Beta hydroxy Butyrate and higher glucose concentrations. Uterine involution was completed well within 30 days post-partum in all the cows in flaxseed fed group compared to 76.9% in butyric acid supplemented and 61.5% in control groups. The size of dominant follicle and corpus luteum was significantly higher (p Cows fed on diets supplemented with flaxseed exhibited post-partum heat earlier and bred sooner (p cows. It has been noticed that supplementation of flaxseed and butyric acid enhanced involution of uterus, early resumption of cyclicity and thereby early breeding. However, in view of the encouraging results obtained for flaxseed supplemented group, its organic nature and easier availability at farmer's gate, we concluded that flaxseed can be safely included in transition diet to modulate reproductive performance of dairy cattle. PMID:25879374

  18. Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification.

    Science.gov (United States)

    Bories, André; Guillot, Jean-Michel; Sire, Yannick; Couderc, Marie; Lemaire, Sophie-Andréa; Kreim, Virginie; Roux, Jean-Claude

    2007-07-01

    The effect of the addition of nitrate to winery wastewaters to control the formation of VFA in order to prevent odours during storage and treatment was studied in batch bioreactors at different NO(3)/chemical oxygen demand (COD) ratios and at full scale in natural evaporation ponds (2 x 7000 m(2)) by measuring olfactory intensity. In the absence of nitrate, butyric acid (2304 mgL(-1)), acetic acid (1633 mgL(-1)), propionic acid (1558 mgL(-1)), caproic acid (499 mgL(-1)) and valeric acid (298 mgL(-1)) were produced from reconstituted winery wastewater. For a ratio of NO(3)/COD=0.4 gg(-1), caproic and valeric acids were not formed. The production of butyric and propionic acids was reduced by 93.3% and 72.5%, respectively, at a ratio of NO(3)/COD=0.8, and by 97.4% and 100% at a ratio of NO(3)/COD=1.2 gg(-1). Nitrate delayed and decreased butyric acid formation in relation to the oxidoreduction potential. Studies in ponds showed that the addition of concentrated calcium nitrate (NITCAL) to winery wastewaters (3526 m(3)) in a ratio of NO(3)/COD=0.8 inhibited VFA production, with COD elimination (94%) and total nitrate degradation, and no final nitrite accumulation. On the contrary, in ponds not treated with nitrate, malodorous VFA (from propionic to heptanoïc acids) represented up to 60% of the COD. Olfactory intensity measurements in relation to the butanol scale of VFA solutions and the ponds revealed the pervasive role of VFA in the odour of the untreated pond as well as the clear decrease in the intensity and not unpleasant odour of the winery wastewater pond enriched in nitrates. The results obtained at full scale underscored the feasibility and safety of the calcium nitrate treatment as opposed to concentrated nitric acid. PMID:17467770

  19. A metabolic link between mitochondrial ATP synthesis and liver glycogen metabolism: NMR study in rats re-fed with butyrate and/or glucose

    Directory of Open Access Journals (Sweden)

    Beauvieux Marie-Christine

    2011-06-01

    Full Text Available Abstract Background Butyrate, end-product of intestinal fermentation, is known to impair oxidative phosphorylation in rat liver and could disturb glycogen synthesis depending on the ATP supplied by mitochondrial oxidative phosphorylation and cytosolic glycolysis. Methods In 48 hr-fasting rats, hepatic changes of glycogen and total ATP contents and unidirectional flux of mitochondrial ATP synthesis were evaluated by ex vivo 31P NMR immediately after perfusion and isolation of liver, from 0 to 10 hours after force-feeding with (butyrate 1.90 mg + glucose 14.0 mg.g-1 body weight or isocaloric glucose (18.2 mg.g-1 bw; measurements reflected in vivo situation at each time of liver excision. The contribution of energetic metabolism to glycogen metabolism was estimated. Results A net linear flux of glycogen synthesis (~11.10 ± 0.60 μmol glucosyl units.h-1.g-1 liver wet weight occurred until the 6th hr post-feeding in both groups, whereas butyrate delayed it until the 8th hr. A linear correlation between total ATP and glycogen contents was obtained (r2 = 0.99 only during net glycogen synthesis. Mitochondrial ATP turnover, calculated after specific inhibition of glycolysis, was stable (~0.70 ± 0.25 μmol.min-1.g-1 liver ww during the first two hr whatever the force-feeding, and increased transiently about two-fold at the 3rd hr in glucose. Butyrate delayed the transient increase (1.80 ± 0.33 μmol.min-1.g-1 liver ww to the 6th hr post-feeding. Net glycogenolysis always appeared after the 8th hr, whereas flux of mitochondrial ATP synthesis returned to near basal level (0.91 ± 0.19 μmol.min-1.g-1 liver ww. Conclusion In liver from 48 hr-starved rats, the energy need for net glycogen synthesis from exogenous glucose corresponds to ~50% of basal mitochondrial ATP turnover. The evidence of a late and transient increase in mitochondrial ATP turnover reflects an energetic need, probably linked to a glycogen cycling. Butyrate, known to reduce oxidative

  20. Analytical study of fatty acids in bioreactor of an anaerobic treatment of distillery effluent

    International Nuclear Information System (INIS)

    An anaerobic digestion in bioreactors, offers a two-fold benefit: pollution potential reduction and biogas production. In this study, fatty acids in an anaerobic reactor are studied. The reactor exhibits a notable variation at different corks (1-6). The concentrations for both acetic acid and propionic acid are at maximum range at cork 2 and 5. For isobutyric acid; it is maximum at 1 and 2 corks. Butyric acid is maximum at 5; isovaleric acid is maximum at cork-2. This shows that cork-2 location has its maximum activity for fatty acids. Being nearest to the agitator this location has maximum agitation and resulted more formation of the fatty acids. This acidic effect will ultimately affect the reactor output for Biogas generation. (author)

  1. Effet de l'acide indole butyrique, de l'acide gibbérellique et d'un inhibiteur d'éthylène sur la fructification et la qualité des fruits du piment cultivé sous serre froide

    Directory of Open Access Journals (Sweden)

    Dridi, B.

    2005-01-01

    Full Text Available Effect of Indole Butyric Acid, Gibberellic Acid and an Ethylene Inhibitor on Fructification and Fruit Quality of Pepper Grown under Unheated Plastic House. The yield and fruit quality of pepper grown under unheated plastic house are usually negatively affected by low night temperature occurring during four to five months, this disrupt the local market supply and restrict the export possibilities. The effect of indole butyric acid (AIB, gibberellic acid (GA3 and an ethylene inhibitor (AgNO3 on fructification and fruit quality of two hot and two sweet pepper varieties grown under unheated plastic house, was studied. These substances, sprayed once per week just before flower initiation of the first four bifurcations, stimulated flower initiation and development; AgNO3 produced a significant increase in flower buds (98% more than the control and reduced the buds abortion. Treatments did not affect bud flower and flower abortion, but increased fruit characteristics; treatment with AIB produced the longest fruits and the highest number of seed per fruit. On Beldi, hot pepper variety, gibberellic acid and indole butyric acid treatment increased fruit soluble solid content, citric acid, ascorbic acid concentration and chlorophyll a content, while AgNO3 treatment increased chlorophyll b concentration.

  2. Efficient derivation of functional hepatocytes from mouse induced pluripotent stem cells by a combination of cytokines and sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi; YANG Yang; ZHANG Jian; WANG Guo-ying; LIU Wei; QIU Dong-bo; HEI Zi-qing; YING Qi-long; CHEN Gui-hua

    2011-01-01

    Background Hepatocyte transplantation has been proposed as an alternative to whole-organ transplantation to support many forms of hepatic insufficiency.Unfortunately,the lack of donor livers makes it difficult to obtain enough viable human hepatocytes for hepatocyte-based therapies.Therefore,it is urgent to find new ways to provide ample hepatocytes.Induced pluripotent stem (iPS) cells,a breakthrough in stem cell research,may terminate these hinders for cell transplantation.For the promise of iPS cells to be realized in liver diseases,it is necessary to determine if and how efficient they can be differentiated into functional hepatocytes.Methods In this study,we directly compared the hepatic-differentiation capacity of mouse iPS cells and embryonic stem (ES) cells with three different induction approaches:conditions via embryonic body (EB) formation plus cytokines,conditions by combination of dimethyl sulfoxide and sodium butyrate and chemically defined,serum free monolayer conditions.Among these three induction conditions,more homogenous populations can be promoted under chemically defined,serum free conditions.The cells generated under these conditions exhibited hepatic functions in vitro,including glycogen storage,indocynine green (ICG) uptake and release as well as urea secretion.Although efficient hepatocytes differentiation from mouse iPS cells were observed,mouse iPS cells showed relatively lower hepatic induction efficiency compared with mouse ES cells.Results Mouse iPS cells would be efficiently differentiated into functional hepatocytes in vitro,which may be helpful in facilitating the development of hepatocytes for transplantation and for research on drug discovery.Conclusion We demonstrate that mouse iPS cells retain full potential for fetal liver development and describe procedures that facilitates the efficient generation of highly differentiated human hepatocyte-like cells from iPS cells in vitro.

  3. Green tea phenolics inhibit butyrate-induced differentiation of colon cancer cells by interacting with monocarboxylate transporter 1

    Science.gov (United States)

    Sánchez-Tena, S.; Vizán, P.; Dudeja, P.K.; Centelles, J.J.; Cascante, M.

    2016-01-01

    Diet has a significant impact on colorectal cancer and both dietary fiber and plant-derived compounds have been independently shown to be inversely related to colon cancer risk. Butyrate (NaB), one of the principal products of dietary fiber fermentation, induces differentiation of colon cancer cell lines by inhibiting histone deacetylases (HDACs). On the other hand, (−)-epicatechin (EC) and (−)-epigallocatechin gallate (EGCG), two abundant phenolic compounds of green tea, have been shown to exhibit antitumoral properties. In this study we used colon cancer cell lines to study the cellular and molecular events that take place during co-treatment with NaB, EC and EGCG. We found that (i) polyphenols EC and EGCG fail to induce differentiation of colon adenocarcinoma cell lines; (ii) polyphenols EC and EGCG reduce NaB-induced differentiation; (iii) the effect of the polyphenols is specific for NaB, since differentiation induced by other agents, such as trichostatin A (TSA), was unaltered upon EC and EGCG treatment, and (iv) is independent of the HDAC inhibitory activity of NaB. Also, (v) polyphenols partially reduce cellular NaB; and (vi) on a molecular level, reduction of cellular NaB uptake by polyphenols is achieved by impairing the capacity of NaB to relocalize its own transporter (monocarboxylate transporter 1, MCT1) in the plasma membrane. Our findings suggest that beneficial effects of NaB on colorectal cancer may be reduced by green tea phenolic supplementation. This valuable information should be of assistance in choosing a rational design for more effective diet-driven therapeutic interventions in the prevention or treatment of colorectal cancer. PMID:23994611

  4. Interaction of Dietary Fatty Acids with Tumour Necrosis Factor Family Cytokines during Colon Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Jiřina Hofmanová

    2014-01-01

    Full Text Available Intestinal homeostasis is precisely regulated by a number of endogenous regulatory molecules but significantly influenced by dietary compounds. Malfunction of this system may result in chronic inflammation and cancer. Dietary essential n-3 polyunsaturated fatty acids (PUFAs and short-chain fatty acid butyrate produced from fibre display anti-inflammatory and anticancer activities. Both compounds were shown to modulate the production and activities of TNF family cytokines. Cytokines from the TNF family (TNF-α, TRAIL, and FasL have potent inflammatory activities and can also regulate apoptosis, which plays an important role in cancer development. The results of our own research showed enhancement of apoptosis in colon cancer cells by a combination of either docosahexaenoic acid (DHA or butyrate with TNF family cytokines, especially by promotion of the mitochondrial apoptotic pathway and modulation of NFκB activity. This review is focused mainly on the interaction of dietary PUFAs and butyrate with these cytokines during colon inflammation and cancer development. We summarised recent knowledge about the cellular and molecular mechanisms involved in such effects and outcomes for intestinal cell behaviour and pathologies. Finally, the possible application for the prevention and therapy of colon inflammation and cancer is also outlined.

  5. Study on Synthesis, Characterization and Antiproliferative Activity of Novel Diisopropylphenyl Esters of Selected Fatty Acids.

    Science.gov (United States)

    Reddy, Yasa Sathyam; Kaki, Shiva Shanker; Rao, Bala Bhaskara; Jain, Nishant; Vijayalakshmi, Penumarthy

    2016-01-01

    The present study describes the synthesis, characterization and evaluation of antiproliferative activity of novel diisopropylphenyl esters of alpha-linolenic acid (ALA), valproic acid (VA), butyric acid (BA) and 2-ethylhexanoic acid (2-EHA). These esters were chemically synthesized by the esterification of fatty acids with 2,6-diisopropylphenol and 2,4-diisopropylphenol (propofol). The structure of new conjugates viz. propofol-(alpha-linolenic acid) (2,6P-ALA and 2,4P-ALA), propofol-valproic acid (2,6P-VA and 2,4P-VA), propofol-butyric acid (2,6P-BA and 2,4P-BA) and propofol-(2-ethylhexanoic acid) (2,6P2-EHA and 2,4P-2-EHA) were characterized by FT-IR, NMR ((1)H, (13)C) and mass spectral data. The synthesized conjugates having more lipophilic character were tested for antiproliferative in vitro studies on A549, MDA-MB-231, HeLa, Mia-Pa-Ca and HePG2 cancer cell lines. All the conjugates showed specific growth inhibition on studied cancer cell lines. Among the synthesized esters, the conjugates synthesized from BA, VA and 2-EHA exhibited prominent growth inhibition against A549, HeLa, Mia-Pa-Ca and HePG2 cancer cell lines. The preliminary results suggest that the entire novel conjugates possess antiproliferative properties that reduce the proliferation of cancer cells in vitro. PMID:26666272

  6. Prebiotic syntheses of vitamin coenzymes: II. Pantoic acid, pantothenic acid, and the composition of coenzyme A

    Science.gov (United States)

    Miller, S. L.; Schlesinger, G.

    1993-01-01

    Pantoic acid can by synthesized in good prebiotic yield from isobutyraldehyde or alpha-ketoisovaleric acid + H2CO + HCN. Isobutyraldehyde is the Strecker precursor to valine and alpha-ketoisovaleric acid is the valine transamination product. Mg2+ and Ca2+ as well as several transition metals are catalysts for the alpha-ketoisovaleric acid reaction. Pantothenic acid is produced from pantoyl lactone (easily formed from pantoic acid) and the relatively high concentrations of beta-alanine that would be formed on drying prebiotic amino acid mixtures. There is no selectivity for this reaction over glycine, alanine, or gamma-amino butyric acid. The components of coenzyme A are discussed in terms of ease of prebiotic formation and stability and are shown to be plausible choices, but many other compounds are possible. The gamma-OH of pantoic acid needs to be capped to prevent decomposition of pantothenic acid. These results suggest that coenzyme A function was important in the earliest metabolic pathways and that the coenzyme A precursor contained most of the components of the present coenzyme.

  7. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation.

    Science.gov (United States)

    Hinnebusch, Brian F; Meng, Shufen; Wu, James T; Archer, Sonia Y; Hodin, Richard A

    2002-05-01

    The short-chain fatty acid (SCFA) butyrate is produced via anaerobic bacterial fermentation within the colon and is thought to be protective in regard to colon carcinogenesis. Although butyrate (C4) is considered the most potent of the SCFA, a variety of other SCFA also exist in the colonic lumen. Butyrate is thought to exert its cellular effects through the induction of histone hyperacetylation. We sought to determine the effects of a variety of the SCFA on colon carcinoma cell growth, differentiation and apoptosis. HT-29 or HCT-116 (wild-type and p21-deleted) cells were treated with physiologically relevant concentrations of various SCFA, and histone acetylation state was assayed by acid-urea-triton-X gel electrophoresis and immunoblotting. Growth and apoptotic effects were studied by flow cytometry, and differentiation effects were assessed using transient transfections and Northern blotting. Propionate (C3) and valerate (C5) caused growth arrest and differentiation in human colon carcinoma cells. The magnitude of their effects was associated with a lesser degree of histone hyperacetylation compared with butyrate. Acetate (C2) and caproate (C6), in contrast, did not cause histone hyperacetylation and also had no appreciable effects on cell growth or differentiation. SCFA-induced transactivation of the differentiation marker gene, intestinal alkaline phosphatase (IAP), was blocked by histone deacetylase (HDAC), further supporting the critical link between SCFA and histones. Butyrate also significantly increased apoptosis, whereas the other SCFA studied did not. The growth arrest induced by the SCFA was characterized by an increase in the expression of the p21 cell-cycle inhibitor and down-regulation of cyclin B1 (CB1). In p21-deleted HCT-116 colon cancer cells, the SCFA did not alter the rate of proliferation. These data suggest that the antiproliferative, apoptotic and differentiating properties of the various SCFA are linked to the degree of induced histone

  8. Asymmetric synthesis of -aminophosphonates: The bio-isosteric analogs of -aminobutyric acid

    Indian Academy of Sciences (India)

    Kalisankar Bera; Dwayaja Nadkarni; Iirishi N N Namboothiri

    2013-05-01

    The properties of aminophosphonates as transition state analogs of amino acids, and as antibacterial, antifungal and antiHIV agents attracted considerable attention in recent years. Although many reviews appeared in the literature covering - and -aminophosphonates, -aminophosphonates did not receive sufficient attention despite the fact that parent -aminophosphonic acid and its derivatives are bio-isosteric analogs of GABA (-amino butyric acid). This review provides a critical summary of the significance of -aminophosphonates and various approaches to their synthesis, with particular emphasis to asymmetric versions.

  9. Syntheses of γ-aminobutyric-1-14C and of α-aminoadipic-6-14C acid from methoxy-3 chloropropyl-magnesium and marked carbon dioxide

    International Nuclear Information System (INIS)

    Carbonation of γ-methoxypropyl-magnesium chloride by CO2 gives γ-methoxy-butyric carboxylic-14C acid with a yield of about 95 per cent. When the latter is treated successively with anhydrous HBr and with diazomethane, methyl carboxylic γ-bromobutyrate-14C is formed. This in turn gives γ-amino-butyric carboxylic-14C acid with an overall yield of 66 per cent with respect to Ba14CO3, when it is condensed with potassium phthalimide and hydrolyzed by acid. By reacting methyl-γ-bromobutyrate-14C with the sodium derivative of ethyl cyanacetamido-acetate in ethanol, followed by an acid hydrolysis, α-aminoadipic-6-14C acid is obtained with an overall yield of 46 per cent with respect to Ba14CO3. (author)

  10. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties

    Science.gov (United States)

    Vavříková, Eva; Langschwager, Fanny; Jezova-Kalachova, Lubica; Křenková, Alena; Mikulová, Barbora; Kuzma, Marek; Křen, Vladimír; Valentová, Kateřina

    2016-01-01

    A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C5- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C2), malonic (C3), succinic (C4) and maleic (C4) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin–Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies. PMID:27338349

  11. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties

    Directory of Open Access Journals (Sweden)

    Eva Vavříková

    2016-06-01

    Full Text Available A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica, which accepted C5- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C2, malonic (C3, succinic (C4 and maleic (C4 acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin–Ciocalteau reagent (FCR and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl than isoquercitrin; ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies.

  12. The interaction of butyrate with TNF-alpha during differentiation and apoptosis of colon epithelial cells: role of NK-kappaB activation

    Czech Academy of Sciences Publication Activity Database

    Hýžďalová, Martina; Hofmanová, Jiřina; Pacherník, J.; Vaculová, Alena; Kozubík, Alois

    Portoroz, 2007. P-99. [15th Euroconference on Apoptosis & 4th Training course on Concepts and Methods in Programmed Cell Death. 26.10.2007-31.10.2007, Portoroz] R&D Projects: GA AV ČR(CZ) 1QS500040507; GA AV ČR(CZ) KJB500040508; GA ČR(CZ) GA524/07/1178 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : butyrate * TNf-alpha * NF-kappaB Subject RIV: BO - Biophysics

  13. Retraction: Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation. J. Diao, Y. D. Ma, and M. S. Hasson.

    Science.gov (United States)

    2012-06-01

    The following article from Proteins: Structure, Function, and Bioinformatics, "Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation," by Jiasheng Diao, Yunglin D. Ma, and Miriam S. Hasson, published online on 21 October 2010 in Wiley Online Library (onlinelibrary.wiley.com), has been retracted by agreement between the journal Editor in Chief, Bertrand Garcia-Moreno, and Wiley Periodicals. The retraction has been agreed because it was established by internal investigation performed by Purdue University that the authors of this article are not the owners of the data and have no right to publication. PMID:19847916

  14. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    International Nuclear Information System (INIS)

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  15. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, Sabita N., E-mail: sabivan@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Department of Biological Sciences, Alabama State University, Montgomery, AL 36104 (United States); Kala, Rishabh [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  16. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  17. The regulation of the intestinal mucin MUC2 expression by short chain fatty acids: implications for epithelial protection

    OpenAIRE

    Burger-van Paassen, Nanda; Vincent, Audrey; Puiman, Patrycja J; van der Sluis, Maria; Bouma, Janneke; Boehm, Günther; Van Goudoever, Johannes B; Van Seuningen, Isabelle; Ingrid B Renes

    2009-01-01

    Abstract Short chain fatty acids (SCFAs), fermentation products of bacteria, influence epithelial-specific gene expression. We hypothesize that SCFAs affect goblet cell-specific mucin MUC2 expression and thereby alter epithelial protection. Our aim was to study the mechanisms that regulate butyrate-mediated effects on MUC2 synthesis. Human goblet cell-like LS174T cells were treated with SCFAs, after which MUC2 mRNA levels and stability and MUC2 protein expression were analyzed. SCF...

  18. Adsorption of certain surface-active organic substances on lead, and their effect on hydrogen evolution kinetics in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Sherstobitova, I.N.; Iskhakov, R.N.

    1988-02-01

    The adsorption of tetrabutylammonium sulfate, n-butyl, n-amyl, isoamyl, n-hexyl alcohol, butyric acid, butylamine, antipyrine and diantipyrylmethane was measured by differential-capacitance at a frequency of 10 kHz at smooth lead electrodes under cathodic polarization. Isotherms were determined by logarithms. Parameters in the Frumkin equation for adsorption of certain organic substances on lead were also determined and tabulated.

  19. Fatty Acids Profile during Anaerobic Digestion of Night Soil-Effect of temperature, Calcium Carbonate and Selectively-enriched Inoculum

    OpenAIRE

    S. I. Alam; Singh, L; Maurya, M. S.

    1996-01-01

    Anaerobic biodegradation of night soil was carried out at 5-30 degree centigrade with 1.8-10.62 per cent volatile solids (VS). Biogas production increased with the temperature and VS up to 6.2 per cent. Further increase in VS caused higher Volatile fatty acids (VFA) accumulation resulting in decreased gas production. Acetate and propionate accounted for 62-83 per cent of total VFA. Butyrate to isobutyrate ratio increased with VS. Calcium Carbonate promoted VS degradation, biogas produc...

  20. Evaluation of radiological data of some saturated fatty acids using gamma ray spectrometry

    Science.gov (United States)

    Kore, Prashant S.; Pawar, Pravina P.; Palani Selvam, T.

    2016-02-01

    Radiological parameters such as mass attenuation coefficients (μm), total attenuation cross section (σtot), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective electronic cross section (σt, el) of saturated fatty acids, namely butyric acid (C4H8O2), caproic acid (C6H12O2), enanthic acid (C7H14O2), caprylic acid (C8H16O2), pelargonic acid (C9H18O2) and valeric acid (C5H10O2) were measured using NaI(Tl)-based gamma spectrometry. Radioactive sources used in the study are 57Co, 133Ba, 137Cs, 54Mn, 60Co and 22Na. Gamma ray transmission method in a narrow beam good geometry set up was used in the study. The measured data were compared against Win-XCOM-based data. The agreement is within 1%.

  1. Pyrene appended bile acid conjugates: Synthesis and a structure-gelation property study

    Indian Academy of Sciences (India)

    Shreedhar Bhat; Arto Valkonen; Juha Koivukorpi; Anupama Ambika; Erkki Kolehmainen; Uday Maitra; Kari Rissanen

    2011-07-01

    A wide variety of novel compounds obtained by combining two types of known organogelators, viz., bile acid alkyl amides and pyrene alkanoic acids, were synthesized and screened for their gelation ability. The 3 esters of 1-pyrene butyric acid (PBA) of alkylamides of deoxycholic acid (DCA) turned out to be effective in the gel formation with many organic solvents although the gelation has to be triggered by the addition of a charge transfer (CT) agent 2,4,7-trinitrofluorenone (TNF). The special feature of these molecules is that the organogelation is achieved only after derivatizing the acid moiety of the 1-pyrenealkanoic acids. Additionally, the gelation properties can be fine-tuned by inserting different functional groups at the bile acid side chain. The gels obtained are deep red in colour and optically transparent up to 2% w/v. The SEM studies of the obtained xerogels revealed bundled rod-like morphology without specialized branching.

  2. Effect of β-hydroxy β-methyl butyrate supplementation of sows in late gestation and lactation on sow production of colostrum and milk and piglet performance

    DEFF Research Database (Denmark)

    Flummer, Christine; Theil, Peter Kappel

    2012-01-01

    colostrum period (0.0 vs. 4.8%, P < 0.05). The HMB supplementation did not affect colostrum composition (P > 0.10). Supplementation with HMB increased milk content of fat (7.40 vs. 6.47 ± 0.30%; P < 0.05), dry matter (19.0 vs. 18.2 ± 0.26; P < 0.05), and energy (4.81 vs. 4.47 ±0.12 kJ/g; P < 0.05) and......This trial was conducted to investigate whether β-hydroxy β-methyl butyrate (HMB) supplementation during late gestation and throughout lactation would influence colostrum and milk production of sows and neonatal piglet survival (0 to 24 h). Control sows (CON; n = 8) were fed a standard lactation.......05] whereas plasma 3-hydroxy butyrate was reduced in HMB sows during lactation. In conclusion, HMB supplemented to sows improved the colostrum production but inhibited piglet growth at peak lactation....

  3. Effects of volatile fatty acids on propionate metabolism and gluconeogenesis in caprine hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, R.J.; Armentano, L.E.

    1987-12-01

    Isolated caprine hepatocytes were incubated with fatty acids of various chain lengths. Short-chain fatty acids effects on rates of gluconeogenesis and oxidation from (2-/sup 14/C) propionate were determined. Additions of glucose (2.5 mM) had no effect on hepatic (2-/sup 14/C)-propionate metabolism in the presence and absence of amino acids. A complete mixture of amino acids increased label incorporation from (2-/sup 14/C) propionate into (/sup 14/C) glucose by 22%. Butyrate inhibited (2-/sup 14/C) propionate metabolism and increased the apparent Michaelis constant for (2-/sup 14/C) propionate incorporation into (/sup 14/C) glucose from 2.4 +/- 1.5 to 5.6 +/- .9 mM. Butyrate's effects on propionate were similar in the presence and absence of L-carnitine (1 mM). Isobutyrate, 2-methylbutyrate, and valerate (1.25 mM) had no effect on (/sup 14/C) glucose production but decreased /sup 14/CO/sub 2/ production to 57, 61, and 54% of the control (2-/sup 14/C) propionate (1.25 mM). This inhibition on /sup 14/CO/sub 2/ was not competitive. Isovalerate had no effect on either (2-/sup 14/C) propionate incorporation into glucose of CO/sub 2/. An increase in ratio of (/sup 14/C) glucose to /sup 14/CO/sub 2/ from (2-/sup 14/C)-propionate demonstrated that short-chain fatty acids other than butyrate do not inhibit gluconeogenesis from propionate. In addition, fatty acids that generate a net synthesis of intracellular oxaloacetate may partition propionate carbons toward gluconeogenic rather than oxidative pathways in goat hepatocytes.

  4. Effects of volatile fatty acids on propionate metabolism and gluconeogenesis in caprine hepatocytes

    International Nuclear Information System (INIS)

    Isolated caprine hepatocytes were incubated with fatty acids of various chain lengths. Short-chain fatty acids effects on rates of gluconeogenesis and oxidation from [2-14C] propionate were determined. Additions of glucose (2.5 mM) had no effect on hepatic [2-14C]-propionate metabolism in the presence and absence of amino acids. A complete mixture of amino acids increased label incorporation from [2-14C] propionate into [14C] glucose by 22%. Butyrate inhibited [2-14C] propionate metabolism and increased the apparent Michaelis constant for [2-14C] propionate incorporation into [14C] glucose from 2.4 +/- 1.5 to 5.6 +/- .9 mM. Butyrate's effects on propionate were similar in the presence and absence of L-carnitine (1 mM). Isobutyrate, 2-methylbutyrate, and valerate (1.25 mM) had no effect on [14C] glucose production but decreased 14CO2 production to 57, 61, and 54% of the control [2-14C] propionate (1.25 mM). This inhibition on 14CO2 was not competitive. Isovalerate had no effect on either [2-14C] propionate incorporation into glucose of CO2. An increase in ratio of [14C] glucose to 14CO2 from [2-14C]-propionate demonstrated that short-chain fatty acids other than butyrate do not inhibit gluconeogenesis from propionate. In addition, fatty acids that generate a net synthesis of intracellular oxaloacetate may partition propionate carbons toward gluconeogenic rather than oxidative pathways in goat hepatocytes

  5. Influence of Oleic Acid on Rumen Fermentation and Fatty Acid Formation In Vitro

    Science.gov (United States)

    Tang, Shaoxun; Guan, Leluo; He, Zhixiong; Guan, Yongjuan; Tan, Zhiliang; Han, Xuefeng; Zhou, Chuanshe; Kang, Jinhe; Wang, Min

    2016-01-01

    A series of batch cultures were conducted to investigate the effects of oleic acid (OA) on in vitro ruminal dry matter degradability (IVDMD), gas production, methane (CH4) and hydrogen (H2) production, and proportion of fatty acids. Rumen fluid was collected from fistulated goats, diluted with incubation buffer, and then incubated with 500 mg Leymus chinensis meal supplemented with different amounts of OA (0, 20, 40, and 60 mg for the CON, OA20, OA40 and OA60 groups, respectively). Incubation was carried out anaerobically at 39°C for 48 h, and the samples were taken at 12, 24 and 48 h and subjected to laboratory analysis. Supplementation of OA decreased IVDMD, the cumulative gas production, theoretical maximum of gas production and CH4 production, but increased H2 production. However, no effect was observed on any parameters of rumen fermentation (pH, ammonia, production of acetate, propionate and butyrate and total volatile fatty acid production). The concentrations of some beneficial fatty acids, such as cis monounsaturated fatty acids and conjugated linoleic acid (CLA) were higher (P < 0.05) from OA groups than those from the control group at 12 h incubation. In summary, these results suggest that the OA supplementation in diet can reduce methane production and increase the amount of some beneficial fatty acids in vitro. PMID:27299526

  6. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  7. Refractive index modulation in polymer film doped with diazo Meldrum's acid

    Science.gov (United States)

    Zanutta, Alessio; Villa, Filippo; Bertarelli, Chiara; Bianco, Andrea

    2016-08-01

    Diazo Meldrum's acid undergoes a photoreaction induced by UV light and it is used as photosensitizer in photoresists. Upon photoreaction, a change in refractive index occurs, which makes this system interesting for volume holography. We report on the sublimation effect at room temperature and the effect of photoirradiation on the refractive index in thin films of CAB (Cellulose acetate butyrate) doped with different amount of diazo Meldrum's acid. A net modulation of the refractive index of 0.01 is achieved with 40% of doping ratio together with a reduction of the film thickness.

  8. Formation of vertical concentration gradients in poly(3-hexylthiophene-2,5-diyl): Phenyl-C61-butyric acid methyl ester-graded bilayer solar cells

    International Nuclear Information System (INIS)

    In the present work, we demonstrate that graded bilayer solar cells provide a very interesting alternative to the bulk heterojunction active layers commonly used in organic photovoltaic cells. One of the main advantages of this type of active layers is the possibility to optimize independently both donor and acceptor layers. Using various process methods, we obtain active layers that demonstrate a donor–acceptor vertical concentration gradient. These devices exhibit not only a high fill factor but also a remarkable increase in open-circuit voltage (Voc). In order to understand the influence of the film morphology over the device parameters, we provide a complete study using energy-dispersive x-ray spectroscopy elemental mapping of the device cross sections, showing evidence that ideal donor–acceptor concentration gradient are required to obtain high fill factors. Furthermore, we use a simple equivalent electrical model to extrapolate device parameters such as reverse saturation current for a clearer understanding of the origin of the Voc increase. - Highlights: • Various donor–acceptor concentration-graded devices were fabricated. • Improved donor–acceptor concentration gradient enhances the photovoltaic properties. • The increased open-circuit voltage results from lower reverse saturation currents. • Adjusting the dimensions of buffer and intermixed layers enhances fill factor. • Ideal active layer morphologies lead to an increase of 30% of the efficiency

  9. A reexamination of amino acids in lunar soil

    Science.gov (United States)

    Brinton, K. L. F.; Bada, J. L.; Arnold, J. R.

    1993-03-01

    Amino acids in lunar soils provide an important indicator of the level of prebiotic organic compounds on the moon. The results provide insight into the chemistry of amino acid precursors, and furthermore, given the flux of carbonaceous material to the moon, we can evaluate the survival of organics upon impact. The amino acid contents of both hydrolyzed and unhydrolyzed hot-water extracts of Apollo 17 lunar soil were determined using ophthaldialdehyde/N-acetyl cysteine (OPA/NAC) derivatization followed by HPLC analysis. Previous studies of lunar amino acids were inconclusive, as the technique used (derivatization with ninhydrin followed by HPLC analysis) was unable to discriminate between cosmogenic amino acids and terrestrial contaminants. Cosmogenic amino acids are racemic, and many of the amino acids found in carbonaceous meteorites such as Murchison, i.e., alpha-amino-i-butyric acid (aib), are extremely rare on Earth. The ninhydrin method does not distinguish amino acid enantiomers, nor does it detect alpha-alkyl amino acids such as aib, whereas the OPA/NAC technique does both.

  10. Production and characterization of poly(3-hydroxy butyrate-co-3 hydroxyvalerate) (PHBV) by a novel halotolerant mangrove isolate.

    Science.gov (United States)

    Moorkoth, Dhanya; Nampoothiri, Kesavan Madhavan

    2016-02-01

    A halophilic mangrove isolate identified by 16S rRNA sequence as a Bacillus spp. was found to be capable of using a broad range of carbon sources including monosaccharides (glucose and fructose), disaccharides (sucrose), pentoses (xylose and arabinose), various organic acids (acetic acid, propionic acid and octanoic acid) and even the acid pre-treated liquor (APL) of sugarcane trash, a lignocellulosic biomass, for growth and the production of polyhydroxyalkanoates (PHAs) such as poly(3-hydroxybutyrate, P3HB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV), and 4-hydroxyhexanoate, 4HHX). The study describes the innate ability of a wild-type culture for PHBV production by both propionate dependent and propionate independent pathways. The biopolymer was extracted and characterized physico-chemically. The PHBV yield from glucose was estimated to be 73% of biomass weight with a high 3-hydroxyvalerate fraction of 48mol%. Thereafter, spherical homogenous PHBV nanoparticles of ∼164nm size were prepared for future applications. PMID:26684174

  11. The origin of amino acids in lunar regolith samples

    Science.gov (United States)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the

  12. Scientific Opinion on the safety and efficacy of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes (chemical group 1 when used as flavourings for all animal species

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-04-01

    Full Text Available Chemical group 1 (CG 1 consists of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes of which 86 are currently authorised for use as flavours in food. The FEEDAP Panel was unable to perform an assessment of ethyl oleate because of its insufficient purity. The following compounds are considered to be safe for all animal species at the use level proposed for feed flavourings: formic acid, acetic acid, propionic acid, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, oleic acid, decanol, dodecanol, decyl acetate and dodecyl acetate. The remaining substances are considered safe for all animal species at 5 mg/kg complete feed (with a margin of safety between 1 and 120 and at 25 mg/kg complete feed (ethyl acetate and hexyl acetate, with a margin of safety between 2 and 6; and at 1 mg/kg complete feed for pigs and poultry and 1.5 mg/kg complete feed for all other species (ethylacrylate, ethyl hex-3-enoate, ethyl trans-2-butenoate, ethyl isobutyrate, ethyl isovalerate, butyl isovalerate, methyl isovalerate, hexyl isobutyrate, methyl 2-methyl butyrate, pentyl isovalerate, butyl 2-methyl butyrate, hexyl isovalerate, ethyl 2-methyl butyrate, hexyl 2-methyl butyrate and methyl 2-methylvalerate. No safety concern would arise for the consumer from the use of compounds belonging to CG 1 up to the highest safe level in feedingstuffs for all animal species. The FEEDAP Panel considers it prudent to treat all compounds under assessment as irritants to skin, eyes and respiratory tract and as skin sensitizers. No risk for the safety for the environment is foreseen. Since all 85 compounds are used in food as flavourings, no further demonstration of efficacy is necessary.

  13. Short-chain fatty acids produced by intestinal bacteria.

    Science.gov (United States)

    Topping, D L

    1996-03-01

    The colon is the major site of bacterial colonisation in the human gut and the resident species are predominantly anaerobes. They include potential pathogens but the greater proportion appear to be organisms which salvage energy through the metabolism of undigested carbohydrates and gut secretions. The major products of carbohydrate metabolism are the short chain fatty acids (SCFA), acetate, propionate and butyrate. In addition to general effects (such as lowering of pH) individual acids exert specific effects. All of the major SCFA appear to promote the flow of blood through the colonic vasculature while propionate enhances muscular activity and epithelial cell proliferation. Butyrate appears to promote a normal cell phenotype as well as being a major fuel for colonocytes. Important substrates for bacterial fermentation include non-starch polysaccharides (major components of dietary fibre) but it seems that starch which has escaped digestion in the small intestine (resistant starch) is the major contributor. Oligosaccharides are utilised by probiotic organisms and in the diet, act as prebiotics in promoting their numbers in faeces. High amylose starch is a form of RS and it appears to act as a prebiotic also. Although there is evidence that probiotics such as Bifidobacteria metabolise oligosaccharides and other carbohydrates, there appears to be little evidence to support a change in faecal SCFA excretion. It seems that any health benefits of probiotics are exerted through means other than SCFA. PMID:24394459

  14. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscape alteration in bovine cells

    Science.gov (United States)

    Utilizing next-generation sequencing technology, combined with ChIP (Chromatin Immunoprecipitation) technology, we analyzed histone modification (acetylation) induced by butyrate and the large-scale mapping of the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27. To d...

  15. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    International Nuclear Information System (INIS)

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of 14C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 370C. The heat shocked protoplasts incorporated 33% more 14C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids

  16. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Cutler, A.J.

    1986-04-01

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of /sup 14/C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 37/sup 0/C. The heat shocked protoplasts incorporated 33% more /sup 14/C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids.

  17. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose.

    Science.gov (United States)

    Li, Xiaofen; Swan, Janis E; Nair, Giridhar R; Langdon, Alan G

    2015-01-01

    Many potentially useful intermediates such as hydrogen and volatile fatty acids (VFAs) are formed during the complex anaerobic digestion processes that produce methane from biomass. This study recovers VFAs from an anaerobic digester by a combination of gas stripping and absorption with calcium carbonate slurry. Glucose was used as the model substrate because it is readily available, inexpensive, and easily digested. Sludge from a meatworks anaerobic digester produced methane and carbon dioxide (and sometimes a small amount of hydrogen) when batch-fed with glucose. Conditioning the neutral anaerobic sludge to an acidic pH (below 4.8) was achieved using repeated 1 g L(-1) doses of glucose. After conditioning, mainly VFAs and hydrogen were produced. The intermediate VFAs could be stripped using headspace gas. In subsequent fed-batch digestion/stripping cycles, the pH decreased when glucose was added and then increased when the VFA was gas stripped. The predominant acids formed at low pH values were lactic, butyric, and acetic acids. Lactic acid was converted to VFAs during stripping. The VFA calcium salts recovered were 80% butyrate and 20% acetate with minor quantities of propionate and valerate. PMID:25274086

  18. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  19. Amino acids

    Science.gov (United States)

    Amino acids are organic compounds that combine to form proteins . Amino acids and proteins are the building blocks of life. When proteins are digested or broken down, amino acids are left. The human body uses amino acids ...

  20. Acid production and conversion of konjac glucomannan during in vitro colonic fermentation affected by exogenous microorganisms and tea polyphenols.

    Science.gov (United States)

    Zhao, Xin-Huai; Geng, Qian

    2016-05-01

    Impacts of exogenous microorganisms and tea polyphenols on acid production and conversion during in vitro colonic fermentation of konjac glucomannan (KGM) were assessed in this study. Colonic fermentation of KGM by the fecal extract of healthy adults resulted in a propionate-rich profile, as acetic, propionic, butyric and lactic acids production were 16.1, 13.0, 3.3 and 20.2 mmol/L, respectively. Inoculation of one of ten exogenous microorganisms in the fermentative systems increased acetic, propionic and butyric acids production by 50-230%, 9-190% and 110-350%, respectively, and also accelerated lactic acid conversion by 14-40%. Tea polyphenols in the fermentative systems showed clear inhibition on both acid production and conversion; however, this inhibition could be partially or mostly antagonised by the inoculated exogenous microorganisms, resulting in improved acid production and conversion. In total, Lactobacillus brevis and Sterptococcus thermophilus were more able to increase acid production, and the propionate-rich profile was not changed in all cases. PMID:26902110

  1. Analysis of the free amino acid content in pollen of nine Asteraceae species of known allergenic activity.

    Science.gov (United States)

    Mondal, A K; Parui, S; Mandal, S

    1998-01-01

    The study reports the free amino acid composition of the pollen of nine members of the family Asteraceae, i.e. Ageratum conyzoides L., Blumea oxyodonta DC., Eupatorium odoratum L., Gnaphalium indicum L., Mikania scandens Willd., Parthenium hysterophorus L., Spilanthes acmella Murr., Vernonia cinerea (L.) Lees. and Xanthium strumarium L. by thin layer chromatography. The amino acid content was found to vary from 0.5-4.0% of the total dry weight. Fourteen amino acids were identified, among which amino-n-butyric acid, aspartic acid and proline were present in almost all pollen samples. The other major amino acids present in free form included arginine, cystine, glutamic acid, glycine, isoleucine, leucine, methionine, ornithine, tryptophan and tyrosine. PMID:9852488

  2. 吲哚胺2,3双加氧酶在丁酸钠诱导未成熟树突状细胞介导T细胞无能的机制%The role of IDO in T cell anergy of sodium butyrate-induced immature DC

    Institute of Scientific and Technical Information of China (English)

    刘璐; 伍衡; 褚忠华; 王捷; 商昌珍; 罗兴喜; 闵军

    2009-01-01

    confirmed by real-time PCR. In comparison with the control group,the IDO mRNA expression of DCs was increased by (32.03±4.01) fold. The proliferation of lymphocytes was increased in sodium butyrate group with 1-MT by FCM,which suggested 1-MT may antagonize the inhibition of sodium butyrate-indueed lymphocyte pro-liferation. Conclusion Sodium butyrate may inhibit the lymphocyte proliferation by IDO that can degrada-te amino-indole propionic acid in microenvironment.

  3. Microbial production of specialty organic acids from renewable and waste materials.

    Science.gov (United States)

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation. PMID:24754448

  4. Effect of Volatile Fatty Acids and Trimethylamine on Denitrification in Activated Sludge

    DEFF Research Database (Denmark)

    Eilersen, Ann Marie; Henze, Mogens; Kløft, Lene

    1995-01-01

    with the strongest effect, n-butyric acid has a moderate effect, while TMA only have a small effect in stimulating the rates. Propionic, isobutyric, n-valeric, isovaleric and caproic acid inhibit denitrification, nitrate reduction being more inhibited than nitrite reduction. The inhibitor concentration......M for n-valeric, 18 mM for isovaleric and 105 mM for caproic acid. KI values for nitrite reduction were found to be 196 mM for propionic, 32 mM for isobutyric, 57 mM for n-valeric, 18 mM for isovaleric and 110 mM for caproic acid. Inhibition of the rate of hydrolysis could not be determined....... Anaerobically treated wastewaters from fish, potato and onion industries all stimulated denitrification. Reject water from anaerobic treatment of excess sludge had no significant effect on the denitrification processes. For isobutyric, isovaleric and n-valeric acid the undissociated compounds appear to act as...

  5. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2009-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.

  6. Valproic Acid Antagonizes the Capacity of Other Histone Deacetylase Inhibitors To Activate the Epstein-Barr Virus Lytic Cycle▿

    OpenAIRE

    Daigle, Derek; Gradoville, Lyn; Tuck, David; Schulz, Vince; Wang'ondu, Ruth; Ye, Jianjiang; Gorres, Kelly; Miller, George

    2011-01-01

    Diverse stimuli reactivate the Epstein-Barr virus (EBV) lytic cycle in Burkitt lymphoma (BL) cells. In HH514-16 BL cells, two histone deacetylase (HDAC) inhibitors, sodium butyrate (NaB) and trichostatin A (TSA), and the DNA methyltransferase inhibitor azacytidine (AzaCdR) promote lytic reactivation. Valproic acid (VPA), which, like NaB, belongs to the short-chain fatty acid class of HDAC inhibitors, fails to induce the EBV lytic cycle in these cells. Nonetheless, VPA behaves as an HDAC inhib...

  7. Producing biodiesel from yellow greases with high free fatty acids

    Directory of Open Access Journals (Sweden)

    Amrani Mahacine

    2007-01-01

    Full Text Available Biodiesel is a diesel replacement fuel that is manufactured from vegetable oils recycled cooking greases and oils or animal fats. Biodiesel offers many advantages because it is renewable, nontoxic, biodegradable, and suitable for sensitive environments. It can also be used in most diesel equipments with no or only minor modifications. These yellow greases contain great quantities of free fatty acids which form soaps in the presence of alkaline catalyst. Pretreatments of the raw material with acid catalysts are necessary to avoid the soap formation. The transesterification of yellow greases is supplemented in the presence of an alkaline catalyst. The greatest production of biodiesel corresponds to molar flows of 4.985 kmol.hr-1 of methyl oleate, and 4.658 kmol.hr-1 of methyl butyrate.

  8. Radiation-Sensitive Indicator Based on m-Cresol Purple Dyed Poly (vinyl Butyral) for Possible Use in Radiation Dosimetry

    International Nuclear Information System (INIS)

    In the present work a PVB films containing different concentrations of m-cresol purple (ph indicator) and chloral hydrate were prepared. The chlorine containing (chIoral hydrate) polymer was dehydrochlorinated when the material irradiated thereby reducing ph and causing the acid-sensitive dye to change color. Such materials are not, however, reported to be sensitive. and quantitative at relatively low radiation doses. The useful dose ranges of this film ranges between 2 and 6 kGy. Radiation chemical yield was calculated. The effects of temperature and relative humidity during irradiation as well as pre and post irradiation stability on the response of films were described

  9. Determination of Neurotoxin b-ODAP and Non-protein Amino Acids in Lathyrus Sativus by High-Performance Liquid Chromatography with Precolumn Derivatization with 6-Amino quinolyl-N-hydroxysuccinimidyl Carbamate (AQC)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method was developed for the quantitative determination of the neurotoxic non-protein amino acid, 3-N-oxalyl-L-2,3-diaminopropionic acid (b -ODAP), its nontoxic a -isomer and other non-protein amino acids in the plant samples of Lathyrus sativus after derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) by reversed-phase high-performance liquid chromatography (HPLC). 2-Amino butyric acid (ABA) was used as an internal standard. The RP HPLC detection limit for both isomers is 1.8 ng with good response linearity. The results are compared with a colorimetric method.

  10. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent. PMID:12830881

  11. Separation and conductimetric detection of C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines on unfunctionized polymethacrylate resin columns.

    Science.gov (United States)

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with conductimetric detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was attempted with C8 aliphatic monocarboxylic acids (2-propylvaleric acid, 2-ethylhexanoic acid, 2-methylheptanoic acid and octanoic acid) and C8 aliphatic monoamines (1,5-dimethylhexylamine, 2-ethylhexylamine, 1-methylheptylamine and octylamine) as eluents, respectively. Using 1 mM 2-methylheptanoic acid at pH 4.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min. Using 2 mM octylamine at pH 11.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 amines were also achieved on the TSKgel G3000PWXL column in 60 min. PMID:15250420

  12. Catalytic synthesis of butyric esters with TiSiW12O40/TiO2

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The catalytic activities of TiSiW12O40/TiO2 in synthesizing ethyl ester, propyl ester, n-butyl ester, and amyl esterwere reported. It was demonstrated that TiSiW12O40/TiO2is an excellent catalyst. Various factors concemed with esterifica-tion were investigated. The optimum conditions were found: the mole ratio of alcohol to acid is 1.3:1, the mass ratio ofcatalyst to reactants is 1.5%, and the reaction time is 1.0 h. Under the optimum conditions, the yields are 88.0% for ethylester, 94.5% for propyl ester, 98.6% for n-butyl ester, 99.1% for n-amyl ester, and 96.7% for iso-amyl ester, respectively.

  13. Effect of Volatile Fatty Acids and Trimethylamine on Nitrification in Activated Sludge

    DEFF Research Database (Denmark)

    Eilersen, Ann Marie; Henze, Mogens; Kløft, Lene

    1994-01-01

    6 mM for isobutyric, 37 mM for n-valeric, 6 mM for isovaleric 36 mM for n-caproic acid and 3 mM for trimethylamine. IK values for nitrite oxidation were found to be 2 mM for formic, 115 mM for acetic, 68 mM for propionic, 33 mM for n-butyric, 8 mM for isobutyric, 75 mM for n-valeric, 7 mM for...

  14. Effects of acarbose on fecal nutrients, colonic pH, and short-chain fatty acids and rectal proliferative indices.

    Science.gov (United States)

    Holt, P R; Atillasoy, E; Lindenbaum, J; Ho, S B; Lupton, J R; McMahon, D; Moss, S F

    1996-09-01

    Acarbose, an alpha-glycosidase inhibitor, treats diabetes mellitus by delaying the digestion and intestinal absorption of dietary carbohydrates. In effective doses, acarbose induces some passage of carbohydrates into the colon. The effect of such chronic carbohydrate transfer on colonic structure and function is unknown. We studied the effects of 1 year of acarbose administration in diabetes mellitus on fecal energy, protein, and fat, including short-chain fatty acids (SCFA) output, fecal pH, and several metabolizing bacterial species. Changes in colonic histology and epithelial cell proliferation were investigated in rectal biopsies. Fecal macronutrient output was unaffected by acarbose, but pH decreased and total SCFA, butyrate, and acetate output were markedly greater. Breath hydrogen output increased after acarbose, but digoxin-metabolizing bacteria and diacylglycerol (DAG) production were unaltered. Compared with the control, acarbose did not induce hyperplasia or change rectal proliferation. However, total fecal SCFA and butyrate output correlated inversely with proliferation in the rectal upper crypt-a biomarker of risk for colonic neoplasia. In conclusion, long-term acarbose administration does not adversely affect colonic function or fecal nutrient output. If increased fecal SCFA and butyrate reduces upper-crypt proliferation, then acarbose may reduce the risk of colonic neoplasia. PMID:8781308

  15. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production: Progress report, February 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    These studies concern the fundamental biochemical mechanisms that control carbon and electron flow in anaerobic bacteria that conserve energy when coupling hydrogen consumption to the production of acetic, propionic, or butyric acids. Two acidogens, Propionispira arboris and Butyribacterium methylotrophicum were chosen as model systems to understand the function of oxidoreductases and electron carriers in the regulation of hydrogen metabolism and single carbon metabolism. In P. arboris, H2 consumption was linked to the inhibition of CO2 production and an increase in the propionate/acetate rate; whereas, H2 consumption was linked to a stimulation of CO2 consumption and an increase in the butyrate/acetate ratio in B. methylotrophicum. We report studies on the enzymes involved in the regulation of singe carbon metabolism, the enzyme activities and pathways responsible for conversion of multicarbon components to acetate and propionate or butyrate, and how low pH inhibits H2 and acetic acid production in Sarcina ventriculi as a consequence of hydrogenase regulation. 9 refs

  16. Effects of wheat bran and porridge oats on hepatic portal venous volatile fatty acids in the pig.

    Science.gov (United States)

    Topping, D L; Illman, R J; Taylor, M N; McIntosh, G H

    1985-01-01

    Adult male pigs (40-60 kg of body weight) of the Kangaroo Island strain were surgically implanted with chronic indwelling hepatic portal venous cannulae. After a 24-hour fast the animals were given meals containing 500 g of either wheat bran or porridge oats and 200 g of sucrose and 2 litres of milk. With both cereal preparations plasma volatile fatty acids rose in the hepatic portal vein but the increase was significantly greater with wheat bran. Omission of sucrose and milk did not alter the response to porridge oats but diminished the response to wheat bran. These changes in plasma volatile fatty acids were unaffected by prior cooking of the cereals with hot water. With all test meals acetate and propionate were the major acids found, with butyrate contributing less than 8% of the total. This compositional profile was also found when the pigs were fed a commercial ration. The absence of butyrate differed from observations in the rat and reflected low concentrations of this acid in large bowel digesta. The difference in the response of the concentration of volatile fatty acids to feeding porridge oats and wheat bran in the pig was also the reverse of that found in the rat. These species differences may be of significance in relation to the choice of animal models for human fibre metabolism. PMID:2998265

  17. The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Oh Seong

    2009-05-01

    Full Text Available Abstract Background The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC inhibitor, and the two agents combined on radiosensitivity in human colon and breast cancer cell lines. Methods In this study, we used RKO colorectal cancer cell line and MCF-7 breast cancer cell lines and normal colon cell lines. On each of the cell lines, we used three different agents: the HDAC inhibitor sodium butyrate(SB, the demethylating agent 5-Aza-2'-deoxycytidine(5-aza-DC, and radiation. We then estimated the percentage of the cell survival using the XTT method and experimented to determine if there was an augmentation in the therapeutic effect by using different combinations of the two or three of the treatment methods. Results After treatment of each cell lines with 5-aza-DC, SB and 6 grays of radiation, we observed that the survival fraction was lower after the treatment with 5-aza-DC or SB than with radiation alone in RKO and MCF-7 cell lines(p Conclusion In conclusion, 5-aza-DC and SB can enhance radiosensitivity in both MCF-7 and RKO cell lines. The combination effect of a demethylating agent and an HDAC inhibitor is more effective than that of single agent treatment in both breast and colon cancer cell lines.

  18. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets

    DEFF Research Database (Denmark)

    Le Gall, Maud; Gallois, Mélanie; Sève, Bernard;

    2009-01-01

    Sodium butyrate (SB) provided orally favours body growth and maturation of the gastrointestinal tract (GIT) in milk-fed pigs. In weaned pigs, conflicting results have been obtained. Therefore, we hypothesised that the effects of SB (3 g/kg DM intake) depend on the period (before v. after weaning......) of its oral administration. From the age of 5 d, thirty-two pigs, blocked in quadruplicates within litters, were assigned to one of four treatments: no SB (control), SB before (for 24 d), or after (for 11-12 d) weaning and SB before and after weaning (for 35-36 d). Growth performance, feed intake and...... enzymes and five intestinal enzymes (P < 0.05). IL-18 gene expression tended to be lower in the mid-jejunum in SB-supplemented pigs. The small-intestinal mucosa was thinner and jejunal villous height lower in all SB groups (P < 0.05). In conclusion, the pre-weaning SB supplementation was the most...

  19. The relationship of endogenous plasma concentrations of β-Hydroxy β-Methyl Butyrate (HMB) to age and total appendicular lean mass in humans.

    Science.gov (United States)

    Kuriyan, Rebecca; Lokesh, Deepa P; Selvam, Sumithra; Jayakumar, J; Philip, Mamatha G; Shreeram, Sathyavageeswaran; Kurpad, Anura V

    2016-08-01

    The maintenance of muscle mass and muscle strength is important for reducing the risk of chronic diseases. The age- related loss of muscle mass and strength is associated with adverse outcomes of physical disability, frailty and death. β-Hydroxy β-Methyl Butyrate (HMB), a metabolite of leucine, has beneficial effects on muscle mass and strength under various catabolic conditions. The objectives of the present study were to determine if age- related differences existed in endogenous plasma HMB levels, and to assess if HMB levels correlated to total appendicular lean mass and forearm grip strength. Anthropometry, dietary and physical activity assessment, and the estimation of fasting plasma HMB concentrations and handgrip strength were performed on the 305 subjects (children, young adults and older adults). Lean mass, which serves as a surrogate for muscle mass was measured using dual energy X-ray absorptiometry (DEXA). Mean plasma HMB concentrations were significantly lower with increasing age groups, with children having highest mean HMB concentration (pbody weight (%), appendicular lean mass (r=0.37; phumans and the HMB concentrations were positively correlated with appendicular lean mass and hand grip strength in young adults and older adults group. PMID:27108182

  20. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress.

    Science.gov (United States)

    Sun, Jing; Wang, Fangyan; Hong, Guangliang; Pang, Mengqi; Xu, Hailing; Li, Haixiao; Tian, Feng; Fang, Renchi; Yao, Ye; Liu, Jiaming

    2016-04-01

    Sodium butyrate (NaB) has exhibited neuroprotective activity. This study aimed to explore that NaB exerts beneficial effects on chronic unpredictable mild stress (CUMS)-induced depression-like behaviors and its possible mechanisms. The behavioral tests including sucrose preference test (SPT), open field test (OFT), tail suspension test (TST) and forced swimming test (FST) were to evaluate the antidepressant effects of NaB. Then changes of Nissl's body in the hippocampus, brain serotonin (5-HT) concentration, brain-derived neurotrophic factor (BDNF) and tight junctions (TJs) proteins level were assessed to explore the antidepressant mechanisms. Our results showed that CUMS caused significant depression-like behaviors, neuropathological changes, and decreased brain 5-HT concentration, TJs protein levels and BDNF expression in the hippocampus. However, NaB treatment significantly ameliorated behavioral deficits of the CUMS-induced mice, increased 5-HT concentration, increased BDNF expression, and up-regulated Occludin and zonula occludens-1(ZO-1) protein levels in the hippocampus, which demonstrated that NaB could partially restore CUMS-induced blood-brain barrier (BBB) impairments. Besides, the pathologic changes were alleviated. In conclusion, these results demonstrated that NaB significantly improved depression-like behaviors in CUMS-induced mice and its antidepressant actions might be related with, at least in part, the increasing brain 5-HT concentration and BDNF expression and restoring BBB impairments. PMID:26957230

  1. Theoretical study on mechanism, kinetics, and thermochemistry of the gas phase reaction of 2,2,2-trifluoroethyl butyrate with OH radicals at 298 K

    Indian Academy of Sciences (India)

    Nand Kishor Gour; Bhupesh Kumar Mishra; Hari Ji Singh

    2015-06-01

    A theoretical investigation has been carried out on the mechanism, kinetics, and thermochemistry of gas-phase reaction of 2,2,2-trifluoroethyl butyrate (TFEB, CH3CH2CH2C(O)OCH2CF3) with OH radicals using a modern DFT functional. The involvement of pre- and post-reactive complexes was explored and the reaction profiles were modeled. Energetic calculations were performed using the M06-2X/6-31+G(d,p) method. The intrinsic reaction coordinate (IRC) calculation has been performed to confirm the smooth transition from the reactant to product through the respective transition state. It has been found that the dominant path of the H-atom abstraction takes place from the –CH2- position, which is attached with the methyl group at the one end of TFEB. Theoretically calculated rate constant at 298 K using canonical transition state theory (CTST) is found to be in reasonable agreement with the experimental data. Using group-balanced isodesmic procedure, the standard enthalpy of formation for TFEB is reported for the first time. The branching ratios of the different reaction channels are also determined. The atmospheric lifetime of TFEB is determined to be 6.8 days.

  2. BAY 61-3606, CDKi, and Sodium Butyrate Treatments Modulate p53 Protein Level and Its Site-Specific Phosphorylation in Human Vestibular Schwannomas In Vitro

    Directory of Open Access Journals (Sweden)

    Rohan Mitra

    2014-01-01

    Full Text Available This study is done to evaluate the effect of spleen tyrosine kinase inhibitor (BAY 61-3606, cyclin-dependent kinase inhibitor (CDKi, and sodium butyrate (Na-Bu on the level and phosphorylation of p53 protein and its binding to murine double minute 2 (MDM2 homologue in human vestibular schwannomas (VS. Primary cultures of the tumor tissues were treated individually with optimum concentrations of these small molecules in vitro. The results indicate modulation of p53 protein status and its binding ability to MDM2 in treated samples as compared to the untreated control. The three individual treatments reduced the level of total p53 protein. These treatments also decreased Ser392 and Ser15 phosphorylated p53 in tumor samples of young patients and Ser315 phosphorylated p53 in old patients. Basal level of Thr55 phosphorylated p53 protein was present in all VS samples and it remained unchanged after treatments. The p53 protein from untreated VS samples showed reduced affinity to MDM2 binding in vitro and it increased significantly after treatments. The MDM2/p53 ratio increased approximately 3-fold in the treated VS tumor samples as compared to the control. The differential p53 protein phosphorylation status perhaps could play an important role in VS tumor cell death due to these treatments that we reported previously.

  3. Topical hydrocortisone 17-butyrate 21-propionate in the treatment of inflammatory skin diseases: pharmacological data, clinical efficacy, safety and calculation of the therapeutic index.

    Science.gov (United States)

    Fölster-Holst, R; Abeck, D; Torrelo, A

    2016-03-01

    Hydrocortisone 17-butyrate 21-propionate (hydrocortisone buteprate, HBP) is a medium potent, non-halogenated double-ester of hydrocortisone with a favorable benefit/risk ratio for the treatment of inflammatory skin disorders. HBP is available as a 0.1% cream or ointment formulation. Good results were obtained with a once-daily topical treatment. HBP is characterized by a strong topical anti-inflammatory activity and weak systemic action. It is considered to have potency comparable to that of betamethasone 17-valerate (BV), but its systemic effects are less pronounced. HBP was shown to have a good efficacy in the treatment of various oozing and lichenified eczematous skin diseases including atopic dermatitis (AD) and in the treatment of psoriasis vulgaris. Even in very young children, HBP proved successful as an effective and safe drug. A therapeutic index of 2.0 can be attributed to this glucocorticoid. In this respect, there is no difference between topical HBP and other topical glucocorticoids with increased benefit/risk ratio, e.g. prednicarbate (PC), methylprednisolone aceponate (MPA) and mometasone furoate (MM). PMID:27183704

  4. SOX2 Is Regulated Differently from NANOG and OCT4 in Human Embryonic Stem Cells during Early Differentiation Initiated with Sodium Butyrate

    Directory of Open Access Journals (Sweden)

    Ade Kallas

    2014-01-01

    Full Text Available Transcription factors NANOG, OCT4, and SOX2 regulate self-renewal and pluripotency in human embryonic stem (hES cells; however, their expression profiles during early differentiation of hES cells are unclear. In this study, we used multiparameter flow cytometric assay to detect all three transcription factors (NANOG, OCT4, and SOX2 simultaneously at single cell level and monitored the changes in their expression during early differentiation towards endodermal lineage (induced by sodium butyrate. We observed at least four distinct populations of hES cells, characterized by specific expression patterns of NANOG, OCT4, and SOX2 and differentiation markers. Our results show that a single cell can express both differentiation and pluripotency markers at the same time, indicating a gradual mode of developmental transition in these cells. Notably, distinct regulation of SOX2 during early differentiation events was detected, highlighting the potential importance of this transcription factor for self-renewal of hES cells during differentiation.

  5. Acid Rain.

    Science.gov (United States)

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  6. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    Science.gov (United States)

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. PMID:26898679

  7. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant.

    Science.gov (United States)

    Jiang, Su; Chen, Yinguang; Zhou, Qi; Gu, Guowei

    2007-07-01

    Short-chain fatty acids (SCFAs), the preferred carbon sources for biological nutrient removal, are the important intermediate products in sludge anaerobic fermentation. Sodium dodecylbenzene sulfonate (SDBS) is a widespread used surfactant, which can be easily found in waste-activated sludge (WAS). In this investigation, the effect of SDBS on SCFAs production from WAS was investigated, and the potential of using fermentative SCFAs to promote enhanced biological phosphorus removal (EBPR) was tested. Results showed that the total SCFAs production increased significantly in the presence of SDBS at room temperature. At fermentation time of 6 days, the maximum SCFAs was 2599.1mg chemical oxygen demand (COD)/L in the presence of SDBS 0.02g/g, whereas it was only 339.1mg (COD)/L in the absence of SDBS. The SCFAs produced in the case of SDBS 0.02g/g and fermentation time 6 days consisted of acetic acid (27.1%), propionic acid (22.8%), iso-valeric acid (20.1%), iso-butyric acid (11.9%), n-butyric acid (10.4%) and n-valeric acid (7.7%). It was found that during sludge anaerobic fermentation, the solubilization of sludge particulate organic-carbon and hydrolysis of solubilized substrate as well as acidification of hydrolyzed products were all increased in the presence of SDBS, while the methane formation was decreased, the SCFAs production was therefore remarkably improved. Further investigation showed that the production of SCFAs enhanced by SDBS was caused mainly by biological effects, rather than by chemical effects and SDBS decomposition. With the fermentative SCFAs as the main carbon source, the EBPR maintained high phosphorus removal efficiency ( approximately 97%). PMID:17499838

  8. A quantitative headspace-solid-phase microextraction-gas chromatography-flame ionization detector method to analyze short chain free fatty acids in rat feces.

    Science.gov (United States)

    Fiorini, Dennis; Boarelli, Maria Chiara; Gabbianelli, Rosita; Ballini, Roberto; Pacetti, Deborah

    2016-09-01

    This study sought to develop and validate a quantitative method to analyze short chain free fatty acids (SCFAs) in rat feces by solid-phase microextraction and gas chromatography (SPME-GC) using the salt mixture ammonium sulfate and sodium dihydrogen phosphate as salting out agent. Conditioning and extraction time, linearity, limits of detection and quantification, repeatability, and recovery were evaluated. The proposed method allows quantification with improved sensitivity as compared with other methods exploiting SPME-GC. The method has been applied to analyze rat fecal samples, quantifying acetic, propionic, isobutyric, butyric, isopentanoic, pentanoic, and hexanoic acids. PMID:27267560

  9. The effects of in ovo feeding arginine, beta-hydroxy-beta-methyl-butyrate, and protein on jejunal digestive and absorptive activity in embryonic and neonatal turkey poults.

    Science.gov (United States)

    Foye, O T; Ferket, P R; Uni, Z

    2007-11-01

    In ovo feeding, injecting nutrients into the amnion of the avian embryo, may enhance jejunal nutrient uptake, activity of the intestinal enzymes, and posthatch growth. This hypothesis was tested in the following in ovo feeding (IOF) experiments. In experiment 1, 400 eggs were evenly distributed among 4 nutritional treatments at 23 d of embryonic development (23E) and administered 1 of 4 treatments as a 2 x 2 factorial arrangement of arginine (ARG 0, 0.7%) and beta-hydroxy-beta-methyl-butyrate (HMB 0, 0.1%). Tissues were assayed for maltase, sucrase, and leucine aminopeptidase (LAP) at 25E, hatch, and 3, 7, and 14 d. In experiment 2, all IOF procedures were repeated and treatments were administered at 21E: injected or noninjected control, 21% egg white protein (EWP), 21% EWP + 0.1% HMB. In experiment 3, two hundred eggs were evenly distributed among the following treatments at 23E: noninjected control or 0.7% ARG + 0.1% HMB + 21% EWP. Jejunal samples were assayed for glucose or alanine uptake at 23E, 25E, and hatch (experiment 2), and hatch and 7 d (experiment 3), respectively. All poults were fed a turkey starter diet ad libitum immediately upon hatching. There was a highly significant HMB x ARG interaction on jejunal sucrase, maltase, and LAP activities at 25E and 14 d. Poults in ovo (IO) fed HMB + ARG had approximately a 2- to 3-fold increase in jejunal sucrase, maltase, and LAP activities at 25E, and a 3-fold increase at 14 d, over other treatments. Poults IO fed EWP + HMB (experiment 2) had enhanced glucose uptake at 25E, whereas poults IO fed ARG + HMB + EWP (experiment 3) had enhanced alanine uptake at hatch and 7 d. These studies demonstrate that IOF ARG, HMB, and EWP may enhance jejunal nutrient uptake and digestion in turkeys. PMID:17954584

  10. SLC5A8 gene, a transporter of butyrate: a gut flora metabolite, is frequently methylated in African American colon adenomas.

    Directory of Open Access Journals (Sweden)

    Hassan Brim

    Full Text Available BACKGROUND: Colon cancer is one of the leading causes of cancer related deaths. Its impact on African Americans (AAs is higher than in the general population both in the incidence and mortality from the disease. Colon cancer aggressiveness in AAs as well as non-frequent check-ups and follow up in this population have been proposed as ways to explain the observed discrepancies. These facts made the detection of early carcinogenesis markers in this population a priority. MATERIALS AND METHODS: Here, we analyzed 50 colon adenomas from AA patients for both microsatellite instability (MSI and the methylation status of SLC5A8 gene. This gene's product is involved in the transport of butyrate that has anti-proliferative properties through its effects on histone acetylation and gene expression. A proteomic analysis to check the expressed histones in adenoma and normal tissues was also performed. RESULTS: The analyzed samples displayed 82% (n = 41 methylation level of SLC5A8 gene in adenomas. The MSI-H (high adenoma were about 18% (n = 9 while the rest were mostly MSS (microsatellite stable with few MSI-L (Low. No association was found between SLC5A8 methylation and the MSI status. Also, there was no association between SLC5A8 methylation and the sex and age of the patients. However, there were more right sided adenomas with SLC5A8 methylation than the left sided ones. The proteomic analysis revealed distinct histone expression profiles between normal and adenoma tissues. CONCLUSION: SLC5A8 is highly methylated in AA colon adenomas which points to its potential use as a marker for early detection. The MSI rate is similar to that found in colon cancer tumors in AAs. These findings suggest that both processes stem from the same epigenetic and genetic events occurring at an early stage in colon carcinogenesis in AAs.

  11. The effect of terebinth (Pistacia terebinthus L.) coffee addition on the chemical and physical characteristics, colour values, organic acid profiles, mineral compositions and sensory properties of ice creams.

    Science.gov (United States)

    Yüksel, Arzu Kavaz; Şat, Ihsan Güngör; Yüksel, Mehmet

    2015-12-01

    The aim of this research was to evaluate the effect of terebinth (Pistacia terebinthus L.) coffee addition (0.5, 1 and 2 %) on the chemical and physical properties, colour values, organic acid profiles, mineral contents and sensory characteristics of ice creams. The total solids, fat, titratable acidity, viscosity, first dripping time and complete melting time values, a (*) and b (*) colour properties, citric, lactic, acetic and butyric acid levels and Ca, Cu, Mg, Fe, K, Zn and Na concentrations of ice creams showed an increase with the increment of terebinth coffee amount, while protein, pH, L (*), propionic acid and orotic acid values decreased. However, Al and malic acid were not detected in any of the samples. The overall acceptability scores of the sensory properties showed that the addition of 1 % terebinth coffee to the ice cream was more appreciated by the panellists. PMID:26604374

  12. Amination of oxy acids in aqueous solution by gamma-irradiation

    International Nuclear Information System (INIS)

    Alanin, β-alanine, glicine, and aspartic, α-amino-n-butyric, and γ-amino-n-butyric acids were obtained by γ-irradiation of aqueous ammonia solutions of lactic, β-oxypropionic, glycolic, malic, α-oxybutyric, and γ-oxybutyric acids, respectively. The yields of amino acids were examined for functions of radiation dose (0.75 - 3.55Mrad), concentrations of oxy acid (0.01 - 0.1M) and ammonia (0.1 - 15M), and substances added as radical (potassium iodide), and hydrated electron (nitrous oxide) scavengers. The maximum G-values were 0.6 for alanine in a solution of 0.1M lactic acid-4M ammonia and some nitrous oxide and 1.14 for β-alanine in a solution of 0.1M β-oxypropionic acid and 0.7M ammonia. The yield of alanine increased with increased concentrations of lactic acid and ammonia due to saturation of nitrous oxide but decreased when potassium iodide (0.03M) was added. The yield of β-alanine showed a maximum increase at ca. 0.7M ammonia and decreased when potassium iodide and nitrous oxide were added. Serine was obtained from G = 0.002 in a solution of β-oxypropionic acid and increased to G = 0.058 due to saturation of nitrous oxide. The manner of chemical amination due to radiation was studied from the above results. In general, oxy acids from which hydrogen has been abstracted by an H or OH radical react with ammonia to form amino acids. The effect of ammonia concentration on the yield of amino acids demonstrates that the NH2 radical abstracts the α-hydrogen of lactic acid but does not react with the β-hydrogen of β-oxypropionic acid. The effect of nitrous oxide indicates that hydrated electrons interfere with alanine formation, contribute to β-alanine formation, react with the carboxyl group of lactic acids to form lactamide, and abstract the β-hydroxyl group of β-oxypropionic acids to form β-alanine. (Bell, E.)

  13. Folic Acid

    Science.gov (United States)

    ... found naturally in some foods, including leafy vegetables, citrus fruits, beans (legumes), and whole grains. Folic acid ... mcg of folic acid every day for good health. But older adults need to be sure they ...

  14. Effects of Fatty Acid Salts against Trichophyton Violaceum

    Directory of Open Access Journals (Sweden)

    Era Mariko

    2016-01-01

    Full Text Available Trichophyton violaceum is an anthropophilic fungus. Dermatophytosis (Tinea is fungal infection that can infect the scalp, glabrous skin, and nails. In general, Tinea can be spread by skin-to-skin contact or bathroom or floor materials. The treatments of Tinea need antifungal medication and good hygiene environment. The effective antifungal medication and infection prevention, and the creation of antifungal medication with high safety are required. In this study was focused on the antifungal effect of fatty acids potassium salts. The antifungal activity of nine fatty acid salts (butyrate, caproate, caprylate, caprate, laurate, myristate, oleate, linoleate, and linolenate was tested on the spores of Trichophyton violaceum NBRC 31064. The results show that C6K, C8K, C10K, C12K, C18:2K, C18:3K was the most inhibit 4-log unit (99.99 % of the fatty acids potassium incubated time for 10 min. It was observed that C12K and C18:3K was most high antifungal activity MIC. Commercially soap was lowest antifungal activity. This is because of the oleic acid is a major component of soap. Although further investigation is necessary to make clear antifungal mechanisms, our results suggest that fatty acid potassium will use to the development of a coating agent such as furniture.

  15. Ion-exclusion chromatographic separations of C1-C6 aliphatic carboxylic acids on a sulfonated styrene-divinylbenzene co-polymer resin column with 5-methylhexanoic acid as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The application of C7 aliphatic carboxylic acids (heptanoic, 2-methylhexanoic, 5-methylhexanoic and 2,2-dimethyl-n-valeric acids) as eluents in ion-exclusion chromatography with conductimetric detection for C1-C6 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocaproic and caproic acids) was carried out using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as a stationary phase. When using 0.05 mM sulfuric acid at pH 4.0 as the eluent, peak shapes of hydrophobic carboxylic acids (isovaleric, valeric, isocaproic and caproic acids) were tailed strongly. In contrast, when using 1 mM these C7 carboxylic acids at pH ca. 4 as the eluents, although system peaks (vacant peaks) corresponding to these C7 carboxylic acids appeared, peak shapes of these hydrophobic acids were improved drastically. Excellent simultaneous separation and relatively high sensitive conductimetric detection for these C1-C6 aliphatic carboxylic acids were achieved in 25 min on the TSKgel SCX column (150 x 6 mm I.D.) using 1 mM 5-methylhexanoic acid at pH 4.0 as the eluent. PMID:12830882

  16. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH

    Science.gov (United States)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ɛ-aminocaproic acid) and α-amino- n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies ( ∆G o) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G o values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G o values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  17. Efficacy of hydrocortisone butyrate cream combined with trixera emollient cream on infantile eczema%尤卓尔联合三重修护特润霜治疗婴幼儿湿疹的疗效

    Institute of Scientific and Technical Information of China (English)

    李琳; 张悦; 程岩峰; 杨帆; 韩秀萍

    2013-01-01

    Objective To observe the efficacy of hydrocortisone butyrate cream combined with eau-thermale-avene trixera emollient cream on infantile eczema. Methods A randomized controlled open trial was performed. The combined group ( group A ) was treated with hydrocortisone butyrate cream and eau-thermale-avene trixera emollient cream twice daily alternatively,hydrocortisone butyrate cream was gradually reduced according to the skin rash, and the emollient cream was maintained after the rash cured. The hydrocortisone butyrate cream group ( group B )was treated with hydrocortisone butyrate cream twice daily only and the dosage was reduced gradually similarly. The emollient cream group ( group C )was applied with eau-thermale-avene trixera emollient cream twice daily only. The variations of the rash were recorded and the total scores of erythema,papule,scale,pruritusand area were evaluated in the return visit of 7 and 14 d after medication and 7 d after recovery. Results The effective rate and curative rate of group A were significantly higher than those of group C after 7 d of therapy( P <0. 05 ). The effective rate and curative rate of group A after 14 d of therapy were all higher than those of group B and group C( P <0. 05 ). Conclusion The combination use of hydrocortisone butyrate cream and eau-thermale-avene trixera emollient cream is effective on infantile eczema.%目的 观察尤卓尔联合雅漾三重修护特润霜治疗婴幼儿湿疹的疗效.方法 采用随机对照开放试验,将患儿分为联合治疗组、尤卓尔组及特润霜组.联合治疗组应用尤卓尔和雅漾三重修护特润霜分别涂抹于患处,2次/d,并且根据患儿皮疹状况逐渐减少尤卓尔用量及次数,痊愈后改为单独外用雅漾三重修护特润霜维持治疗.尤卓尔组单独外用尤卓尔,2次/d,同样根据患儿皮疹情况逐渐减量.特润霜组单独外用雅漾三重修护特润霜,2次/d.于用药7、14 d及痊愈后1周复诊记录皮疹状况,

  18. 高效液相色谱法同时测定丁苯乳膏中两组分的含量%Simultaneous Determination of the Contents of Hydrocortisone Butyrate and Diphenhydramine Hydrochloride in Dingben Cream by HPLC

    Institute of Scientific and Technical Information of China (English)

    姬怀雪; 王艳; 邵珠民; 惠慧

    2012-01-01

    应用高效液相色谱法同时测定丁苯乳膏中丁酸氢化可的松和盐酸苯海拉明含量.色谱条件为:色谱柱:XTerra RP C18(250 mm×4.6 mm,5 mm);流动相:甲醇-乙腈-0.5%醋酸铵溶液(35∶27∶38);流速:1.0 mL·min-1;检测波长:232 nm.丁酸氢化可的松及盐酸苯海拉明在125~250 μg· mL-1及25~50 μg·mL-1范围内线性关系良好,表明应用HPLC法可同时测定该制剂丁酸氢化可的松及盐酸苯海拉明的含量.%This study determined simultaneously the contents of hydrocortisone butyrate and diphenhydramine hydrochloride in Dingben Cream with an HPLC method, in which the chromatographic column was XTerra RP C18 (250 mm ×4.6 mm, 5 μm). the mobile phase was composed of melhanol-acetonitrile—0.5% solution of ammonium acetate (35:27:38), the flew rate was aT 1.0 mL · min-1 and the. delecting wavelength was at 232 run. The linear ranges of hydrocortisone butyrate and diphenhydramine hydrochloride were 125-250 μg·mL-1 and 25-50 μg·mL-1, respectively, which indicated that the method can be used In determine simultaneously the contents of hydrororlisone butyrate and diphenhydramine hydrochloride in preparations.

  19. Preparation of poly(3-hydroxybutyrate)/carboxymethyl cellulose acetate butyrate blends using gel formation;Preparacao de blendas de poli(3-hidroxibutirato)/acetato butirato de carboximetilcelulose por gelificacao

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, A.L.; Rodrigues, G.V.; Goncalves, M.C., E-mail: agomes@iqm.unicamp.b [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2009-07-01

    This study investigates poly(3-hydroxybutyrate) (PHB) gel formation with a binary combination of solvents and its use on the preparation of PHB and carboxymethyl cellulose acetate butyrate (CMCAB) blends. The gel preparation method was compared to a precipitation method followed by hot pressing. The results from DSC and X-ray diffractions showed that both methodologies produced blends with very similar thermal properties and crystallization behavior. Scanning electron microscopy indicated better homogeneity in gel formation blends. Apart from this, the gel formation methodology provided new ways to prepare immiscible blends with the advantage of using friendlier solvents. (author)

  20. Synergistic action of non-solvent induced phase separation in preparation of poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation

    Institute of Scientific and Technical Information of China (English)

    邱运仁; 漆静; 韦玉清

    2014-01-01

    A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation (TIPS) has been carried out. The results show that the hollow fiber membrane prepared at air gap zero has no skin layer; the pore size near the outer surface is larger than that near the inner surface; and the special pore channel-like structure near the outer surface is formed, which is quite different with the typical sponge-like structure caused by TIPS and the finger-like structure caused by non-solvent induced phase separation (NIPS), because of the synergistic action of non-solvent induced phase separation at air gap zero. The pore size gradually decreases from outer surface layer to the intermediate layer, but increases gradually from intermediate layer to the inner surface layer. With the increase of air gap distance, the pore size near the outer surface gets smaller and a dense skin layer is formed, and the pore size gradually increases from the outer surface layer to the inner surface layer. Water permeability of the hollow fiber membrane decreases with air gap distance, the water permeability decreases sharply from 45.50×10-7 to 4.52×10-7m3/(m2·s·kPa) as air gap increases from 0 to 10 mm at take-up speed of 0.236 m/s, further decreases from 4.52×10-7 to 1.00×10-8m3/(m2·s·kPa) as the air gap increases from 10 to 40 mm. Both the breaking strength and the elongation increase with the increase of air gap distance. The breaking strength increases from 2.25 MPa to 4.19 MPa and the elongation increases from 33.9% to 132.6% as air gap increases from 0 mm to 40 mm at take-up speed 0.236 m/s.

  1. Colonic Butyrate- algesic or analgesic?

    OpenAIRE

    Kannampalli, Pradeep; Shaker, Reza; Sengupta, Jyoti N.

    2011-01-01

    Irritable bowel syndrome (IBS) is a common health issue that is characterized by abdominal pain, abnormal bowel movements and altered visceral perception. The complexity and variability in symptoms pose serious challenges in treating IBS. Current therapy for IBS is primarily focused on reducing the abdominal pain, thereby improving the quality of life to a significant extent. Although the use of fiber rich diet is widely recommended in treating IBS, some studies have questioned its use. Intra...

  2. Scientific Opinion on the safety and efficacy of branched-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing branched-chain alcohols and acetals containing branched-chain aldehydes (chemical group 2 when used as flavourings for all animal species

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2012-10-01

    Full Text Available

    Chemical group 2 consists of branched-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing branched-chain alcohols and acetals containing branched-chain aldehydes, of which 34 are currently authorised for use as flavours in food. The use of 2-methylpropionic acid, isopentyl acetate, 3-methylbutyl butyrate and 2-methylbutyl acetate is safe at the proposed use level of 25 mg/kg complete feed for cattle, salmonids and non food producing animals and at 5 mg/kg complete feed for pigs and poultry. 2-Methylpropan-1-ol, isopentanol, 2-ethylhexan-1-ol, 2-methylpropanal, 3-methylbutanal, 2-methylbutyraldehyde, 3-methylbutyric acid, 2-methylvaleric acid, 2-ethylbutyric acid, 2-methylbutyric acid, 2-methylheptanoic acid, 4-methyloctanoic acid, isobutyl acetate, isobutyl butyrate, 3-methylbutyl propionate, 3-methylbutyl formate, glyceryl tributyrate, isobutyl isobutyrate, isopentyl isobutyrate, isobutyl isovalerate, isopentyl 2-methylbutyrate, 2-methylbutyl isovalerate and 2-methylbutyl butyrate are safe at the proposed use level of 5 mg/kg complete feed for all animal species. 3,7-Dimethyloctan-1-ol, 2-methylundecanal, 4-methylnonanoic acid, 3-methylbutyl hexanoate, 3-methylbutyl dodecanoate, 3-methylbutyl octanoate and 3-methylbutyl 3-methylbutyrate are safe at a maximum of 1.5 mg/kg complete feed for cattle, salmonids and non food-producing animals and of 1.0 mg/kg complete feed for pigs and poultry. No safety concern was identified for the consumer from the use of these compounds up to the highest safe level in feedingstuffs for all animal species. All compounds should be considered as irritants to skin, eyes and respiratory tract, and as skin sensitisers. The compounds do not pose a risk to the environment when used at concentrations considered safe for the target species. Since all compounds are used in food as flavourings, no further demonstration of efficacy is necessary.

  3. Regulation of Inflammation by Short Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Renato T. Nachbar

    2011-10-01

    Full Text Available The short chain fatty acids (SCFAs acetate (C2, propionate (C3 and butyrate (C4 are the main metabolic products of anaerobic bacteria fermentation in the intestine. In addition to their important role as fuel for intestinal epithelial cells, SCFAs modulate different processes in the gastrointestinal (GI tract such as electrolyte and water absorption. These fatty acids have been recognized as potential mediators involved in the effects of gut microbiota on intestinal immune function. SCFAs act on leukocytes and endothelial cells through at least two mechanisms: activation of GPCRs (GPR41 and GPR43 and inhibiton of histone deacetylase (HDAC. SCFAs regulate several leukocyte functions including production of cytokines (TNF-α, IL-2, IL-6 and IL-10, eicosanoids and chemokines (e.g., MCP-1 and CINC-2. The ability of leukocytes to migrate to the foci of inflammation and to destroy microbial pathogens also seems to be affected by the SCFAs. In this review, the latest research that describes how SCFAs regulate the inflammatory process is presented. The effects of these fatty acids on isolated cells (leukocytes, endothelial and intestinal epithelial cells and, particularly, on the recruitment and activation of leukocytes are discussed. Therapeutic application of these fatty acids for the treatment of inflammatory pathologies is also highlighted.

  4. Ibotenic acid and thioibotenic acid

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte;

    2004-01-01

    In this study, we have determined and compared the pharmacological profiles of ibotenic acid and its isothiazole analogue thioibotenic acid at native rat ionotropic glutamate (iGlu) receptors and at recombinant rat metabotropic glutamate (mGlu) receptors expressed in mammalian cell lines....... Thioibotenic acid has a distinct pharmacological profile at group III mGlu receptors compared with the closely structurally related ibotenic acid; the former is a potent (low microm) agonist, whereas the latter is inactive. By comparing the conformational energy profiles of ibotenic and thioibotenic acid with...... the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for...

  5. Modeling the degradation of Portland cement pastes by biogenic organic acids

    International Nuclear Information System (INIS)

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  6. [Gastric Acid].

    Science.gov (United States)

    Ruíz Chávez, R

    1996-01-01

    Gastric acid, a product of parietal cells secretion, full fills multiple biological roles which are absolutely necessary to keep corporal homeostasis. The production of the acid depends upon an effector cellular process represented in the first step by histamine, acetilcholine and gastrin, first messengers of the process. These interact with specific receptors than in sequence activate second messengers -cAMP and the calcium-calmodulin system- which afterwards activate a kinase. An specific protein is then phosphorilated by this enzyme, being the crucial factor that starts the production of acid. Finally, a proton bomb, extrudes the acid towards the gastric lumen. The secretion process mentioned above, is progressive lyactivated in three steps, two of which are stimulators -cephalic and gastric phases- and the other one inhibitor or intestinal phase. These stages are started by mental and neurological phenomena -thought, sight, smell or memory-; by food, drugs or other ingested substances; and by products of digestion. Changes in regulation of acid secretion, in the structure of gastro-duodenal mucosal barrier by a wide spectrum of factors and agents including food, drugs and H. pylori, are the basis of acid-peptic disease, entity in which gastric acid plays a fundamental role. From the therapeutic point of view, so at the theoretical as at the practical levels, t is possible to interfere with the secretion of acid by neutralization of some of the steps of the effector cellular process. An adequate knowledge of the basics related to gastric acid, allows to create strategies for the clinical handling of associated pathology, specifically in relation to peptic acid disease in all of the known clinical forms. PMID:12165790

  7. Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases.

    Science.gov (United States)

    Lin, May Young; de Zoete, Marcel R; van Putten, Jos P M; Strijbis, Karin

    2015-01-01

    Short-chain fatty acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here, we describe that SCFAs have rapid and reversible effects on toll-like receptor (TLR) responses in epithelial cells. Incubation of HEK293 or HeLa epithelial cells with the SCFAs butyrate or propionate at physiological concentrations enhanced NF-κB activation induced by TLR5, TLR2/1, TLR4, and TLR9 agonists. NF-κB activation in response to tumor necrosis factor α (TNFα) was also increased by SCFAs. Comparative transcript analysis of HT-29 colon epithelial cells revealed that SCFAs enhanced TLR5-induced transcription of TNFα but dampened or even abolished the TLR5-mediated induction of IL-8 and monocyte chemotactic protein 1. SCFAs are known inhibitors of histone deacetylases (HDACs). Butyrate or propionate caused a rapid increase in histone acetylation in epithelial cells, similar to the small molecule HDAC inhibitor trichostatin A (TSA). TSA also mimicked the effects of SCFAs on TLR-NF-κB responses. This study shows that bacterial SCFAs rapidly alter the epigenetic state of host cells resulting in redirection of the innate immune response and selective reprograming of cytokine/chemokine expression. PMID:26579129

  8. The Effects of Lactic Acid Bacteria and Lactic Acid Bacteria+Enzyme Mixture Silage Inoculants on Maize Silage Fermentation and Nutrient Digestibility in Lambs

    Directory of Open Access Journals (Sweden)

    M. L. Ozduven

    2005-01-01

    Full Text Available This study was carried out to determine the effects of lactic acid bacteria and lact ic acidbacteria+enzyme mixture inoculants as silage additives, on the fermentation, aerobic stability, cell wallcontent, and nutrient digestibility in lambs of maize silages. Pioneer 1174 (Iowa, USA, and Maize -All(Alltech, UK were used as lactic acid bacteria and lactic acid bacteria+enzyme mixture inoculants. Plantmaterials were fermented for 60 days in bunker type silos. Aerobic stability test was applied to all silosopened in the end of fermentation period. Relating to silage fermentation analysis of pH, ammonia nitrogen,water soluble carbohydrate, organic acids (lactic, acetic and butyric acid were carried out andmicrobiological analyses had been done. Digestional value of crude nutritive matters of silages determinedwith classical digestive experiments. Both inoculants increased characteristics of fermentation but impairedaerobic stability of maize silages. Inoculants were not effect on the nutritient digestibility of silages. Lacticacid bacteria+enzyme mixture inoculant decreased neutral and acid detergent fiber content.

  9. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    Science.gov (United States)

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  10. Stereoselective and nonstereoselective effects of ibuprofen enantiomers on mitochondrial beta-oxidation of fatty acids

    International Nuclear Information System (INIS)

    The effects of the R-(-) and S-(+)ibuprofen enantiomers were first studied in vitro with mouse liver mitochondria incubated in the presence of various concentrations of exogenous coenzyme A. In the presence of a low concentration of coenzyme A (2.5 microM), the R-(-)enantiomer (which forms an acylcoenzyme A) inhibited stereoselectively the beta oxidation of [1-14C]palmitic acid but not that of [1-14C]palmitoyl-L-carnitine (which can directly enter the mitochondria). In the presence, however, of a concentration of coenzyme A (50 microM) reproducing that present in liver cell cytosol, both enantiomers (2 mM) slightly inhibited the beta oxidation of [1-14C]palmitic acid and markedly inhibited the beta oxidation of [1-14C]octanoic acid and [1-14C]butyric acid. In vivo, both enantiomers (1 mmol.kg-1) similarly inhibited the formation of [14C]CO2 from [1-14C]fatty acids. Both enantiomers similarly decreased plasma ketone bodies. Both similarly increased hepatic triglycerides, and both produced mild microvesicular steatosis of the liver. We conclude that both ibuprofen enantiomers inhibit beta oxidation of fatty acids in vitro and in vivo. In addition, the R-(-)enantiomer may stereoselectively sequester coenzyme A; at low concentrations of coenzyme A in vitro, this may stereoselectively inhibit the mitochondrial uptake and beta oxidation of long chain fatty acids

  11. Stereoselective and nonstereoselective effects of ibuprofen enantiomers on mitochondrial beta-oxidation of fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Freneaux, E.; Fromenty, B.; Berson, A.; Labbe, G.; Degott, C.; Letteron, P.; Larrey, D.; Pessayre, D. (Unite de Recherches de Physiolopathologie Hepatique (INSERM U-24), Hopital Beaujon, Clichy (France))

    1990-11-01

    The effects of the R-(-) and S-(+)ibuprofen enantiomers were first studied in vitro with mouse liver mitochondria incubated in the presence of various concentrations of exogenous coenzyme A. In the presence of a low concentration of coenzyme A (2.5 microM), the R-(-)enantiomer (which forms an acylcoenzyme A) inhibited stereoselectively the beta oxidation of (1-{sup 14}C)palmitic acid but not that of (1-{sup 14}C)palmitoyl-L-carnitine (which can directly enter the mitochondria). In the presence, however, of a concentration of coenzyme A (50 microM) reproducing that present in liver cell cytosol, both enantiomers (2 mM) slightly inhibited the beta oxidation of (1-{sup 14}C)palmitic acid and markedly inhibited the beta oxidation of (1-{sup 14}C)octanoic acid and (1-{sup 14}C)butyric acid. In vivo, both enantiomers (1 mmol.kg-1) similarly inhibited the formation of ({sup 14}C)CO{sub 2} from (1-{sup 14}C)fatty acids. Both enantiomers similarly decreased plasma ketone bodies. Both similarly increased hepatic triglycerides, and both produced mild microvesicular steatosis of the liver. We conclude that both ibuprofen enantiomers inhibit beta oxidation of fatty acids in vitro and in vivo. In addition, the R-(-)enantiomer may stereoselectively sequester coenzyme A; at low concentrations of coenzyme A in vitro, this may stereoselectively inhibit the mitochondrial uptake and beta oxidation of long chain fatty acids.

  12. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U-14C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  13. Host cell reactivation by human cells of DNA expression vectors damaged by ultraviolet radiation or by acid-heat treatment

    International Nuclear Information System (INIS)

    We utilized a plasmid vector host cell reactivation assay to probe the biological functioning of DNA expression vectors and their encoded genes. We studied the effect of ultraviolet radiation or acid-heat treatment on the transient expression of genes transfected into normal human cells and into DNA repair deficient (xeroderma pigmentosum) cells and modification of gene expression by sodium butyrate. The results showed that u.v. damage of DNA expression vectors was subject to repair by the normal host cells, but acid-heat treatment resulted in damage (apurinic sites) that was handled in a similar manner by excision repair deficient and excision repair proficient human cells. In both normal and xeroderma pigmentosum cells sodium butyrate treatment of cells resulted in a greater stimulation of chloramphenicol acetyltransferase expression with u.v. damaged than with undamaged plasmid. This assay thus permits examination of the effects of defined types of DNA damage on plasmid expression and study of its modulation by cellular repair activities. (author)

  14. Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly.

    Science.gov (United States)

    Cuervo, Adriana; Salazar, Nuria; Ruas-Madiedo, Patricia; Gueimonde, Miguel; González, Sonia

    2013-10-01

    It has recently been suggested that fiber exerts a considerable effect on microbiota composition and on fecal short-chain fatty acid (SCFA) production, the concentration of which in the colon is important for immune regulation and for maintaining gut and overall health. To test the hypothesis that the fiber consumed in a regular diet affects fecal SCFA concentrations in the elderly, the authors investigated the association between different types of fiber intake and fecal SCFA concentrations in 32 institutionalized elderly subjects aged between 76 and 95 years. Food intake was recorded by means of a validated food frequency questionnaire. Total, soluble (pectin and hemicellulose) and insoluble (pectin, hemicellulose, Klason lignin, and cellulose) fiber was determined using Marlett Food Composition Tables. Analysis of acetic, propionic, and butyric acid concentrations was performed using gas chromatography-mass spectrometry. Potato intake was directly associated with SCFA concentrations and apple intake with propionate concentration. Of the fibers, cellulose showed an independent association with acetate and butyrate concentrations, and insoluble pectin explained a part of the variation in propionate. In conclusion, our results provide further evidence regarding the relation between diet and SCFA concentration in the elderly. The identification of an association between the regular intake of foods such as potatoes and the production of SCFAs provides an opportunity to improve public health. PMID:24074739

  15. Folic acid

    Science.gov (United States)

    ... include leafy vegetables (such as spinach, broccoli, and lettuce), okra, asparagus, fruits (such as bananas, melons, and ... Pyrimethamine (Daraprim)Pyrimethamine (Daraprim) is used to treat parasite infections. Folic acid might decrease the effectiveness of ...

  16. Folic Acid

    Medline Plus

    Full Text Available ... March of Dimes Premature Birth Report Card Grades Cities, Counties; Focuses on Racial and Ethnic Disparities March ... your baby. Learn how you can get the right amout of folic acid before and during pregnancy ...

  17. ACID RAIN

    Science.gov (United States)

    Acid precipitation has become one of the major environmental problems of this decade. It is a challenge to scientists throughout the world. Researchers from such diverse disciplines as plant pathology, soil science, bacteriology, meteorology and engineering are investigating diff...

  18. Folic Acid

    Medline Plus

    Full Text Available ... Just a moment, please. You've saved this page It's been added to your dashboard . Folic acid ... Map Premature birth report card Careers Archives Health Topics Pregnancy Before or between pregnancies Nutrition, weight & fitness ...

  19. Folic Acid

    Medline Plus

    Full Text Available ... Folic acid Description | Related videos | Most played video E-mail to a friend Please fill in all fields. Please enter a valid e-mail address. Your information: Your recipient's information: Your ...

  20. [The different notions about beta-oxidation of fatty acids in peroxisomes, peroxisomes and ketonic bodies. The diabetic, acidotic coma as an acute deficiency of acetyl-CoA and ATP].

    Science.gov (United States)

    Kotkina, T I; Titov, V N; Parkhimovich, R M

    2014-03-01

    The mechanisms of beta-oxidation of fatty acids developed more than a century before have no compliance with actual physical chemical data. The oxidation of long-chain C 16:0 palmitic saturated fatty acid occurs not by sequential formation of eight molecules of acetyl-KoA but by force of formation of double bond and its hydrolysis on two short-chain C 8:0 fatty acids. Only short-chain fatty acids can become shorter under "chipping" of C 2-acetate with formation of C 4-butyric acid (butyrate) and its metabolites (beta-hidroxibutirate, acetoacetate, acetone). The critical moment of oxidation is a hydrolysis of acetoacetyl-KoA on two molecules of acetyl-KoA. The molecule of ATP is to be expended on hydrolysis. The foundation of nonspecific biological reaction of stress--ketoacidosis,--is a decrease in mitochondrions of acetyl-KoA pool formed both from glycogen and glucose and fatty acids. The oxalate acetate inputs into Krebs cycle inadequate amount of acetyl-KoA which limits synthesis of ATP. The insulin has no direct involvement into development of ketoacidosis but prepares conditions to facilitate nonspecific etiological factor to initiate diabetic ketoacidosis. These are the pooling of small amount of glycogen in cytozol and the predominance in cytozol of cells and adipocytes of palmitic triglycerides which are slowly hydrolyzed by hormone-dependent lipase to release non-esterified fatty acids into intercellular medium. The increase of their concentration in blood plasma precedes ketoacidosis which is developing in patients without diabetes mellitus too. When cells begin to oxidize unsaturated linoleic and linolenic acids with large number of double binds instead of medium-chain fatty acids, oleinic and palmitic fatty acids to support beta-oxidation in mitochondrions and synthesis of ATP the amount of butyric acid, beta-hidroxibutiryl-KoA and acetoacetyl-KoA increases and of acetyl-KoA decreases. The cause of fatal outcome is the development of metabolic acidosis

  1. Foliar application of amino acids modulates aroma components of 'FUJI' apple (malus domestica L.)

    International Nuclear Information System (INIS)

    Volatile flavor compounds play a key role in determining the perception and acceptability as well as enhancing market competitiveness of apple (Malus domestica L.). In our study, we evaluated the effects of foliar-applied four different amino acids, i.e. leucine (Leu), isoleucine (Ile), valine (Val) and alanine (Ala), on aroma components and two key enzymes activities involved in aroma metabolism of Fuji apple. The total amount of aromatic components under Ala treatment was significantly higher than those under other treatments. There was a considerable increase in total aroma content, including hexanal, 2-methyl-butanol, nonanal, (E)-2-hexenal, methyleugenol, ethyl acetate, butanoic acid-pentyl ester, butanoic acid-hexyl ester, butyric acid ethyl ester, acetic acid-2-methyl-butyl ester, treated with spraying amino acids compared with the control. More specifically, hexanal, 2-methyl-butanol, methyleugenol and acetic acid-2-methyl-butyl ester exhibited a greater substantial increase of their contents than those of in other ingredients. However, butanoic acid-2-methyl-2-methyl butyl ester maintained a highest level among all aroma components regardless of different amino acids application. Furthermore, the activities of alcohol dehydrogenase (ADH) and alcohol acyltransferase (AAT) were much higher under Ala treatment than those under other treatments. We concluded that foliar-applied organic nitrogen (N), especially for Ala, can improve aroma metabolism and it could be used in production to enhance fruit quality on a commercial scale. (author)

  2. Thermodynamic study of fatty acids adsorption on different adsorbents

    International Nuclear Information System (INIS)

    This work has as objective the study about the adsorption behavior of fatty acids (acetic, propionic, and butyric) on activated carbon and on modified and unmodified montmorillonite clays as a function of temperature and initial concentration of the adsorbate, through adsorption isotherms and their thermodynamic parameters (ΔG, ΔH, and ΔS). The activated carbon presented a higher adsorption capacity due to its relatively large surface area, compared to others adsorbents. The polar characteristic of fatty acids decreased with the increase in the length of non-polar hydrocarbon chain, improving the affinity between the activated carbon (non-polar adsorbent) and the acids. The adsorption capacity of modified montmorillonite (polar adsorbent) was favored due to the presence of the organic cation among its layers, which make the surface more hydrophobic and organophilic when compared to the unmodified montmorillonite surface. The amount of fatty acids adsorbed in the adsorbents surface increased with the concentration, at constant temperature, and decreased with the increase of temperature, at constant concentration. The amount of fatty acids adsorbed in the three adsorbents was related to the surface area and polarity of the adsorbent, concentration and solubility of the adsorbate and temperature of the solution. The negative values of ΔG and ΔH showed that the adsorption on activated carbon and on modified and unmodified montmorillonite clays was a spontaneous and an exothermic process. The decrease in the values of ΔG, with the increase of temperature, demonstrated that the adsorption was benefited by the high temperature and the positive values of ΔS showed that the fatty acids molecules were in a more randomic condition in the adsorbed state than in solution. The experimental results obtained at the temperatures of (298, 303, 313, and 323) K showed that experimental data were well represented by the Langmuir and Freundlich isotherms models

  3. Daily Sodium Butyrate Enema for the Prevention of Radiation Proctitis in Prostate Cancer Patients Undergoing Radical Radiation Therapy: Results of a Multicenter Randomized Placebo-Controlled Dose-Finding Phase 2 Study

    International Nuclear Information System (INIS)

    Purpose: To evaluate the efficacy of sodium butyrate enemas (NABUREN) in prostate cancer radiation therapy (RT) in reducing the incidence, severity, and duration of acute RT-induced proctitis. Methods and Materials: 166 patients, randomly allocated to 1 of 4 groups (rectal sodium butyrate 1 g, 2 g, or 4 g daily or placebo), were treated with NABUREN during and 2 weeks after RT. The grade of proctitis was registered in a daily diary. The correlation between NABUREN and proctitis was investigated through χ2 statistics. The toxicity endpoints considered were as follows: total number of days with grade ≥1 proctitis (≥G1); total number of days with grade ≥2 proctitis (≥G2); ≥G1 and ≥G2 proctitis lasting at least 3 and 5 consecutive days starting from week 4 (≥G1+3d, ≥G2+3d); damaging effects of RT on rectal mucosa as measured by endoscopy. The relationship between endpoints and pretreatment morbidities, hormonal therapy, presence of diabetes or hypertension, abdominal surgery, or hemorrhoids was investigated by univariate analysis. Results: The patients were randomly allocated to the 4 arms. No difference in the distribution of comorbidities among the arms was observed (P>.09). The mean ≥G1 and ≥G2 proctitis were 7.8 and 4.9 for placebo and 8.9 and 4.7 for the NABUREN group, respectively. No favorable trend in reduction of incidence, severity, and duration of ≥G1 and ≥G2 proctitis was observed with NABUREN use. In univariate analysis, ≥G1+3d toxicity was found to be related to hemorrhoids (P=.008), and a slight correlation was found between ≥G2 proctitis and hormonal therapy (P=.06). The RT effects on rectal mucosa as based on endoscopic assessment were mainly related to diabetes (P<.01). Endoscopy data at 6 week showed no significant difference between the placebo and butyrate arms. The other investigated endpoints were not correlated with any of the clinical risk factors analyzed. Conclusion: There was no evidence of efficacy of

  4. Daily Sodium Butyrate Enema for the Prevention of Radiation Proctitis in Prostate Cancer Patients Undergoing Radical Radiation Therapy: Results of a Multicenter Randomized Placebo-Controlled Dose-Finding Phase 2 Study

    Energy Technology Data Exchange (ETDEWEB)

    Maggio, Angelo, E-mail: maggio.angelo@gmail.com [Medical Physics, San Raffaele Scientific Institute, Milan (Italy); Magli, Alessandro [Department of Radiotherapy, Ospedale S. Maria della Misericordia, Udine (Italy); Rancati, Tiziana [Prostate Cancer Programme, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy); Fiorino, Claudio [Medical Physics, San Raffaele Scientific Institute, Milan (Italy); Valvo, Francesca [Division of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy); Fellin, Giovanni [Department of Radiotherapy, Ospedale Santa Chiara, Trento (Italy); Ricardi, Umberto [University of Turin, Department of Oncology, Torino (Italy); Munoz, Fernando [Radiotherapy Unit, AO Città della Salute e della Scienza di Torino, Torino (Italy); Cosentino, Dorian; Cazzaniga, Luigi Franco [Ospedale S. Anna, Como (Italy); Valdagni, Riccardo [Prostate Cancer Programme, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy); Division of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy); Vavassori, Vittorio [Department of Radiotherapy, Ospedale di Circolo, Varese (Italy)

    2014-07-01

    Purpose: To evaluate the efficacy of sodium butyrate enemas (NABUREN) in prostate cancer radiation therapy (RT) in reducing the incidence, severity, and duration of acute RT-induced proctitis. Methods and Materials: 166 patients, randomly allocated to 1 of 4 groups (rectal sodium butyrate 1 g, 2 g, or 4 g daily or placebo), were treated with NABUREN during and 2 weeks after RT. The grade of proctitis was registered in a daily diary. The correlation between NABUREN and proctitis was investigated through χ{sup 2} statistics. The toxicity endpoints considered were as follows: total number of days with grade ≥1 proctitis (≥G1); total number of days with grade ≥2 proctitis (≥G2); ≥G1 and ≥G2 proctitis lasting at least 3 and 5 consecutive days starting from week 4 (≥G1+3d, ≥G2+3d); damaging effects of RT on rectal mucosa as measured by endoscopy. The relationship between endpoints and pretreatment morbidities, hormonal therapy, presence of diabetes or hypertension, abdominal surgery, or hemorrhoids was investigated by univariate analysis. Results: The patients were randomly allocated to the 4 arms. No difference in the distribution of comorbidities among the arms was observed (P>.09). The mean ≥G1 and ≥G2 proctitis were 7.8 and 4.9 for placebo and 8.9 and 4.7 for the NABUREN group, respectively. No favorable trend in reduction of incidence, severity, and duration of ≥G1 and ≥G2 proctitis was observed with NABUREN use. In univariate analysis, ≥G1+3d toxicity was found to be related to hemorrhoids (P=.008), and a slight correlation was found between ≥G2 proctitis and hormonal therapy (P=.06). The RT effects on rectal mucosa as based on endoscopic assessment were mainly related to diabetes (P<.01). Endoscopy data at 6 week showed no significant difference between the placebo and butyrate arms. The other investigated endpoints were not correlated with any of the clinical risk factors analyzed. Conclusion: There was no evidence of efficacy

  5. Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes.

    Science.gov (United States)

    Pellis, Alessandro; Acero, Enrique Herrero; Weber, Hansjoerg; Obersriebnig, Michael; Breinbauer, Rolf; Srebotnik, Ewald; Guebitz, Georg M

    2015-09-01

    Poly(lactic acid) as a biodegradable thermoplastic polyester has received increasing attention. This renewable polyester has found applications in a wide range of products such as food packaging, textiles and biomedical devices. Its major drawbacks are poor toughness, slow degradation rate and lack of reactive side-chain groups. An enzymatic process for the grafting of carboxylic acids onto the surface of poly(L-lactic acid) (PLLA) films was developed using Candida antarctica lipase B as a catalyst. Enzymatic hydrolysis of the PLLA film using Humicola insolens cutinase in order to increase the number of hydroxyl and carboxylic groups on the outer polymer chains for grafting was also assessed and showed a change of water contact angle from 74.6 to 33.1° while the roughness and waviness were an order of magnitude higher in comparison to the blank. Surface functionalization was demonstrated using two different techniques, (14) C-radiochemical analysis and X-ray photoelectron spectroscopy (XPS) using (14) C-butyric acid sodium salt and 4,4,4-trifluorobutyric acid as model molecules, respectively. XPS analysis showed that 4,4,4-trifluorobutyric acid was enzymatically coupled based on an increase of the fluor content from 0.19 to 0.40%. The presented (14) C-radiochemical analyses are consistent with the XPS data indicating the potential of enzymatic functionalization in different reaction conditions. PMID:25963883

  6. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    Science.gov (United States)

    Baumann, Ivan

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed. PMID:27556042

  7. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market.

    Science.gov (United States)

    Baumann, Ivan; Westermann, Peter

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed. PMID:27556042

  8. Okadaic acid

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H; Severinsen, Mai C K

    2014-01-01

    Okadaic acid (OA) is a polyether fatty acid produced by marine dinoflagellates and the causative agent of diarrhetic shellfish poisoning. The effect of OA on apical endocytosis in the small intestine was studied in organ cultured porcine mucosal explants. Within 0.5-1 h of culture, the toxin caused...... endosomes (TWEEs) occurred unimpeded in the presence of OA, FM condensed in larger subapical structures by 1 h, implying a perturbed endosomal trafficking/maturation. The fluorescent lysosomotropic agent Lysotracker revealed induction of large lysosomal structures by OA. Endocytosis from the brush border...

  9. Perfluorooctanoic acid

    NARCIS (Netherlands)

    P. de Voogt

    2014-01-01

    Perfluorooctanoic acid (PFOA, 335-67-1) is used in fluoropolymer production and firefighting foams and persists in the environment. Human exposure to PFOA is mostly through the diet. PFOA primarily affects the liver and can cause developmental and reproductive toxic effects in test animals.

  10. Ascorbic Acid

    Science.gov (United States)

    Cevi-Bid® ... If you become pregnant while taking ascorbic acid, call your doctor. ... In case of overdose, call your local poison control center at 1-800-222-1222. If the victim has collapsed or is not breathing, call ...

  11. Stearic Acid

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  12. Mefenamic Acid

    Science.gov (United States)

    Mefenamic acid comes as a capsule to take by mouth. It is usually taken with food every 6 hours as needed for up to 1 week. Follow ... pain vomit that is bloody or looks like coffee grounds black, tarry, or bloody stools slowed breathing ...

  13. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells

    DEFF Research Database (Denmark)

    Andresen, Lars; Hansen, Karen Aagaard; Jensen, Helle;

    2009-01-01

    We found that propionic acid secreted from propionibacteria induces expression of the NKG2D ligands MICA/B on activated T lymphocytes and different cancer cells, without affecting MICA/B expression on resting peripheral blood cells. Growth supernatant from propionibacteria or propionate alone could...... directly stimulate functional MICA/B surface expression and MICA promoter activity by a mechanism dependent on intracellular calcium. Deletion and point mutations further demonstrated that a GC-box motif around -110 from the MICA transcription start site is essential for propionate-mediated MICA promoter...... activity. Other short-chain fatty acids such as lactate, acetate, and butyrate could also induce MICA/B expression. We observed a striking difference in the molecular signaling pathways that regulate MICA/B. A functional glycolytic pathway was essential for MICA/B expression after exposure to propionate...

  14. Zinc oxide modified with benzylphosphonic acids as transparent electrodes in regular and inverted organic solar cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ilja; Reiter, Sina; Kniepert, Juliane; Piersimoni, Fortunato; Brenner, Thomas; Neher, Dieter, E-mail: neher@uni-potsdam.de [Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam (Germany); Pätzel, Michael; Hildebrandt, Jana; Hecht, Stefan [Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin (Germany)

    2015-03-16

    An approach is presented to modify the work function of solution-processed sol-gel derived zinc oxide (ZnO) over an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester as the active layer. These devices compete with or even surpass the performance of the reference on indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Our findings highlight the potential of properly modified ZnO as electron or hole extracting electrodes in hybrid optoelectronic devices.

  15. Radiometric studies on the oxidation of (I-14C) fatty acids by drug-susceptible and drug-resistant mycobacteria

    International Nuclear Information System (INIS)

    A radiometric assay system has been used to study oxidation patterns of (l - 14C) fatty acids by drug-susceptible and drug-resistant organisms of the genus Mycobacterium (M. tuberculosis - H37Rv and Erdman, M. bovis, M. avium, M. intracellulare, M.Kansasii and M. chelonei). The organisms were inoculated in sterile reaction vials containing liquid 7H9 medium, 10% ADC enrichment and 1.0 uli of one of the (l-14C) fatty acids (butyric, hexanoic, octanoic, decanoic, lauric, myristic, palmitic, stearic, oleic, linoleic, linolenic). Vials were incubated at 370C and the 14CO2 envolved was measured daily for 3 days with a Bactec R-301 instrument. (M.A.C.)

  16. Research on reverse osmosis membrane treatment technology of condensate water containing organic acid%反渗透膜处理含有机酸凝结水技术

    Institute of Scientific and Technical Information of China (English)

    李静; 刘景洋; 乔琦; 海热提; 孙晓明

    2012-01-01

    采用反渗透膜对某制药厂含甲酸、乙酸、丙酸、丁酸、戊酸、己酸、异丁酸和2-甲基丁酸的凝结水进行处理,研究了进水温度、压力和pH值对凝结水中有机酸截留效果的影响,讨论了反渗透膜对有机酸的截留机理。研究结果表明:温度为20~40℃、压力为0.5~1.5 MPa、pH值为4~10时,产水中丁酸、戊酸、己酸和2-甲基丁酸的浓度低于检测限,甲酸、乙酸、丙酸和异丁酸的截留率随着压力和pH值增加而增大,随着温度升高而降低;产水率随着压力增大、温度升高而增大,不受pH值变化影响。说明反渗透膜对有机酸的机械筛除作用及膜与有机酸之间的电荷作用对有机酸的截留具有重要影响。%This research focused on the application of reverse osmosis membrane to treat the condensate water containing formic acid,acetic acid,propionic acid,butyric acid,pentanoic acid,carproic acid,isobutyric acid and 2-methyl-butyric acid.The effects of water temperature,pressure and pH on retention rate of organic acids,as well as the retention mechanism were discussed.The results indicated the concentration of butyric acid,pentanoic acid and 2-methyl-butyric acid in producing water were below detection limit when the experimental conditions of water temperature at 20— 40 ℃,pressure at 0.5—1.5 MPa,pH at 4—10.The retention rate of formic acid,acetic acid,propionic acid and carproic acid decreased with the increase of water temperature and increased with the increase of pressure and pH.The water production rate increased when both water temperature and pressure increased.The mechanic screening of reverse osmosis membrane and the charge effect between organic acid and membrane should have important influences on the retention effect of organic acids.

  17. Effect of fermentation period on the organic acid and amino acid contents of Ogiri from castor oil bean seeds

    Directory of Open Access Journals (Sweden)

    Ojinnaka, M-T. C.

    2013-01-01

    Full Text Available Aims: To monitor the changes in the concentration of organic acid and amino acid contents during the fermentation of castor oil bean seed into ogiri.Methodology and results: In this study, ogiri, a Nigerian fermented food condiment was prepared from castor oil bean using Bacillus subtilis as a monoculture starter for the production of three different fermented castor oil bean condiment samples: B1 (0% NaCl/lime, B2 (2% NaCl, B3 (3% lime. Variations in the composition of the castor oil bean with fermentation over 96 h periods were evaluated for organic acid and amino acid contents using High Performance Liquid Chromatography. Organic acids were detected in the fermented castor oil bean samples as fermentation period increased to 96 h. Organic acids identified were oxalic, citric, tartaric, malic, succinic, lactic, formic, acetic, propionic and butyric acids. The lactic acid contents in sample B1 (0% NaCl/lime decreased initially and then increased as the fermentation period progressed. The value at 96 h fermentation was 1.336 µg/mL as against 0.775 µg/mL at 0 h fermentation. Sample B3 (3% lime had lactic acid content that increased as fermentation period increased with lactic acid content of 1.298 µg/mL at 96 h fermentation. The acetic acid content of sample B1 increased as fermentation progressed and at 96 h fermentation, its value was 1.204 µg/mL while those of B2 and B3 were 0.677 µg/mL and 1.401 µg/mL respectively. The three fermented castor oil bean samples also contained sufficient amount of amino acids. Sample B1 had the highest values in isoleucine glycine and histidine with values 1.382 µg/mL, 0.814 µg/mL and 1.022 µg/mL respectively while sample B2 had the highest value in leucine content with 0.915 µg/mL at 96 h fermentation, closely followed by sample B3 and B1 with 0.798 µg/mL and 0.205 µg/mL respectively. The results of amino acid analysis indicated a high concentration of all amino acids at 96 h of fermentation

  18. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.

    Science.gov (United States)

    Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang

    2016-07-01

    Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline. PMID:27070285

  19. Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor.

    Science.gov (United States)

    Chaikasem, Supawat; Abeynayaka, Amila; Visvanathan, Chettiyappan

    2014-09-01

    This work studied the effect of polyvinyl alcohol hydrogel (PVA-gel) beads, as an effective biocarrier for volatile fatty acid (VFA) production in hydrolytic reactor of a two-stage thermophilic anaerobic membrane bioreactor (TAnMBR). The two-stage TAnMBR, treating synthetic high strength particulate wastewater with influent chemical oxygen demand (COD) [16.4±0.8 g/L], was operated at 55 °C. Under steady state conditions, the reactor was operated at an organic loading rate of 8.2±0.4 kg COD/m(3) d. Operational performance of the system was monitored by assessing VFA composition and quantity, methane production and COD removal efficiency. Increment of VFA production was observed with PVA-gel addition. Hydrolytic effluent contained large amount of acetic acid and n-butyric acid. However, increase in VFA production adversely affected the methanogenic reactor performance due to lack of methanogenic archaea. PMID:24803272

  20. [Screening and identification of indoleacetic acid producing endophytic bacterium in Panax ginseng].

    Science.gov (United States)

    Jiang, Yun; Tian, Lei; Chen, Chang-qing; Zhang, Guan-jun; Li, Tong; Chen, Jing-xiu; Wang, Xue

    2015-01-01

    Endophytic bacteria which was producing indoleacetic acid was screened from Panax ginseng by using the Salkowski method. The active strain was also tested for its ability of nitrogen fixation by using the Ashby agar plates, the PKV plates and quantitative analysis of Mo-Sb-Ascrobiology acid colorimetry was used to measure its ability of phosphate solubilization, for its ability of potassium solubilization the silicate medium and flame spectrophotometry was used, for its ability of producing siderophores the method detecting CAS was used, for its ability of producing ACC deaminase the Alpha ketone butyric acid method was applied. And the effect on promoting growth of seed by active strain was tested. The results showed that the indoleacetic acid producing strain of JJ5-2 was obtained from 118 endophytes, which the content of indoleacetic acid was 10.2 mg x L(-1). The JJ5-2 strain also had characteristics of phosphate and potassium solubilization, nitrogen fixation, producing siderophores traits, and the promoting germination of ginseng seeds. The JJ5-2 strain was identified as Bacillus thuringiensis by analyzing morphology, physiological and biochemical properties and 16S rRNA gene sequences. PMID:26080547

  1. Statistical Thermodynamic Model for Surface Tension of Aqueous Organic Acids with Consideration of Partial Dissociation.

    Science.gov (United States)

    Boyer, Hallie C; Dutcher, Cari S

    2016-06-30

    With statistical mechanics, an isotherm-based surface tension model for single solute aqueous solutions was derived previously (Wexler et al. J. Phys. Chem. Lett. 2013) for the entire concentration range, from infinite dilution to pure liquid solute, as a function of solute activity. In recent work (Boyer et al. J. Phys. Chem. Lett. 2015), empirical model parameters were reduced through physicochemical interpretations of both electrolyte and organic solutes, enabling surface tension predictions for systems where there is little or no data. The prior binary model is extended in the current work for the first time to treat multicomponent systems to predict surface tensions of partially dissociating organic acids (acetic, butyric, citric, formic, glutaric, maleic, malic, malonic, oxalic, propionic, and succinic acids). These organic acids are especially applicable to the study of atmospheric aqueous aerosols, due to their abundance in the atmosphere. In the model developed here, surface tension depends explicitly on activities of both the neutral organic and deprotonated components of the acid. The relative concentrations of the nondissociated and dissociated mole fractions are found using known dissociation constants. Model parameters strongly depend on molecular size, number of functional groups, O:C ratio, and number of carbons. For all organic acids in this study, fully predictive modeling of surface tensions is demonstrated. PMID:27219322

  2. Application of an anaerobic packed-bed bioreactor for the production of hydrogen and organic acids

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the potential feasibility of an anaerobic bioreactor treating low organic matter content in generating hydrogen gas and organic acids. For this purpose, it was used a horizontal packed-bed bioreactor fed with glucose-based synthetic wastewater with hydraulic retention time of 0.5 h, using clay-beads as bio-film support material. A microbial bio-film developed during 63 days without previous inoculation. The reactor was fed with three different concentration of buffer agent: 0, 1000 and 2000 mg.l-1 of NaHCO3 and it was observed that 85.8%, 80.5% and 87.3% of glucose was fermented to organic acids and hydrogen production was in average of 2.48, 2.15 and 1.81 mol H2/mol of glucose, respectively. The most common organic acids observed were acetic and butyric. High percentage of acids recovery (93.5%) was obtained using an anion-exchange column. Therefore, the operational regime of the bioreactor, the support material and alkalinity control were effective to select a microbial fermenting bio-film capable of producing free hydrogen and organic acids. (authors)

  3. Ionic environment of the rumen and its effect upon microbial function, volatile fatty acid production and absorption

    International Nuclear Information System (INIS)

    Osmotic pressure, pH, total volatile fatty acid concentrations, calcium, magnesium, sodium, potassium, phosphate and chloride concentrations were studied with respect to time after feeding and type of diet. Three cattle fitted with rumen cannulae were fed six diets twice a day. Rumen fluid was collected every 20 minutes for the first hour after feeding, and then hourly for a 24-hour collection period. The 24-hour mean osmotic pressures for each diet were: corn and silage 316, silage 318, milo 331, hay 312 and concentrates-silage-hay 332 mOsm. The 24-hour mean total mineral concentrations for each diet were: corn and silage 199, silage 182, milo 321, hay 191 and concentrates-silage-hay 229 mmol/litre. With the addition of K at 200, 500, and 1000 mmol/litre, molar percentages of acetate and isovalerate increased whereas those of propionate and butyrate decline. Total VFA concentration declined with K concentration. With high levels of added K glucose utilization was significantly (P14C was continuously infused into the rumen in seven trials for three to six hours, and sampling continued for four to eight hours. Average net acetate absorption (mmol/h) was estimated as 32.8 on control trials; 26.9 on the KCl infusion trial and -1.8 on the resin trial. Corresponding values for butyrate absorption were 16.4, 24,0 and 19.7. A notable decrease in the acetate specific activity was observed during on resin trial

  4. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  5. The effect of functionalized single walled carbon nanotube with octadecylamine on efficiency of poly-(3-hexylthiophene): [(6,6)] phenyl C61 butyric acid methyl ester organic solar cells

    International Nuclear Information System (INIS)

    We fabricated bulk heterojunction (BHJ) solar cells with a configuration ITO/PEDOT:PSS/P3HT:PCBM:o-SWNT/Al that consisted of different carbon nanotubes concentrations functionalized with octadecylamine (o-SWNT). The three solar cells which consisted of o-SWNT concentrations of 0.01%, 0.001% and 0.0001% by weight were prepared at the same process conditions. The absorption measurements of active layer (P3HT:PCBM: x wt% of o-SWNT) and current–voltage measurements of solar cells have shown that VOC does not change depending on the used contribution rates. However, JSC has increased by 23.8% in solar cells that are fabricated with o-SWNT concentrations of 0.001 wt% compared with solar cell without o-SWNT. The power conversion efficiency has also increased by 31.8%. While IPCE is about 37% in 350 nm in the reference solar cell, IPCE of the solar cell comprised of o-SWNT of 0.001 wt% is about 45%

  6. A Novel Preparation Technology for Butyric Acid Production by Using pH-shift Control Strategy and Its Optimization%应用pH-shift控制策略制备丁酸新工艺及其优化

    Institute of Scientific and Technical Information of China (English)

    刘寅; 和晶亮; 毛多斌; 杨雪鹏; 魏东芝

    2013-01-01

    以嗜热丁酸梭菌为生产菌株,研究不同pH(6.0,6.2,6.4,6.6,6.8,7.0)条件对嗜热丁酸梭菌生长和产酸的影响.基于不同pH条件下试验结果的分析比较,拟采用pH-shift控制策略,运用发酵法制备丁酸,并探索最优工艺条件.通过单因素试验和正交优化试验确定了最优发酵工艺条件为:0~20h将pH控制在6.8,而后将pH调低至6.2并保持到发酵结束,发酵温度为55℃,发酵总时间为50 h,以6 mol/L NaOH溶液为中和剂,采用自动流加方式.优化后的发酵工艺能有效提高丁酸产量,通过应用pH-shit控制策略,丁酸产量达16.12 g/L,与固定pH条件下发酵最好结果相比提高35.69%.该试验结果表明采用pH-shift控制策略的新工艺可有效提高丁酸发酵过程的效率.

  7. Avaliação de genótipos de arroz sob efeito do ácido butírico Rice genotype evaluation under butyric acid effect

    OpenAIRE

    Mauricio Marini Kopp; Viviane Kopp da Luz; Luciano Carlos da Maia; Jefferson Luiz Meirelles Coimbra; Rogério Oliveira de Sousa; Fernando Irajá Félix de Carvalho; Antonio Costa de Oliveira

    2010-01-01

    Solos do tipo hidromórfico apresentam uma reduzida capacidade de drenagem, sendo utilizados principalmente para cultivo de arroz irrigado. Esta condição favorece o desenvolvimento de microrganismos anaeróbios que produzem substâncias fitotóxicas. O objetivo do trabalho foi avaliar a resposta de 25 genótipos de arroz ao ácido butírico, um composto produzido em solos de deficiente drenagem e alto teor de matéria orgânica. O trabalho foi executado em sistema de hidroponia com 4 doses do ácido e ...

  8. The effect of heart-and kidney-Benefiting Chinese Herbal Medicine on the function of cholinergic M-and Gamma amino-butyric acid (GABA) receptor in brain tissues of analogue dementia rats

    International Nuclear Information System (INIS)

    3H-QNB and 3H-GABA were used as radioactive ligand for M-and GABA receptors respectively. M-and GABA receptors were assayed by radioligand binding assay (RBA) in cerebral cortex, hippocampus and cerebellum of analogue dementia rats. It was found that Rt of M receptor was decreased in cerebral cortex and hippocampus and Rt of GABA receptor was decreased in cerebellum of analogue dementia rats. The dissociation constant (KD) of M-receptor was decreased significantly in cerebral cortex and KD value of (GABA) receptor was decreased in cerebellum of analogue dementia rats. The decreased Rt of M-and GABA receptor in brain tissue of analogue dementia rats was raised by Heart- and Kidney-Benefiting Chinese Herbs as well as hydergin

  9. Analysis of γ-hydroxy butyrate by combining capillary electrophoresis-indirect detection and wall dynamic coating: application to dried matrices.

    Science.gov (United States)

    Saracino, Maria A; Catapano, Maria C; Iezzi, Rosa; Somaini, Lorenzo; Gerra, Gilberto; Mercolini, Laura

    2015-11-01

    γ-Hydroxybutyric acid (GHB) is a powerful central nervous system depressant, currently used in medicine for the treatment of narcolepsy and alcohol dependence. In recent years, it has gained popularity among illegal club drugs, mainly because of its euphoric effects as well as doping agent and date rape drug. The purpose of the present work was the development of a rapid analytical method for the analysis of GHB in innovative biological matrices, namely dried blood spots (DBSs) and dried urine spots (DUSs). The analytical method is based on capillary zone electrophoresis with indirect UV absorption detection at 210 nm and capillary wall dynamic coating. The background electrolyte is composed of a phosphate buffer containing nicotinic acid (probe for detection) and cetyltrimethylammonium bromide (CTAB, reversal of electroosmosis in wall dynamic coating). The influence of probe and CTAB concentration, together with buffer pH, on migration time and signal response was investigated. Under the optimized conditions, analytical linearity and precision were satisfactory; absolute recovery values were also high (>90 %); the use of dried matrices (DBSs and DUSs) was advantageous as an alternative matrix to classical ones. No interferences were found either from the most common exogenous or from endogenous compounds. This analytical approach can offer a rapid, precise and accurate method for GHB determination in innovative biological samples, which could be important for screening purposes in clinical and forensic toxicology. Graphical Abstract CE method, by combined indirect UV detection and dynamic coating, for GHB determination in DBSs and DUSs. PMID:26427507

  10. Liquid biofuel production from volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Steinbusch, K.J.J.

    2010-03-19

    dominated by relatives of Clostridium kluyveri. VFA could also be reduced to alcohols. Acetic, propionic and butyric acids were biohydrogenated with hydrogen and acetic acid also with an electrode. Observed alcohol concentrations were 0.62 g L{sup -1} ethanol, 0.49 g L{sup -1} propanol and 0.27 g L{sup -1} n-butanol. Methanogenesis was successfully inhibited after thermal pre-treatment incubated at pH 6, while acetate reduction was enhanced. In the second study, ethanol (0.084 g L{sup -1}) was produced at the cathodic compartment of a bioelectrochemical system, in which the electron transport was mediated by methyl viologen. The ethanol production activity at the cathode was only of very short term, since the mediator irreversibly reacted at the surface of the cathode. Of the two VFA conversion processes, biohydrogenation and chain elongation, the latter was a more dominant process that consumes ethanol with acetate to medium chain fatty acids. With this technology, wet organic waste can be converted to biofuels carbon and energy efficient. The technology is promising due to the good fuel and separation properties of medium chain fatty acids, and the possibility to produce them at high concentrations and specific production rates comparable to other anaerobic conversions.

  11. Understanding Acid Rain

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  12. Role of Free Fatty Acid Receptor 2 (FFAR2) in the Regulation of Metabolic Homeostasis.

    Science.gov (United States)

    Mohammad, Sameer

    2015-01-01

    Besides being an important source of fuel and structural components of biological membranes, free fatty acids (FFAs) are known to display a wide variety of roles that include modulation of receptor signaling and regulation of gene expression among many. FFAs play a significant role in maintaining metabolic homeostasis by activating specific G-Protein Coupled Receptors (GPCRs) in pancreatic β cells, immune cells, white adipose tissue, intestine and several other tissues. Free Fatty acid receptor 2 (FFAR2) also known as GPR43 belongs to this group of GPCRs and has been shown to participate in a number of important biological activities. FFAR2 is activated by short-chain fatty acids (SCFAs) such as acetate, propionate and butyrate. SCFAs are formed in the distal gut by bacterial fermentation of macro-fibrous material that escapes digestion in the upper gastrointestinal tract and enters the colon and have been shown to play vital role in the immune regulation and metabolic homeostasis. FFAR2 and other free fatty acid receptors are considered key components of the body's nutrient sensing mechanism and targeting these receptors is assumed to offer novel therapies for the management of diabetes and other metabolic disorders. This review aims to summarize the current state of our understanding of FFAR2 biology with a particular focus on its role in metabolic homeostasis. PMID:25850624

  13. Amino Acids and Sugars in the Gas Phase: Microwave Data for Astrochemistry

    Science.gov (United States)

    Mata, S.; Cabezas, C.; Varela, M.; Peña, I.; Perez, C.; Blanco, S.; Sanz, M. E.; Lopez, J. C.; Alonso, J. L.

    2011-05-01

    Microwave spectroscopy, considered the most definitive gas phase structural probe, can distinguish between different conformational structures since they have unique spectroscopic constants and give separate rotational spectra. However it has been limited to molecular specimens having an appreciable vapor pressure. In general, molecules of biological importance have low vapor pressures and tend to undergo degradation upon heating. The combination of laser ablation with Fourier transform microwave spectroscopy in supersonic jets (LA-MB-FTMW) which overcomes the problems of thermal decomposition has rendered accessible the gas phase structural studies of these molecules. To date different α-, β- and γ-amino acids have been studied using this technique. Even in conformationally challenging systems the preferred conformations can be identified by rotational spectroscopy, as has been illustrated with the assignment of seven low-energy conformers in serine and threonine, six in cysteine and aspartic acid , and nine in γ-amino butyric (gaba). This technique has been successfully applied to the study of monosaccarides. Three conformers of the prototypes α-D-glucose and β-D-glucose have been characterized for the first time in the gas phase. After the first experimental observation of the monohydrated cluster of glycine, complexes between amino acids and nitrogen bases with water have also been investigated to obtain information on the changes induced in the conformational or tautomeric preferences by the addition of solvent molecules. The information given here is relevant for the unambiguous identification of these amino acids and sugars in the interstellar medium.

  14. Dehydroabietic acid

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Rao

    2009-10-01

    Full Text Available The title compound [systematic name: (1R,4aS,10aR-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid], C20H28O2, has been isolated from disproportionated rosin which is obtained by isomerizing gum rosin with a Pd-C catalyst.. Two crystallographically independent molecules exist in the asymmetric unit. In each molecule, there are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by intermolecular O—H...O hydrogen bonds.

  15. Intestinal concentrations of free and encapsulated dietary medium-chain fatty acids and effects on gastric microbial ecology and bacterial metabolic products in the digestive tract of piglets.

    Science.gov (United States)

    Zentek, Jürgen; Buchheit-Renko, Susanne; Männer, Klaus; Pieper, Robert; Vahjen, Wilfried

    2012-02-01

    The influence of low dietary levels of free and encapsulated medium-chain fatty acids on their concentrations in the digesta, the gastric microbial ecology and bacterial metabolic products in the gastrointestinal tract (GIT) in weaned piglets was studied. Starting after weaning, 36 piglets were fed a diet without (Control) or with medium-chain fatty acids uncoated (MCFA) or coated with vegetable fat and lecithin (MCFAc). After 4 weeks, the animals were killed, and digesta from the stomach and different sections of the GIT were collected. The concentrations of caprylic (p Lactobacillus johnsonii (p Lactobacillus amylovorus (p = 0.001) in gastric contents. A similar trend was seen with diet MCFA. Relative concentrations of short-chain fatty acids were characterised by lower propionic acid levels (p = 0.045), numerically (p < 0.1) higher acetic, lower n-butyric and i-valeric acid concentrations in the small intestine. Lactic acid concentrations were not significantly changed in the GIT, but ammonia concentrations increased (p < 0.001) in the distal small intestine in the MCFA and MCFAc groups. In conclusion, medium-chain fatty acids affected microbial ecology parameters in the gastric contents and bacterial metabolites in the small intestine. At low dietary levels, medium-chain fatty acids may be regarded as modulators of the gastric microbiota in weaned piglets. PMID:22397093

  16. Characterization of the interaction between two food aroma components, alpha-pinene and ethyl butyrate, and ethylene-vinyl alcohol copolymer (EVOH) packaging films as a function of environmental humidity.

    Science.gov (United States)

    López-Carballo, Gracia; Cava, David; Lagarón, Jose M; Catalá, Ramón; Gavara, Rafael

    2005-09-01

    The ethylene-vinyl alcohol copolymers (EVOHs) are well-known high oxygen barrier materials that are being used successfully in the design of packaging structures for oxygen-sensitive food or pharmaceutical products. Recently, there has been increasing interest in using EVOH materials to provide a high barrier to organic compounds as a means to reduce food aroma scalping. However, the barrier function of this family of materials diminishes significantly in humid environments, and it is supposed that so does the organic vapor barrier. In this work, a new sorption-based method to characterize the interaction between food aroma and polymer films for packaging as a function of relative humidity is presented and is used to determine the barrier to ethyl butyrate and alpha-pinene of EVOH at 23 degrees C. The results show that although EVOH is an excellent barrier to food aroma when dry, a property that even improves at low relative humidity (RH), the solubility and diffusivity of the compounds tested increase dramatically with humidity at medium to high water activities. However, even in the worst case (100% RH), EVOH outperforms low-density polyethylene (LDPE) as a barrier to organic vapors at least 500,000-fold. PMID:16131132

  17. Retarded acid emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Fast, C.R.; Rixe, F.H.; Duffield, E.L. Jr.

    1972-08-01

    Compositions for use in acidizing hydrocarbon-bearing formations are described. Retarded acid emulsions of prolonged stability make it possible for the acid in this form to be displaced substantial distances out into the formation before becoming spent. The action of acid emulsions for use in acidizing hydrocarbon-bearing formations is prolonged by employing as the principal emulsifying agent an amine salt of dodecylbenzene sulfonic acid. Acid emulsions employing the amine salt of dodecylbenzene sulfonic acid exhibit greater stability than those employing the free acid. (8 claims)

  18. Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling

    Directory of Open Access Journals (Sweden)

    Vázquez José

    2011-11-01

    Full Text Available Abstract Background Effects of organic acids on microbial fermentation are commonly tested in investigations about metabolic behaviour of bacteria. However, they typically provide only descriptive information without modelling the influence of acid concentrations on bacterial kinetics. Results We developed and applied a mathematical model (secondary model to capture the toxicological effects of those chemicals on kinetic parameters that define the growth of bacteria in batch cultures. Thus, dose-response kinetics were performed with different bacteria (Leuconostoc mesenteroides, Carnobacterium pisicola, Escherichia coli, Bacillus subtilis and Listonella anguillarum exposed at increasing concentrations of individual carboxylic acids (formic, acetic, propionic, butyric and lactic. In all bioassays the acids affected the maximum bacterial load (Xm and the maximum growth rate (vm but only in specific cases the lag phase (λ was modified. Significance of the parameters was always high and in all fermentations the toxicodynamic equation was statistically consistent and had good predictability. The differences between D and L-lactic acid effects were significant for the growth of E. coli, L. mesenteroides and C. piscicola. In addition, a global parameter (EC50,τ was used to compare toxic effects and provided a realistic characterization of antimicrobial agents using a single value. Conclusions The effect of several organic acids on the growth of different bacteria was accurately studied and perfectly characterized by a bivariate equation which combines the basis of dose-response theory with microbial growth kinetics (secondary model. The toxicity of carboxylic acids was lower with the increase of the molecular weight of these chemicals.

  19. Biological roles and therapeutic potential of hydroxy-carboxylic acid receptors

    Directory of Open Access Journals (Sweden)

    Kashan eAhmed

    2011-10-01

    Full Text Available In the recent past, deorphanization studies have described intermediates of energy metabolism to activate G protein-coupled receptors (GPCRs and to thereby regulate metabolic functions. GPR81, GPR109A and GPR109B, formerly known as the nicotinic acid receptor family, are encoded by clustered genes and share a high degree of sequence homology. Recently, hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A and GPR109B, and therefore these receptors have been placed into a novel receptor family of hydroxy-carboxylic acid (HCA receptors. The HCA1 receptor (GPR81 is activated by the glycolytic metabolite 2-hydroxy-propionic acid (lactate, the HCA2 receptor is activated by the ketone body 3-hydroxy-butyric acid and the HCA3 receptor (GPR109B is a receptor for the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA1 and HCA2 receptors are present in most mammalian species, the HCA3 receptor is exclusively found in humans and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-lipolytic effects in adipocytes through Gi-type G-protein-dependent inhibition of adenylyl cyclase. HCA2 and HCA3 inhibit lipolysis during conditions of increased β-oxidation such as prolonged fasting, whereas HCA1 mediates the anti-lipolytic effects of insulin in the fed state. As HCA2 is a receptor for the established anti-dyslipidemic drug nicotinic acid, HCA1 and HCA3 also represent promising drug targets and several synthetic ligands for HCA receptors have been developed. In this article, we will summarize the deorphanization and pharmacological characterization of HCA receptors. Moreover, we will discuss recent progress in elucidating the physiological and pathophysiological role to further evaluate the therapeutic potential of the HCA receptor family for the treatment of metabolic disease.

  20. [Volatile fatty acids in the rumen of sheep fed a synthetic diet].

    Science.gov (United States)

    Baran, M; Bod'a, K; Jalc, D; Piatková, M; Kalacnjuk, G I; Várady, J

    1983-08-01

    A trial was conducted with wethers to study the effect of the administration of a synthetic diet (composition: 30.125% starch, 30.125% sucrose, 25% cellulose, 5.25% urea, 8.125% mineral supplement, 1.25% maize oil and 0.125% cholinechloride) upon rumen fermentation. The adaptation to the synthetic diet lasted three months, the proportion of the synthetic diet increasing every week (by 10%) to the detriment of a traditional diet (composition: 0.5 kg meadow hay, 0.3 kg barley, 0.2 kg wheat bran, salt and straw ad libitum). In the 10th week the animals consumed 0.5 kg granular synthetic diet, 0.2 kg cellulose flakes and 0.01 kg polystyrene. After three weeks of the administration of the fully synthetic diet, the rumen fluid was sampled after morning feeding in intervals of 0, 1, 3, 5 and 7 hours. In the dynamics of fermentation, statistically significant differences were found only in isobutyric and isovaleric acid between the 0th and 1st and between the 5th and 7th hours (P less than 0.05--P less than 0.001). The data for all the time intervals were recalculated to average values. These were as follows: total volatile fatty acids 63.03 mmol/l, acetic acid 51.00 mol%, propionic acid 26.75 mol%, butyric acid 19.43 mol%, isobutyric acid 0.91 mol%, isovaleric 1.27 mol%, valeric acid 0.62 mol%, energy efficiency of VFA production 78.23%. The obtained data are confronted with literary data on synthetic diets which contained urea and various energy sources. PMID:6414150